
• ++ 

UNIVERSITA' DELLA CALABRIA 

Dipartimento di Ingegneria Informatica, Modelli stica, Elettronica e Sistemistica (DIMES) 

Scuola di Dottorato 

Ingegneria dei Sistemi, Informatica, Matematica e Ricerca Operativa (ISIMR) 

Indirizzo 

Ingegneria dei Sistemi e Informatica 

La presente tesi è cofinanziata con il sostegno def/a Commissione Europea, Fondo Sociale Europeo e della Regione 

Calabria. L'autore è il solo resp onsabile di quesla tes i e la Commissione Europea e la Regione Calabria declinano 

ogni responsabilità sufi 'uso che potrà essere.fallo delle informazioni in essa contenute 

CICLO 

XXVII 

MODEL PREDICTIVE CONTROL STRATEGIES FOR 

Direttore: 

Supervisori: 

UNMANNED VEHICLES 

Settore Scientifico Disciplinare ING-INF 04 

Ch.mo Prof. Sergio Gre~ 

Firma s;:;_~ l...!J /J.J..__,..Q 

Ch.mo Prof. Giuseppe Franzè 

Firma 
~~~~~~~~~~ 

Ch.mo ~ P etr 

Firma Ò IL 

Dottorando: Dott. Walter Lucia 

Firma \rJaQt !{,~~ 
'i 





Abstract

This dissertation analyzes the obstacle avoidance motion planning problem for
ground and aerial vehicles operating in uncertain environments. By resorting to set-
theoretic and predictive schemes based ideas, receding horizon control algorithms
are proposed as an effective solution for the obstacle avoidance problem.

Two obstacle scenarios with different levels of uncertainty are first considered
for ground vehicles and different vehicle model descriptions are taken into account.
In both cases, control architectures exploiting adequate inner ellipsoidal approxima-
tions of the exact one-step controllable sets are proposed in order to derive adequate
receding horizon control strategies. The main merit of these set-theoretic approaches
relies on the fact that constraints fulfilment and uniformly ultimate boundlessness
can be proved regardless of any obstacle scenario occurrences.

Then, an hybrid control strategy based on the Command Governor (CG) frame-
work is proposed for aerial vehicles. In particular, the CG scheme is extended in
order to take into account non-convex and time-varying constraints typically arising
in path planning obstacle avoidance problems. Experimental results on the quadrotor
Qball-X4 show applicability and effectiveness of the proposed approach.

Finally, all the proposed control architecture share as common and relevant de-
nominator the fact that the needed computations are move into the off-line phase so
rendering the on-line burden modest and therefore affordable in real-time contests.

Abstract (Italiano)

Questa tesi affronta il problema del controllo e della pianificazione del moto di ve-
icoli autonomi terrestri e aerei operanti in ambienti incerti. In particolare vengono
presentate diverse strategie di controllo ad orizonte recedente basate sui principi delle
tecniche di controllo predittive e “set-theoretic”.

Nella prima parte è affrontato il problema del controllo dei veicoli terrestri dove
sono considerati due diversi livelli di incertezza dello spazio di lavoro. Per entrambi i
casi vengono sviluppate delle opportune strategie di controllo ad orizonte recedente
sfruttando delle approssimazioni ellissoidali degli insiemi di controllabilità ad un
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passo. Il principale merito di questi approcci è dato dal fatto che il soddisfacimento
dei vincoli e l’“uniformly ultimate boundlessnes” possono essere garantiti a-priori
qualsiasi sia l’evoluzione dello scenario di ostacolo.

Nella seconda parte è affrontato il problema del controllo dei veicoli in volo
utilizzando una strategia di controllo ibrida basata sul noto schema del gestore del
riferimento (Command Governor (CG)). In particolare l’architettura del CG è estesa
in modo che essa sia in grado di tenere in considerazione i tipici vincoli non convessi
e tempo varianti dei problemi di controllo in ambienti con ostacoli. I risultati sper-
imentatali ottenuti con il quadrotore Qball-X4 mostrano l’applicabilità e l’efficacia
dell’approccio proposto.

Infine, tutte le strategie presentate hanno come comune denominatore il fatto che
la maggior parte delle computazioni richieste si svolgono nella fase fuori linea cosı̀
da rendere la complessità del calcolo in linea modesto e sostenibile per applicazioni
in tempo reale.
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1

Introduction

1.1 Control of unmanned vehicles

In recent years, autonomous vehicles (UVs) have become increasingly important
tools in various civil and military operations: border interdiction prevention [50,80],
search and rescue mission [103], wild fire surveillance [24], monitoring over nuclear
reactors [106], power plants inspection [20], agricultural services, mapping and pho-
tographing [56], battle damage assessment [51] and so on. A wide variety of robotic
vehicles is currently in use or being developed, ranging from unmanned fixed-wing
aircraft, helicopters, blimps and hovercraft to ground and planetary rovers, earth-
orbiting spacecraft and deep-space probes. Although the level of autonomy differs
among the types of vehicles and the missions they are used for, many such systems
require no or minor human control from a base or ground station. The primary rea-
son for deploying autonomous vehicles is often a reduction in cost or elimination of
human risk associated with a particular mission: unmanned systems do not require
operator safety and life support systems, and can therefore be made smaller and
cheaper than their manned counterparts. Furthermore, autonomous vehicles allow
operations in remote or harsh environments and often possess the capability to oper-
ate continuously or to complete missions lasting longer w.r.t the timespan capability
of a manned system counterpart.

The problem of motion planning and control of UVs deals with finding appro-
priate strategies such that the vehicle motion satisfies the requirements of a specified
task [70]. Avoidance of collisions with obstacles is a key component of the a nav-
igation where the primary objective is to reach a target through the possibly time-
varying and unknown obstacle-free part of the environment. To cope with this issue,
two aspects must be taken into account: the generation of a safe trajectory capable
in principle to reach the target by avoiding obstacle occurrences along the path and
finding a control action whose the aim is to drive “as close as possible” the UV to
the planned path under the satisfaction of the constraints arising from the specific
vehicle dynamics [84].

Despite extensive research, this problem still represents a relevant challenge be-
cause of unavoidable uncertainties in the operating scenario, inherent deficiencies in
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perception abilities and computational capabilities of the robot and restrictions on the
vehicle mobility due to nonholonomic kinematic constraints, limited control ranges
and under-actuations and so on, see e.g. [60]. In particular, the nonholonomic kine-
matic constraints arising during the motion of wheeled vehicles lead to quite chal-
lenging control problem [30], [35]. Moreover, the non-existence of pure-state feed-
backs for the asymptotic stabilization of fixed configurations, proved in [16], has had
the effect of increasing the research on the following topics: i) fixed point asymptotic
stabilization [100]; ii) asymptotic stabilization of feasible trajectories [52].

1.2 Literature overview

1.2.1 Mere path planning methods

First attempts proposed in literature share as a common denominator a partial (not
complete) management of the path following obstacle avoidance problem. The con-
trol unit design is either left completely out (e.g. [110], [111]) or it is obtained by
considering elementary vehicle model descriptions (see [96]).

Most of these early methods uses simplified kinematic vehicle models, which
may lead to conservative results. As an example, the full dynamic capabilities may
not be exploited, or a safety margin may have to be included that accounts for uncer-
tainties in the actual motion when the kinematic reference trajectory is tracked by a
lower level control law [59], [69].

In the last decades, ground and aerial autonomous vehicles have been strongly
taken into consideration and different approaches have been proposed for dealing
with the path planning problem in uncertain environments.

Path planning for unmanned ground vehicles (UGVs)

Much attention has been devoted to the motion planning problem for UGVs: in par-
ticular the possibility of extending road-map and potential functions methods to the
case of dynamic obstacle scenarios [86], [92], [96], [110], [111]. In [86] Probabilistic
Roadmap Methods (PRM) are considered with the aim to overcome the assumption
of static environments properly of this class of strategies. A straightforward and high-
demanding solution consists in updating the roadmap after an obstacle has changed
its position. Therefore, the proposed algorithm creates a robust roadmap in the pre-
processing phase by using the observation that the behaviour of the moving obstacles
is often not unconstrained but restricted to pre-specified areas. In [92], the so-called
Partial Motion Planner (PMP) mechanism is designed so that uncertainties arising
from planning within dynamic environments can be handled. The main idea is to
pre-calculate admissible state trajectories by using the Inevitable Collision States
(ICS) framework that, though it is capable to generate safe paths, is subject to high
computational burdens which could lead to violate the real-time constraints under
which the robot must take a decision. By considering dynamic objects characterized
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by piecewise constant velocities, an explicit kinematic model of the robot is con-
sidered in [96]: the family of feasible trajectories and their corresponding steering
controls are derived in a closed form. In [110], the path planning problem under non-
holonomic constraints is addressed by using the so-called Follow the Gap Method
(FGM). There, by computing a gap array around the robot, the appropriate gap is se-
lected, the best heading vector through the gap derived and the final angle to the target
point computed. Along similar lines is the contribution in [111] where a hybrid ap-
proach using a-priori knowledge of the environment guarantees that the autonomous
vehicle cannot be trapped in deadlocks.

Path planning for unmanned aerial vehicles (UAVs)

Motion planning for UAVs have extensively studied by the control community. Based
on these efforts, many strategies developed for UGVs have been extended to cover
three-dimensional (3-D) environments. It is well known that their computational
loads are often prohibitively large and/or the existing algorithms do not scale up
well to problems in the 3-D space [13, 71].

From a practical perspective specific characteristics of UAVs pose different chal-
lenges to the trajectory planning. For example, a ground vehicle has the ability to
stop and go backwards, whereas an aircraft must maintain a minimum velocity. Some
rovers and helicopters can make quick turns on the spot, but have a slower turn rate
when moving forward.

Current UAV obstacle avoidance techniques can be categorized into two broad
classes: Planning and Reactive. Planning paradigms use a world map and plan a
trajectory for the vehicle to follow. Such approaches must find trajectories that not
only geometrically avoid obstacles but also ensure that the dynamics of the vehicle
are capable of following the paths. This can be prohibitively expensive to compute if
the trajectory has to be continuously revised. In contrast, reactive methods overcome
the real-time problem by using simple formulas to react to obstacles as they appear,
but they cannot guarantee an appropriate solution to every possible situation. Finally,
vision-based reactive methods have been popular because payload weight is a serious
limitation for UAVs, see e.g. [82], [46], [19].

1.2.2 Model predictive strategies for avoidance motion planning problems

Model predictive control (MPC) or receding horizon control (RHC) originated in the
process industry, and has received wide attention in the broader field of control theory
and other applications. The benefits of such an approach is that it allows to naturally
handle multivariable systems, to systematically take actuator limitations into account
and to operate closer to its constraints: therefore better performance with respect to
traditional techniques can be achieved [79]. For detailed discussions and tutorials,
one can refer to the following survey papers [47], [85], [81], [99].

Because of its natural flexibility, the receding horizon control philosophy has
been recently used to deal with trajectory planning problems. Note that most of con-
tributions consider obstacle-free environments [53] or are limited to tracking pre-
determined trajectories around obstacles [114]. On the other and, it is interesting
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to underline that the contribution [7] based on the potential function approach pro-
posed a scheme to manage obstacle environments, while in [33] a splines is exploited
to produce collision-free trajectories.
Moreover, in [109] a novel receding horizon approach based on mixed-integer linear
programming (MILP) was introduced. MILP is a powerful optimization framework
that allows inclusion of integer variables and discrete logic in a continuous linear op-
timization problem. These variables can be used to model logical constraints such as
obstacle and collision avoidance rules, while the dynamic and kinematic properties
of the vehicle are formulated as continuous constraints, see [37]. Although indepen-
dently developed, the MILP-based trajectory planning approach of [109] is a special
case of the broader class of control for mixed logical dynamical (MLD) systems
firstly presented in [8] and then exploited in [9], [5], [12].

Although limited to a single static obstacle configuration, of interest for the dis-
sertation developments are the results outlined in [98]. There, ad hoc algorithms for
the computation of the set of states that can be robustly steered in a finite number
of steps via state feedback control to a given target set while avoiding pre-specified
zones or obstacles are achieved by resorting to polyhedral algebra concepts. More-
over, it is shown that such regions can be important to adequately deal with obstacle
avoidance problems even if the computational burdens may become prohibitive in
specific situations, e.g. the given plant model is subject to bounded disturbances.
Unfortunately, although the above methods provide elegant solutions, they cannot
straightforwardly modified to comply with dynamic environments because the huge
computational complexity arising during the on-line operations.

Hence based on this reasoning, fast MPC algorithms (see e.g. [88], [125]) have
been used to achieve appropriate strategies for UVs operating within time-varying
obstacle scenarios, see to cite a few the following recent contributions [112], [87],
[126], [58], [32] and [22]. In [112] the authors combines an MPC-based controller
with local obstacle map building using on-board laser scanners. In [87], the dynamic
window approach (DWA) navigation scheme is recast within a continuous time non-
linear model control predictive (MPC) framework by resorting to the ideas devel-
oped in [94]. In particular the algorithm is based on the jointly use of a model-based
optimization scheme and a convergence-oriented potential field method. Although
interesting, the approach suffers of unavoidable high computational burdens mainly
due to the MPC phase that it is slightly mitigated by splitting the dissipative controls
into two subsets with piecewise controls. The authors of [126] consider the collision
avoidance as well as navigation toward the destination using a MPC approach. The
related on-line optimization is solved by means of nonlinear programming, while
a local path planning generator makes use of the so-called distance and parallax
methods. The main handicap of this method relies on the heavy computational loads
pertaining to the computation of the predictive controller action. In this contribution,
this difficulty is attacked by considering a very large sensing range that allows to have
available sufficient time for solving the underline constrained optimization problem.
Along similar lines is also [58] where the authors address the set-point regulation
problem of a wheeled mobile robot in a known dynamic environment populated with
static and moving obstacles subject to robot kinematic and dynamic constraints is ad-
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dressed by using the nonlinear model predictive control in polar coordinates. In [32],
a novel procedure to approximately solve the path planning problem in dynamic un-
certain environments is proposed. There the authors develop a closed-loop receding
horizon control algorithm whose solution integrates prediction, estimation, and plan-
ning by taking care of the so-called chance constraints arising from the uncertainty on
robot and obstacle locations. The drawback of such an approach relies on the need to
make available the agent prediction paths whose computation could be high demand-
ing. The authors of [22] present a two-mode MPC scheme which ensures feasibility
retention despite of time-varying state constraints: the standard operative mode is
based on the classical Receding Horizon Control (RHC) philosophy, while the safe
mode, activated under time-varying constraints scenarios, allows to confine the state
trajectory within an opportune robustly positively invariant set. An important aspect
leaves out concerns with the definition of a procedure capable to determine new fea-
sible paths when the standard mode cannot be recovered.

1.3 Proposed predictive schemes for unnamed vehicles

The obstacle avoidance motion planning for ground and aerial vehicle is tracked by
developing novel MPC strategies: set-theoretic RHC schemes for unmanned ground
vehicles, hybrid command governor (CG) based architectures for unmanned aerial
vehicles.

1.3.1 Set-theoretic receding horizon control for UGVs

In the sequel, two different uncertain obstacle configurations are considered:

Structured Environments: The UGV operates in a working environment where
the admissible obstacle locations are known, but at each time instant it is unpre-
dictable which is the current obstacle configuration.

Unstructured Environments: Both static and moving (agents) objects are con-
sidered and two configurations result: static obstacle scenario and moving ob-
stacle scenario. No a-priori information are available on the agent behaviours.

According to these scenarios, ad-hoc control strategies will be developed: OA-MPC,
SOS-OA-MPC and DOA-MPC schemes.

Structured Environments. The consequence of such a set-up is that the resulting
working environment gives rise to a certain degree of uncertainty that if not properly
treated can lead to collisions during the vehicle navigation. To deal with this prob-
lem, a discrete-time RHC strategy based on set-theoretic ideas is developed so that
the prescribed saturation and geometric constraints are always fulfilled despite of
any obstacle scenario occurrence. The key motivation supporting such an approach
relies on the capabilities of the RHC philosophy combined both with set-invariance
concepts and the ellipsoidal calculus to guarantee control performance and computa-
tional load savings under constraints satisfaction and disturbances effect attenuation
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requirements, see [2].
Then, the main ingredients of the proposed strategy can be summarized as follows:

• A stabilizing state feedback law and a robust positively invariant ellipsoidal set
centred at the goal location;

• A set of initial states that, according to the obstacle scenario configurations, can
be steered to the target in a finite number of steps;

• An on-line receding horizon strategy obtained by deriving the smallest ellipsoidal
set complying with the current obstacle configuration. The control move is com-
puted by minimizing a performance index such that the one-step ahead state pre-
diction belongs to the successor set.

A relevant feature of this scheme is the capability to move off-line most of computa-
tions and to ensure that there exists at each time instant a feasible solution complying
with the time-varying obstacle configuration prescriptions. Then, a second important
merit relies on the needed computational resources that are significantly modest be-
cause the command input computation prescribes at most the solution of a Quadratic
Programming (QP) problem under linear constraints. Finally, a further significant
feature is that the proposed strategy can straightforwardly adapted to deal with het-
erogeneous plant descriptions: linear, uncertain and polynomial models.

Unstructured Environments. Differently from the Structured set-up, this config-
uration gives rise to an unbounded number of possible obstacle-scenarios that make
the OA-MPC strategy unaffordable. As a consequence, a quite different approach
capable to mitigate such a drawback must be developed. Here, this is achieved by
jointly exploiting controllability and robust positively invariance concepts. Then, the
key ingredients of the proposed DOA-MPC scheme can be summarized as follows:

• An off-line derived one-step controllable set family that allow to characterize
admissible paths between initial and final planar locations according to the static
obstacle scenario configurations;

• An on-line procedure based on two independent phases and aimed to work
around obstacles along the current path: from an obstacle side (starting point)
a sequence of robust positively invariant sets is derived, while on the other side
(target) a new controllable set sequence is computed;

• Simple semi-definite programming (SDP) problems for the on-line computation
of appropriate control actions compatible with the moving agents.

1.3.2 Hybrid Command governor scheme for UAVs

An hybrid command governor controller based on the ideas developed in [6], [4],
[23], [118] is designed to give fully autonomous capability to UAVs to perform flight
missions within cluttered environment where the obstacle avoidance is a fundamental
task. The proposed control architecture consists of three main modules: a reference
manager (CG) whose aim is to generate at each time instant a feasible set-point
to be tracked during the on-line operations; a planner unit that determines a finite
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sequence of locations in order to allow obstacle avoidance during the vehicle naviga-
tion and a control module (SCG-OA) that is in charge to manage switching events
when time-varying constraint paradigms are considered.

In principle a modification of the constraint set structure should prescribe a new
CG design during the on-line operations, but this could be computationally very
demanding and, therefore, not usable in practical situations. To overcome this draw-
back, the key idea here is to avoid the CG re-design by exploiting the following
arguments:

• time-varying constraints arise due to a shift with respect the current equilibrium;
• different constraints sets are overlapped and their shapes are invariant w.r.t. any

equilibrium shift.

Finally, it is worth to remark that the resulting hybrid strategy has similar low com-
putational loads as those required by the basic CG unit.

1.4 Contributions

This thesis presents a set-theoretic control framework based on model predictive
ideas for dealing with obstacle avoidance problems arising when moving unmanned
vehicles operate in dynamic environments. The proposed approach jointly generates
safe paths within the obstacle-free working region and computes adequate control
