

UNIVERSITY OF CALABRIA

Italy

Energy Efficient Management and Scheduling of
Computational Resources

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Department of Electronics, Informatics and Systems

by

Mehdi Sheikhalishahi

2012

c© Copyright by

Mehdi Sheikhalishahi

2012

TABLE OF CONTENTS

0.1 Abstract: English version . 8

0.2 Sommario: Italian version . 9

1 Introduction . 1

2 Green Computing: a dual technology for cloud computing and HPC . . 4

2.1 Proposition . 5

2.2 Cloud Computing . 6

2.2.1 Infinity . 7

2.2.2 Outsourcing: remote, over the Internet 8

2.2.3 Utility: pay per use . 8

2.2.4 Economy of scale . 9

2.2.5 Self service: self-provisioning, on the fly 9

2.2.6 Multi-tenancy . 10

2.2.7 Public cloud . 11

2.2.8 Federation and hybrid cloud 12

2.3 High Performance Computing . 12

2.4 Green Computing . 15

2.4.1 Liquid Cooling . 15

2.4.2 Renewable energy sources 16

2.4.3 Intelligent Computation . 16

2.4.4 Economy and Business . 17

2

2.5 Conclusion . 18

3 The problem of energy efficient resource management and scheduling . 21

3.1 Scheduling in computing system . 23

3.1.1 Maximizing resource utilization by packing techniques 24

3.2 Related Work . 27

4 Towards a General-purpose and Multi-level Approach in Energy Efficient

Computing . 31

4.1 Metrics . 35

4.2 Techniques . 36

4.3 Models . 38

4.4 Policies . 39

4.5 Algorithms . 41

4.6 HPC, Grid, and Cloud paradigms . 41

5 Resource Contention Metric . 43

5.1 Resource Contention Metric for HPC Workloads 43

5.1.1 Workload Classification and Characteristics 44

5.1.2 Resource Contention Model 44

6 Effective Energy Aware Consolidation Policies 47

6.1 Simple Consolidation Policy . 50

6.2 Consolidation Policy Over Job Time Horizon 50

6.3 Evaluation by experimentations . 52

3

6.3.1 Workload Traces . 52

6.3.2 Configurations and Experimentations 53

6.3.3 Results . 53

7 Autonomic Scheduling and Energy Efficiency 57

7.1 Autonomic Scheduling . 57

7.2 Job and Resource Monitoring . 58

7.3 Algorithm . 59

7.3.1 Queue Mechanism . 60

7.3.2 Scheduling Cycle . 61

7.3.3 Job Scheduling . 62

7.3.4 Job Ends . 63

7.4 Evaluation by Experimentations . 63

7.4.1 Workload Traces . 63

7.4.2 Configurations . 64

7.4.3 Experimentations . 65

7.4.4 Results . 66

8 Conclusion and Future Work . 74

References . 76

4

LIST OF FIGURES

2.1 Green computing: a dual technology for computing and communica-

tion technologies . 6

2.2 Duality gap among green energy and real energy consumption of a

system . 20

4.1 Resource management evolution . 33

4.2 Modern resource management system architecture 34

6.1 Resource contention graph for 16 and 8 number of core processors . . 54

7.1 BLUE1: Resource contention graph for 16 and 8 number of core pro-

cessors . 67

7.2 BLUE2: Resource contention graph for 16 and 8 number of core pro-

cessors . 68

7.3 DS: Resource contention graph for 4 and 2 number of core processors 69

5

LIST OF TABLES

5.1 HPC Application Characteristics . 44

6.1 Completion Time and Resource Contention metric for 16 and 8 cores . 55

7.1 HPC Characteristics distribution in workload trace 64

7.2 BLUE1: Completion Time and Resource Contention metric for 16 and

8 cores . 70

7.3 BLUE2: Completion Time and Resource Contention metric for 16 and

8 cores . 71

7.4 DS: Completion Time and Resource Contention metric for 4 and 2 cores 72

7.5 Autonomic versus non-autonomic approach improvement 73

6

ACKNOWLEDGMENTS

I would not have made it here without the help, guidance, and support of many won-

derful people. To all of them, I extend my most sincere and heartfelt thanks.

To professor Lucio Grandinetti, my PhD supervisor, besides steering my disserta-

tion work to a successful conclusion, Lucio has supported me tirelessly like a father,

standing up for me when I needed it most.

I am grateful to Borja Sotomayor for his support and help, development of Haizea.

Also, I gratefully acknowledge Ignacio Martin Llorente, Wolfgang Gentzsch, Jose Luis

Vazquez-Poletti, and Natalie jean Bates for their insightful comments at the beginning

and during my PhD work.

Last but not the least, to my parents who have sacrificed their life for my life,

health, and progress.

7

ABSTRACT OF THE DISSERTATION

Energy Efficient Management and Scheduling of
Computational Resources

by

Mehdi Sheikhalishahi
Doctor of Philosophy in Department of Electronics, Informatics and Systems

University of Calabria, Italy, 2012

Professor Lucio Grandinetti, Chair

0.1 Abstract: English version

Information Technology has a big impact on climate change and global warming as

the current and future challenges of the world. In this PhD thesis, we focus on green

computing to address these challenges.

With the advent of new technologies, we need to explore these technologies to

see if they can address green computing. The first stages of this thesis uncover the

flux of technologies and its impact on green landscape. We envision the duality of

green computing with technological trends in other fields of computing such as high

performance computing (HPC) and cloud computing from one hand; and economy,

and business, on the other hand.

In addition, IT’s energy consumption and sustainability impact are expected to in-

crease. Contemporary technologies are moving towards Intelligent Computation in

order to optimize resource and energy consumption. Intelligent Computations are

done with the techniques and mechanisms of new computing technologies such as

8

infrastructure-adapted-to-applications, virtual machine consolidation, optimization al-

gorithms, hardware and software co-design, and application profiling to optimize re-

source consumption, and pay-as-you-go business model to reduce costs, etc.

In green world, research on minimizing energy and resource consumption through

algorithmic and software techniques such as monitoring, power-aware consolidation,

scheduling, optimization algorithms such as bin packing as well as user/application

profiling and debugging are other aspects of addressing energy efficiency. These facets

of Intelligent Computation constitute the main parts of resource management. In the

second part of this Thesis, we address some aspects of Intelligent Computation as part

of resource management and scheduling.

More specifically, we introduce the problem of resource management more pre-

cisely and describe computing system problems from the resource management point

of view. We explore resource management components. Then, we model resource

contention metric that is one of the main metrics explored in this thesis. We develop

effective energy aware consolidation policies. Finally, we propose a novel autonomic

energy efficient resource management and scheduling algorithm.

0.2 Sommario: Italian version

La Tecnologia dellInformazione (Information Technology- IT) ha un grande impatto

sul cambiamento climatico e sul riscaldamento globale come le attuali e future sfide

del mondo. In questa tesi di dottorato, si focalizza lattenzione sul Green Computing

per affrontare queste sfide. E necessario, quindi, esplorare le nuove tecnologie al fine

di comprendere se possono supportare il Green Computing.

Le prime fasi di questa tesi sono focalizzate ad analizzare le nuove tecnologie

e limpatto che esse hanno sul panorama ecologico. Si configura pertanto il dual-

9

ismo tra il Green Computing e le nuove tendenze tecnologiche in settori informatici

come il Calcolo ad Alte Prestazioni (HPC) ed il Cloud Computing da una parte;

l’economia e le imprese, dall’altro. Inoltre, poich il consumo energetico dovuto al-

lIT e limpatto della sostenibilit ecologica sono destinati ad aumentare, le tecnologie

moderne (Contemporary Technologies) si stanno orientando verso il Calcolo Intel-

ligente per ottimizzare il consumo di risorse e di energia. Il Calcolo Intelligente

supportato dalle tecniche e dai meccanismi di nuove tecnologie informatiche, come

lInfrastruttura-Adattata-alle-Applicazioni (Infrastructure-Adapted-to-Applications), il

consolidamento della macchina virtuale, gli algoritmi di ottimizzazione, la configu-

razione e progettazione hardware e software, lanalisi di applicativi per ottimizzare il

consumo di risorse ed il modello pay-as-you-go per ridurre i costi, etc.

In un mondo ecologicamente sostenibile, la riduzione del consumo energetico e

delle risorse, tramite tecniche algoritmiche e software quali il monitoraggio, il risana-

mento consapevole della potenza, la schedulazione, gli algoritmi di ottimizzazione

(Problemi di Caricamento (Bin Packing), analisi delle applicazioni e degli utenti e de-

bugging) sono altri possibili modi per gestire lefficienza energetica. Tutti questi sono

comunque aspetti del Calcolo Intelligente e costituiscono le parti principali della ges-

tione delle risorse.

Nella seconda parte di questa tesi, si rivolge lattenzione su alcuni aspetti del Cal-

colo Intelligente che riguardano la gestione e la pianificazione/schedulazione di risorse.

In particolare, si introduce, in maniera dettagliata ed approfondita, il problema di ges-

tione delle risorse e si descrivono i problemi presentati dai sistemi di calcolo sotto

questo punto di vista. Si esplorano, quindi, le componenti relative alla gestione delle

risorse e si modella la cosiddetta metrica Resource Contention come una delle prin-

cipali metriche considerate in questo lavoro. Si sviluppano politiche efficaci per il

risanamento consapevole dellenergia ed infine, si propone un innovativo algoritmo per

10

la gestione e la schedulazione efficiente delle risorse energetiche.

11

CHAPTER 1

Introduction

Climate change and global warming are the two most important challenges of the

earth. These problems pertain to a general increase in the world temperatures caused

by increased amounts of carbon dioxide around the earth.

Researchers in various fields of science and technology in recent years started to

carry out research in order to address these problems by developing environmentally

friendly solutions. Green IT and in particular green computing are two new terms

introduced in ICT community to address the aforementioned problems.

The foundation of this PhD thesis is on green computing and its goals are manifold.

With the advent of new technologies, we need to explore these technologies to see if

they can address challenges of the world. Chapter 2 uncovers the flux of technologies

and its impact on green landscape. More specifically, it envisiones the duality of green

computing with technological trends in other fields of computing such as high per-

formance computing (HPC) and cloud computing from one hand; and economy, and

business, on the other hand.

On the other hand, with the explosive growth of Internet-enabled cloud computing

and HPC centers of all types, IT’s energy consumption and sustainability impact are

expected to continue climbing well into the future. Green IT recognizes this problem

and efforts are under way in both industry and academia to address it.

Contemporary technologies are moving towards Intelligent Computation in order

1

to optimize resource and energy consumption. Intelligent Computations are done with

the techniques and mechanisms of new computing technologies such as infrastructure-

adapted-to-applications, virtual machine consolidation, hardware and software co-design,

and application profiling to optimize resource consumption, and pay-as-you-go busi-

ness model to reduce costs, etc.

In green world, research on minimizing energy and resource consumption through

algorithmic and software techniques such as monitoring, power-aware consolidation,

scheduling as well as user/application profiling and debugging are other aspects of ad-

dressing energy efficiency. These solutions are the facets of Intelligent Computation.

These facets of Intelligent Computation constitute the main parts of resource manage-

ment. In this thesis, we address some aspects of Intelligent Computation as part of

resource management and scheduling.

The next chapters of this PhD thesis are structured as follows. In chapter 3, we in-

troduce the problem of resource management more precisely and describe computing

system problems from the resource management point of view. Chapter 4 discusses

and to some extent explores resource management components. Then, chapter 5 mod-

els resource contention metric that is one of the main metrics explored in this thesis. In

chapter 6, we develop effective energy aware consolidation policies. Finally, chapter

7 proposes a novel autonomic energy efficient resource management and scheduling

algorithm. Chapter 8 presents our conclusions and future work.

This thesis makes the following contributions in the field:

• Evolution of resource management and scheduling as new technologies, paradigms,

etc. emerge

• Establishing relationships within and between various layers of resource man-

agement

2

• Being general rather than special purpose solution

• Defining resource contention metric as a new performance metric to evaluate

scheduling algorithms

3

CHAPTER 2

Green Computing: a dual technology for cloud

computing and HPC

As computing and communication continue to grow, servers, networks and data

centers consume more and more energy. For example, IT resources in the US consume

more than 1.5% of the total electricity consumption. The power consumption of the

data centers in the US in 2006 was 1.5% of the total energy consumed at a cost of more

than $4.5B. With the expected 30-fold increase in data traffic over the next decade, the

overall power consumption of data centers and networks will become an issue of vital

importance to the IT and telecommunications industries.

While computing and information technologies consume energy, they also enable

productivity enhancements and directly contribute to energy efficiency. Some even

argue that computing and information technologies are vital, significant and critical in

moving towards a low-carbon future [Sma10].

In this chapter, we envision the duality of green computing with technological

trends in other fields of computing such as HPC and cloud computing, business, and

economy [SG12].

4

2.1 Proposition

Our proposition in this chapter is that green computing is a dual technology for com-

puting and communication technologies such as HPC and cloud computing. This

means that green computing solutions will drive the development of HPC and cloud

computing; on the other hand, HPC solutions and cloud computing solutions will drive

the development of green computing. Therefore, we may say these technologies are

dual to each other, thus we envision green computing as a dual technology for HPC

and cloud computing.

Green computing is a challenge for the future of HPC, for example to reach exas-

cale computing, we need huge amounts of energy to operate an exascale system.

On the other hand, HPC provides solutions for green computing and climate change.

Complicated processes of new sources of energy, need exascale computing for model-

ing and simulation.

In addition, these contemporary technologies are moving toward Intelligent Com-

putation in order to optimize resource and energy consumption without losing per-

formance. Intelligent Computations are done with the techniques and mechanisms

of new computing technologies such as hardware and software co-design, application

profiling, and virtual machine consolidation to optimize resource consumption, and

pay-as-you-go business model to reduce costs, etc.

