

Acknowledgement

A PhD course is both a challenging and enjoyable activity. At the end I would
like to thanks persons that have supported me and made very special this
experience.

I want to thank Andrea for his love. I know what different idea we have
about work, and that you did not agree with all the time spent for research.
Now we started to share more time and decisions and I love this time spent
together. I hope that the research world, that is very uncertain and unstable
in Italy, will allow me to show you how satisfactory it can be.

I’m forever indebted to my family. Thanks for your simplicity and strength
that allow you to overcome, or at least to accept, the very difficulties of the
life. I hope that you can be able to understand how much love you give each
other without call it love explicitly.

Thank to my supervisor, Domenico Saccá, because he believe in me and
made possible to start this PhD. I appreciate all his contributions of time and
ideas to make my PhD experience productive and stimulating.

Thank to the co-relator Massimo Ruffolo, the person that, most of any
other one, has taught me the basis of this work, has shared every idea with
me and have made possible to arrive here.

I want to thank Steffen Staab, who gave me the opportunity to work with
him and spend some months of my PhD in the University of Koblenz-Landau.
You have contributed immensely to my personal and professional growth. The
joy and enthusiasm he has for his research was contagious and motivational
for me. I am also thankful for the excellent example he has provided as a
successful charismatic person and professor. Thank to Silke, she made me fell
at home, and to all the guys of the WeST group for the time spent together.

I like to remember here the new Altilia s.r.l. workgroup: Gianni, Umberto
and Francesco. I hope that the group will grow because of your enthusiasm,
and genuineness. So that the group will be very powerful and compact.

I’m also grateful to Antonio, Mario, Sabrina and the persons of icar and
deis that supported me and made enjoyable time spent at university.

VI Acknowledgement

I like to remember here Barbara, because she are learning me the dance
that creates positive energy increasing my self esteem. Thanks to all dance
classmate. You all are very nice, friendly and funny.

Thank to all you because you made less hard, and indeed enjoyable this
experience.

Rende, Ermelinda Oro

November 2010

To my family, for their Love

Preface

The Web was originally conceived as a mean for sharing documents. It was
thought as a set of nodes in a network storing interlinked hypertext doc-
uments that can be rendered by browsers and presented to human users.
Today, the Web is the largest repository of human knowledge and acts as a
worldwide collaborative platform. Everyone can produce, share and improve
a very diverse spectrum of (multimedia) documents having different internal
encodings. Throughout the last decade, Web search engines, such as Google
and Yahoo, retrieve potentially interesting list of Web documents for answer-
ing user information needs. However, in many cases users have specific needs
that cannot be answered by an ordered set of documents. Users need objects
(having a clear semantics) retrieved from different documents and arranged
in a comprehensible way. However, contents are distributed on the Web by
two of the most diffused document formats such as the Hypertext Markup
Language (HTML) and Adobe portable document format (PDF). HTML and
PDF are semi and unstructured document formats conceived for presenting
documents on screen or for printing respectively. In this dissertation we sub-
sume documents encoded by HTML or PDF formats as presentation-oriented
documents (PODs). In such kind of document the spatial arrangement of
contents items produces visual cues that help human readers to make sense
of document contents. So, the problem of extracting meaningful information
from presentation-oriented documents can be better addressed by approaches
capable to exploit the spatial structure of such kind of documents. This thesis
faces such challenging problem by defining approaches that allow for querying
and wrapping PODs available on the Web. In particular, in the thesis are
described:

• A data models that allows for representing presentation-oriented docu-
ments independently from the document format. Such model represents
both the internal hierarchical structure of PODs (e.g. the DOM), and the
spatial arrangement of layouted basic data (e.g text, images, video).

X Preface

• Techniques and algorithms intended to automatically recognize and ex-
tract repetitive records, tables and other typical spatial and structural
pattern by using internal structures as well as spatial relations, and se-
mantic and presentation features of PODs.

• Query languages that allow for navigating the internal structure of PODs
by exploiting presentation information, layout patterns and spatial rela-
tions between data. Languages enable, also, to describe objects to extract
on the base of semantic and linguistic features.

Approaches defined in the thesis are able to exploiting prior knowledge
about specific search domains represented in suitable ontology languages,
which enable semantic-aware information extraction.

Described novel approaches and systems allow to obtain relevant informa-
tion from PODs and constitute a first steps for achieving a new generation
of Web technologies capable of querying and organizing information on the
Web and produce structured representations of Web contents, a point which
is central in researches on the future Internet.

Rende, Ermelinda Oro

November 2010

Contents

Part I Background and Uptake

1 Introduction and Overview . 3
1.1 Problem Description and Motivations . 3
1.2 Main Contributions . 7
1.3 Outlook . 8

1.3.1 Thesis’ Structure . 8
1.3.2 Reader’s Guide . 9
1.3.3 Publications . 9

2 Background . 13
2.1 Presentation-Oriented Documents – PODs 13

2.1.1 Internal Representations . 14
2.1.2 Displaying PODs . 20
2.1.3 Challenges . 22

2.2 Web Query Languages . 24
2.2.1 XPath . 24
2.2.2 XQuery . 28

2.3 Formal Languages . 30
2.3.1 Grammars . 31
2.3.2 Parsing Techniques . 34

2.4 Knowledge Representation . 38
2.4.1 Ontologies . 38

Part II Information Extraction: State Of Art

3 Flat Text Information Extraction . 49
3.1 Pattern Matching Based IE . 50
3.2 Machine Learning Based IE . 50

XII Contents

4 Web Information Extraction . 53
4.1 Manual IE . 53
4.2 Semiautomatic IE . 53

4.2.1 Wrapper Induction Systems . 54
4.2.2 GUI-based Web Data Extraction . 55

4.3 Automatic IE . 57
4.3.1 Visual-based Approaches . 58

5 PDF Information Extraction . 61
5.1 Document Understanding . 61
5.2 PDF Table Recognition . 62
5.3 PDF Wrapping . 63

6 Semantic Information Extraction . 65
6.1 Ontology-based Information Extraction System 65

7 Query Languages . 67
7.1 Logic-based Query Languages . 67
7.2 Spatial Query Languages . 68
7.3 Multimedia Query Languages . 68

Part III Information Extraction: New Approaches

8 Towards a Spatial and Semantic Information Extraction
System . 73
8.1 Architecture and Functionalities . 73

9 Document Model for PODs . 77
9.1 Qualitative Spatial Relations . 78
9.2 2-Dimensional Flat Representation . 84
9.3 Spatial Document Model – SDOM . 86
9.4 Discussion . 92

10 Automatic Information Extraction . 93
10.1 PDF-TREX: Understanding PDF Documents 94

10.1.1 Recognizing and Extracting Tables 97
10.1.2 Experiments . 104

10.2 SILA: Extracting Data Records from Deep Web Sites 116
10.2.1 The SILA Algorithm . 118
10.2.2 Experiments . 122

10.3 Discussion . 129

Contents XIII

11 Querying PODs . 131
11.1 SXPath: Spatial Querying of PODs . 132

11.1.1 Syntax and Semantics . 139
11.1.2 Complexity Issues. 144
11.1.3 Implementation and Experiments . 151

11.2 Spatial Grammars . 161
11.2.1 Syntax and Semantics . 161
11.2.2 Complexity Issues and Experiments 167

11.3 Discussion . 169

12 Semantic Information Extraction . 171
12.1 Self-Describing Ontologies – SDO . 172

12.1.1 Logic 2-D Representation . 173
12.1.2 Object and Class Descriptors . 177

12.2 XONTO-L: Logic-Based System for Extracting Objects 179
12.3 XONTO-G: Grammar-Based System for Extracting Objects . . 185
12.4 Discussion . 192

13 Visual Information Extraction . 193
13.1 Visual Fetuares in the SILA and SXPath System 193
13.2 Visual Features in the PDF-TREX System 196

14 Real World Applications . 199
14.1 Medical Process Management . 199

14.1.1 Process Modelling . 199
14.1.2 Ontology-based Clinical KR Framework 202

14.2 Records Management . 210
14.3 Document Understanding . 211
14.4 News Paper Review . 212

Part IV Conclusion and Future Work

15 Conclusion and Future Work . 217
15.1 Conclusion and Future Work . 217

15.1.1 Content Summary . 217
15.1.2 Contributions . 218

References . 221

List of Figures

1.1 Structure of the thesis and chapter dependencies 10

2.1 (a) An unranked tree; (b) its representation using the binary
relations “firstchild” and “nextsibling”. 15

2.2 A Page of the http://www.lastfm.it/ Web Site 18
2.3 A DOM Portion of the Web Page in Fig. 2.2 18
2.4 A PDF Document about Tabular Data on Electricity Production 19
2.5 Rectangles that Bound Visualized DOM Nodes 21
2.6 Rectangles that Bound Content Items in PDF Document 22

8.1 Architecture of an Information Extraction System 74

9.1 An example of MBR . 78
9.2 Pictorial Representation of the RA relations 80
9.3 Cardinal tiles . 81
9.4 (a) r1 N:NW:NE r2. (b) r1 B:W:NW:N:NE:E r2. 83
9.5 RCC5 model . 83
9.6 A page of Ebay Web Site with highlighted some CIs 85
9.7 A SDOM Fragment of the Web Page Portion in Fig. 11.1 88
9.8 Ordering directions . 90
9.9 The SDOM building process . 91
9.10 Class Diagram of Document Model Implementation 91

10.1 The Input PDF Document . 95
10.2 Initial CIs obtained from the input in Fig. 10.1 96
10.3 Clusters obtained from the input in Fig. 10.1 96
10.4 Cartesian plane and final MBRs obtained from the input in

Fig. 10.1 . 96
10.5 Logical architecture of Types of PDF DOM 97
10.6 The Running Example Page . 100
10.7 Basic Content Items . 101

XVI List of Figures

10.8 Elements, Segments, Lines, Text and Table Areas 102
10.9 Blocks, Rows, Columns and the Final Cells Grid 105
10.10Full Split Error: (a) Input table; (b) output table. 108
10.11Split Spanning Error: (a) Input table; (b) output table. 108
10.12Full Split Error: (a) Input table; (b) output table. 109
10.13Whole Rows and Multi-columns Merging Error: (a) Input

table; (b) output table. 109
10.14Splitting and Merging Errors occur in a same table: (a) Input

table; (b) output table. 110
10.15Additional lines and columns: (a) Input table; (b) output table. 110
10.16Wrongly data added to boundary cells (a) Input table; (b)

output table. 111
10.17Rows and Columns Not Recognized: (a) Input table; (b)

output table. 111
10.18Input Table . 112
10.19The table 10.18 split in five tables . 112
10.20An input table having a header not closely to data cells 113
10.21Header of the table 10.20 . 113
10.22Data cells of the table 10.20 . 113
10.23Merged Table Error: (a) Input tables; (b) output table. 114
10.24(a) Input PDF document; (b) “nonexistent” recognized table. . . 115
10.25Flat Structure . 123
10.26Nested Structure . 124
10.27Standard Structure . 125
10.28Html fragment with a vertical region and a horizontal region . . 126
10.29Extraction of wrong records: (a) input Web page; (b) extracted

records . 127
10.30Merging of records: (a) input Web page; (b) extracted records . 128
10.31Correctly extracted records and items: (a) input Web page;

(b) extracted records and items . 129
10.32Extracted records with items not aligned: (a) input Web page;

(b) extracted records and items . 130

11.1 Rectangles that Bound Visualized DOM Nodes 133
11.2 A DOM Portion of the PDF Page in Fig. 2.4 135
11.3 A SDOM Fragment of the PDF Page in Figure. 2.4 136
11.4 Fragments of Web Pages representing friend lists of social

networks (a) Bebo and (b) Care (c) Netlog, with associated
DOM structures. 138

11.5 (a) Data items representing books. (b) Visualization areas. (c)
DOM tree encoding of data items . 138

11.6 Linear-time Data Efficiency of SXPath Query Evaluation 153
11.7 Quadratic-time Complexity of SDOM Construction 153
11.8 Linear-time Query Efficiency of SXPath Query Evaluation 153

List of Figures XVII

11.9 Basic and inferred CIs of a data record of the Ebay Web Page
(Fig. 9.6). 162

11.10The New York Times Web page. 163
11.11Results of Experiments . 169

12.1 Architecture of the XONTO System . 180
12.2 A sample of some transition network aimed to recognize a

weather table. 182
12.3 Fragment of the OO-ATN aimed at recognizing and acquiring

information about weather tables. 183
12.4 Yahoo Chicago Weather Page . 186
12.5 Cartesian Plane and MBRs for the Table contained in Figure

12.4 . 186
12.6 Architecture of the SPO System Prototype. 187
12.7 Module 2-Dimentional Matcher of the SPO System Prototype. . 189
12.8 Labeled Dependency Graph . 190
12.9 A sketch of the parse tree resulting from the query

X:weatherForecastTable()? . 190

13.1 Visual Interface of the SXPath System . 194
13.2 Visual Interface of the SILA System . 194
13.3 Visual Selection of a Data Record for Wrapper Learning. 195
13.4 Data Records Identified by the Visual Wrapper 195
13.5 Teh User Interface of the PDF-TREX System 197
13.6 Tables Automatically Recognized In a PDF Document 198
13.7 A Table Recognized by a Visual Selection 198

14.1 (a) The process meta-model. (b) The nodes hierarchy. (c) A
clinical process for caring the breast neoplasm 201

14.2 A Visual Wrapper for an Invoice . 211
14.3 The Result of the Visual Wrapping Process for an Invoice 212
14.4 The Result of the Visual Wrapping Process for an Official

Bulletin . 213
14.5 The Result of the Visual Wrapping Process for the NYT Web

Site . 213
14.6 The Result of the Visual Wrapping Process for the ANSA

Web Site . 214

List of Tables

2.1 Traditional XPath Axes definition . 26

9.1 IA Relations. 79
9.2 RCRs as cartesian products of RA Relations 82
9.3 Topological relations mapped into RA Relations 83

10.1 Precision and Recall . 105
10.2 Comparison of precision and recall results for both table areas

and cells . 106
10.3 Classifications for table areas . 114
10.4 Classifications for cells . 115
10.5 Comparison of precision and recall results for both table areas

and cells . 124
10.6 Classifications for Records and Items . 127

11.1 Abbreviated syntax . 142
11.2 Semantics of Functions in SXPath . 144
11.3 Comparison between complexity bound of SXPath and XPath

1.0 for a XML document D and a query Q. 151
11.4 Evaluation of the Effort Needed for Learn and Apply SXPath . . 156
11.5 Usability Evaluation of SXPath on Deep Web Pages. 157
11.6 Generality of SXPath Queries on Social Network Sites 160

Part I

Background and Uptake

Simple things should be simple,
complex things should be possible.∼ Alan Curtis Kay ∼

1

Introduction and Overview

1.1 Problem Description and Motivations

We are in an information era where generating, querying, extracting, and stor-
ing large amounts of digitized information are commonplace. A growing num-
ber of organizations and individuals daily and easily collect, but hardly handle,
many terabytes and gigabytes of data respectively. The Web was originally
conceived as a mean for sharing human-oriented documents. It was thought
as a set of nodes in a network storing interlinked hypertext documents that
can be rendered by browsers and presented to human users. But, today, the
Web is the largest repository of human knowledge and acts as a worldwide
collaborative platform [152]. Everyone can produce, share and improve a very
diverse spectrum of (multimedia) content types in Social Networks, Deep Web
Sites, Wikis, Blogs, etc. Hence, an enormous amount of information is now
available through the Web. If computers can be enabled to extract and utilize
the knowledge embedded in Web documents, a powerful knowledge resource
for many application fields will be realized.

Sample Application Areas

There are a series of current and future applications that require the ability
to describe, query, extract information available on the Web on the base of
its semantics. The most common scenario is that users or companies want
to extract data from external Web sources for which public Web Services, or
other programmatic APIs, are not available. In fact, while numerous (often
“Web 2.0”-oriented) data sources offer public APIs or structured data feeds
such as RSS, many more sources do not. This is particularly true for high-value
data extraction applications (such as the gathering of real-time competitive
market intelligence). Several of real world applications that demonstrate the
usefulness of information extraction follows.