actions in such a way that the vehicle is capable to take care of such trajectories
by satisfying prescribed constraints. One of its main merits is the capability to keep
the on-line computational burdens affordable for real-time implementations. This
is a significant contribution especially if compared to the existing literature where
either of a lack of an explicit control module (focused only to path planning tasks)
or remarkable computational loads are serious limitations, e.g. tracking capabilities
[69, 83].
This dissertation is in large parts based on the following contributions:

Journals

I) Systems & Control Letters: “The obstacle avoidance motion planning problem
for autonomous vehicles: a low-demanding receding horizon control scheme”
(Provisionally Accepted) [41];

Conferences

II) American Control Conference (ACC), 2013: “An obstacle avoidance receding
horizon control scheme for autonomous vehicles” [44];
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III) Control Automation (MED), 2013: “An obstacle avoidance model predictive
control scheme: A sum-of-squares approach” [76];

IV) Decision and Control (CDC), 2013: “A model predictive control scheme for
mobile robotic vehicles in dynamic environments” [40];

V) Decision and Control (CDC), 2014: “An obstacle avoidance and motion planning
Command Governor based scheme: the Qball-X4 Quadrotor case of study” [77].

Submitted manuscripts

VI) “A receding horizon control strategy for autonomous vehicles in dynamic envi-
ronments” (Under review) [43];

VII) “An obstacle avoidance model predictive control scheme for mobile robots
subject to nonholonomic constraints: a sum-of-squares approach” (Under re-
view) [42].

VIII) “An Hybrid Command Governor scheme for unmanned aerial vehicles: obsta-
cle avoidance and motion planning” (Under review) [78].

1.5 Dissertation outline

The results of this thesis are collected in two main chapters:

1. Control of unmanned ground vehicle;
2. Control of unmanned aerial vehicle.

The first part concerns with the development of a set-theoretic based MPC scheme
capable to accomplish motion planning, obstacle avoidance and command input
computation tasks for unnamed ground vehicles (Chapters 3−4). Then, Chapter 5 is
devoted to address similar problems for unmanned aerial vehicle (UAV) by properly
adapting the high level Command Governor (CG) strategy.
A detailed description of each chapter is below reported:

Chapter 2 provides definitions and preliminary results on the following topics:
• Set-theoretic control approach;
• Polynomial systems and Sum-of-Squares relaxations;
• Command Governor design.

Chapter 3 develops a set-theoretic receding horizon control framework for dealing
with the obstacle avoidance problem for UGVs operating in highly structured
environments. Simulations on different model descriptions of the autonomous
point mobile vehicle are provided and commented;

Chapter 4 derives a MPC scheme capable to address the obstacle avoidance motion
planning problem for unknown time-varying obstacle scenarios. Then, simula-
tion campaigns on a point mobile robot model show the effectiveness of the
proposed control architectures;
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Chapter 5 first defines the path planning obstacle avoidance problem for UAVs.
Then, an adequate CG characterization is developed in order to deal with time-
varying constraints. The validity of the proposed strategy is testified by real-time
laboratory experiments on the Quadrotor Qball-X4;

Chapter 6 concludes the dissertation by summarizing the proposed results and out-
lining future research directions.





2

Background material

In this chapter the theoretic background on the basis of this dissertation is presented.
The first section collects standard definitions on control and computer science com-
munity, the remaining sections collect background materials on: ellipsoidal receding
horizon control, polynomial systems, Sums of Squares based optimization technical-
ities and command governor control strategy.

2.1 Definitions

Consider the discrete-time nonlinear system

x(t+ 1) = f(x(t), u(t), d(t)) (2.1)

subject to the following set-membership state and input constraints:

u(t) ∈ U , ∀t ≥ 0 (2.2)
x(t) ∈ X , ∀t ≥ 0 (2.3)

where f : IRn× IRm× IRd → IRn, t ∈ ZZ+ := {0, 1, ...}, x(t) ∈ IRn denotes
the plant state, u(t) ∈ IRm the control input, U , X compact subsets of Rm and
Rn, respectively and d(t) is an exogenous disturbance belonging to the following
compact and convex set

d(t) ∈ D ⊂ IRd, ∀t ∈ ZZ+ (2.4)

Definition 2.1. A set Ξ ⊆ X is Robustly Positively Invariant (RPI) for (2.1) if there
exists a control law u(t) ∈ U such that once the closed-loop solution xCL(t) en-
ters inside that set at any given time t0, it remains in it for all future instants, i.e.
xCL(t0) ∈ Ξ → xCL(t) ∈ Ξ,∀d(t) ∈ D, ∀t ≥ t0. 2
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Definition 2.2. Let S be a neighborhood of the origin. The closed-loop trajectory
of (2.1) is said to be Uniformly Ultimate Bounded in S if for all µ > 0 there exist
T (µ) > 0 and u(t) ∈ U such that, for every ‖x(0)‖ ≤ µ, xCL(t) ∈ S for all
t ≥ T (µ). 2

Definition 2.3. Given a set Ξ ⊆ X (target set), the predecessor set Pre (Ξ) , is the
set of states for which there exists a causal control u(t) ∈ U such that ∀d ∈ D the
one-step state evolution is in Ξ, i.e.,

Pre (Ξ) := {x ∈ X : ∃u ∈ U : ∀d ∈ D : f(x, u, d) ∈ Ξ} (2.5)

2

As a consequence, by induction, it is possible to determine the sets of states k-steps
controllable to Ξ via the following recursion (see [10]):

Ξ0 := Ξ
Ξn := Pre (Ξn−1) , n = 1, . . . , k

(2.6)

Definition 2.4. Given two sets A and B, the subtraction

A ∼ B := {a ∈ A : a+ b ∈ A,∀b ∈ B} (2.7)

is said P-difference and ∼ the P-difference operator. 2

Definition 2.5. Given a square symmetric matrix P = PT ≥ 0 (shaping matrix) and
a vector x0 ∈ IRn, then the set

T (P, x0) :=
{
x ∈ IRz : (x− x0)TP−1(x− x0) ≤ 1

}
represents a x0-centered ellipsoid and

T (P ) :=
{
x ∈ IRn : xTP−1x ≤ 1

}
a 0-centered ellipsoid. 2

Definition 2.6. Given an ellipsoidal set T (P, x0) and its support function

max
x∈T (P )

cTx = lTx0 +
√
cTPc

then
T (P, x0) :=

{
x ∈ IRn : lTx ≤ lTx0 +

√
cTPc ∀c ∈ IRn

}
(2.8)

is called dual-parametrization of T (P, x0). 2

Definition 2.7. Given a set W ⊂ IRn and a point x ∈ IRn, the distance is defined
as:

dist(x,W ) = inf
w∈W

‖x− w‖∗,

where ∗ is any relevant norm. 2
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Definition 2.8. Given two sets W, R ⊂ IRn, the distance between them is defined
as:

dist(W,R) = inf {‖w − r‖∗ |w ∈W, r ∈ R}

2

Definition 2.9. An oriented graph is an ordered pair G = (V,E) such that

• V is the vertex set;
• E is a subset of ordered pairs of V known as the edge set, i.e.

E ⊂ {{u, v} |u, v ∈ V}

2

Definition 2.10. Let G = (V,E) an oriented graph, the reachable vertex set Vr is
defined as

Vr := {v ∈ V|∃u ∈ V : {u, v} ∈ E}

2

Definition 2.11. Let f(x) and g(x) be two differentiable vector fields. The Lie
bracket of f(x) and g(x) is another vector field defined as

[f, g](x) :=
∂g

∂x
(x)f(x)− ∂f

∂x
(x)g(x)

2

2.2 Dual mode receding horizon predictive control approach

The objective of this section is to provide a background on the Dual-Mode Model
Predictive Control (DUAL-MPC) strategy, based on ellipsoidal calculus and viabil-
ity theory, developed in [2]. This approach represents a starting point for the set-
theoretic strategies developed in Chapters 3 and 4.

2.2.1 Problem formulation and dual mode approach

Consider plants described by linear discrete-time invariant (LTI) models subject to
an exogenous bounded disturbance d(t)

x(t+ 1) = Φx(t) +Gu(t) +Gdd(t) (2.9)

and suppose that the control objective is to design a control strategy able to stabilize
(2.9) and track a set point (i.e. 0x) under the hard constraints (2.2)-(2.3).

A convenient way of addressing such a problem in an MPC contest is that of re-
sorting to a dual-mode scheme. First the largest domain of attraction (DoA) of (2.9)
complying with (2.2)-(2.3) is off-line computed, i.e. all the initial conditions x(0)
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for which there exists an admissible path to 0x; then the DoA is on-line exploited to
compute feasible control actions able to steer the state configuration to the desired
equilibrium point, e.g. 0x.

Next two sections will be devoted to describe the off-line and the on-line stages
of the DUAL-MPC control architecture.

2.2.2 Off-line phase: RPI region and One-step ahead Controllable sets

Let K be a stabilizing feedback gain and Ξ an RPI region:

(Φ+GK)Ξ +GdD ∈ Ξ

complying with (2.2)-(2.3), then starting from the definitions (2.5)-(2.6), the set of
states of (2.9) controllable in k steps to Ξ , regardless of any disturbance d(t) ∈ D
can be computed via the following recursion:

Ξ0 := Ξ
Ξk := {x ∈ X : ∃u ∈ U : ∀d ∈ D : Φx+Gu+Gdd ∈ Ξk−1}

(2.10)

Unfortunately the shapes of Ξk grows in complexity as k increase and may become
computationally intractable very quickly. A possible way to solve such a drawback
is to exploit ellipsoidal inner approximations of Ξk as

T0 := In[Ξ]
Tk := In[{x ∈ X : ∃u ∈ U : ∀d ∈ D : Φx+Gu+Gdd ∈ Tk−1}]

(2.11)

where Tk, if non-empty, satisfies Tk ⊂ Ξk and In[·] denotes the inner ellipsoidal
approximation operator according to some optimality criterion, e.g. maximum vol-
ume, trace, etc. Moreover each ellipsoidal set enjoys the property that for any
x ∈ Tk \ Tk−1 there exists u ∈ U so that, for any d ∈ D, Φx+Gu+Gdd ∈ Tk−1

The family Tk always exists whenever the uncertain systems are quadratically
stabilizable by means of a linear feedback, provided that D is sufficiently small (or
alternatively, provided U and X sufficiently large). The exact quantification of the
relative sizes of U , X and D for the existence of the family {Tk} cannot be absolute
but it depends on the system at hand, see [57] and [104]for more details.

Finally, for sake of completeness, a computational algorithm for (2.11) is detailed
in Appendix A.

2.2.3 On-line phase: ellipsoidal MPC algorithm

The above developments allow to synthesize very easily a Receding Horizon control
strategy capable to steer the state trajectory to the equilibrium point 0x. On-line, at
each time instant t, the smallest index k such that x ∈ Tk is first determined. Then,
a command u(t) is computed by minimizing a convenient running cost under the
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condition x̂(t + 1/t) := Φx(t) + Gu(t) ∈ (Tk−1 ∼ GdD) = T̃k−1, which is used
to ensure contraction and viability to the closed-loop trajectories irrespective of any
admissible disturbance occurrence.

Remark 2.12. In this respect, it is worth to pointing out that, unlike [123] and [31],
the determination of the ellipsoidal set Tk does not depend on the running cost to be
used during the on-line operations. This allows more flexibility in the choice of the
cost which could eventually even changed on-line along the system trajectories.

Let {Tk} a sequence of non-empty ellipsoidal sets off-line computed by means of
(2.11), then the resulting ellipsoidal MPC algorithm is:

Ellipsoidal-MPC (E-MPC))

1: k(t) := min {k : x(t) ∈ Tk}
2: if k(t) == 0 then
3: u(t) = Kx(t)
4: else

u(t) = arg min Jk(t)(x(t), u(t)) s.t (2.12)

Φx+Gu ∈ T̃k−1, u ∈ U (2.13)

5: end if
6: apply u(t); t← t+ 1; goto Step 1

Observe that the cost Jk(t)(x(t), u(t)) may depend on k(t) and be defined on
an infinite horizon if e.g. implicit dual-mode MPC schemes are of interest. Oth-
erwise, typical choices include Jk(t)(x(t), u) = ||Φx + Gu||2

P̃−1
k (k(t)−1)

, where

T̃k =
{
x : xT P̃−1

k x ≤ 1
}

, or Jk(t)(x(t), u) = ||u||2Ψ , Ψ = ΨT ≥ 0 if one is in-
terested in approximating the one-step minimum-time or, respectively, the one-step
minimum-energy algorithms. Since the optimization problem in Step 4 is always
feasible, the following stability result holds true:

Proposition 2.13. Let the sequence of ellipsoids {Tk} be non-empty and x(0) ∈⋃
k Tk then the E-MPC control algorithm always satisfies the constraints (2.2)-(2.3)

and ensures robust stability. In particular there exists a finite time t̄ such that x(t) ∈
T0, ∀t ≥ t̄

Proof. The proof follows trivially from the above discussion. Convergence in finite
time derives from the choice of a limited number k̄ of ellipsoid Tk, k = 1, . . . , k̄. 2
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2.3 Semidefinite programming relaxations for semialgebraic
problems and polynomial nonlinear systems

Recent improvement on semi-definite programming solvers and development of ef-
ficient polynomial optimization algorithms have contributed to enhance the interest
towards the so-called Sums-of-Squares (SOS) based techniques for control design
purpose.

Therefore the objective of this section is to provide background materials on
polynomials, polynomial nonlinear models, semialgebraic sets and SOS based con-
vex relaxations [91], [63]. These concepts are instrumental to understand Section
3.4.2 where the one-step ahead controllable set recursion (2.6) for non linear model
vehicles is approximately computed by means of a SOS based optimization problem.

2.3.1 Polynomial definitions

Definition 2.14 (Monomials). A Monomial mα in n variables is a function defined
as mα := xα = xα1

1 xα2
2 . . . xαnn for α ∈ ZZn+. The degree of a monomials is defined

as deg(mα) :=
∑n
i=1 αi. 2

Definition 2.15 (Polynomials). A Polynomials f in n variables is a finite liner com-
bination of monomials,

f :=
∑
α

cαmα =
∑
α

cαx
α

with cα ∈ IR. DefineRn to be the set of all polynomials in n variables also denoted
asR[x1, . . . , xn] to emphasize the independent variables. The degree of f is defined
as deg(f) := maxα deg(mα) (provided that the associated cα is non-zero) 2

Definition 2.16 (Positive Semidefinite Polynomials). A positive semidefinite poly-
nomial is a polynomial p(x) ∈ Rn such that p(x) ≥ 0 ∀x ∈ IRn. Define Pn to be
the set of all positive polynomials in n variables

P := {p ∈ Rn|p(x) ≥ 0,∀x ∈ IRn}

also defined as Pn,d := Pn ∩ Rn,d where the subscripts n, d indicates polynomial
in n variables and maximum degree d, respectively. 2

Definition 2.17 (Sums-of-Squares (SOS) Polynomials). A SOS polynomial is a
polynomial that can be represented as sums of squares of other polynomials. The
set of all SOS polynomials in n variables Σn is defined as

Σn :=

{
s ∈ Rn|∃M <∞,∃{pi}Mi=1 ⊂ Rn such that s =

M∑
i=1

p2
i

}

Additionally, define Σn,d = Σn ∩Rn,d 2
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Definition 2.18 (Multiplicative Monoid). Given {g1, . . . , gt} ∈ Rn, the Multi-
plicative Monoid generated by gj , j = 1, . . . t is the set of all finite products of
gj’s, including 1 (i.e. the empty product). It is denoted asM(g1, . . . , gt). For com-
pleteness defineM(∅) := 1. 2

An example:M(g1, g2) =
{
gk1g

k
2 |k1, k2 ∈ ZZ+

}
Definition 2.19 (Cone). Given {f1, . . . , fr} ∈ Rn, the Cone generated by fi, i =
1, . . . r is

P(f1, . . . , fr) :=

{
s0 +

l∑
i=1

sibi|l ∈ ZZ+, si ∈ Σn, bi ∈M(f1, . . . , fr)

}

For completeness note that P(∅) := Σn 2

Note that if s ∈ Σn and f ∈ Rn, then f2s ∈ Σn as well. This allows to express a
cone of {f1, . . . , fr} as a finite sum of 2r terms.

An example: P(f1, f2) = {s0 + s1f1 + s2f2 + s3f1f2|s0, . . . , s3 ∈ Σn}.

Definition 2.20. (Ideal). Given {h1, . . . , hu} ∈ Rn, the Ideal generated by hk, k =
1, . . . , u is

I :=

{
u∑
k=1

hkpk|pk ∈ Rn

}
For completeness note that I(∅) := 0 2

2.3.2 SOS polynomials properties and computational aspects

Since every s ∈ Σn is a sum of squared polynomials, it is clear that s(x) ≥ 0, ∀x ∈
IRn, which implies that Σn ⊆ Pn. An interesting question is whether the set of
SOS polynomials is equal to or strictly contained in the set of positive semidefinite
polynomials. It has been proved (see [102] for an overview) that there are only three
combinations of number of variables and degree such that the set of SOS polynomials
is equivalent to the set of positive semidefinite ones:

1. Polynomials in one variable, n = 1;
2. Quadratic polynomials, d = 2;
3. Quartics in two variables, n = 2, d = 4.

This result dates to Hilbert and is related to his 17th problem.
In general working with polynomials in Pn can be difficult since there is no full

parametrization of such a set nor an efficient tests to check if a given polynomial
is inside it. However, given the number of variables, n, and degree of polynomials,
d, it is possible to form a full parametrization of Σn,d which directly leads to an
efficient semidefinite programming test to check if a polynomial is SOS (see proof
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of Theorem 1 in [101]). Noticing that all SOS polynomials must always be of even
degree, as a consequence the parameterization of the set Σn,2d for some n, d ∈ ZZ+

can be considered in the following statement:

Statement 2.21. If s ∈ Σn,2d, then there exists pi ∈ Rn,d, i = 1, . . . ,M , for some
finite M such that

s =

M∑
i=1

p2
i

Using the above result it is possible pose a full parametrization of Σn,2d, often re-
ferred ad the “Gram matrix” approach. In [26] is showed that p ∈ Σn,2d iff ∃Q ≥ 0
such that p(x) = zn,d(x)TQzn,d(x), with zn,d(x) a vector of all the monomials of
degree less than or equal to d ordered in an appropriate manner. As an example, with
n = 2, d = 2

z2,2(x)T = [ 1, x1, x2, x
2
1, x1x2, x

2
2 ]

In [91] has been showed that the algorithm to check if any Q ≥ 0 exists for a given
p ∈ Rn is an LMI, and proved the following extension

Proposition 2.22. Given a finite set {pi}mi=0 ∈ Rn, the existence of {ai}mi=1 ∈ IR
such that

p0 +

m∑
i=1

aipi ∈ Σn

is an LMI feasible problem.

This theorem is useful since it allows one to answer questions like the following SOS
programming example

Example 2.23. Given p0, p1 ∈ Rn, does there exists a k ∈ Rn such that

p0 + kp1 ∈ Σn (2.14)

To answer this question, write k as a linear combination of its monomials {mj}, k =∑s
j=1 ajmj . Rewrite (2.14) using this decomposition

p0 + kp1 = p0 +

s∑
j=1

aj(mjp1)

which, since (mjp1) ∈ Rn , can be checked by Proposition 2.22.
Many software packages, for instance SOSTOOL [93], YALMIP [75] and Glop-

tiPoly [54], have been developed aimed to solve the LMIs that result from Proposi-
tion 2.22. This packages set up the LMIs from the polynomial problem, do some
smart preprocessing to reduce problem size and use semidefinite programming
solvers,e.g. [115], to solve the LMIs.
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2.3.3 The positivstellensatz

In this section a central theorem from real algebraic geometry, the Positivstellensatz
(P-satz), is stated. This is a powerful theorem which generalizes many well known
results such as the S-Procedure. In particular the latter is very important in control
theory because it enables to cast some control problems, e.g. stability, controllabil-
ity and disturbance analysis, for systems with polynomial vector field into tractable
convex optimization problems.

Proposition 2.24 (Positivstellensatz). Given polynomials {f1, . . . , fr} , {g1,. . . , gt}
and {h1, . . . , hu} inRn, the following are equivalent [11]:

• The set x ∈ IRn

∣∣∣∣∣∣
f1(x ≥ 0, . . . , fr(x) ≥ 0)
g1(x) 6= 0, . . . , gt(c) 6= 0
h1(x) = 0, . . . , hu(x) = 0

 is empty

• There exist polynomials f ∈ P(f1, . . . , fr), g ∈ M(g1, . . . , gt), and h ∈
I(h1, . . . , hu) such that

f + g2 + h = 0

2

Remark 2.25. Note that when there are only inequalities constraints, and they de-
scribes a compact region, this theorem can be improved to reduce the number of free
parameters [108], and with slightly stronger assumptions [95]

The LMI based test for SOS polynomials from Proposition 2.22 can be used to
prove that the set emptiness condition from the P-satz holds by finding specific f , g
and h such that f+g2+h = 0. These f , g and h are known as P-satz certificates since
they certify that the equality is satisfied. The following proposition states precisely
how semidefinite programming can be used to search for certificates [91].

Proposition 2.26 (P-satz Certificates). Given polynomials {f1, . . . , fr} , {g1,. . . ,gt}
and {h1, . . . , hu} inRn, if the set

{x∈ IRn |fi(x) ≥ 0, gi(x) 6= 0, hk(x) =0, i = 1, . . . , r, j = 1, . . . , t, k = 1, . . . , u}

is empty then the search for bounded degree P-satz refutations can be done using
semidefinite programming. If the degree bound is chosen large enough the semidefi-
nite program will be feasible and give the refutation certificates.

To enforce the usefulness of the P-satz the next two subsections will provide two
examples that become convex and thus tractable when the P-satz is combined with
the result of Proposition 2.22.
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An LMI test for Pn

Using the P-satz, it is possible test if a polynomial p ∈ Rn is in Pn. If p ∈ Pn, then
∀x ∈ IRn, p(x) ≥ 0. Equivalently {x ∈ IRn : p(x) < 0} is empty, or in the P-satz
format

{x ∈ IRn | − p(x) ≥ 0, p(x) 6= 0} is empty

This condition hold iff ∃f ∈ P(−p) and g ∈M(p) such that f + g2 = 0. Using the
definition of the cone and the monoid, p ∈ Pn iff ∃s0, s1 ∈ Σn and k ∈ ZZ+ such
that

s0 − ps1 + p2k = 0

If we fix k and the degree of s1 to be d, the above condition can be rewritten as
p ∈ Pn iff ∃s1 such that

s1 ∈ Σn,d (2.15)
ps1 − p2k ∈ Σn,d̂ (2.16)

with d̂ = max(2kdeg(p), d + deg(p)). Making use of this manipulation the condi-
tions (2.15-2.16) can be checked with LMIs (via Proposition 2.22) that give a suffi-
cient conditions for a polynomial to be positive semidefinite.

The S-procedure

Given symmetric n × n matrices {Ak}mk=0 the S-procedure states: if there exists
nonnegative scalars {λk}mk=1 such that A0 −

∑m
k=1 λkAk ≥ 0, then

m⋂
k=1

{
x ∈ IRn : xTAkx ≥ 0

}
⊆
{
x ∈ IRn : xTA0x ≥ 0

}
This can be rewritten according to the P-satz form as

W =

{
x ∈ IRn

∣∣∣∣xTA1x ≥ 0, . . . , xTAmx ≥ 0
−xTA0x ≥ 0, xTAx 6= 0

}
is empty

If the λk exist, defineQ := A0−
m∑
k=1

λkAk. By assumptionQ ≥ 0 and thus xTQx ∈

Σn. Define g(x) := xTA0x ∈M(xTA0x) as well as

f(x) := (xTQx)(−xTA0x) +

m∑
k=1

λk(−xTA0X)(xTAkx)

By their non-negativity each λi ∈ Σn and because xTQx ∈ Σn the function f(x) is
in the come P(xTA1x, . . . , x

TAmx,−xTA0x). An easy rearrangement gives f +
g2 = 0, which illustrates that f and g are Positivstellensatz certificates that prove
thatW is empty.

Remark 2.27. The S-procedure given above can be straightforwardly generalized to
deal with non-quadratic function and non-scalar weights, see [63] for details.
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2.3.4 Polynomial recasting of nonlinear systems

It has been shown in [107] that any system with non-polynomial nonlinearities can
be converted through a simple series of steps to a polynomial system with a larger
state dimension, but with a series of equality constraints restricting the states to a
manifold of the original state dimension. In some cases the recasting is “exact”, in
the sense that the transformed system has a polynomial vector field with the same
dimension as the original system

Example 2.28. Consider for example the non linear differential equation

ẋ = ce−αx(t)

by setting p(t) = ce−αx(t) it can be rewritten as

ṗ = −αp2(t)

In other cases, recasting increases the state dimension but equality constraints that
arise from the recasting restrict the system to the original manifold. In particular,
the constraints that arise can be either polynomial, or include non-polynomial terms
and therefore a suitable recasting algorithm is required. The here presented proce-
dure is a modified version of the algorithm proposed in [107] appearing in [90].
This is applicable to a very large class of non-polynomial systems, namely those
whose vector field is composed of sums and products of elementary functions, or
nested elementary functions of elementary functions. For elementary functions here
are considered the functions with explicit symbolic derivatives such as exponential
(ex), logarithm (lnx), power (xa ), trigonometric (sinx, cosx, etc.), and hyperbolic