In sum, if we solve the challenges and problems of HPC and exascale, we would

implicitly solve many challenges in green computing such as access to new sources of

energy, etc. Similarly, if we solve green computing challenges, we would solve HPC

and cloud computing challenges such as the challenge of exascale power and build-

ing huge cloud data centers. This is the duality theorem we observe among energy

efficiency, green computing and other technological trends in computing and commu-

5

Figure 2.1: Green computing: a dual technology for computing and communication

technologies

nication technologies. This proposition is illustrated in Figure 2.1.

In the remainder of this chapter, we go over some research work at the intersection

of cloud computing and HPC with green computing to realize our observation and

proposition of duality.

6

2.2 Cloud Computing

In the cloud computing world, IT capabilities are delivered on the fly and on-demand

through the Internet when the need arises instead of drawing from desktop computers.

Many design and architectural patterns [AFG10] are emerging around cloud comput-

ing that makes it difficult to fit everything into a prefect definition.

In a formal definition, we denote cloud computing as an extreme specialization

(hyperspecialization) and at the same time a general purpose model of information

technology to digest the flux of future IT. More specifically, we connote the real def-

inition of cloud computing as the convergence of the following essential and ideal

characteristics of various distributed computing technologies: (1) infinity: large scale

data centers; (2) outsourcing: remote, over the Internet; (3) utility: pay per use; (4)

economy of scale; (5) self-service: self-provisioning, on the fly;(6) multi-tenancy (7)

on-demand; (8) elasticity: scalability, autoscaling; (9) *-abilities: availability, reliabil-

ity, scalability, sustainability, etc.

The nature and the anatomy of cloud computing is totally green. From the users’

point of view, cloud computing makes their IT life easier. They can access IT services

without spending too much effort and energy, compared to the other IT models (that

are dedicated). On the other hand, from the scientific point of view, the characteristics

of cloud computing and deployment models make it a ubiquitous green IT paradigm.

In the following, we review cloud’s characteristics and cloud deployment options

to highlight that they are cost-, and energy-effective. In addition, from this highlight

we observe green computing contribution to cloud computing.

7

2.2.1 Infinity

Clouds approach infinity [AFG09], we observe this character in some statistics about

computing: (1) Estimated market for servers used in the cloud in 2014, according to

IDC will be $6.4 billion. In 2010 the market was $3.8 billion. (2) Projected market

for cloud computing in 2014, according to Gartner will be $149 billion. (3) Power re-

quirement for new megadata centers in 2011, according to Microsoft was 50 megawatts

(MW) while in the dotcom era, it was 1 to 2 MW. (4) Estimated share of work done

with virtualization software on new servers in 2014, according to IDC will be 70%.

(5) Maximum number of servers that Google says can be managed with new soft-

ware it’s developing, will be 10 million. (6) Based on data from McKinsey and IDC,

approximate number of servers in use globally 60 is million.

These statistics with their big numbers demonstrate that power requirement and

power management become a major challenge in massive scale systems infrastructures

such as cloud computing data centers. For instance, currently Microsoft and Google

have data centers with 48 MW and 85 MW power requirement, respectively.

In sum, we conclude that green computing contributes to the development of cloud

computing. Green computing’s goal is to provide energy and to increase energy effi-

ciency and reduce resource consumption of the cloud infrastructures.

2.2.2 Outsourcing: remote, over the Internet

Cloud computing is often represented with a diagram that contains a cloud-like shape

indicating a layer where the responsibility for a service goes from user to provider.

This is outsourcing of a service from the user side to the provider side. It is similar

to the electrical power we receive each day, cloud computing provides subscribers and

users with access to provisioned services.

8

This feature makes users’ life to get access to services easier and without any effort.

Outsourcing implicitly contributes to energy efficiency and green computing.

2.2.3 Utility: pay per use

In cloud computing, payment of resource consumption is just like utilities that are paid

for by the hour. In other words, service consumption is metered or measured.

When demand for a service varies with time, and when demand is unknown in

advance, the utility character of a cloud will definitely make it economically cost-

saving.

In the traditional computing models, provisioning a data center for the peak load

that it must sustain a few days per month leads to under utilization at other times that

is not energy efficient. Instead, cloud computing lets an organization pay by the hour

for computing resources, potentially leading to cost savings even if the hourly rate to

rent a machine from a cloud provider is higher than the rate to own one.

In addition, with the cost associativity of cloud computing, computations can finish

faster, since using 1000 EC2 machines for 1 hour costs the same as using 1 machine

for 1000 hours.

2.2.4 Economy of scale

Cloud providers purchase data center infrastructure equipments such as hardware, net-

work, and bandwidth much cheaper than a regular business. The construction and

operation of extremely large-scale, commodity-computer datacenters at low-cost loca-

tions is the key necessary enabler of cloud computing [AFG09].

The cost of electricity, network bandwidth, operations, software, and hardware is

decreased in the factors of 5 to 7 at very large economies of scale. These factors,

9

combined with statistical multiplexing to increase utilization compared to a private

cloud, meant that cloud computing could offer services below the costs of a medium-

sized data center and yet still make a good profit [AFG09].

Economies of scale for consumers means if you need more storage, it is just a

matter of upping your subscription costs with your provider, instead of buying new

equipment. If you need more computational cycles, you need not buy more servers;

rather you just buy more from your cloud provider.

Economy of scale is cost-effective and directly contributes to energy efficiency and

green computing.

2.2.5 Self service: self-provisioning, on the fly

User self-provisioning is one the greatest benefits of the cloud. With that, you have the

ability to get applications up and running in a fraction of the time you would need in a

conventional scenario.

In a cloud, users prepare their resources on the fly by themselves. On the other

hand, infrastructure is adapted to the applications. For instance, Amazon Web Services

(AWS) makes it possible for anyone with an Internet connection and a credit card to

access the same kind of world class computing systems that Amazon uses to run its

$34 billion per year retail operation.

This cloud’s characteristic significantly reduces time to solutions and access to

services, thus it is energy efficient and green.

2.2.6 Multi-tenancy

In traditional data centers, computing systems suffer from under utilization of comput-

ing power and networking bandwidth. Multi-tenant is a business model that provides a

10

secure, exclusive virtualized computing environment in which servers, databases, and

other resources are shared by multiple user companies in a cloud environment.

Public cloud is hosted, operated and managed by a third-party vendor from one

or more data centers. Since the services are offered to multiple customers with the

aforementioned characters, it is multiple tenants over a common infrastructure.

With virtualization and multi-tenant feature, the resources in the cloud are not de-

voted to specific usages and users. At one time, a cloud resource can be used for an

application by a user, and at another time it can be used for another diverse application

by the same user or another user.

Virtualization and shared hosting technologies coupled with multicore servers are

the enablers of cloud infrastructures to support a large number of disparate applica-

tions running simultaneously on multicore servers. Moreover, these technologies en-

able VM consolidation, infrastructure-adapted-to-applications (Intelligent Computa-

tion), and other resource optimization techniques.

This multi-usage feature of cloud addresses energy efficiency and green computing

challenges by significantly improving resource utilization and minimizing resource

waste.

2.2.7 Public cloud

When a cloud is made available in a pay-as-you-go manner to the public, we call it

a public cloud [AFG09]; the service being sold is Utility Computing. Public cloud

resembeles the Internet; current examples of public Utility Computing include AWS,

Google AppEngine, and Microsoft Azure.

Institutions rely on public clouds for providing their services. This is a high level

prespective of Green IT. Public clouds refer to infrastructure provided to the general

11

public by a large industry selling cloud services. Amazon’s cloud offering would fall

in this category. These services are on a pay-as-you-go basis and can usually be pur-

chased using a credit card.

In public cloud, everything is outsourced to outside of a corporation administrative

domain such as security management and day to day operations. These outsourced

tasks are handled by the provider of public cloud service offering. Hence, the customer

of the public cloud service offering has much lower degree of control and oversight of

the physical and logical security aspects of a private cloud.

Public cloud providers optimize energy consumption as a way to offer competitive

prices. This is Green IT at a low level powered by market rules. Moreover, some

public cloud providers could relay to other public cloud providers for certain services.

HPC applications in public cloud is an economic and green approach. In [VBL12],

an astronomy application with a parameter sweep profile from the next mission to

Planet Mars is ported to a public cloud environment. This application requires a big

quantity of computing resources in a short term with punctual situations. Authors pro-

posed a model for optimal execution of that application on a public cloud infrastructure

in terms of time and cost metrics.

2.2.8 Federation and hybrid cloud

Hybrid clouds refer to two or more cloud infrastructures that operate independently

but are bound together by technology compliance to enable application portability.

With hybrid cloud and cloud federation, we can build green services. For each

service, we should find the most green cloud provider, that is, a provider that consumes

the least amount of energy to provide a service.

These deployment models are energy efficient and directly contribute to green com-

12

puting challenges by improving energy consumption.

2.3 High Performance Computing

HPC is the use of advanced parallel processing systems (usually, above a teraflop or

1012 floating-point operations per second) for running complicated and huge processes

quickly, efficiently, and reliably.

The energy (power), cooling, and data center design are the three most prominent

challenges of future HPC systems. Power has become the pre-eminent design con-

straint for future HPC systems. Moreover, the energy cost becomes an increasingly

important factor.

We believe green and performance objectives converge to the same point. In this

direction, HPC provides solutions for green computing. We cite some research work

on the areas of energy and climate that are at the intersection of HPC and green com-

puting.

HPC is used to provide energy, and vice versa energy is required to operate HPC

systems. In particular, as exascale systems are emerging, they would need huge amounts

of electricity to sustain. HPC systems of today need about 10MW power requirement.

For instance, Sequoia, the IBM BlueGene/Q system installed at the Department of En-

ergys Lawrence Livermore National Laboratory, is on the top of the Top500 list with

16.32 petaflop/s [Top12]. It is also one of the most energy efficient systems on the

list with 7890kW power requirement. In addition, the target for the future exascale

systems’ power requirement is 20MW.

ExxonMobil [Exx12] predicts the outlook for energy enabled with supercomput-

ing, ExxonMobil’s global energy outlook projects through 2040. The projections in-

dicate that, at that time, the world’s population will be 8̃ billion, roughly 25% higher

13

than today. Along with this population rise will be continuing economic growth. This

combination of population and economic growth will increase energy demand by over

50% versus 2000.

HPC drives the process of finding new sources of energy. Effective technology

solutions to the energy challenges rely on modeling complicated processes and that

in turn will lead to a strong need for supercomputing. Two examples of the super-

computing need in the oil business are seismic approaches for finding petroleum and

petroleum reservoir fluid-flow modeling (also known as ”reservoir simulation”).

HPC and exascale systems are the main tools to solve climate change challenges.

HPC will become an even more critical resource to help the broader research commu-

nity to develop solutions to potential environmental impacts.

On the electricity grid front, power grid applications are exploiting HPC and net-

working. The first workshop [FPG10] on this challenge discussed the use of HPC and

networking for power grid applications. Technological and policy changes make this

an urgent priority.

From the new hardware technologies point of view, Nvidia evolutionary systems,

i.e. GPUs, Flash technology, and special-purpose hardware systems drive the develop-

ment of green and energy efficient architecture and systems.

From the processing technologies point of view, Nvidia evolutionary systems, i.e.

GPUs, will be among the main building blocks of future exascale systems. Accelerator-

based supercomputers now occupy the top eight slots of the most recent the Green500

list, [Gre12], so we observe that heterogeneous computing is extensively examined as

a means for achieving computing system energy efficiency.

Hardware and software co-design (Intelligent Computation) is another key solution

for green computing and energy efficiency. For instance, GreenFlash [LBL10] is a rad-

ically new approach to application-driven hardware and software co-design inspired by

14

design principles from the consumer electronics marketplace. The GreenFlash system

addresses some aspects of green computing and exascale system for specific applica-

tions. In addition, it significantly reduces cost and accelerates the development cycle

of exascale systems. The application that is the target of Green Flash is ”The Earthś

Atmosphere at Kilometer Scales.”

In [MMO09], authors presented a hardware/software co-tuning (Intelligent Com-

putation) as a novel approach for HPC system design. In this chapter, in order to sub-

stantially improve hardware area and power efficiency, traditional architecture space

exploration is tightly coupled with software auto-tuning. Their approach demonstrates

that co-tuning would be considered as a key driver for the next generation HPC system

design.

In the past decades of HPC design, the performance and speed were the main met-

rics in supercomputer design. This focus on performance as the ultimate metric has

caused other metrics such as energy consumption, reliability, sustainability, availabil-

ity, and usability to be largely ignored. In addition, this particular emphasis has led to

the emergence of supercomputers that consume huge amounts of electrical power and

produce so much heat that overpriced cooling facilities must be constructed to ensure

proper operation. Therefore, there has been an extraordinary increase in the total cost

of ownership (TCO) of a supercomputer.

To that end, the Green500 [Gre12] is developed to encourage sustainable super-

computing by raising awareness to the energy efficiency of such systems. The purpose

of the Green500 is to provide a ranking of the most energy efficient supercomputers in

the world.

15

2.4 Green Computing

Green computing is a growing research topic in recent years to address climate and

energy challenges. In this section, we review green computing solutions such as liquid

cooling that address HPC and cloud computing challenges. In addition, green comput-

ing duality with economy and business is envisioned.

2.4.1 Liquid Cooling

Liquid cooling is a heat removal method based on liquids as the heat conductor, as

opposed to air cooling that uses air for heat removal. The main mechanism for liquid

cooling is convective heat transfer. Liquid cooling is used for cooling large industrial

equipments in grid power plants, petroleum stations and recent computer systems. The

thermal energy that the water extracts from the equipment can be reused for heating

purposes.