Web Search Engine. Nowadays, Web keyword-based search, imple-
mented in engines such as Google and Yahoo, is a very popular method to

4 1 Introduction and Overview

search information on the web. Search engines only retrieve potentially inter-
esting list of Web documents ranked according the term occurrences in the
documents. However, in many cases users have specific needs that cannot be
answered by an ordered set of documents. Users need objects (having a clear
semantics) retrieved from different Web pages and arranged in a comprehen-
sible way. Thus, Web search engines needs to recognize key entities (persons,
locations, organizations, etc.) associated with a web page. For instance an
user needs to booking an holel with specific characteristics, thus the aim is
not obtain a list of Web pages, but obtain specific information.

Items comparison. The possibility for a user to compare different of-
ferings of the same object is a feature currently not supported by all online
e-commerce sites. To enable users to compare different offerings of the same
object, records describing such object from different Web sites should be ex-
tracted.

Web market monitoring. Nowadays, much information about com-
petitors such as information on profit, pricing, product availability, store lo-
cations, and so on, can be retrieved legally from public information sources on
the Web, such as annual reports, public data bases, and employer’s personal
Web pages. These sources are principally in semi and unstructured formats.
For this reason, online market intelligence (OMI), and especially competitive
intelligence for product pricing, need Web data extraction.
For example, SOGEI (the ICT company of the Italian Ministry of Econ-
omy and Finance) would monitor property prices, by creating and constantly
updating a knowledge base aimed at providing real-estate technical estima-
tion survey services. In this case an object is represented by an apartment,
where location, prices, facilities, etc. represent its properties. Such information
should be automatically identified and extracted from Web pages of different
real-estate agency sites, and stored in a knowledge base.
Other examples follows. A supermarket wishes monitor competitors product
prices and immediately know special offers and new products, in order to be
able to maintain its competitive position and offer better products. Online
travel agency and booking hotel sites offering that guarantee best prices guar-
antee need to know offer over the Web by competing travel and booking hotel
agencies. Moreover, they want to be informed about the average market price
in order to maintain the maximum profit.
In all these and similar applications the relevant sources are a limited number
and usually known. Such applications need Web data extraction technology
with a very high level of data precision. So manual or semi-automatic wrapper
generators for the relevant sources are preferable to generic Web harvesting
tools.

Patent and official bulletins extraction. Public administration and
companies need information extraction from patent and official bulletins of a
public administration for industrial, commercial and public uses. For instance,
could be necessary query a Web-based application, extract the set of result
links, follow them, and extract the needed information on the result pages.

1.1 Problem Description and Motivations 5

And also, could be necessary to automatically extract laws and calls related
to european framework program, as well as their metadata, from the official
bulletins.

Medical Information extraction. Another example scenario is the ne-
cessity to capture medical information from the Web as well as from clinical
records. Acquired information could be used in clinical processes. The goal
of the application could be extract semantic metadata about oncology ther-
apies and errors with temporal data providing information to assist clinical
decision, result analysis, error detection, etc. Extracted information could be
analyzed for identifying main causes of medical errors, high costs and, poten-
tially, suggesting clinical processes improvement able to enhance cost control
and patient safety.

News Extraction. Information extraction can be applied to identify and
aggregate interesting daily news articles from different Web news sites. For
example, for the news articles about football matches, automatically provide
a table of the players person names, the team names and the game results can
be a very valuable result and save the time that a user spend in browsing.

Challenges

The complexity of the extraction process as well as the heterogeneous, unstruc-
tured and complicated nature of data and of document’s internal structures
pose interesting research challenges. More specifically, the relevant issues to be
taken into account are: (i) the unstructured, semi-structured, and heteroge-
neous internal formats adopted for Web documents, (ii) their human oriented
nature that implicates we have to manage natural language, spatial arrange-
ment made available by presentation, and semantics of data and relations
among them.

Two of the most diffused document formats are the Hypertext Markup
Language (HTML) [182] and Adobe portable document format (PDF)[4].
HTML and PDF are semi and unstructured document formats conceived for
presenting documents on screen or for printing respectively. In this dissertation
we subsume documents encoded by HTML or PDF formats as presentation-
oriented documents (PODs). The internal encoding of HTML documents is
based on a tree structure, whereas PDF documents are described by a content
stream, which contains a sequence of graphical and textual objects located at
precise positions within the document pages that express only where contents
have to be visualized after rendering. This makes it difficult to extract relevant
content from such sources.

In the past, manual Web wrapper (that is a procedure that is designed
to access HTML documents and export the relevant text to a structured for-
mat) construction (e.g. [164]), or Web wrapper induction approaches (e.g.
[37, 150, 198]) have exploited regularities in the underlying document struc-
tures, which led to such similar layout, to translate such information into rela-
tional or logical structures. However, surveying a large number of real (Deep)

6 1 Introduction and Overview

Web pages, we have observed that the document structure of current Web
pages has become more complicated than ever implying a large conceptual gap
between document structure and layout structure. Wrapping from PDF (and
PostScript) has been recognized as a very important and challenging prob-
lem because PDF documents are completely unstructured and their internal
encoding is completely visual-oriented. So traditional wrapping/information
extraction systems cannot be applied. In [17] Gottlob et al. point out that
“there is a substantial interest from industry in wrapping documents in format
such as PDF and PostScript. In such documents, wrapping must be mainly
guided by a reasoning process over white spaces... it is very different from
Web wrapping”, hence, require new techniques and wrapping algorithms in-
cluding concepts borrowed from the document understanding community. So,
unfortunately, the internal structures of presentation-oriented documents, like
DOMs, are often not convenient and sometimes even not expressive enough to
allow for extracting the associated meaning, specially in the case of the PDF.

The spatial arrangement of objects obtained by visualizing HTML and
PDF documents makes available visual cues which help human readers to
make sense of document contents. A human reader is able to look at an ar-
bitrary page of a POD and intuitively recognize its logical structure under-
standing the various layout conventions that have been used in the documents
presentation, and s/he can also determine more complex relationships, for in-
stance from data displayed in tabular form. In fact, Web designers plan web
pages contents in order to provide visual patterns that help human readers to
make sense of document contents. This aspect is particularly evident in Deep
Web pages [122], where designers always arrange data records and data items
with visual regularity or when tables are used to meet the reading habits of
humans. Whereas web wrappers today dominantly focus on either the flat
HTML code or the DOM tree representation of web pages, Wrapping from
the visual representation of web pages can be particularly useful for layout-
oriented data structures such as web tables and allows to create automatic and
domain-independent wrappers which are robust against changes of the HTML
code implementation. Moreover, much of the information stored in PODs is
encoded in natural language, which makes it accessible to some people (which
can read the particular language), but such information is less tractable by
computer processing.

We aim at overcoming the syntactic-based processing of information avail-
able on the web. Current data/syntactic driven processing approaches (e.g.
web search uses just keywords and not concepts) should move towards con-
cepts/semantic driven processing where basic units of processing are concepts
obtained by combining elementary atomic data. In order to allow for exploit-
ing the semantic of information, ontologies that constitute a more abstract
and semantically rich description of stored data are needed. In this way ob-
jects, human activities, and related information can be semantically tagged
and provided services can be closer to the way in which humans are used
to act and think. For reducing the burden of manual ontology creation au-

1.2 Main Contributions 7

tomatic and semi automatic approaches for learning ontologies can be used.
In particular, research direction is oriented towards semi-automatic creation
of domain ontologies because a completely automatic construction of good
quality ontologies is in general not possible for theoretical, as well as practical
reasons. Currently, several research projects in the areas of intranet search,
community information management, and Web analytics, are already employ-
ing IE techniques to bring order to unstructured data. The common theme
in all of these applications is the use of IE to process the input and produce
a structured representation to support search, browsing, and mining applica-
tions [12, 44, 148, 162]. Web search engines are also employing IE techniques
to recognize key entities (persons, locations, organizations, etc.) associated
with a web page. This semantically richer understanding of the contents of a
page is used to drive corresponding improvements to their search ranking and
ad placement strategies.

In this dissertation innovative information extraction approaches, tech-
niques, models and languages are provided.

1.2 Main Contributions

The present dissertation provides innovative approaches, methods, algorithms,
and languages capable to exploit spatial and semantic features of presentation-
oriented documents (PODs), i.e. Web pages and PDF documents, for querying
and extracting information from them. Research activities carried out during
my PhD have led to: (i) The definition of a unique spatial model for represent-
ing PODs having different internal formats. By such a model content items
in documents having HTML and PDF internal encodings can be represented
along with their spatial features and relations. (ii) The definition of tech-
niques, based on heuristics and machine learning algorithms, for automatic
recognition and extraction of tables from PODs. Automatic table extraction
algorithms are very well performing as show by experiments. From the com-
parison with existing approaches results that defined algorithm constitute the
current state of the art in this field. (iii) The definition of wrappers learning
approaches based only on spatial PODs features. Defined techniques, in fact
exploit only the spatial relations among content items in order to learn wrap-
pers for repetitive records contained in Deep Web Pages. Such techniques do
not require preprocessing of the HTML tags aimed at inferring spatial arrange-
ment, at the contrary they use directly the layouted Web page. Experiments
show that the SILA algorithm performs better than approaches available in
literature. (iv) The definition of formal languages aimed at describing and
querying PODs. In particular, the SXPath language allows user to write very
intuitive pattern similar to XPath expressions and capable to exploit spatial
features of PODs resulting in a more simple query mechanism for this kind
of documents as experiments shown. The spatial grammars formalism allow
user to write wrapper a set of spatial productions that can be intuitively de-

8 1 Introduction and Overview

signed by considering only what the user see on the screen. Both SXPath and
spatial grammars open the doors to novel wrapper learning techniques that
considers the spatial structure of PODs and the semantic of contents. (v) The
definition of methods, languages and approaches for knowledge representation
that support information extraction and semantic annotation by enabling the
description and automatic recognition of concepts contained in PODs.

1.3 Outlook

This section provides the reader with an overview on the content of this thesis.
Moreover a chapter dependency schema is sketched which allows to follow the
path that motivated each individual chapter and understand how chapters are
connected to each another.

1.3.1 Thesis’ Structure

This thesis is organized in four parts. Part I provides, in Chapter 1, the de-
scription of addressed scientific and application problems, motivations and
main contributions. In Chapter 2 background knowledge about presentation-
oriented documents, Web query languages, formal languages and knowledge
representation approaches and languages is presented to the reader.

Part II gives the state of the art about information extraction and Web
querying. Chapter 3, discusses information extraction approaches for flat text
documents. Chapter 4, describes methods and approaches for Web informa-
tion extraction. In particular this chapter distinguishes among manual, semi-
automatic and automatic approaches. Chapter 5 presents PDF information
extraction approaches considering document understanding techniques, table
recognition and extraction methods and recent approaches to PDF document
wrapping. Chapter 6 provides an analysis of existing ontology based informa-
tion extraction approaches. Finally, Chapter 7 query languages for Web and
multimedia documents.

Part III gives the detailed description of results of research activities car-
ried out during the PhD course and describes original contributions in the
field of information extraction. In particular, Chapter 8 introduces the ref-
erence structure of a next generation information extraction system capable
to exploit spatial and semantic features. Features of such a system have been
made available by results described in next chapters. Chapter 9 presents the
spatial documents models that allows for representing in unified way PODs
having both HTML and PDF internal representation. Chapter 10 describes
the PDF-TREX approach based on document understanding techniques that
led to automatic table recognition and extraction, and the SILA approach for
wrapper induction for Web documents. Techniques described in this chapter
make use of spatial features of PODs made available in their spatial rep-
resentations. Chapter 11 contains the presentation of the SXPath language,

1.3 Outlook 9

that extends XPath and allows for querying PODs by means of spatial navi-
gation constructs, and the spatial grammars formalism allows for expressing
wrapper as a set of productions of a CFG extended in order to consider spa-
tial and semantic relations among elements displayed on PODs. Chapter 12
presents ontology-based information extraction capabilities made available by
the XONTO approach. This approach exploits a particular version of spa-
tial grammars that provide the ability to model and handle spatial relations,
and the ability to consider domain knowledge about the information to ex-
tract modeled in a knowledge base. Chapter 13 describes visual capabilities
made available by SILA, SXPath and PDF-TREX approaches. The chapter
presents how such approaches make viable visual interfaces that allow to ac-
tually extract information from PODs by using only visual facilities. Chapter
14 provides the description of some applications of approaches described in
previous chapters to real world scenarios.

Part IV concludes the dissertation by providing in Chapter 15 a discussion
about obtained results and possible future work.

1.3.2 Reader’s Guide

The present thesis has been written following a logical path interconnecting
the various research contributions. Hence, it is possible to recognize in this
work three main threads. The first is related to automatic information ex-
traction from PODs. The second is related to PODs querying. The third is
related to semantic information extraction from PODs approaches at pro-
viding HTML documents, which related to extraction information on Web
documents. The second is related to extraction from PDF documents.

As for the first thread the reader interested in automatic approaches to
information extraction from PODs can focus on Part I, Chapters 4 and 5 in
Part II, Chapters 8, 9, 10, 13 and 14 in Part III, and on Part IV. A complete
understanding of the second thread requires that the reader focuses on Part
I, Chapters 7 in Part II, Chapters 8, 9, 11, 13, 14 in Part III, and on Part
IV. Regarding the semantic information extraction thread the reader must
consider Part I, Chapters 3 and 6 in Part II, Chapters 8, 9, 12, 13 and 14 in
Part III, and Part IV.

The Figure 1.1 summarizes chapters organization and provides links be-
tween chapters in order to allow the reader to choice the part of the thesis in
which s/he is interested.

1.3.3 Publications

Part of the material of this dissertation has been published in several journals,
conferences and technical reports:

10 1 Introduction and Overview

Fig. 1.1. Structure of the thesis and chapter dependencies

Journals

• E. Oro, M. Ruffolo, S. Staab. “SXPath - Extending XPath towards Spatial
Querying on Web Documents” Journal Track VLDB - VLDB Endowment
(PVLDB) Vol. 4, Issue 2, 129-140, 2010.

• E. Oro, M. Ruffolo, D. Saccà. “Ontology-Based Information Extraction
from PDF Documents with XONTO” International Journal on Artificial
Intelligence Tools (IJAIT), 2009.

Conferences

• E. Oro, F. Riccetti, M. Ruffolo. “A Spatial Approach for Extracting Infor-
mation from Presentation-Oriented Documents”. International Conference
on Agents and Artificial Intelligence (ICAART), 2011. To Appear.

• E. Oro, F. Riccetti, M. Ruffolo. “ViQueL: A Spatial Query Language for
Presentation-Oriented Documents”. In: IEEE Int’l Conference on Tools
with Artificial Intelligence (ICTAI), 2010. To Appear.

• E. Oro, M. Ruffolo. “PDF-TREX: An Approach for Recognizing and Ex-
tracting Tables from PDF Documents”. Tenth International Conference on
Document Analysis and Recognition (ICDAR), 2009.

• E. Oro, M. Ruffolo, D. Saccà. “Combining Attribute Grammars and On-
tologies for Extracting Information from PDF Documents”. 17th Italian
Symposium on Advanced Database Systems (SEBD), 2009.

• E. Oro, M. Ruffolo, D. Saccà. “A Semantic Clinical Knowledge Repre-
sentation Framework for Effective Health Care Risk Management”. 12th
International Conference on Business Information Systems (BIS), 2009:
25-36.

• E. Oro, M. Ruffolo. “Towards a Semantic System for managing clinical
processes”. In: 11th International Conference on Enterprise Information
Systems (ICEIS), 2009.

1.3 Outlook 11

• E. Oro, M. Ruffolo. “XONTO: An Ontology-based System for Semantic
Information Extraction from PDF Documents”. In: IEEE Int’l Conference
on Tools with Artificial Intelligence (ICTAI), 2008.

• E. Oro, M. Ruffolo. “Towards a System for Ontology-Based Information
Extraction from PDF Documents”. In: Ontologies, DataBases, and Appli-
cations of Semantics (ODBASE), 2008.

