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Abstract

The aim of this work is to contribute to the development of an unstructured

flow solver able to match the increasing demand of the automotive industrial

sector to advance CFD-aided design and analysis procedure. The method here

presented is designed to ensure high-order of accuracy even in complex geome-

tries using both explicit and implicit schemes for the temporal discretization

of the compressible Reynolds Averaged Navier-Stokes (RANS) k-omega equa-

tions. The algorithm is based on the Discontinuous Galerkin (DG) finite ele-

ment method, one of the most promising high-order methods, that combines

excellent dispersion and dissipation properties with high geometrical flexibil-

ity. The DG solver is based on different multi-stage explicit or many implicit

or semi-implicit schemes for achieving high order accuracy in time. Here we

focus on an implicit multi-stage multi-step method, known in the literature as

Two Implicit Advanced Step-point (TIAS) method, analyzing the performance

of the sixth-order accurate TIAS scheme for long time simulations of stiff and

non stiff unsteady problems.

The second objective of this work is to demonstrate the applicability and

reliability of optimization algorithms to control spurious numerical oscillations

in simulation of transonic flows. The proposed optimization strategy relies on

the gradient based optimization approach employing an Automatic Differen-

2



tiation (AD) tool for the evaluation of the sensitivities. The optimization

process acts directly on the shock capturing technique, seeking for the optimal

values of the shock capturing parameters.

The performance of the solver is demonstrated by solving several test-cases

of direct relevance in the context of automotive and aerodynamic applica-

tions. The comparison between experimental/analytical and numerical results

allowed the validation and/or revision of physical and numerical models imple-

mented in the code. Finally, we remark that this work is the starting point of a

larger investigation that aims to deal with ICE flow conditions that are poorly

predicted by RANS approaches, such as flow separation and reattachment in

a highly three-dimensional configuration, by using time-accurate integration

of the DG space-discretized ILES and hybrid RANS-LES models.
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Chapter 1

Introduction

1.1 Motivation

Nowadays the design and research activities in the field of internal combustion

engines are currently mainly focused on achieving high level of environmen-

tal compatibility, both in terms of reduced air pollutant emissions and energy

consumptions. In this context the considerable advances in algorithms develop-

ment and the huge increase of the computer power have made Computational

Fluid Dynamics (CFD) a key discipline for industrial growth during the last

two decades.

The flow fields inside an Internal Combustion Engine (ICE) system greatly

affect the performance and the level of exhaust emissions, then a more accu-

rate prediction of their complex physics phenomena could provide consider-

able benefits in order to reduce time and costs of the industrial production

cycles. Currently, the prediction of complex turbulent flows by standard in-

dustrial codes is mainly based on the numerical solution of Reynolds Averaged

Navier Stokes Equations (RANS) by means of formally second-order accurate

finite volume schemes, due to their robustness and their favourable computa-

tional cost-accuracy ratio [1–5]. On the other hand the numerical accuracy

provided by these low-order schemes is often inadequate to meet the increas-

ing demand of advanced industrial sectors to improve CFD-aided design and
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analysis procedures. Low-order schemes, in fact, fail to properly reproduce the

fluid dynamic behaviour of complex turbulent flows, especially in the presence

of non-equilibrium phenomena, high streamlines curvature or strong three-

dimensional effects. Moreover, for complex applications, very fine meshes are

required to obtain accurate solutions with second-order methods, leading to

enormous computing times. Conversely, even on coarse meshes, high-order

discretization methods allow the computation of accurate solutions with a sig-

nificant reduction of the computational costs.

Several high-order methods have been emerging recently as powerful tools

to go beyond the standard accuracy of finite volume discretizations and differ-

ent types of high-order methods have been developed in the CFD community

to deal with a wide range of problems [6–13]. One of the methods that is gain-

ing more interest in CFD in the last years due to its many attractive features

is the Discontinuous Galerkin (DG) finite element method [14–16].

The DG method is an innovative strategy that combines two key ideas

which are at the basis of the finite volume (FVM) and finite element meth-

ods (FEM), approximating the solution in each element by piecewise polyno-

mial functions with no global continuity requirement at element interfaces.

Like continuous finite element methods, the DG method can increase the

accuracy by raising the degree of polynomial approximation inside each el-

ement, whereas the discontinuous approximation at element interfaces allows

the method to employ upwind discretizations of interface fluxes, like in high-

resolution finite volume methods. The lake of global continuity allows the

treatment of each element as a separate entity that communicates with the

adjacent elements only through the numerical fluxes. This feature gives a

good capability of parallelization. Furthermore, its compact formulation can

be applied close to the boundary without any special treatment, thus increas-

ing the robustness and the accuracy of every boundary conditions. Finally,

the dispersion and dissipative properties of the method are excellent.

These latter aspects (boundary treatment, dispersion and dissipation prop-
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erties) are crucial in order to deal with turbulent flows in complex geome-

tries typical of automotive applications. Often ICE flows are dominated by

large scale turbulent structures that occur at low to moderate Reynolds num-

bers or due to non-aerodynamic geometry conditions. For these flows the

standard Reynolds-Averaged Navier-Stokes (RANS) approach is not able to

predict time-averaged quantities accurately, and unsteady approaches are re-

quired to predict at least part of the unsteady turbulent structures directly.

In order of complexity from most to least complex we distinguish Direct Nu-

merical Simulation (DNS) (no turbulence modeling at all), the Large Eddy

Simulation (LES) that is based on a SubGrid Scale (SGS) model for the non-

resolved turbulent scales, the Implicit Large Eddy Simulation (ILES), where

the spatial discretization itself acts like a SGS model, and hybrid RANS-LES

(RANS near the solid body, LES elsewhere). All of these approaches require

the coupling of high space accuracy with high temporal accuracy to convect

all resolved turbulent structures at the right speed with minimal dissipation

and dispersion. In particular, in the context of high-order methods, high ac-

curate time integration schemes are mandatory to capture the significant flow

features of transient problems and to perform accurate and efficient long time

simulations of turbulent flows. The time discretization can be performed also

by a discontinuous approximation [17], but the most usual approach is the

application of the Method of Lines (MOL) strategy using high-order explicit

Runge-Kutta methods to advance the solution in time. In general, Runge-

Kutta schemes are easy to implement and parallelize, and require only limited

memory storage. However, due to the strong restriction to the size of the

time step for large-scale simulations and especially for high-order solutions,

the convergence speed slows down dramatically, resulting in inefficient time

integration technique. Furthermore, often the ordinary differential equations

(ODEs) system coming from the discretization of the governing equations is

stiff and fully implicit methods must be used to efficiently integrate these sys-

tems. A high-order implicit time integration approach seems well suited to be
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coupled with high-order DG space discretizations of turbulence models equa-

tions. In fact, implicit methods can be very efficient in near-wall regions, that

are characterized by highly-stretched grids, and, if accurate enough, they are

also able to capture fine details of unsteady motions in regions farther from

the walls, even using large time steps.

All the aforementioned capabilities suggest the potential of high-order ap-

proaches for the improvement of technology of automotive industries.

Please refer to Background section for a review of the topics and the main

numerical techniques that have been adopted for the development of a high-

order, in space and time, flow solver for ICE applications.

Remark : The numerical methods described in this thesis have been imple-

mented and tested on the Discontinuous Galerkin flow solver MIGALE code of

Bassi et al. (University of Bergamo) [18].

1.2 Background

1.2.1 transonic flows

Transonic flows play a important role in different area of science and engi-

neering. These include, for instance, fluid dynamics, magnetohydrodynamics,

aerospace, turbomachinery, and automotive research fields. Transonic flows

may occur within internal combustion engines, through the intake and ex-

haust valves, and in both compressor and turbine of the turbocharger.

A flow is defined transonic if both subsonic and supersonic regions are

present in the same flow field. Transonic flows are very complex and often

they can develop strongly unsteady phenomena such as discontinuities, shock-

boundary layer interaction and flow separation. Furthermore, they are in

general sensitive to geometric boundary conditions. This sensitivity can be

more significant for internal flows because of the unsteady interaction between

the boundary layer generated behind the shock wave and the reflection of the
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shock from the wall. Accurate and efficient simulations of these nonlinear

unsteady phenomena are one of the great challenges of the computational

fluid dynamics. Transonic problems are thus ideal to evaluate accuracy and

robustness properties of numerical methods.

It’s well known that numerical methods usually require the introduction of

some form of dissipation or damping to prevent the occurrence of instabilities

and large non-physical oscillations in non-linear problems with large gradients.

In particular, in presence of shock, the numerical dissipation introduced by

high-order discretizations is not sufficient to stabilize the solution, using an

order of approximation higher than one. Several shock-capturing strategies

inspired by finite volume schemes have been proposed for high-order method

in order to accurately represent shocks. A straightforward approach consists

on reducing the polynomial degree in those elements lying in the shock region,

increasing the numerical dissipation added by the scheme. Then an adaptive

mesh refinement is used in order to alleviate the problem of lack of accuracy

near to the shock.

One of the most used strategies consists in adding to the DG discretized

equations an artificial viscosity term that aims at controlling the high-order

modes of the numerical solution within elements preserving as much as possible

the spatial resolution of the discontinuities. The shock capturing term is local

and acts in every element of the computational domain, adding an amount

of artificial viscosity that is almost negligible in smooth region, and large in

non-smooth one.

Unlike in finite volume schemes, where the shock is spread over several

elements in the mesh, in DG schemes the artificial viscosity method has the

capabilities to solve the shock typically in only one element (sub-cell resolution)

[19–24].

11



1.2.2 turbulent flows

Most flows encountered in industrial application, are turbulent. In contrast to

laminar flow, the turbulent flows are characterized by a strong chaotic molec-

ular motion along complex irregular three-dimensional paths, and therefore by

an intense mixing of the various layers of the fluid. Turbulent flows are highly

unsteady, and fluctuate on a broad range of lenght and time scales. Turbulence

leads to higher skin friction and heat transfer with respect to laminar flows

due to an increased momentum and energy exchange between the molecules

and the solid wall. [25]

All these characteristics play a key role in ICE systems and greatly affect

the performance of internal combustion engines, in terms of energy consump-

tion and pollutant emissions.

The most accurate approach to solve turbulent flows is the direct numerical

simulation (DNS) of the Navier-Stokes equations, that allows the resolution

of all the turbulent scales. Up to now, despite the continuous increase of the

computer power, DNS computations can be performed only for low Reynolds

number and for simple geometries. Therefore turbulent phenomena need to

be modeled.

A large variety of turbulence models has been developed during the years.

The closest approaches to DNS are the Large Eddy Simulations (LES) [26] and

the Detached Eddy Simulations (DES) [27], in which large turbulent scales are

resolved and only the small ones are modelled. These models turn out to be

too expensive in terms of computing time for industrial applications, owing to

the more complex nature of both the flow and the geometry.

For these reasons, three-dimensional fluid dynamics in ICEs are usually

based on the Reynolds Averaged Navier-Stokes equations (RANS) approach

where all the turbulent scales are modeled. Despite no detailed information can

be obtained about turbulence scales using RANS approaches, their higher ro-

bustness and dramatic reduction in computational effort has greatly promoved
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their use in engineering applications. The shortcomings of RANS models for

ICE flows have been widely discussed in the literature [28–32].

Specifically, Hanjalic [29], showed that in a reciprocating engine the second

order closure models (Reynolds Stress Models (RSM)) with appropriate modi-

fications have the potential to solve ICE flows. The Reynolds Stress Model [33]

solves modelled transport equations for the six Reynolds stress components.

To close the partial differential equations for the Reynolds stress tensor an

equation for the dissipation rate of the turbulence kinetic energy is usually

employed. Closely related to the RSM model are the Algebraic Reynolds

Stress Models (ARSM) [34, 35], in which the system of differential transport

equations is reduced from seven to only two transport equations. They can

be considered as a combination of first-order closure models and the RSM ap-

proach. ARSM models guarantee the anisotropic eddy diffusivities by relating

the components of the Reynolds stress tensor to the transport quantities by

non-linear algebraic equations, thus overcoming the high computational costs

associated with second-order modelling. As part of ARSM models, the Ex-

plicit Algebraic Reynolds Stress Models (EARSM) [36–38] are recently gaining

increasing attention. In EARSM models an explicit non-linear constitutive re-

lation of the Reynolds Stress Tensor is defined in terms of the mean flow

stream-rate and the rate-of-rotation tensors. Because of numerical problems

mainly caused by the stiffness of RSM and the non-linearity of ARSM models,

first-order closures are widely used for industrial applications with large and

complex computational domains due to their higher robustness and lower com-

putational cost. These models are based on the eddy viscosity hypothesis of

Boussinesq [39], which imposes a linear relationship between turbulent shear

stress and main strain rate. Despite their possible lower accuracy, for steady

ICE flow analysis Bianchi and Fontanesi [40] and Auriemma et al. [41] high-

lighted that the two-equation turbulence models well reproduce the in-cylinder

flow with a good agreement between experimental and numerical results.

Among the two-equations turbulence approaches, the k − ω model is well
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suitable for the resolution of turbulent ICE flows [42] , allowing the resolution

of the flow near the wall without the use of semi-empiric functions (wall-

functions approach) [43,44] or viscous damping function (two-layer approach)

as occurs in the k − ε model.

1.2.3 Optimization method for computational fluid dy-

namics

In the recent decades, the employment of optimization method has became a

powerful tool in order to improve the industrial design process and to reduce

production costs. Historically, the existence of optimization methods can be

traced to the period of Newton, Lagrange, and Cauchy, being related to the

foundation of calculus of variations, which deals with the minimization of func-

tionals. Following these early efforts, only the huge increase of the computer

power occurred from the middle of the twentieth century has made possible the

implementation of more advanced optimization procedures, encouraging fur-

ther research, the development of new methods and the consequent emergence

of several well-defined new areas in optimization theory [45–49].