In recent years, liquid cooling is used to develop cost-effective cooling mechanism

of computing systems. In particular, large computer systems like big data centers and

supercomputers such as Eurotech’s HPC offering will exploit this cooling mechanism

to reduce cooling and operational costs, and reduce construction space.

Aurora is an innovative system of Eurotech’s HPC offering [Eur12]. Aurora ex-

ploits liquid cooling to design a high density system, that leads to a high energy ef-

ficient HPC system. Such a high density is achieved with extensive usage of liquid

cooling, carried out with metal plates coupled to all Aurora boards, having coolant

flow inside them. Aurora modules have no moving parts, no attached modules, and

are hot-replaceable, being connected with miniaturized couplings to the heat removal

hydraulic infrastructure. In addition, it features Intel’s latest generation processors and

chipsets.

16

Hardcore Computer company [Sol12] has a patented product called Liquid Blade.

Liquid Blade is designed to operate in almost any environment and does not require

costly, overly-complicated environmental control systems. According to Hardcore

Computer, Liquid Blade can deliver up to an 80% reduction in data center cooling

costs and reduce construction and on-going operating costs by up to 25%. Liquid

Blade has a significant, undeniable and immediate reduction in TCO.

2.4.2 Renewable energy sources

On the renewable energy sources front, the demand for clean energy generation is

driving the use of non-dispatchable power sources such as solar and wind [Ren12].

According to a survey by [Ren12], 85 percent of survey respondents voted for more

renewable energy options. With 49 percent saying they would have no problem dig-

ging deeper into their pockets to support companies committed to renewable energy

in the product manufacturing process. Renewable energy sources such as solar and

geothermal energies may be used to power on large data centers like HPC data centers.

2.4.3 Intelligent Computation

In green world, research on minimizing energy and resource consumption through

algorithmic and software techniques such as monitoring, power-aware consolidation,

scheduling as well as user/application profiling and debugging are other aspects of

addressing energy efficiency. These solutions are the facets of Intelligent Computation.

Contemporary computing technologies, HPC and in particular cloud, are moving

toward Intelligent Computation in order to optimize resource and energy consumption

without losing performance. The other aspects of Intelligent Computation are hard-

ware and software co-design, infrastructure-adapted-to-applications, virtual machine

consolidation, and pay-as-you-go business model.

17

Hw/sw co-design is mostly being used for exascale development. It implies user/vendor

development for a particular application space. Hw/sw co-design is a facet of HPC In-

telligent Computation.

On the other hand, in the cloud computing world, infrastructure is adapted to the

applications by the means of enabling technologies i.e virtualization and shared host-

ing technologies coupled with multicore processors.

While Hw/sw co-design from HPC and Infrastructure-adapted-to-applications from

cloud are different approaches, they both contribute to energy efficiency. This obser-

vation demonstrates how different techonologies develop different mechanisms.

2.4.4 Economy and Business

Green computing and climate change have a direct and significant impact on economy

and business.

More and more companies consider green policy and climate change risks as part

of their business policy and strategy. One of the main reasons is that companies with

long-term climate change risks and opportunities in their business policy will gain

strategic advantage over their competitors [BAR12].

In addition, investors fund businesses and companies that consider the environ-

mental policies and the environmental risks as part of their business strategies. For

instance, there were floods in Thailand last year with the total cost of $15 billion to

$20 billion that had big impact on the sell and services of companies. The floods had

negative impact on the automotive supply industry such as the automaker Daimler. In

addition, the floods resulted in shortages of critical IT components and materials of

Hewlett-Packard and Dell.

Last but not the least, insurance companies have to take into account climate

18

change risks in their risk analysis and calcucations. They supply investors with in-

formation about potential environmental risks, costs and benefits.

Similarly, good economy contributes to the development of green computing and

climate change solutions.

2.5 Conclusion

In this section, we summarize our thesis statement and supporting evidence by high-

lighting all the main findings in the previous sections about cloud computing and HPC.

We close this chapter by a set of conclusions and implications about future research.

In this chapter, we have envisioned the duality of green computing with HPC and

cloud computing, business, and economy. Green computing solutions drive the devel-

opment of HPC, cloud computing, economy, and business and vice versa.

Cloud computing as an extreme specialization (hyperspecialization) and as a gen-

eral purpose model of information technology has a green anatomy. The essential

characteristics of cloud computing i.e., infinity, outsourcing, utility business model,

elasticity, on-demand, self-provisioning, multi-tenancy, and *-abilities, and deploy-

ment models make it an ideal and ubiquitous green IT paradigm. In summary, cloud

significanlty reduces effort, energy and resource consumptions.

HPC is used to provide energy, and vice versa energy is required to operate HPC

systems. In particular, as exascale systems are emerging, they would need huge amounts

of electricity (20MW) to sustain. In addition, HPC drives the process of finding new

sources of energy.

On the other hand, HPC and exascale systems are the main tools to solve climate

change challenges. HPC will become an even more critical resource to help the broader

research community to develop solutions to potential environmental impacts.

19

By all means, contemporary technologies are moving toward Intelligent Computa-

tion in order to optimize resource and energy consumption.

In addition, green computing and climate change have a direct impact on economy

and business. Green policy and climate change risks are a part of companies’ business

policy and strategy. In addition, investors fund businesses and companies that con-

sider the environmental policies and the environmental risks as part of their business

strategies.

Energy consumption is a suitable metric to measure how much a technology, a

system, etc. are green. Diagram 2.2 illustrates the green duality gap based on energy

metric. The difference between supplied energy, i.e. real energy consumption, and

demanded energy is part of this gap. In addition to this difference, all the parameters,

factors, etc. we have mentioned in this chapter (as technology advantages) should

be reflected in the green duality gap formulation. Technology disadvantages has a

negative impact on green gap.

Figure 2.2: Duality gap among green energy and real energy consumption of a system

As much as a technology’s or a system’s green gap approaches to zero, it becomes

20

greener. The future research in green computing would need to address this gap.

21

CHAPTER 3

The problem of energy efficient resource management

and scheduling

In this chapter, we explore resource management as a facet of Intelligent Computation.

Resource management as the main middleware management software system plays a

central role in addressing computing system problems and issues. Algorithmic and

software techniques such as monitoring, virtual machine power-aware consolidation

and scheduling are intelligent aspects of addressing energy efficiency.

At the first sight of exploring green technologies and capabilities, we find power

management operations such as DVFS and IDLE-states capabilities at the processor

level and virtualization technology at the middleware layer of computing systems as

immediate solutions to address energy efficiency goals i.e. energy consumption mini-

mization and heat-dissipation (limitations in wasted energy-removal).

On the other hand, energy efficient operations, new technologies for green com-

puting, and emerging computing paradigms should be exploited at the resource man-

agement to coordinate multiple elements within a system for manifold objectives.

We believe green and performance objectives converge to the same point. In the

future of resource management systems, we should take into account this note as we

demonstrate this insight in this work. In addition, resource management design and

architecture should evolve according to the advances in contemporary technologies,

computing paradigms, and energy efficient operations to provide new techniques, al-

22

gorithms, etc. For instance, a comparison between cloud and other paradigms provides

some guidelines and insights in the design and development of resource management

components. Economic model and accuracy of allocations’ parameters (requests’) are

the main two different characteristics of HPC and cloud paradigms which highly im-

pact scheduling.

In the remainder of this thesis, we explore resource management and scheduling

components in detail by taking into account contemporary emerging technologies,

computing paradigms, energy efficient operations, relationships within and between

various components, etc. in order to evolve these components to address computing

system problems in more efficient ways [SG11b].

In computing systems from resource management and scheduling point of view in

general, there are the main problems and issues such as Low Utilization, Overload,

Poor Performance, Resource Contention, etc., in addition, if we consider Energy Effi-

cient computing (Green IT) the High Energy Consumption is another issue. Moreover,

sustainability and reliability are other issues to be addressed by resource management

to some extent.

In this thesis, in order to address these problems components of resource manage-

ment system are explored in detail to seek new developments and evolutions and in par-

allel this process exploits contemporary emerging technologies, computing paradigms,

energy efficient operations, etc. to define, design and develop new metrics, techniques,

mechanisms, models, policies, and algorithms. Furthermore, finding and establishing

relationships within and between various components is a key consideration in this

development process.

In other words, the solution to address the aforementioned problems and issues

is all about to answer complex resource management questions which start by When,

Which and Where with the help of well established relationships. For instance, Which

23

types of applications might be consolidated together in a server?, When some work-

loads should be migrated to other servers?, Where a workload should be placed?, and

lots of other general and specific questions.

In the next section of this chapter, we review the scheduling problem as it is one the

main part of this thesis. Then, some related work on VM-based resource management

and energy efficint schduling are presented.

3.1 Scheduling in computing system

The scheduling definition is as follows: a group of independent tasks have to be sched-

uled on a compute resource e.g. a cluster or a supercomputer, without a deadline i.e.

best-effort request or within a given deadline or other types of quality of service such

as advance reservation. The compute resource is characterized by a number of pro-

cessing nodes and a limited storage. Tasks are not known in advance by the scheduler,

and are assumed to be ordered in some list (as in a queue) and presented one by one

to the scheduler according to this list. Each task has specific resource requirements

for its execution, for example, duration, number of required processing nodes, which

become known when the task is managed by the scheduler. In grid paradigm, dataset

is considered as another resource requirement, so in addition to availability of compute

resource, dataset availability must be satisfied in order to schedule a task. Similarly,

in different computing paradigms we may have some other additional criteria to be

considered.

In a compute resource, jobs arrive over time and they become known at their release

date, i.e., the moment the job is presented, its characteristics get available. Scheduling

in a computing system is not happening only once, since scheduler cannot wait until all

jobs arrive to the system and then schedule all of them together. If a scheduler waits for

24

this time, it must wait for an infinite time, since always new jobs arrive to the system.

Therefore, in any computing system we have online scheduling. In online scheduling,

the scheduling decision for the job has to be taken before the next job is presented.

The scheduling decision is irreversible, i.e., decisions of the past are irreversible. At

any time all currently available jobs are at the disposal of the decision maker. The

scheduling decision for a job may be delayed.

The notion of online algorithm is intended to formalize the realistic scenario where

the algorithm has not access to the whole input instance, unlike the offline algorithms,

but it learns the input as soon as it becomes available. There are many contributions

in the literature about online algorithms [SWW95] [BE05] for some basic results con-

cerning online scheduling on parallel processors.

In other words, online scheduling can be seen as scheduling with incomplete in-

formation at certain points, decisions have to be made without knowing the complete

instance depending on the way how new information becomes known.

3.1.1 Maximizing resource utilization by packing techniques

Optimization techniques are at the heart of scheduling. Packing techniques such as

bin packing and rectangle packing are the most used operation research methods in

computing system scheduling.

Due to multiple resource dimensions in computing systems, resource allocation

problem is related to the multi-dimensional version of bin packing, or vector packing.

Vector packing is bin packing with multi-dimensional items and bins. In order to make

efficient use of all the available system resources, the scheduling algorithm must be

able to maintain a job working set which fully utilizes all resources. At the core of this

scheduling problem is a d-capacity bin-packing problem where each system resource

is represented by a capacity in the bin and the requirements of each waiting job are

25

represented by the d capacities of an item in the input list.

The rectangle (or two-dimensional vector) packing problem [WHL02] consists in

orthogonally packing a subset of a set of rectangular-shaped boxes, without overlap-

ping, into a single bounding rectangular area, maximizing the ratio between the area

occupied by the boxes and the total available area.

In the literature, the offline and the online versions of the rectangle packing prob-

lem have been investigated. Although in the offline version all the problem data are

known in advance, in the online version, where the over list paradigm is considered,

the boxes (with their dimensions) arrive from a list without any knowledge on further

boxes. In particular, the boxes along with their dimensions are known one by one.

When a new box is presented, it is to be decided if it can be placed into a free rectan-

gular subarea of the bounding rectangular area ,i.e. it has to be accepted or rejected.

The online problem is to accept (place) or reject the incoming boxes, maximizing

the ratio between the area occupied by the boxes and the total available area.

Most of the contributions in the literature are devoted to the offline problem that is

solved using several approaches based on optimal algorithms. The basic formulation

issues and solution procedures for the two-dimensional cutting stock problems were

presented in [HS91]. Optimal algorithms for the orthogonal two-dimensional cutting

were proposed in [Bea85] and in [HS91] but such techniques may be nonpractical for

large instances. Heuristic approaches have been considered in [WHL02] and [HT01]

where rejection is also concerned.

In [CGI04] and [CGI03] authors presented online grid scheduling algorithms. The

local scheduling problem is modeled as rectangle packing problems. In all these works,

one dimension is processor and the other dimension is time.

Vector packing has been studied from both a theoretical standpoint (i.e., guaran-

teed algorithms) and a pragmatic one (i.e., efficient algorithms). Versions of standard

26

greedy algorithms (First Fit, Best Fit, Worst Fit, Next Fit, etc.) have been proposed for

vector packing [KM77] [MCT77].

Previous work in d-capacity bin-packing algorithms analyzed extensions of single

capacity bin-packing. These extended algorithms are oblivious to the additional capac-

ities, however, and do not scale well with increasing d. In [LKK99], Leinberger et al.

proposed MCB (Multi-Capacity Bin Packing), a particular vector packing algorithm.

It uses the additional capacity information to provide better packing. Authors show

how these algorithms might lead to better multi-resource allocation and scheduling so-

lutions. We refer to [SSV10] for an extensive review of the literature on vector packing

algorithms.

In [IL99] a fully dynamic bin packing (for one-dimensional) proposed by Ivkovic

and Lloyd, a formulation where items may arrive or depart at discrete time intervals

and the goal is to minimize the maximum number of bins required while limiting

re-packing. The packing may be arbitrarily rearranged to accommodate arriving and

departing items.