• E. Oro, M. Ruffolo. “Description Ontologies”. In: International Confer-
ence on Digital Information Management (ICDIM), 2008.

Technical Reports

• E. Oro, M. Ruffolo, F. Valentini. “SILA: A Spatial Instance Learning
Approach from Deep Web Pages”. ICAR-CNR Technical Report, 2010.

2

Background

This dissertation focuses on the definition of new approaches, methods, lan-
guages and tools for querying and extracting information from presentation-
oriented documents, even using semantic approaches. In this chapter, first the
Web and PDF documents are deeply analyzed showing their different internal
structure, but that they all are conceived for presenting documents on screen
or for printing. The spatial arrangement of objects obtained by visualizing
presentation-oriented documents makes available visual cues which help hu-
man readers to make sense of document contents. Then, the widely accepted
Web query languages and the formal languages are introduced. They will are
the base used for defining innovative languages able to exploit the spatial
information. Finally, knowledge representation will be introduced because it
represents a fundamental ingredients that allows for recognizing concepts in
textual documents for extraction and semantic annotation purposes.

2.1 Presentation-Oriented Documents – PODs

Documents are pervasive in human society, and there exists many internal
formats and applications used for exchange contents. The Web represent the
biggest “document-sharing system”. Two of the most diffused document for-
mat are the Hypertext Markup Language (HTML) [182] and Adobe portable
document format (PDF)[4]. HTML and PDF are semi and unstructured doc-
uments conceived for presenting documents on screen or for printing respec-
tively. A human reader is able to look at an arbitrary page and intuitively
recognize its logical structure understanding the various layout conventions
that have been used in the documents presentation and it can also deter-
mine more complex relationships for instance from data displayed in tabular
form. In this dissertation we subsume documents encoded by HTML or PDF
formats as presentation-oriented documents.

However, such document format have a very different internal representa-
tion. The internal encoding of HTML documents is based on the tree structure,

14 2 Background

whereas PDF documents are described by a content stream, which contains a
sequence of graphical and textual objects located at precise positions within
the document pages that express only where contents have to be visualized
after rendering. This makes it difficult to extract relevant content from such
various sources.

2.1.1 Internal Representations

Documents representation can be roughly divided in three types: tree-based,
page-oriented, and stream-oriented. In the following we describe more in de-
tails their internal representation and their presentation features, in order
to perceive which are the challenges for convert from unstructured or semi-
structured format into structured and therefore machine-understandable for-
mat such as, for example, XML.

Tree Representation

By the mid-1980s, the diversity of incompatible markup languages and word-
processing representations was making collaboration between authors quite
difficult. In response, two competing document interchange formats were de-
veloped, the Standardized Generalized Markup Language (SGML) [95] and
the Open Document Architecture (ODA). Only SGML was a success and its
success was limited. However, SGML was the basis for the Hypertext Markup
Language (HTML) used on the World Wide Web.

HTML is used as a page description language, HTML tags specify how the
tagged information is to be presented on a browser. However, there are no se-
mantics associated with HTML tags, nor are there semantics associated with
the hyperlinks between documents, thus preventing automated interpretation
of the contained information. So, the Web community attempt to find a high-
level tree-structured specification. The solution was the Extensible Markup
Language (XML) [27]. XML allows to represent semantics and to support ap-
plications, and it has became a standard representation for data interchange.
However, remain the HTML is the actual document format used on the Web.
HTML documents contain abundant hypertext markup information, both for
indicating structure as well as for giving page rendering hints, next to infor-
mative textual content. HTML/XML are tree-structured and can have any
level of complexity. HTML and XML documents in the following will be both
called as XML documents for simplicity. An unranked ordered and labeled
tree represent a Web document.

Definition 2.1. Unranked ordered trees with node labels from a finite set of
symbols Σ correspond closely to parsed XML documents. In an unranked tree,
each node may have an arbitrary number of children. An unranked ordered tree
can be considered as a structure of relational schema

2.1 Presentation-Oriented Documents – PODs 15

τ = ⟨V, root, (labela)a∈Σ ,R⇓,R⇒⟩
where:

• V is the set of nodes in the tree.
• root is a unary relation, which contains the root of the tree.
• R⇓, R⇒ are the firstchild and nextsibling binary relations respectively.

firstchild(n1, n2) is true if n2 is the leftmost child of n1; nextsibling(n1,
n2) is true if, for some i, n1 and n2 are the ith and (i + 1)th children of
a common parent node, respectively, counting from the left. For instance,
see Fig. 2.1.

• label is a unary relation, such that labela(n) is true if n is labeled a in
the tree.

(a) (b)

Fig. 2.1. (a) An unranked tree; (b) its representation using the binary relations
“firstchild” and “nextsibling”.

Parsing of XML documents is he process of reading an XML document
and providing an interface to the user application for accessing the document.
A parser is a module that realizes these tasks and, in general, check if the
document is well-formed.

There are mainly two categories of XML programming interfaces, DOM
(Document Object Model) and SAX (Simple API for XML).

DOM is a tree-based interface that models an XML document as a tree
of nodes (such as elements, attributes, texts, comments, etc.). A DOM parser
maps an XML document into such a tree rooted at a Document node, upon
which the application can search for nodes, read their information, and up-
date the contents of the nodes. DOM was initially used for modeling HTML
by various Web browsers. As inconsistencies existed among the individual
DOM models adopted by different browsers, inter-operability problems arose
in developing browser-neutral HTML codes. W3C (World Wide Web Con-
sortium) standardized and released DOM Level 1 specification in 1998, with
support for both HTML and XML. DOM Level 2 was released in 2000 and

16 2 Background

added namespace support. The latest specification DOM Level 3 was released
in 2004.

SAX is an event-driven interface. The application receives document in-
formation from the parser through a ContentHandler object. It implements
various event handlers in the interface methods in ContentHandler, and reg-
isters the ContentHandler object with the SAX parser. The parser reads an
XML document from the beginning to the end. When it encounters a node
in the document, it generates an event that triggers the corresponding event
handler for that node. The handler thus applies the application logic to pro-
cess the node specifically. SAX was developed in 1997, in order to create a
parser- independent interface. SAX1 was released in 1998, whereas, the latest
release SAX2, in 2000 and it includes namespace support.

The SAX and DOM interfaces are quite different and have their respective
advantages and disadvantages.

In general, DOM is convenient for random access to arbitrary places in an
XML document, can not only read but also modify the document, although
it may take a significant amount of memory space. To the contrary, SAX is
appropriate for accessing local information, is much more memory efficient,
but can only read XML.

• DOM is not memory efficient since it has to read the whole document and
keep the entire document tree in memory. Therefore it is impossible to use
DOM to process very large XML documents. However, HTML Documents
are a “limited-size” version of markup languages, in fact they are gener-
ally aimed at representing single Web pages and not whole databases. In
contrast, SAX is memory efficient since the application can only keep the
portion that is of interests to the application, thus a SAX parser can easily
handle very large documents.

• DOM is convenient for complex and random accesses that require global
information of the XML document, whereas SAX is more suited for pro-
cessing local information coming from nodes that are close to each other.
The document tree provided by DOM contains the entire information of
the document, therefore it allows the application to perform operations
involving any part of the document. In comparison, SAX provides the
document information to the application as a series of events. Therefore it
is difficult for the application to handle global operations across the doc-
ument. For such complex operations, the application would have to build
its own data structure to store the document information. Consequently,
the data structure may become very complex. In order to permorm query
that need consider not only local information, the DOM results more con-
venient.

• Since DOM maintains information of the entire document, its API allows
the application to modify the document or create a new document, while
SAX can only read a document.

2.1 Presentation-Oriented Documents – PODs 17

• SAX is appropriate for streaming applications since the application can
start processing from the beginning, while with DOM interface the appli-
cation has to wait till the entire document tree is built before it can do
anything.

Nowadays lots information available in Web sites is coded in form of HTML
documents. The reasons are: the simplicity and power of HTML authoring
tools, together with a valuable inertia to change markup language. Although
HTML and XML are both derived from SGML, the former was designed as a
presentation-oriented language, whereas XML separates data and its human-
oriented presentation, which allows data-centered applications to better han-
dle large amounts of data. A fundamental advantage of XML is the availability
of powerful instruments for querying XML documents, namely XQuery/XPath
[183], In this thesis, the DOM approach is been adopted because the goal
is parse HTML pages, allow for querying such presentation-oriented docu-
ments using also global conditions, and modifications on document may be
performed. In Figures 2.2 and 2.3 are depicted a Web page taken from the
last.fm social network related to music and a sketch of the DOM related
to the part of the HTML document containing the profile of the Radiohead
music band respectively. In Fig. 2.3 Grey circles and boxes are used for those
nodes that are visualized on screen, whereas white circles and boxes depicts
nodes that belong to the DOM but are not visible on screen.

Page-Oriented representation

The development of the laser printer required a means to transmit a page
from computer to printer over the low-bandwidth connections then available.
In response, various companies designed proprietary page description lan-
guages that described pages at a higher level, thus requiring substantially less
bandwidth. The most important page-oriented document representation was
Adobes PostScript, used in the first personal laser printers. Today the most
important format is Adobes Portable Document Format (PDF) [4] because it
is printer-independent, compact, and because Adobe distributes free viewing
and printing software for all widely-used platforms. It is the de facto standard
for print-oriented documents. In contrast, the output quality of HTML doc-
uments when printed (e.g. using a web browser) is not high enough for most
professional applications. Perhaps this is because HTML has its roots in the
scientific community, and not the publishing community. PDF have become
increasingly popular for electronic publishing, mainly due to the preservation
of the document layout across different platforms, widely used in enterprises
and on the web, thought for print and on screen visualization. Business docu-
ments are usually represented in PDFs format and historical, legal, and finan-
cial documents are widely scanned and are represented as images, which with
OCR techniques can be transformed in readable PDF. So, it can be considered
the standard format for document publication, sharing and exchange.

18 2 Background

Fig. 2.2. A Page of the http://www.lastfm.it/ Web Site

Fig. 2.3. A DOM Portion of the Web Page in Fig. 2.2

2.1 Presentation-Oriented Documents – PODs 19

The content of a PDF is not organized in a structured way, since it lacks
markups that express the document logical structure. In fact, PDF is a docu-
ment description language, which describes a sequence of graphical and textual
elements located at precise positions within the document pages. This feature
guarantees that the visual rendering of a PDF document is independent from
the PDF reader.

Each element holds some metadata about presentation features, and 2-
dimensional coordinates that express the position in which it must be shown
on the page at visualization or printing time. Elements can appear in casual
order in the content stream, so the appearance of contents of a PDF document
can be understood only after page rendering or printing. The order and the
elements in the data stream depends on how content stream of the specific
PDF document is generated. For instance the PDF document shown in Figure
2.4 represents a table, but its elements are presented in the stream in sparse
order and often too small and do not represent logical units of contents as
cells.

Fig. 2.4. A PDF Document about Tabular Data on Electricity Production

Whereas in HTML it is possible to parse the source code to find the loca-
tions of certain structures such as headings and tables, such machine-readable
information is usually missing from PDF files. This logical structure informa-
tion is critical for automatic data extraction, and is also useful for applications
such as search, indexing and accessibility for disabled persons or mobile de-
vices. Later versions of the PDF format have attempted to get around this
limitation by providing support for tagging [99]. Tagged PDF extends the
page description core of PDF with a structural tagging system to encode the
roles of text fragments (e.g., body text, footnote, etc.), adds explicit word
breaks, and maps all fonts to Unicode. Used properly, Tagged PDF ensures

20 2 Background

that the content of a PDF document can be scanned in the same order that
a human reader would scan it and clearly identifies elements like marginal
notes and headers that are not part of the main text ow. It also supports
search and indexing, as well as being able to encode some of the semantics of
XML. However, the fact remains that the vast majority of PDF files either do
not include such meta-information, or this information is not rich enough to
enable us to locate the data instances to be extracted. The process by which
most PDFs are created is still based on printing the document to a virtual
printer driver, which strips the document of all its meta-information. Any
logical information must then be added manually after the PDF file has been
created.

Stream-Oriented Representation

Stream-oriented representations is used to represent flat textual information.
Documents are seen as a sequence of characters or paragraphs. They may
contain substantial amounts of formatting information, but unlike the page-
oriented representations, generally do not encode the exact appearance of the
document on the page or screen. The principal stream-oriented representa-
tions are raw text, the Rich Text Format (RTF), and various word processor
formats. A raw text document contains a sequence of characters. Any orga-
nization of the characters into lines, paragraphs, or pages is specified by the
use of specialized characters such as the ASCII line feed and form feed char-
acters. The most common character coding schemes are ASCII and Unicode
formats. Raw text has the advantages of simplicity, compactness, portability,
and ease of processing. Its primary disadvantage is the inability to represent
almost any useful typographic, hypertext, or multimedia effect. The raw text
representation is remarkably robust and remains in widespread use, especially
in the software development community, where the ubiquity of programming
tools makes raw text an attractive representation. It is also a common rep-
resentation for e-mail. RTF [100] and Word processor [134] representations
describe a document as a sequence of paragraphs.

2.1.2 Displaying PODs

Presentation-oriented documents are visualized by layout engines embedded
in web browsers (e.g. Netscape Gecko for Firefox1) and PDF visualizers (e.g.
Adobe Reader2). The main feature of layout engines and PDF visualizers is
that they consider the area of the screen aimed at visualizing a document,
as a 2-dimensional Cartesian plane on which they arrange document content
items (i.e. images, alphanumeric strings, graphical and typographical elements
of various kind). More in detail, layout engines of web browsers exploit the

1 https://developer.mozilla.org/en/Gecko
2 http://www.adobe.com/products/reader/

2.1 Presentation-Oriented Documents – PODs 21

internal representation of web documents in terms of document object model
(DOM) [181] in which content items correspond to the leaf nodes. Layout
engines assign to each node in the DOM a visualization area on the plane
computed by applying rendering rules. Rendering rules take into account the
DOM structure and cascade style sheets (CSS) [180] that equip the web doc-
ument. Likewise, PDF visualizers interpret parameters encoded in the PDF
stream [4] and assign a visualization area on the plane to each content item.

By considering the web page shown in Figure 2.2 and the PDF document
shown in Figure 2.4, visualization areas assigned, exploiting the layout engine
Gecko and the Adobe Reader, to DOM nodes and content items are depicted
in Figure 2.5 and 2.6 respectively. As shown in the figures visualization areas
are rectangles having sides parallel to the axes of the cartesian plane.

Fig. 2.5. Rectangles that Bound Visualized DOM Nodes

22 2 Background

Fig. 2.6. Rectangles that Bound Content Items in PDF Document

2.1.3 Challenges

The spatial arrangement of objects obtained by visualizing presentation-
oriented documents makes available visual cues which help human readers
to make sense of document contents. In fact, Web designers plan web pages
contents in order to provide visual patterns that help human readers to make
sense of document contents. This aspect is particularly evident in Deep Web
pages [122], where designers always arrange data records and data items with
visual regularity or when tables are used to meet the reading habits of humans.
In Fig. 2.2 we show a deep web page coming from the last.fm social network.
For instance, information about the two bands ‘Coldplay’ and ‘Radiohead’ in
Fig. 2.2 is given using similar layout.

In the past, manual Web wrapper (that is a procedure that is designed
to access HTML documents and export the relevant text to a structured for-
mat) construction (e.g. [164]), or Web wrapper induction approaches (e.g.
[37, 150, 198]) have exploited regularities in the underlying document struc-
tures, which led to such similar layout, to translate such information into rela-
tional or logical structures. However, surveying a large number of real (Deep)
Web pages, we have observed that the document structure of current Web
pages has become more complicated than ever implying a large conceptual gap
between document structure and layout structure. Wrapping from PDF (and
PostScript) has been recognized as a very important and challenging prob-
lem because PDF documents are completely unstructured and their internal
encoding is completely visual-oriented. So traditional wrapping/information
extraction systems cannot be applied. There is a substantial interest from in-
dustry in wrapping documents in formats such as PDF and PostScript. Wrap-

2.1 Presentation-Oriented Documents – PODs 23

ping of such documents must be mainly guided by a visual reasoning process
over white space and Gestalt theory, which is substantially different from
web wrapping and, hence, requires new techniques and wrapping algorithms
including concepts borrowed from the document understanding community.