functions (sinhx, coshx, etc.).

Recasting procedure

Suppose that the original continuous time system is given in the form

żi =
∑
j

αi
∏
k

Fijk(z) (2.17)

where i = 1, . . . , s, α′js are real numbers and z = [z1, . . . , zs]
T is the state vector.

In the above equation, Fijk(z) are assumed to be elementary functions, or nested
elementary functions of elementary functions. For the above system, the recasting
algorithm is:

Polynomial Recasting Algorithm (PRA)

1: Let xi = zi,∀i = 1, . . . , s;
2: For each Fijk(z) that is not of the form Fijk(z) = zal , where a is some integer

and 1 ≤ l ≤ s, introduce a new variable xr. Define xr = Fijk(z);
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3: Compute the differential equation describing the time evolution of xr using the
chain rule of differentiation;

4: Replace all appearances of such Fijk(z) in the system equations by xr;
5: Repeat Steps 2-4, until system equations with rational forms are obtained;

The above recasting process generally produces a recasted system whose dimension
is higher than the dimension of the original system. To describe the original model
faithfully, constraints of the form

xr = F (x1, . . . , xs), ∀r > s (2.18)

should be taken into account. These constraints define an s−dimensional manifold
on which the solutions to the original differential equations lie. In general such con-
straints cannot be converted into polynomial forms, even though sometimes there
exist polynomial constraints that are induced by the recasting process. For example:

• Two variables introduced for trigonometric functions such as x2 = sinx1 , x3 =
cosx1 are constrained via x2

2 + x2
3 = 1.

• Introducing a variable to replace a power function such as x2 =
√
x1 induces the

constraints x2
2 − x1 = 0, x2 ≥ 0.

• Introducing a variable to replace an exponential function such as x2 = exp(x1)
induces the constraint x2 ≥ 0.

Therefore the non-polynomial system (2.17) can generally rewritten as{
ẋa = fa(xa, xb)
ẋb = fb(xa, xb)

(2.19)

where xa = [x1, . . . , xs]
T are the state variables of the original system (2.17),

xb = [xs+1, . . . , xn]T the additional state variables and fa(xa, xb), fb(xa, xb) poly-
nomials forms. Moreover, the following further equality/inequality requirements

Ga(xa, xb) = 0 (2.20)
Gb(xa, xb) ≥ 0 (2.21)

are necessary so that fa(xa, xb) and fb(xa, xb) faithful represent the original non-
linear system (2.17) .Note that F, Ga and Gb are column vectors of functions with
appropriate dimensions.

Finally, to better clarify the PRA the interested reader can find two recasting
examples in Appendix B where two non-liner ground vehicle models are taken into
consideration .

2.4 Basic command governor (CG) design

The aim of this section is to present the basic properties and capabilities of the well
known Command Governor (CG) control architecture, see [6], [4], [23] and [48]
for exhaustive dissertations. This strategy represents a starting point for the hybrid
control architecture for unmanned aerial vehicle presented in Chapter 5.
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2.4.1 CG Control Architecture and Problem Formulation

Consider the control architecture shown in Fig. 2.1, consisting of the Plant, the Pri-
mal Controller and the CG device. Suppose that the Primal System can be lin-
earized around a given equilibrium point and discretized as

CG
Primal 

Controller
Plant

d(t)

x(t)

x  (t)

y(t)

c(t)

x (t)
u

p

g(t) u(t)r(t)

Primal System

Fig. 2.1. Command Governor Structure

x(t+ 1) = Φx(t) +Gg(t) +Gdd(t)
y(t) = Hyx(t)
c(t) = Hcx(t) + Lg(t) + Ldd(t)

(2.22)

where x(t) ∈ IRn is the overall state including the plant and primal controller states,
xp and xc respectively; g(t) ∈ IRm is the CG action, i.e. a suitably modified version
of the reference signal r(t) ∈ IRm; d(t) ∈ D ⊂ IRnd , ∀t ∈ Z+ is an exogenous
disturbance, with D a specified convex and compact set such that 0nd ∈ D; y(t) ∈
IRm is the plant output which is required to track r(t); c(t) ∈ IRnc the constrained
output vector

c(t) ∈ C, ∀t ∈ ZZ+ (2.23)

with C a specified convex and compact set. It is also assumed that:

Assumption 2.29. The primal controller has been designed so that

a) Φ is a Schur matrix
b) The Primal System (2.22) is offset-free, i.e. Hy(In − Φ)−1G = Im

Observe that the typical structure of a CG-equipped control system consists of two
nested loops. The internal loop is designed via a generic linear control method, with-
out taking into account the prescribed constraints, and allows the designer to specify
relevant system properties for small-signal regimes, e.g. stability, disturbance rejec-
tion. The outer loop consists of the CG unit which, whenever necessary, is in charge
to modify the reference to be applied to the closed-loop system so as to avoid con-
straint violation. The basic idea is that of maintaining the closed-loop system within
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its nominal linear regime, where the stability and all other closed-loop properties are
preserved.

Statement 2.30. The CG design problem is that of generating, at each time instant
t, the set-point g(t) as a function of the current state x(t) and reference r(t)

g(t) := g(x(t), r(t)) (2.24)

in such a way that, regardless of disturbances, constraints (2.23) are always fulfilled
along the system trajectories generated by the application of the modified set-points
g(t) and possibly y(t) ≈ r(t). Moreover, it is required that: g(t) → r̂ whenever
r(t) → r̂, where r̂ is either r or its best feasible approximation; the CG has a finite
settling time, viz. g(t) = r̂ for a possibly large but finite t whenever the reference
stays constant after a finite time.

2.4.2 CG solution and properties

By linearity, it is possible to separate the effects of the initial conditions and in-
put from those of disturbances, i.e. for each generic system variable n(t) : n(t) =
n(t) + ñ(t), where n(t) is the disturbance-free component and ñ(t) depends only on
disturbances. Therefore, the disturbance-free solutions of (2.22) to a constant com-
mand g(t) = ω are:

xω := (In − Φ)−1Gω
yω := Hy(In − Φ)−1Gω
cω := Hc(In − Φ)−1Gω + Lω

(2.25)

Consider next the following set recursions:

C0 := C ∼ LdD,

Ck := Ck−1 ∼ HcΦ
k−1GdD, . . . , C∞ :=

∞⋂
k=0

Ck, (2.26)

It can be shown that the sets Ck are nonconservative restrictions of C such that
c(t) ∈ C∞, ∀t ∈ ZZ+, implies that c(t) ∈ C, ∀t ∈ ZZ+ . Thus, one can consider
only disturbance-free evolutions of the system and adopt a “worst-case” approach.
For reasons which will appear clear soon, it is convenient to introduce the following
sets for a given δ > 0

Cδ := C∞ ∼ Bδ (2.27)
Wδ :=

{
ω ∈ Rm : cω ∈ Cδ

}
(2.28)

where Bδ is a ball of radius δ centered at the origin. We shall assume that there exists
a possibly vanishing δ > 0 such thatWδ is non-empty. In particular,Wδ is the set
of all commands whose corresponding steady-state solutions satisfy the constraints
with a tolerance margin δ. From the foregoing definitions and assumptions, it follows
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thatWδ is closed and convex.
The main idea is to choose at each time step a constant virtual command g(·) ≡ ω,
with ω ∈ Wδ, such that the corresponding evolution fulfils the constraints over a
semi-infinite horizon and its “distance” from the constant reference is minimal. Such
a command is applied, a new state is measured and the procedure is repeated. In this
respect we define the set V(x) as

V(x) =
{
ω ∈ Wδ : c(k, x, ω) ∈ Ck, ∀k ∈ Z+

}
(2.29)

where c(k, x, ω) = Hc

(
Φkx+

k−1∑
i=0

Φk−i−1Gω

)
+Lω is the constraint disturbance-

free virtual evolution at time k from the initial condition x under the constant com-
mand g(·) ≡ ω. As a consequence V(x) ⊂ Wδ, and, if non-empty, it represents the
set of all constant virtual sequences in Wδ whose evolutions starting from x satis-
fies the constraints also during transients. As a consequence, we have the following
definition:

Definition 2.31. The state x ∈ IRn is defined Cδ−admissible if there exist ω ∈ W δ

such that c(k, x, ω) ∈ C,∀k ∈ ZZ+ . The pair (x, ω) is said Cδ−executable. 2

Thus the CG output is chosen according to the solution of the following constrained
optimization problem

g(t) = arg min
ω∈V(x(t))

‖ω − r(t)‖Ψ (2.30)

where Ψ = ΨT > 0m and ‖ω − r(t)‖Ψ := (ω − r(t))TΨ(ω − r(t)).
Relevant contributions on this approach can be found in [4] [23], [48], [49], [118],
while the main CG properties are below summarized:

Property 2.32. Consider system (2.22) along with the CG selection rule (2.30). Let
Assumption (2.29) be fulfilled and V(x(0)) be non-empty. Then the following prop-
erties hold true:

a) The minimizer in (2.30) uniquely exists at each t ∈ ZZ+ and is obtained by solv-
ing a convex constrained optimization problem, viz. V(x(0)) non-empty implies
V(x(t)) non-empty along the trajectories generated by the CG command (2.30);

b) The set V(x(t)), ∀x(t) ∈ IRn, is finitely determined, viz. there exists an integer k0

such that if c̄(k, x(t), ω) ∈ Ck, k ∈ {0, 1, . . . , k0}, then c̄(k, x(t), ω) ∈ Ck ∀k ∈
ZZ+;

c) The constraints are satisfied for all t ∈ ZZ+;
d) The overall system is asymptotically stable. Specifically, whenever r(t) ≡ r, g(t)

converges in finite time either to r or to its best steady-state admissible approxi-
mation r̂, with

ĝ := r̂ := arg min
ω∈Wδ

‖ω − r‖2Ψ (2.31)

2

Finally, computational details on the CG design and the optimization problem
(2.30) are reported in the Appedix C
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A set-theoretic receding horizon control approach for
structured environments

This chapter formally addresses the obstacle avoidance motion planning problem
for ground autonomous vehicles operating in uncertain structured environments. By
resorting to set-theoretic ideas, a receding horizon control algorithm is derived for
robots described by means of both linear and nonlinear models.
In order to improve as much as possible the overall comprehension and clarity the
proposed framework is first developed for constrained linear time-invariant systems
and it is then extended in order to deal with polytopic and polynomial state space
descriptions.

3.1 Problem Statement

This section first collects the main definitions and assumptions used in this chapter
and the problem to be solved is stated at the end.

Definition 3.1. Let Obij be an obstacle. Then, then obstacle scenario Oi at the time
instant t is defined as

Oi(t) := {Obi1, . . . , Obini} (3.1)

where ni denotes the number of the involved obstacles. 2

Definition 3.2. LetOi(t) be an obstacle scenario. Then the non-convex obstacle-free
region pertaining to Oi is identified as follows

Oifree(t) := {x ∈ IRn : hi(x) > 0nf } (3.2)

where hi : IRn → IRnf and nf is the number of component-wise inequalities. 2

Assumption 3.3. Assume without loss of generality that each Obij has a polyhedral
convex structure described as the intersection of lj half-spaces:
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Obij :

 (Hi
j)
T
1

...
(Hi

j)
T
lj

 p ≤
 (gij)1

...
(gij)lj

 (3.3)

where p := B x ∈ IR2 are the planar components of the state space x ∈ IRn and
B ∈ IR2×n a projection matrix.

Remark 3.4. Notice that Assumption 3.3 is not restrictive because if an obstacle has
not a polygonal description, it is possible to recast it into a convex polyhedral from by
resorting to adequate outer approximations, see e.g. the numerical procedure outlined
in [119]. 2

Assumption 3.5. The autonomous vehicles operate within dynamic environments
where possibly moving obstacles (agents) rely and give rise to uncertain obstacle
scenarios (configurations) according to the following behavior rules:

• each agent can occupy a finite set of pre-specified positions ;
• time instants at which an obstacle scenario changes its location are unknown.

Remark 3.6. Note that Assumption 3.5 mainly restrict the admissible dynamic envi-
ronments pointing out the attention on a particular class of partially known working
areas where a finite and known set of obstacle scenarios Oi may occur, e.g. produc-
tion/assembly lines [17], restricted areas (buildings or rooms) where surveillance or
housekeeping are required tasks [38] and so on.

3.1.1 Obstacle Avoidance Motion Planning (OAMP) Problem

Given an autonomous vehicle described by 2.9 and a set of l obstacle scenarios
Oi, i = 1, . . . , l, determine a state-feedback control policy

u(t) = g(x(t)) (3.4)

compatible with (2.2)-(2.3) and (3.2), such that starting from an initial condition
x(0) the robot trajectory x(t) is driven to a target position xf regardless of any
admissible obstacle scenario occurrence (3.1). 2

In the sequel, the problem will be addressed by means of a receding horizon control
approach based on set-theoretic concepts presented in Section 2.2. In order to exploit
such approach for the OAMP problem, the following key questions must be analyzed
in depth:

• How can the nonconvex obstacle constraints be recast into computationally
tractable conditions?

• How can one define a sequence of one-step controllable sets such that there ex-
ists at least a feasible path (x(0) → xf ) complying with obstacle avoidance
purposes?

A solution to both these technical issues is provided in the next section.
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3.2 A set-theoretic approach

The aim of this section is to provide a set-theoretic based solution to the OAMP
problem.

Notice that the basic ellipsoidal MPC schema presented in Section 2.2.1 can be
extended to the proposed framework if the following key aspects are concerned:

(a) Given an obstacle scenario Oi, determine a sequence of one-step controllable
sets {T ik }

Ni
k=0 such that there exists at least a feasible path to the goal xf ;

(b) Given the sequences {T ik }
Ni
k=0, i = 1, . . . , l, ensure viability properties under

time-varying scenarios.

The next developments are devoted to translate these ideas into tractable conditions
and computational algorithms.

3.2.1 One step controllable sets

Point (a) relies on the estimation of the domain of attraction (DoA), i.e. all the initial
conditions x(0) for which there exists an admissible path to xf . Note that in fact the
basic set construction (2.11) of

{
T ik
}Ni
k=0

may give rise to “small” DoA estimates,

i.e.
l⋃
i=1

T iNi , because in presence of the constraints (2.2),(2.3) and (3.2) a saturation

effect may occur on the one-step controllable sets growth. To overcome such a draw-
back, here the following algorithm is proposed:

One-step Controllable Set Procedure (OCSP)

1: Given the goal xf and chosen the initial condition x(0) as follows

x(0) := arg max
x∈X

‖x− xf‖2

design the pair (K0, T0), with T0 a RPI region centered in xf where K0 is
the stabilizing state-feedback gain complying with the constraints (2.2), (2.3),
(3.2). Store the subscript m = 0 into an index vector hereafter named IRi. Let
T i0 = T0 and x0

eq = xf be the initial terminal region and equilibrium point,
respectively;

2: Derive the sequence {T ik }
Nm
k=1 by using recursions (2.11) under the additional

state constrain (3.2). The integer Nm is the saturation level for the region
growth;

3: Store the index Nm into an index vector denoted as LRi;
4: if x(0) /∈ T iNm , then
5: if there exists a candidate equilibrium xm+1

eq such that:
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a) xm+1
eq 6= xseq, s = 0, 1, . . . ,m;

b) xm+1
eq := arg min

xeq∈T iNm
‖xeq − x(0)‖2

then
6: Design a new pair (Km+1, T iNm+1), with T iNm+1 centered in xm+1

eq

and Km+1 satisfying (2.2), (2.3), (3.2). Store the corresponding in-
dex Nm + 1 into IRi;

7: Add {T ik }
Nm
k=1 to the previous computed sequence;

8: m← m+ 1, T i0 := T iNm+1 and goto Step 2;
9: else

10: Stop;
11: end if
12: else
13: Stop;
14: end if

A graphical description of the OCSP modus operandi is given in Fig. 3.1.

Obstacle 1

eq

0x

eq
1x

Obstacle 2

eq

2x

T
i

Nm

T
i

N   +1m

Fig. 3.1. Controllable set sequences construction
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Remark 3.7. Notice that

• the vector IRi keeps track of all the robust positively invariant regions obtained
by OCSP and its relevance will appear clear in Section 3.3 where the receding
horizon scheme is detailed;

• the index vector LRi stores all the “saturation regions” for each subsequence of
{T ik } whose aim is to ensure collision avoidance (see the discussion pertaining
to the formulas (3.13)-(3.17));

• the pairs (Km, T im), m ∈ IRi are computed via standard LMI techniques, see
[64] for computational details. 2

3.2.2 Obstacle constraints convexification

Here, the non-convex constraints describing the admissibility regions (3.2) are trans-
lated into computationally tractable requirements. This is achieved via the following
arguments:

• by exploiting the polyhedral structure (3.3) the obstacle-free region (3.2) can be
described as

Oifree :=

ni⋂
j=1

x ∈ IRn :

lj⋃
s=1

{
(Hi

j)
T
s Bx > (gij)s

} , (3.5)

• by denoting as

(cij)
a :=

x ∈ IRn :

lj⋃
s=1

{
(Hi

j)
T
s Bx > (gij)s

} (3.6)

the active constraint region pertaining to each j − th obstacle of Oi and by
using the fact that the construction of controllable set families is based on the
equilibrium xeq, (see Fig. 3.2) the following statement holds true:

Statement 3.8. Let T ik be a one-step controllable set, the computation of the pre-
decessor set T ik+1 via (2.11) requires that at most two amongst all the constraints
(Hi

j)
T
s Bx > (gij)s are imposed for each j− th obstacle in order to define (cij)

a.

Then, the region (3.5) can be convexified by means of the following algorithm:

Convexification procedure (CP)

0. Let xeq, Obij j = 1 . . . ni, and Bδ be the equilibrium point used by the OCSP
procedure, the obstacles of the i − th scenario and a ball of radius δ > 0,
respectively;
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1. For each Obij , compute

(pij)
min = arg min

p∈Obij
{dist(p,Bxeq)}

and the hyperplane (hij)
1 :=

{
(Hi

j)
T
s1Bx = (gij)s1

}
such that (pij)

min ∈ (hij)
1;

2. For each Obij , determine the closest hyperplane

(hij)
2 :=

{
(Hj

i )Ts2Bx = (gij)s2

}
, (hij)

2 6= (hij)
1,

to the point (pij)
min;

3. For each Obij , define the “external” half-spaces as

(spij)
1 :=

{
(Hi

j)
T
s1Bx > (gij)s1

}
(spij)

2 :=
{

(Hi
j)
T
s2Bx > (gij)s2

}
4. For each Obij

a) if Bxeq ∈ ((spij)
1 ∩ (spij)

2 ∼ Bδ), then (cij)
a = (spij)

1 ∩ (spij)
2;

b) else if Bxeq ∈ ((spij)
1 ∩ (spij)

2) and d(Bxeq, (sp
i
j)

1) < δ, then (cij)
a =

(spij)
2;

c) else if Bxeq ∈ ((spij)
1 ∩ (spij)

2) and d(Bxeq, (sp
i
j)

2) < δ, then (cij)
a =

(spij)
1;

d) else (cij)
a = (spij)

1;
5.

(ci)a = (ci1)a∩(ci2)a∩. . .∩(cini)
a =

ni⋂
j=1

{
x ∈ IRn | (Hi

j)
aBx > (gij)

a
}

(3.7)

Remark 3.9. Note that the Step 4 allows to achieve a convex relaxation of the union
set operator in (3.5) whose rationale directly comes out from Statement 3.8 argu-
ments, while the Step 5 computes the convexification of the whole region (3.5).
Therefore, for each Oi the following additional geometric constraints must be im-
posed

(Hi
j)
aBx > (gij)

a, j = 1, . . . , ni. (3.8)

Moreover, the vanishing tolerance level δ is instrumental to univocally identify the
half-spaces to which the equilibrium xeq belongs and, as a consequence, the con-
straints to be imposed at the Step 2 of the OCSP in place of (3.2). 2

Finally, Fig. 3.2 provides a graphical illustration of the conditions outlined in Step
4. There by referring to the obstacle labelled with Ob1, the point Bxeq belongs to
the intersection of the two half-spaces characterized by (hi1)1 and (hi1)2 under the
restriction imposed by the tolerance level δ. This matches the prescriptions of the
case 4 .a), therefore the constraints to impose are
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Fig. 3.2. Convexification procedure description

(Hi
1)s1Bx > (gi1)s1

(Hi
1)s2Bx > (gi1)s2

and the grey zone in Fig. 3.2 describes the convexified region (ci1)a. A similar rea-
soning applies to the other obstacles.

3.2.3 Time-varying obstacle scenario occurrences

The point (b) focuses on the difficulties arising when unpredictable obstacle scenario
changes occur. Since the l controllable set sequences {T ik }, i = 1, . . . , l, are com-
puted under the hypothesis that a single obstacle scenarioOi takes place, the viability
retention cannot be ensured when Oi → Oi′ because a switching to a different set
sequence must be imposed.
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Here, the idea is to design two further families of one-step controllable sets,
hereafter named Obstacle and Scenario Switching sequences, whose combined use
allows to safely switch to {T i′k }.

Obstacle controllable sequences

The Obstacle sequences {T Ob
i′
j

k }, j = 1, . . . , ni′ , have the aim to encircle the cor-
responding obstacles Obi

′

j , , j = 1, . . . , ni′ and they are introduced because of the
following argument:

Statement 3.10. Let Oi be the current scenario, if at time t̄ the obstacle scenario
change Oi → Oi′ occurs and the current state x(t̄) /∈ T i′k , for some k, then colli-
sions could happen because the sequence {T ik } is no longer admissible.

In order to avoid such an undesired event, the Obstacle sets are designed such that

when x(t̂) ∈ {T Ob
i′
j

k }, t̂ ≥ t̄, the trajectory x(t), ∀t ≥ t̂ remains confined into them
until the switching to the correct sequence {T i′k } is made admissible.

The computation of the sequences {T Ob
i′
j

k }, j = 1, . . . , ni′ , is performed by us-
ing the OCSP procedure where both x(0) and xf are substituted with the equilibria

x
Obi
′
j

eq , j = 1, . . . , ni′ . These equilibrium points are selected as those at the maxi-
mum distance from the obstacles Obi

′

j , j = 1, . . . , ni′ , and satisfying the following
condition:

dist(Bx
Obi
′
j

eq , Obi
′

j ) < dist(T imaxj , Ob
i′

j ), j = 1, . . . , ni′ , (3.9)

where T imaxj are the sets corresponding to the greatest indices s of {T is } such that

T imaxj ∩Ob
i′

j = ∅, j = 1, . . . , ni′ (3.10)

For the sake of clarity, an example of the above reasoning is given in Fig. 3.3.

Controllable sequences in a Scenario switching

Although the Obstacle sequences have the important merit to avoid collisions when
the scenario Oi′ occurs, their use leads to the following drawback:

Statement 3.11. Let Oi → Oi′ be a generic scenario change occurrence, once the

trajectory x(·) enters inside the region defined by {T Ob
i′
j

s }, it is by construction

driven to the terminal region T Ob
i′
j

0 centered at the equilibrium x
Obi
′
j

eq and it will be
there confined.
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Fig. 3.3. Obstacle sequence construction. The dashed ellipsoid is T imaxj . The arrow denotes
the increasing direction of the subscript k.

This situation clearly affects any vehicle chance to reach the target xf and for this
reason the trajectory x(·) must be driven towards the controllable sequence {T i′k }. To

this aim, the Scenario Switching sequences {T SW
i′
j

k }, j = 1, . . . , ni, are introduced
and designed as follows:

1. for any admissible scenario change Oi → Oi′ , choose an equilibrium x
SW i′

j
eq

belonging to some T i′k ;

2. apply the OCSP with x
Obi
′
j

eq in place of x(0) and x
SW i′

j
eq in place of xf .

Fig. 3.4 provides a graphical interpretation of the generation of Scenario Switching
sequences. Then, the switching {T ik } → {T i

′

k } is accomplished as follows:

• Let x(t̂) ∈ {T Ob
i′
j

k } be the current state. As soon as

x(t) ∈ T SW
i′
j

k , for some k and for some t ≥ t̂, (3.11)

the set-membership to {T SW
i′
j

k } is considered;
• As soon as

x(t̄) ∈ T i
′

k , for some k and for some t̄ ≥ t̂. (3.12)

the set-membership to {T i′k } can be used.
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Obxeq
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i’

j

Fig. 3.4. Scenario Switching sequence construction

A relevant aspect left out in the above developments is to guarantee that under a