In all, offline scheduling scenario in terms of bin-packing problem is the NP-hard

problem [GJ90] as well.

We argue that packing techniques such as bin packing or rectangle packing to be

unimportant in online scheduling. First, since we do not have knowledge about future

jobs. Second, a packing technique can provide optimal packing for a scheduling cycle,

however if we consider the next scheduling cycle (or consecutive cycles), it might fail

to propose an optimal packing for both scheduling cycles (or all consecutive cycles),

as we see that in recent work to resolve this they used migration, suspend and resume

techniques provided by virtualization technology. However, virtualization techniques

are not a prefect approach since these operations are heavy and they interrupt computa-

tions, consume other resources such as bandwidth, etc. In addition, at every scheduling

27

cycle they repeat these operations, again and again.

On the other hand, because of NP-complexity of packing techniques, they can-

not be exploited in the scheduling algorithms. In fact, schedules should be com-

puted quickly, because of the online nature of the problem. As a result, usually non-

guaranteed algorithms (i.e., heuristics) that perform well in practice, hopefully close

to the offline bound, are used.

3.2 Related Work

In this decade many approaches have been proposed and developed to address the

problem of energy efficient computing with special attention on energy consumption

optimization, utilization improvement as well as system’s reliability. In general, we

classify them into the following categories:

• Policies: e.g. Consolidation based policies

• Pricing strategies: The aim is utilization improvement and maximizing profit by

attracting more users through offering cheaper prices [Sot10] [Ama10]. If we

consider energy efficiency, pricing workloads based on computing system state

e.g. offering cheaper prices for applications that will lead to less energy con-

sumption (or higher performance) based on the current cloud status (workloads

and resources) compared to the others, are some ideas to come up with. This is

also true for Quality of Service (e.g. by price)

• Admission control: In this component of scheduling, again according to state,

the scheduler could make decision to accept or reject a job to achieve some

goals [Sot10]. For example, accept jobs which lead to utilization improvement

and less energy consumption based on the current cloud status (workloads and

28

resources)

• Algorithms based on energy aware operations: These algorithms incorporate

energy aware operations of hardware components that are green e.g. DVFS

and cpuidle to improve scheduling metrics such as utilization e.g. by combin-

ing energy aware operations we can have some optimization such as increas-

ing/decreasing frequency of processors would result in extension of or reduction

of jobs running times, so that we can fill out free spaces in availability window of

scheduler. For instance, authors in [LWY09] present an efficient scheduling al-

gorithm to allocate virtual machines in a DVFS-enabled cluster by dynamically

scaling the supplied voltages

• Dynamic load balancing algorithms: Algorithms and policies to migrate work-

loads through heavy migrate operation. Paper [Her09] presents dynamic work-

load consolidation via load balancing implemented by migration operation

Broadly speaking, we argue the importance of research on the first three categories.

The others are not able to approximate global or local optimality in a distributed sys-

tem, they are better suited for a system i.e. on a physical machine whereas policies and

pricing strategies are part of a distributed resource management which could provide

some sort of optimality in a distributed system. In the literature, there are many works

on the aforementioned topics that most of them are special purpose.

First, we review research works mainly on policies from the scheduling point

of view in distributed systems. Eucalyptus [Nur08], Nimbus [Nim10] and Usher

[MGV07] as Virtual Infrastructure Managers do not support scheduling policies to

dynamically consolidate or redistribute VMs. On the other hand, Scheduling compo-

nent of OpenNebula [SML09] [Ope10] (in Haizea mode) provides various policies in

host selection and admission control.

29

Research works [DMR09] and [VAN08] are able to dynamically schedule the VMs

across a cluster based on their CPU, Memory and Network utilization. Similarly,

scheduling algorithms in [Bob07] provide dynamic consolidation and redistribution

of VMs for managing performance and SLA i.e. service level agreements violations.

VMware’s Distributed resource scheduler [VMW10] also performs automated load

balancing in response to CPU and Memory pressure.

Latest work by Buyya et. al. [BBA10] presents a very abstract and special pur-

pose vision, challenges, and architectural elements for energy efficient management of

cloud computing environments.

In [SKZ08], authors explored consolidation-based policies by taking into account the

inter-relationships between energy consumption and performance metrics for a set ap-

plications on real hardware.

However, none of these works take into account the impact of resource contention

among jobs (as a general metric), autonomic approach, and policy decisions on energy

consumption in order to reach a more general solution than special purpose.

In [UDS00], authors seek to develop two resource contention aware performance

metrics for a deeper understanding of performance issues than conventional metrics

in distributed algorithms. Their metrics model network contention as well as CPU

contention. They illustrate the use of these metrics by comparing four Atomic Broad-

cast algorithms. However, their model is designed to address resource contention in

distributed algorithms.

Papers [DMR09] and [VAN08] propose some quasi-autonomic scheduling approaches

in a cluster. However, our approach is more general and autonomic taking into ac-

count various layers in resource management. In addition, we incorporate some user-

provided information in defining resource contention metric as a novel performance

30

metric, as it is the state of the art, being user-aware in scheduler design [SF09].

In [SVC11], a novel job scheduling approach for homogeneous cluster computing

platforms. Its key feature is the use of virtual machine technology to share fractional

node resources in a precise and controlled manner. Other VM-based scheduling ap-

proaches have focused primarily on technical issues or extensions to existing batch

scheduling systems, while in [SVC11] authors take a more aggressive approach and

seek to find heuristics that maximize an objective metric correlated with job perfor-

mance. They derive absolute performance bounds and develop algorithms for the on-

line, non-clairvoyant version of scheduling problem. Their results demonstrate that

virtualization technology coupled with lightweight online scheduling strategies can

afford dramatic improvements in performance for executing HPC workloads.

While this research seems innovative as one of the latest development in the schedul-

ing, however we consider the following points as weakness of this research in practice:

first, time-sharing scheme enabled by VM technology capabilities, i.e. preemption and

migration, requires too much of these operations that are heavyweight enough to result

in significant overhead; second, these algorithms can lead to good platform utilization

if the scheduling cycle is short enough.

31

CHAPTER 4

Towards a General-purpose and Multi-level Approach

in Energy Efficient Computing

There are many approaches, mechanisms and algorithms in the literature on the afore-

mentioned problems and issues in the previous chapter; however, most of them are

special purpose. A complete approach should be a multi-level and general-purpose

(holistic) approach that is architected in all layers of computing paradigms and sys-

tems [SDG11].

For instance, in cloud paradigm from the highest level of resource management

stack i.e. cloud pricing strategies and admission control policies to the lower level

i.e. policies to direct a scheduler in making various decisions e.g. host selection for

a specific job, and finally core scheduling algorithms are some of the research work

which could be carried out in a holistic scheduling approach. Such an approach should

model the relationship between these layers, for example core scheduling information

about jobs and resources might be considered in designing cloud pricing strategies,

admission control policies and so on [SG11b].

In brief, this chapter lays some groundwork for future researchers in the field of

resource management and scheduling to define, design and develop new objectives and

it makes the following contributions in the field:

• Evolution of resource management and scheduling as new technologies, paradigms,

etc. emerge

32

• Establishing relationships within and between various layers of resource man-

agement

• Being general rather than special purpose solution for all computing paradigms

i.e. Cluster, Grid and Cloud

Figure 4.1 depicts the whole schema of our research including resource manage-

ment components, contemporary technologies, computing paradigms, green IT and

their relationships. In addition, Figure 4.2 summarizes some components of a modern

resource management system in a layered architecture, it shows how a job makes its

way through resource management system.

In this chapter, in order to address these problems components of resource manage-

ment system are explored in detail to seek new developments and evolutions and in par-

allel this process exploits contemporary emerging technologies, computing paradigms,

energy efficient operations, etc. to define, design and develop new metrics, techniques,

mechanisms, models, policies, and algorithms. Furthermore, finding and establishing

relationships within and between various components is a key consideration in this

development process.

For example, a metric could be modeled as an approximate function of some other

(well defined) metrics. A model could take advantages of several techniques, etc.

A consolidation policy might exploit resource contention and utilization metrics in

order to address Resource Contention and Utilization issues i.e. to achieve distribution

and packing at the same time, respectively. Thus, in this case consolidation policy is

modeled as a function of utilization and resource contention metrics.

Advancements in virtualization have led to the construction of large data centers

that host thousands of servers and to the selling of virtual machines (VM) to con-

sumers on a per-hour rate. This current pricing scheme employed by cloud computing

33

Figure 4.1: Resource management evolution

providers ignores the disparities in consumer usage and in its related infrastructural

costs of providing the service to different users. In [Ter12], authors propose a new

pricing model based on the liable power consumption of the VM, which they corre-

late to the VM’s proportion of CPU and disk I/O usage. This demonstrates how this

research establishes a relationship among pricing scheme and power consumption of a

VM based on VM’s proportion of CPU and disk I/O usage.

We can enumerate many other relationships in resource management. However,

34

Figure 4.2: Modern resource management system architecture

in some relationships there are tradeoffs, we should model these tradeoffs as well.

For example, if we improve utilization, we might face some performance issues such

as Resource Contention and Overload. On the other hand, if we improve resource

contention, utilization might degrade.

4.1 Metrics

The first step in evolving resource management system is to define, model and de-

velop new metrics to address some problems in better ways than already developed

well known metrics. For example, in green computing Energy Consumption is a good

35

metric to address energy related issues.

Utilization, Wait time, Slowdown, QoS, SLA are some traditional performance ori-

ented metrics in HPC, Grid and Cloud paradigms. Resource Contention is another

quasi-performance oriented metric [SLG11] and Revenue is an economic metric intro-

duced by Cloud paradigm. In addition, Energy Consumption metric appeared after the

appearance of Green IT term.

There are many metrics to be considered in resource management. We seek to

establish some relationships between some of these metrics in order to have a better

model, understanding of system behaviour, manifold objectives, etc.

For instance, in [SKZ08] it is demonstrated that Utilization, Poor Performance, and

Resource Contention as the main performance metrics and High Energy Consumption

as the main energy efficient metric are directly inter-related to each other.

Resource Contention is widely recognized as having a major impact on the perfor-

mance of computing systems, distributed algorithms, etc. Nonetheless, the perfor-

mance metrics that are commonly used to evaluate scheduling algorithms (in resource

management systems) do not take into account resource contention since researchers

are interested in improving the conventional well known performance metrics such as

utilization, slowdown and wait time.

On the other hand, in simple terms addressing Resource Contention issue will implic-

itly address Poor Performance, and High Energy Consumption issues as well as slow-

down and wait time metrics; therefore in some environments Energy Consumption

optimization and performance issues could be modeled as an approximate function of

Resource Contention resolution.

In fact, the following approximate function represents some portion of energy con-

sumption in terms of Resource Contention and Poor Performance:

EnergyConsumption ' f(ResCont, PoorPerf) (4.1)

36

and the following approximate equation represents poor performance:

PoorPerf ' g(ResCont) (4.2)

so that, we simply model energy consumption as a relative approximate function of

resource contention:

EnergyConsumption ' f(ResCont) (4.3)

Therefore, we optimize resource contention metric to achieve energy optimization.

In chapter 5 we define and model resource contention metric and consider it as a

first metric for Energy Consumption optimization and performance resolution.

4.2 Techniques

Emerging technologies, paradigms, and energy aware actions provide various tech-

niques to be exploited in resource management. Virtualization technology provides

some heavyweight operations such as suspend/resume/migrate and start/stop on vir-

tual machines, these operations are used in many recent research works to improve

various metrics such as utilization.

For example, in [SKF08], authors demonstrated when using workloads that com-

bine best-effort and advance reservation requests, a VM-based approach with sus-

pend/resume can overcome the utilization problems typically associated with the use

of advance reservations, even in the presence of the runtime overhead resulting from

using VMs.

A DVFS-enabled processor provides some energy aware operations i.e. decrease/increase

frequency/voltage, transitioning to an idle-state and transitioning to a

performance-state.

37

Time scaling is a technique as a result of DVFS operations which might be exploited

in resource management to improve energy consumption and utilization metrics. For

instance, by combining energy aware operations we can have some optimization in

resource and energy usage that is to fill out free spaces in availability window of a

scheduler by extension of or reduction of jobs’ running times with the help of increas-

ing/decreasing frequency of processors.

On the other hand, many devices provide the capability to transition to one or more

lower-power modes when idle. If the transition latencies into and out of lower power

modes are negligible, energy consumption can be lowered simply by exploiting these

states. Transition latencies are rarely negligible and thus the use of low-power modes

impedes performance. To minimize this impact, it is necessary to alter the workload

so that many small idle periods can be aggregated into fewer large ones. This is a

workload batching technique to be exploited in such cases.

In addition, techniques for dynamically balancing MPC (Memory accesses per cy-

cle), IPC (Instructions per cycle), utilization and also dynamically scaling the fre-

quency of processors with the help of online learning algorithms [DR09] or other

mechanisms are among the other techniques within this domain.

In depth study and research on scheduling strategies [SF05] in particular back-

filling mechanisms, revealed that inaccurate estimates generally lead to better perfor-

mance (for pure scheduling metrics) than accurate ones. This observation proposes the

development of new scheduling techniques in HPC and Cloud paradigm according to

the differences between these paradigms.

38

4.3 Models

A model quantifies some parameters in terms of some other parameters such as perfor-

mance, energy, power and cost. For instance, in green computing a formal cost model

quantifies the cost of a system state in terms of power and performance. Sleep states’

power rate and their latency i.e. the time required to transition to and from the per-

formance/power state, are examples of parameters in modeling cost vs. performance.

In addition, models should specify how much energy will be saved in state transitions

and how long it takes for state transitions.

Cost/Performance, Performance/Energy, Cost/Energy, Cost/Power, Suspension/Resumption,

Migration, Turn on/off, Energy Consumption, and Power models are examples of some

emerging models. Some models emerge as a result of some techniques such as Sus-

pension/Resumption.