Currently, optimization is applied to solve a wide range of engineering

problems, and and a wide range of optimization algorithms and methodologies

are available also in the automotive sector [50–57]. For instance, for the shape

optimization of the intake or exhaust ducts in internal combustion engines,

to minimize the fuel consumption of gasoline engines, or for the vehicle drag

reduction. Especially, in CFD context, the use of optimization algorithms are

historically mainly related to i) optimization of the shape of the computational

domain, in order to obtain the maximization or minimization of a particular

functional, see for example the determination of the optimal shape for airfoils

in order to reduce the drag or maximize the lift, ii) search for the optimal grid

configuration in order to reduce the numerical error (grid-adaptivity). [58–69].

In general, optimization algorithms can be classified according to several
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principles, but we can roughly divide them into indirect search methods, which

require the computation of the gradient of the objective function, and direct

method, depending on the objective function only through a set of function

evaluations. The optimization algorithms that are not gradient-based mainly

follow a stochastic approach for the resolution of the optimization problem.

Stochastic optimization includes algorithms with a certain randomness in the

search procedure. Some examples of stochastic algorithms are the game-theory

based algorithms, in which the optimization strategy aims at emulating the

evolution of a game in which different player try to fulfil their objectives,

the evolutionary algorithms that emulating the evolution of specie according

to Darwin’s theory [70], or the genetic algorithms, belonging to the class of

evolutionary algorithms but in which the input variables are discretized and

stored into a binary string. Currently, stochastic optimization methods are

the most advanced approach to optimization, and are gaining an increasing

interest during the last decades also because they are particularly suited for

the implementation on parallel computing environments.

The gradient-based approaches are the most widely used, also for hystorical

reasons. The basic philosophy of these methods is to evaluate the derivative

of the objective function (e.g. the lift, for aerodynamics applications) with

respect to the design parameters to find the optimal values of the parameters.

Since the gradient-based algorithms use gradient information, they converge

much faster to a local optimum than the direct methods, especially when a

large number of design parameter are involved in the optimization process.

During the last decades, a large variety of gradient-based algorithms has been

developed for the resolution of different kinds of problem, and a complete

review of these can be found in Nocedal and Wright [71].

It’s well known that the main difficulty in gradient-based optimization is

the computation of the gradient vector. The gradient of the object function

can be calculated in different ways. The simplest and also the oldest way is

the finite difference method(FD). In fact, FD approach can be easily employed
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with any flow solver, but require a large amount of computations and suffers

from subtractive cancellation or round-off errors.

A more efficient and accurate way to determine the gradient is the Au-

tomatic or Algorithmic Differentiation (AD). The Automatic Differentiation

(AD) is a innovative technique that applies symbolic differentiation to com-

puter programs by means the chain rule [72]. AD is based on the fact that

any numerical code is a concatenation of various elementary operations whose

differentiation rules are well known. By applying the chain rule to this con-

catenation an automatic differentiation of the numerical code is obtained.

Using AD, an augmented numerical code is generated from a given one,

which calculates the derivatives of the functional with respect to the design

parameters. Since the result is also a computer code that generates numbers

rather than symbolic expressions, the technique is a numerical differentiation,

although based on symbolic differentiation rules. Therefore AD is very efficient

tool for the evaluation of the gradient of the functional. Moreover, in contrast

to FD, AD does not incur any truncation error, so the result is exact to machine

accuracy.

The principles of AD are explained in detail e.g. in the work of Griewank

[73].

1.2.4 High order methods

When the order of accuracy of a numerical method is at least greater than

two, the numerical method is called high-order method.

In the last few decades, high-order methods have gained great attention

in the CFD community due to their potential in providing higher accuracy

solutions with lower cost than standard low-order schemes. The great po-

tentiality of high-order schemes is related to their more efficient prediction

capabilities with respect to low-order schemes. High order schemes, in fact,

can achieve a prescribed error threshold on a much coarser mesh. Despite
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second order scheme have been widely used in CFD during the years, many

complex flow problems are still too expensive in terms of computational cost

or cannot properly be solved using these schemes.Conversely, high-order meth-

ods have been shown good potential in solving complex flows such as those

containing discontinuity, shocks, vortex structures or in direct simulation of

turbulent flows. The most popular high-order methods are the spectral ones,

whose basis functions are chosen as sums of sinusoids [74]. Although spectral

methods are computationally less expensive than finite element methods, they

become less accurate to face problems in complex geometries, or in presence

of discontinuities [75].

In order to overcome the limitations of the spectral scheme, in the early

1980s the research moved towards the p-type finite element method. P -type

FEM allows, for a given grid spacing h, a decrease of the error, by means of

the increasing of the polynomial degree p. In 1981, Babuska et al. [76] applied

this method to elasticity problems, concluding that the rate of convergence

of the p-type method cannot be slower than that of the h-type and, in cases

with singularity problem, the convergence rate of p-type is two times faster.

Starting from these first studies, over the years, a significant research effort has

been aimed at developing high-order accurate methods [77–80]. More recently,

the computational mathematics program of the Air Force Office of Scientific

Research (AFOSR) in the United States and the projects ADIGMA (Adaptive

Higher-order Variational Methods for Aerodynamic Applications in Industry)

[81] and IDIHOM (Industrialisation of High-Order Methods A Top-Down

Approach) [82] in Europe, have devoted significant efforts for the developement

and assessment of high-order methods for academic and industrial applications.

Among the high-order accurate methods, Discontinuous Galerkin (DG) fi-

nite element method is now one of the most popular, due to its many attractive

features, as reported previously in the section 1.1 Motivation.

The Discontinuous Galerkin Method was originally introduced by Reed

and Hill [83] in 1973 for neutron transport p roblems. The properties of the
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method in terms of stability and accuracy have been rigorously proven by

Johnson and Pitkarata [84], Cockburn and Shu [12], Cockburn et al. [85] and

Jiang and Shu [86] for arbitrary element shapes, for any number of spatial

dimensions, and even for non-linear problems. During the years, implicit and

explicit high order DG flow solvers have been developed for the resolution of

compressible and incompressible Euler and Navier-Stokes equations, even for

complex 3D applications and are now rather well-established. An implicit DG

method for the coupled RANS (Reynolds-Averaged Navier-Stokes) and k − ω

turbulence model equations was developed by e.g. Bassi et al. [18, 87] and

Hartmann [21].

1.2.5 Goals of research: a high order flow solver for ICE

applications based on DG method

The aim of this work is to contribute to the development of an advanced

computational code dedicated to the simulation of turbulent ICE flows. The

term advanced highlights the substantial progress compared to the CFD codes

currently in use in the automotive industrial field, because the solver developed

will be characterized by high order of accuracy even in the case of complex

geometries.

In this research project the interest will be focused on the Discontinuous

Galerkin (DG) finite element method, one of the most promising high-order

methods for the simulation of practical turbulent flows. From the numerical

point of view, the solution of the governing equations for turbulent flows is

a difficult task, as it requires the use of very accurate schemes. The ideal

candidates for this purpose are the spectral methods, which, however, are

difficult to use in the case of complex geometries and for compressible flows in

the presence of discontinuities. Therefore, DG methods, combining excellent

dispersion and dissipation properties with geometric flexibility, are expected

to be more appropriate to ensure high-order of accuracy, even for turbulent
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flows of industrial interest.

A high-order implicit time integration approach seems well suited to be

coupled with high-order DG space discretizations of turbulence model equa-

tions. Here we focus on accurate time integration by means of high-order

Two Implicit Advanced Step point (TIAS) schemes [88, 89], recently applied

by Nigro et al. [90] to the Discontinuous Galerkin discretized Navier-Stokes

equations, to evaluate the potential of such very high-order accurate A-stable

integrators for long time simulations of stiff and non-stiff unsteady flow prob-

lems. The main advantages of TIAS schemes are that they have excellent

stability properties being A-stables up to the sixth-order of accuracy. Other

approaches to high-order implicit time integration have been implemented in

the present DG solver and presented elsewhere, [91, 92].

The second objective of this work is to demonstrate the applicability and

reliability of optimization algorithms to control spurious numerical oscillations

in simulation of transonic flows. The proposed optimization strategy follows

the gradient based optimization approach employing an Automatic Differenti-

ation (AD) tool [93,94] for the evaluation of the sensitivities. The optimization

process acts directly on the shock capturing technique, seeking for the optimal

values of the shock capturing parameters.

As intermediate results, which are fundamental to achieve the aims of the

project, several test-cases of direct relevance in the context of automotive and

aerodynamic applications will be performed. The comparison with both ex-

perimental/analytical and numerical results will allow the critical validation

and/or revision of physical and numerical models introduced in the computa-

tional code.

This work is the starting point of a project that aims to deal with the class

of problems for which the classical RANS approaches show clear / known lim-

itations. Flows characterized by Reynolds number not too high or by large

separation zones are classic examples. These fluid dynamic problems are of

great practical importance in many other research areas. A typical example is
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that of the renewable energy with the development / study of wind turbines. In

this particular application the physical problems particularly difficult to model

with the RANS approaches are the formation of laminar separation bubbles,

with turbulent reattachment, or the flow separation downstream of a profile,

in a rotating system, with a very high angle of incidence. Further potential

applications include the analysis of unsteady flows in axial turbomachinery

because the vanes of compressors and turbines are affected by complex turbu-

lent flows with or without flow separation, especially in off-design operating

conditions.
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1.3 Outline of Thesis

This thesis deals with the development of an high-order accurate flow solver

for ICE applications based on the discontinuous Galerkin (DG) finite element

method.

The outline of this work is as follows:

• In Chapter 2 we present the physical models adopted: the two-dimensional

RANS and k − ω equations for axisymmetric flows and the two dimen-

sional Euler equations in cartesian coordinate system.

• In Chapter 3 we describe the DG flow solver. We start by presenting the

high-order DG spatial discretization of RANS k−ω and Euler equations.

Then we describe the time integration schemes adopted: the high-order

TIAS implicit scheme, the explicit SSPRK and the implicit backward

Euler. Finally, we present gradient based design optimization and auto-

matic differentiation (AD) strategies.

• In Chapter 4 we give the results of several test-cases. Two internal turbu-

lent flows and the long time simulation of an isentropic vortex advection

are computed to validate the proposed high-order space-accurate DG

method and to evaluate the performance of a high-order time-accurate

implicit time scheme, respectively. Finally, an inviscid transonic flow is

analysed to evaluate the feasibility of gradient based design optimization

for the optimal control of spurious numerical oscillations.

Finally, we give conclusions at the end of this work.
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Chapter 2

Physical models

In this chapter we present the compressible governing equations used in this

work.We first introduce the fully coupled Three-dimenional Reynolds Aver-

age Navier Stokes equations (RANS) and k-ω turbulence model equations in

cylindrical coordinate system (z, r, θ), written in conservative form. Then by

neglecting all the tangential terms in θ direction, the two-dimensional form of

the equations for axisymmetric flows without swirl have been derived. Finally,

we introduce the two-dimensional Euler equations in cartesian coordinate sys-

tem. The two-dimensional RANS and k-ω equations for axisymmetric flows

without swirl, and the two-dimensional Euler equations are used to evaluate

the effectiveness of algorithms and strategies proposed in this work through

the solution of different test-cases. In addition, some considerations concerning

the non-dimensionalization of the equations are given.
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2.1 RANS and k-ω equations

2.1.1 Three dimensional RANS and k − ω equations in

cylindrical coordinate system

The three-dimensional RANS and k − ω equations for compressible flows in

cylindrical coordinate system (z, r, θ) can be written in conservative form as

∂

∂t
(ρr) +

∂

∂z
(ρrvz) +

∂

∂r
(ρrvr) +

∂

∂θ
(ρrvθ) = 0, (2.1)

∂

∂t
(ρret) +

∂

∂z
(ρrhtvz) +

∂

∂r
(ρrhtvr) +

∂

∂θ
(ρhtvθ)

= A+B − rP + β∗ρrk̄eω̃r , (2.2)

∂

∂t
(ρrvz) +

∂

∂z

[
r
(
p+ ρv2

z

)]
+

∂

∂r
(ρrvzvr) +

∂

∂θ
(ρvzvθ)

=
∂

∂z
(rτ̂zz) +

∂

∂r
(rτ̂zr) +

∂

∂θ
(rτ̂zθ) , (2.3)

∂

∂t
(ρrvr) +

∂

∂z
(ρrvzvr) +

∂

∂r

[
r
(
p+ ρv2

r

)]
+

∂

∂θ
(ρvrvθ)

−p− ρv2
θ =

∂

∂z
(rτ̂zr) +

∂

∂r
(rτ̂rr) +

∂τ̂rθ
∂θ
− τ̂θθ, (2.4)

∂

∂t
(ρrvθ) +

∂

∂z
(ρrvzvθ) +

∂

∂r

[
r
(
p+ ρv2

θ

)]
+

∂

∂θ

(
p+ ρv2

θ

)
=

∂

∂z
(rτ̂zθ) +

∂

∂r
(rτ̂rθ) +

∂τ̂θθ
∂θ
− τ̂rθ, (2.5)

∂

∂t
(ρrk) +

∂

∂z
(ρrvzk) +

∂

∂r
(ρrvzk) +

∂

∂θ
(ρvθk)

=
∂

∂z

(
µ̄kr

∂k

∂z

)
+

∂

∂r

(
µ̄kr

∂k

∂r

)
+

∂

∂θ

(
µ̄kr

∂k

∂θ

)
+rP − β∗ρrk̄eω̃r , (2.6)