scenario change the robot does not bump on any obstacle during the switching phase.

To this end, the sequences {T ik } and {T SW
i
j

k } are derived under the following further
condition:

‖B(x+ − x)‖ ≤ ε, (3.13)

where x+ = Φx + Gu is the disturbance-free one-step evolution. The inequality
(3.13) limits the maximum displacement of the one-step state evolution so that ob-
stacle constraints are satisfied with a tolerance level ε > 0. The scalar ε can be
determined by exploiting the Obstacle sequences properties as below detailed:

• for each scenarioOi and for each j−th obstacle, consider the sequence {T Ob
i
j

k }
and determine the sequence {T IN

i
j

m } as follows:T
INij
m := T Ob

i
j

LRij(m)

⋂
T Ob

i
j

LRij(m+1)
, m = 1, . . . ,dim(LRij)− 1

T IN
i
j

dim(LRij)
:= T Ob

i
j

LRij(1)

⋂
T Ob

i
j

LRij(dim(LRij))

(3.14)

where the index vectors LRij store the saturation regions for each sequence

{T Ob
i
j

k };
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• compute the minimum dij and maximum Di
j euclidean distances between the j −

th obstacle (polyhedron) and the indexed set sequence {T IN
i
j

m };
• compute

dmin := max
i=1,...,l,
j=1,...,pi

dij (3.15)

Dmax := min
i=1,...,l,
j=1,...,pi

Di
j (3.16)

ε := Dmax − dmin (3.17)

An illustration of formulas (3.15)-(3.16) is provided in Fig. 3.5.

D

dmin

max

Fig. 3.5. Tolerance level ε computation

Remark 3.12. The shortest distance dij between two convex sets can be obtained
by using the algorithm proposed in [29], whereas an efficient procedure to estimate
the maximum distance Di

j is given in [74] where Hausdorff distance arguments are
exploited. 2

One-step controllable families computation

The consequence of all the above developments is that the set sequences must be
computed by using the following scheme:
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Families Construction Procedure (FCP)

0. Let G = (V,E) be the oriented graph with V the l obstacle scenarios and E
the set of ordered pairs {i, i′} , i, i′ ∈ V, such that the switching Oi → Oi′ is
admissible;

1. Generate the sequences {T ik }, i = 1, . . . , l;

2. Generate the Obstacle families {T Ob
i
j

k }, ∀i ∈ Vr, j = 1, . . . , ni, according to
(3.9)-(3.10);

3. Estimate the tolerance level ε by (3.15)-(3.17);
4. Update the sequences {T ik }, i = 1, . . . , l under the additional constraint (3.13);

5. Generate the sequences {T SW
i
j

k }, ∀i ∈ Vr, j = 1, . . . , ni under the additional
constraint (3.13).

Finally, Fig. 3.6 depicts a sketch of the switching modus operandi under an obstacle
scenario change.
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Fig. 3.6. Obstacle scenario change: Oi → Oi
′
: Oi sequence (white), Obstacle sequence

(green), Scenario Switching sequence (grey), Oi
′

sequence (red)

3.3 RHC algorithm

In this section a Receding Horizon Control strategy is outlined by collecting all the
above developments. In the sequel the following further assumptions are made:
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Assumption 3.13. At each time instant t the robot is informed about the current
obstacle scenario, i.e. sc(t). 2

Assumption 3.14. At each time instant t, an obstacle scenario change Oi → Oi′

can occur if the actual robot position xp(t) = Bx̄(t) is such that:

x̄(t) /∈
ni′⋃
j=1

{x ∈ IRn |Hi′

j Bx ≤ gi
′

j + dmin} (3.18)

2

Remark 3.15. The rationale behind Assumption 3.14 is to require that an obstacle
configuration change can occur only when the current robot position does not lie in
the region pertaining to the new obstacle scenario Oi′ .

Obstacle Avoidance MPC (OA-MPC) Algorithm

Off-line:

1 Given the obstacle scenarios Oi, i = 1, . . . , l, the initial condition x(0) and the
goal xf , compute the non-empty robust invariant ellipsoidal region T0 and the
stabilizing feedback gain K0 complying with the constraints (2.2), (2.3), (3.8);

2 Apply the FCP scheme in order to generate the sequences {T ik }, i = 1, . . . , l,

{T Ob
i
j

k }, ∀i ∈ Vr, j = 1, . . . , ni, and {T SW
i
j

k }, ∀i ∈ Vr, j = 1, . . . , ni such
that

x(0)∈

 ⋃
i=1,...,l

k

T ik

∪
 ⋃
∀i∈Vr

j=1,...,ni,
k

T Ob
i
j

k

∪
 ⋃
∀i∈Vr

j=1,...,ni,
k

T SW
i
j

k


3 Store the ellipsoidal sequences.

On-line:
1: if

x(t)∈

(⋃
k

T sc(t)k

)
∪

 ⋃
j=1,...,ni,

k

T Ob
sc(t)
j

k

 ∪
 ⋃
j=1,...,ni,

k

T SW
sc(t)
j

k


then curr := sc(t)

2: elsecurr := prec;
3: end if
4: if x(t) ∈

⋃
k

T currk then
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5: goto Step 10 by considering T currk as the candidate sequence, i.e.
T candidatek .

6: end if
7: if x(t) ∈

⋃
j=1,...,ni,

k

T SW
curr
j

k then T candidatek := T SW
curr
j

k

8: elseT candidatek := T Ob
curr
j

k

9: end if
10: Find k(t) := min

k
{x(t) ∈ T candidatek }

11: if k(t) ∈ IRcandidate then u(t) = Kk(t)x(t)
12: else
13: if curr==sc(t) then

u(t) = arg min Jk(t)(x(t), u) s.t. (3.19)

Φx(t) +Gu ∈ T̃ candidatek(t)−1 , u ∈ U (3.20)

14: else
u(t) = arg min Jk(t)(x(t), u) s.t. (3.21)

‖B(Φx(t) +Gu− x(t))‖22 ≤ ε2 (3.22)

Φx(t) +Gu ∈ T̃ candidatek(t)−1 , u ∈ U (3.23)

15: end if
16: end if
17: Apply u(t); prec:=curr; t := t+ 1; goto Step 1

Notice that as in (2.12)-(2.13) the optimization problems (3.19)-(3.20) and (3.21)-
(3.23) are independent of Jk(t)(x, u). A typical choice for autonomous vehicle is

Jk(t)(x, u) = ‖Φx(t) +Gu‖2(
P̃ candidate
k(t)−1

)−1

where ‖Φx(t)+Gu‖2(
P̃ candidate
k(t)−1

)−1 characterizes the one-step ahead state prediction

with P̃ candidatek(t)−1 the shaping matrix of the ellipsoidal region

T̃ candidatek(t)−1 :=

{
x ∈ IRn : (x− xk(t)−1

eq )T
(
P candidatek(t)−1

)−1

(x− xk(t)−1
eq ) ≤ 1

}
and xk(t)−1

eq the center of T̃ candidatek(t)−1 . This choice is used to impose a decrease of the
membership index k(t) as fast as possible and to consequently minimize the time
necessary to reach the goal location.
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Remark 3.16. It is worth to underline that in Step 13 the computation of the current
command input u(t) is achieved without imposing the one-step constraint (3.13) as
done in Step 14. In fact, note that if the robot state measurement belongs to the cur-
rent obstacle scenario sc(t) collisions do not occur, therefore the requirement (3.13)
becomes useless. As a consequence, the overall control performance are improved.
2

The next proposition shows that the proposed OA-MPC algorithm enjoys the
feasibility retention and closed-loop stability properties.

Proposition 3.17. Let the sequences of sets
{
T ik
}
,

{
T SW

i
j

k

}
and

{
T Ob

i
j

k

}
be non-

empty and

x(0) ∈

 ⋃
i=1,...,l

k

T ik

 ∪
 ⋃
∀i∈Vr

j=1,...,ni,
k

T Ob
i
j

k

 ∪
 ⋃
∀i∈Vr

j=1,...,ni,
k

T SW
i
j

k


Then, the OA-MPC algorithm always satisfies the constraints and ensures Uniformly
Ultimate Boundedness for all time-varying occurrences of Oi, i = 1, . . . , l.

Proof. Note that existence of solutions at time t implies existence of solutions at time
t + 1, because the optimization problems in Steps 13 and 14 are always feasible. In
fact, by construction there exists an input vector u satisfying the constraints (2.2),
(2.3), (3.8) and (3.22) such that the set-membership requirement in (3.20) holds true.
Then thanks to the FCP procedure and under the additional constraint constraints
(3.13), at the next time instant t+ 1 the existence of a solution u(t+ 1) for the Step
13 or 14 is ensured.

Finally, Uniformly Ultimate Boundedness of the strategy follows by noting that
the trajectory is in the worst case confined within to the following union of sets:

 ⋃
i=1,...,l

k

T ik

 ∪
 ⋃
∀i∈Vr

j=1,...,ni,
k

T Ob
i
j

k

 ∪
 ⋃
∀i∈Vr

j=1,...,ni,
k

T SW
i
j

k


2

3.4 Extension to nonlinear vehicle models

Since the autonomous ground vehicles exhibit highly nonlinear behaviours, a linear
kinematic description may result too simple for both analysis and control aims. Most
of the literature contributions makes use of the well-known feedback linearization
approach in order to design trajectory tracking controllers (Section 8.5.2 in [113]):
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one of the main advantages is that a linear model for UGVs can be used. Nonetheless,
direct nonlinear control schemes are by no means useful when the involved nonlin-
earities are not mild or the model uncertainty prevents the exploitation of feedback
linearization technicalities, see [].

In view of this reasoning, the aim of this section is to derive proper characteriza-
tions of the set-theoretic MPC scheme (the OA-MPC algorithm) for both uncertain
polytopic and polynomial models by preserving all the properties (Proposition 3.17)
pertaining to the LTI case.

3.4.1 Robust polytopic uncertain models

Consider autonomous vehicles described by the following polytopic family of discrete-
time linear systems [14]

x(t+ 1) = Φ(p(t))x(t) +G(p(t))u(t) +Gd(p)wd(t) (3.24)

where p(t) ∈ IRnp is an unknown set-membership, possibly time-varying, parameter
vector. In (3.24) the system matrices Φ(p), G(p) and Gw(p) belong to the polytopic
matrix family

Ω(P) :=

{
(Φ(p), G(p), Gd(p)) =

np∑
γ=1

pγ(Φγ , Gγ , Gdγ )

}

where the triple (Φγ , Gγ , Gdγ ) denotes the vertices of the polytope Ω(P) , viz.
(Φγ , Gγ , Gdγ ) ∈ vert {Ω(P)} , ∀γ = 1, . . . , np. The vector parameter p =
[p1, . . . , pnp ] is assumed to belong to the unit simplex

P :=

{
p ∈ IRnp :

np∑
γ=1

pγ = 1, pγ ≥ 0

}

Remark 3.18. By considering the UGV nonlinear model (2.1), a multi-model state
space description can be achieved by resorting to the following ideas proposed in
[64]:

1. Operating points approximation: suppose that for (2.1) input/output data sets at
different operating points are available. From each data set, a number of linear
models (involving the same state vector x) are derived. Then it is reasonable to
assume that any analysis and design methods for the polytopic system (3.24)
with vertices given by the linear models will apply to the real system;

2. Polytopic embedding: suppose that the Jacobian [∂f/∂x ∂f/∂u] of (2.1) is
known to lie in the polytope Ω(P). Then it can be shown that every trajectory
(x, u) of the original nonlinear system is also a trajectory of (2.1) for some linear
time varying (LTV) system inΩ(P) [73]. Thus the original nonlinear system can
be approximated (possibly conservatively) by a polytopic uncertain LTV system.
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2

In order to adapt the OA-MPC algorithm to the description (3.24), the following
two technical aspects have to be revisited:

(a) One-step ahead controllable sets approximation. A new ellipsoidal approxima-
tion of each element of the one step controllable family {Ξk} is required to com-
ply with polytopic models.

(b) On-line OA-MPC algorithm. On the basis of the new one-step controllable set
construction, the optimization problem in Steps 13 and 14 must be accordingly
modified.

(a) One-step ahead controllable set approximation

The ellipsoidal set computation of Section 2.2.1 is extended to take care of the multi-
model state space description (3.24).
Consider the following set manipulations:

{ x ∈ X : ∃u ∈ U : ∀d ∈ D, ∀γ = 1, . . . np, Φγx+Gγu+Gdd ∈ Tk−1}
⊃ {x ∈ X :, ∃u ∈ U : ∀γ = 1, . . . np, Φγx+Gγu+Gdd ∈ In[Tk−1 ∼ GdD]}
= Projx{[x, u] : u ∈ U , x ∈ X and ∀γ = 1, . . . np, [x, u] ∈ T̃ γk−1} (3.25)

where the ellipsoidal set T̃ γk−1 is defined as follows in the extended space x, u :

T̃ γk−1 := {[x, u] : ∀γ = 1, . . . , np, Φγx+Gγu ∈ In[Tk−1 ∼ GdD]}.

Then, the resulting ellipsoidal one-step ahead set approximation is

Tk := Projx

[
In

[
np⋂
γ=1

T̃ γk−1

⋂(⋂
T Xh ×

⋂
T Uk
)]]

(3.26)

where the projection along x can be computed by solving the LMI optimization
problem (A.3).

(b) On-line OA-MPC algorithm

The control action computation in Steps 13 and 14 has to be modified according to
the polytopic plant structure. In particular, Step 13 becomes

u(t) = arg min
u

max
γ
‖Φγx(t) +Gγu‖2(

P̃ candidate
k(t)−1

)−1 s.t. (3.27)

Φγx(t) +Gγu ∈ T̃ candidatek(t)−1 , u ∈ U , γ = 1, . . . np (3.28)

whereas Step 14 modifies as
u(t) = arg min

u
max
γ
‖Φγx(t) +Gγu‖2(

P̃ candidate
k(t)−1

)−1 s.t. (3.29)
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‖B(Φγx(t) +Gγu− x(t))‖22 ≤ ε2 (3.30)

Φγx(t) +Gγu ∈ T̃ candidatek(t)−1 , u ∈ U , γ = 1, . . . np (3.31)

Notice that the minimum-time cost function assumes the following form:

Jk(t)(x, u) = max
γ
‖Φγx(t) +Gγu‖2(

P̃ candidate
k(t)−1

)−1 , γ = 1, . . . , np

As a consequence, a non-convex min-max optimization problem comes out. To over-
come such a difficulty, it is possible to exploit the fact that the proposed control
framework is irrespective of the chosen cost index: for instance Jk(t)(x(t), u) can be
modified by referring to any model inside the polytope Ω(p)

Jk(t)(x, u) = ‖Φ(p)x(t) +G(p)u‖2(
P̃ candidate
k(t)−1

)−1

Under this choice, the main consequence is that optimizations (3.27)-(3.28) and
(3.29)-(3.31) can be recast into semi-definite programming problems (SDPs).

3.4.2 Polynomial models

Polynomial models are a quite general class of non-linear systems able to describe
non-linear plants. In [107] it has been proved that any non-linear model can be re-
cast as a polynomial description via a suitable recasting procedure (see e.g. the PRA
procedure described in Section (2.3.4). As it is well-known, the dynamics of au-
tonomous ground vehicles gives rise to non-polynomial models and nonlinear re-
quirements (e.g. nonholonomic constraints) that can be manipulated and recast into
a polynomial form, see Appendix B. In this section, it will be shown that the jointly
use of set-theoretical arguments and SOS optimization technicalities allow to develop
a low-demanding polynomial scheme for solving the proposed OAMP problem.

Consider the following autonomous vehicles described by polynomial discrete-
time systems

x(t+ 1) = fp(x(t), u(t)) +Gdd(t) (3.32)

where fp : IRn× IRm× IRd → IRn is an array of multivariate polynomials,
x(t) = [xqa(t)T xva(t)T xb(t)

T ]T ∈ X ⊂ IRn the state with xqa ∈ IRq and xva ∈ IRv

accounting for the robot pose and its derivative respectively,

d(t) ∈ D ⊂ IRd, D := {d ∈ IRd | cd(d) ≤ 1} (3.33)

with cd(d) ∈ R[d] a convex and compact polynomial function representing unmod-
eled dynamics,

x(t) ∈ X , ∀t ≥ 0, X := {x ∈ IRn | cx(x) ≤ 1}, (3.34)

u(t) ∈ U , ∀t ≥ 0, U := {u ∈ IRm | cu(u) ≤ 1}, (3.35)
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where cx(x) and cu(u) are convex and compact polynomial scalar functions belong-
ing toR[x] andR[u], respectively.

As already stated the aim of this section is to present an MPC strategy exten-
sion for the class of nonlinear systems (3.32) subject to nonholonomic constraints.
In particular, the set-theoretic based scheme for LTI models (Sections 3.2-3.3) will
be extended to comply with the polynomial plant description (3.32). To this end, the
following points deserve an adequate consideration within the polynomial frame-
work:

(a) Computation of controllable set sequences {Ξk};
(b) Relaxation of the on-line optimization:

u(t) = arg min Jk(t)(x(t), u)
subject to (3.36)

fp(x(t), u) ∈ Ξ̃candidatek(t)−1 , u ∈ U (3.37)

(a) One-step controllable families: SOS characterization

The set of states k−steps controllable to Ξ can be, in principle, computed via the
following recursion

Ξ0 := Ξ
Ξk := {x ∈ X : ∃u ∈ U : ∀d ∈ D : fp(x, u) +Gdd ∈ Ξk−1}

= {x ∈ X : ∃u ∈ U : fp(x, u) ∈ Ξk−1 ∼ GdD}
=
{
x ∈ X : ∃u ∈ U : fp(x, u) ∈ Ξ̃k−1

} (3.38)

An alternative description of Ξk can be given in terms of appropriate polynomial
level surface function Vk(x, u) : IRn× IRm → IR+ in the extended space (x, u) [39]

Ξk := Projx {x ∈ X , u ∈ U : Vk(x, u) ≤ 1} (3.39)

with Vk ∈ P[x, u]. As a consequence, the set

{x ∈ X , u ∈ U : Vk(x, u) ≤ 1}

has the structure of a semi-algebraic subset of the real n×m-dimensional space [91].
An equivalent description of Ξ̃k and Ξ̃k is

Ξk := {x ∈ IRn : Ψk(x) ≤ 1}

Ξ̃k :=
{
x ∈ IRn : Ψ̃k(x) ≤ 1

}
= Ξk ∼ GdD

with Ψk(·), and Ψ̃k(·) ∈ P[x].
With these premises, assume that the vehicle is subject to nonholonomic constraints
of the following form:
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aTp (xqa(t))xva(t) = 0, p = 1, . . . , na, ∀t ∈ ZZ+, (3.40)

with na the number of nonholonomic constraints and ap : IRq → IRv, p =
1, . . . , na, non linear functions of the vehicle pose, see [30]. Then, by defining a col-
lection of polynomial functions {Vk(x, u)}, the sets of states k−steps controllable
to Ξ0, complying with constraints (3.35)-(3.34) and (3.40), can be characterized as
follows:

Ξk = Projx{x ∈ X ⊆ Rn, u ∈ U ⊆ Rm|Vk(x, u) ≤ 1} (3.41)

where Vk(x, u) satisfies the condition

Vk(x, u) > 0, ∀u ∈ Rm\ {0} , ∀x ∈ Rn\ {0}
Vk(0, 0) = 0

(3.42)

and the following set containment

{x ∈ IRn, u ∈ IRm : Vk(x, u) ≤ 1}⋂
{x ∈ IRn, u ∈ IRm : cx(x) ≤ 1}

⋂
{x ∈ IRn, u ∈ IRm : cu(u) ≤ 1}

na⋂
p=1

{
x ∈ IRn, u ∈ IRm : aTp (xq(t))xv(t) = 0

}
⊆
{
x ∈ IRn, u ∈ IRm : Ψ̃k−1(fp(x, u)) ≤ 1

} (3.43)

Note that condition (3.43) rephrases recursion (3.38) in the extended space (x, u) and
(3.42)-(3.43) define a contractive family {Vk(x, u)} as required for candidate non-
increasing Lyapunov functions [10]. Furthermore (3.43) defines a semi-algebraic sets
that can be rewritten according to the P-satz formalism as

x ∈ IRn

u ∈ IRm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− Vk(x, u, d) ≥ 0
1− cx(x) ≥ 0
1− cu(u) ≥ 0
aT1 (xq(t))xv(t) = 0

...
aTna(xq(t))xv(t) = 0

Ψ̃k−1(fp(x, u))− 1 ≥ 0

Ψ̃k−1(fp(x, u))− 1 6= 0

is empty (3.44)

Condition(3.44) can be tested making use of the next bounded degree P-satz refuta-
tion certificate

s0 + (1− Vk(x, u))s1 + (1− cu(u))s2 + (1− cx(x))s3+

+(Ψ̃k−1(fp(x, u)− 1)s4 + (1− Vk(x, u))(1− cu(u))s5+

+(1− Vk(x, u))(1− cx(x))s6 + (1− Vk(x, u))(Ψ̃k−1(fp(x, u))− 1)s7+

+(1− cu(u))(1− cx(x))s8 + (1− cu(u))(Ψ̃k−1(fp(x, u))− 1)s9+

+(1− cx(x))(Ψ̃k−1(fp(x, u))− 1)s10 +

na∑
p=1

(aTp (xq(t))xv(t))zp)

+(1−cu(u))(1−cx(x))(Ψ̃k−1(fp(x, u))−1)s11+(Ψ̃k−1(fp(x, u))−1)2n1 = 0
(3.45)
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where n1 ∈ ZZ+, s0, . . . , s10 ∈
∑
n+m+d and z1, . . . , zna ∈ Rn+m+d. Starting

from (3.45) a simplified and sufficient SOS optimization problem can be derived by
noticing that

• s1 is positive semidefinite and, as a consequence, it can be removed from (3.45)
introducing an inequality (≤);

• n1 is a free parameter, then it can be fixed (n1 = 1);

Remark 3.19. Notice that further simplifications of 3.45 are possible. For further
examples refers to the ideas and technicalities developed in [116].

Collecting all the above developments the following proposition holds true:

Proposition 3.20 (One-step controllable set P-satz certificate ). Conditions (3.42)-
(3.43) are satisfied if there exists a candidate function Vk(x, u) ∈ Σn+m, polynomial
multipliers ŝp ∈ Σn+m, p = 1 . . . 6, ẑp ∈ Rn+m, p = 1, . . . na and a radially
unbounded positive definite function l1 such that:

Vk(x, u)− l1(x, u) ∈ Σn+m+d (3.46)


− [ (1− Vk(x, u))ŝ1 + (1− cu(u))ŝ2 + (1− cx(x))ŝ3(Ψ̃k−1(f(x, u)− 1)ŝ4+
+(1− Vk(x, u, d))(1− cu(u))ŝ5 + (1− Vk(x, u))(1− cx(x))ŝ6+

+

na∑
p=1

(aTp (xq(t))xv(t))ẑp)
]
∈ Σn+m

(3.47)

Remark 3.21. An inner approximation of the one-step controllable region in the ex-
tended space (x, u) can achieved by means of the following BMI optimization prob-
lem (see [54] and [122] for examples of fitting solvers){

V̂k(x, u), {ŝp}6p=1, {ẑp}
na
p=1

}
:= arg min

Vk(x,u,d)∈
∑
n+m

sp∈Σn+m,i=1,...,6,

zp∈IRn+m,p=1,...,na,
l1∈Σn+m

Trace (Q−1
k )

s.t. (3.46)− (3.47)

(3.48)

where Qk is the Gram matrix of the decomposition

Vk(x, u) = ϕT (x, u)Q−1
k ϕ(x, u)

and Qk can be viewed as a shaping matrix of an ellipsoid in the extended space
(x, u). 2

Remark 3.22. Once the set {x ∈ X , u ∈ U : Vk(x, u) ≤ 1} is obtained, the pro-
jected setΞk along x can be easily computed by exploiting the quantifier elimination
procedure detailed in [18]. 2
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Remark 3.23. Finally, notice that the additional constraint

‖B(f(x(t), u)− x(t))‖22 ≤ ε2

straightforwardly translates into a SOS requirement and, therefore, can be used
within the polynomial version of the FCP procedure. 2

On-line optimization: relaxed SDP problem

Here, a convenient formulation of the optimization (3.36)-(3.37) is provided so that
it can be rephrased into a SDP problem. As detailed in Section 3.3 , the on-line
phase of the RHC algorithm (namely OA-MPC) prescribes the solution of one of the
following optimization problems:

u(t) = arg min
u

Jk(t)(x(t), u) s.t. (3.49)

fp(x(t), u) ∈ Ξ̃k(t)−1, u ∈ U (3.50)

or

u(t) = arg min
u

Jk(t)(x(t), u) s.t. (3.51)

‖B(fp(x(t), u)− x(t))‖22 ≤ ε2 (3.52)

fp(x(t), u) ∈ Ξ̃k(t)−1, u ∈ U (3.53)

As it is evident the optimization (3.49)-(3.50) and (3.51)-(3.53) are both computa-
tionally high demanding for a real time resolution and, therefore, a relaxation proce-
dure have to be considered.
To this end, note first that (3.51)-(3.53) can be used in place of (3.49)-(3.50) when-
ever the latter is required. This allows to simply define an affordable on-line opti-
mization problem without alter the OA-MPC simplicity.
Then the sets of states and inputs satisfying (3.52)-(3.53) belongs to

S̃k(t)−1 :=

{
x ∈ IRn, u ∈ U :

∣∣∣∣ Ψ̃k(t)−1(fp(x, u)) ≤ 1
‖B(fp(x(t), u)− x(t))‖22 ≤ ε2

}
(3.54)

with Ψ̃k(t)−1(fp(x, u) and ‖B(fp(x(t), u) − x(t))‖22 SOS polynomials. Then, the
following inner ellipsoidal approximation of Sk(t)−1 is considered in the extended
space (x, u) :

T̃ (Ξk(t)−1) :=
{

[xT , uT ]T ∈ IRn+m : [xT , uT ]P−1
k(t)−1[xT , uT ]T ≤ 1

}
⊆ S̃k(t)−1

(3.55)
Using (3.55) in place of S̃k(t)−1 does not ensure feasibility retention of the OA-MPC
algorithm: such a property is simply recovered by computing the entire sequence
{Ξk} under the satisfaction of the relaxation (3.55), i.e.
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Polynomial Ellipsoidal Set (PES) Procedure

1. Given the set Ξk−1, compute the inner ellipsoidal approximation T̃ (Ξk−1) of
S̃k−1 by solving an Eigenvalue LMI optimization problem (EVP) [25];

2. Solve the optimization problem (3.48) with

[xT , uT ]P−1
k(t)−1[xT , uT ]T ≤ 1

in place of Ψ̃k−1(fp(x, u)) ≤ 1;
3. Compute the projection (3.39).

Finally, the optimization (3.51)-(3.53) can be recast into a simple LMI problem.

Proposition 3.24. The optimization (3.51)-(3.53) is recast into the following semi-
definite programming problem:

min
u
γ (3.56)

s.t.
[
γ [x(t)T uT ]
∗ Pk(t)−1

]
≥ 0 (3.57)

Proof. The aim of the optimization problem (3.51)-(3.53) is to compute a control
action u such that fp(x(t), u) ∈ Ξ̃k(t)−1 while minimizing a given cost function
Jk(t)(x(t), u). Then, by using the ellipsoidal approximation T̃ (Ξk(t)−1), a reason-
able cost function is given by

T̃ (Ξk(t)−1, γ) :=
{

[xT , uT ]T∈ IRn+m: [xT , uT ]P−1
k(t)−1[xT , uT ]T≤ γ, γ∈ IR+

}
with γ a slack variable. With the latter the optimization (3.51)-(3.53) can be rewritten
as

min
u
γ s.t.[

x(t)T , uT
]
∈ T̃ (Ξk(t)−1, γ), u ∈ U

(3.58)

Finally, making use of Schur complements, optimization (3.58) simply translates into
(3.56)-(3.57). 2

SOS RHC algorithm

For sake of completeness the modified version of the OA-MPC algorithm, complying
with the non-linear polynomial framework, is here reported:
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Sum-of-Squares Obstacle Avoidance MPC (SOS-OA-MPC) Algorithm

Off-line:

1 Given the obstacle scenarios Oi, i = 1, . . . , l, the initial condition x(0) and the
goal xf , compute a non-empty robust invariant ellipsoidal region T0 ⊂ IRn

and a stabilizing feedback gainK0 complying with the constraints (3.33)-(3.35),
(3.40) and (3.7);

2 Jointly apply the FCP and PES procedures to generate the sequences {T ik }, i =

1, . . . , l, {T Ob
i
j

k }, ∀i ∈ Vr, j = 1, . . . , ni, and {T SW
i
j

k }, ∀i ∈ Vr, j =
1, . . . , ni, and the following inner ellipsoidal approximations
•
{
T ik
}
→

{
T̃
(
Ξik
)}
, i = 1, . . . , l;

•
{
T Ob

i
j

k

}
→

{
T̃
(
Ξ
Obij
k

)}
, ∀i ∈ Vr, j = 1, . . . , ni;

•
{
T SW

i
j

k

}
→

{
T̃
(
Ξ
SW i

j

k

)}
, ∀i ∈ Vr, j = 1, . . . , ni;

such that

x(0)∈

 ⋃