The models we seek to design and parameterize in green computing should relate

to power consumption and computation rate (performance) or energy consumption

and completion time simultaneously. These models are exploited by the scheduling

algorithms to select the best state of a processor, memory, disk and network.

Power management actions may affect performance in complex ways because the

overall computation rate is a net result of the speed and coordination of multiple el-

ements within the system. For example, doubling the CPU speed may do little to

increase the computation rate if the memory transactions do not move any faster. This

also indicates that models for the study of energy-computation tradeoffs would need

to address more than just the CPU.

Models are also architecture and infrastructure dependent e.g. internal of Multicore

and NUMA systems have different features and characteristics to be considered.

In addition, exploiting technology requires models. For instance, we can use the

39

suspend/resume/migrate capability of virtual machines to support advance reserva-

tion of resources efficiently [SKF08], by using suspension/resumption as a preemp-

tion mechanism, In [SML09] authors presented a model for predicting various runtime

overheads involved in using virtual machines in order to support advance reservation

requests. It adequately models the time and resources consumed by these operations

to ensure that preemptions are completed before the start of a reservation.

4.4 Policies

We categorize policies into frontend and backend policies. Admission control and

pricing are frontend policies whereas consolidation, host selection, mapping and pre-

emption belong to backend policies.

Job requests pass through frontend policies before queueing. At the highest level

in the cloud interface, we have pricing strategies such as Spot Pricing in Amazon

[Ama10] and recent pricing approaches in Haizea [Sot10] or perhaps game theory

mechanisms. These mechanisms apply cloud policies that are revenue maximization

or improving utilization. Almost these policies have the same goals, and they are

energy efficient since they keep cloud resources busy by offering various prices to

attract more cloud consumers. A dynamic pricing strategy like offering cheaper prices

for applications that will lead to less energy consumption (or higher performance)

based on the current cloud status (workloads and resources) compared to the others is

an energy efficient pricing schema. Pricing strategies implement cloud administrators’

objective i.e. revenue maximization, utilization improvement, etc.

Backend policies could be categorized into three types: general-purpose policies

[DMR09], architecture-specific (or infrastructure-specific) policies [HKQ99] application-

specific (or workload-specific) policies [KBK07].

40

General-purpose policies are those that can be applied to most of the computing

systems. For instance, CPU/cache-intensive workloads should run at high frequen-

cies, since by increasing frequency the performance scales linearly for a CPU/cache-

intensive workload. However, if a task is memory-intensive, the performance improve-

ment is relatively insensitive to increase in frequency, so that a memory-bound work-

load favors by running at a lower frequency to reduce energy consumption.

Architecture-specific policies are defined based on the architecture or the infras-

tructure in which computation happens. Also application-specific policies are defined

around applications’ characteristic.

Technically, workload consolidation [Her09] policy is a sort of policy at the inter-

section of the last two mentioned policies. Bundling various types of workloads on top

of a physical machine is called consolidation.

Furthermore, consolidation-based policies should be designed in such a way to be

an effective consolidation. In fact, effective consolidation is not packing the maxi-

mum workload in the smallest number of servers, keeping each resource (CPU, disk,

network and memory) on every server at 100% utilization, such an approach may in-

crease the energy used per service unit.

That being said, placement of jobs is a critical decision to address Resource Con-

tention. Consolidation policies are one of the sources of information for effective

placement of jobs in computing paradigms. In chapter 6, we develop Effective Energy

Aware Consolidation based policies. We design consolidation policies according to

the resource contention model (metric) and implement them as host selection policies

of a distributed system scheduler.

41

4.5 Algorithms

Algorithms implement techniques, models and policies. For instance, algorithms based

on cost/performance models are part of the scheduling to model cost vs. performance

of system states. In addition, core scheduling algorithms deal with implementing var-

ious backfilling mechanisms, etc. to improve utilization and other optimizations at

core of a scheduler. In chapter 7, we propose a novel autonomic energy efficient re-

source management and scheduling algorithm (architected on different levels of re-

source management stack). The proposed autonomic scheduling approach answers

some When-questions to improve energy consumption as it is modeled by resource

contention metric. For that, it models interaction between queue mechanism and core

scheduler information (about jobs and resources), as a result according to the system

state, jobs are reordered and those jobs which satisfy necessary energy aware condi-

tions get admitted to the wait queue and the others are delayed for the next scheduling

cycles. From an autonomic scheduling point of view, there are some loops between

queue mechanism, scheduling function, end of a job event and core scheduler informa-

tion. This is an example of a multi-level algorithm over various resource management

components.

4.6 HPC, Grid, and Cloud paradigms

In cloud computing, pay-as-you-go on a utility computing basis is the economic model

so users pay based on how much time they used cloud resources, while in HPC paradigm

there is no general or specific economic model. Similarly, requested allocation time

and capacities of resources as allocation parameters are not accurate in HPC whereas

they are precise and accurate in cloud computing model. In fact, this is the result of

economic model.

42

In HPC environment, a scheduler makes decisions and reservations according to

the requested runtime of jobs which is an estimate of the real runtime; this means jobs

might finish earlier or later than the specified requested runtime, however in cloud the

requested runtime is the actual runtime.

Therefore, in cloud model users provide which resources they want, the capacity of

those resources and precisely for how much time. In this thesis, we take into account

these differences and study the impact of these two paradigms on resource contention

metric.

However, in-depth study and research on scheduling strategies [SF05] in particu-

lar backfilling mechanisms, revealed that inaccurate estimates generally lead to better

performance (for pure scheduling metrics) than accurate ones. Here in this work we

investigate this observation from resource contention metric point of view by studying

HPC versus cloud models. Thus, in experimentations of the next chapters, we have a

comparison between cloud and HPC paradigm through simulation experiments.

43

CHAPTER 5

Resource Contention Metric

In this chapter, we define and develop a Resource Contention metric for HPC work-

loads in a cluster like environment. We exploit resource contention model of this

chapter in the next chapters to develop consolidation policies and so on.

5.1 Resource Contention Metric for HPC Workloads

When there are more than one job with common shared resource(s) being running on

a physical host, resource contention happens; this is the basic definition of resource

contention.

In order to model resource contention, first we require to model workload char-

acteristics and then we model resource contention metric. In this thesis, we consider

HPC workload as a case study.

The precise resource contention metric modeling have to take into account the

underlying architecture and infrastructure, since resource contention is dependent on

the architecture and the infrastructure in which computation happens. Therefore, ac-

cording to the environment, there are many parameters in resource contention metric

modeling.

44

5.1.1 Workload Classification and Characteristics

We classify HPC workloads according to their characteristics. Table 5.1 presents a

classification of HPC application characteristics in general. For each type of HPC

application, this table specifies which resources they consume mostly i.e. they put

stress on those resources; in resource contention models only these resource types will

be considered since only these resource types make resource contention happens.

Table 5.1: HPC Application Characteristics

HPC Char./Resource CPU Cache Memory IO Net-in Net-out

Compute-intensive X X X X X X

Data-intensive X X X

Memory-intensive X X X X

Comm-intensive X X X

5.1.2 Resource Contention Model

Some parameters which might contribute to resource contention modeling are as the

following:

• Resource types which make resource contention happens in case of having more

than one job running on a physical host. We assume that these resource types

are specified by stress-on attribute of a job. In Section 5.1.1, HPC workload as

our case study in this thesis are classified according to stress-on attribute.

• The number of consolidated jobs, more jobs translates to more resource con-

tention value. Perhaps in some environments, this is not true.

45

• The capacities of jobs’ resource requirements, more capacities translates to more

resource contention value. Again maybe in some environments, this parameter

does not contribute.

• How is the contribution of each resource type, e.g. single-instance resource

type such as Memory versus multi-instance one such as Multi-core CPU, factors

like their level of sequential or parallelism, etc. For instance, single-instance

resource types have a sequential access pattern whereas multi-instance resource

types have a parallel access pattern, so that the resource contention model should

take into account these patterns.

In this thesis, we assume users specify stress-on attribute of their jobs. User provided

information and user behavior are exploited in design of contemporary parallel systems

schedulers [SF09], and in our research using user provided information is a key to

prove its generality.

As we explained earlier, resource contention metric is a novel metric to achieve

energy efficiency and resolve performance issues. There are many considerations and

parameters in modeling this metric; in this thesis, we use resource type capacities in

resource contention model. In this approach, more resource type capacities translates

to more resource contention. This seems to be a more realistic approach compared to

counting only the number of jobs in which resource type capacities do not contribute

to resource contention metric.

Nonetheless, in non-simulated environments i.e. real environments, perhaps there

are some mechanics of measuring real resource contention i.e. monitoring system, sen-

sors, etc. However, our previous discussion tries to mimic real scenarios. Therefore,

here this metric is developed to just give a quantitative value for comparison of differ-

ent algorithms, policies and experimentations, however it can be changed or extended

to adapt to different environments.

46

Finally, we model resource contention metric at scheduling cycle t as the following:

RC(t) =
∑

∀n∈PhyNodes

RC(t, n) (5.1)

RC(t, n) =
∑

∀r∈resTypes

RC(t, n, r) (5.2)

where JobsSchedOn(n, t) is the scheduled jobs on node n at time t i.e. at scheduling
cycle t when this resource contention calculation happens.

resContF lg(t, n, r) =

 1,
∑

∀j∈JobsSchedOn(n,t)(r ∈ j.stresson == True?1 : 0) > 1

0, Otherwise
(5.3)

RC(t, n, r) =


∑

∀j∈JobsSchedOn(n,t)∧r∈j.stresson j.resReq[r], resContF lg(t, n, r) = 1

0, Otherwise
(5.4)

Where in the last formula, job’s resReq attribute represents capacity of a resource type

as job resource requirement and job’s stress-on attribute is a set of resource types in

which job puts stress on.

Algorithms and mechanisms which will be presented in the next chapters, will try

to minimize resource contention among jobs. The corresponding optimization problem

models this approach:

Mininmize RC(t)Subject to : Computational environment constraints (5.5)

47

CHAPTER 6

Effective Energy Aware Consolidation Policies

In this chapter, at the policy level, we design and develop energy aware consolidation

policies to improve energy consumption via resource contention optimization.

Consolidation policies are one of the sources of information for effective placement

of jobs in computing paradigms. In this section, we design and develop two effective

energy aware consolidation policies in terms of resource contention model (metric) and

implement them as host selection policies of a distributed system scheduler. Effective

consolidation is not packing the maximum workload in the smallest number of servers,

keeping each resource (CPU, Memory, IO, Net-in, Net-out) on every server at 100%

utilization. Such an approach may increase the energy used per service unit.

In particular, the following model is a base model for energy aware consolidation

policies that is modeled in terms of resource contention. It calculates the consolidation

score of physical host n for job j to be scheduled at scheduling cycle t.

• Let j.stresson be resources which job j puts stress on them.

• Let j.resReq be resource requirements of job j in terms of capacity.

• Let JS(t, n) be the scheduled jobs on physical host n at time t i.e. at scheduling

cycle t.

Score(Job j, T ime t,Node n) =
∑

∀r∈j.stresson

ScoreRes(r) (6.1)

48

∀r ∈ j.stresson

ScoreRes(r) =


∑

∀js∈JS(t,n)∧r∈js.stresson js.resReq[r], F lg(r) = 1

0, Otherwise
(6.2)

Flg(r) =

 1, (
∑

∀js∈JS(t,n)(r ∈ js.stresson == True?1 : 0)) ≥ 1

0, Otherwise
(6.3)

Furthermore, the corresponding scheme of a base algorithm for the aforementioned

model of an energy aware consolidation policy is presented in algorithms 1 and 2.

Algorithm 1 EAConsolidationPolicy(Job j, Time t)
NodesScore⇐ empty dictionary

for all n such that n ∈ PhyNodes do

Score⇐ NodeScoreAtT imeT (Job j, T ime t,Node n)

NodesScore[n]⇐ Score

end for

return Sort NodesScore according to values and return keys in order

This algorithm in cooperation with the core scheduling part of Haizea, i.e. greedy

mapper, implements a matchmaking for finding physical hosts that will have the least

resource contention with a job being scheduled. In fact, the placement of a job hap-

pens according to the consoliation score of physical hosts regarding that job. Next,

we develop two energy aware consolidation policies according to this base policy.

The first one is one dimentional taking into account only the time of scheduling for

calculating resource contention to measure consolidation score, and the other one is

multi-dementional in which it will consider the future reservations and changes in the

capacity of physical hosts to calculate resource contention.

49

Algorithm 2 NodeScoreAtTimeT(Job j, Time t, Node n)
Score⇐ 0

for all r such that r ∈ j.stresson do

Flag ⇐ False

for all js such that js ∈ JS(t, n) do

if r ∈ js.stresson then

Flag ⇐ True

break

end if

end for

if Flag = True then

for all js such that js ∈ JS(t, n) do

if r ∈ js.stresson then

Score⇐ Score+ js.resReq[r]

end if

end for

end if

end for

return Score

50

6.1 Simple Consolidation Policy

This is the simplest policy which according to the status of a physical host at time

t, calculates resource contention among the scheduled jobs on a physical host, and

then measures consolidation score of a physical host regarding a job being scheduled.

Tentative time t is determined by the scheduler as a possible time to schedule job.

In this policy only the schedules and reservations on a physical host at time t will

participate in consolidation score and it simply ignores the job time horizon, which

perhaps in the future there will be changes in reservations and schedules. In brief, this

policy is simply the aforementioned base algorithm.