∂

∂t
(ρrω̃) +

∂

∂z
(ρrvzω̃) +

∂

∂r
(ρrvrω̃) +

∂

∂θ
(ρvθω̃)

=
∂

∂z

(
µ̄ωr

∂ω̃

∂z

)
+

∂

∂r

(
µ̄ωr

∂ω̃

∂r

)
+

∂

∂θ

(
µ̄ωr

∂ω̃

∂θ

)
+
αrω̃

k̄
P − βρreω̃r . (2.7)

where ρ, p, v = (vz, vr, vθ), et, ht = et+p/ρ, k, ω, denote the density, pressure,

velocity, total internal energy, total enthalpy of the mean motion, turbulent

kinetic energy and specific dissipation rate, respectively. For ideal gases the
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pressure is given by

p = (γ − 1) ρ

(
et −

v2
z

2
− v2

r

2
− v2

θ

2

)
,

where γ is the constant ratio of specific heats. The term A on the right-hand

side of Eq. (2.2) denotes the divergence of the work of total stresses ∇ · (rτ̂v)

and B the divergence of total heat flux vector ∇ · (rq). Specifically,

A =
∂

∂z
(r (τ̂zzvz + τ̂zrvr + τ̂zθvθ)) +

∂

∂r
(r (τ̂zrvz + τ̂rrvr + τ̂rθvθ)) +

∂

∂θ
(τ̂zθvz + τ̂rθvr + τ̂θθvθ) ,

B = −r∂qz
∂z
− ∂(rqr)

∂r
− ∂qθ
∂θ

,

where the turbulent stress tensor components are defined as:

τzz = 2µ̄t

(
∂vz
∂z
− 1

3
∇ · v

)
− 2

3
ρk,

τrr = 2µ̄t

(
∂vr
∂r
− 1

3
∇ · v

)
− 2

3
ρk,

τθθ = 2µ̄t

(
1

r

∂vθ
∂θ

+
vr
r
− 1

3
∇ · v

)
− 2

3
ρk,

τzr = µ̄t

(
∂vz
∂r

+
∂vr
∂z

)
,

τzθ = µ̄t

(
∂vθ
∂z

+
1

r

∂vz
∂θ

)
,

τrθ = µ̄t

(
∂vθ
∂r

+
1

r

∂vr
∂θ
− vθ

r

)
.

and the total stresses τ̂ are given by the sum of turbulent and viscous stresses:

τ̂ = τ +
µ

µt

(
τ +

2

3
ρkI

)
.

Moreover the heat flux components are given by

qz = λ
∂h

∂z
, qr = λ

∂h

∂r
, qθ =

λ

r

∂h

∂θ
,
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in which λ indicates the gas conductivity. It is worth pointing out the presence

of a source term in Eq.(2.2) related to the fact that the turbulent kinetic energy

is not included in total internal energy and total enthalpy. The production

term that models the energy exchange between mean and turbulent field can

be written as

P = µ̄t

{
2

[(
∂vz
∂z

)2

+

(
∂vr
∂r

)2

+
(vr
r

)2

+ (
1

r

∂vθ
∂θ

+
vr
r

)2

+

(
1

r

∂vz
∂θ

+
∂vθ
∂z

)2

+

(
∂vr
∂z

+
∂vz
∂r

)2

+

(
1

r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

)2

−

2

3
(∇ · v)2

}
− 2

3
ρk∇ · v,

in which:

∇ · v =
∂vz
∂z

+
∂vr
∂r

+
1

r

∂vθ
∂θ

+
vr
r
.

The turbulence model adopted is the k− ω Wilcox high-Reynolds number

turbulence model [95], where the turbulent eddy viscosity and the effective

viscosity coefficients of the turbulence equations are expressed as follows:

µt =
α∗ρk

ω
, µk = µ+ σ∗µt, µω = µ+ σµt, (2.8)

and α, α∗, β, β∗, σ, and σ∗ are the model closure coefficients. Following the

approach described in [96, 97], the model employs the variable ω̃ = ln (ω)

instead of ω to guarantee the positivity of ω and to obtain a smoother near

wall distribution. Moreover, the variables k and ω̃ are limited from below by

k = max (k, 0) , ω̃r = max (ω̃r0, ω̃) , (2.9)

where ω̃r0 defines the lower bound on ω̃ that ensures the positivity of normal

turbulent stresses and the fulfillment of the Schwarz inequality for shear tur-

bulent stresses. The turbulent eddy viscosity and effective eddy viscosity are

then computed by the following expressions:

µt = α∗ρke−ω̃r , µ̄k = µ+ σ∗µ̄t, µ̄ω = µ+ σµ̄t. (2.10)
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Note that a simplification of the 3D system of governing Eqs. (2.1)-(2.7) enable

to obtain a reduced system corresponding to a 2D system in axisymmetric

form in the two independent variables (z, r). This system takes into account a

possible tangential component of velocity varying along z and r, therefore may

be adopted instead of the full 3D system for axisymmetric flows in presence

of swirl.

2.1.2 Two dimensional RANS and k − ω equations for

axisymmetric flows

Here we consider the coupled set of RANS and k−ω equations in axisymmetric

coordinates [98] without swirl. These equations have been used to perform the

simulations of two different test-cases concerning turbulent internal flows, to

assess the predictive capabilities of the DG spatial discretization, as will be

explained in the next chapter.

The two-dimensional RANS and k−ω equations for compressible flows with

no-swirl component in conservative form can be derived from the equations

(2.1)-(2.7) by neglecting the derivatives and the component of the momentum

equations in θ direction:

∂

∂t
(ρr) +

∂

∂z
(ρrvz) +

∂

∂r
(ρrvr) = 0, (2.11)

∂

∂t
(ρret) +

∂

∂z
(ρrhtvz) +

∂

∂r
(ρrhtvr) = A+B − rP + β∗ρrk̄eω̃r , (2.12)

∂

∂t
(ρrvz) +

∂

∂z

[
r
(
p+ ρv2

z

)]
+

∂

∂r
(ρrvzvr) =

∂

∂z
(rτ̂zz) +

∂

∂r
(rτ̂zr) ,(2.13)

∂

∂t
(ρrvr) +

∂

∂z
(ρrvzvr) +

∂

∂r

[
r
(
p+ ρv2

r

)]
− p =

∂

∂z
(rτ̂zr) +

∂

∂r
(rτ̂rr) , (2.14)

∂

∂t
(ρrk) +

∂

∂z
(ρrvzk) +

∂

∂r
(ρrvzk) =

∂

∂z

(
µ̄kr

∂k

∂z

)
+

∂

∂r

(
µ̄kr

∂k

∂r

)
+

rP − β∗ρrk̄eω̃r , (2.15)

∂

∂t
(ρrω̃) +

∂

∂z
(ρrvzω̃) +

∂

∂r
(ρrvrω̃) =

∂

∂z

(
µ̄ωr

∂ω̃

∂z

)
+

∂

∂r

(
µ̄ωr

∂ω̃

∂r

)
+

αrω̃

k̄
P − βρreω̃r . (2.16)
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in which ρ, p, v = (vz, vr), et, ht = et+p/ρ denote the density, pressure, veloc-

ity, total internal energy and total enthalpy of the mean motion, respectively,

as seen in the previous paragraph. The pressure is given by

p = (γ − 1) ρ

(
et −

v2
z

2
− v2

r

2

)
,

where γ is the constant ratio of specific heats. The terms A and B on the

right-hand side of Eq. (2.12) become:

A = r
∂

∂z
(τ̂zzvz + τ̂zrvr) +

∂

∂r
(rτ̂zrvz + rτ̂rrvr) ,

B = −r∂qz
∂z
− ∂(rqr)

∂r
,

Whereas the production term can be written as:

P = µ̄t

{
2

[(
∂vz
∂z

)2

+

(
∂vr
∂r

)2

+
(vr
r

)2
]

+

(
∂vr
∂z

+
∂vz
∂r

)2

− 2

3
(∇ · v)2

}
−2

3
ρk∇·v,

with:

∇ · v =
∂vz
∂z

+
∂vr
∂r

+
vr
r
.

2.2 Euler equation

2.2.1 Two dimensional Euler equation

The compressible Euler equations describe the pure convection of flow quan-

tities in an inviscid fluid. In this work two dimensional Euler equation have

been used to perform two different test cases, the first one concern the con-

vection of an isentropic vortex to assess the performance of the high-order

time integration TIAS scheme, whereas the second one is a supersonic wedge,

used in this work to optimize the shock capturing strategy by the employ of

two optimization algorithms based on the gradient based approach coupled to

Automatic Differentiation.
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The two-dimensional Euler equations in cartesian coordinates are given by:

∂ρ

∂t
+
∂ρvx
∂x

+
∂ρvy
∂y

= 0, (2.17)

∂ρvx
∂t

+
∂ (ρv2

x + p)

∂x
+
∂ρvxvy
∂y

= 0, (2.18)

∂ρvy
∂t

+
∂ρvxvy
∂x

+
∂
(
ρv2

y + p
)

∂y
= 0, (2.19)

∂ρet
∂t

+
∂ρvxht
∂x

+
∂ρvyht
∂y

= 0. (2.20)

Here, vx and vy are the velocity components, in the x and y directions respec-

tively. We assume that the fluid satisfies the equation of state of a perfect gas,

then the pressure is given by p = (γ − 1) ρ
[
e−

(
v2
x + v2

y

)
/2
]
.

2.3 Non-dimensionalization

In this work we consider the governing equations in non-dimensionalized vari-

ables based on the reference length lr, density ρr, pressure pr and the gas

constant Rr. Therefore, the specific heat capacities at constant volume cv,

constant pressure cp and the molecular viscosity µ are given by

cv =
1

γ − 1
, cp =

γ

γ − 1
,

µ =

√
γMoT

α

Reo
,

where Mo and Reo are the Mach and Reynolds numbers at the reference con-

ditions, respectively, T is the non-dimensional temperature and α = 3/4. Ref-

erence values for the other quantities are derived from these by functional rela-

tionships. With this choice of non-dimensionalized variables, all the governing

equations remain unchanged, except that the variables are now understood to

be non-dimensionalized. Note that the reference conditions used in the numer-

ical computations of external flows are the freestream conditions, whereas, all

the ICE simulations are performed based on the inlet free stream conditions.

We choose the length of the flow domain and the size of the inlet diameter as
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reference lengths for the external and internal flow computations, respectively.

Therefore, since the reference velocity is of the same order of the speed of

sound, vr =
√

pr
ρr

, the reference time is of the order of the time required for

the acoustic wave to travel over the reference length, tr = lr/ρr.
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Chapter 3

Development of a high order

DG flow solver for ICE

applications

In this chapter we present aspects of the high-order DG flow solver developed

in this work.

We begin by presenting the DG discretization of the Euler and RANS k−ω

equations for two-dimensional and axisymmetric compressible flows. Subse-

quently, we describe the different ways of computing the numerical fluxes and

present the boundary conditions used in this work. Finally we describe the

algorithm for control of oscillations of high-order solutions around shocks. The

shock capturing strategy has evolved from the approach presented in [22]. A

gradient based optimization algorithm have been applied to control spurious

oscillations. The proposed optimization strategy and the Automatic Differen-

tiation (AD) tool for the evaluation of the sensitivities are discussed at the end

of this chapter within the sections ”Gradient based optimization” and ”Eval-

uation of the gradient”. The system of ordinary differential equations arising

from the DG space discretization can be solved using different integrators.

Here we focus our attention on the high-order implicit multi-stage, multi-step
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TIAS method for use in long time simulations of stiff and non-stiff unsteady

problems. Furthermore, the high-order accurate strong stability preserving

Runge Kutta schemes (SSPRK4,5), and the first-order accurate backward Eu-

ler scheme are presented, which have been used to compare the performance

of the sixth-order accurate TIAS scheme to the performance of a widely used

high-order explicit scheme and to compute steady state solutions of internal

ICE flows, respectively.
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3.1 Space discretization

3.1.1 The DG discretization of RANS k − ω equations

The RANS and k−ω turbulence model expressed in Eqs.(2.11− 2.16) can be

written in compact form as

∂(ru)

∂t
+∇ · (rFc (u)) +∇ · (rFv (u,∇u)) + rs (u,∇u) = 0, (3.1)

where u ∈ RM denotes the vector of the M conservative variables, s ∈ RM the

sum of turbulent and axisymmetric source term vectors, Fc,Fv ∈ RM ⊗ RN

denote the inviscid and viscous flux functions, respectively, and N is the space

dimension.

In order to construct the DG space discretization of the coupled set of

RANS and k − ω equations, we define Vh to be the space of discontinuous

vector-valued polynomials of degree n, on a subdivision τh of the domain Ω

into non-overlapping elements K such as Ωh =
⋃
K∈τh K. Thus, the solution

and test functions space is defined by

Vh = {vh ∈ L2 (Ωh) : vh|K ∈ Pn (K)∀K ∈ τh}, (3.2)

where Pn (K) is the space of polynomial functions of degree at most n in the

element K. Ωh is the discrete approximation of the domain, ∂Ωh the boundary,

Γ0
h the set of internal edges and Γh denotes the union of Γ0

h and ∂Ωh element

edges, E, such that Γh = Γ0
h

⋃
∂Ωh.