i=1,...,l

k

T̃
(
Ξik
)∪

 ⋃
∀i∈Vr

j=1,...,ni,
k

T̃
(
Ξ
Obij
k

)∪
 ⋃
∀i∈Vr

j=1,...,ni,
k

T̃
(
Ξ
SW i

j

k

)
3 Store the ellipsoidal sequences.

On-line:
1: if

x(t)∈

(⋃
k

T̃
(
Ξ
sc(t)
k

))
∪

 ⋃
j=1,...,ni,

k

T̃
(
Ξ
Ob

sc(t)
j

k

)∪
 ⋃
j=1,...,ni,

k

T̃
(
Ξ
SW

sc(t)
j

k

)
then curr := sc(t)

2: else curr := prec;
3: end if
4: if x(t) ∈

⋃
k

T̃ (Ξcurrk ) then

5: goto Step 10 by considering T̃ (Ξcurrk ) as the candidate sequence,
i.e. T̃

(
Ξcandidatek

)
;

6: end if
7: if x(t) ∈

⋃
j=1,...,ni,

k

T̃
(
Ξ
SW curr

j

k

)
then T̃

(
Ξcandidatek

)
:= T̃

(
Ξ
SW curr

j

k

)
8: elseT̃

(
Ξcandidatek

)
:= T̃

(
Ξ
Obcurrj

k

)
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9: end if
10: Find k(t) := min

k
{x(t) ∈ T̃

(
Ξcandidatek

)
}

11: if k(t) ∈ IRcandidate then u(t) = Kk(t)x(t)
12: else
13: solve (3.56)-(3.57)
14: end if
15: Apply u(t); prec:=curr; t := t+ 1; goto Step 1

Proposition 3.25. Then, the SOS-OA-MPC algorithm always satisfies the constraints
and ensures Uniformly Ultimate Boundedness for all time-varying occurrences of
Oi, i = 1, . . . , l.

Proof. Using the same arguments exploited in Proposition 3.17.

3.5 Simulations

The aim of this section is to present results on the effectiveness of the proposed ob-
stacle avoidance MPC strategy. The first two numerical examples (Barrier and Cafe-
teria) concern with a linear point mobile robot while the final experiment considers
a Non-Linear Differential Drive vehicle. Numerical comparisons with the well es-
tablished road-map Cell decomposition algorithm [1] are provided both in terms of
path planning performance and computational complexity. The latter is justified by
the fact that to the best author’s knowledge, complete competitor schemes (planner +
controller) are not present in literature. All the simulations have been implemented
within the Matlab R2013 b environment, making use of the Multi-Parametric, Ellip-
soidal, and SOS Toolboxes [55], [66], [93] over a laptop PC equipped with a Intel
Core(TM) 2 Duo CPU.

3.5.1 Barrier and Cafeteria examples

Consider the point mobile robot model described in [67] whose the state consists of
position and velocity components x = [px py vx vy]T and motions are governed by
the following discrete-time LTI model:

x(t+ 1) = Φx(t) +Gu(t) +Gdd(t) (3.59)

where u ∈ IR2 is the acceleration vector and

Φ =

[
I2 ∆t I2
02 I2

]
, G =

[
(∆t)2 I2

2
∆tI2

]
, Gw = G (3.60)

with ∆t = 1 s and
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d(t) ∈ D := {d ∈ IR2 : ‖d‖2 ≤ 0.01},∀t ≥ 0. (3.61)

Moreover, the following constraint on the acceleration vector is prescribed

‖u(t)‖22 ≤ 0.028, ∀t ≥ 0 (3.62)

Barrier configuration

This example refers to a critical case of study because the working environment is
represented by a very narrow area and the single polyhedral obstacle Ob1 moves
along a straight line so that it virtually describes a particular obstacle configuration
hereafter denoted as barrier, see Fig. 3.7. The obstacle positions are below reported:

Obstacle width heigth scenario center of gravity
Ob1 1 1 1 [2.5; 0.5]
Ob1 1 1 2 [2.5; 1.5]
Ob1 1 1 3 [2.5; 2.5]
Ob1 1 1 4 [2.5; 3.5]

0 0. 5 1 1. 5 2 2. 5 3 3. 5 4 4. 5 5
0

0. 5

1

1. 5

2

2. 5

3

3. 5

4

p
x
 [m]

p
y
 [
m

] xfx(0)

Fig. 3.7. Working planar scenario

In particular, we have considered the following situations:

a) The production line correctly operates and the obstacle circularly moves from the
scenario 1 to the scenario 4;

b) At a certain time instant a malfunction is detected, the production line stops its
normal behaviour and it is necessary to come back from the phase 3 to the phase
2. Then, it resumes the prescribed operations.
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In order to implement the OA-MPC-algorithm, the terminal pair (K0, T0) has been
first determined as follows:

K0 =

[
−0.1447 −0.1446 −0.2780 −0.2678
−0.1446 −0.1447 −0.2678 −0.2780

]
,

T0 = {x ∈ IRn | (x− xf )T (P0)−1 (x− xf ) ≤ 1}

with

(P0)−1 =


0.1925 0.1792 −0.0595 −0.594
0.1792 0.1925 −0.0594 −0.0595
−0.0595 −0.0594 0.1078 0.1078
−0.0594 −0.0595 0.1078 0.1078


Then, the ellipsoidal families have been off-line derived by using the FCP procedure:

• {T Ob
1
1

s }190
s=1, {T

Ob21
s }147

s=1, {T
Ob31
k }149

k=1, {T
Ob41
k }200

k=1

• {T 1
k }72

k=1, {T 2
k }87

k=1, {T 3
k }98

k=1, {T 4
k }72

k=1

• {T SW
1
1

k }10
k=1, {T

SW 2
1

k }2k=1, {T
SW 3

1

k }43
k=1, {T

SW 4
1

k }105
k=1

with the estimated tolerance level ε = 0.2867.
The on-line numerical results are collected in the next Figs. 3.8-3.13. Specifically,

Figs. 3.8-3.10 refer to a) and it is interesting to note how the set-membership signal
in Fig. 3.9 copes with the obstacle configurations occurrences, see Fig. 3.8. On the
other hand the second group of Figs. 3.11-3.13 reports the results for the scenario
b) by assuming that a malfunctioning occurs within the time interval [55 80] s. By
taking a look at the grey zones of Figs. 3.11-3.12, it is relevant to observe that the OA-
MPC algorithm prescribes that the current state first belongs to the family {T Ob

2
1

k }
and then to {T Ob

3
1

k } : therefore this undesired phenomenon is efficiently ridden out.
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Fig. 3.8. Obstacle scenario switchings
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Fig. 3.10. Robot path under time-varying obstacles: OA-MPC algorithm (blue continuous
line), Cell decomposition (red dashed line)

Comparisons with the modified Cell Decomposition algorithm have been performed
by evaluating the path planning length. The results are summarized in Table 3.1
where it is clearly shown that the proposed strategy, although not oriented to the
path planning optimization, provides performance similar to those obtained by the
road-map algorithm.

Finally, Table 3.2 reports the computational complexity pertaining to both the
Off-line and On-line phases of the OA-MPC algorithm evaluated by computing the
average CPU time (seconds). As expected, most of the overall computational loads
have been moved to the Off-line phase (918 s) so rendering affordable the use of the
proposed strategy from a practical point of view.
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Cell Decomposition OA-MPC
a) 4.60 m 5.68 m
b) 7.05 m 5.59 m

Table 3.1. Paths length (meters)

Off-line burdens

Basic sequences: 330
Obstacle sequences: 480
Scenario switching sequences: 108

918
On-line burdens 0.05

Table 3.2. Numerical burdens: average CPU
time (seconds)

On the other hand, it is relevant to put in evidence that the modified Cell decompo-
sition algorithm, whose cost is only related to the path planning (not to the control
action computation), presents an on-line computational load of a magnitude order
greater than the proposed OA-MPC scheme, i.e. 0.45 s. The latter is mainly due
to the fact that the road-map method must on-line recomputed the visibility graph
whenever an obstacle scenario change occurs.
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Fig. 3.13. Robot path under time-varying obstacles: OA-MPC algorithm (blue continuous
line), Cell decomposition (red dashed line)

Cafeteria

The small cafeteria (size: 21m2) depicted in Fig. 3.14 consists of three areas:
counter, kitchen and tables. Due to the limited free space, few guests can jointly
access and they can move along prescribed lines (dashed lines): entrance-to-counter
and counter-to-tables. In order to improve the cost efficiency, an autonomous ground
vehicle for carrying plates from the kitchen to the counter and vice-versa is used.
The main drawback of this idea is related to the motion of the people (time-varying
obstacles) that may block the robot transit.

In the sequel, the cafeteria-guest-robot architecture is recast within the proposed
strategy under the following assumptions:

1. almost two guests at a time are allowed along the lines;
2. people move following the directions indicated by the red arrows;
3. the walkable path is partitioned in six zones (dotted polygons in Fig. 3.14).

Assumption 1 defines the number of moving obstacles whereas Assumption 3 fixes
the obstacle locations within the environment. Notice that an obstacle scenario
change occurs only when a guest trespasses the limits of his current zone.
By considering the combinations with repetition (i, i′) of the six polygons, we have
that the number of the admissible obstacle scenarios is l = 21. Moreover under the
Assumption 2, the oriented graph G = (V,E),whose rules are shown in Fig. 3.15, is
obtained. Finally, in order to provide a mapping between the l obstacle scenarios and
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the nodes V we have that: At each node (i, i′), i = 1, . . . l, i′ = i, . . . l, corresponds

the following scenario index:

scenario← 6(i− 1)−
i−1∑
k=1

k + i′

To appreciate the modus operandi of the proposed scheme, let us analyze the
robot behaviour from the kitchen to the counter shown in Fig. 3.14. First, at t = 95 s

the obstacle scenario change

20︷ ︸︸ ︷
(5, 6) →

5︷ ︸︸ ︷
(1, 5) (see Fig. 3.16) hampers the transit of

the robot towards the counter because the occurrence of the obstacle zone 5 and the
fact that x(95) ∈ T 20

55 do not guarantee the obstacle avoidance. Since in principle the

sequence {T 5
k } should be used, a switching to {T Ob

5
2

k } is initially performed and, as
a consequence, the robot trajectory deviates from the ideal path, see Fig. 3.14.

Later, at t = 126 s the switching

10︷ ︸︸ ︷
(2, 5) →

11︷ ︸︸ ︷
(2, 6) occurs, the area 5 is walkable and

therefore the strategy is capable to select the “optimal” set sequence, i.e. {T 11
k }.

Finally, from t = 180 s forward the robot proceeds towards the target by exploiting
the ellipsoidal sequence {T 8

k } and at t = 200 s reaches the terminal region {T 8
0 }

where the counter target is located. The same reasoning holds true for the opposite
path counter-to-kitchen.

Finally the computational burdens are detailed in Table 3.3. By comparing these
results with those related to the modified Cell decomposition algorithm, it appears
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that this road-map method requires 0.94 s per step (very close to the sampling time
Tc = 1 s) while the on-line computational load of the proposed scheme is unchanged
w.r.t. the Barrier configuration example. The main consequence of this analysis is
that, even if the OA-MPC off-line computational burdens grows up with the obstacle
scenario number, the on-line phase is always computational affordable. On the other
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hand road-map methods present the non-negligible disadvantage of increasing on-
line loads when complex dynamic environments are taken into consideration.

Table 3.3. Numerical burdens: average CPU time (seconds)

Off-line burdens

Basic sequences: 1800
Obstacle sequences: 300
Scenario switching sequences: 800

2900
On-line burdens 0.05

3.5.2 Non-Linear differential drive

The aim of this simulation is to illustrate the behavior of the proposed SOS-OA-MPC
strategy when a non-linear vehicle model is considered. In particular the simulation
involves the differential drive dynamical model, recast into a polynomial filed, de-
scribed in Appendix B.2. The vehicle’s parameters are collected in Table 3.4

The extended state space description B.9 has been discretized by using Euler
forward differences with the sampling time∆t = 0.5 s. and the following constraints
are prescribed

|τ1(t)| ≤ 0.45 [Nm], ∀t ≥ 0, (3.63)
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Parameter Value

m 80

I 2 Kgm
2

r 0.075 m

R 0.325 m

Table 3.4. Differential drive: Parameters

|τ2(t)| ≤ 0.45 [Nm], ∀t ≥ 0, (3.64)

‖v(t)‖2 ≤ 0.16 [m/s], ∀t ≥ 0, (3.65)

where
‖v(t)‖2 = x2

4(t) + x2
5(t)

Assume that the robot navigates within a planar dynamic environment where the
following obstacle scenarios are hypothesized:O1 (continuous lines) andO2 (dashed
lines), see Fig. 3.19. The planar environment is described by

−1 0
1 0
0 −1
0 1

 [pxpy
]
≤


0
25
0
30

 (3.66)

while the obstacles locations are below reported:

Obstacle width heigth scenario center of gravity
Ob1 1 1 1 [14.5; 13.5]
Ob1 1 1 2 [14.5; 14.5]
Ob2 1 1 {1,2} [5.5; 18.5]

The aim of the simulation is to drive the robot from the initial planar position p0 =
[20 5]T to the target pf = [5 22]T for any obstacle scenario change (from O1 to O2

and viceversa), see Fig. 3.18.
Then, inner ellipsoidal approximations of one-step controllable set sequences have
been off-line derived:

•
{
T̃
(
Ξ1
k

)}167

k=1
and

{
T̃
(
Ξ2
k

)}150

k=1

•
{
T̃
(
Ξ
Ob11
k

)}114

k=1
,
{
T̃
(
Ξ
Ob12
k

)}138

k=1
,
{
T̃
(
Ξ
Ob21
k

)}137

k=1
and

{
T̃
(
Ξ
Ob22
k

)}138

k=1
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•
{
T̃
(
Ξ
SW 1

1

k

)}47

k=1
,
{
T̃
(
Ξ
SW 1

2

k

)}22

k=1
,
{
T̃
(
Ξ
SW 2

1

k

)}36

k=1
and
{
T̃
(
Ξ
SW 2

2

k

)}30

k=1

In order to implement the SOS-OA-MPC algorithm, the terminal pair (K0, T0)
has been first determined as follows:

K0 =

[
−0.127 −0.127 −0.250 −0.239
−0.127 −0.127 −0.2392 −0.250

]
, T0 = {x ∈ IRn |xT (P0)−1 x ≤ 1}

with

P0 =


0.211 0.195 −0.061 −0.061 0.021 0.032
0.195 0.211 −0.061 −0.061 0.015 −0.013
−0.061 −0.061 0.102 0.102 0.140 0.120
−0.061 −0.061 0.102 0.102 0.050 −0.032
0.210 0.015 0.140 0.050 0.210 0.040
0.032 −0.013 0.120 −0.032 0.040 0.001


All the relevant results are summarized in Figs. 3.19-3.22. In Fig. 3.19 the robot
trajectory under time-varying obstacles is depicted. It can be noted that the SOS-OA-
MPC strategy is capable to achieve good control performance regardless of any ob-
stacle change. Moreover as it results from Figs. 3.20-3.21, the prescribed constraints
are always fulfilled.

To appreciate the modus operandi of the proposed scheme, it is important to an-
alyze the signal shown in Fig. 3.22, because it provides the smaller ellipsoid of the
pre-computed families containing the current state x(t). Note that the markers (�
and �) and (◦ and •) have been used to denote the set-membership to the same se-
quences {T̃

(
Ξ1
k

)
} and {T̃

(
Ξ2
k

)
}, respectively. The latter is instrumental to put in

light that if the current obstacle scenario sc(t) is different from that identified by the
SOS-OA-MPC algorithm (namely Steps 1-9), the robot trajectory proceeds along
the sequence of the admissible scenario used at the previous time instant (Step 2:
curr:=prec). Nonetheless, this does not comprise neither the constraints satisfaction
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nor the feasibility retention thanking to the one-step evolution bound (3.52).
Let us consider the time interval [0, 30] (the grey zone of Fig. 3.22) where the
switching O2 → O1 occurs. At t = 10 sec the obstacle configuration changes while
the current state is such that

x(10) /∈

(
167⋃
k=1

T̃
(
Ξ1
k

))
∪

(
114⋃
k=1

T̃
(
Ξ
Ob11
k

))
∪

(
138⋃
k=1

T̃
(
Ξ
Ob12
k

))
∪

∪

(
47⋃
k=1

T̃
(
Ξ
SW 1

1

k

))
∪

(
22⋃
k=1

T̃
(
Ξ
SW 1

2

k

))
therefore as prescribed the used scenario does not change (curr = 2), see the
marker • in Fig. 3.22. Then at t = 22 s. the correct scenario is recovered when
the current state belongs to the obstacle sequence:

x(22) ∈ T̃
(
Ξ
Ob11
30

)
Finally, at t = 30 s. the switching is accomplished, i.e.

x(30) ∈ T̃
(
Ξ1

127

)
The same reasoning applies for the other obstacle scenario occurrences.
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3.6 Conclusions

In this chapter, a receding horizon control strategy has been developed for solving
the obstacle avoidance motion planning problem for autonomous vehicles operating
within structured working environments. Set-theoretic ideas have been used to take
care of all admissible time-varying obstacle scenarios. From a methodological point
of view, the proposed strategy is able to move in the off-line phase most of computa-
tions pertaining to the RHC controller design so that the overall framework becomes
appealing in practical applications. Although initially proposed for LTI models, the
scheme results to be quite independent from the plant model as testified by the poly-
topic and polynomial extensions. Finally, numerical comparisons have put in light
that the idea to combine into a single step the design of the path planning module
and of the predictive controller allows to deal with critical obstacle scenarios not
easily manageable by dynamic path planning units.





4

A set-theoretic receding horizon control approach for
unknown time varying environments

In this Chapter, a receding horizon control scheme for solving the obstacle avoidance
motion planning problem of autonomous vehicles operating in uncertain dynamic
environments is developed. The proposed scheme represents a remarkable general-
ization of the OA-MPC strategy developed in Chapter 3; the main difference relies
on the removal of the hypothesis concerning the knowledge of all admissible time-
varying obstacle scenarios. As a consequence, at the price of a higher but still afford-
able on-line computational loads, the control architecture here presented is capable
to work around unpredictable obstacle occurrences. Specifically, the scheme is based
on a joint and smart exploitation of robust positively invariant regions and one-step
ahead controllable sets. Finally, simulation studies on a mobile robot described by a
point mass and numerical comparisons with the competitor OA-MPC algorithm are
provided in terms of the overall control performance.

4.1 Problem Statement

Consider robots described by the state space description (2.9) subject to (2.2)-(2.3)
and operating within a dynamic environment where fixed and moving objects are
arranged together. Take into account scenarios where some obstacles (static obsta-
cle scenario) are fixed, i.e their planar coordinates are constant and a-priori known,
whereas others (agents) can move under the hypothesis that they are equipped with
semi-autonomous capabilities able to recognize the non-free locations (moving ob-
stacle scenario).

Definition 4.1. Let p = Bx ∈ IR2 be the planar components of the state space
x ∈ IRn and B ∈ IR2×n a projection matrix, then the static obstacle scenario is
defined as the following non-convex region

Os := {p ∈ IR2 : fs(p) > 0nfs } (4.1)

where fs : IR2 → IRnfs and nfs is the number of component-wise inequalities 2
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Definition 4.2. At each time instant t ∈ ZZ+, the admissibility region for the moving
obstacle scenario is defined as

Od(t) := {p ∈ IR2 : fd(p, t) > 0nds} (4.2)

with fd : IR2×ZZ+ → IRnds and nds with the same meaning of nfs . 2

Definition 4.3. At each t the obstacle-free region is given by

O(t) := Os ∩ Od(t) (4.3)

2

In the sequel, the following assumptions are made:

Assumption 4.4. Each obstacle/agent is a convex polygon. 2

Assumption 4.5. Form and dimensions of each obstacle are a-priori known. 2

Assumption 4.6. The robot and agents are equipped with a vision module (e.g. laser
scanners [68]) capable to detect obstacles within a pre-specified radiusR. LetRcmin
be the minimum curvature radius of the given robot, then the vision module is such
that the field of view is 360o and

R > Rcmin (4.4)

Moreover, the ball centered in the current robot planar position with radius Rcmin is
defined as the safety region where the agents cannot enter.

Remark 4.7. Assumption 4.5 allows to provide a formal description of the proposed
strategy. Nonetheless, it could be removed at the price of a more conservative ap-
proach that must consider the use of sophisticated vision units and ad-hoc heuristics,
see e.g. [128] and references therein. Assumption 4.6 is standard (see e.g. [22], [83])
and the safety region is instrumental to recognize that a location within the working
environment is inaccessible, see Fig. 4.1. 2

4.1.1 Dynamical-obstacle avoidance motion planning (D-OAMP) problem

Given the static obstacle scenario Os, determine a state-feedback control policy

u(t) = g(x(t)) (4.5)

compatible with (2.2)-(2.3) and (4.3), such that starting from an admissible initial
condition x(0) the robot trajectory x(t) is driven to a target position xf regardless
of any admissible occurrence of Od(t). 2

In the sequel, the D-OAMP problem is tackled on the basis of the same theoretical
ideas exploited in Chapter 3 and on a dual-mode control strategy. Anyhow, strictly
speaking, the results here proposed represent a remarkable generalization because the
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Fig. 4.1. Safety region description (the grey ball)

full knowledge of all admissible obstacle scenarios is not required (see Assumption
3.5 in Section 3.1) and the agents can move outside pre-specified locations. Then,
in order to provide this required extension it is mandatory to find a solution to the
following challenging questions:
• How is it possible to work around unexpected obstacle occurrences along the

nominal path x(0)→ xf ?;
• How can admissible paths be generated complying with time-varying obstacle

scenarios such that the control strategy feasibility is guaranteed and the compu-
tational burdens are low as “much as possible”?

The next sections will provide a solution to this two problems by considering as
a starting point the ideas underlying the OA-MPC strategy.

4.2 D-OAMP Control Framework

In this section, we provide the main ingredients for addressing the D-OAMP prob-
lem. First, Fig. 4.2 depicts the proposed control architecture which consists of the
following units:

• Off-line module - By using the knowledge on the static obstacle scenario
Os, it computes a sequence of one-step controllable sets, hereafter denoted as
{T sk }

Ns
k=0, Ns ∈ N, such that there exists at least a feasible path to the goal xf ;

• Vision module - At each time instant t and within the vision radius R (see Fig.
4.1), it provides the information to characterize the region Od(t);
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• Controller module - By exploiting the off-line sequence {T sk }, the current ve-
hicle state measurement x(t) and the current moving obstacle scenario Od(t),
the Command Input Logic sub-module checks the path {T pathk } admissibility:
if necessary, activates the construction of a new path and computes the correct
control action. If Enabled, the Path Generator unit has the aim to determine a
new feasible one-step controllable sequence.

Note that the actions of the Off-line module are performed by exactly using the
OCSP procedure developed in Section 3.2 where a convexification procedure for
nonconvex constraints is also provided. Therefore from now on the following actions
undertaken during the on-line phase will be of interest:

• Checking the actual path admissibility with respect to (4.3);
• If the current obstacle configuration Od(t) prevents the use of the sequence
{T pathk }, then a new path must be determined by computing a new one-step
controllable set sequence {T new−pathk } under the constraints imposed by (4.3).

4.3 On-line phase

In this section, we describe how the proposed strategy is capable to deal with unpre-
dictable path occlusions due to the agent dynamical behaviors. To this end, we shall
provide details on the relevant vehicle actions: current path admissibility and path
reconfiguration management.

4.3.1 Path admissibility check

Given the actual moving obstacle scenario Od(t), the path admissibility check pre-
scribes to infer if the sequence {T pathk }Npathk=0 is travelable, i.e. the one-step state
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evolution x+ := Φx(t) + Gu + Gdd is complying with the constraints imposed by
O(t).
This can be gathered by first determining the current state set-membership

kmin := arg min
k
{x(t) ∈ T pathk } (4.6)

and then by evaluating the following set inclusion

T pathkmin
⊆ Otd (4.7)

Therefore, if (4.7) holds true then x+ ∈ T pathkmin−1 ⊆ T
path
kmin

and the current sequence
{T pathk } is admissible.

4.3.2 Path reconfiguration management

By assuming that
T pathkmin