6.2 Consolidation Policy Over Job Time Horizon

This policy is multi-dimensional over time horizon of a job runtime in which it con-

siders the future reservations and changes of a physical host to calculate resource con-

tention. Therefore, this policy seems to be more precise; it divides future time into time

steps in which in each time step the status of a physical host remains unchanged. At

the beginning of each time step the consolidation score of a physical host regarding a

job is determined (calculated according to the base algorithm), and then it is multiplied

by the duration of that time step (end of time step minus start of time step). Finally,

the summation of all these values over the job runtime is the final consolidation score

of the physical host regarding the job being scheduled. The corresponding algorithm

for this policy is presented in algorithm 3.

51

Algorithm 3 EATimeConsolidationPolicy(Job j, Time t)
NodesScore⇐ empty dictionary

jobDuration⇐ j.duration

for all n such that n ∈ PhyNodes do

Score⇐ 0

time⇐ t

changePoints ⇐ getChangePointsAfter(Time = time, until =

jobDuration, node = n)

if len(changePoints) > 0 then

while chp⇐ changePoints.getNext() do

tsDuration⇐ chp− time

Score⇐ Score+NodeScoreAtT imeT (j, time, n) ∗ tsDuration

time⇐ chp

end while

if time < t+ jobDuration then

Score⇐ Score+NodeScoreAtT imeT (j, time, n) ∗ (t+ jobDuration−

time)

end if

Score⇐ Score/jobDuration

else

Score⇐ NodeScoreAtT imeT (j, time, n)

end if

NodesScore[n]⇐ Score

end for

return Sort NodesScore according to values and return keys in order

52

6.3 Evaluation by experimentations

We evaluate the two aforementioned consolidation policies against the greedy policy in

Haizea to measure how effective they are in handling resource contention for resources

when making placement decisions as part of scheduling decision. In this section, first

we describe experiments’ environment and settings such as resource model, workload

traces, and configuration settings, then we present experimental results.

We have considered commodity cluster infrastructure as resource model in this

study, i.e. each physical node has processor, memory, IO, Network input, and Network

output as resource types and conventional interconnection between them.

As resource contention is our main metric for evaluation and if each physical node

hosts at most one job there would be no resource contention, therefore we carry out ex-

periments with multi-instance type processors of Haizea to simulate multicore [Int10]

(i.e. more than one core per processor) in real hardware scenario, so physical nodes

are able to host more than one job. Other resource types are single-instance. However,

these assumptions are not a limitation to affect results.

6.3.1 Workload Traces

We use workload archives from Parallel Workloads Archive [Fei10] as job traces in

simulation experiments. In general, there is no workload archive in Parallel Work-

loads Archive to present HPC application characteristics of jobs, which resource they

put stress on, and some other information we need in designing policies such as ca-

pacities of Net-in, Net-out and IO resource types of jobs if they consume any of these

resources. We synthetically generate these parameters by uniform distributions. At

first, a unifrom distribution specifies HPC characteristic of a job. Then, according to

HPC characteristic we have at most three uniform distribution to select resource types

53

of a group i.e. one for ’CPU Memory’, ’CPU’, and ’Memory’ group of resources,

the other one for ’Net-in Net-out’, ’Net-in’, and ’Net-out’, and the last one for ’IO’

resource.

6.3.2 Configurations and Experimentations

We conduct a number of experiments according to the following configuration param-

eters to cover all the approaches (policies, paradigms, number of cores per physical

host) mentioned in this paper: Workload traces: SDSC Blue Horizon from the Paral-

lel Workloads Archive [Fei10]. This trace is used and well studied in the other works

by Haizea [Sot10]. The no ramp-up/ramp-down utilization of this 30 days of job re-

quests regarding the corresponding site is 67.10%; Computing Paradigms: cloud

and HPC paradigms; Host Selection Policies: greedy, SimpleEAConsolidation, EA-

ConsolidationOverJobTimeHorizon. Sites: with multi-instance type CPU i.e. 8, 16

number of cores per physical nodes. Backfilling: conservative.

Finally, we perform a number of experiments with Haizea according to configura-

tions explained earlier.

6.3.3 Results

In these experimentations, we explore the impact of consolidation policies and com-

puting paradigms on Completion Time and Resource Contention metrics. Figure 6.1a

shows resource contention graph over scheduling time steps (throughout experimenta-

tion time) with 16 cores physical nodes. Similarly, Figure 6.1b shows the aforemen-

tioned graph for configurations the same as previous experiments except a site with

8 cores physical nodes. The final Completion Time and Resource Contention metric

values for 16 and 8 cores are summarized in Tables 6.2a and 6.2b, respectively.

54

Table 6.1: Completion Time and Resource Contention metric for 16 and 8 cores

Configuration Time Resource Contention

cloudeatimeconsolidation 2689207 365667584

cloudeaconsolidation 2694286 372760333

cloudgreedy 2663556 455026120

hpceatimeconsolidation 3058147 201649827

hpceaconsolidation 3019506 170207159

hpcgreedy 2681813 441726388

(a) 16 cores

Configuration Time Resource Contention

cloudeatimeconsolidation 2681514 128798324

cloudeaconsolidation 2682099 114294790

cloudgreedy 2663556 125467388

hpceatimeconsolidation 2833329 54352992

hpceaconsolidation 2840499 60079428

hpcgreedy 2672287 129578192

(b) 8 cores

55

0 500000 1000000 1500000 2000000 2500000 3000000

0e
+

00
1e

+
08

2e
+

08
3e

+
08

4e
+

08

Time

R
es

ou
rc

e
co

nt
en

tio
n

●●
●●●

●●●
●●

●●
●●

●●●
●●●

●●●●●●●●●●●●●●●●●
●●

●●●
●●

●●●
●●

●●●
●●

●●●
●●●●●●●●●●●●●●●●●●

●●
●●

●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●●
●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●
●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●

●

● cloudeatimeconsolidation16pernode
cloudeaconsolidation16pernode
cloudgreedy16pernode
hpceatimeconsolidation16pernode
hpceaconsolidation16pernode
hpcgreedy16pernode

(a) 16 cores

0 500000 1000000 1500000 2000000 2500000

0.
0e

+
00

4.
0e

+
07

8.
0e

+
07

1.
2e

+
08

Time
R

es
ou

rc
e

co
nt

en
tio

n

●●●
●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●●

●●
●●●

●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●
●●●●

●●●
●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●

●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●
●●●

●●●● cloudeatimeconsolidation8pernode
cloudeaconsolidation8pernode
cloudgreedy8pernode
hpceatimeconsolidation8pernode
hpceaconsolidation8pernode
hpcgreedy8pernode

(b) 8 cores

Figure 6.1: Resource contention graph for 16 and 8 number of core processors

We write our analysis based on three kinds of comparisons: First, greedy vs. en-

ergy aware policies: Almost in all cases (both computing paradigms, and both 8 and

16 cores), energy Aware policies outperform greedy policies. Second, SimpleEACon-

solidation vs. EAConsolidationOverJobTimeHorizon: In general, in each computing

paradigm and with the same cores, we observe that these two Host Selection Poli-

cies approach the same trend and there is no clear outperformance of the one over the

other. On the other hand, a more detailed analysis reveals that SimpleEAConsolida-

tion outperforms EAConsolidationOverJobTimeHorizon except two cases in which in

one case they are almost the same in graph 6.1a for cloud paradigm (but final value

in Table 6.2a indicates that EAConsolidationOverJobTimeHorizon is better) and in the

other case SimpleEAConsolidation is worse than EAConsolidationOverJobTimeHori-

zon. Third, cloud vs. HPC: In spite of the fact that cloud scheduling is more precise

than HPC; surprisingly we observe that HPC results are much better than cloud’s. In

56

addition, in both paradigms greedy policies have the same trend.

In all, usually in cases which we have better resource contention handling there are

degradation in utilization, and consequently completion time of experimentations in-

creases. In these experimentations we used a trace with moderate utlization of 67.10%;

perhaps with higher utilization traces which there would be more future reservations

(longer wait queue) in backfilling strategies, EAConsolidationOverJobTimeHorizon

policy would have better resource contention handling. We consider this as a future

work.

57

CHAPTER 7

Autonomic Scheduling and Energy Efficiency

In this chapter, we propose a novel autonomic energy efficient resource management

and scheduling approach architected on different layers of resource management stack

[SG11a].

Our approach in this work is similar to Autonomic Computing, and we are inspired

by Autonomic Computing developments, due to that we review Autonomic Comput-

ing concepts, and in describing our work we mention its corresponding component in

Autonomic Computing. In the following sections we describe our autonomic energy

efficient scheduling approach which spans in different levels of resource management

stack.

7.1 Autonomic Scheduling

Autonomic Computing concept is introduced by IBM in 2001, Paul Horn, senior vice

president of IBM Research in an annual meeting of the preeminent technological

minds in Arizona suggested a solution: ”build computer systems that regulate them-

selves much in the same way our autonomic nervous system regulates and protects our

bodies.”

It refers to the self-managing characteristics of distributed computing resources in

order to optimize its status and automatically adapt itself to changing conditions; it

makes decisions on its own (using high-level policies). Therefore, self-* behaviors are

58

the main characteristics of an autonomic system e.g. self-monitoring, self-adjustment,

self-control, self-contained, self-configuration, self-healing, self-optimization and self-

protection.

In our model of autonomic scheduling, we take into account the interaction of low

level components of resource management stack i.e. core scheduler information with

the higher level components of resource management stack i.e. the frontend compo-

nents such as admission control, pricing strategy and queueing mechanism. Briefly,

in our approach according to the system’s state from the core scheduler informa-

tion about e.g. resources, jobs, and applications, the scheduler makes decisions in the

queuing mechanism i.e. whether put a new coming job in the wait queue by setting

its state to Pending state immediately, or wait for some more scheduling cycles until

the necessary conditions establish by setting job’s state to Prepending state.

Figure 4.2 summarizes components of a modern resource management system in a

layered architecture, it shows how a job makes its way through resource management

system. In particular, it highlights two autonomic loops demonstrated with numbers 1

and 2, the details of these loops are explained in Sections 7.3.1 and 7.3.2.

7.2 Job and Resource Monitoring

The precise status of resources (being full or not), the weight of jobs, how jobs are

scheduled, etc. are the key information to be exploited in the higher levels of auto-

nomic scheduling algorithm i.e. inequality formulas in this work.

In this work, we introduce a new job state as Prepending, this is the state of jobs

which are accepted to get into the system but they are not put in the queue after their

acceptance immediately.

To keep track of the weight of all jobs in different stages i.e. currently running jobs,

59

scheduled jobs, waiting jobs, and Prepending jobs, we design three dictionary based

data structure as the following:

• MonitoringData: This data structure has a key for each resource type, and the

corresponding value of a key reports the current consumption of the correspond-

ing resource type. It only reports about (consumption of) stress-on resource

types; since stress-on consumption is contributed to resource contention metric.

MonitoringData contains information for all available jobs in the system regard-

less of their state i.e. currently running jobs, scheduled jobs, waiting jobs, and

Prepending jobs.

• ScheduledMonitoringData: This data structure is the same as the previous one,

except it does not keep information of Prepending jobs.

• MonitoredJobs: This is to represent how much is the total capacity requirements

of a job, and after a job gets scheduled this data structure represents how the

capacity requirements of a job are satisfied by physical hosts i.e. what portion

of job’s capacity requirements is satisfied by contributing physical hosts.

7.3 Algorithm

After introducing the mechanics of monitoring service to provide feedback for the

higher level components of resource management stack in the previous section, in this

section we describe our autonomic scheduling algorithm.

Autonomic algorithm is developed in the following resource management compo-

nents:

• Queue Mechanism: This is the entry point of a job into the scheduler. First, a job

passes through admission control policy, If this policy determines the job can be

60

accepted, as we explain later according to resources’ utilization and monitoring

information, it is marked as ”Pending” or ”Prepending”

• Scheduling Function: In every scheduling cycle, at first we check Prepending

jobs in search of finding jobs which can be put in the Pending state, thus they will

be added to the wait queue, so the scheduler takes care of allocating resources to

them.

• Job Scheduling: When the precise schedule of a job (resource allocation) is

determined by the scheduler, we fill out MonitoredJobs information to specify

which nodes are allocated to job, and how much part of a job is scheduled on the

allocated nodes.

• Job Ends: Once a job concludes its execution or is cancelled, and no longer

requires the acquired resources, the algorithm updates monitoring data.

7.3.1 Queue Mechanism

At Queue Mechanism, the initial fate of a job will be determined as the following:

1. Determines JobResourceRequirements for all resource types

2. Increases MonitoringData with the amount of JobResourceRequirements for

only stress-on resources of job

3. Creates a first level key for job identification number (job-id) in MonitoredJobs

and then creates a second level set of keys according to stress-on resource types

of job and assigns them the corresponding JobResourceRequirements

4. Gets the current system utilization based on stress-on resource types consump-

tion, that is only the consumption of stress-on resource types is considered

61

5. If for all job’s stress-on resource types the inequality formula 7.1 holds then set

job’s state to Pending and update ScheduledMonitoringData i.e. to increase it

with the amount of JobResourceRequirements for only stress-on resources of

job

6. Otherwise evaluate the inequality formula 7.2, if it holds for all job’s stress-on

resource types, then set job’s state to Pending and update ScheduledMonitoring-

Data, Otherwise set job’s state to Prepending

Util[resType] + JobResReqs[resType]/Total[resType] <= 1 (7.1)

MonitoringData[resType] + JobResReqs[resType] <= Total[resType] (7.2)

where Total indicates the total capacity of each resource type in a site.

7.3.2 Scheduling Cycle

At the begining of every scheduling cycle, the scheduling function looks at all Prepend-

ing jobs in search of finding jobs which can be put in Pending state (i.e. in the wait

queue) as the following.

1. If the inequality formula 7.3 holds for all stress-on resource types of a job, then

set job’s state to Pending and update ScheduledMonitoringData.