The DG formulation of the compressible RANS and k − ω Eq. (3.1) is

seeking for uh ∈ Vh such as, for an arbitrary test function vh ∈ Vh, the

following equation is satisfied:∫
Ωh

vh ·
∂uh
∂t

rdx−
∫

Ωh

∇vh : (Fc (uh)− Fv (uh,∇uh + R (JuhK0))) rdx

+

∫
Γ0
h

(
v−h − v+

h

)
·H
(
u+
h ,u

−
h ,n

)
rdσ−

∫
Γ0
h

JvhK : {Fv (uh,∇uh + ηeRe (JuhK)0)} rdσ
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+

∫
∂Ωh

(vh ⊗ n) :
(
H
(
u+
h ,u

b
h,n
)
− Fv (uh,∇uh + ηeRe (JuhK0))b

)
rdσ = 0

+

∫
Ωh

vh · s (uh,∇uh + R (JuhK0)) rdx = 0 (3.3)

Where (·)+ and (·)− denote the values of any quantity evaluated from inside

and outside faces of an element K, and n± are the unit normal vectors to the

shared edge E, such that n− = −n+, as shown in Fig. 3.1.

Figure 3.1: Two neighboring elements K− and K+ sharing edge E, including the two

opposite normal vectors n± to E.

The discretization in Eq.(3.3) is based on the BR2 scheme [96, 99] for the

approximation of the viscous part. According to BR2 the viscous flux Fv is

evaluated as

Fv|Ωh
= Fv (uh,∇uh + R (JuhK0)) ,

Fv|Γh
= Fv (uh,∇uh + ηeRe (JuhK)) ,

in which ηe is called ”penalty” parameter, and Re (JuhK) and R (JuhK0) stand

for the local and global lifting operators, respectively. The lower bound of the

ηe parameter correspond to the number of neighbours of the generic element

K, to guarantee the stability of the method. The local and global lifting

operators are given by:

∫
Ωh

vh ·Re (JuhK) dx = −
∫
E

{vTh } · JuhKdσ,

R (JuhK0) =
∑
E

Re (JuhK) ,
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with the jump J·K operator and the trace operator {(·)} defined as:

JuhK = u+
h ⊗ n+ + u−h ⊗ n−, {vh} =

v+
h + v−h

2
,

and acting component-wise when applied to a vector. Furthermore, H
(
u+
h ,u

−
h ,n

)
and H

(
u+
h ,u

b
h,n
)

are the numerical flux functions at the interior and bound-

ary faces, respectively. In this work all the computations have been performed

using the Godunov flux.

3.1.2 The DG discretization of the Euler equations

The DG formulation of the two-dimensional Euler equations (2.17− 2.20) can

be derived from Eq.(3.1) by canceling r from all integral contributions, ne-

glecting the viscous terms and considering the u and Fc vector components

directed along the coordinate axes (x, y). It becomes:

find uh ∈ Vh such that

∫
Ωh

vh ·
∂uh
∂t

dx−
∫

Ωh

∇vh : Fc (uh) dx +

∫
Γ0
h

(
v−h − v+

h

)
·H
(
u+
h ,u

−
h ,n

)
dσ

+

∫
∂Ωh

(vh ⊗ n) : H
(
u+
h ,u

b
h,n
)
dσ = 0 (3.4)

for all vh ∈ Vh.

3.2 Numerical Fluxes

Due to the discontinuous function approximation, the convective flux Fc (uh)

is not uniquely defined at element interfaces. Therefore Fc (uh) · n is re-

placed in the third and fourth term of Eq.(3.3) by a numerical flux func-

tion H
(
u+
h ,u

−
h ,n

)
, which depends on the internal interface state u+

h , on the

neighbouring element interface state u−h and on the unit normal vector to the

element interface, n. In order to guarantee the conservativeness property of
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the scheme H
(
u+
h ,u

−
h ,n

)
must be defined in a consistent manner:

H (uh,uh,n) = Fc (uh) · n, H (uh,vh,n) = −H (vh,uh,n)

Many numerical flux functions satisfy the above criteria, such as the Go-

dunov, Roe, Lax-Friedrichs, Engquist-Osher or Harlen-Lax-van Leer (HYLE)

flux, for example. The following numerical flux functions are present in the

code.

3.2.1 Godunov flux

The Godunov flux HG

(
u+
h ,u

−
h ,n

)
is defined by,

HG

(
u+
h ,u

−
h ,n

)
|∂K

= Fc (u∗h) · n ∀K ∈ τh,

where (u∗h) is the exact solution of a planar Riemann problem in the di-

rection normal to the interface [100]. The Godunov flux is very accurate but

computationally expensive. It can be used for all flow regimes.

3.2.2 Roe flux

The Roe flux HR

(
u+
h ,u

−
h ,n

)
corresponds to the approximate solution of the

Riemann problem. The Roe’s method is widely employed due to its high

accuracy in solving both boundary layers and shocks. It is defined by,

HR

(
u+,u−,n

)
|∂K

=
1

2

(
Fc

(
u+
)

+ Fc

(
u−
)
· n−A

(
u+,u−,n

)
∆u
)
∀K ∈ τh,

where Fc (u+) and Fc (u−) are the convective fluxes computed on each (the

interior and the exterior) side of the interface and A (u+,u−,n) ∆u is the

dissipation term with ∆u = u−−u+. The matrix |Ã| denotes the Roe matrix

or dissipation matrix and it is computed through the so-called Roe-average

variables [3] as

A
(
u+,u−,n

)
=

∣∣∣∣(∂Fc

∂u
· n
)∣∣∣∣ =

(
T|Λ|T−1

)
,
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where Λ = diag{λi} is the matrix of eigenvalues, with λi = {v · n,v · n,v ·

n,v ·n+ cs,v ·n− cs}, where cs stand for the speed of sound. The eigenvalues

are evaluated using Roe’s averaging, as well as the matrix of left, T−1, and

right, T, eigenvectors, respectively. We point out that T is the modal matrix

that diagonalizes the matrix A.

3.2.3 van Leer/Hanel flux

The van Leer/Hanel flux HH

(
u+
h ,u

−
h ,n

)
is of the flux splitting type. It is

given by,

HH

(
u+,u−,n

)
|∂K

= F+
c

(
u+
)

+ F−c
(
u−
)
∀K ∈ τh.

According to the modified form of the van Leer scheme [101] proposed by

Hanel et al. [102] for multidimensional problems [103], the flux function F±c (u)

is defined by:

F±c (u) = ρu±n


1

H

u

v

 + p±


0

0

nx

ny


with

u±n =

 ±1
4
cs (Mn ± 1)2 , |Mn| ≤ 1

1
2

(un + |un|) , |Mn| > 1,

p± =

 ±1
4
p (Mn ± 1)2 (2±Mn) , |Mn| ≤ 1

p
2un

(un + |un|) , |Mn| > 1,

where un = v · n, with nT = (nx, ny), cs denotes the speed of sound,

Mn = un/cs, is the Mach number normal to the interface, and H is the total

enthalpy. The van Leer/Hanel numerical flux is diffusive but stable. It can be

used for subsonic, transonic and supersonic flows.
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3.3 Boundary Conditions

When ∂K belongs to ∂Ω, boundary conditions are weakly prescribed through

the numerical fluxes. This can be easily achieved by properly defining bound-

ary states and their derivatives that enforce the appropriate boundary types

and conditions. Many boundary conditions are implemented in the solver. For

the RANS and Euler computations reported here, the following approaches are

used.

• Wall

In the case of a viscous flow, the relative velocity between the surface

and the fluid is assumed to be zero, vb = 0. A set of adiabatic boundary

condition is employed and the state ub has the same density and internal

energy of u+
h :

ub =
(
ρ+, 0, 0, ρE+, 0, ρ+ωw

)T
.

The prescribed smooth wall value ωw, is computed as proposed by Menter

in [104], and it is related to the first cell-height 2y1 according to the

relation

ωω =
6ν

β (αMy1)2

where ν = µ/ρ is the kinematic viscosity, αM = 1√
10

and β is a real

number depending on the polynomial degree. ∇ub is computed by pre-

scribing the internal gradient of all the primitive variables, except for

the gradient of the internal energy, which is set to zero normal to the

wall, ∇e · n = 0. In the case of inviscid flows, there is no friction force

and the velocity vector , vb = v+ − (v · n)+ n, ensures that the normal

velocity component is zero on the boundary, (v · n)b = 0.

• Symmetry

The symmetry boundary condition guarantee that the discretization on

37



the computational domain, called half domain, resembles the discretiza-

tion on the full domain, defined as the half domain plus its mirror with

respect to the symmetry boundary. The state ub has the opposite nor-

mal velocity component (v · n)b = (v · n)+ and the other variables are

prescribed based on the interior. In this way the non-permeability con-

dition is satisfied and the mass flux computed by the Riemann solver is

null. Also the gradient ∇ub is modified.

• Inflow / Outflow

At subsonic inflow boundaries ub is computed by imposing total en-

thalpy, entropy, flow angles and the Riemann invariant associated to the

outgoing characteristic. At subsonic outflow boundaries the pressure is

taken from the outflow and ub is computed by imposing the outgoing

Riemann invariants. At supersonic inflow ub is set to freestream val-

ues, ub = u∞ (Dirichelet boundary conditions), whereas for the super-

sonic outflow conditions, all the quantities are taken from the flow field,

ub = u+ (Neumann boundary conditions). For inflow/outflow bound-

aries the viscous boundary flux is computed by setting ∇ub equal to the

internal value, ∇ub = ∇u+.

3.4 Shock capturing

The key idea of the shock-capturing strategy adopted in this work consists

of adding to the DG discretized equations an artificial viscosity term in or-

der to control the high-order modes of the numerical solution within the ele-

ments, preserving as much as possible the spatial resolution of discontinuities.

The shock-capturing term is local and applied element by element, adding an

amount of artificial viscosity proportional to the inviscid residual. Thus, it is

almost negligible except that near flow discontinuities. The shock-capturing
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term added to Eqs.(3.3) or (3.4), reads:∑
KεTh

∫
K

εp(u
±
h ,uh)(∇huh · b)(∇hvh · b)dx

where the artificial viscosity coefficient εp and the pressure gradient vector

b(uh) are given by

εp(u
±
h ,uh) = Ch2

K

|sp(u±h ,uh)|+ |dp(uh)|
p(uh)

fp(uh), (3.5)

b(uh) =
∇hp(uh)

|∇hp(uh)|+ ε
,

respectively, and

sp(u
±
h ,uh) =

∑
i

∂p(uh)

∂uih
si(u

±
h )

,

dp(uh) =
∑
i

∂p(uh)

∂uih
(∇h · Fc(uh))i

.

The components si of the function s defined by the solution of the problem∫
K

vihs
i(u±h )dx =

∫
∂K

vih(Hi(u
i
h,u

−
h ,n)− F(uh) · n−)idx

are actually the jump of the interface in normal direction between the numeri-

cal and internal inviscid flux components. The scalar term dp(uh) is computed

as sum of products of the convective flux divergence of cell for the component

i and the partial derivative of the pressure with respect to the conservative

variable uih. The pressure sensor fp(uh) defined as

fp(uh) =
|∇hp(uh)|
p(uh)

(
hK
k

)
,

preserves the accuracy of the solution within smooth regions and allows

to use the same value of the user-defined parameter C for different degree
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of polynomial approximation. Finally, k is the polynomial degree and hK

represents the reference dimension of the generic element K, given by

hK = N
ΩK

SK

where ΩK and SK denote the volume and the surface of K.

3.5 Time integration

The DG space discretized equations (3.3) and (3.4), both result in the following

system of ordinary differential equations in time:

M
dU

dt
+ R (U) = 0, (3.6)

where M denotes the global mass matrix, and U and R are the global vectors

of degrees of freedom (dofs) and of residuals, respectively. Moreover, using a

set of orthonormal basis functions, the M matrix was reduced to the identity

matrix.

Explicit and accurate time integration of Eq. (3.6) are usually efficiently

performed by means of multi-stage schemes. It’s well known that, the tradi-

tional Runge-Kutta schemes are easy to implement and parallelize but, due

to the strong restriction to the size of the time step, for large-scale simula-

tions and especially for high-order solutions the convergence speed slows down

dramatically, resulting in inefficient time integration technique. Time-step

restrictions can be avoided by using implicit schemes.

Many implicit or semi-implicit multistage (Rosenbrock and ESDIRK), multi-

step (BDF) and multistage-multi-step (MEBDF) integration schemes have

been implemented in the code and presented elsewhere [91, 92]. Here, we

focus our attention on the five-step, fourth-stage, sixth-order accurate Two

implicit Advanced Step Point (TIAS) scheme that is in the process of be-

ing throughly tested and validated. Further two different time-integration

schemes are presented: SSPRK(5,4) and Backward-Euler. The former is the
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standard five-stage, fourth-order accurate Strong Stability Preserving Runge-

Kutta scheme [105]. The latter, used for steady state computations, is the

single-stage first-order accurate implicit Euler method [106].

3.5.1 TIAS Scheme

The Two Implicit Advanced Step Point (TIAS) method belongs to the class

of multi-step and multi-stage schemes, but with better stability properties

than EBDF and MEBDF [107, 108] methods. In fact, TIAS are A-stable

up to the sixth-order of accuracy, whereas EBDF or MEBDF are A-stable

up to order 4. The TIAS method was originally presented in [88, 89] and its

stability properties were investigated in detail in [109]. A first example of TIAS

schemes applied to the discontinuous Galerkin discretized Euler and Navier-

Stokes equations was presented by Nigro et al. in [90]. TIAS schemes involve

four stages: the first three are predictor stages based on a standard k − step

implicit Backward Differentiation Formulae (BDF) [110–112], the last one is a

corrector stage that uses an advanced implicit k− step formula of order k+ 1.