* Od(t)

the current path is no longer admissible, then a new one-step controllable sequence
{T new−pathk } has to be generated so that a feasible path complying with O(t) could
be determined.
First notice that, by using Assumption 4.5 and the current set sequence {T pathk },
(continuous black line regions in Fig. 4.3), it is possible to find the closer equilibrium
point (say xsucceq ∈

⋃
i

T pathk ) to the current vehicle position x(t) which lies beyond

the “active” obstacles. The latter can be achieved by identifying the index ksucceq of
the RPI region such that

kObmin := arg max
k
{T pathk * Od(t) and k < kmin} (4.8)

ksucceq := arg max
k
{k ∈ IRpath | k ≤ kObmin} (4.9)

where IRpath is the ordered vector of the indices of the RPI regions belonging to
the sequence {T pathk }. As a consequence xsucceq is the equilibrium point from which
T pathksucceq

has been generated. Then, the path reconfiguration can be split into two “in-
dependent” tasks (see Fig. 4.3):

• (ON-1) starting from the current state x(t), generate a sequence of overlapped
RPI ellipsoids Ek :=

{
x ∈ IRn : xT (Qk)−1 x ≤ 1

}
(continuous red line ellip-

soids) complying with (4.3) aimed to cover xsucceq ;
• (ON-2) starting from xsucceq , generate a sequence of one-step controllable sets
{T new−pathk } (dashed line ellipsoids) by applying the OCSP procedure with
xsucceq in place of xf , x(t) in place of x(0) and (4.3) in place of (4.1).
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The rationale behind this choice concerns with the objective to reduce as much as
possible the interval time required to work around an obstacle. In fact if the only
(ON-2) action were applied, the vehicle would be confined around x(t) (RPI centred
in x(t)) until the entire sequence {T new−pathk } is computed. This action is doable
in virtue of Assumption 4.6 because there always exists an obstacle-free region of
radius Rcmin around the current vehicle position. On the other hand, if during such
a computation the agent moves in such a way that the condition (4.7) is no longer
valid, then the sequence {T new−pathk } becomes useless. Therefore, the exploitation
of (ON-1) allows to safely move the autonomous vehicle amongst two overlapping
RPI regions without waiting for the complete derivation of {T new−pathk } : this has
the important merit to avoid most of computations when agents unfavourably modify
their actual positions. Moreover it is worth to underline that, because the vehicle
moves towards xsucceq , the OCSP will end when the following condition is satisfied:

T new−pathk1
∩ Ek2 6= ∅, for some k1, k2 ∈ ZZ+ (4.10)

Remark 4.8. As a proof of the utility of the RPI regions computation ((ON-1) task)
can be useful make a performance comparison with a “naive” path reconfiguration
solution that prescribe to only use the task (ON-2) until the vehicle current position
x(t) is reached. To this end a numerical comparison is provided in Section 4.5. 2

x(t)
bstacle
bstacle
bstacle
bstacle

OObstacle
bstacle

OObstacle
bstacle
bstacle
bstacle

eq

succx

x(t)x(t)

{T           }
new-path

{T      }
 path

εk

T        
 new-path

1

2

k

Fig. 4.3. Path generation
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The construction of the overlapped sequence {Ek} can be straightforwardly achieved
by using the following argument. Given the current state x(t), first the RPI centered
on the equilibrium x0

eq whose planar components are those of x(t) is computed; then
at each iteration k (see Fig. 4.4) a new equilibrium xk+1

eq ∈ Ek is considered and the
RPI region Ek+1 is computed by ensuring the following overlapping property

Ek ∩ Ek+1 6= ∅

Notice that each RPI ellipsoid is computed via a semidefinite programming problem
(SDP) as detailed in [14].

eq

  k

x eq

k+1

x

x(t) x+

ε
k

ε
k+1

Fig. 4.4. Overlapped RPI regions

Finally, we have to clarify how it is ensured that there always exist a control action
capable to move the vehicle amongst two overlapped RPI regions, namely Ek and
Ek+1.

For the sake of comprehension consider the scenario depicted in Fig. 4.4: here
by construction x(t) and xk+1

eq belong to {Ek} and, as a consequence, are feasible
initial conditions for steering the state trajectory to the RPI set defined by the equilib-
rium xkeq. Therefore, by linearity it is ensured that the constrained tracking problem
x(t)→ xk+1

eq with x(t) ∈ Ek has always a feasible solution and it can be formulated
as a tracking one-step MPC problem.
Let x̃ := x− xk+1

eq and ũ := u− uk+1
eq be the shifted state and input variables w.r.t.

the equilibrium (xk+1
eq , uk+1

eq ) to be tracked, then:

ũ(t) = arg min ‖Φx̃(t) +Gũ‖2(Qk+1)−1 s.t. (4.11)

Φx̃(t) +Gũ∈Ẽk, u∈U , (4.12)

where Qk+1 is the shaping positive definite matrix of Ek+1 and Ẽ := E ∼ GdD.
Proposition 4.9. The optimization problem (4.11)-(4.12) has a solution at each time
instant t when implemented in a receding horizon fashion.
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Proof. By collecting the above discussion. 2

For the sake of clarity, Figure 4.5 summarizes the on-line Path generator module
actions by means of a detailed activity diagram.

ComputeCompute

Append:

TrueFalse

STOP

START

k1k

2k

.

.

enabled

True

False

1k2k

2k k

1k

Fig. 4.5. Path generator module: Activity diagram

Remark 4.10. Since (ON-1) and (ON-2) are preemptable and independent tasks,
the execution can be preempted by the highest priority task, i.e the Command Input
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Logic task u(t), and executed in any order within the sampling time. Note that it
is required a scheduling rule capable to guarantee that both (ON-1) and (ON-2) go
on. The latter can be achieved by “fairly” splitting the remaining available sampling
time after the execution of the main task u(t). In order to clarify such a concept
Fig. 4.6 provides a scheduling policy example: if one of the two tasks (ON-1) and
(ON-2) cannot be completed, then at the next time instant it will assume the relative
high-priority. Moreover, when {Ek} is empty an exception rule must be considered:
(ON-1) becomes the highest priority task because at least a RPI region is necessary
in order to compute a feasible command u(t) to be applied to the vehicle. Finally,
a scheduling improvement could result if parallel architectures are available for the
execution of (ON-1) and (ON-2). 2

t t+1 t+2 t+3 t+4

Task 1

Task 2

Task 3

O
N

-1
O

N
-2

Command input

 logic

u
(t

)

Path Generator}
}

k

Enabled=true Enabled=true Enabled=true Enabled=true Enabled=true

k kkk

Fig. 4.6. Sheduling policy: Path Generator enabled

4.4 RHC algorithm

In this section, all the above development are summarized in the following compu-
tational scheme split in an off-line and on-line phase. The first must be executed just
once and it can interpreted like a “setup” phase where all the heavier computational
tasks are executed; the latter must be performed at each sampling time instant t ac-
cording to the scheduling policy outlined in Remark 4.10 and under the following
further assumption

Assumption 4.11. At each time instant t the vehicle is informed about the moving
obstacles scenario Od(t). 2



78 4 A set-theoretic receding horizon control approach for time varying environments

Moving Obstacle Avoidance MPC (MOA-MPC)- Algorithm

Off-line:

1: Given the static obstacle scenario Os, the initial state condition x(0) and the
goal xf , compute the non-empty RPI ellipsoidal region T0 and the stabilizing
feedback gain K0 complying with (2.2), (2.3), (4.1);

2: Apply the OCSP procedure to generate {T sk }
Ns
k=0 such that x(0) ∈

Ns⋃
k=0

T sk ;

3: Store the ellipsoidal sets T pathk := T sk , k = 1, . . . , Ns. Set {T new−pathk } := ∅
and {Ek} = ∅.

On-line:

1: if x(t) ∈
Npath⋃
k=0

then

2: compute kmin by (4.6)
3: if T pathkmin

⊆ Otd then
4: if kmin ∈ IRpath then u = Kkminx(t)
5: else
6: u(t) = arg min ‖Φx(t) +Gu‖2(

Ppathkmin−1

)−1 (4.13)

s.t. Φx(t) +Gu ∈ T̃ pathkmin−1, u ∈ U (4.14)

7: end if
8: else goto Step 11
9: end if

10: else
11: if T new−pathk1

∩ Ek2 6= ∅ then Enabled:=false
12: else Enabled:=true
13: end if

14: if x(t) ∈
new−path⋃

k=0

T new−pathk then

15: {T pathk } ← {T new−pathk }, {T new−pathk } := ∅, {Ek} := ∅, goto Step 2
16: else
17:

kmin := arg max
k
{x(t) ∈ Ek}

u(t) = arg min ‖Φx(t) +Gu‖2
(Qkmin+1)

−1 (4.15)

s.t. Φx(t) +Gu ∈ Ẽkmin , u ∈ U (4.16)

18: end if
19: Apply u(t); t := t+ 1; goto Step 1
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20: end if

Note that the running costs ‖Φx(t)+Gu‖2(
Ppathkmin−1

)−1 and ‖Φx(t)+Gu‖2(
Qpathkmin−1

)−1

characterizes the one-step ahead state prediction with P pathkmin−1 and Qpathkmin−1 the
shaping matrices of the ellipsoidal region T pathkmin−1 and of the RPI region Ekmin−1,
respectively. Moreover, Fig. 4.7 provides a graphical description of the main actions
pertaining to the MOA-MPC on-line phase.
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Fig. 4.7. The MOA-MPC on-line phase: activity diagram

The next proposition shows that the proposed MOA-MPC algorithm enjoys fea-
sibility retention and closed-loop stability.
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Proposition 4.12. Let the sequence of sets T sk be non-empty and x(0) ∈
Ns⋃
k=0

T sk .

Then, the MOA-MPC algorithm always satisfies the constraints and ensures Uni-
formly Ultimate Boundedness for admissible occurrences of Od(t), ∀t ≥ 0.

Proof - Note that existence of solutions at time t implies existence of solutions at
time t+ 1, because the optimization problems in Steps 6 and 17 are feasible: (4.13)-
(4.14) has always doable (there exists an input vector u satisfying the constraints
(2.2), (2.3), (4.3) such that the set-membership requirement in (4.14) holds true);
the optimization (4.15)-(4.16) has always a solution in virtue of Proposition 4.9.
Then, the feasibility retention is ensured thanking to the properties arising from the
construction of the off-line one-step controllable set sequence and by using the argu-
ments discussed in Section 4.3 that allow to derive a new path compatible with any
admissible moving obstacle scenarioOd(t). Finally, Uniformly Ultimate Bounded-
ness of the strategy follows by noting that the trajectory is in the worst case confined
to

Ns⋃
k=0

T sk ∪

⋃
t≥0

⋃
k

T new−path(t)
k


2
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4.5 Illustrative example

The aim of this example is to present results on the effectiveness of the here proposed
obstacle avoidance MOA-MPC strategy. To this end, comparisons in terms of control
performance with its “naive” version , hereafter denoted as Naive-MOA-MPC, and
with set-theoretic based scheme OA-MPC developed in the previous chapter are also
provided. In the sequel refer to OA-MPC and to MOA-MPC as the static and the
dynamic approach, respectively.

All computations have been carried out on a PC Intel Quad Core with the Matlab,
LMI, Optimization and ET [66] Toolboxes and considering the same point mobile
robot (3.59)-(3.60), disturbance set (3.61) and constraint (3.62) used in Section 3.5.1.

In addition, as required by the control architecture, the following numerical value
for the vision an the minimum curvature radius are considered:

Rcmin = 1.49m, R = 2m

In this example, the planar environment is described by

M

[
px
py

]
≤


0
13
0
19

 , M =


−1 0
1 0
0 −1
0 1


and the following obstacle configuration, taken from [97] and depicted in Fig. 4.8, is
considered:

• the static obstacle scenario Os :

Obs1 : M

[
px
py

]
≤


−1
2
−4.5
5.5

 Obs2 : M

[
px
py

]
≤


−2
4
−1
3

 (4.17)

Obs3 : M

[
px
py

]
≤


−10
13
−5.75
8.25

 Obs4 : M

[
px
py

]
≤


−16
18
−2
4

 (4.18)

Obs5 : M

[
px
py

]
≤


−17
18
−9
10

 (4.19)

• the moving obstacle scenarios Od(t) arise when the agents (dashed polygons)
move along the paths indicated by the arrows shown in Fig. 4.8.

The aim of this simulation is to solve the D-OAMP problem with x(0) = [6, 2, 0, 0]T

and xf = [17.5, 10.8, 0, 0]T under the satisfaction of (3.62) and (4.17)-(4.19) and
regardless of any d(t) ∈ D and of any admissible Od(t) occurrence.
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Fig. 4.8. Obstacle scenario: obstacles (continuous line) and agents (dashed line)

In order to implement the MOA-MPC algorithm, the terminal pair (K0, T0) has been
first determined:

K0 =

[
−0.4486 0.0141 −1.0523 0.0238
0.0141 −0.4486 0.0238 −1.0523

]
T0 = {x ∈ IRn |xT (P0)−1 x ≤ 1}

with

P0 =


209.11 −26.22 104.47 −18.09
−26.22 209.11 −18.09 104.47
104.47 −18.09 227.25 −27.34
−18.09 104.47 −27.34 227.25


then, the family of ellipsoids {T sk }

242
k=0 pertaining to the static obstacle scenarioOs

has been off-line derived by using the OCSP procedure, see Fig. 4.9.
The numerical results are summarized in Figs. 4.10-4.13. First notice that, under the
two moving obstacle scenarioOd(10) andOd(170) occurrences (see Fig. 4.11), the
prescribed constraints are always fulfilled, see Figs. 4.12 and 4.13.

To appreciate the modus operandi of the proposed scheme, analyze the robot
behaviour shown in Figs. 4.11. During the first 10 s, the vehicle moves along the path
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Fig. 4.9. Obstacle scenario and off-line ellipsoids sequence {T si }

defined by the static ellipsoidal sequence, i.e
{
T pathk

}
≡ {T sk } , as testified by the

set-membership signal shown in Fig. 4.10, where the expected set contraction results
(optimization (4.13)-(4.14)). At t = 10 s the Vision module detects Od(10) (see the
dashed polygon in Fig. 4.11 (top-left side)), the Path generator module is activated
(Enabled:=True) because the feasibility check (4.7) fails and the computation of
a new set sequence complying with Od(10) starts (ON1 and ON2 actions). From
t = 11 s onward the input is obtained by solving the optimization (4.15)-(4.16):
until t = 50 s the computed RPI regions Ek (ON1 task) are included in

⋃
k

T pathk ,

while within the time window [51 142] s one has that Ek /∈
⋃
k

T pathk (see the grey

zone in Fig. 4.10). Such a behaviour puts in light that the MOA-MPC scheme has
began the computation of a new path capable to work around the agent AG2. Then
at t = 142 s x(142) ∈ T new−path173 , see the set-membership signal in Fig. 4.10 and

the upper-right graph of Fig. 4.11, and as a consequence
{
T new−pathk

}
is used in
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place of
{
T pathk

}
. The same reasoning holds true for the moving obstacle scenario

occurrence Od(163) : in particular one has that x(249) ∈ T new−path28 and from
t = 250 s onward the vehicle is driven to the target xf , see the lower-right graph of
Fig. 4.11. Moreover, the on-line computational burden pertaining to the on-line tasks
are reported in Table 4.1, where the need of using the scheduling policy described in
Remark 4.10 comes out.

Table 4.1. Average CPU times (seconds per step)

Task Average CPU time [s]
u(t): Optimizations (4.13)-(4.14), (4.15)-(4.16) 0.35

ON-1 0.36
ON-2 0.55

0 50 100 200 250

0

50

100

150

200

250

10 142 163

Time[s]

i m
in
(t
)

Fig. 4.10. Set-membership signal

The numerical comparisons between MOA-MPC, “naive” MOA-MPC and OA-
MPC in Figs. 4.12-4.13 are instrumental to show benefits and improvements of the
here proposed strategy. First by considering the command input behaviours in Fig.
4.12, it is worth to note that the MOA-MPC significantly outperforms its “naive”
version while is slight worse than MOA-MPC. The rationale of these results can be
explained via the following arguments:
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Fig. 4.11. Screen shots

• the OA-MPC algorithm off-line computes and stores the one-step controllable set
sequences pertaining to all the admissible obstacle scenario occurrences. There-
fore on one side the on-line phase is quickly performed (no new paths must be
on-line determined) while on the other hand it is oriented to highly structured
environments with the need of substantial memory resources;

• the high memory requirements of OA-MPC are mitigated by exploiting the dy-
namic strategy of MOA-MPC which is based on the on-line computation of new
admissible paths. Nonetheless, in the “naive” MOA-MPC this is achieved by us-
ing only the (ON-2) task that forces the vehicle to wait (zero norm of the input
signal) for the whole construction of a new feasible path, see the middle graph of
Fig. 4.12 during the time intervals [10 141] and [204 300];

• the proposed path reconfiguration module is capable to significantly reduce the
dead-lock phase of its “naive” version as explicitly shown in the lower graph of
Fig. 4.12 where it is possible to see the decrease on the zero-norm input time
intervals. Moreover, both the on-line computational load and the memory re-
quirement are not substantially affected.

Finally for the sake of completeness Fig. 4.13 summarizes the trajectories obtained
by the three schemes. As expected, the main differences amongst static (dotted line)
and dynamic (dashed and continuous lines) algorithms arise when the occlusion is
such that the current one-step controllable sequence is no longer admissible. In this
case, the OA-MPC algorithm is forced to switch to a precomputed one-step con-
trollable set sequence by travelling a more involved path because any modification
during the on-line phase is not allowed, see the grey zone in Fig. 4.13.
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Fig. 4.12. Command inputs. The dashed line represent the prescribed constraint.
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4.6 Conclusions

In this Chapter a model predictive control strategy has been developed with the
aim to comply with the obstacle avoidance and motion planning tasks pertaining
to autonomous vehicles when dynamic working environments are considered. Set-
theoretic ideas have been extensively used in order to manage unpredictable agent
behaviours. The required computational resources (spatial and memory complexi-
ties) have been proved to be modest and therefore the strategy could be affordable in
practical applications. This represents a significant improvement within the related
literature as testified by the results provided in the simulation section.



Part II

Control of unmanned aerial vehicle





5

An Hybrid Command Governor approach

In this Chapter an obstacle avoidance control scheme for autonomous aerial vehi-
cles is presented. The strategy is based on Command Governor (CG) ideas that are
here extended in order to take into account non-convex and time-varying constraints
typically arising in path planning obstacle avoidance problems.

In particular, a predictive approach different from the set-theoretic framework of
Chapters 3-4 is here adopted. The main reasons of this choice relies on the need to use
a reliable and fast controller capable to manage high order dynamical systems (e.g.
aerial vehicles) for which the computations of recursions (2.5) should be unfeasible
because of the huge number of involved variables (states and inputs).

In order to show effectiveness and applicability of the proposed CG based strat-
egy, a real-time environment has been designed. Specifically a quadrotor Qball-X4
jointly with a Vicon Motion Capture System is considered to set-up an experimental
real-time campaign. The Quanser’s real-time control software has been used to em-
bed the proposed CG-based algorithm on the on-board Gumstix architecture, while
the control task has been stated as follows: drive the quadrotor state trajectory to a
desired space location by avoiding collisions with three beams.

5.1 Problem Statement

Let consider an unmanned aerial vehicles (UAV) whose dynamics or their linearizion
around an equilibrium point is described by the following linear time invariant (LTI)
system {

xv(t+ 1) = Axv(t) +Bu(t) +Bdd(t)
p(t) = Hvxv(t)

(5.1)

where p(t) ∈ IR3 denotes the vehicle position in the 3D space, t ∈ ZZ+ := {0, 1, ...},
xv(t) ∈ IRnv the plant state, u(t) ∈ IRmv the control input and d(t) ∈ D ⊂ IRnd

an exogenous disturbance, with D a convex and compact set such that 0nd ∈ D.
Moreover, (5.1) is subject to the set-membership state and input constraints u(t) ∈
U ∈ IRmv (2.2) and xv(t) ∈ X ∈ IRnv (2.3).
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Throughout this Chapter, the following definitions will be used.

Definition 5.1. LetObj be a convex obstacle. Then an obstacle scenarioO is defined
as

O := {Ob1, . . . , Obno} (5.2)

where no denotes the number of objects involved. 2

Definition 5.2. Let O be an obstacle scenario. Then, the non-convex obstacle-free
region pertaining to O is defined as follows

Ofree := {xp ∈ IRnp : hi(xp) > 0} (5.3)

where hi : IRnp → IRnf and nf the number of component-wise inequalities. 2

By considering the dynamical evolution of UAVs when they are executing prede-
fined missions within obstacle cluttered environments, the following assumptions
are taken into account:

Assumption 5.3. (Uncertain working scenario)

• The obstacle configuration is static: the objects have fixed positions;
• UAVs detect objects within the vision radius (active region): a-priori information

about the obstacle scenario are not on-board available.

This set-up concerns with partially known working areas where a specific set of
obstacle scenarios may occur, see e.g. autonomous road-following missions [21],
monitoring and/or surveillance tasks [28], [24] and so on.

5.1.1 UAV obstacle avoidance motion planning (UAV-OAMP) Problem

Given an obstacle scenarioO and a target pgoal, find a state-feedback control policy

u(t) = η(xv(t), pgoal) (5.4)

compatible with (5.3), (2.2) and (2.3), such that starting from an initial condition
xv(0) the robot state trajectory xv(t) is asymptotically driven to a target state xgoalv

such that pgoal = Hvx
goal
v . 2

In the sequel, the problem will be addressed by developing an adequate extension of
the command governor strategy presented in Section 2.4, which formally takes care
of possible obstacle occurrences. In particular, in order to design a fully autonomous
flight control law complying with the UAV-OAMP problem, the control architec-
ture shown in Fig 5.1 is proposed. It consists of three main modules: a reference
manager (CG) whose aim is to generate at each time instant a feasible set-point
to be tracked during the on-line operations; a planner unit that determines a finite
sequence of locations in order to allow obstacle avoidance during the vehicle naviga-
tion and a control module (SCG-OA) that is in charge to manage switching events
when time-varying constraint paradigms are considered.
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In principle, as better clarified in the next section, a modification of the constraint
set structure should prescribe a new CG design during the on-line operations, but
this could be computationally very demanding and, therefore, not usable in practical
situations. To overcome this drawback, the key idea here is to avoid the CG re-
design. Next section will be devoted to find solution to such a problem by exploiting
the following arguments:
• time-varying constraints arise due to a shift with respect the current equilibrium;
• different constraints sets are overlapped and their shapes are invariant w.r.t. any

equilibrium shift.

5.2 An obstacle avoidance command governor strategy

The basic CG framework (Section 2.4) requires that the constrained set C satisfy the
following requirements:

• compact and convex - to ensure validity of Property 2.32(a);
• time-invariance - to guarantee viability retention (Properties2.32(b)-(d)).

The consequence of these restrictions is that the CG strategy in its classical version
cannot be used when the UAV-OAMP problem is considered: the obstacles give rise
to non-convex geometrical constraints that could change in principle at each time
instant. Then, the goal of this section is to retain the CG feasibility by adequately
managing time-varying constraints.
To this end, the key point is to convexify at each time instant an active region around