ScheduledMonitoringData[resType]+JobResReqs[resType] <= Total[resType]

(7.3)

Then, at the end of every scheduling cycle, algorithm examines each physical host

as the following:

62

1. Calculates physical host’s availability

2. For each job scheduled on physical host, we calculate what portion of job’s

resource requirements is satisfied by that host

3. If there is no free capacity for CPU or Memory resource types, this means phys-

ical host cannot allocate further resources to (future) jobs, therefore we should

not consider the amount of jobs’ resource requirements allocated to this physi-

cal host to contribute to monitoring data i.e. ScheduledMonitoringData, Mon-

itoringData and MonitoredJobs. In case of a job being involved in monitoring

data for that host, we decrease the amount of its allocation on that host from

monitoring data variables.

4. Otherwise, if there is free capacity on physical host, this means physical host

can allocate further resources to future jobs, therefore we consider the amount of

jobs’ resource requirements allocated to this physical host to contribute to moni-

toring data i.e. ScheduledMonitoringData, MonitoringData and MonitoredJobs.

In case of a job not being involved in monitoring data for that host, we increase

monitoring data variables by the amount of its allocation on that host.

In fact, we have two states for a physical host, being full or not full. We carefully

model transitioning between these two states.

7.3.3 Job Scheduling

When for a job the precise schedule is determined by scheduler, we fill out Monitored-

Jobs to specify where a job is scheduled (i.e. in which hosts) and how much part of a

job is scheduled in contributing hosts. For that, we create a second level dictionary key

with the physical host identification in MonitoredJobs and then we create a third level

63

dictionary key as a flag to mark this physical host contribution to monitoring data i.e.

to model transitioning between being full or not full states of a physical host, finally by

creating a third level dictionary keys for each stress-on resource requirements, we as-

sign the amount of resource consumption of a physical host for a job that is scheduled

on that physical host.

7.3.4 Job Ends

Once a job finishes, the algorithm updates monitoring data variables by decreasing the

amount of the last job’s consumption contribution to monitoring data from Scheduled-

MonitoringData and MonitoringData, and removes associated MonitoredJobs keys for

that job.

7.4 Evaluation by Experimentations

We evaluate the aforementioned autonomic energy efficient scheduling to measure how

effective it is in handling resource contention among jobs to acquire shared resources

when making queueing decision as part of queue mechanism.

7.4.1 Workload Traces

We use workload archives from Parallel Workloads Archive [Fei10] as job traces in

simulation experiments. In general, there is no workload archive in Parallel Workloads

Archive to present HPC application characteristics of jobs, which resource types they

put stress on, and some other information we need in our model and algorithm such

as capacities of Net-in, Net-out and IO resource types of jobs if they consume any of

these resources.

We synthetically generate these parameters by uniform distributions. At first, a

64

unifrom distribution specifies HPC characteristic of a job, then according to HPC char-

acteristic we have at most three uniform distributions to select resource types of a group

i.e. one for ’CPU Memory’, ’CPU’, and ’Memory’ group of resources, the other one

for ’Net-in Net-out’, ’Net-in’, and ’Net-out’, and the last one for ’IO’ resource. The

details are presented in Table 7.1.

Table 7.1: HPC Characteristics distribution in workload trace
HPC Char.:Prob./Resource CPU Memory CPU Memory IO Net-in Net-out Net-in Net-out

Compute-intensive :1
2

6
10

4
10

0 1
2

4
6

1
6

1
6

Data-intensive :1
6

3
10

0 7
10

1
2

4
6

1
6

1
6

Memory-intensive :1
6

0 1
2

1
2

1
2

4
6

1
6

1
6

Comm-intensive :1
6

0 0 0 1
2

1 0 0

7.4.2 Configurations

We conduct a number of experiments according to the following configuration param-

eters to cover various settings (autonomic algorithm, policies, number of cores per

physical host) mentioned in this chapter:

• Autonomic Algorithm: If autonomic algorithm is enabled, there is an AUTO

term in the initial part of configuration name.

• Workload Traces: We used workload traces derived from SDSC Blue Horizon,

SDSC DataStar, and KTH IBM SP2 of the Parallel Workloads Archive [Fei10].

We alter these derived traces according to explanations of Section 7.4.1.

• Sites: With multi-instance type CPU i.e. 2, 4, 8, 16 number of cores per physical

nodes.

• Host Selection Policies: We explored three green host selection policies in [SLG11].

In this chapter, we use these two policies i.e. GREEN1 and GREEN2 in config-

urations to see their behaviour with autonomic scheduling approach.

65

In addition to the aforementioned variable parameters, we have some constant pa-

rameters i.e. aggressive backfilling strategy and cloud paradigm are used in all con-

figurations. Thus, the scheduling function periodically evaluates the wait queue, using

an aggressive backfilling algorithm to determine whether any jobs can be scheduled.

Also in this chapter we only study cloud paradigm in which the requested runtime of

jobs is precise and accurate, unlike HPC paradigm in which it is an estimation.

In sum, a configuration name has three parts; the first part is ’AUTO’ if autonomic

algorithm is enabled, otherwise it would be blank; the second part presents host selec-

tion policy of a configuration i.e. ’GREEN1’ or ’GREEN2’ used in experimentation;

and the third part shows the number of cores per physical node of a site under experi-

mentation starting with the ’CPN’ term followed by the number of cores per physical

node format. For instance, ’AUTO-GREEN1-CPN8’ is a configuration with auto-

nomic algorithm enabled, GREEN1 as host selection policy, and 8 cores per physical

node of configuration’s site.

Furthermore, simulated cluster of a configuration is modeled after the correspond-

ing workload trace’s cluster.

7.4.3 Experimentations

Finally, we perform a number of experiments with Haizea according to the configura-

tions explained earlier on the following derived workload traces:

• BLUE1: derived from SDSC Blue Horizon trace, it is 30 days of job requests

starting at 5:02:14:30.

• BLUE2: derived from SDSC Blue Horizon, it is 30 days of job requests starting

at 811:23:22:33

• DS: derived from SDSC DataStar, it is 30 days of job requests starting at 49:16:42:21

66

7.4.4 Results

In experimentations, we explore the impact of autonomic algorithm on the following

metrics:

• Completion Time: The time from the start of the trace to when the last job

request is completed. The unit of measurement is seconds.

• Resource Contention: Throughout the whole experimentation. The unit of mea-

surement is time based (seconds), but in reality it is just a value for evaluation

not counting on the value as a precise metric.

Per each workload trace we group resource contention graph over time based on

the experimentation’s site i.e. number of cores per physical node. Figures 7.1a, 7.1b,

and figures 7.2a, 7.2b demonstrate the aforementioned graph for BLUE1, BLUE2, and

DS traces, respectively.

The corresponding final Completion Time and Resource Contention metric values

for BLUE1, BLUE2, and DS traces are summarized in Tables 7.3a, 7.3b, Tables 7.4a,

7.4b, and Tables 7.5a,7.5b, respectively.

We observe that for all cases autonomic scheduling approach outperforms non-

autonomic one with big improvement.

Tables 7.5 summarizes proportional improvement of autonomic over non-autonomic

approach grouped per Trace, Policy, and Site by division operator.

67

0 500000 1000000 1500000 2000000

0.
0e

+
00

1.
0e

+
07

2.
0e

+
07

Time

R
es

ou
rc

e
co

nt
en

tio
n

●●●
●●

●●
●●

●●
●●●

●●
●●

●●●
●●

●●
●●●

●●

● AUTO−GREEN1−CPN16
GREEN1−CPN16
AUTO−GREEN2−CPN16
GREEN2−CPN16

(a) 16 cores

0 500000 1000000 1500000 2000000

0.
0e

+
00

1.
0e

+
07

2.
0e

+
07

Time

R
es

ou
rc

e
co

nt
en

tio
n

●●
●●●

●●●
●●

●●
●●●

●●●
●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● AUTO−GREEN1−CPN8
GREEN1−CPN8
AUTO−GREEN2−CPN8
GREEN2−CPN8

(b) 8 cores

Figure 7.1: BLUE1: Resource contention graph for 16 and 8 number of core proces-

sors

68

0 500000 1000000 1500000 2000000 2500000

0.
0e

+
00

1.
0e

+
07

2.
0e

+
07

3.
0e

+
07

Time

R
es

ou
rc

e
co

nt
en

tio
n

●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●

● AUTO−GREEN1−CPN16
GREEN1−CPN16
AUTO−GREEN2−CPN16
GREEN2−CPN16

(a) 16 cores

0 500000 1000000 1500000 2000000 2500000

0e
+

00
1e

+
07

2e
+

07
3e

+
07

4e
+

07

Time

R
es

ou
rc

e
co

nt
en

tio
n

●●
●●●

●●
●●

●●
●●

●●●
●●

●●
●●●

●●

● AUTO−GREEN1−CPN8
GREEN1−CPN8
AUTO−GREEN2−CPN8
GREEN2−CPN8

(b) 8 cores

Figure 7.2: BLUE2: Resource contention graph for 16 and 8 number of core proces-

sors

69

Table 7.2: BLUE1: Completion Time and Resource Contention metric for 16 and 8

cores

Configuration Time(sec.) Resource Contention

GREEN1-CPN16 1989662 22621229

AUTO-GREEN1-CPN16 2006323 4936193

GREEN2-CPN16 1986607 24279215

AUTO-GREEN2-CPN16 2004631 5014698

(a) 16 cores

Configuration Time(sec.) Resource Contention

GREEN1-CPN8 1999069 22479516

AUTO-GREEN1-CPN8 1996545 5088787

GREEN2-CPN8 1997208 25174542

AUTO-GREEN2-CPN8 1982155 5546509

(b) 8 cores

70

Table 7.3: BLUE2: Completion Time and Resource Contention metric for 16 and 8

cores

Configuration Time(sec.) Resource Contention

GREEN1-CPN16 2717401 32340632

AUTO-GREEN1-CPN16 2753694 6754939

GREEN2-CPN16 2716090 32761916

AUTO-GREEN2-CPN16 2753580 6415201

(a) 16 cores

Configuration Time(sec.) Resource Contention

GREEN1-CPN8 2717341 35513508

AUTO-GREEN1-CPN8 2759943 7546243

GREEN2-CPN8 2717214 39774280

AUTO-GREEN2-CPN8 2687203 7506258

(b) 8 cores

71

0 500000 1000000 1500000 2000000 2500000

0e
+

00
1e

+
07

2e
+

07
3e

+
07

4e
+

07
5e

+
07

Time

R
es

ou
rc

e
co

nt
en

tio
n

●●
●●●

●●
●●●

●●●
●●

●●●
●●

●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●
●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●
●●●

●●
●●

●●●
●

●●●
●●

●●●●●●●●●●●●●●●●●●
●●

● AUTO−GREEN1−CPN4
GREEN1−CPN4
AUTO−GREEN2−CPN4
GREEN2−CPN4

(a) 4 cores

0 500000 1000000 1500000 2000000 2500000

0e
+

00
1e

+
07

2e
+

07
3e

+
07

4e
+

07

Time

R
es

ou
rc

e
co

nt
en

tio
n

●●
●●●

●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●

●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●
●●●●●● ●●

●●●
●●●●●●●●●●●●●

●●●
●●●

●●●
●●

● AUTO−GREEN1−CPN2
GREEN1−CPN2
AUTO−GREEN2−CPN2
GREEN2−CPN2

(b) 2 cores

Figure 7.3: DS: Resource contention graph for 4 and 2 number of core processors

72

Table 7.4: DS: Completion Time and Resource Contention metric for 4 and 2 cores

Configuration Time(sec.) Resource Contention

GREEN1-CPN4 2654637 49242540

AUTO-GREEN1-CPN4 2654637 30790189

GREEN2-CPN4 2654637 49608955

AUTO-GREEN2-CPN4 2654637 31266887

(a) 4 cores

Configuration Time(sec.) Resource Contention

GREEN1-CPN2 2654637 43624020

AUTO-GREEN1-CPN2 2654637 27445141

GREEN2-CPN2 2654637 44863890

AUTO-GREEN2-CPN2 2654637 27342088

(b) 2 cores

73

Table 7.5: Autonomic versus non-autonomic approach improvement

Configuration: Trace-Policy-Site Autonomic vs. NonAutonomic (/)

BLUE1-GREEN1-CPN16 4.58

BLUE1-GREEN2-CPN16 4.84

BLUE1-GREEN1-CPN8 4.41

BLUE1-GREEN2-CPN8 4.53

BLUE2-GREEN1-CPN16 4.78

BLUE2-GREEN2-CPN16 5.10

BLUE2-GREEN1-CPN8 4.70

BLUE2-GREEN2-CPN8 5.29

DS-GREEN1-CPN4 1.59

DS-GREEN2-CPN4 1.58

DS-GREEN1-CPN2 1.58

DS-GREEN2-CPN2 1.64

74

CHAPTER 8

Conclusion and Future Work

Green computing is a contemporary research topic in recent years to address climate

and energy challenges of the world. Our first step in this thesis was to go over tech-

nologies. Thus, we have envisioned the duality of green computing with HPC and

cloud computing, business, and economy i.e., green computing solutions drive the de-

velopment of HPC, cloud computing, economy, and business and vice versa. In order

to reach exascale computing, we need huge amounts of energy to operate an exascale

system. Thus, green computing is a challenge for the future of HPC. On the other

hand, HPC provides solutions for green computing and climate change. In this thesis,

we discussed this proposition by looking at technologies in detail.

In addition, we have envisioned that resource management design and architecture

should evolve according to the advances in contemporary technologies, computing

paradigms, and energy efficient operations to provide new techniques, algorithms, etc.

In this thesis, in order to address these problems components of resource manage-

ment system have been explored in detail to seek new developments and evolutions

and in parallel this process exploits contemporary emerging technologies, computing

paradigms, energy efficient operations, etc. to define, design and develop new metrics,

techniques, mechanisms, models, policies, and algorithms. Furthermore, finding and

establishing relationships within and between various components is a key considera-

tion in this development process.