Unfortunately, the internal structures of Presentation-oriented documents,
like DOMs, are often not convenient and sometimes even not expressive
enough to allow for extracting the associated meaning, specially in the case
of the PDF. Typical problems are incurred by the separation of document
structure and the ensued spatial layout — whereby the layout often indicates
the semantics of data items. E.g. the meaning of a table cell entry is most
easily defined by the leftmost cell of the same row and the topmost cell of
the same column (in Western languages). In tree structures such as arising
on real-world web pages, such spatial arrangements are rarely explicit and
frequently hidden in complex nestings of layout elements — corresponding to
intricate tree structures that are conceptually difficult to query. Even if they
offer fine-grained annotation the conceptual gap between the low level DOM
representation and the semantics of the elements is very wide making the
querying task very hard for a human querying the document or for a machine
aiming at the automated learning of extraction rules. Thus, it has become very
difficult: (i) for human and applications aiming at manipulating web contents
(e.g. [75, 102, 164]), to query the web by language such as XPath 1.0; (ii) for
existing wrapper induction approaches (e.g. [150, 198]) to infer the regularity
of the structure of deep web pages by only analyzing the tag structure. Hence,
the effectiveness of manual and automated wrapper construction are limited
by the requirement to analyse HTML documents with increasing structural
complexity whereas the intrinsic print/visual oriented nature of PDF encoding
poses many issues in defining “ad hoc” IE approaches. Moreover, existing ap-
proaches are not able to generate extraction rules reusable when the internal
structure changes and for different Web sites where information is presented
by the same visual pattern. Nevertheless, two very needed property of wrap-
pers are resilience and adaptiveness. Resilience is the capacity of continuing
to work properly in the occurrence of changes in the pages to which they
are targeted. Adaptiveness is the desirable capability that a wrapper built
for pages of a specific Web source on a given application domain could work
properly with pages from another source in the same application domain.

Thus, the exploitation of the only internal structure is not enough. A
solution is allow for exploiting also visual representation available for all
presentation-oriented documents. For instance, a human reader can relate
information on the page in Fig. 2.2 by considering the spatial arrangement of
laid out content elements. He can interpret the spatial proximity of images
and nearby strings as a corresponding aggregation of information, namely as
the complete record describing the details of a music band profile and one
of its photos. Thus, details of a music band profile can be described in the
following ”qualitative spatial” way: a music band profile is: the music band
photo that has at east its descriptive information. That is its name, a number

24 2 Background

of hits, a list of similar music artists and a music genre, which are on top of
each other. By considering Figure 2.6 the particular spatial arrangement of
content items in the PDF document suggests to a human reader that he/she
is looking at information organized in tabular form. The meaning of each con-
tent item in the table comes from the alignment of rows and columns. So the
reader interprets strings in the first row and first column as row and column
headers and each number in the table body on the base of its headers. By
exploiting spatial information it is possible to acquire table data and store
them in structured form. As shown, this method can be particularly useful for
layout-oriented data structures and allows to create automatic and domain-
independent wrappers which are robust against changes of the HTML code
implementation, and also applicable to other presentation oriented formats.

2.2 Web Query Languages

World Wide Web consortium (W3C) is an international consortium for devel-
opment of World Wide Web protocols and guideline aimed at facilitating inter-
operability and avoid fragmentation of the Web. It was founded in 1994 by the
inventor of the World Wide Web Tim Berners-Lee. The consortium consists
of member organization and dedicated staff of technical experts. Membership
is open to any organization or individual whose application is reviewed and
approved by the W3C. W3C is responsible for such technologies as HTML,
XHTML, XML, CSS, XPath, XQuery, etc.

In this section the languages for querying XML documents will be de-
scribed.

2.2.1 XPath

XPath (XML Path Language) is a simple and easy-to-use query language
proposed by W3C for addressing portions of XML documents.

XPath was designed in order to address the need of a language for match-
ing pattern in XML documents. The W3C XML Linking working group, which
was working on XLink and XPointer, decided to develop a common language.
Thus the first version XPath 1.0 was published in 1999 [184] XPath allows
to navigate and select nodes in the DOM of web documents (i.e well formed
HTML documents). The language gets its name from the use of a path nota-
tion. In addition it also allows some minor computations resulting in values
such as strings, numbers or booleans. The semantics of the language is based
on a representation of the information content of an XML document as an
ordered tree (see Definition 2.1). The set V contains seven types of nodes:
root, element, text, attribute, namespace, processing instruction, and comment
nodes. Three properties can be associated with these nodes: a local name, a
namespace name and a string-value. The local name is defined for element,
attribute, processing instruction and namespace nodes. The string-value is

2.2 Web Query Languages 25

defined for all types of nodes, but for the root and element node it is derived
from the string-values of its children nodes.

Over the nodes in this tree a document total order <doc is defined.

Definition 2.2. The document total order <doc, orders the nodes as they are
encountered in a pre-order walk of the tree. Let u,w ∈ V be two nodes, then
u <doc w iff the opening tag of u precedes the opening tag of v in the (well-
formed version of the) document.

An XPath expression consist usually of a series of steps that each navigate
through this tree in a certain direction and select the nodes in that direction
that satisfy certain properties. The primary syntactic construct in XPath
is the expression. The evaluation of an expression yields a result which has
one of the four basic types: node set, Boolean, number or string. The most
important kind of expression is the location path. Location paths allow web
document navigation and recursively contain expressions that are used to filter
sets of nodes. Location paths are sequences of location steps separated by the
navigation operator /.

Definition 2.3. The formal syntax of a location step is:

χ ∶∶ t[p1] . . . [pn]
where:

• χ is an axis name. Axis names are self, child, parent, descendant, de-
scendant-or-self, ancestor, ancestor-or-self, next-sibling, following-sibling,
previous-sibling, preceding-sibling, following, and preceding. Axes ances-
tor and descendant are the transitive closure of parent and child respec-
tively, while axes ancestor-or-self and descendant-or-self are the reflexive
and transitive closure of child and parent respectively. An axis name rep-
resents a relation χ ⊆ V ×V and has the intuitive meaning conveyed by the
name itself. The axis selects a set of nodes that satisfy the relation. Axes
are computed as functions χ ∶ 2V → 2V (overload the relation name) such
that χ(Vc) = {n∣∃nc ∈ Vc ∶ nc χ n} where Vc ⊆ V is a subset of nodes.

• t is a node test, that specifies the node type or the tag name of the nodes
returned by a location step. The wildcard "*" matches all types and all
labels.

• p1, . . . pn are optional predicates which filter nodes returned by a location
step. In predicates one may use: (i) Boolean, arithmetic, and compari-
son expressions based on related operators; (ii) functions that manipulate
strings, numbers, and node positions w.r.t. the document total order. ◻
A location step evaluation occurs with respect to a context and selects

the node set that results from filtering, by means of the node test and pred-
icates, the initial set of nodes returned by the axis. Note that the con-
text refers to the tree nodes considered as current nodes for the evalua-
tion of any XPath expression. Node sets, returned by location paths, can

26 2 Background

be merged by using the union operator ∣. For instance, the simple location
path: /descendant::a/child::b[1]| /child::b starts from the root node
/ and selects the set of direct children labeled b or the first (predicates [1])
children that are labeled with b of all the nodes that are labeled with a. XPath
axes have an abbreviated syntax that allow for writing more concise location
paths [184].

The tree structure, as well described in Gottlob papers [77], can be rep-
resented by means of firstchild and nextsibling functions defined in V → V .
firstchild returns the first child of a node (null if the node is a leaf) and
nextsibling returns the right sibling, child of the same parent, (null if the
node is the last child of its parent). The related binary relations are defined
as {⟨u, f(u)⟩∣u ∈ V ∧ f(u) ≠ null}, where f ∈ {firstchild, nextsibling}.

Traditional XPath axes are defined in terms of their primitive relations (i.e.
firstchild, nextsibling and their inverses), as shown in Table 2.1 [76, 77] . T1.A2,
T1 ∪ T2 and T ∗1 denote the concatenation, union, and reflexive and transitive
closure, respectively, of binary relations T1 and T2 (primitive relations, or
traditional axis relations) . Let E(χ) denote the regular expression defining
χ in table 2.1. It is important to observe that some axes are defined in terms
of other axes, but that these definitions are acyclic/ non-recursive.

child := firstchild.nextsibling*
parent := (nextsibling−1)*.firstchild−1
descendant := firstchild.(firstchild ∪ nextsibling)*
ancestor := (firstchild−1 ∪ nextsibling−1)*.firstchild−1
descendant-or-self := descendant ∪ self
following := ancestor-or-self.nextsibling.nextsibling* . descendant-or-self
preceding := ancestor-or-self.nextsibling−1 .(nextsibling−1)* .descendant-or-self
following-sibling := nextsibling.nextsibling*
preceding-sibling := (nextsibling−1)* nextsibling−1

Table 2.1. Traditional XPath Axes definition

In order to describe how node sets result from a location step using axis
relation χ, the corresponding axis-function (and its inverse) that overloads
axes relation names χ is defined.

Definition 2.4. Let χ denote an axis. The axis function, which overload the
relation name χ, χ ∶ 2V → 2V is defined as χ(Γ) ∶= {u∣∃c ∈ Γ ∶ cχu} , where
Γ ⊆ V is a set of nodes. Moreover, the inverse spatial axis function χ−1 ∶ 2V →
2V is defined χ−1(Γ) ∶= {c ∈ V ∣χ({c}) ∩ Γ ≠ ∅}. ◻

where Γ ⊆ V is a set of nodes; Γ ′ is represented as a list*; E(χ) denote
the regular expression defining χ ∈ ∆ [76, 77] in table 2.1; e1 and e2 are sub-
regular expressions shown in table 2.1, T,T1, ..., Tn are primitive relations used
to represent traditional axes, χ, χ1 and χ2 are axes.

As shown in [76, 77] let Γ ⊆ V be a set of nodes of an XML document
and χbe an axis. Then, χ(Γ) = evalχ(Γ) and the Algorithm 1 runs in time

2.2 Web Query Languages 27

Algorithm 1: Traditional Axis Evaluation
Input: A set of nodes Γ and an axis χ ∈∆ ∪∆s

Output: χ(Γ)
Method: evalχ(Γ)
function evalself(Γ) ∶= Γ .
function evalχt(Γ) ∶= evalE(χt)(Γ).
function evale1.e2(Γ) ∶= evale2(evale1(Γ)).
function evalT (Γ) ∶= {T (u)∣u ∈ Γ}.
function evalχ1∪χ2(Γ) ∶= evalχ1(Γ) ∪ evalχ1(Γ).
function eval(T1 ∪ ... ∪ Tn) ∗ (Γ) begin
Γ ′ ∶= Γ ;
while there is a next element u ∈ Γ ′ do

Γ ′:=Γ ′∪ {Ti(u) ∣ 1⩽i⩽n ∧ Ti(u) ≠ null ∧ Ti(u) ∉ Γ ′};
return Γ ′;

end;

O(∣V ∣). The time bound is due to the fact that each of the eval functions can
be implemented so as to visit each node at most once and there are O(∣V ∣)
edges.

In last years, intuitive navigational features and querying capabilities of
XML documents have made the XPath language central to most XML-related
technologies and attracted much attention in the computer science research
community. In particular, expressiveness and computational complexity of rel-
evant XPath fragments have been studied in detail. For instance, Gottlob et
al. in [77, 78] propose a complete and concise formal semantics of XPath 1.0
and a characterization of complexity classes of different fragments of this lan-
guage. However, XPath poses some issues in navigating and querying the tree
structure of presentation-oriented web documents. For instance, presented in-
formation could be arranged in intricate tree structures and do not represent
valuable visual features and spatial relations. So to use XPath, as it is, could
become very difficult. Furthermore, presentation-oriented document formats
like the Adobe PDF cannot be addressed by XPath as it is. In fact the mean-
ing of content items strongly depends on their spatial arrangement.

XPath 2.0. The current version of XPath is XPath 2.0. Its recommendation
was published in 2007 [24]. The data model is largely the same as for XPath
1.0. The main change is that the root of a document is represented by a
document node. Another important change is that the data structure of results
is not a set of nodes but an ordered list of nodes and atomic values as defined
by XML Schema. Do not exist nested lists, so (‘‘a’’, (‘‘b’’,‘‘c’’)) is
equivalent to (‘‘a’’, ‘‘b’’, ‘‘c’’). The concatenation of sequences s1

28 2 Background

and s2 is denoted as s1,s2. XPath 2.0 extends used constructs of XPath 1.0
and it is semantically and syntactically a subset of XQuery 1.0.

2.2.2 XQuery

XQuery is a shorthand for XML Query Language. It has been a W3C recom-
mendation since 2007 [25] . XQuery is query language for querying collections
of XML documents (Web documents, contained in a database or in a file sys-
tem) and combine the results into completely new XML fragments. It is a
declarative, statically typed and it is based on XPath that represents its core.
Its predecessor is Quilt [36]. From XML-QL [49] came the idea of using vari-
able bindings in the construction of new values, and from SQL, the expressions
SELECT-FROM-WHERE were taken. Originally, it was designed as a query lan-
guage to query and transform XML data natively. By now, it is a functional
programming language, and it is Turing complete. XQuery has evolved to a
general purpose programming language that can read, update, and transform
any kind of data besides XML. For instance, in [68, 69] XQuery is used to
improve the programmability of Web browsers by enabling the execution of
XQuery programs in the browser. Although it has the potential to ideally
replace JavaScript, it is possible to run it in addition to JavaScript for more
flexibility. In fact, XQuery allows DOM navigation and manipulation needed
for programming the browser.

is based on the same data model as XPath 2.0.
Path expression defined in XPath 1.0 are almost all included and have

mostly the same semantics, but they do not return a set of nodes but a
sequence of nodes sorted in document order. More operators have been in-
troduced, such as intersect and difference that correspond to the set
intersection and set difference.

The access to collections of XML documents is provided by the functions
doc() and collection() that both expect as argument a string containing a
URI. These functions retrieve the requested XML fragments associated with
this URI and, if this was not already done before, construct their data models
and return a document node or a sequence of nodes that are the roots of the
fragments.

XQuery has a broad functionality, covering simple expressions such as
constants, variables, and comparisons to complex expressions for database
queries, transformations, and information retrieval. The core expressions of
XQuery are the FLWOR (pronounced “ower”) expressions corresponds to the
SELECT FROM WHERE statement in SQL, which are illustrated by the following
example:

for $x at $i in doc("book.xml")
let $tit := $x/tit
where $x/author ftcontains "kinsella"
return

2.2 Web Query Languages 29

{$x/author}

<title>{data($tit)}</title>

A FLWOR expression starts with one or more for and let clauses that
each bind one or more variables (that always start with $). The for clause
binds variables such that they iterate over the elements of the result sequence
of an expression, and the let clause binds the variable to the entire sequence.
This is followed by an optional where clause with a selection condition, an
optional order by clause that specifies a list of sorting criteria and a return
clause that contains an expression that constructs the result.

An XQuery expression is evaluated in a context. The context contains
functions, namespaces, schemas, and variable bindings. For instance, the ex-
pression $x will be evaluated using the context; if the variable $x is not defined
in the context, then an error is raised as part of the evaluation of this expres-
sion. Otherwise, this expression is evaluated to the value of $x as defined
in the context. Likewise, function invocations are evaluated according to the
definition of the functions in the context.

The W3C continue to work on several extensions of XQuery and XPath. A
new extension for XQuery and XPath (XQuery 1.1 and XPath 2.1) is planned.
The proposed extensions for XQuery include grouping on values, grouping on
position, calling external functions and finally higher order functions. More-
over, in order to support search text, XQuery also involves full-text search
[54] described in the following.

XQuery Full-Text

The XQuery and XPath languages are a powerful languages provide sophis-
ticated structured query capabilities, they only provide rudimentary capabil-
ities for querying the text (unstructured) parts of XML documents that are
sufficient for simple sub-string matching but does not provide more complex
search capabilities.