We point out that since four non-linear stages have to be solved per time step

the use of an efficient algorithm is required to make TIAS schemes competitive

respect to explicit and other implicit schemes. In this respect, the multi-stage

predictor-corrector structure of the method allows to obtain accurate starting

solutions of the Newton iterations and to efficiently implement the schemes in

a variable order/variable step algorithm, making TIAS of interest for complex

applications where residual and Jacobian evaluations usually dominated the

total computational cost. Assuming that approximate solutions Un+1 have

been calculated at tn+j with 0 ≤ j ≤ k − 1, the k − step TIAS algorithm of

order k + 1, advances the solution in time successively solving the following

four stages:

• Stage 1. Computation of the first predictor Un+k of order k with a

k − step BDF:
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M(Un+k +
k−1∑
j=0

α̂jUn+j) + ∆tβ̂kR
(
Un+k

)
= 0

• Stage 2. Computation of the second predictor Un+k+1 of order k with a

k − step BDF:

M(Un+k+1 + α̂k−1Un+k +
k−2∑
j=0

α̂jUn+j+1) + ∆tβ̂kR
(
Un+k+1

)
= 0

• Stage 3. Computation of the third predictor Un+k+2 of order k with a

k − step BDF:

M(Un+k+1 + α̂k−1Un+k+1 + α̂k−2Un+k +
k−3∑
j=0

α̂jUn+j+2)+

∆tβ̂kR
(
Un+k+2

)
= 0

• Stage 4. Computation of the corrected solution Un+k of order k + 1

using:

M(Un+k +
k−1∑
j=0

α̃jUn+j) + ∆t

[
β̃k+2R

(
Un+k+2

)
+

β̃k+1R
(
Un+k+1

)
+ βkR

(
Un+k

)
+
(
β̃k − βk

)
R (Un+k)

]
= 0.

α̂j and β̂k are the BDF coefficients of the first three stages and α̃j, β̃k+2, β̃k+1,

β̃k and βk are the TIAS coefficients in the last stage. We remark that β̃k+2

and βk are free coefficients determining the stability properties of the scheme,

while the other coefficients, expressed in terms of β̃k+2, are determined so that

the scheme has order k + 1. The residuals in stage 4 are computed once that

each of the previous three stages has been solved:

R
(
Un+k

)
= − M

∆tβ̂k
(Un+k +

k−1∑
j=0

α̂jUn+j)

R
(
Un+k+1

)
= − M

∆tβ̂k
(Un+k+1 + α̂k−1Un+k +

k−2∑
j=0

α̂jUn+j+1)

R
(
Un+k+2

)
= − M

∆tβ̂k
(Un+k+2 + α̂k−1Un+k+1 + α̂k−2Un+k +

k−3∑
j=0

α̂jUn+j+2).
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For further details concerning TIAS coefficients and the numerical tech-

niques used to improve the efficiency of the scheme please refer to [90].

3.5.2 SSPRK Scheme

Explicit and accurate solutions of the hyperbolic equations are also performed

by means of high-order accurate multi-stage Runge Kutta schemes. The DG

space discretized Euler equations (3.4) including the shock capturing terms,

results

M(U)
dU

dt
+ R(U) + D(U)(U) = 0, (3.7)

where the discretized shock-capturing term has been written as the product

of the block diagonal matrix D (U) times the vector of solution DOFs. Each

block of D couples the elemental U components and within the element such

blocks are equal to each other. The shock-capturing term is a diffusion-like

term, typically subject to wild variations even within one element and that can

attain large values in very few elements of the computational grid. Seeking to

avoid any further time step restriction, it is advisable to employ some degree

of implicitness for the time integration of this term. Therefore Eq.(3.7) is

rewritten as

M(U)
dU

dt
+ R(U) + D(U)(U + dU) = 0 (3.8)

and this leads to
dU

dt
+ R̃(U) = 0 (3.9)

where

R̃(U) = [M(U) + D(U)dt]−1[R(U) + D(U)U].

In multi-stage Runge-Kutta schemes the solution is advanced in time in several

stages and the residual is evaluated at intermediate states.

The solution of the semi-discrete system in Eq.(3.9) is advanced from time
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tn to time tn+1 applying the following expression:

U0 = Un,

Ui = U0 −∆t
i−1∑
k=0

ci,kR̃
(
Uk
)
, i = 1, 2, ..., s, (3.10)

Un+1 = Us,

where i is the stage counter and ci,k are the coefficients of the ith-stage. The

ci,k coefficients are related to the usual ai,k and bk Butcher coefficients by the

following expressions:

ai,k = ci−1,k−1 k = 1, ..., i− 1; i = 2, ..., s,

bk = cs,k−1 k = 1, ..., s.

The Runge-Kutta scheme employed in this work is the five stage, fourth-order

accurate Strong Stability Preserving Runge Kutta scheme: SSPRK(5,4). For

further details about the coefficients of the optimal SSPRK(5,4) scheme refer

to [105].

The local time step ∆t on each element K is computed taking into account

the CFL stability condition:

∆t =
σ

2p+ 1
· |K|

Λx
c + Λy

c
, (3.11)

where p denotes the polynomial degree of the spatial discretization [113]. More-

over σ is a factor introduced to take into account that SSP can be more effi-

cient than TVD Runge-Kutta schemes. Finally, the convective spectral radii

are defined as:

Λx
c = (|ū|+ c̄x) ∆Sx,

Λy
c = (|v̄|+ c̄y) ∆Sx.

The variables ∆Sx and ∆Sy are the projections of the elemental volume, |K|,

onto the x and y axis, respectively, whereas |ū|, c̄x and |v̄|, c̄y are obtained

using the mean values of the flow quantities on each element K.
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3.5.3 Implicit Backward Euler Scheme

An implicit time discretization is used to compute steady state solutions of the

RANS k − ω equations. The backward Euler time discretization of Eq.(3.6)

ca be written as [
M

∆t
+
∂Rn

∂U

]
∆Un = −Rn, (3.12)

where ∆Un = Un+1 − Un, ∂Rn

∂U
is the Jacobian matrix of the DG space

discretization and
[
M
∆t

+ ∂Rn

∂U

]
denotes the global system matrix. The matrix[

M
∆t

+ ∂Rn

∂U

]
can be regarded as an NK ×NK block sparse matrix where NK is

the number of elements in τh and the rank of each block isM×NK
dof , whereNK

dof

is the number of dofs for each of the M conservative variables in the generic

element K. The Jacobian matrix of the DG discretization has been computed

analytically without any approximation and, using very large time steps, the

method can therefore achieve quadratic convergence in the computation of

steady state solutions. In the limit ∆t → ∞ Eq. (3.12) is in reality identical

to one iteration of the Newton method applied to the steady discrete problem.

Finally, we underline that GMRES (Generalized Minimal RESidual) al-

gorithm [114] has been used to solve the linear systems resulting from the

implicit time integrations at each time step. For this purpose, we usually em-

ploy the block Jacobi method with one block per process, each of which is

solved with ILU(0), or the Additive Schwarz Method (ASM). In the code we

rely on PETSc, [115], for the linear solvers. PETSc is the software upon which

the code relies for the purpose of parallelization. The SPDM (Single Process

Multiple Data) strategy is based on grid partitioning accomplished by means

of the METIS package [116].
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3.6 Gradient based design optimization

Gradient based design optimization is the most widely used approach to opti-

mization, and also the oldest. This method is based on the evaluation of the

gradient of the objective function with respect to the design parameters. For

complex models and discretizations, gradient computation is often the bot-

tleneck in the optimization process. Different adjoint approaches have been

developed in order to compute the gradients.

In this work we focus our attention on the Automatic Differentiation (AD)

technique. In the next sections we describe the optimization algorithms used

in this work and we present AD more in details.

3.6.1 Overview of the optimization strategy

Mathematically speaking, an optimization problem consists in determining

the minimum or maximum value of a function subject to constrains on its

variables [71]. We use the following notation:

- α is the vector of variables, also called unknowns or design parameters;

- J (α) is the objective function that we want to minimize;

Beginning from the starting vector α0, the iterative optimization algorithm

generates a sequence of solutions αk, where k denotes the number of opti-

mization iterations, and terminate when either no more progress can be made

or when it find the minimum/maximum value of the objective function ap-

proximated with a sufficient level of accuracy. In this work, we employ the

line search method for moving from the current vector αk to a new one αk+1.

Line search method

Using the line search approach the optimization algorithm searches the new

values αk+1 with a lower value of J moving from αk along a chosen direction

pk. Each iteration of a line search method can be expressed as follows:
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αk+1 = αk + stepk pk,

where the positive scalar stepk is the distance from one point to another along

the search direction pk.

The step length can be calculated by solving, exactly (exact line search)

or approximately (inexact line search), the one-dimensional problem:

min J (αk + stepk pk) with stepk > 0.

The descent direction pk can be computed using various strategies, and

can be generally expressed as:

pk = B−1
k ∇Jk

in which Bk is a symmetric and non-singular matrix. Depending on the type

of the Bk matrix, we can distinguish different kind of methods. In the steepest

descent method Bk is the identity matrix I, in the Newton’s method Bk is

the Hessian ∇J(αk)
2, whereas in Quasi Newton methods Bk is an appropriate

approximation of the Hessian.

In this work we focus our attention on the inexact line search method for

the computation of the step length stepk and we use two different approaches

to compute the line search direction pk, the Steepest Descent method and the

BFGS Quasi-Newton method.

• Inexact line search

Inexact line search algorithms try out a sequence of candidate values for

stepk, accepting one of these values when certain conditions are satis-

fied. Several sophisticated line search algorithms are available, but the

simplest one is obtained imposing a reduction in J such that,

J (αk + stepk pk) < J(αk).

.

We use this simple criterion coupled to the steepest descent method, and

a more sophisticate criterion coupled with the BFGS. It is based on the

fulfillment of the following sufficient decrease condition:
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J (αk + stepk pk) ≤ J(αk) + c1stepk∇JTk pk

in which c1 stands for a constant c1 ∈ (0, 1), usually chosen to be quite

small, a typical value is c1 = 10−4 . In practice, enforcing the sufficient

decrease conditions, the reduction in J should be proportional to both

the step length stepk and the directional derivative ∇JTk pk .

• Steepest descent method

The key idea of steepest descent is moving from αk to αk+1, following

the direction for which J decreases most rapidly. In particular, steepest

descent method moves along:

pk = −∇Jk

The steepest descent direction −∇Jk is the most basic approach, and

the algorithm will eventually converge where the gradient is zero. The

main advantage of the steepest descent method is obviously its simplicity,

related to the fact that it requires only the calculation of the gradient

∇Jk, but not of the second derivatives. The main drawback is that a

dramatic slowdown of convergence may occur, especially in presence of

complex problems. For a more detailed discussion about the property

of the steepest descent method, concerning its rate of convergence an so

on, please refer to [71].

• Quasi Newton method - BFGS method

Quasi Newton methods, like steepest descent method, only require the

gradient of the objective function to be supplied at each iteration. Evalu-

ating the changes in gradients step by step, they construct a model based

on an approximation Bk of the Hessian ∇J(α)2, that is good enough to

produce significant efficiency improvement with respect to the steepest

descent method. The most popular quasi-Newton algorithm is the BFGS

method, developed by Broyden [117], Fletcher [45], Goldfarb [118], and

Shanno [119] in 1970, and well known for its robustness, self-correcting
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properties, as well as for its superlinear rate of convergence. For a com-

plete discussion about the BFGS method please refer to [71]. The search

direction with BFGS approach is computed as follows:

pk = H−1
k ∇Jk ,

Here H−1
k is a symmetric positive definite matrix that approximate the

inverse of the Hessian. H−1
k is updated at every iteration by means of:

Hk+1 = (I − ρkskyTk )Hk(I − ρkyksTk ) + ρksks
T
k ,

with sk = αk+1 −αk, yk = ∇Jk+1 −∇Jk,

and ρk = 1
yT
k sk

.

The inverse of the Hessian at the first iteration, H0, is approximated by

setting it to be the identity matrix, I.

3.6.2 Evaluation of the Gradient

The evaluation of the gradient of the objective function plays a key role in

order to achieve an efficient and accurate gradient based optimization. An

attractive alternative to finite difference (FD) method to perform differentia-

tion, is Automatic Differentiation AD [72,73]. AD is an upcoming technology

which provides software for automatic computation of derivatives of a general

function provided by the user. In this work we use AD through the Tapenade

code [93,94], while the FD approach is used to carry out the validation of the

sensitivity computations computed by AD.

Automatic Differentiation

The FD methods are very time-consuming and the choice of the perturbation

step greatly affect the accuracy in the calculation of derivatives. A very small

step leads to the problem of round-off errors, and a too large step will gives

an erroneous value of the derivative [120, 121]. Moreover, the grid topology

and a grid refinement could greatly affect the accuracy of the results [122].
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AD offers a way to overcome the drawbacks of the FD approach, allowing to

obtain accurate sensitivity computations in a more efficient way, especially in

presence of several design variables.

More specifically, the Automatic Differentiation is a technique that applies

symbolic differentiation to computer programs using the chain rule. Using

AD, an augmented computer code is generated from a given computer code,

which calculates the desired sensitivity derivatives. As a result, AD does not

incur in any truncation error, and the results are exact to machine accuracy.

The principles of AD are explained in detail in the work of Griewank [73].

There are two basic modes of automatic differentiation: the forward and

reverse modes. In this work we apply AD in forward mode, also known as

tangent mode. If we suppose that we want to differentiate a function J with

the input vector α and the output vector Y such that J(α) = Y with α ∈ Rn

and Y ∈ Rm , the forward mode gives the Jacobian vector product, computing

the directional derivative Ẏ = D · α̇ for each direction α̇, that is:

Ẏ =


Ẏ1

Ẏ2

...