Then, we have proposed effective energy aware consolidation policies. Optimiza-

75

tion in energy consumption happens through minimization of resource contention as

we have formulated in this thesis. In addition, we have discussed workload characteris-

tics and we developed resource contention metric for CPU, Memory, IO, and network

resources as the main parameters in designing policies.

At the last stage, we have proposed autonomic energy efficient scheduling ap-

proach. In order to design a multi-level and general-purpose energy efficient dis-

tributed system, in this thesis we modeled the relationship between a distributed re-

source management layers and we reached an autonomic energy efficient approach.

This approach models the interaction between queue mechanism and core sched-

uler information (about jobs and resources). In this autonomic model there are some

loops between queue mechanism, scheduling function, end of a job event and core

scheduler information.

Finally, we suggest the following works as the future works to be carried out:

• Affinity/grouping algorithms on queue: These algorithms try to group as many

jobs (from the queue) as possible and atomically schedule them on a physical

host if they don’t have any resource conflict. In fact, a grouping algorithm con-

solidates jobs on a physical host to reduce resource contention

• Exploring the effect of other backfilling strategies such as Lookahead and Ag-

gressive on resource contention

• Lease admission: making relation between aforementioned policies and lease

admission, and bringing these policies into this component

• Lease pricing startegies: Like previous one but for pricing

• An HPC workload consists of a preprocessing step, communication/computation

steps, and finally a postprocessing step. These steps have different resource

requirements, so that according to this, consolidation policies could be improved

76

REFERENCES

[AFG09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. “Above the Clouds: A Berke-
ley View of Cloud Computing.” Technical Report UCB/EECS-2009-28,
EECS Department, University of California, Berkeley, Feb 2009.

[AFG10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin,
Ion Stoica, and Matei Zaharia. “A view of cloud computing.” Commun.
ACM, 53(4):50–58, April 2010.

[Ama10] Amazon. “Amazon EC2 Spot Instances.” http://aws.amazon.
com/ec2/spot-instances/, 2010.

[BAR12] FELICITY BARRINGER. “Corporations Slow to Act on Climate
Change.” http://green.blogs.nytimes.com/2012/09/12/corporations-slow-
to-act-on-climate-change-report-says/more-147625, 2012.

[BBA10] Rajkumar Buyya, Anton Beloglazov, and Jemal Abawajy. “Energy-
Efficient Management of Data Center Resources for Cloud Computing: A
Vision, Architectural Elements, and Open Challenges.” In 2010 Interna-
tional Conference on Parallel and Distributed Processing Techniques and
Applications. PDPTA 2010, 2010.

[BE05] A. Borodin and R. El-Yaniv. Online computation and competitive analysis.
Cambridge University Press, 2005.

[Bea85] J. E. Beasley. “An Exact Two-Dimensional Non-Guillotine Cutting Tree
Search Procedure.” Operations Research, 33(1):49–64, January 1985.

[Bob07] N. Bobroff et al. “Dynamic placement of virtual machines for manag-
ing SLA violations.” In International Symposium on Integrated Network
Management ’07, 2007.

[CGI03] Massimiliano Caramia, Stefano Giordan, and Antonio Iovanella. “An on-
line algorithm for the rectangle packing problem with rejection.” In Pro-
ceedings of the 2nd international conference on Experimental and effi-
cient algorithms, WEA’03, pp. 59–69, Berlin, Heidelberg, 2003. Springer-
Verlag.

77

[CGI04] Massimiliano Caramia, Stefano Giordani, and Antonio Iovanella. “Grid
scheduling by on-line rectangle packing.” Networks, 44(2):106–119,
2004.

[DMR09] G. Dhiman, G. Marchetti, and T.S. Rosing. “vGreen: A System for Energy
Efficient Computing in Virtualized Environments.” In the 14th IEEE/ACM
International Symposium on Low Power Electronics and Design. ISLPED
’09, 2009.

[DR09] G. Dhiman and T. Rosing. “System-level power management using online
learning.” IEEE Transactions on CAD’09, 2009.

[Eur12] Eurotech. “Hot water cooled supercomputer.”
http://www.eurotech.com/en/hpc/hpc+solutions/liquid+cooling, 2012.

[Exx12] Exxonmobil. “The Outlook for Energy.”
http://www.exxonmobil.com/Corporate/energy outlook.aspx, 2012.

[Fei10] Dror Feitelson. “Parallel workloads archive.”
http://www.cs.huji.ac.il/labs/parallel/workload/, 2010.

[FPG10] “1st International Workshop on High Performance Computing, Network-
ing and Analytics for the Power Grid.” http://gridoptics.pnnl.gov/sc11/,
2010.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New
York, NY, USA, 1990.

[Gre12] “The Green500.” http://www.green500.org/, 2012.

[Her09] Fabien Hermenier et al. “Entropy: a consolidation manager for clusters.”
In In VEE ’09: Proceedings of the 2009 ACM SIGPLAN/SIGOPS inter-
national conference on Virtual execution environments (2009), pp. 41–50,
2009.

[HKQ99] Inki Hong, Darko Kirovski, Gang Qu, Miodrag Potkonjak, and Mani B.
Srivastava. “Power Optimization of Variable-Voltage Core-Based Sys-
tems.” IEEE Trans. Computer-Aided Design, 18(12):1702–1714, 1999.

[HS91] Robert W. Haessler and Paul E. Sweeney. “Cutting stock problems
and solution procedures.” European Journal of Operational Research,
54(2):141–150, September 1991.

78

[HT01] E Hopper and B.C.H Turton. “An empirical investigation of meta-heuristic
and heuristic algorithms for a 2D packing problem.” European Journal of
Operational Research, 128(1):34 – 57, 2001.

[IL99] Zoran Ivkovic and Errol L. Lloyd. “Fully Dynamic Algorithms for Bin
Packing: Being (Mostly) Myopic Helps.” SIAM J. Comput., 28:574–611,
February 1999.

[Int10] Intel. http://www.intel.com/support/processors/xeon/
sb/cs012641.htm, 2010.

[KBK07] K. H. Kim, R. Buyya, and J. Kim. “Power Aware Scheduling of Bag-of-
Tasks Applications with Deadline Constraints on DVS-enabled Clusters.”
In CCGRID, pp. 541–548, 2007.

[KM77] L. T. Kou and G. Markowsky. “Multidimensional bin packing algorithms.”
IBM J. Res. Dev., 21:443–448, September 1977.

[LBL10] LBL. “Green Flash.” http://www.lbl.gov/cs/html/greenflash.html, 2010.

[LKK99] William Leinberger, George Karypis, and Vipin Kumar. “Multi-Capacity
Bin Packing Algorithms with Applications to Job Scheduling under Mul-
tiple Constraints.” In Proceedings of the 1999 International Conference
on Parallel Processing, ICPP ’99, pp. 404–, Washington, DC, USA, 1999.
IEEE Computer Society.

[LWY09] Gregor von Laszewskiy, Lizhe Wangz, Andrew J. Youngez, and Xi Hez.
“Power-Aware Scheduling of Virtual Machines in DVFS-enabled Clus-
ters.” In Cluster 2009. Cluster 2009, 2009.

[MCT77] K. Maruyama, S. K. Chang, and D. T. Tang. “A General Packing Algo-
rithm for Multidimensional Resource Requirements.” International Jour-
nal of Computer and Information Sciences, 6(2):131–149, 1977.

[MGV07] M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker. “Usher: an exten-
sible framework for managing clusters of virtual machines.” In LISA’07,
2007.

[MMO09] Marghoob Mohiyuddin, Mark Murphy, Leonid Oliker, John Shalf, John
Wawrzynek, and Samuel Williams. “A design methodology for domain-
optimized power-efficient supercomputing.” In Proceedings of the Confer-
ence on High Performance Computing Networking, Storage and Analysis,
pp. 12:1–12:12, 2009.

79

[Nim10] Nimbus. “Nimbus Toolkit Project.” http://nimbusproject.
org/, 2010.

[Nur08] D. Nurmi et al. “The Eucalyptus open-source cloud-computing system.”
In Cloud Computing and Its Applications’08, 2008.

[Ope10] OpenNebula. “OpenNebula Cloud Toolkit.” http://OpenNebula.
org/, 2010.

[Ren12] “World’s #1 Renewable Energy Network.”
http://www.renewableenergyworld.com/, June, 18 2012.

[SDG11] Mehdi Sheikhalishahi, Manoj Devare, Lucio Grandinetti, and Demetrio
Laganà. “A General-purpose and Multi-level Scheduling Approach in En-
ergy Efficient Computing.” In CLOSER 2011 - International Conference
on Cloud Computing and Services Science, pp. 37–42. SciTePress, 7-9
May, 2011.

[SF05] Edi Shmueli and Dror G. Feitelson. “Backfilling with lookahead to opti-
mize the packing of parallel jobs.” J. Parallel Distrib. Comput., 65:1090–
1107, September 2005.

[SF09] Edi Shmueli and Dror G. Feitelson. “On Simulation and Design of
Parallel-Systems Schedulers: Are We Doing the Right Thing?” IEEE
Trans. Parallel Distrib. Syst., 20:983–996, July 2009.

[SG11a] Mehdi Sheikhalishahi and Lucio Grandinetti. “Autonomic Energy Effi-
cient Scheduling.” preprint (2012), to Future Generation Computer Sys-
tems, 2011.

[SG11b] Mehdi Sheikhalishahi and Lucio Grandinetti. “Revising Resource Man-
agement and Scheduling Systems.” In CLOSER 2012 - International Con-
ference on Cloud Computing and Services Science, pp. 37–42. SciTePress,
April 18-21, 2011.

[SG12] Mehdi Sheikhalishahi and Lucio Grandinetti. “Green Com-
puting: a dual technology for cloud computing and HPC.”
http://www.computer.org/portal/web/computingnow, Nov., 13 2012.

[SKF08] Borja Sotomayor, Kate Keahey, and Ian Foster. “Combining batch execu-
tion and leasing using virtual machines.” In Proceedings of the 17th inter-
national symposium on High performance distributed computing, HPDC
’08, 2008.

80

[SKZ08] Shekhar Srikantaiah, Aman Kansal, and Feng Zhao. “Energy Aware Con-
solidation for Cloud Computing.” In USENIX HotPower’08: Workshop on
Power Aware Computing and Systems at OSDI, 2008.

[SLG11] Mehdi Sheikhalishahi, Ignacio M. Llorente, and Lucio Grandinetti. “En-
ergy Aware Consolidation Policies.” In International Conference on Par-
allel Computing, pp. 109–116. IOS Press, 30 August-2 September 2011.

[Sma10] Smart2020. “Smart 2020: Enabling the Low Carbon Economy in the In-
formation Age.” http://www.smart2020.org/, 2010.

[SML09] Borja Sotomayor, R.Santiago Montero, I.Martin Llorente, and Ian Foster.
“Virtual Infrastructure Management in Private and Hybrid Clouds.” IEEE
Internet Computing, 13(5):14–22, Sep./Oct. 2009.

[Sol12] LiquidCool Solutions. “LiquidCool Solutions.”
http://www.liquidcoolsolutions.com/, 2012.

[Sot10] Borja Sotomayor. Provisioning Computational Resources Using Virtual
Machines and Leases. PhD thesis, Department of Computer Science, Uni-
versity of Chicago, July 7 2010.

[SSV10] Mark Stillwell, David Schanzenbach, Frédéric Vivien, and Henri
Casanova. “Resource allocation algorithms for virtualized service hosting
platforms.” J. Parallel Distrib. Comput., 70:962–974, September 2010.

[SVC11] Mark Stillwell, Frederic Vivien, and Henri Casanova. “Dynamic Frac-
tional Resource Scheduling vs. Batch Scheduling.” IEEE Transactions on
Parallel and Distributed Systems, 99(PrePrints), 2011.

[SWW95] David B. Shmoys, Joel Wein, and David P. Williamson. “Scheduling Paral-
lel Machines On-line.” SIAM J. Comput., 24:1313–1331, December 1995.

[Ter12] Kayo Teramoto. “Pay as You Go in the Cloud: One Watt at a Time.”, 2012.
ACM Student Research Competition Poster Session.

[Top12] “The Top500.” http://www.top500.org/, June, 18 2012.

[UDS00] Pèter Urbàn, Xavier Dèfago, and Andrè Schiper. “Contention-Aware Met-
rics for Distributed Algorithms: Comparison of Atomic Broadcast Algo-
rithms.” In in Proc. 9th IEEE Intl Conf. on Computer Communications
and Networks (IC3N 2000, pp. 582–589, 2000.

[VAN08] A. Verma, P. Ahuja, and A. Neogi. “Power-aware dynamic placement of
HPC applications.” In ICS 08, 2008.

81

[VBL12] J.L. Vazquez-Poletti, G. Barderas, I.M. Llorente, and P. Romero. “A
Model for Efficient Onboard Actualization of an Instrumental Cyclogram
for the Mars MetNet Mission on a Public Cloud Infrastructure.” In Proc.
PARA2010: State of the Art in Scientific and Parallel Computing, Reyk-
javik (Iceland), June 2010, volume 7133 of Lecture Notes in Computer
Science, pp. 33–42. Springer Verlag, 2012.

[VMW10] VMWare. “VMware Dynamic Resource Scheduler.” http://www.
vmware.com/files/pdf/drs_datasheet.pdf, 2010.

[WHL02] Yu-Liang Wu, Wenqi Huang, Siu-chung Lau, C. K. Wong, and Gilbert H.
Young. “An effective quasi-human based heuristic for solving the rect-
angle packing problem.” European Journal of Operational Research,
141(2):341–358, September 2002.

82