the current vehicle position by means of a suitable obstacle constraints updating
procedure. In order to ensure feasibility retention a critical aspect to be taken into
account is to define a scheme which characterizes the admissible switching amongst
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different convexified regions. The next sections will be devoted to formally develop
this idea.

5.2.1 Viability retention under time-varying constraints

Consider the command governor structure (2.22) and two compact and convex con-
straint sets Ci and Cj such that

Ci 6= Cj and Ci ∩ Cj 6= ∅ (5.5)

Then, as shown in e.g. [3], the following property holds true

Wδ
i ∩W δ

j 6= ∅ (5.6)

where
Wδ
s =

{
ω ∈ IRm : cw ∈ Cδs

}
and Cδs = Cs ∼ Bδ, s = i, j.

As a consequence, the constraint scenario switching admissibility can be proved.

Proposition 5.4. Given the system (2.22) and the constraint scenarios Cδi and Cδj
satisfying (5.5). Then, there always exists a finite concatenation of virtual constant
commands ω ∈ Wδ

i ∪Wδ
j such that, starting from an arbitrary Cδi or Cδj−admissible

initial state x(0) , the state trajectory of (2.22) is driven to x̄ω with ω ∈ Wδ
i ∪Wδ

j .
Moreover under a constraint scenario change there exists a finite switching time
tsw < ∞ and an arbitrary small scalar ∆x > 0 such that ‖x(tsw) − x̄ω̄‖ < ∆x,
where ω̄ ∈ Wδ

i ∩ Wδ
j . and x(tsw) is Cδi and Cδj−admissible (see Fig. 5.2) for a

graphical illustration).

Proof. W.l.o.g. assume that the initial condition x(0) is Cδi−admissible. By resorting
to viability arguments [6], any x̄ω̄,with ω̄ ∈ Wδ

i , can be reached via a finite sequence
of virtual constant commands. As a consequence, the state trajectory x(·) can be
driven in finite time within a neighborhood of the equilibrium x̄ω̄, ω̄ ∈ Wδ

i ∩ Wδ
j .

By considering a perturbed state

xω̄ = (I − Φ)−1Gω̄ + x̃

with x̃ an additive perturbation such that ||x̃|| ≤ ρ, it is possible to apply a new
command ω ∈ Wδ

i ∩Wδ
j so that the constrained vector becomes

c(k, xω̄, ω) = HcΦ
kxω̄ +Hc

k−1∑
l=0

ΦlGω + Lω

By using simple algebraic manipulations, we have that

c(k, xω̄, ω) = cω +HcΦ
kx̃+Hc(I − Φ)−1G(ω̄ − ω)

with cω ∈ Cδj . As a consequence also c(k, xω̄, ω) ∈ Cj if the following condition
holds true
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HcΦ
kx̃+Hc(I − Φ)−1G(ω̄ − ω) ⊂ Bδ

This is straightforwardly ensured by requiring that

∆x = ||x̃|| ≤ δ

2σ(Hc)M
and ||ω̄ − ω|| ≤ δ(1− λ)

2σ(Hc)σ(G)M2

where λ ∈ [0, 1) is such that ∀x ∈ IRn one has that Φkx||x|| ≤ Mλk||x||, ∀k ∈
ZZ+; σ(Hc) and σ(G) are the maximum singular values of the matrices Hc and G
respectively. 2

δ

C j

C i

δ

xω

x(0)

ωx

Fig. 5.2. Viability retention under constraints change

5.2.2 Obstacle avoidance: time-varying constraints

Here, the results of Proposition 5.4 are specialized in order to provide a solution to
the proposed OAMP problem. To this end, by exploiting the fact that the vehicle
state can be split as geometrical (xg) and non-geometrical (xng) components, model
(2.22) can be re-written as

x(t+ 1) =

 xg(t+ 1)
xng(t+ 1)
xu(t+ 1)

 = Φx(t) +Gg(t) +Gdd(t)

p(t) = y(t) = Hyx(t)

c(t) =

 cg
cng
cu

 = Hcx(t) + Lg(t) + Ldd(t)

(5.7)
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where xg ∈ IR3 are the spatial components, xu ∈ IRnu the primal controller state
and xng ∈ IRn−3−nu the non-geometrical state variables. Moreover, cg, cng and cu
take care of the constraints prescribed for each state component.

Let x(0) and Cδ be the initial condition and the constrained set, respectively.
Under the CG action, the vehicle will asymptotically reach the best feasible approx-
imation ĝ of the desired state space position pgoal. Though in principle it is possible
to directly solve the UAV-OAMP problem, the basic CG strategy usually leads to
ĝ 6= pgoal because obstacles occlude the ideal CG path x(0) → xgoalv and the con-
strained set Cδ cannot cover the whole non-convex Ofree region.
Then, this difficulty can be overcome by using the following arguments:

• Compute the equilibrium condition corresponding to ĝ :

x̄eq = (I − Φ)−1Gĝ
c̄eq = Hcx̄eq + Lĝ

(5.8)

• Due to linearity of (2.22), the state space is shifted according to x̄eq :

x̃ = x− x̄eq
g̃ = g − ĝ x̃(t+ 1) = Φx̃(t) +Gg̃(t) +Gdd(t)

p̃(t) = Hyx̃(t)
c̃(t) = Hcx̃(t) + Lx̃g(t) + Ldd(t)

(5.9)

• A new shifted (w.r.t. c̄eq) constrained set results:

c̃(t) ∈ C̃δ := shift(Cδ, c̄eq) (5.10)

Moreover, note that by construction

C̃δ ∩ Cδ 6= ∅

because these sets at least share the equilibrium c̄eq : the properties outlined in Propo-
sition 5.4 hold true.

As a consequence, the UAV-OAMP problem can be solved by using a suitable
sequence of shifts on the initial constrained set C until the target position pgoal is
reached. However, to pursue such an idea it could be necessary to modify shapes or
dimensions of C̃δ in order to guarantee that at each time instant t

C̃δ ⊆ Ofree (5.11)

This could be a serious drawback because if a complete re-computing of the CG
controller is required, the strategy could become on-line high demanding and, in the
worst case, inapplicable.
Then, the following developments provide a solution to this key question. Recall that
the set V(x) can be written w.l.o.g. as (see Appendix C for details)
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THcΦ
kx(t) + TRckω ≤ bk, k = 0, . . . , k̄ (5.12)

T (Hc(I − Φ)−1 + L)ω ≤ bkε − (ε+ δ)

[√
TTi Ti

]
(5.13)

where

kε =
log ε+ log(1− λ) [σ̄(Hc)σ̄(Gd)Mdmax]

log λ
(5.14)

and bk is computed using the following recursion
b0i = bi − sup

d∈D
TTi Ldd, i = 1, . . . , z

bki = bk−1
i − sup

d∈D
TTi HcΦ

k−1Gdd, i = 1, . . . , z, k > 0
(5.15)

Then, from (5.12)-(5.15) it clearly follows that a change on the constrained set shape
(T ) will require a complete CG re-design while a variation on its dimensions (b) does
not affect the CG structure.
As a conclusion of the above discussion, the next section will be devoted to develop
a CG-based procedure capable to accomplish the UAV-OAMP task by preserving the
requirement (5.11) under constrained set dimension variations.

5.3 Switching command governor obstacle avoidance algorithm
(SCG-OA)

Let pstart, pgoal,O and C be the starting and target positions, the obstacle configura-
tion and the constraint set, respectively. In the sequel, the following assumptions are
made:

Assumption 5.5. There exists an admissible path connecting pstart and pgoal; 2

Assumption 5.6. There exists a path module, hereafter named planner, whose task
is to determine a sequence of intermediate target positions to pass trough so that the
obstacles can be avoided and the goal location reached. 2

By using as inputs the obstacle configuration, the current vehicle position and the
target, this unit returns the next location p to be reached:

p = planner(O, p(t), pgoal);

Assumption 5.7. There exists a vision module (cameras or group of sensors) used
to measure the obstacle-free region dimensions around the current vehicle position
p(t). 2

Then, the following computationally tractable algorithm results:
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Naive-SCG-OA algorithm

1: Initialization: x̄eq = 0x, c̄eq = 0nc , ĝ = 0m and C̃ = C;
2: Compute:

p = planner(O, p(t), pgoal)

preach = arg min
ω∈W δ

||ω − (p− ĝ)||2Ψ (5.16)

xpreach = (I − Φ)−1Gpreach + x̄eq (5.17)

3: if ||x(t)− xpreach||2 < ∆x then
4: ĝ ← preach; compute x̄eq , c̄eq by (5.8) and update C̃ according to (5.10);
5: Compute a new reference p

p = planner(O, x(t), pgoal)

6: Update xpreach according to (5.16)-(5.17)
7: end if
8: Compute the command governor action ĝ(t)

g̃(t) = arg min
ω∈V(x(t))

||ω − (p− ĝ)||22

9: Apply g(t) = ĝ + g̃(t) ; t = t+ 1 and goto Step 3.

It is worth to underline that the Naive-SCG-OA algorithm may give rise to a
certain level of conservativeness because the Step 3 (due to the viability property
conditions outlined in Proposition 5.4 could impose a stop-and-go phase until the
vehicle reaches the pre-assigned target. A possible way to overcome this drawback is
to exploit the knowledge about the future (at the next time instant) candidate equilib-
rium point, i.e. xpreach computed by means of (5.17), with C̃reach the corresponding
constraint set (hereafter named constraint window). Specifically by denoting with
VC̃reach(x) the set of feasible commands pertaining to xreach, then Step 3. becomes:
Smart Step 3

3: if x(t) ∈ VC̃reach(x(t)) then
4: C̃ ← C̃reach and ĝ ← preach;
5: Compute x̄eq , c̄eq by (5.8) and

p = planner(O, x(t), pgoal)

6: Update xpreach according to (5.16)-(5.17);
7: end if

From now on, we will simply denote with SCG-OA the algorithm that make use of
the Smart Step 3.
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5.4 Experimental setup

In this section, the overall infrastructure used for experiment purposes is discussed,
see Fig. 5.3. It consists of a Quanser Qball-X4 quadrotor equipped with a data ac-
quisition board (HIQ) and a Gumstix computer, a vision Vicon system and an host
computer used to manage runtime bi-directional information.

- Matlab/Simulink

- Vicon Tracker

Qball-X4

On-board Controller

HIQ and Gumstix

Vicon cameras system

Wi!
- Send code to Gumstix

- Send/Receive scope data

- Update runtime parameters

10 infrared cameras

Re"ective markers

Fig. 5.3. Real-time platform

5.4.1 Description and dynamics of the quadrotor UAV system

A brief working mechanism description of a quadrotor unit and the corresponding
non-linear dynamical model are provided [105, 127]. In what follows, upper case
letters refer to the global (inertial) workspace axes (Xw, Y w, Zw) while lower case
letter to the body frame (xb, yb, zb). Notice that such reference systems have the
same orientation when the UAV is sitting upright on the ground, see Fig. 5.4.
Quadrotors are equipped with four rotors, coupled w.r.t. the xb− and yb− axes, and
generate lift forces (Fi) and moments (τi). Moreover each rotor pair, i.e. (1)-(2) and
(3)-(4), rotates in opposite direction w.r.t. the other pair so that the total produced
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moment can be zeroed, see the right side of Fig. 5.5. In order to achieve an effect on
the roll angle φ along the xb−axis, one can increase the angular velocity of the rotor
(2) and can decrease the angular velocity of rotor (1) while keeping the whole thrust
constant. Likewise, the angular velocity of rotor (3) is increased and the angular
velocity of rotor (4) is decreased in order to produce a variation on the pitch angle
θ along the yb−axis. Moreover, the yaw motion ψ along the zb−axis is obtained
by jointly increasing the speed of rotors (1)-(2) and decreasing the speed of rotors
(3)-(4).

Z

X

Y

x
z

yyyy

Ground

b

b

b

w

w

w

Fig. 5.4. Qball-X4 axis and sign convention

Then by neglecting propeller drags, the resulting quadrotor model is as follows:

 Ẍc

Ÿc
Z̈c

 = 1
m

(
4∑
i=1

Fi

)
Re3 + (gr(z)− g)e3

φ̈ = l(F3 − F4)/Jx
θ̈ = l(F1 − F2)/Jy
φ̈ = ρ(F1 + F2 − F3 − F4)/Jz

(5.18)
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F1
F

x

L

τ2

τ1

τ4τ3

1

2

3 4y

Roll

Pitch
Yaw

2

u 1
pwm u 2

pwm

Fig. 5.5. Qball-X4 axis and sign convention

where e3 = [0, 0, 1]T , Jx, Jy and Jz are the moments of inertia along xb, yb, zb di-
rections respectively,m the system mass, g the gravity vector, ρ the force-to-moment
scaling factor, [Xc, Yc, Zc]

T the vector denoting the quadrotor center of mass in the
inertial frame, R the rotation matrix from the body frame (b) to the workspace frame
(w) and [ϕ, θ, φ]T the vector of the roll, pitch and yaw Euler angles, respectively.
Moreover gr(Zc) describes the ground effect that bothers the quadrotor when it is
sufficiently close to the ground

gr(Zc) =

{ Gr
Z2
c
− Gr

Z2
0
, if 0 < Zc ≤ Z0

0 otherwise

}
(5.19)

whereGr is the ground effect andZ0 the lower quadrotor height for which the ground
effect is significant.
By resorting to the definitions of normalized lift force (uz), roll (uφ), pitch (uθ) and
yaw (uψ) moments:

uz = (F1 + F2 + F3 + F4)/m
uφ = (F3 − F4)/Jx
uθ = (F1 − F2)/Jy
uψ = ρ(F1 + F2 − F3 − F4)

(5.20)

equation (5.18) can be straightforwardly re-written as:
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ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

ẋ9

ẋ10

ẋ11

ẋ12

= x2

= uz(cosx7 sinx9 cosx11 + sinx9 sinx11)
= x4

= uz(cosx7 sinx9 sinx11 + sinx9 cosx11)
= x6

= uz(cosx7 cosx9)− g + gr(z)
= x8

= uφ l
= x10

= uθ l
= x12

= uψ

(5.21)

where
xv =

[
Xc Ẋc Yc Ẏc Zc Żc φ φ̇ θ θ̇ ψ ψ̇

]T
u =

[
uz ∆uφ ∆uθ ∆uψ

]T
denote the state space and input vectors.

5.4.2 A simplified model for the Quanser Qball-X4 quadrotor

In this section, the motion equations (5.21) are specialized to the Quanser Qball-X4
quadrotor, see [61]. In particular, a less involved structure of (5.21) is achieved by
using standard quadrotor modelling assumptions.

Actuator dynamics

In the Qball-X4 there are four brushless motors (E-flite Park 400), using a 104.7
inch propeller. The thrust generated by each propeller is modeled using first-order
systems:

Fi = K
ω

s+ ω
upwmi (5.22)

where upwmi is the PWM input to the DC-motor actuator, ω is the actuator bandwidth
and K is a positive gain. A state variable v will be hereafter used to represent the
actuator dynamics, which is defined as follows

vi =
ω

s+ ω
upwmi

Roll/Pitch models

Under the assumption that the rotations w.r.t. the x− and y− axes are decoupled, the
roll/pitch dynamical behaviour can be modelled as illustrated in Fig. 5.5. There, the
motion/rotation along each axis is due to the action of two propellers, i.e. the pair
(F1, F2), respectively (τ1, τ2), for the x− axis and (F3, F4), respectively (τ3, τ4),
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for the y− axis. Moreover, the roll φ and pitch θ angles are subject to the following
first order dynamics:

Jxφ̈ = (F3− F4) , Jy θ̈ = (F1− F2) (5.23)

Therefore by combining eqs. (5.22) and (5.23), the following state space description
comes out:  φ̇φ̈

v̇

 =

0 1 0
0 0 2KL

Jx
0 0 −ω

 θθ̇
v

+

 0
0
ω

∆uφ (5.24)

 θ̇θ̈
v̇

 =

 0 1 0
0 0 2KL

Jy

0 0 −ω

 θθ̇
v

+

 0
0
ω

∆uθ (5.25)

with ∆uφ = (upwm3 − upwm4 ) and ∆uθ = (upwm1 − upwm2 ).

Height model

The quadrotor motion along the vertical direction (Z− axis) is affected by all the
four propellers. By assuming that Fz = Fi, i = 1, . . . , 4, the latter can be modeled
as

MZ̈c = 4Fz cosφ cos θ −mg (5.26)

Finally, by combining eqs. (5.22) and model (5.26) the following state space descrip-
tion results:  ŻcZ̈c

v̇

 =

0 1 0

0 0 4K cosφ cos θ
m

0 0 −ω

ZŻ
v

+

 0
0
ω

uz +

 0
−g
0

 (5.27)

where Fz = K ω
s+ωuz

Xc − Yc position model

Under the following assumption on the yaw angle:

ψ ≡ 0

the Xc − Yc position dynamical model becomes:

MẌc = 4Fz sin θ

MŸc = −4Fz sinφ (5.28)

Then, eqs. (5.22) and (5.28) allow to derive the following state space description Ẋc

Ẍc

v̇

 =

0 1 0
0 0 4K sin θ

M
0 0 −ω

XẊ
v

+

 0
0
ω

uz (5.29)
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 ẎcŸc
v̇

 =

0 1 0

0 0 − 4K sinφ
M

0 0 −ω

YẎ
v

+

 0
0
ω

uz (5.30)

Yaw model

By assuming a linear characteristics between the motor torque τi and the PWM signal
upwmi :

τi = Kzu
pwm
i , Kz ∈ IR+, i = 1, . . . , 4,

the motion along the z−axis can be modeled as

Jzψ̈ = Kz∆τψ

or equivalently as [
ψ̇z
ψ̈z

]
=

[
0 1
0 0

] [
ψz
ψ̇z

]
+

[
0
Kz
Jz

]
∆uψ (5.31)

with ∆uψ = upwm1 + upwm2 − upwm3 − upwm4 .

Qball-X4 linear Model, parameters and command inputs

By collecting all the above developments, the dynamical behaviour of the Qball-X4
quadrotor is described by eqs. (5.22)-(5.31).
Note that the effective commands applied to the four propellers are given by the
following relationships: 

upwm1 = uz +∆uθ +∆uψ
upwm2 = uz −∆uθ +∆uψ
upwm3 = uz +∆uφ −∆uψ
upwm4 = uz −∆uφ −∆uψ

Finally, Table 5.1 collects the Qball-X4 physical parameters.

5.4.3 Sensors and Vicon system

The HiQ provides several high-resolution avionics sensors, which are used to mea-
sure and control the stability of aerial vehicles. Moreover in order to measure the
spatial Cartesian coordinates of the Qball an indoor high speed Vicon cameras sys-
tem is used [121]. This infrared cameras system has the capability to identify and
track reflective markers and body (a body is a set of marker described as connected )
in the working environment with extreme precision. In particular the qball X4 body
is modeled using five reflective markers described inside the Vicon system as a rigid
body (Fig. 5.6-5.7)
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Parameters Value
K 120 N
ω 15 rad/s
Jx 0.03 Kgm

2

Jy 0.03 Kgm
2

Jz 0.04 Kgm
2

m 1.53 Kg

Kz 4 Nm
L 0.2 m

Table 5.1. Qball-X4 parameters

QBall-X4 data acquisition and Vicon cameras system

A Quanser’s on board avionics data acquisition card (DAQ), an HiQ and an embed-
ded Gumstix computer are in charge of acquiring measurements from the on-board
sensors and to drive the Qball-X4 motors. Specifically, the HiQ avionics input/output
(I/O) includes:

• 10 PWM outputs (servo motor outputs); 3-axis gyroscope, range configurable for
±75◦/s, ±150◦/s, or ±300◦/s, resolution;

• 0.0125◦/s/LSB at a range setting of ±75◦/s; 3-axis accelerometer, resolution
3.33mg/LSB;

• 6 analog inputs, 12− bit, +3.3V ; 3-axis magnetometer, 0.5 mGa/LSB;
• 8 channel RF receiver input (optional); 4 Maxbotix sonar inputs;
• 2 pressure sensors, absolute and relative pressure.

Moreover, the Qball-X4 spatial Cartesian coordinates are obtained by means of an
indoor high speed Vicon c© cameras system [121]. Within the working environment,
this infrared cameras system has the capability to quickly identify and track reflective
markers with high accuracy. Note that the Qball-X4 body has been modeled by using
five reflective markers within the Vicon system, see Fig. (5.6)-(5.7).

On board controller implementation

The Quanser’s real-time control software allows to develop and evaluate performance
controllers on the Qball-X4 by using the Matlab/Simulink environment. This soft-
ware is capable to access to the C−code, automatically generated by Matlab and
Simulink coders from a Simulink model, and to compile it by exploiting the on-
board Gumstix computer architecture.
Finally, recall that the main computational task of the SCG-OA algorithm is the so-
lution of the constrained quadratic optimization problem (2.30). Because the Matlab
Code generation does not support the Matlab Optimization toolbox [27], a suitable
customization for solving the constrained QP has been used: ADMM (alternating
direction method of multipliers) [15].
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Fig. 5.6. Robust System Lab at Northeastern University: Vicon camera system and Qball-X4

Fig. 5.7. Qball-X4 and Vicon Markers

5.5 Experiments

The aim of this section is to show the effectiveness of the proposed SCG-OA algo-
rithm. First, a simulation campaign has the aim to both validate the CG controller
and to provide comparisons with the default LQ Quanser controller. Then, a real-
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time laboratory experimental set-up is considered and the related numerical results
presented and discussed.
In what follows the Qball-X4 model (5.22)-(5.31) has been linearized around the
following equilibrium point:

x̄veq =
[

0 0 0 0 0 0.12 0 0 0 0 0 0
]T
, ūeq =

[
0.031, 0, 0, 0

]T
(5.32)

and then discretized by using the Euler forward differences method with ∆t =
0.001 s the sampling time interval.
The set of constraints is below summarized:

• Working environment (room) :

−1.2 ≤ Xc ≤ 1.2, −1 ≤ Yc ≤ 3.5, 0 ≤ Zc ≤ 2.5

• Roll and pith angle (validity of the linearized model):

|φ| ≤ 0.3, |θ| ≤ 0.3 (5.33)

• Control command effort (rotor saturation):

|∆uφ| ≤ 0.025, |∆uθ| ≤ 0.025, 0.011 ≤ |uz| ≤ 0.051 (5.34)

The following CG parameters have been selected: δ = 10−5 and Ψ = I3. The
constraint horizon k0 = 120 was computed via the numerical procedure proposed
in [48]. Notice that, by keeping out the on-board saturation devices, the LQ Quanser
controller (standard equipment on the Qball-X4) has been used as primal controller
for CG purposes.

5.5.1 CG validation and comparisons

The CG control strategy has been designed by means of a linearizion procedure of
the Qball-X4 non linear model. The test bed control task is below described:

Starting from the initial condition pstart = (0, 0, 0.12)m the Qball-X4 have to track
the following reference signal:

1. t ∈ [0, 15] s.→ pgoal = [0, 0, 0.5]
T

;

2. t ∈ (15, 25] s.→ pgoal = [1.5, 0, 0.5]
T

;

3. t ∈ (25, 40] s.→ pgoal = [−1, 0, 0.5]
T

;

4. t ∈ (40, 50] s.→ pgoal = [−1, 0, 0.35]
T

;

5. t ∈ (50, 70] s.→ pgoal = [1.5, −0.35, 0.5]
T

;

6. t ∈ (70, 85] s.→ pgoal = [0, 0, 0.5]
T

;

7. t ∈ (85, 90] s.→ pgoal = [0, 0, 0.12]
T

;
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All the relevant results are reported in Figs.5.8-5.10. Fig. 5.8 shows the tracking
error signals along the Xw and Y w axes: there it is clearly enlighten that the pro-
posed SCG-OA strategy outperforms the LQ Quanser controller. Notice that this be-
haviour is less evident on the Y w−axis because shorten displacements are required.
Moreover, it is worth to underline that even if all the prescribed constraints are al-
ways fulfilled (Figs. 5.9, 5.10), the LQ Quanser must be supported by off-designed
saturation devices. This leads to unavoidable drawbacks: nonlinear phenomena and
conservative results in linear regimes.

Finally, the main advantage of the CG customization comes out from Fig. 5.10
where the SCG-OA command signal is more active than the LQ Quanser competitor:
as a consequence this justifies the achieved better tracking performance shown in
Fig.5.8.
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4 Error X  axis

Time [s]
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-1

-0.5

0

0.5

1 Error Y  axis CG

LQ Quanser

w

w

Fig. 5.8. Tracking error signals
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Fig. 5.10. Commands Input: ∆uφ and ∆uθ

5.5.2 Real time obstacle avoidance laboratory experiment

Experiments are instrumental to show the benefits of the proposed approach when
a critical obstacle scenario is considered. Note that to take care of the Qball-X4
dimensions, the obstacle dimensions have been increased in such a way that the
quadrotor can be considered as a point mass, see [83] for details. Moreover, we have
built the following obstacle scenario:

• a room: X × Y × Z = 4× 1.2× 3m3;
• Obstacle positions: summarized in Table 5.2 and shown in Fig. 5.11.
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Obstacle width(m) depth(m) height(m) center of gravity(m)
Ob1 0.7 0.7 0.7 [0.6; 0.2, 0.35]

Ob2 0.7 0.7 0.7 [1.8;−0.4, 0.35]
Ob3 0.7 0.7 0.7 [3.1; 0.2, 0.35]

Table 5.2. Obstacle configuration

Fig. 5.11. Three Obstacle scenario: Start and Goal locations

Then, the aim of the real-time experiment is:

Starting from the initial condition pstart = (0, 0, 0.12)m, see Fig. 5.11, it is re-
quired that the Qball-X4 quadrotor reaches the target pgoal = (2.9,−0.3, 0.50)m
and comes back to pstart by avoiding the obstacle occurrences along the path.

All the relevant results are reported in Figs. 5.12-5.20.
Figs. 5.12-5.13 depict the Qball-X4 state trajectories under the action of the

Naive SCG-OA (dashed line) and SCG-OA (continuous line) algorithms in the
2D and 3D spaces, respectively, whereas Fig. 5.14 accounts for the dynamical be-
haviours along the three axes. As expected, the SCG-OA algorithm shows remark-
ably lower settling times (about 43 s) than its Naive SCG-OA competitor (about 60s).
Figs. 5.15-5.17 show the behaviours of the planner and command governor mod-
ules. There, it is interesting to remark that the CG unit is always able to modify
the reference provided by the planner module in order to ensure constraint satisfac-
tion at each time instant. To better clarify the proposed SCG-OA strategy, Fig. 5.18
describes the updating phases of the constraint window w.r.t. the current quadrator
position. There, we have denoted with p(·)