To address these short-comings, W3C has formulated the XQuery 1.0 and
XPath 2.0 Full-Text 1.0 Requirements [53]. These requirements specify a num-
ber of features that must, should or may be supported by full-text search ex-
tensions to the XQuery and XPath languages. These extension add constructs
for doing full text searches on selections of documents, text-search scoring vari-
ables that can be used in FLWOR expressions, and full-text matching options
that can be defined in the query prolog.

XQuery Full-Text provides a full range of query primitives (also known
as selections) that facilitate the search within the textual content of XML
documents. The textual content is tokenized as a series of tokens which are
the basic units to be searched. Intuitively, a token is a character, n-gram, or
sequence of characters. An ordered sequence of tokens that should occur in
the document together is referred to as a phrase.

30 2 Background

XQuery Full-Text proposes four major features for support of full-text
search the XQuery and XPath query languages:

• A XQuery/XPath expression returns a list of nodes, and after the keyword
ftcontains a full-text selection can be specified.

• Primitives for supporting complex full-text search queries, such as token
and phrase search, token ordering, token proximity, token scope, match
cardinality, and Booleancombinations of the previous. Further, XQuery
Full-Text allows control over the natural language used in the queried
documents, the letter case in matched tokens, and the use of diacritics,
stemming, thesauri, stop words, and regular-expression wildcards though
the use of match options.

• the Data Model used for standard XQuery and XPath is inadequate for
text management [29], in fact it represents data only about entire XML
nodes. But more precise data model is needed [54] for representing infor-
mation like the positions of the tokens within a node.

• Support for relevance scoring.

In the following a simple example of Full-text XQuery is shown:

for $b in /books/book
where $b/title ftcontains ("dog" with stemming) ftand "cat"
return $b/author

This example finds all authors of all books the title of which contains the
word “cat”, as well as the word “dog” or a word with the same stem.

2.3 Formal Languages

Most existing approaches in order to extract information from unstructured
document use regular grammars as a convenient mean for extracting infor-
mation from text automatically. Indeed, regular grammars, offer a simple and
declarative way to specify the patterns to be extracted, and are suitable for ef-
ficient evaluation (recognizing membership of a string to a regular language is
linear-time doable). However, regular grammars have a limited expressiveness,
which is not sufficient for a powerful information extraction. There are simple
extraction patterns, like, for instance, anbn, that are relevant for information
extraction but cannot be expressed by a regular grammar. To express patterns
of this kind more powerful grammars have to be considered. For instance, in
order to express natural language sentences it is necessary to make use of
context-free grammars. Moreover, because the grammar complexity grows,
the study of efficient parsing techniques is essential.

In the following, grammars formalisms and parsing techniques used in this
dissertation are described.

2.3 Formal Languages 31

2.3.1 Grammars

A formal grammar is a set of rules of a specific kind, for yielding strings in a
formal language. The rules describe how to form strings from the language’s
alphabet, that are valid according to the language’s syntax.

Context-Free Grammars

A context-free grammar G = ⟨Σ,N,S,Π⟩ consists of an alphabet of terminals
Σ, an alphabet of nonterminals N , a start symbol S ∈ N , and a finite set
of productions Π ⊆ N × (Σ ∪N)∗. A production p ∈ Π is said to be an ε-
production if p ∈ (N × {ε}). We usually write A → α for the pair ⟨A,α⟩ ∈ Π.
Let ⇒+G be the binary relation of derivation w.r.t. G, the language generated
by G is defined as L(G) = {x ∈ Σ∗ ∶ S ⇒+G x}. A context-free grammar G is
cycle-free (or non-cyclic) if there is no derivation of the form A ⇒+G A for
some nonterminal A.

We will often consider a subclass of context-free grammars called the
Chomsky Normal Form. A grammar G is an element of CNF iff all p ∈ Π
are either of the form A → a or A → BC. Every context-free grammar G for
which ε ∉ L(G) can be rewritten into an equivalent grammar in CNF .

Given a context-free grammar G = ⟨Σ,N,S,Π⟩, a parse tree t of G is a tree
where: (i) the root node ρ(t) is labeled with the start symbol S; (ii) each leaf
node has label in Σ∪{ε}; (iii) each internal node is labeled with a nonterminal;
(iv) if A ∈ N is a non-leaf node in t with children α1, . . . , αh taken from left
to right, then A→ α1 . . . αh is a production in Π. By concatenating the leaves
of t from left to right we obtain the derived string x(t) of terminals, which is
called the yield of the parse tree. The language generated by G can be also
defined as L(G) = {x(t) ∶ t is a parse tree of G}. As defined in [127] the size
of a parse tree is the number of its non-leaf nodes.

A context-free grammar G is unambiguous if it does not have two different
parse trees for any string. A context-free language is unambiguous if it can be
generated by an unambiguous context-free grammar. Context-free grammars
and languages are ambiguous if they are not unambiguous. Moreover as shown
in [188] for cycle-free context-free grammars the ambiguity function is either
an element of 2Θ(n) or of O(nΘ(1)).

As defined in [119], a context-free grammar is said to be deterministic
(DCFG), if it can be implemented (parsed) by a deterministic pushdown au-
tomaton. The deterministic context-free languages DCFL are a proper subset
of the set of languages that possess an unambiguous context free grammar.

Some examples on the main three classes are given:

• L1 = {anbncn ∶ n > 0} ∈CSL. No context-free grammar there exists for L1.
• L2 = {anbn ∶ n > 0} ∈ DCFL. An unambiguous context-free grammar for

L2 is: S → aA, A→ Sb∣b. No regular grammar there exists for L2.

32 2 Background

A context-free grammar G = ⟨Σ,N,S,Π⟩ is linear if Π ⊂ N × (Σ∗V Σ∗ ∪
Σ∗).

As defined in [89], a deterministic linear grammar G = ⟨Σ,N,S,Π⟩ is a
linear grammar where the two following conditions hold: (i) all production
rules are of the form A → ε or A → aBw with A,B ∈ N , a ∈ Σ, and w ∈ Σ∗;
(ii) A→ aβ

Context-free grammars (CFGs) can themselves be divided into several
complexity categories:

LL(k) ⊂ LR(1) ⊆ Det-CFG ⊂ Unamb-CFG ⊂ CFG

Regular Grammars.

A regular grammar is a context-free grammar G = ⟨Σ,N,S,Π⟩ where either
Π ⊆ N × (Σ ∪ (Σ ○N) ∪ {ε}) (right-regular grammar) or Π ⊆ N × (Σ ∪ (N ○
Σ)∪ {ε}) (left-regular grammar) holds. By construction any regula-grammarG is non-cyclic, so the size of any parse tree t of G is ∣x(t)∣.
Example 2.5. L3 = {anb ∶ n ≥ 0} ∈REG. A regular grammar for L3 is:

S → aS∣b.
Regular grammars can also be ambiguous. Let us show the grammar G

having the following productions: S → aS∣aA∣ε, A → aS∣aA∣ε. It is easy to
see that L(G) = {an ∶ n ≥ 0} but each string w of length n can be derived by
exactly 2n different parse trees. As shown in [170] “every regular language is
unambiguous”. This means that for every regular language L there exists an
unambiguous regular grammar G such that L = L(G).

Furthermore, for any regular grammar G = ⟨Σ,N,S,Π⟩ there exists a (pos-
sibly nondeterministic) finite automaton M(G) = ⟨K,Σ,∆, s0, F ⟩ naturally
isomorphic to G, which decides L(G). The automaton M(G) is defined as
follows depending on whether G respectively is either left-regular or right-
regular:

• (i) K = N ∪ {s0}; (ii) B ∈∆(A,a) iff B → Aa belongs to Π; (iii) B ∈∆(s0, α)
iff α ∈ Σ ∪ {ε} and B → α belongs to Π; (iv) F = {S}.

• (i) K = N ∪ F , with F = {sf}; (ii) B ∈ ∆(A,a) iff A → aB belongs to Π;
(iii) sf ∈∆(A,α) iff α ∈ Σ ∪ {ε} and A→ α belongs to Π; (iv) s0 = S.

M(G) may be deterministic or not depending on structure of G.
Similarly to how deterministic context-free grammars are defined, a regular

grammar G is deterministic if M(G) is deterministic, id est, if G can be parsed
(or implemented) by a deterministic finite state automaton. Deterministic
regular grammars are a proper subset of unambiguous regular grammars. As
shown in [147], in fact, not every unambiguous regular grammar can be parsed
by a (deterministic) finite state machine, even extending our definition of
deterministic regular grammars and if a lookahead facility is added to the
machine’s capabilities.

2.3 Formal Languages 33

Attribute Grammars

Attribute grammars, first introduced by Knuth [160], have been used in syn-
tactic pattern recognition as well as natural language processing and program-
ming languages [7].

Definition 2.6. An attribute grammar AG is the following four-tuple:

AG = ⟨G,Attr,Func,Pred⟩
where

• G = ⟨Σ,N,S,Π⟩ is the underlying context-free grammar. N and Σ repre-
sent the non-terminal and terminal symbols, respectively, Π is the set of
productions, and S is the start symbol.

• Attr is a set of attributes, inherited and synthesized, that are associated
with each symbol occurring in the productions in Π. Synthesized attributes
are initially given with the terminal symbols, which are passed up the parse
tree during parsing, whereas inherited attributes are evaluated top-down
from the parents of the node. Each attribute has a type and either repre-
sents a specific property of a nonterminal symbol or contains a temporary
value exploited in functions or predicates.

• Func is a set of attribute evaluation rules associated with each production
p ∈Π. Attributes are evaluated using functions defined on attribute values
of symbols in p.

• Pred is a set of semantic conditions associated with each p ∈Π, which are
predicates defined on the attribute values.

The semantic conditions impose constraints on the value of the attributes
such that the production p can be used only when the conditions are satisfied.
This in effect restricts the syntax in addition to the grammar. The language
generated by an attribute grammar AG consists of all strings that have a legal
parse tree in AG (that is, a parse tree in which all attribute values relate in the
prescribed way). Because of the predicates, a parse tree of the original context-
free grammar may no longer be a legal parse tree of the attribute grammar,
and thus the language accepted by an attribute grammar is in general a subset
of the corresponding context-free language.

Graph Grammars

Analogously to Chomsky grammars in formal languages theory, graph trans-
formation can be used to generate graph languages. A graph grammar consists
of a set of rules, a start graph and a terminal expression fixing the set of termi-
nal graph. This terminal expression is a set ∆ ⊆ Σ of terminal labels admitting
all graphs that are labeled over ∆.

A Graph Grammar is a system GG = ⟨S,P,∆⟩ where:

34 2 Background

• S ∈ GΣ is the initial graph of GG.
• P is a finite set of graph transformation rules.
• ∆ ⊆ Σ is a set of terminal symbols.

The generated language of GG consists of all graphs G ∈ GΣ that are la-
beled over ∆ and that are derivable from the initial graph F via successive
applications of the rules in P , i.e. L(GG) = {G ∈ G∆∣S ⇒∗P G}.
2.3.2 Parsing Techniques

In this section efficient parser techniques are described. The concept of parsing
schemata will be used because it provide a unifying approach to contextfree
parsing [160]. The framework, however, can also be applied to parsing methods
that deal with grammars beyond the context-free category. Parsing schemata
are inspired by the “item-based” approach to parsing. According to this point
of view, recognizing is a process of deducing a final set of items (possiblyrep-
resenting complete parse trees) from an initial set of items (the hypotheses)
by means of a set of deduction rules. Different parsing methods use different
items (item domains), deduction rules, and sets of initial items. Most parsing
methods, including efficient chart parsers like Earley and CYK, can effectively
be interpreted as item-based parsers.

Let us first define a parsing system, which is defined for a specific grammar
and input string.

Definition 2.7. A parsing system P for some grammar G and input-string
a1 . . . an is a triple P ′ = ⟨I,H,D⟩, in which

• I is the domain or item set of P , which specifies the allowed items. (The
details of the syntax of items may be different per schema.)

• H is a finite set of initial items, or hypotheses. (H needs not be a subset
of I.)

• D ⊆ ℘fin(H∪I)×I is a set of production steps, where ℘fin(H∪I) represents
all finite elements in the power-set of (H ∪ I).

Parsing systems define a parsing method for a specific grammar G and input
string a1 . . . an. Uninstantiated parsing systems are defined for an arbitrary
input string.

Definition 2.8. An uninstantiated parsing system for a grammar G is a func-
tion that assigns a parsing system to any a1 . . . an ∈ ∑∗. A uninstantiated pars-
ing system is defined by a triple ⟨I,H,D⟩, where H is a function that assigns
a set of hypotheses to a string a1 . . . an ∈ ∑∗.

A function H is usually defined as

H(a1 . . . an) = {[a, i − 1, i]∣a = ai ∧ 1 ≤ i ≤ n}.
Definition 2.9. A parsing schema for some (sub)class of contextfree gram-
mars CG ⊆ CFG is a function that assigns an uninstantiated parsing system
to any grammar G ∈ CG.

2.3 Formal Languages 35

Definition 2.10. For a given P ′ = ⟨I,H,D⟩, the relation ⊢⊆ ℘fin(H ∪ I) × I
is defined by

Y ⊢ ξ if (Y ′
, ξ) ∈D for some Y

′ ⊆ Y.
Often, Y ⊢ ξ is used, instead of {η1 . . . ηn} ⊢ ξ, if Y = {η1 . . . ηn}.
Definition 2.11. A deduction sequence for a parsing system P ′ = ⟨I,H,D⟩ is
a pair (Y ; ξ1, . . . , ξi−1) ∈ ℘fin(H ∪ I)× I+, such that Y ∪ {ξ1, . . . , ξi−1} ⊢ ξi, for
1 ≤ i ≤ j.

Definition 2.12. The set of deduction sequences ∆ ⊆ ℘fin(H ∪ I) × I+ for
P ′ = ⟨I,H,D⟩ is defined by

∆ = {(Y ; ξ1, . . . , ξj) ∈ ℘fin(H ∪ I) × I+∣Y ⊢ ξ1 ⊢ ⋅ ⋅ ⋅ ⊢ ξj}
.

Chart Parser

A chart parser is a type of parser suitable for ambiguous grammars, including
grammars of natural languages. It uses the dynamic programming approach
partial hypothesized results are stored in a structure called a chart and can
be re-used. This eliminates backtracking and prevents a combinatorial explo-
sion. Chart parsers can also be used for parsing computer languages. The
Earley and CY K parsers are a type of chart parser mainly used for parsing in
computational linguistics. The parsing schemata will be used to specify such
methods.

CYK Parsing

The Cocke Younger Kasami (CY K) [61] algorithm determines whether a
string can be generated by a given context-free grammar and, if so, how it
can be generated. The algorithm employs bottom-up parsing and dynamic
programming.

The parsing schema CY K is defined by a parsing system PCY K , for all
G ∈ CNF and a1, . . . , an ∈ ∑∗ . The class of grammars CNF is a subclass
of CFG which is restricted to the so-called Chomsky Normal Form. Since all
grammars in CFG can be transformed to a grammar in CNF , and because of
its simplicity, CY K is still a much used parsing method. CY K can be defined
as follows.

ICY K = {[A, i, j]∣A ∈ N ∧ 0 ≤ i < j}
HCY K = {[a, i − 1, i]∣a = ai ∧ 1 ≤ i ≤ n}
D(1) = {[a, i − 1, i] ⊢ [A, i − 1, i]∣A→ a ∈ P}
D(2) = {[B, i, j], [C, j, k] ⊢ [A, i, k]∣A→ BC ∈ P}
DCY K =D(1) ∪D(2)

36 2 Background

In the theory of computation, the importance of the CY K algorithm stems
from the fact that it constructively proves that it is decidable whether a
given string belongs to the formal language described by a given context-free
grammar, and the fact that it does so quite efficiently. Using Landau symbols,
the worst case running time of CY K is Θ(n3 ⋅ ∣G∣), where n is the length of
the parsed string and ∣G∣ is the size of the CNF grammar G.