Ẏm

 =



∂Y1
∂α1

∂Y1
∂α2

˙ ˙ ∂Y1
∂αn

∂Y2
∂α1

∂Y2
∂α2

˙ ˙ ∂Y2
∂αn

˙ ˙ ˙ ˙ ˙

∂Ym
∂α1

∂Ym
∂α2

˙ ˙ ∂Ym
∂αn


·


α̇1

α̇2

...

α̇n

 = D · α̇

It is evident that, the forward mode gives the derivatives only in one di-

rection α̇i, then we may compute the sensitivities of the cost function with

respect to a single design variable at once.

Ẏ =
(

∂Y1
∂αi

∂Y2
∂αi

˙ ˙ ∂Ym
∂αi

)
T α̇i

In fact, in case of m = 1, i.e. only scalar output, the forward mode returns
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only one single value Ẏ1 = ∂Y1
∂αi

which is the derivative with respect to only one

independent variable, or design variable, αi if one sets α̇i = 1. In presence of

n different design variables, the forward mode has to be executed n times in

order to compute all the n elements of the complete gradient vector. Therefore

the forward mode is suitable to evaluate sensitivities only for problems that

are characterized by a few number of design variables.

In this work differentiation of the compressible DG code has been carried

out by the AD tool TAPENADE 3.6. We point out that the differentiation of

the MPI calls involved in the evaluation of the sensitivities, has been carried

out by hand and that AD results have been validated by the finite difference

method.

3.7 Optimization of shock capturing parame-

ters

The gradient based algorithm applied to control spurious oscillations impacts

on the amount of artificial viscosity through two design parameters, α1 and α2,

locally adjusting the dissipative contributions based on i) the interface jumps

between the numerical and internal inviscid fluxes, sp, and ii) the convective

flux divergence within the elements, dp. The artificial viscosity coefficient εp

of Eq.(3.5) has been then modified as follows,

εp(u
±
h ,uh) = Ch2

k

α1|sp(u±h ,uh)|+ α2|dp(uh)|
p(uh)

fp(uh).

where the design parameters α1 and α2 are the weighting factors of the

|sp(u±h ,uh)| and |dp(uh)| terms, respectively.

The goal of the optimization procedure is to find the optimal values of α1

and α2 parameters, in order to minimize the scalar function J . For the com-

putation presented in this work J has been set equal to the L2 norm of the
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error between the exact and the numerical pressure field. The implemented

procedure employs two different algorithms, steepest descent method and the

BFGS method, for the computation of the line search pk, and the Automatic

Differentiation in forward mode, for the computation of the gradients. The

optimization algorithm is iterative. The sequence of operations in the opti-

mization procedure is given in Fig. 3.2.

To starts the iteration process initial guesses for the design parameters,

α∗j , and an initial step size, stepi, are given. Then the flow field and the cost

function with its gradient are computed. The gradient vector is evaluated

each component at time, by calling the AD in forward mode according to the

number of design variables, ndes. The values of ∂J
∂αj,k

are then used to compute

the search direction pk and to update αj,k and J . The next operation is

to verify that J (αj,k + stepkpk) satisfies the steepest descent/BFGS decrease

condition. If this condition is fulfilled the updated values of αj,k are used in

the next iteration step. Otherwise, a contraction of the step size, stepk, is

imposed, and the procedure restarts from the iteration k − 1. The process

continue until convergence of the minimum of J .
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Figure 3.2: scheme of the optimization process
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Chapter 4

Results

The purpose of this section is to present the results of two internal turbu-

lent flow computations, to evaluate the performance of the TIAS-DG scheme

considered in Section 3.5.1 and to validate the proposed high-order shock-

capturing scheme presented in Section 3.7.

The turbulent DG computations are compared to experiments in two steady

state flow rigs. The first configuration, called Dellenbacks configuration, is

solved to reproduce the first difficulty occurring in internal combustion en-

gines: the strong separation due to the increase of the diameter between the

intake ports and the cylinder. The second more complex configuration, a sim-

ple engine head geometry with one valve creating strong separations and a

strong pressure gradient, has been computed to simulate the flow entering the

cylinder.

A canonical test case for the evaluation of LES/DES capabilities of high-

order methods has been used to compare the efficiency of the sixth-order ac-

curate TIAS scheme with that of the fourth-order accurate SSPRK explicit

scheme.

Finally, a supersonic flow past a wedge has been computed to evaluate the

feasibility of the proposed gradient based design optimization approach for the

optimal control of spurious numerical oscillations.
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4.1 Internal turbulent flows

4.1.1 Axisymmetric sudden expansion

Description of the test-case

The axisymmetric sudden expansion analyzed [123] has an expansion ratio

approximately of 0.5. The flow conditions are without swirl with a Reynolds

number of Re = 30000, based on the diameter and on the flow quantities at

the inlet section of the duct.

This test-case aims at evaluating the potential of the DG approach for

internal turbulent flows in the presence of flow separation that occurs in many

industrial applications such as the intake systems of ICE, through nacelle in a

crosswind and in many others applications.

Although the experiments have been carried out using water, the computa-

tions have been performed with a compressible DG solver at the Mach number

of 0.05 and the same Reynolds number of the experiment. The low compress-

ibility of the present flow conditions has a very small impact on the accuracy of

the numerical results. The computations have been performed, starting from

an uniform flow field, with a sequence of polynomial approximations up to

the sixth order of accuracy. The computational domain starts two diameters

D upstream the abrupt expansion and it ends fifteen diameters downstream.

Owing to the axisymmetric nature of the problem, we use a two-dimensional

grid composed by 2400 quadrangular cells (Fig.4.1). The origin of the z axis

(r = 0) is located at the inflow of the duct and the change of section is placed

at z = 0.1. The diameters upstream and downstream of the expansion are

D = 0.05078m and D 2 = 0.0985m, respectively. In Fig.4.1 the considered

measurement stations based on the ratio z/D are shown.
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Figure 4.1: Computational grid for the abrupt axisymmetric expansion test-case, including

measurement stations.

Concerning the boundary conditions, at the inlet, the velocity profile has

been taken from the experimental measurements and then converted into an

entropy profile by assuming a constant static pressure and with a given stag-

nation enthalpy so that the implementation of the inlet boundary condition

has been carried out in the manner described in [124]. Moreover, the values

of turbulence intensity, It, and turbulent viscosity ratio, µt
µ

, assigned at the

inlet are It = 4% and µt
µ

= 50, respectively. Conversely, at the outlet bound-

ary, only the pressure has been specified in order to obtain a Mach number of

0.05 at the inlet, whereas entropy, total enthalpy and flow angles have been

extrapolated from the interior. At the wall a zero heat flux (adiabatic) no-slip

boundary condition has been imposed. The wall boundary condition ω̂w has

been set as proposed by Menter in [104]. The prescribed smooth wall value

ωw is related to the first cell-height 2y1 according to the relation

ωw =
6ν

β (αMy1)
,

where αM = 1√
10

and β is a real number depending on the polynomial degree.

To assess the performances of the proposed DG method in terms of accu-

racy we perform both a qualitative and quantitative analysis of the numerical

results. For the former analysis we present the contour plots of pressure in the

channel and the streamtraces at the recirculation region close to the abrupt
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expansion, for the latter we compare the numerical axial velocity profiles with

the Dellenbacks experimental data. Finally, the skin friction Cf distribution

along the wall is shown to determine the separation point.

Results

In this section we present the results obtained by the DG code and their

validation against the experimental data. Fig. 4.2 shows the behaviour of the

y+ for the first cell-centroid y1 at the sections given in Fig. 4.9 for different

polynomial degrees. The distance of the first grid line parallel to the wall of

the duct is equal to 2y1 = 0.0015. As expected the highest y+ values have

been computed at the inlet where a polynomial approximation dependency of

y+ is evident. Conversely, after the sudden expansion, the y+ values reduce

almost independently of the spatial discretization.
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Figure 4.2: y+ values for the first cell-centroid y1 as a function of different polynomial

degrees at the considered measurement stations.

The plots in Fig. 4.3 show the pressure contours for P1, P3 and P5 elements.

Such plots point out qualitatively the prediction capability of the DG method

for different polynomial approximations and how an increase in the polynomial

degree leads to a significant improvement in the characterization of the pressure

field.
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P1

P3

P5

Figure 4.3: Contours of pressure obtained using P1 (top row), P3 (middle row) and P5

(bottom row) elements.

The effects of a high-order discretization on the solution accuracy are more

evident in Fig. 4.4 that shows the streamlines close to the corner for different

polynomial degrees. Notice that the lower order P1 solution fails to capture

the presence of recirculating regions close to the corner of the wall, whereas the

P3 solution predicts the presence of two contra-rotating vortices. Moreover, a

further increase in the polynomial degree, from P3 to P5, only slightly affects

the streamlines pattern.

P1 P3 P5

Figure 4.4: Snapshots of streamtraces close to the corner of the wall, for P1 (left column),

P3 (middle column) and P5 (right column) elements.
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The quantitative assessment of the numerical results has been carried out

by comparing the axial velocities measured inside the duct along the sections

indicated in Fig. 4.9. The numerical and experimental comparison is reported

in Fig. 4.5 as a function of the radial distance from the axis, for different

polynomial degrees.

Figure 4.5: DG axial velocity profiles compared with the experimental data at the considered

measurement stations: z/D = 0.0 and z/D = 3.0 (top row), z/D = 5.0 and z/D = 8.0

(bottom row).

We observe that even using P1 elements the numerical profiles are in good

agreement with the experimental ones. Nevertheless, while the higher accuracy

only marginally affects the computation of the axial velocity at certain distance

from the axis, the higher degrees of approximation allow a more accurate

prediction of the flow close to the axis and to the wall, as shown in Fig. 4.6.
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Figure 4.6: DG axial velocity profiles compared with the experimental data at z/D = 5.0,

close-up near the axis (left column) and the wall (right column).

In Fig. 4.7 the skin friction Cf distribution along the wall of the duct is

shown for elements ranging from P1 to P5. The plot shows that P1 and P2 so-

lutions suffer from a lack of accuracy, whereas the higher order approximations

converge towards the same solution. This result suggests that the higher order

solutions resolve boundary layers and recirculating regions more accurately.

Finally, the reattachment length, approximately equal to 0.36m, is almost in-

dependent on the order of accuracy and slightly overestimated respect to the

experimental value of 0.3218m.
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Figure 4.7: Skin friction coefficient Cf along the wall of the duct, for P1, P2, P3, P4 and P5

elements.

60



4.1.2 Axisymmetric sudden expansion with a valve

Description of the test-case

This test-case aims at evaluating the potential of the DG approach for the

resolution of internal turbulent flows in the presence of a more complex geom-

etry, closer to an ICE configuration, through the comparison with experimental

data. The experimental analysis described in [125] was carried out by means

of a steady-flow rig, enabling fluid flow to be forced through the engine head,

while the valve lift was fixed to the selected values of 10 mm. Fig.4.8 shows

the engine head while Table 4.1 lists its main characteristics.

Figure 4.8: Detailed view of the geometry of the engine head

Description [mm]

Internal diameter, Di 17

External diameter, De 34

Cylinder diameter, D 120

Seat diameter, Ds 27.6

Downstream pipe length, Ld 960

Upstream pipe length, Lu 132

V alve lift, h 10

Inner seat diameter, Dv 40

Table 4.1: Engine head geometry

The axisymmetric sudden expansion with a valve has an expansion ratio

of 3.5 and it is the same analyzed by Thobois et al. in [126]. Although the
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experimental setup does not impose swirl, a small swirl appears in the velocity

measurements. We remark that unpublished measures obtained in addition to

those presented in the work of Graftieaux et al. [125], were graciously provided

by the authors. In particular it’s worth to point out that the experimental data

have been registered starting from a section placed at 90mm upstream the

valve. As for the Dellenback’s test-case, the flow conditions refer to a Reynolds

number of Re = 30000, based on the diameter and the flow quantities at the

outlet section of the engine head. The computational domain consists of an

intake duct fourteen inlet equivalent diameter long and the engine cylinder

with the valve. The cylinder has been extended up to 8D to ensure uniform

pressure at the exit section.

The computational grid has been obtained by Gmesh [127], and is com-

posed by 6309 quadrangular elements, with a local grid refinement close to

the valve and to the wall. The distance of the first grid line parallel to the

wall of the duct is equal to 2y1 = 0.0005mm. In the exhaust duct the con-

tinuous coarsening of the mesh significantly reduces the impact of spurious

reflections at the outlet section on the solution accuracy. Figure 4.9 shows the

computational grid and the four measurement stations used for the accuracy

analysis located at −90mm, −27mm, 20mm, 70mm from the cylinder head,

respectively.

Figure 4.9: Computational grid upstream and downstream the valve, including measurement

stations.

The axisymmetric computations have been performed at the inlet Mach-
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number of 0.2 and at the same Reynolds number and valve lift of the rig

experiments. At the inlet uniform profiles of total enthalpy and total entropy

have been specified, with the values of turbulence intensity, It, and turbulent

viscosity ratio, µt
µ

, of It = 0.5% and µt
µ

= 1, respectively. At the outlet

boundary only the pressure has been specified, to obtain a Mach number

of about 0.2 at the inlet. At the wall a zero heat flux (adiabatic) no-slip

boundary condition has been imposed, following the approach proposed by

Menter in [104].