reach the points provided by the planner in
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order to avoid obstacle occurrences. Screen shots take care of five events (constraint
window switchings) that are necessary to comply with the prescribed goal. As an
example, consider the screen shots labelled with (A), (B) where the obstacle Ob1
is circumvented by modifying the constraint window (from the continuous border
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Time [s]

Fig. 5.14. Trajectory along Xw, Y w, Zw-axes

area (blue) to the dashed border one (red)) and by updating initial and final points,
namely (start, p1

reach)→ (p1
reach, p

2
reach). The same reasoning applies to the other

two obstacle occurrences.
Moreover, Fig. 5.19 provides roll and pitch angles trends, while Fig. 5.20 reports the
applied control inputs, i.e.∆r,∆p and uv . As it is clearly highlighted, the prescribed
constraints (5.33)-(5.34) are always satisfied.



5.5 Experiments 113

−0.  5 

0

0.  5

1

1.5

2

2.  5

3

3.  5

 

 

0 10 20 30 40 50 60
−0.  5

0

0.  5

1

1.  5

2

2.  5

3

3.  5

 

 

CG output signal g(t)

Planner reference signal 

Time [s]

X
 [

m
]

c

(SCG-OA Algorithm)

(Naive-SCG-OA Algorithm)

Fig. 5.15. Command Governor and Planner: X axis

−0.  4

−0.  2

0

0.  2

0.  4

0.  6

 

 

0 10 20 30 40 50 60 70
−0.   6

−0.   4

−0.   2

0

0.  2

0.  4

 

 

CG output signal g(t)

Planner reference signal 

(SCG-OA Algorithm)

Time [s]

(Naive-SCG-OA Algorithm)Y
 [

m
]

c

Fig. 5.16. Command Governor and Planner: Y axis



114 5 An Hybrid Command Governor approach

−0.   2

−0.   1

0

0.  1

0.  2

0.  3

0.  4

0.  5

0.  6

 

 

0 10 20 30 40 50 60
−0.   2

−0.   1

0

0.  1

0.  2

0.  3

0.  4

0.  5

0.  6

 

 

(SCG-OA Algorithm)

(Naive-SCG-OA Algorithm)

Z
 [

m
]

c

Time [s]

CG output signal g(t)

Planner reference signal 

Fig. 5.17. Command Governor and Planner: Z axis

(B)

(C)

p
reach

p
reach

1 2

2
reach

reach
p3

p

reach
p3

p4
reach

p4
reach

p5
reach p5

reach p6
reach

(D)

(E) (F)

(A)

ObOb

Ob

Start

Goal
p
reach
1

1

2

3

Ob1

Ob1

Ob1

Ob1 Ob1

Ob2

Ob2 Ob2

Ob2 Ob2

Ob3

Ob3 Ob3

Ob3 Ob3

t

h h

ch

ch

Goal

Goal Goal

Goal

Qball

X4

Fig. 5.18. Constraints updating procedure



5.5 Experiments 115

Time [s]

Fig. 5.19. Roll φ and Pitch θ angles

Time [s]

Fig. 5.20. Command inputs: ∆uφ, ∆uθ and uz



116 5 An Hybrid Command Governor approach

Finally, further relevant simulation and experimental demos can be found at the fol-
lowing four web links:

• Naive SCG-OA-Algorithm:
https://www.dropbox.com/s/ylkrlsjtkio5lzu/basic_algorit
hm_behaviour.wmv

• SCG-OA-Algorith:
https://www.dropbox.com/s/sn35tnffq9ke53n/fast_algorith
m_behaviour.wmv

• Qball-X4 and Naive SCG-OA-Algorithm:
https://www.dropbox.com/s/wv2kpx1rg7y5cxb/basic_quadrot
or_05_11_movie.wmv

• Qball-X4 and SCG-OA-Algorithm:
https://www.dropbox.com/s/0w8tv9i8gbxz37o/Fast_quad_mov
ie_horizontal_22_11.wmv

5.6 Conclusions

In this Chapter an extension of the basic CG strategy for solving the obstacle avoid-
ance motion planning problem for unnamed aerial vehicles has been presented.
Linearity and constraint sets overlapping properties are the key ingredients to prove
that feasibility retention and constraints fulfillment are preserved in spite of con-
straint structure modifications. By taking advantage from viability arguments, the
proposed control architecture does not require the on-line CG re-design when a-
priori unknown obstacles block the UAV navigation.
The experimental set-up involving the Qball-X4 quadrotor allows to clearly show
the effectiveness and applicability of the proposed hybrid strategy when obstacle
scenarios are taken into consideration.

https://www.dropbox.com/s/ylkrlsjtkio5lzu/basic_algorithm_behaviour.wmv
https://www.dropbox.com/s/ylkrlsjtkio5lzu/basic_algorithm_behaviour.wmv
https://www.dropbox.com/s/sn35tnffq9ke53n/fast_algorithm_behaviour.wmv
https://www.dropbox.com/s/sn35tnffq9ke53n/fast_algorithm_behaviour.wmv
https://www.dropbox.com/s/wv2kpx1rg7y5cxb/basic_quadrotor_05_11_movie.wmv
https://www.dropbox.com/s/wv2kpx1rg7y5cxb/basic_quadrotor_05_11_movie.wmv
https://www.dropbox.com/s/0w8tv9i8gbxz37o/Fast_quad_movie_horizontal_22_11.wmv
https://www.dropbox.com/s/0w8tv9i8gbxz37o/Fast_quad_movie_horizontal_22_11.wmv


Conclusions

In this dissertation, predictive based control architectures devoted to solve obstacle
avoidance motion planning problems for autonomous vehicles subject to input and
state constraints have been presented and below summarized:

• Unmanned Ground Vehicles -
√

Obstacle Avoidance MPC (OA-MPC). The receding horizon control strategy
concerns with autonomous vehicles described by of LTI or multi-model state
space descriptions and operating within structured dynamic environments.
Set-theoretic ideas have been used to take care of all admissible time varying
obstacle scenarios and move into the off-line phase most of the computation
pertaining to the RHC controller. As a consequence, the resulting dual-mode
controller has a modest on-line computational burden and it is appealing in
real-time applications.

√
Sum-of-Squares Obstacle Avoidance MPC (SOS-OA-MPC). It provides an
extension of the OA-MPC framework in order to consider polynomial vehicle
descriptions and to take care of nonholonomic constraints. Semi-algebraic
arguments have been exploited with the aim to adapt the OA-MPC algorithm
to the polynomial modelling. Moreover, adequate relaxations of the resulting
on-line non-linear optimization problems have been provided so that simple
SDPs result.

√
Moving Obstacle Avoidance MPC (MOA-MPC). This scheme extends the ap-
plication range of the basic OA-MPC strategy: moving agents are allowed so
that non-structured dynamic environments come out. By jointly exploiting
one-step controllable set and RPI region concepts, a novel scheduling policy
to on-line take care of the admissible moving obstacle scenarios has been de-
rived. The required computational resources (spatial and memory complex-
ities) are modest and therefore the strategy could be affordable in practical
applications.
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• Unmanned Aerial Vehicles -

√
Switching command governor obstacle avoidance algorithm (SCG-OA). The
control architecture is a pertinent extension of the basic CG strategy in or-
der to deal with UAV obstacle avoidance motion planning problems (UAV-
OAMPs). By taking advantage from viability arguments, the proposed con-
trol scheme does not requires the on-line CG re-design during the UAV nav-
igation. Finally, linearity and constraint set overlapping properties are used
to prove that feasibility retention and constraints fulfilment are preserved de-
spite of any admissible constraint structure modifications.

Future directions

The core of this thesis can be stated as: find novel solutions to the obstacle avoidance
motion planning problem for a single unmanned vehicle. The extension of the pro-
posed control strategies to control and coordination of multi-agent systems could be
the natural future research direction.
As it is well-known, this topic has been recently attracted a lot of attention due to their
broad possible applications: cooperative control of unmanned air vehicles, schedul-
ing of automated highway systems, formation control of satellite clusters and so on,
see [62], [72], [117], [124].
On the other hand, this extension seems to be not straightforward because the fol-
lowing key aspects need to be carefully investigated:

• Scalability to multi-agent descriptions;
• Command input distributed computation;
• Feasibility retention;

Along these lines, a preliminary result has been presented in [45] where leader-
follower formations are considered and the obstacle avoidance motion planning
problem is solved within static environments.
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One step ahead controllable set: computation details

In this appendix, by considering the model description (2.9), a computational algo-
rithm for computing recursion (2.11) is derived by means of Linear Matrix Inequali-
ties (LMI) techniques provided that the following assumptions are satisfied :

Assumption A.1. U and X can be expressed as the intersection of (possible degen-
erate) ellipsoidal sets: U = ∩T Uh and X = ∩T Xh . Notice that any convex compact
set can be represented as the intersection of ellipsoids [65]. In particular this allows
for intervals and boxes to be considered. 2

Assumption A.2. D is itself an ellipsoid (or an interval in the case of scalar distur-
bances). 2

If Assumptions (A.1)-(A.2) hold true then a simple algorithm can be implemented
once the following set manipulations have been carried out:

{ x ∈ X : ∃u ∈ U : ∀d ∈ D : Φx+Gu+Gdd ∈ Tk−1}
⊃ {x ∈ X : ∃u ∈ U : Φx+Gu+Gdd ∈ In[Tk−1 ∼ GdD]}
= Projx{[x, u] : u ∈ U , x ∈ X , [x, u] ∈ T̃k−1} (A.1)

where Projx denotes the projection over the x subspace and the ellipsoidal set T̃k−1

is defined as follows in the extended space x, u :

T̃k−1 := {[x, u] : Φx+Gu ∈ In[Tk−1 ∼ GdD]}.

Therefore
Tk := Projx

[
In
[
T̃k−1

⋂(⋂
T Xh ×

⋂
T Uk
)]]

(A.2)

Notice that the Cartesian product
(⋂
T Xh ×

⋂
T Uh
)

is again an ellipsoidal set in the
extended space (x, u). With the aim of computing a projection into the x subspace it
is more convenient to refer to the dual ellipsoidal parametrization (2.8). In fact, when
a variables vector z is partitioned as z = [xT , uT ]T , the projected ellipsoid over x is
obtained by just restricting the support function to the desired subspace:
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max
x∈Projx[T (P )]

cTx = max
x∈Projx[T (P )]

[cT , 0]z

=
√

[cT , 0]P [cT , 0]T =
√
c′[P ]11c

where [P ]11 is the n × n principal minor of P . In order to maximize, according
to some criterion, the size of the projected ellipsoid (for instance its volume) the
following LMI optimization problem can be used

max log detQ11 s.t

0 <

[
Q11 Q12

Q12 Q22

]
≤ P (A.3)

and then the ellipsoidal set Ti can be computed by means of the following projection
formula

Projx

{
[xT uT ]

[
Q11 Q12

Q12 Q22

]−1 [
x
u

]
≤ 1

}
=
{
x : xTQ−1

11 x ≤ 1
}

(A.4)

Remark A.3. If of interest, once can enforce the following nesting property amongst
the ellipsoidal set Tk

Tk−1 ⊆ Tk
by adding to problem (A.3) the following constraint

Q11 ≥ Qk−1
11

where Qk−1
11 denotes the matrix Q11 corresponding to Tk−1 2

Remark A.4. The optimization problem (A.3) is valid only for non-degenerate el-
lipsoidal sets, whereas typically ellipsoid defined in the extended space [x, u] are
unbounded along some directions. Therefore, in order for (A.3) to make sense, it is
necessary to project the LMI along the directions where they are non-degenerate,
see [120] for further details.
In particular, as P is symmetric it can be factorized by using the singular value de-
composition (SVD) as

P = UTΣU

where U is an orthogonal matrix and Σ is partitioned as follows:

Σ =

[
Σ̃ 0
0 0

]
, Σ̃ diagonal and invertible

Therefore, the projection of (A.3) along the non-degenerate directions yields:.

max log detQ11 s.t

[
I 0
]
U

[
Q11 Q12

Q12 Q22

]
UT

[
I
0

]
≤ Σ̃,

[
Q11 Q12

Q12 Q22

]
≥ 0

(A.5)

with I is the identity matrix of dimension rank(P ) 2
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In conclusion recursion (2.10) can be approximately computed by means of ellip-
soidal sets (2.11), regardless of any disturbance occurrences d(t) ∈ D, by performing
intersection (A.2) and projections (A.4) of ellipsoids. Both the required steps are nu-
merically well established and with a problem dimension that grows quadratically
with the size of the state and the input.





B

Nonholonomic ground vehicles: non linear models and
polynomial recasting

The aim of this appendix is twofold: 1) provide detailed model descriptions of au-
tonomous ground vehicles and 2) show that such nonlinear models can be recast as
polynomial systems. To this end two well-known model descriptions of the unicycle
car-like mobile robot (also known as differential drive) are considered, see Fig. B.1.
These models are first detailed and then recast using the PRA procedure presented in
Section 2.3.4.

y

x

v

X

Y

O

Fig. B.1. Nonholonomic mobile robot
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B.1 Kinematic unicycle model

A differential drive robot is a typical nonholonomic wheeled vehicle, which has two
rear drive wheels and a front castor for body support. It is assumed that the motion of
the robot cannot slip laterally so that the translational velocity is in the direction of
heading, i.e. a pure rolling contact between the wheels and the ground. The speed of
the two rear wheels (vl and vr) are used to impose the translation (v = (vl + vr)/2)
and angular (ω = (vr − vl)/B) speeds of the robot (B is the wheelbase). The robot
pose is described by its position (xr, yr), the midpoint of the rear axis of the robot,
and its orientation (θr). Then, the kinematics equation is ẋr(t)ẏr(t)

θ̇r(t)

 =

 cos(θr(t))
sin(θr(t))

0

 v(t) +

0
0
1

ω(t) (B.1)

where maximum linear and angular velocities are prescribed

|v(t)| ≤ VMAX and |ω(t)| ≤WMAX , ∀t ∈ IR+ .

Notice that the kinematic model (B.1) is nonintegratable and, as a consequence, kine-
matics constraints can not be converted into geometrical requirements [36]. More-
over since the number of control variables is less than the number of state variables, a
nonholonomic constraint holds and a continuous time-invariant feedback control law
cannot be used [52], [34]. On the other hand, since the accessibility rank condition
is globally satisfied [89]:

Rank

 cos(θr(t))
sin(θr(t))

0

 ,
0

0
1

 ,
 cos(θr(t))

sin(θr(t))
0

 ,
0

0
1

 = 3 (B.2)

the model plant (B.1) is controllable by means of a nonlinear or time-varying con-
troller.

B.1.1 Polynomial recast

Model (B.1) includes non-polynomial non-linearities, i.e. sin(θr(t)) and cos(θr(t)),
but it can be straightforwardly converted through PRA to a polynomial system.

First of all , as prescribed by Step 1 of PRA, all the state variables of the original
model (B.1) are imposed as state components of (2.19), i.e. x1 = xr, x2 = yr and
x3 = θr. Then, along the line dictated by Steps 2-3 of PRA two further state variables
are introduced

x4(t) = cos(θr(t))

x5(t) = sin(θr(t)) (B.3)
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and their derivative computed

ẋ4(t) = −sin(θr(t))θ̇r(t) = −x5(t)ω(t)

ẋ5(t) = cos(θr(t))θ̇r(t) = x4(t)ω(t) (B.4)

Finally substituting (B.3)-(B.4) into (B.1) the following system equations result
ẋa =

 ẋ1(t)
ẋ2(t)
ẋ3(t)

 = v(t)x4(t)
= v(t)x5(t)
= ω(t)

ẋb =

[
ẋ4(t)
ẋ5(t)

]
= −x5(t)ω(t)
= x4(t)ω(t)

(B.5)

where only polynomial terms are involved. Notice that solutions of (B.5) lie into a
6-dimensional manifold but it can be restricted within a 4-dimensional manifold by
simply introducing the equality constraint

Ga(za, zb) := x2
4(t) + x2

5(t) = 1, (B.6)

which typically come out whenever sin(·) and cos(·) functions are involved (see
Section 2.3.4)

B.2 Dynamical unicycle model

Assume that the unicycle motion and orientation are achieved by two indepen-
dent actuators (e.g. DC motors) providing the necessary torques τ1 and τ2 to the
driving wheels. The robot pose in the inertial Cartesian frame {O,X, Y } is com-
pletely specified by the 3−dimensional vector of generalized coordinates q(t) :=
(xr(t), yr(t), θr(t)). Moreover, the autonomous vehicle is subject to an independent
velocity constraint:

ẋr(t) sin(θr(t))− ẏr(t) cos(θr(t)) = 0 (B.7)

This represents a nonholonomic constraint and states that the robot can only move in
the direction normal to the axis of the driving wheels: the mobile base satisfies the
pure rolling and non slipping conditions, see [35]. Then, the vehicle can be described
by the following dynamical model:

ẍr(t) = −ẏr(t)θ̇r(t) + cos(θr(t))
mr (τ1(t) + τ2(t))

ÿr(t) = ẋr(t)θ̇r(t) + sin(θr(t))
mr (τ1(t) + τ2(t))

θ̈r(t) = R
Ir (τ1(t)− τ2(t))

(B.8)

where m, I, R are the robot mass, moment of inertia and length, respectively, and
r is the wheels radius. Finally, considering as state variables the robot pose q(t), as
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well as its derivative, q̇(t) = [ẋ(t) ẏ(t) θ̇(t)]T system (B.8) can be translated into
the next nonlinear state space form


ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)
ẋ5(t)
ẋ6(t)

 =


x4(t)
x5(t)
x6(t)

−x5(t)x6(t)
x4(t)x6(t)

0

+



0 0
0 0
0 0

cos(x3(t))
mr

cos(x3(t))
mr

sin(x3(t))
mr

sin(x3(t))
mr

R
Ir − R

Ir


[
τ1(t)
τ2(t)

]
(B.9)

where x1(t) = xr(t), x2(t) = yr(t), x3(t) = θr(t), x4(t) = ẋr(t), x5(t) = ẏr(t),
x6(t) = θ̇r(t).

B.2.1 Polynomial recast

Because B.9 exhibits the same nonlinearities involved in (B.1), the recasting proce-
dure follows the same arguments used in Section B.1.1. By denoting with

x7(t) = cos(x3(t))

x8(t) = sin(x3(t)) (B.10)

the additional state variables, the following polynomial model results

ẋa =


ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)
ẋ5(t)
ẋ6(t)


= x4

= x5

= x6

= −x5x6 + x7

mr (τ1 + τ1)
= x4x6 + x8

mr (τ1 + τ1)
= R

Ir (τ1(t)− τ2(t))

ẋb =

[
ẋ7(t)
ẋ8(t)

]
= −x8(t)x6

= x7(t)x6

(B.11)

Once again the solution manifold of (B.11) is restricted by imposing the equality
constraint

Ga(xa, xb) := x2
7(t) + x2

8(t) = 1 (B.12)

In conclusion, it is worth to underline that also the non holonomic constraint (B.7)
simply translates into a polynomial condition

ẋ1(t)x8(t)− ẋ2(t)x7(t) = 0 (B.13)



C

Command Governor computational details

This appendix describes all the computational details required to design and imple-
ment the CG strategy.

Consider the plant model (2.22) and linear constraints for the sets c(t) ∈ C and
d(t) ∈ D. They can be represented as the intersection of a finite number of half
spaces:

C = {c ∈ IRnc : Tc ≤ b} (C.1)

T =


TT1
TT2

...
TTz

 ∈ IRz×nc ,


b1
b2
...
gz

 ∈ IRz, z ≥ nc, rank(T ) = nc

and
D =

{
d ∈ IRd : V d ≤ h

}
(C.2)

V =


V T1
V T2

...
V Tnu

 ∈ IRnu×d, h =


h1

h2

...
hnu

 ∈ IRnu , nu ≥ d, rank(V ) = d, hi ≥ 0

where T, V are shaping matrices and b, h vectors accounting for the set dimensions.
Exploiting the above set definitions, recursion (2.26) can be computed as follows
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C0 = C ∼ LdD =

{
c ∈ IRnc : TTi ≤ bi − sup

d∈D
TTi Ldd, i = 1, . . . , z

}
=
{
c ∈ IRnc : TTi c ≤ g0

i , i = 1, . . . , z
}

C1 = C0 ∼ HcGdD =

{
c ∈ IRnc : TTi ≤ b0i − sup

d∈D
TTi HcGdd, i = 1, . . . , z

}
=
{
c ∈ IRnc : TTi c ≤ g1

i , i = 1, . . . , z
}

. . .

Ck = Ck−1 ∼ HcΦ
k−1GdD =

{
c ∈ IRnc : TTi ≤ b

k−1
i − sup

d∈D
TTi HcΦ

k−1Gdd,

i = 1, . . . , z}
=
{
c ∈ IRnc : TTi c ≤ gki , i = 1, . . . , z

}
(C.3)

In order to computeWδ an evaluation of Cδ∞ in necessary. To this end, a conve-
nient approximation of C∞ can be obtained by looking for a convenient set

C∞(ε) ⊂ C∞ ⊂ C∞(ε) + Bε

with Bε a ball of radius ε
Such a set, unlike C∞, is computable in a finite number of steps. In fact, it can be
shown that

C∞ = Ck ∼

( ∞∑
i=k

HcΦ
iGdD

)
Moreover, because of stability of Φ (see Assumption 2.29 a), there exist two con-
stants M > 0 and λ ∈ (0, 1) such that

||Φk|| ≤Mλk

Boundedness of D also implies that there exists finite

dmax := max
d∈D
||d||2

The above facts are enough to ensure that, once chosen desired accuracy ε, there
exists an index kε such that

∞∑
i=kε

HcΦ
iGdD ⊂ Bε

In fact, it is suffices that
dmaxσ̄(Hc)σ̄(Gd)M

∞∑
i=kε

λi ≤ ε

which, after direct steps, gives rise to

kε =
log ε+ log(1− λ)[σ̄(Hc)σ̄(Gd)Mdmax]

log λ



C Command Governor computational details 129

Then, the desired approximation can be computed as

C∞(ε) = Ckε ∼ Bε

and, in turn,

Cδ∞(ε) = (Ckε − Bε) ∼ Bδ
=
{
c ∈ IRm : bkε − (ε+ δ)

[
TTi Ti

]}
Wδ =

{
ω ∈ IRm : c̄ω ∈ Cδ∞(ε)

}
=
{
ω ∈ IRm ∈ T (Hc(I − Φ)−1G+ L)ω ≤ bkε − (ε+ δ)

[√
TTi Ti

]}
(C.4)

where (ε+ λ)
[√

TTi Ti

]
is the support function of the ball Bε+δ

In this case V(x) can be characterized as

V(x) =
{
ω ∈ Wδ : c̄(k, x, ω) ∈ Ck, k = 0, . . . , k̄

}
(C.5)

where the integer k̄ will be specified in while. Then, by exploiting the next disturbance-
free predictions

x̄(k, x, ω) = Φkx+

(
k−1∑
i=0

ΦiG

)
ω

Φkx+Rxkω
c̄(k, x, ω) = Hcx̄(k, x, ω) + Lω

HcΦ
kx+ (HcRk + L)ω

HcΦ
kx+Rckω

the set (C.5) can rewritten as

V(x) =
{
ω ∈ Wδ : THcΦ

kx+ TRckω ≤ bk, k = 0, . . . , k̄
}

(C.6)

Finally the CG action (2.30) consists of solving the following QP optimization
problem

g(t) = arg min
w

(ω − r(t))TΨ(ω − r(t))
subject to:

THcΦ
kx(t) + TRckω ≤ bk, k = 0, . . . k̄

T (Hc(I − Φ)−1G+ L)ω ≤ bkε − (ε+ δ)
[
TTi Ti

] , Ψ = ΨT ≥ 0 (C.7)

By defining the function

Gk(j) := arg max
ω∈W,x∈IRn

TTj c̄(k, x, ω)− bkj
subject to

TTj c̄(i, x, ω) ≤ bkj , i = 0 . . . , k − 1

(C.8)

the computation of the constraint horizon k̄ can be accomplished via the following
procedure [48]:
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k̄−Procedure

1: k=1;
2: if Gk(j) < 0, ∀j = 1, . . . , z then
3: k̄ = k;
4: Stop k̄-procedure;
5: else
6: k = k + 1;
7: Goto Step 2;
8: end if
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22. J. M. Carson, B. Açkmee, R. M. Murray, and Douglas G. M. A robust model predictive
control algorithm augmented with a reactive safety mode. Automatica, 49(5):1251–
1260, May 2013.

23. A. Casavola, E. Mosca, and D. Angeli. Robust command governors for constrained
linear systems. Automatic Control, IEEE Transactions on, 45(11):2071–2077, 2000.

24. D. W. Casbeer, RW. Beard, TW McLain, Sai-Ming Li, and R. K. Mehra. Forest fire mon-
itoring with multiple small uavs. In American Control Conference, 2005. Proceedings
of the 2005, pages 3530–3535. IEEE, 2005.

25. G. Chesi. Estimating the domain of attraction via union of continuous families of lya-
punov estimates. Systems & control letters, 56(4):326–333, 2007.

26. M.-D. Choi, T. Y. Lam, and B. Reznick. Sums of squares of real polynomials. In
Proceedings of Symposia in Pure mathematics, volume 58, pages 103–126. American
Mathematical Society, 1995.

27. Matlab Coder. http://www.mathworks.com/products/matlab-coder/.
28. B. Coifman, M. McCord, R. G Mishalani, and K. Redmill. Surface transportation

surveillance from unmanned aerial vehicles. In Proc. of the 83rd Annual Meeting of
the Transportation Research Board, 2004.

29. A. Dax. The distance between two convex sets. Linear Algebra and Its Applications,
416:184–213, 2006.

30. A. De Luca and G. Oriolo. Modelling and control of nonholonomic mechanical systems.
Springer, 1995.

31. B. Ding, Y. Xi, M. T. Cychowski, and T. OMahony. Improving off-line approach to
robust MPC based-on nominal performance cost. Automatica, 43(1):158–163, January
2007.

32. N.E. Du Toit and J.W. Burdick. Robot Motion Planning in Dynamic, Uncertain Envi-
ronments. Robotics, IEEE Transactions on, 28:101 –115, 2012.

33. W. B. Dunbar and R. M. Murray. Model predictive control of coordinated multi-vehicle
formations. In Decision and Control, 2002, Proceedings of the 41st IEEE Conference
on, volume 4, pages 4631–4636. IEEE, 2002.

34. J. M. Eklund, J. Sprinkle, and S. Sastry. Switched and symmetric pursuit/evasion games
using online model predictive control with application to autonomous aircraft. Control
Systems Technology, IEEE Transactions on, 20(3):604–620, 2012.

35. R. Fierro and F. L. Lewis. Robust practical point stabilization of a nonholonomic mobile
robot using neural networks. Journal of intelligent and Robotic Systems, 20(2-4):295–
317, 1997.

http://www.mathworks.com/products/matlab-coder/


References 133

36. R. Fierro and F.L. Lewis. Control of a nonholonomic mobile robot: backstepping kine-
matics into dynamics. In Decision and Control, Proceedings of the 34th IEEE Confer-
ence on, volume 4, pages 3805–3810, Dec 1995.

37. C. A. Floudas. Nonlinear and mixed-integer optimization: fundamentals and applica-
tions. Oxford University Press, 1995.

38. T. Fraichard and H Asama. Inevitable collision statesa step towards safer robots? Ad-
vanced Robotics, 2004.
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