Earley Parsing

The Earley parser is a type of chart parser mainly used for parsing in compu-
tational linguistics, named after its inventor, Jay Earley. The algorithm uses
dynamic programming. Earley parsers are appealing because they can parse
all context-free languages [160]

The Earley parsing method is inherently left to right. Instead of merely
a non-terminal symbol, as with CY K items, an Earley item holds an entire
production. It uses a dot in the right-hand side of the production to indicate
up to which point a parse has completed. The part left of the dot represents
the part that is already parsed, and the part right of the dot represents the
part that still needs to be done. A dot at the end of a production indicates that
the entire production has been recognized. A dot can be moved past a symbol
as soon as an item that indicates the completed recognition of that symbol is
available. This is captured by the scan and complete deduction rules. The init
and predict deductions introduce possible candidates for parsing. The schema
is as follows.

IE = {[A→ α ● β, i, j]∣A→ αβ ∈ P ∧ 0 ≤ i ≤ j}
HE = {[a, i − 1, i]∣a = ai ∧ 1 ≤ i ≤ n}
DInit = {⊢ [S → ●γ,0,0]}
DPredict = {[A→ α ●Bβ, i, j] ⊢ [B → ●γ, j, j]}
DScan = {[A→ α ● aβ, i, j], [a, j, j + 1] ⊢ [A→ αa ● β, i, j + 1]}
DComplete = {[A→ α ●Bβ, i, j], [B → γ●, j, k] ⊢ [A→ αB ● β, i, k]}
DE =DInit ∪DPredict ∪DScan ∪DComplete

This parser yields the following set of recognized items:[A→ α●, i, j]∣α⇒+ ai . . . aj ∧ S ⇒+ a1 . . . aiAγ for some γ.
The parser recognizes the input string if [S → α●,0, n], where α⇒∗ a1 . . . an .

The Earley parser executes in cubic time (O(n3), where n is the length of
the parsed string) in the general case, quadratic time (O(n2)) for unambigu-
ous grammars, and linear time for almost all LR(k) grammars. It performs
particularly well when the rules are written left-recursively.

Bottom-up Earley

The Earley schema, as presented, is inherently a top-down parser (top-down
filtering, see DInit and DPredict). This reduces the possibilities for paralleliza-
tion. We can obtain a purely bottom-up variant of E, by altering the deduc-
tion steps of E. The replacement steps for the bottom-up Earley variant, short
buE, are given in the following schema.

2.3 Formal Languages 37

DInit = {⊢ [A→ ●γ, i, i]}
DScan = {[A→ α ● aβ, i, j], [a, j, j + 1] ⊢ [A→ αa ● β, i, j + 1]}
DComplete = {[A→ α ●Bβ, i, j], [B → γ●, j, k] ⊢ [A→ αB ● β, i, k]}
DbuE =DInit ∪DScan ∪DComplete

This parser yields the following set of recognized items:

{[A→ α●, i, j]∣α⇒+ ai . . . aj}.
The set of correct final items is identical to the set associated with Earley
(E). Obviously, since the DInit of buE produces more items than the Dinit

and DPredict of E do together, the set of items buE recognizes is larger than
with E. This variant, however, is better suited for parallel processing.

Recursive Transition Networks

A Recursive Transition Network (RTN) is a graph theoretic structure used
to represent the rules of a context free grammar.A RTN is a directed graph
with labeled states and arcs, a distinguished state called the start state, and
a distinguished set of states called final states. It looks essentially like a non-
deterministic finite state transition diagram except that the labels on the arcs
may be state names as well as terminal symbols [191]. RTNs have applica-
tion to programming languages, natural language and lexical analysis. Any
sentence that is constructed according to the rules of an RTN is said to be
“well-formed”.

An Augmented Transition Network (ATN) is a Recursive Transition Net-
work (RTN) [191] enriched by functions and predicates that respectively com-
pute and constraint attribute values.

ATN are used especially in parsing relatively complex natural languages,
and having wide application in artificial intelligence. An ATN can, theoreti-
cally, analyze the structure of any sentence, however complicated.

Recursive Transition Networks build on the idea of using finite state ma-
chines (Markov model) to parse sentences. W. A. Woods in [191, 50] claims
that by adding a recursive mechanism to a finite state model, parsing can
be achieved much more efficiently. Instead of building an automaton for a
particular sentence, a collection of transition graphs are built. A grammati-
cally correct sentence is parsed by reaching a final state in any state graph.
Transitions between these graphs are simply subroutine calls from one state
to any initial state on any graph in the network. A sentence is determined
to be grammatically correct if a final state is reached by the last word in the
sentence.

This model meets many of the goals set forth by the nature of language in
that it captures the regularities of the language. That is, if there is a process
that operates in a number of environments, the grammar should encapsu-
late the process in a single structure. Such encapsulation not only simplifies
the grammar, but has the added bonus of efficiency of operation. Another

38 2 Background

advantage of such a model is the ability to postpone decisions. Many gram-
mars use guessing when an ambiguity comes up. This means that not enough
is yet known about the sentence. By the use of recursion, ATNs solve this
inefficiency by postponing decisions until more is known about a sentence.

2.4 Knowledge Representation

2.4.1 Ontologies

Ontologies [172] enable to directly encode domain knowledge in software appli-
cations, so ontology-based systems can exploit the meaning of information for
providing advanced and intelligent functionalities. Since ontologies are widely
used to represent knowledge or meaning they are often seen as providing the
backbone for the Semantic Web [83, 22]. Moreover, one of the most inter-
esting and promising application of ontologies is information extraction from
unstructured documents.

Definition 2.13. let Z be a set of constants and Z̃ (the whole set of values)
be that one obtained by the union of Z with all finite lists of elements in Z.
An Ontology on Z is a 9-tuple:

OZ = ⟨D,A,C,R, I,⪯, σ,ϕ, ι⟩
where:

• D, A, C, R are finite anddisjoint sets of entity names respectively called
data-types, attribute-names, classes and relations. Set D contains only
integer and string data-types. Set A contains the special attribute-name
id. Elements in C ∪D are called flat-types. For each flat-type t there is a
list-type denoted by [t]. The union of all flat-types and list-types is called
the set of types and denoted by T .

• I = 2A×Z̃ is the set of instances in OZ . I = Ic ∪ IR, where Ic are called
objects, whereas Ir are called tuples.

• ⪯ is a partial order (called isA) on C.
• σ ∶ C ∪R → 2A×T is the schema function. Let e be an element in C ∪R.

The set σ(e) is called the schema of e and any couple ⟨a, t⟩ ∈ σ(e) is
the (schema) attribute of e with name a and type t. The schema of a
class c contains the attribute ⟨id, c⟩, whereas no relation schema contains
attributes with nameid. Any schema contains only attributes with distinct
names.

• ϕ ∶ D → 2Z is the domain function that associates to each data-type t ∈ D
a domain value in Z.

• ι ∶ C ∪ R → 2I is the instance function that associates to each class or
relation its subsets of instances. When ι is applied to C the elements in the
set ι(C) = Ic are called objects, whereas the elements in the set ι(R) = Ir

2.4 Knowledge Representation 39

are called tuples. Let e be an element in C ∪R and ι̂ ∈ ι(e) be an instance
of e, any couple ⟨a, z⟩ ∈ ι̂ is the (instance) attribute of ι̂ with name a and
value z. Given an instance ι̂ ∈ ι(c) of a class c, the value z of the attribute⟨id, z⟩ ∈ ι̂, is called the object identifier (oid) of ι̂.

In the following ontology constructs are explained by mens of a running
example and exploiting the syntax of the DLP+ ontology representation lan-
guage [158].

Ontology schemas

A class is a name and an ordered list of attributes (attribute id is implic-
itly declared) identifying the properties of its instances. Thus, a class can
be thought as an aggregation of individuals (objects) that have the same set
of properties (attributes). Each attribute is identified by a name and has a
type specified as a data-type or user-defined class. Class schemas expressing
knowledge related to weather can be declared as follows:

class koppenClimate (lTempF:integer,hTempF:integer,avgRainfallCm:integer).
class continentalClimate (summerHumidity:string,winterHumidity:string)

isa {koppenClimate}.
class place (name:string).

class state (areaKm2:integer,capital:city,neighborState:[state])
isa{place}.

class city (population:integer,inState:state) isa {place}.

Classes place and city show how class hierarchies (taxonomies) can be
built up by using isa key-word. Class city shows the ability to specify user-
defined classes as attribute types (i.e. inState:state). Class state has a
list-type attribute (i.e. neighborState:[state]).

Relationships among objects are represented by means of relations, which
like classes, are defined by a name and a list of attributes. Relation cityClimate,
which asserts what is the climate of a given city, can be declared as follows:

relation cityClimate (c:city, climate:koppenClimate).

Ontology Instances

Objects are declared by asserting new facts, they are unambiguously identi-
fied by their object-identifier (oid) and belong to a class. By considering the
weather example, instances for the classes continentalClimate, state and
city can be declared as follows:

hotSummer:continentalClimate (lTempF:-36,hTempF:86,avgRainfallCm:90,
summerHumidity:"dry",winterHumidity:"wet").

illinois:state (name:"Illinois",areaKm2:140998,capital:Springfield,
neighborState:[wisconsin,kentucky,iowa,missouri,indiana]).

chicago:city (name:"Chicago",population:2833321, inState:illinois).
sterling:city (name:"Sterling",population:15451, inState:illinois).

40 2 Background

For class state is represented an object which oid is the constant illinois,
while string "Illinois" is the value for the attribute name:string. The at-
tribute neighborState contain a list of oids that represent Illinois neighbors.
Tuples are defined by a name and a list of attribute values (attribute names
are optional). In the weather example the tuple of the relations cityClimate
which asserts that the climate of the city chicago, is hotSummer can be de-
clared as follows:

cityClimate (c:chicago, climate:hotSummer).

Inference Rules

It is worth noting that DLP+ [109, 158] is actually an extension of Disjunctive
Logic Programming [58] (DLP, which has been enriched by concepts from the
object-oriented paradigm. So, it makes possible to specify complex inference
rules and constraints over knowledge base schemas and instances, merging,
in a simple and natural way, the declarative style of logic programming with
the navigational style of ontologies. In particular, the approach allows to infer
tuples and objects and define global integrity constraints called axioms.

Reasoning Modules. Given an ontology, it can be very useful to reason
about the data it describes. Reasoning modules are the language components
endowing DLP+ with powerful reasoning capabilities to DLP+. Basically, a
reasoning module is a disjunctive logic program conceived to reason about the
data described in an ontology. Reasoning modules in DLP+ are identied by a
name and are dened by a set of (possibly disjunctive) logic rules and integrity
constraints. For instance,

module(hotCitiesIllinois){
hotcity(X) :-cityClimate (c:X, climate:hotSummer),

X: city (instate:illinois).
}

Queries. An important feature of the language is the possibility of ask-
ing queries in order to extract knowledge contained in the ontology, but not
directly expressed. As in DLP a query can be expressed by a conjunction of
atoms, which, in DLP+, can also contain complex terms. For instance, we can
ask the cities in illinois state as follows:

X: city(instate:illinois)?

Consistency and Semantics

Consistency of schemas. Any schema contains only attributes with distinct
names. Let c1 and c2 be two classes such that c2 ⪯ c1. For each attribute⟨a, t1⟩ ∈ σ(c1) there exists precisely one other attribute ⟨a, t2⟩ ∈ σ(c2) with
the same name. If t1 is either a data-type or a list-type [t], where t is a data-
type, then t2 = t1. If t1 is a class, then t2 is a class and t2 ⪯ t1 holds. If t1 is a

2.4 Knowledge Representation 41

list-type [t̂1], where t̂1 is a class, then t2 = [t̂2] and t̂2 ⪯ t̂1 holds.

Consistency of instances. Given a type t ∈ T , then value z is compatible
with t if one of the following conditions holds: (i) t ∈ D and z ∈ δ(t); (ii)
t ∈ C and z is an oid of an instance of t; (iii) t = [t̂] is a list-type, and z
is a list of values all of which are compatible with t̂. Set Z̃t denotes all val-
ues in Z̃ compatible with t. Let e be an element in C ∪R that has schema
σ(e) = {⟨a1, t1⟩, . . . , ⟨ah, th⟩}. Then, each instance ι(e) of e has the following
form {⟨a1, z1⟩, . . . , ⟨ah, zh⟩} where each zj is compatible with tj (1 ≤ j ≤ h).
There are no two instances sharing the same oid.

Semantics The semantics of OZ is given in terms of Datalog. The datalog
representation C(OZ) of OZ is the set of all the clauses created from OZ as
follows: (i) for each element e ∈ C ∪R and instance ι̂ = {⟨a1, z1⟩, . . . , ⟨ah, zh⟩}
in ι(e), create ground fact e(z1, . . . , zh)←; (ii) for each couple of classes c1, c2

in C such that c2 ⪯ c1, create clause c1(X1, . . . ,Xh)← c2(X1, . . . ,Xh, . . . ,Xk)
where k ≥ h, ∣σ(c1)∣ = h, and ∣σ(c2)∣ = k.

Given a Datalog query Q where any of its predicate symbol e ∈ C ∪R has
arity ∣σ(e)∣. So, the set of couples ⟨p(X1, . . . ,Xn),Q⟩, where p is a generic
predicate, is called decision query on OZ . Whenever each variable Xi assume
value zi (1 ≤ i ≤ n), thus expression C(OZ) ∪Q ⊧ p(z1, . . . , zn) may be evalu-
ated3 for checking whether the ground atom p(z1, . . . , zn) is true with respect
to OZ .

3 Lists of elements are handled as constants.

Part II

Information Extraction: State Of Art

Data is a precious thing and
will last longer than

the systems themselves.∼ Tim Berners-Lee ∼

46

Information Extraction (IE) is the process aimed at converting semi and
unstructured document into a specific structured format in order to make
information available for subsequent manipulation or integration steps. Clas-
sical IE include named-entity recognition (identifying persons, places, orga-
nizations, etc.) and relationship extraction between named entities. Web in-
formation extraction is the application of IE techniques to process the vast
amounts of unstructured content on the Web. Information extraction from
Web sites is often performed using wrappers. A wrapper is a program that
extracts data from information sources of changing content and transform
unstructured input into structured output formats, normally XML. A wrap-
per generation systems describes the transformation rules involved in such
transformations. There is wide agreement that wrapping should exclude op-
erations related to data transformation and integration tasks that may follow
extraction.

In the last years much research has been done for supporting information
extraction, specially on the web, and several approaches have been proposed.
There exist many surveys about web data extraction tools (e.g. [18, 64, 37,
107]), flat text and ontology based information extraction tools (e.g. [189]),
and some specific surveys about the table recognition problem (e.g.[196]).

There are a number of ways to classify wrapping systems. A complete
categorization was made by Laender et al. [107]. They proposed the following
taxonomy:

• Wrapper induction tools (e.g., DEPTA [197, 198], IEPAD [38], WIEN
[133], LIXTO Visual Wrapper [17, 75, 19], SoftMealy [92], STALKER
[129]) that are based on the structural information and formatting fea-
tures of the web pages, and generate extraction rules derived from a given
set of training examples or pattern discovery techniques.

• HTML-aware tools (e.g., LIXTO [17, 75, 19], W4F [164], XWrap, Road-
Runner [42]) that rely on the structural information of the web pages, too,
and use HTML parse trees for creating extraction rules.

• Modeling-based tools (e.g., DEByE [106], Robosuite, NoDoSE) that locate
in the web pages portions of data conforming to a predened structure
provided according to a set of modeling primitive as tuples or lists.

• NLP-based tools (e.g., WHISK, RAPIER, SRV) that work on phrases
and sentences elements within the web pages to derive extraction rules,
by applying techniques such as ltering, part-of-speech tagging and lexical
semantic tagging.

• Ontology-based tools (e.g., BYU), that rely on the data and not on the
structure of the source documents. These tools use ontology to locate con-
stants in the page and to construct objects with them.

Many of these approaches such as Lixto, Wargo and Fetch (based on Stalker),
which started out in the academic domain, are now fully edged commercial
products.