Results

In this section we present some results used to evaluate the capability of the

proposed high-order DG solver in predicting the steady flow through an in-

take valve of a reciprocating engine and the resulting flow structures within

the cylinder. The accuracy of the converged solutions is analyzed both qualita-

tively and quantitatively. First, mean flow contours are shown for a qualitative

comparison. Then, for the quantitative analysis, the non-dimensional velocity

and turbulent kinetic energy distributions along different sections of the engine

head are compared with the corresponding experimental data.

The flow structure inside the engine head is shown in Fig.4.10 in terms

of the streamlines of the P1, P2, P3 and P4 solutions. In all cases the speed

flow around the intake valve forms a wall jet along the cylinder surface moving

towards the exit section. Major recirculation regions occur behind the valve

and in the corner; a small separation forms at the valve throat. While these

results seem to indicate that accuracy higher than second-order would not

be necessary, as very similar streamlines are obtained, a closer examination

of local features of the flow field suggests the opposite conclusion. In fact,

Fig.4.11, shows that using the higher order accurate solutions the small corner

vortex and the small separation regions that occur at the valve throat and

close to the engine head, respectively, are significantly better resolved than

those of lower-order.
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c

P1

P2

P3

P4

Figure 4.10: Streamlines along the intake valve and inside the cylinder, for P1 (first row),

P2 (second row), P3 (third row) and P4 (fourth row) elements.
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c

P1

P2

P3

P4

Figure 4.11: Magnified view of the streamlines close to the intake valve, for P1 (first row),

P2 (second row), P3 (third row) and P4 (fourth row) elements.
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P1 P2

P3 P4

Figure 4.12: contours of the axial velocity, u, close to the valve, for P1 (left column, first

row), P2 (right column, first row), P3 (left column, bottom row) and P4 (right column,

bottom row) elements.

P1 P2

P3 P4

Figure 4.13: contours of the turbulent kinetic energy, k, close to the valve, for P1 (left

column, first row), P2 (right column, first row), P3 (left column, bottom row) and P4 (right

column, bottom row) elements.
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In addition, as pointed out in Figs.4.12 and 4.13, P3 an P4 approximations

achieve a better resolution of the axial velocity and turbulent kinetic energy

contours.

In order to assess the accuracy of the numerical results, we compare the

non-dimensional mean, and fluctuating axial velocities, u and u′ =
√

2
3
k, re-

spectively, with the corresponding experimental values measured along the

sections reported in Fig.4.9.

The numerical and experimental velocity ratio u/ubulk are shown in Fig.4.14

as a function of the non-dimensional radial distance r/R for the four measure-

ment sections considered: z equal to −90, −27, 20 and 70 mm from the engine

head. We remark that the reference parameters R and ubulk are the radius of

the intake duct (or cylinder) and the ratio of the mass flow rate to the inlet

area, respectively. The figure shows the velocity profiles for second, third- and

fourth- order accurate solutions. The numerical results are generally in good

agreement with the experimental data regardless of the spatial discretization.

In particular, the annular flow near the exit of the intake duct and the jet

valve breakdown are correctly predicted. Furthermore, the wide recirculation

region behind the valve seems also to be well reproduced. However, there also

exist some discrepancies between numerical and experimental data. Figure

4.15 shows that, although the higher order solutions lead to better predictions

of both location and intensity of the peak in the valve jet, all computations

under-predict the mean velocity at z = 70mm close to the cylinder axis. This

means that the recirculation zone behind the valve is larger in the simula-

tions than that in the experiments. This discrepancy might be attributed to

the k − ω model that suffers from a lack of information on the turbulence

anisotropy, very important in predicting the correct mixing efficiency.
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z = -90 mm z = -27 mm z = 20 mm z = 70 mm

u/ubulk

Figure 4.14: Comparison of numerical and experimental axial velocity at -90mm, -27mm,

20mm, 70mm from the cylinder head using P1, P2, P3 solutions.

z = 20 mm z = 70 mm

Figure 4.15: Comparison of numerical and experimental axial velocity inside the combustion

chamber, at 20mm (right plot) and 70mm (left plot) from the cylinder head, using P1, P2

and P3 solutions.

Figure 4.16 shows that the axial velocity fluctuations accurate up to order

4 are also in reasonable agreement with the experimental data. Furthermore,

it can be observed that the highest degrees of approximation allows to obtain

fluctuation distributions that better match the measurements. In the jet region
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it appears that the k − ω model under-predicts the turbulent kinetic energy,

as more clearly illustrated in Fig.4.17.

z = -90 mm z = -27 mm z = 20 mm z = 70 mm

u’/ubulk

Figure 4.16: Comparison of numerical and experimental axial fluctuation velocity at -90mm,

-27mm, 20mm, 70mm from the cylinder head, using P1, P2 and P3 solutions.

z = 20 mm z = 70 mm

Figure 4.17: Comparison of numerical and experimental axial fluctuation velocity inside the

combustion chamber, at 20mm (right plot) and 70mm (left plot) from the cylinder head,

using P1, P2 and P3 solutions.

As pointed out by Parpais et al. [128] a possible explanation is the in-

teraction between the small scales generated by the jet and the large scales
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of the neighboring recirculation zones, which leads to non-equilibrium condi-

tions. Finally, at z = 70mm numerical results are in better agreement with

LDA data.

4.2 Convection of an isentropic vortex by uni-

form flow

4.2.1 Description of the test cases

The aim of this test-case is to asses the performance of the Two Implicit

Advanced Step Point (TIAS) method for long time simulations of a two di-

mensional isentropic vortex convected by uniform flow [129]. For the case

of the free stream Mach number M∞ = 0.5, the results here presented ex-

tend to the non-stiff case the analysis carried out by Nigro et al. [90], where

M∞ = 0.05. The performance of the fourt-stage, sixth-order accurate implicit

TIAS scheme, TIAS(4,6), has been compared with that of the SSPRK(5,4)

explicit scheme.

The nonlinear system of equations at each stage of TIAS scheme has been

solved by using the Newton scheme. The resulting linear systems have been

iteratively solved using the restarted generalized minimum residual (GMRES)

method with the block Jacobi preconditioning available in the PETSc library

[115]. A preliminary analysis of the results has shown that a linear-solver

normalized-residual tolerance of 10−2 allows efficient computations while a

Newton tolerance around one order less than the solution error does not effect

the accuracy of the results.

The efficiency of both the time integration schemes is presented in terms of

the L2 norm error of the u -velocity component versus the computational cost

expressed in work unit. The work unit is defined as the ratio of the wall clock

time of the computation to the corresponding time obtained using TauBench,

an unstructured grid benchmark whose kernel is derived from Tau code [130].
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All the computations have been performed in parallel, using from 16 to 144

cores, on the Eurora cluster at CINECA (Intel Xeon Eight-Core Sandy-Bridge

E5-2658 2.10 GHz processors). TAUBench on 1 core was 8.99433 s.

Initial solution

The test case analyzed is an isentropic convecting vortex for which the

exact solution is known. The vortex initially centered in (x0, y0) is convected

by a uniform flow with a freestream Mach number M∞. The resulting initial

flow variables are:

u = u∞ −
(u∞β) (y − y0)

R
e−r

2/2,

v =
(u∞β) (x− x0)

R
e−r

2/2, (4.1)

T = T∞ −
1

2

(γ − 1)

γ
(u∞β)2 e−r

2

,

with T∞ = 1, u∞ = M∞ ∗
√
γ, where γ = 1.4 is the ratio of specific

heats of the fluid, r =
√

(x− x0)2 + (y − y0)2 is the distance from the vor-

tex center, and R and β denotes the characteristic radius and the vortex

strength, respectively. The test-case is solved on a quadrangular domain

(x, y) =
[
0, .., Lx = 0.1

]
×
[
0, .., Ly = 0.1

]
and the vortex is initially placed at

(x0, y0) = (0.05, 0.05).

Another issue to be addressed using multi-step methods concerns the un-

known initial solutions needed to start the temporal integration. As the vortex

is convected without distortion by the mean flow, the additional starting solu-

tions have been obtained by translating the initial solution at the velocity set

by the freestream.

Test-case setup

The domain is discretized by three successively refined uniform cartesian

grids, composed by 16 × 16 (coarse), 32 × 32 (medium) and 64 × 64 (fine)

elements, respectively. Periodic boundary conditions are imposed at top and

bottom, and at left and right boundaries. Figure 4.18 shows the 16 × 16

computational grid.
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Figure 4.18: computational domain discretized with 16× 16 elements.

The unsteady simulations have been performed for different polynomial

degrees up to a final time corresponding to 50 period T of vortex revolution,

where the time period is defined as T = Lx/u∞. Concerning the computations

performed with SSPRK(5,4), due to the superior stability properties of this

scheme with respect to other Runge-Kutta schemes, the CFL number has

computed according to,

CFLRK-45 = 2 · 1

2p+ 1
.

where p denotes the degree of polynomial approximation.

4.2.2 Fast vortex

The ”fast” problem (M∞ = 0.5 , β = 1/5 , R = 0.005) has been computed on

the quadrangular grids by using polynomial approximations from P2 to P5. For

each polynomial degree a temporal refinement study has been performed in

order to determine the largest time-step value that ensures that the temporal

discretization error does not affect the solution accuracy, after 50 vortex period,

on a given mesh.
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TIAS (4,6) SSPRK (5,4)

Grid P2 P3 P4 P5 P2 P3 P4 P5

Coarse T/80 T/125 T/125 T/160 T/1680 T/2400 T/3055 T/3735

Medium T/80 T/200 T/250 T/320 T/3360 T/4800 T/6110 T/7470

Fine T/200 T/320 T/500 T/800 T/6720 T/9600 T/12220 −

Table 4.2: Time-step size for different discretization levels as a function of the vortex period

T .

The performance of the TIAS-DG and SSPRK-DG schemes are reported

in Fig.4.19, by plotting the L2-norm errors of the u-velocity component versus

1/
√
nDOFs (left plot), with nDOFs equal to the total number of degrees of

freedom per equation for the different spatial discretizations, and work units

(right plot).
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Figure 4.19: L2 error(u) as a function of 1/
√
nDOFs (left) and work units (right).

The left plot highlights that the convergence histories corresponding to

the SSPRK-DG and TIAS-DG solutions are almost indistinguishable, with P5

solutions achieving very low error levels. However a significant discrepancy

between the time step sizes of the TIAS-DG scheme and the explicit scheme

can be observed in Table 4.2. For instance, to reach an accuracy level of

order of 10−2, the implicit time-step size was about 20 times bigger than the

explicit one, using P2 elements, while for an accuracy level of order of 10−6
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this ratio increased to 30 with P3 computations. However, since the TIAS

scheme consists of a 4 non-linear systems at each time-step, the computational

efficiency of the schemes needs to be discussed. The right plot of Fig.4.19

shows that the schemes have a similar asymptotic behaviour, but SSPRK-DG

outperforms TIAS-DG. In fact, to achieve an accuracy level of order 10−2 the

SSPRK-DG scheme is about 2 times faster than TIAS-DG, whereas for an

accuracy level of 10−6 this ratio increases to 2.2. These results allow to draw

the opposite conclusion to that of Nigro et al. [90], who found that TIAS-DG

outperforms SSPRK-DG when M∞ = 0.05.
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4.3 Shocked flows

4.3.1 Two-dimensional supersonic wedge

Description of the test-case

This test case aims at evaluating the feasibility of gradient-based methods

for optimal control of oscillations to a low dissipative high-order DG scheme.

The exact weak solution to the two-dimensional supersonic wedge has been

computed using the shock relations presented in the text written by Shapiro

[131]. Columns State 1 and State 2 of Table 4.3 show the known and computed

flow conditions upstream and downstream the oblique shock, respectively, for

a wedge angle of 15 degrees, that corresponds to the incident shock angle of

32.24 degrees.

State 1 State 2

M 3.0 2.255

ρ 1.0 2.032

p 1.0 2.821

Table 4.3: Flow conditions upstream (state 1) and downstream (state 2) the oblique shock

The computational grid is composed by 1178 quadrangular elements, with

the grid lines aligned with the wedge, see Fig. 4.20.

Figure 4.20: Computational domain for the two dimensional supersonic wedge.
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On the wall surface (c) of the wedge a zero heat flux slip boundary condi-

tions is imposed. For the other boundaries entropy and stagnation enthalpy

are specified at inflow (a), pressure at outflow (b) and symmetry at the y = 0

boundary (d).

Effects of polynomial degree and shock capturing parameter on the

solution accuracy

Figure 4.21 shows the pressure contours of P1, P3 and P5 solutions, obtained

using a shock capturing coefficient csc = 0.1. The figure shows that the higher

the order of accuracy, the more the shock front is better resolved and less

smeared.

P1 P3 P5

Figure 4.21: Pressure contours for P1 (left plot), P3 (middle plot) and P5 elements (right

plot), using csc = 0.1.

A more quantitative comparison is reported in Fig. 4.22, where the pressure

distributions along the y = 0.3 line and exact solutions are compared. It can be

noted that an increase of the polynomial degree strongly affects the accuracy

of the solution close to the shock location. As can be appreciated from Fig.

4.23 pre- and post-oscillations are relatively small for P3 and P5 solutions,

whilst the P1 solution exhibits significant undershoots and overshoots.
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Figure 4.22: Comparison between exact and P1, P3 and P5 solutions, along the y = 0.3 line,

using csc = 0.1.

Figure 4.23: Undershoots and overshoots of the pressure upstream (left plot) and down-

stream (right plot) the shock. Exact solution versus approximate solutions computed along

the y = 0.3 line using P1, P3 and P5 elements, with csc = 0.1.