47

In this dissertation information extraction approaches will be mainly classified
considering the underlying structure which they are able to work on and if
they are able to consider the the semantics of information:

• Classical Information Extraction Systems, that works on the text.
• Web Information Extraction Systems, that works on HTML documents

and generally make use of the tree based internal structure.
• PDF Information Extraction Systems, that are few and recent works aimed

at analyzing, recognizing and extracting information from the PDF docu-
ments.

• Ontology-based Information Extraction Systems, that exploits the knowl-
edge for recognizing information contained in flat text, in order to populate
an output ontology.

• Query Languages, that are used to extract data using logic and/or spatial
information.

Moreover, as described in [37], the automation degree adopted in the denition
of wrappers and extraction rules is considered. So, existing approaches and
systems, can be classied in manual, semi-supervised and unsupervised (fully
atomatic):

• Manual techniques require the use of a wrapper programming language
such as PiLLoW [30] or Jedi [93] and have fallen out of popularity in recent
years, as construction and maintenance of wrappers is time-consuming
and their specification language presents a significant learning curve. Most
significant manual approaches are: TSIMMIS, Minerva, Web-OQL , W4F,
XWRAP [107, 37], JEDI [93], FLORID [120].

• Semi-automatic systems allow the generation of wrappers based on user
input. These approaches can broadly be split up into systems based on
wrapper induction and systems based on wrapper specification. There is
currently a wide range of wrapper induction systems in the literature, such
as WIEN [133], and Stalker [129], which use machine learning techniques
to generate a wrapper program from a set of training examples provided
by the user. In systems based on wrapper specification, the user is directly
involved in programmatically creating the wrapper. In contrast to manual
systems, wrappers are usually generated based on a few examples in an
intuitive and interactive way. Examples of such systems include Lixto [17],
DEByE [106] and Wargo [156]. Semi-automatic approaches have also been
referred to as supervised approaches in the literature. In order to clarify
the distinction between approaches using supervised learning or wrapper
induction and approaches based on wrapper specification, we refer to the
latter as user-guided wrapper generation. These approaches could be seen
as combining the power and precision of manual approaches with the user-
friendliness and shallow learning curve of automatic systems.

• Fully automatic systems generate wrappers without any user input. The
RoadRunner approach [42] employs a matching technique to generate a

48

wrapper based on several examples of documents from the same class and
therefore does not require any labelled examples. ExAlg [10] works in a
similar fashion. The MDR (Mining Data Records) approach uses string-
matching [114] and partial tree alignment [197] techniques to locate ex-
amples of repeating data records on a Web page. The work of [59] uses
an ontological model for a specific domain to extract data from arbitrary
Web pages about this domain. In general, the advantage of fully automatic
approaches is that they can be applied to any arbitrary document that has
not been encountered before. However, they are neither as precise, nor can
they extract such detailed information as semi-automatic approaches.

Finally, an important considered characteristic is the exploitation of spatial
relations to locate the desired data instances (e.g. [104], the graph-based ap-
proach to wrapping PDF documents [85]).

3

Flat Text Information Extraction

Classical problems in information extraction include named-entity recogni-
tion and relationship extraction among entities. Historically, information ex-
traction [80] was studied by the Natural Language Processing community
in the context of identifying organizations, locations, and person names in
news articles and military reports. The first systems uses regular expressions,
simple grammars and finite-state automata. The first very evaluation of IE
task was made from 1987 to 1998 during the Message Understanding Confer-
ences (MUC) [80] sponsored by the U.S. Defense Advanced Research Projects
Agency (DARPA). During the MUC (6 and 7) four specific evaluations were
performed: Named entity, coreference, template element, template relation.
Now the the MUC tasks are part of Automatic Content Extraction (ACE)
program 1 of the U.S. National Institute of Standards and Technology (NIST).
The ACE includes the following tasks:

• Entity Detection and Recognition. An entity is an object or a set of objects
in one of the semantic categories of interest (Like persons, organizations,
locations, etc.).

• Relation Detection and Recognition. Such a task is aimed at found seman-
tic relations between pairs of entities. ACE defined some type of relations.

• Event Detection and Recognition. Such a task is aimed at actions. ACE
defined some type of events (Like about movement, conflicts e.g. “The
bandit killed a man”.)

• Entity Translation between different languages.

In particular, entity extraction refers to the identification of mentions of
entities (such as persons, locations, organizations, phone numbers, etc.) in
unstructured text. The annotation involve a large number of rules and dic-
tionaries. For example, a same person can be identified by shorthands, and
formats used in person names. Binary relationship extraction refers to the task

1 The ACE task description is available at http://www.nist.gov/speech/tests/ace/
and the ACE guidelines at http://www.ldc.upenn.edu/Projects/ACE/

50 3 Flat Text Information Extraction

of associating pairs of named entities by a relation. For instance for extracting
instances of the CompanyCEO relationship, intent to found the pair person and
company such that the person is CEO of a company. Assuming that persons
and organizations have already been annotated, the following rules allow for
identifying CompanyCEO relationship instances.

<CompanyCEO> <- <Person> RegExp(‘‘\s+CEO\s+ of \s,’’) <Organization>
<CompanyCEO> <- <Organization> RegExp(‘‘\s+CEO\s+’’) <Person>

In the regular expressions \s+ represent an arbitrary amount of whitespace
separating the individual words of the phrase.

In the following Sections, we distinguish between two common informa-
tion extraction techniques from text based on: pattern matching and machine
learning.

3.1 Pattern Matching Based IE

Many IE systems during MUC evaluation use high-ac- curacy rules, dictionar-
ies and patterns for each specific domain. The rule-based extraction programs
are often called annotators because the output is not only the extraction of
the information, but the concepts of span is also used. A span corresponds to
a substring of the document text represented as a pair of offsets (begin, end).
A rule is of the form A ← P , where A is an annotation and P is a pattern
specification. Evaluating the rule associates any span of text that matches
pattern P with the annotation A.

Manually writing and editing patterns requires some skill and considerable
time. So some systems have moved on to learning these patterns automatically
based on an annotated corpus pre-processed by syntactic and semantic analyz-
ers. A more comprehensive survey of pattern matching based IE approaches
can be found in [128]. However, for particular domain a separate annotated
corpus is needed. Therefore some systems have used unsupervised learning
approach [159, 193, 173]. Natural language techniques are often exploited.

3.2 Machine Learning Based IE

Pattern matching approach is not enough for obtaining resilient systems
that can be used into new domains. Therefore, IE approach is split in a
pipeline of sub-tasks (e.g. name identification and classification, parsing, re-
lation extraction) and for each subtask a machine learning method is applied
[32, 70, 171, 67].

IE technology has benefited from improvements that have been brought
mainly from Machine Learning (ML) techniques [177, 41, 46]. The statistical
learning paradigm, which employs generative models (e.g., Hidden Markov

3.2 Machine Learning Based IE 51

models - HMMs) and discriminative models (e.g., Conditional Random Fields
- CRFs), has recently attracted increasing interest for IE tasks. The Gen-
eral Architecture for Text Engineering (GATE) [43] is a widely used NLP
framework and provides an easy-to-use platform to employ this technique.

4

Web Information Extraction

Initial Wrapper allowed information extraction from free text. Textual docu-
ments are unstructured documents and requires natural language processing
techniques such as Part-of-Speech tagging. Nowadays, with the advent of the
Web, Wrapper generation systems focus on the semi-structered format. HTML
tags allow to define relations between block of information. However, it is not
enough considering only the internal format. In fact, there aren’t strict rules
on the semantics of tags and can be used for represent structural or layout
information. In this dissertation, the Web IE tools are classified considering
the automation degree.

4.1 Manual IE

First IE approaches in the Web domain have seen systems where wrappers
were constructed manually. For instance, TSIMMIS [82] proposes a framework
for the manual construction of Web wrappers. In TSIMMIS a wrapper takes as
input a specification made by a sequence of commands given by programmers
describing the pages and how the data should be transformed into objects.
Commands take the form (variables, source, pattern), where source specifies
the input text to be considered, pattern specifies how to find the text of
interest within the source, and variables are a list of variables that hold the
extracted results. The generated outputs are represented using the Object
Exchange Model. The output is composed by the target data and by additional
information about the result.

4.2 Semiautomatic IE

Manual wrapper systems did not scale well and were inexible to change
in document structure. A lot of IE systems have been developed to semi-
automatically generate wrappers based on two main approaches: (i) wrapper
induction (ii) visual wrapper specification.

54 4 Web Information Extraction

4.2.1 Wrapper Induction Systems

Wrapper induction systems resort to ML techniques for generating extraction
rules. Wrapper induction allow for learning wrapper programs from examples.
Kushmerick [105] defined the wrapper induction problem as a simple model
of information extraction. Extraction rules are learned from these examples,
thus extraction accuracy relies on the number and the “quality” of the exam-
ples. Wrapper induction systems do not require the human to manually write
extraction rules, but to label a number of documents and have machines in-
ductively learn the extraction rules. There exist many wrapper induction sys-
tems, new approaches appear in literature [113] and several wrapper induction
systems are successfully commercialized.

There not exists standard datasets such that different Wrapper Induction
System effectively can be compared. The most known data set used in in-
formation extraction is RISE 1 However it is too old (before 2000) and can
be considered out-dated with respect to the current structure and layout of
modern Web pages.

The work [94] generate node predicates on the DOM tree representation
of a HTML document (such as tagName, tagAttribute, #children, #siblings).
These are constructed for each example node in the training set together
with those nodes along the path towards the root from each such node -
until a common ancestor is reached. Verification rules are generated from
special verification predicates to be checked later. Finally, patterns with equal
extraction results are combined.

In [33], the authors also use the DOM tree representation of web doc-
uments to detect repetitive occurrences of pre/post subtree constellations.
They use boolean logic to combine all rules into a minimal disjunctive normal
form over all training examples. Applying supervised learning to Web wrapper
generation bears a crucial drawback: sufficiently large sets of documents with
annotated examples are hard to obtain and require expertise in the making.
Labor and time investments renders the labeling of examples costly, creating
a bottleneck in IE from Web docu- ments. As a result, part of the research
focused on tools that allow non-expert users to create wrappers interactively
via visual user interaction. Starting with a set of non-annotated documents,
the algorithm tries to infer the correct wrapper by asking the user to annotate
a minimal number of examples.

The STALKER system [129] introduced hierarchical wrappers generated
from landmark automata. Stalker generates so-called landmark automata
(SkipTo functions) from a set of training data. Nesting patterns allows the
system to decompose complex extraction rules into a hierarchy of more sim-
ple extraction rules. Stalker employs a covering algorithm to reduce its initial
set of candidate rules to a best-fit set of rules. Co-testing learns both forward
1 http://www.isi.edu/info-agents/ RISE. RISE is a collection of documents (HTML

and flat text) related to seminar announce-ments, Okra search, IAF address
finder.

4.2 Semiautomatic IE 55

and backward rules on the document. In case of agreement the system knows
that the selected rule is correct, otherwise the user is given the conicting
example for labeling in order to resolve the conict (active learning).

DEByE [106] is similar to STALKER as it also used landmark automata for
rule generation. It applies bottom-up extraction rules. Unlike other wrapper
induction systems that typically work top-down, their approach allows for
more exibility as the order of individual patterns here is no longer relevant.

SoftMealy system [92] Softmealy is based upon a finite-state transducer
and it utilizes contextual rules as extraction rules. Before being input to the
transducer, a document is tokenized and special separators are added be-
tween two consecutive tokens. The transducer regards its input as a string
of separators, where state transitions are governed by the left and right con-
text tokens surrounding the current input separator. SoftMealy machines have
two learnable components: the graph structure of the state transducer and the
contextual rules governing the state transitions. The graph structure should
be kept simple and small, which is achieved via a conservative extension pol-
icy. Contextual rules are learned by a set-covering algorithm that finds the
minimal number of contextual rules covering all examples.

In boosted wrapper induction BWI [71] delimiter-based extraction rules
are generated from simple contextual patterns. BWI works both in natural
language and wrapper domains. It uses a probabilistic model for tuple length
classification together with a boosting algorithm for delimiter learning.

4.2.2 GUI-based Web Data Extraction

Visual wrapper generation is based on interactive tools to assist the wrapper
designing. These tools are usually equipped with graphical interfaces by which
the user visually specifies what information the system has to extract. Thus,
the goal of Graphical User Interfaces for Visual Web data extraction is not
only to show results in a presentation format, but allow the selection of inter-
esting information, that the user want to extract removing all presentational
features, so that only pure concepts remain. Web data extraction exploiting
GUIs are variants of wrapper induction systems. Like classical inductive sys-
tems GUI-based extraction systems do not require the human to manually
write extraction rule. While classical inductive techniques use machine learn-
ing techniques for the generalization and conjunction of extraction patterns,
GUI-based approaches allow user to specify what he intends to extract in a
comfortable way considering the WYSIWYG paradigm. Therefore such ap-
proaches are aim at user-friendly and non-expert users. All systems have a
similar GUI that: show the HTML browser; allow for selecting the interesting
data by mouse; allow for navigating the DOM tree of HTML pages; exploit
internal extraction rules based on path expressions. The extraction process is
addressed to template of documents, such as page describing products, news
articles, data of people. For each template a set of extraction rules is gener-
ated and information can be extracted and stored in structured format. The

56 4 Web Information Extraction

user select information (for instance names and prices of products) that have
to extract and assign labels them. The extraction rules, which represent a
wrapper, are inferred by the selected information.

WIEN [133] is the first system for wrapper induction from semi-structured
documents. The system learns extraction rules in two stages: In a fist step,
simple LR rules are generated from the training data, that specify left and
right delimiters for each example. The second step refines the LR rules into
example conforming HLRT rules, where additional Head and Tail delimiters
are added if necessary. The WIEN algorithm assumes attributes to be equally
ordered among all tuples, and it cannot deal with missing attributes. WIEN
supports both single-slot and multi-slot patterns.

Sahuguet et al presented W4F system [164] that uses a SQL-like language
named HEL. In W4F parts of the query in HEL can be generated using a visual
wizard which returns the full XPath location path of DOM nodes. So the HEL
language is unable to recognize when information in a Web page is presented
by the same visual pattern but is represented by different tag structures. So,
the W4F system may benefit from using SXPath as more expressive basis for
defining extraction rules.

XWRAP [115] is a wrapper generation framework. XWRAP uses a com-
mon library to provide basic building blocks for wrapper programs. In this
way, tasks of building wrappers specific to a Web source are separated from
repetitive tasks for multiple sources.

NODOSE [3] extracts information from plain string sources and provides
a user interface for instance labeling. NoDoSe is an interactive tool that allows
the user to hierarchically decompose a complex wrapper pattern into simple
sub-wrappers. The system works both in the free text and the Web domain
with the help of two distinct mining components. Learning rules consist of
start and stop delimiters, either on text level (first component) or on HTML
structure level (second component). Parsing generates a concept tree of rules
that support multi-slot patterns and attribute permutation.

LIXTO [17, 75, 19] was started by Gottlob et al. at TUWIEN and is now
developed and sold by the LiXto GMbh software house. is a method for vi-
sually extracting HTML/XML wrappers under the supervision of a human
designer. LiXto allows a wrapper to interactively and visually define informa-
tion extraction patterns on the base of visualized sample Web pages. These
extraction patterns are collected into a hierarchical knowledge base that con-
stitutes a declarative wrapper program. The extraction knowledge is internally
represented in a Datalog-like programming language called Elog [16]. The typ-
ical user is not concerned with Elog as wrappers are build using visual and
interactive primitives. Wrapper programs can be run over input Web docu-
ments by a module in charge of extraction which then translates the output
in XML.

DENODO formerly known as Wargo, is a platform for creating and exe-
cuting navigation and extraction scripts that are loosely tied together. It offers
graphical wizards for configuring wrappers and allows DOM events to be pro-

4.3 Automatic IE 57

cessed while navigating web pages. Deep Web navigation can be executed in
Internet Explorer, and the result pages are passed on to the extraction pro-
gram. Furthermore, Denodo offers some wrapper maintenance functionalities.
It additionally offers a tool called Aracne for document crawling and indexing.

4.3 Automatic IE

Actual Wrapper Induction System do not scale when is required the extraction
of large amounts of information from different Web site, in particular when
have different html code. In fact, are needed a large number of examples.
Therefore, unsupervised extraction is necessary in this case. Fully-automatic
Web data extraction aim at extracting relevant information from HTML doc-
uments, without requiring human intervention throughout the process.