The next two figures compare P5 solutions for increasingly higher shock

capturing coefficients. Figures 4.24 and 4.25 show that oscillations, but also

the resolution of the discontinuity, reduce increasing the csc values. As a result,

in the choice of the more appropriate value of the shock capturing coefficient we

77



face a trade-off between sub-cell resolution of the shock and magnitude of pre-

and post-shock oscillations. This motivated the effort to develop numerical

strategies in order to automatically optimize the shock capturing parameters.

Figure 4.24: Comparison between exact and P5 solution along the y = 0.3 line, for csc = 0.1

and 2.

Figure 4.25: Undershoot and overshoot of pressure upstream (left plot) and downstream

the shock (right plot). Exact solution versus P5 solutions computed along the y = 0.3 line

using csc 0.1 and 2.
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Assessment of the optimization strategy

The optimization procedure implemented in this work aims to find the optimal

value of some shock capturing parameters by minimizing a specific cost func-

tion. More specifically, the design parameters α1 and α2 have been introduced

in the shock capturing term as follows,

εp(u
±
h ,uh) = Ch2

k

α1|sp(u±h ,uh)|+ α2|dp(uh)|
p(uh)

fp(uh).

The cost function J is the L2 norm of the error between the exact and the

numerical pressure field,

J = ‖Error (p) ‖L2(Ω) =

[∫
Ω

(p− pexact)2
dΩ∫

Ω
dΩ

]1/2

=

[∑Ne

i=1

∫
Ki

(p− pexact)2
i dx∑Ne

i=1|Ki|

]1/2

,

where the sum is performed on all elements and the element integral is com-

puted with Gauss quadrature formula of suitable orders of accuracy. Concern-

ing the algorithms employed to solve the proposed optimization model, the

steepest descent method and the BFGS method are used. DG computations

starting from different initial step size are performed for different csc values

and using linear (P1), quadratic (P2) and cubic elements (P3). For all the sim-

ulations the optimization process starts with the initial values of the design

parameters, α1 and α2, equal to 1.

Verification of the inviscid gradients

The optimization strategy is based on the evaluation of the gradient by

means of Automatic Differentiation. The derivation has been carried out in

forward −mode using the Tapenade code [93, 94]. The AD generated sensi-

tivities computations have been validated against finite differences, using the

following FD model form:

(
∂J

∂αi

)
FD

=
J (αi − δαi)− J (αi)

δαi
.
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Tables 4.4 and 4.5 compare FD and AD sensitivities for different polyno-

mial degrees. Both the table show that AD sensitivity values are in perfect

agreement with the ones computed using finite difference. We remark that FD

results have been obtained with a perturbation step of δα = 10−5.

Polynomial degree ∂J
∂α1

AD
∂J
∂α1

FD

1 7.8145451725E-004 7.8145324101E-004

2 5.5691441904E-004 5.5691448259E-004

3 1.0050376617E-003 1.0050398201E-003

4 1.0676063008E-003 1.0676088666E-003

5 1.5449287081E-003 1.5449299361E-003

Table 4.4: Sensitivity of the cost function with respect to α1, computed using finite difference

and automatic differentiation methods as a function of the polynomial degree.

Polynomial degree ∂J
∂α2

AD
∂J
∂α2

FD

1 1.2913726697E-003 1.2913716124E-003

2 1.7145549053E-003 1.7145525846E-003

3 1.6175297560E-003 1.6175293591E-003

4 1.1714025128E-003 1.1714045921E-003

5 1.6829608295E-003 1.6829623237E-003

Table 4.5: Sensitivity of the cost function with respect to α2, computed using finite difference

and automatic differentiation methods as a function of the polynomial degree.

The selection of the perturbation step size is one of the problems associated

with finite differencing as it is difficult to make this choice a priori. Therefore,

the perturbation step size effect has been first investigated. Table 4.6 and Fig.

4.26 show the difference between AD and FD sensitivities

Erri =

∣∣∣∣( ∂J∂αi
)
FD

−
(
∂J

∂αi

)
AD

∣∣∣∣
for different perturbation step sizes, using P1 elements. It can be seen that

accurate finite difference approximations are computed for δα = 10−5, whereas

large Erri values occur for both smaller and larger perturbation magnitudes.
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For small perturbation sizes cancellation error is dominant whereas truncation

error becomes dominant at large δα.

δα Err1 Err2

1.00E-002 7.7940745778E-001 1.2890216182E+000

1.00E-003 7.7351319236E-002 1.2783531067E-001

1.00E-004 7.0329638410E-003 1.1622248178E-002

1.00E-005 1.2762475210E-009 1.0573054700E-009

1.00E-006 7.0330907991E-004 1.1622354105E-003

1.00E-007 7.7363996408E-004 1.2784589371E-003

Table 4.6: Differences between FD and AD sensitivities for several perturbation steps, using

P1 elements and csc = 0.1.

δα δα

Figure 4.26: Behaviour of the differences between FD and AD sensitivities as a function of

the perturbation step δα, for csc = 0.1 and P1 elements (left plot) ,magnified view (right

plot)
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Steepest descent method computations

Here we present the results obtained using the steepest descent method.

The updating of each design variable during the iterative optimization process

is based on the following algorithm:

if (Jiopt+1 < J iopt)

αi,iopt+1 = αi,iopt − stepiopt
(
∂J
∂αi

)
iopt

, i = 1, 2

else

stepiopt = stepiopt/1.5,

iopt = iopt− 1 and recompute all.

We note that the variation of the step length, stepiopt, during an iteration

is based on the successive reduction method, with a contraction coefficient of

1.5.

• P1 Solutions

Figure 4.27 compares the histories of the design variables, cost function

and sensitivities versus the number of iteration cycles iopt, for different

csc values and using the initial step size of 100. The plots show that the

shock capturing coefficient csc strongly affects the convergence of the op-

timization cycles. It can be noticed that cost functions and sensitivities

converge to their minimum values for csc ≤ 0.05, whereas the behaviours

of all the optimization quantities stagnate after 8 iteration cycles when

csc = 0.1. There is evidence also that the convergence slow-down as csc

reduces. Finally, we see that the design parameters do not achieve their

optimal values, even for the lower csc coefficients.
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Figure 4.27: Behaviour of design variables (left column), cost function (middle

column), and sensitivities (right column) versus the number of optimization

cycles, using P1 elements and an initial step size of 100. csc = 0.1 (top row),

csc = 0.05 (middle row) and csc = 0.01 (bottom row).

• P2 Solutions

Although several tests on different combinations of the optimization pa-

rameters (csc, initial step size) have been carried out, we observed that

P2 computations blow-up during the optimization cycles. In Fig. 4.28

we present the results for csc = 0.1, 0.05 and using an initial step size of

100, before the blow-up of the solutions occurred.
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Figure 4.28: Behaviour of design variables (left column), cost function (middle

column), and sensitivities (right column) versus the number of optimization

cycles, using P2 elements and an initial step size of 100. csc = 0.1 (top row)

and csc = 0.05 (bottom row).

The plots confirm the effect of the shock capturing coefficient on the

convergence process shown above for P1 computations. We observe the

stagnation of the optimization quantities for csc = 0.1 and a more reg-

ular convergence behaviour, without stagnation, when csc = 0.05. Fi-

nally, differently from P1 results, we remark that the α2 design variables

achieves unphysical negative values in both testing conditions.

• P3 Solutions

In Fig.4.29 we present the results obtained under the same testing con-

ditions as shown in Fig.4.28. The graphs in the figure shows a lack of

convergence and more irregular behaviours of cost function and sensi-

tivities during the optimization process, as compared with P1 and P2

results. We remark that in both cases the iterative process completed

without the occurrence of blow-up, achieving very small step sizes.
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Figure 4.29: Behaviour of design variables (left column), cost function (middle

column), and sensitivities (right column) versus the number of optimization

cycles, using P3 elements and an initial step size of 100. csc = 0.1 (top row)

and csc = 0.05 (bottom row).

In order to overcome the convergence problems during the iterative op-

timization process, the Quasi-Newton BFGS method has been applied,

and the results are discussed below.

BFGS method computations

Here the results obtained by applying the BFGS Quasi-Newton method to the

proposed optimization model are given. The updating of each design variables

during the optimization process is based on the fulfillment of the following

condition:

if Jiopt+1 ≤ J iopt + c1stepiopt∇JTioptpiopt

αi,iopt+1 = αi,iopt + stepioptpiopt, i = 1, 2

else

stepiopt = stepiopt/1.5,

iopt = iopt− 1 and recompute all.
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As before, we employ the successive reduction method for the updating

of the step size during the iterations, with a contraction coefficient of 1.5.

Concerning the evaluation of the search directions piopt and for further de-

tails about the BFGS method please refer to the section 3.6.1 of the previous

chapter. We remark that using the BFGS method the iterative optimization

process required initial step size much smaller than those that can be imposed

by using the steepest descent method.

• P1 Solutions

The Figs. 4.30 shows results of the simulations carried out for csc = 0.01

and using initial step sizes of 1 and 0.01, respectively.

Figure 4.30: Behaviour of design variables (left column), cost function (middle

column), and sensitivities (right column) versus the number of optimization

cycles, using P1 elements and csc = 0.01. stepi = 1 (top row), stepi = 0.01

(bottom row).

The plots show that cost function and sensitivities converges after 5 op-

timization cycles, when the initial step size is taken equal to 1. Further-

more, in contrast to the corresponding second-order accurate steepest
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descent computations, also the design variables achieve their optimal

values: α1,opt = 0.687 and α2,opt = 0.656. We remark that this values

are in good agreement with those computed using the steepest descent

method when csc = 0.01. The oscillations in the convergence history of

sensitivities disappear when the initial step size is taken equal to 0.01.

Furthermore, reducing the initial step size, a higher number of iteration

cycles is required for achieving the convergence of all the optimization

quantities. Finally, we observe that whereas the optimal value of J is in

perfect agreement with the one obtained for stepi = 1, there is a signif-

icant discrepancies between the optimal values of the design variables.

This mismatch suggests the presence of a local minimum.

• P2 Solutions

Overall the plots of Fig. 4.31 display the lack of convergence shown by

the corresponding steepest descent P2 computations. In particular, simu-

lation diverged after 7 iterations cycles when csc = 0.008 and stepi = 1.

Furthermore, even for csc = 0.01 and stepi = 0.01, the optimization

quantities do not achieved their optimal values, although during the it-

erative process no blow-up has occurred.

Finally, we note that, unlike the steepest descent computations, in the

BFGS P2 simulations, the α2 design variable is positive during all the

iterations.
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Figure 4.31: Behaviour of design variables (left column), cost function (middle

column), and sensitivities (right column) versus the number of optimization

cycles, using P2 elements. stepi = 1 and csc = 0.008 (top row), stepi = 0.01

and csc = 0.01 (bottom row).

• P3 Solutions

A dramatic improvement with respect to the steepest descent results is

evident from the plots of Fig. 4.32.

Figure 4.32: Behaviour of design variables (left column), cost function (middle

column), and sensitivities (right column) versus the number of optimization

cycles, using P3 elements, stepi = 1, csc = 0.01.

The BFGS method was successful in minimizing the cost function. The

optimization is converged in about 7 iterations for stepi = 1 and csc =

88



0.01. Furthermore, it can be seen, from the plot, that optimal values

of the design variables have been determined (α1,opt = 1.521, α2,opt =

4.115). Finally, unlike the steepest descent method where very irregu-

lar sensitivity behaviours were observed, in the BFGS simulations the

gradients of the design variables converge without oscillations.
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Conclusions

In this work a DG discretization, based on the method proposed by Bassi et

al. [96], has been proposed for the numerical solution of internal combustion

engine (ICE) flows. The capabilities and robustness of an implicit DG method

have been assessed by solving the RANS and k−ω turbulence model equations

on classical ICE test cases. This approach has proved to be very well suited

to deal with the stiffness induced by the stretched grids, low Mach number

flow regions and by highly nonlinear governing equations, typical of turbulent

flow computations. Afterwards, an implicit approach to higher-order time

integration, coupled with high-order DG discretizations, has been evaluated

further for efficient long time simulations of unsteady flows. In this work we

focused on the high-order two implicit advanced step-point (TIAS) method.

The performance of the sixth-order accurate TIAS scheme was investigated on

a classical test-case for the evaluation of LES/DES capabilities of high-order

methods, with the result of an higher efficiency of the five-stage, fourth-order

accurate SSPRK explicit scheme with respect to the TIAS scheme for non-stiff

testing conditions, whereas TIAS scheme was proved to outperform SSPRK

in the stiff case by Nigro et al. [90]. As a second contribution to a robust

and accurate flow solver for ICE applications a non-standard optimization

approach to control spurious oscillations in simulation of transonic flows has

been presented and its feasibility demonstrated by means of different strategies

and numerical examples.

The main drawback of our axisymmetric ICE flow computations is related

to the isotropic, scalar description of the turbulence. This motivates the future
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effort at implementing advanced turbulence modeling capabilities, such as the

hybrid RANS-LES approach. Furthermore, for turbulent flows at not-too-high

Reynolds number, typical of ICE applications, the ILES approach, which looks

quite simple and suitable for high-order DG discretization, will be numerically

evaluated using high-order accurate implicit schemes to advance in time the

solution of the DG space-discretized ILES system. On the side of shock cap-

turing, the proposed gradient based approach, using automatic differentiation

for the accurate evaluation of sensitivity, causes iterative convergence to the

minimum of the cost function to stall/blow-up using P2 elements. The reasons

for such convergence deterioration are currently under investigation. Ongoing

work is devoted to a thorough validation of the proposed high-order accurate

shock-capturing DG scheme for inviscid computations of reference test cases

available in the literature.
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