Automatic IE approaches can be classified in according to the goal that
they try to resolve in:

• cleaning approach [90] that allow for extracting a block of flat text con-
taining the required information (e.g. extract news), Such approaches gen-
erate wrapper that returns the flat text, without assigning labels. There
was a competition named CLEANEVAL 2 and part of the “Web as Cor-
pus” initiative (WAC) on May 2007. The objective of WAC is to collect
massive textual information from the Web in order to use it for natural
language processing (NLP) and linguistic research, forming representa-
tive background corpora and language models. On the competition site a
dataset is available and it represent a benchmark for cleaning approaches.

• records extraction that allow for extracting repetitive records (e.g. list of
products and search engine results) [91]. They exploit the recurring pat-
terns that describe the set of records and allow for recognizing different
items of each record. They can consider or the flat text or the internal
document format of HTML pages, or the visual cues.

For automatic extraction of search engine results, several smaller datasets are
available, among those the Omini dataset (Available from Sourceforge via
http:// sourceforge.net/projects/omini/.) and MDR collection. None of them
may count as standard dataset, though.

Some relevant automatic information extraction systems are described in
the following.

ROADRUNNER [42] was developed at the University of Roma 3 and ap-
plies to intensive Web sites, i.e. those sites with large amounts of data and a
rather regular structure. RoadRunner works by comparing the HTML struc-
ture of a set of sample pages of the same type, and generates a schema for the
data contained in the pages. This schema is used as a starting point for the in-
ference of a grammar which is capable to recognize the instances of attributes

2 http://cleaneval.sigwac.org.uk/

58 4 Web Information Extraction

identified for this schema in the set of sample pages. The extraction procedure
is based on an algorithm that compares the tag structure of the set of sample
pages and produces regular expressions able to handle structural differences
found in the set of sample pages. A peculiar feature of RoadRunner is that
this procedure is completely automatic and no user intervention is required.

OMNI [28] parses Web pages into tree structures and performs object
extraction in two stages. First, it uses a set of subtree extraction algorithms
to locate the smallest subtree that contains all the objects of potential interest.
Second, it employs a suite of object extraction algorithms to find the correct
object separator tags that can effectively separate objects. The prototype
supports five separator tag identification heuristics, covering a wide range
of possible mechanisms for discovering object separators. Each one of the
five heuristics independently ranks the candidate tags. Both stages are fully
automated and require no human assistance.

MDR [114] identifies data regions by searching for multiple generalize-
nodes using edit-distance similarity where generalize-nodes are a fix combi-
nation of multiple child nodes and their corresponding subtrees. MDR does
not identify the most relevant data records but rather reports each repeti-
tive sub-region contained in a Web page. Recently the authors proposed an
improvement of their system named DEPTA (MDR-2) [197, 198] operating
on a tag tree built according to visual rendering information. Additionally
they mention that gap information is incorporated to eliminate false node
combinations but nothing is said about the realization. Finally they proposed
an approach for data record alignment by progressively growing a seed tag
tree. The alignment is partial because only these nodes of a data record be-
come aligned whose position for inserting into the seed tree can be uniquely
determined.

STAVIES [150] employs clustering techniques to segment the Web pages
and locate the region that contains the data records as well as the boundaries
separating them. This method is restricted by using the cardinality of common
ancestors of two nodes as the similarity measure.

4.3.1 Visual-based Approaches

Some newer Wrapper generators also exploit visual cues by analyzing HTMLs
rendered by a Web browser engine [178].

VINTS [201] automatically generates search result record extraction rules
using visual context features and tag structure information. To this end,
ViNTS first analyzes the graphical representation without considering the
tag structure to identify content regularities by means of so-called content
lines. Next, structural regularities among HTML blocks are combined with
these visual features to generate wrappers. To weight the relevance of differ-
ent extraction rules, visual and non-visual features are considered.

ViPER [169] system builds on similar techniques as ViNTS, but extends its
capabilities by not only allowing to identify recurring blocks that are aligned

4.3 Automatic IE 59

vertically, but also those aligned in a horizontal fashion. Next to the ex-
ploitation of visual cues, ViPER used multiple sequence alignment techniques,
known from bio-informatics, to identify structure and patterns in HTML tag
sequences.

VIDE [116] system adopts a strategy for representing deep web pages
very close to our data model but it do not exploit also the HTML structure.
We must learn the wrapper by using the spatial data model and clustering
algorithm. With just one processing we should have both data region, data
records and data items. A deep comparison with this system is required. Take
also into account experimental result obtained by this system.

This last three system exploit heuristic algorithms based on visual informa-
tion and do not consider internal structure. However, we believe that internal
structure could, if correctly processed, be used to improve the robustness of
automatic information extraction systems.

5

PDF Information Extraction

There is a substantial interest from industry in wrapping documents in formats
such as PDF and PostScript. The intrinsic print/visual oriented nature of
PDF encoding poses many issues in defining “ad hoc” IE approaches. In fact,
wrapping of such documents must be mainly guided by a visual reasoning
process over white space, which is substantially different from web wrapping.
While many HTML-oriented approaches and systems are available, just few
approaches that deal with PDF document formats have been proposed in
literature. In this Section, firstly document understanding problem will be
shortly described, then table recognition and wrapping problem from PDF
documents will be discussed.

5.1 Document Understanding

In PDF files the documents logical structure is not explicitly present. So,
it could be useful to make use of document analysis approaches in order to
rediscover this structure and allow for locating the data to be wrapped. Doc-
ument image analysis and understanding can be grouped considering their
approaches in: bottom-up and top-down.

• Bottom-up Pixel-based Approach. Document image analysis has its origins
in the OCR community,and there is a huge amount of literature describing
document analysis systems that work on scanned images of pages [5, 9, 165,
131, 131] The vast majority of such systems use a bottom-up segmentation
process: the image is rst deskewed and binarized (or thresholded), and
segmentation then is performed using pixel-based operations.

• Top-down based Approach. Earlier segmentation algorithms include top-
down methods [130, 81] In this method, the page is recursively “cut” in half
across a visually salient boundary, usually whitespace or a ruling line. The
main weakness of this approach is that it is not able to segment all page
layouts completely. Specically, the page layout must be X-Y decomposable.

62 5 PDF Information Extraction

ASCII format (and similar xed-width text formats) allows only a very re-
stricted range of layout conventions. The work [161] uses a bottom-up method
to merge lines of text, as obtained from an OCR package, into a hierarchical
structure based on repeating indentation patterns. This technique assumes
no prior knowledge about the formatting conven- tions being used. Multi-
column and more complex layouts are not addressed, and are a rarity in this
format. This paper also describes techniques in table detection and graphics
recognition.

5.2 PDF Table Recognition

Table recognition and extraction (TREX) has recently received as consider-
able attention as it can be considered a “per se” research field. Therefore,
a large body of work concerning approaches and systems aimed at recogniz-
ing and extracting tables from documents having different internal encodings
is currently available in literature. A survey due to Zanibbi et al. [196], pro-
vides a detailed description of already existing TREX approaches and systems.
TREX approaches can be classified by using different criteria in: (i) predefined
layout-based, heuristics-based, and statistical-based, by considering the adopted
recognition and extraction method, as described in Wang [186]. These ap-
proaches use different knowledge engineering techniques founded on machine
learning and statistics. (ii) table recognition-oriented, labeling-oriented and cell
classification-oriented, by considering which kind of problem approaches aim
at solving, as described in Pivk et al. [153]. (iii) HTML-oriented, PDF-oriented
and flat text-oriented

While many HTML-oriented TREX approaches and systems are available
(e.g. [72, 110, 104]), just few approaches that deal with PDF and flat text
document formats have been proposed in literature (e.g. [11, 88, 101, 194]).
Furthermore approaches working on PDF and flat text documents are less
performing than those working on HTML documents. This is due to the highly
unstructured nature of PDF and flat text documents that pose complex issues
in defining TREX methods. Currently, there is an increasing interest toward
print-oriented documents.

Yildiz et al. [194] describe a system called pdf2table based on an heuristic
approach that performs two main tasks: table recognition, in which informa-
tion organized in tabular structure are recognized, and table decomposition
in which recognized elements are assigned to a table model. The table recog-
nition task works on the output of pdftohtml tool and tries to assign text
blocks extracted by pdftohtml in containers called multi-lines and multi-lines
block. At the end of the process a multi-line block could contain a table. The
table decomposition task tries to split multi-line blocks in column in order to
define the table structure. Authors provide an experimental evaluation of the
approach based on a dataset composed by 150 documents, but the dataset is

5.3 PDF Wrapping 63

not available and no rigorous definitions of lucid and complex table is given.
so, a direct comparison with such an approach is impossible.

Hassan et al. [88] propose a method for detecting tables in PDF files. They
group tables into three categories: tables with both horizontal and vertical
ruling lines, tables which contain only horizontal ruling lines, and tables where
ruling lines are absent. The first group appears to be the most reliable in
detecting and understanding tables because it exploits ruling lines. By using
a principle of rectangular containment, rows and columns and cells are defined.
Subsequently recognized tables are validated checking if they are “permissible”
tables.

In [118], table detection is mapped to a problem of identifying table lines,
which is addressed by taking advantage of the “sparse-line” property (i.e.,
table rows are sparse in terms of text density). Line types are identied to
train labels (e.g., states in a CRF model), whereas orthographic, lexical and
layout features are considered for document layout representation. Table lines
are labeled based on a manually built-up list of possible starting keywords of
table captions. The method in [118] considers coordinate features in locating
table boundaries, which are essential to the table structure decomposition.
This method has been enhanced in [117] to deal with multi-column tables.
However, accuracy in line reconstruction is affected by the set-up of a number
of threshold parameters. The idea of emphasizing coordinate features in table
boundary detection is denitely right.

5.3 PDF Wrapping

Most of the Web wrapping approaches could easily be extended to deal with
PDF documents preliminarily converted into a semistructured format (e.g.,
HTML). Examples of PDF Wrapping approaches that use this techniques are
described in papers [51, 23, 194, 195]. But converting a PDF document into
another format is usually an imprecise task, often in terms of both formatting
and structure layouts. For example, (part of) some text lines could be mis-
aligned, bold texts could be reconstructed as two identical text blocks roughly
overlapped to each other, and so forth.

Few systems that do not need a conversion in other formats has been pro-
pose. The theoretical foundations of a method for wrapping PDF documents
were proposed in [65], followed by their publication [62] with experimental
results and their work [66]. In this method, a wrapper is dened as a set of
hierarchically nested fuzzy logic conditions.

Aumann et al. [11] describe a system for visual information extraction that
use a set of training documents for recognizing rules that allow to extract
textual fields like (section) titles, authors, publication lists. This approach is
unable to recognize and extract tables but it is interesting because proposes
a well defined PDF handling methods.

64 5 PDF Information Extraction

Authors of papers [87] have addressed the PDF wrapping problem by en-
hancing the Lixto system to deal with PDF documents. Their method borrows
some techniques from computer vision for page segmentation, i.e., dividing a
page into atomic blocks that are expected to contain one logical entity in the
document (e.g., paragraph, heading, table cell). This task exploits the pres-
ence of visual clues on the page and can be performed by adopting a top-down
(worst) or bottom-up (best) segmentation approach. Text blocks are then rep-
resented as nodes in an attributed relational graph and are connected to each
other if spatial relations (e.g., adjacency, alignment) hold. Finally, an error-
tolerant algorithm for relational subgraph matching is used to nd text blocks
that are recognized as somehow similar. This graph-based matching method
has been very recently improved in [84], where a subgraph isomorphism is
employed into an interactive wrapping system.

6

Semantic Information Extraction

Today, there is increasing demand for semantic services that allow users to
enrich and interlink existing information with ontological meta-annotations.
The envisioned semantic Web [83, 22] that would offer this functionality is a
slow development process. On the other hand, Web IE systems have started
to add support for semantic labeling and even automatic detection of such
relational information from labeled and unlabeled sources [187, 46]. Ontology-
based information extraction has recently emerged as a subfield of information
extraction. Here, ontologies play a crucial role in the information extraction
process. Ontologies are used during the information extraction process and/or
as output format. A lot of work concerning the use of ontology for extracting
meaningful information from HTML Web documents has been proposed in
literature. One of the first work in this area is [60]. Recently many approaches
appeared, some of the most relevant are described in [6, 125, 40, 123]. A
sub area of ontology named extraction ontologies propose methods to use
ontologies in IE [163, 190, 154]. At the best of our knowledge no existing
approach that deals with the problem of extracting information from PDF
documents by using ontologies has already been proposed. In this chapter
we only discuss about the typical architecture of ontology-based extraction
system. For an almost complete and very recent survey, we refer to [189]
paper.

6.1 Ontology-based Information Extraction System

As defined in a recent survey [189], an ontology-based information extrac-
tion system (OBIE system) is a system that processes unstructured or semi-
structured natural language text through a mechanism guided by ontologies to
extract certain types of information and presents the output using ontologies.
A limitation of this OBIE systems is that they consider only flat text.

OBIE systems are characterized by the following factors:

66 6 Semantic Information Extraction

• Process unstructured or semi-structured documents. Classical OBIE sys-
tems are able to consider unstructured (flat text files) or semi-structured
documents (Web pages, e.g. Wikipedia pages) and they process the con-
tained natural language text. Images, diagrams or videos, 2-dimensional
objects are not considered as input. Input was limited to natural language
text [189]. In [143] we extends the able to process also PDF document
format. We consider not only flat text but also 2-dimensional objects and
images.

• Present the output using ontologies. The important characteristic that
distinguishes OBIE systems from IE systems is the target of recognizing
ontologies concepts during the extraction process. In[189] the distinguish
characteristic is the as the o In [111] ontologies are used as input and also
as target output. Whereas there exist some OBIE systems that construct
the ontology to be used through the IE process itself instead of treating
it as an input (e.g. [192]). There exists other systems that use different
techniques in order to populate an ontology [179, 47], this task is often
known as ontology population.

• Use an IE process guided by an ontology. As defined in [189] in all OBIE
systems, the IE process is guided by the ontology to extract things such
as classes, properties and instances. This means that no new IE method
is invented but an existing one is oriented to identify the components of
an ontology. Ontology construction is generally not associated with IE, it
can be seen as an important step in the OBIE process [15].

7

Query Languages

The most common approach to data extraction is to executed by using a
special-purpose Language. Such languages are often hidden to users whereas
extraction systems allow for visually specifying (by means a graphical user in-
terface) which are the information to extract and which condition are required.
Interesting languages falls in the areas of visual languages aimed at manipu-
lating visual information, and query languages for multimedia database and
presentation.

7.1 Logic-based Query Languages

For extracting information, several logic-based (in particular Datalog-based)
languages have been defined [74, 167, 168, 155, 103, 26]. In order to extract
information from Web an information extraction function is defined. It is an
unary query which takes a Web document represented as labeled unranked
tree and returns a subset of its nodes. A wrapper is a program which imple-
ments one or several such functions, and thereby assigns unary predicates to
document tree nodes. Therefore, a wrapper is capable of return a new tree
which maintains only relevant nodes and re-labels nodes.

A well founded logic wrapping language is monadic datalog. Monadic dat-
alog is datalog having only unary intensional predicates named unary query.
A unary query is a function that selects a subset of nodes of the input DOM.
A logic-based wrapper is a set of information extraction functions represented
by a monadic datalog program. Lixto approach [17] is based on a datalog-
like language, ELog. Elog core was shown to be expressively equivalent to
monadic second-order logic over finite node-labeled trees. Monadic second-
order logic (MSO) is a second-order logic where second-order quantifiers range
over sets (i.e., unary relations). A MSO query is a MSO formula φ with one
free first-order variable. Let t be a tree and let V be the set of nodes of t,
then {n ∈ V ∣t ⊧ φ(n)}. In [74] was argued that that MSO unary queries over
trees are an appropriate expressiveness yardstick for information extraction

68 7 Query Languages

functions. MSO over trees is well-understood theory-wise and quite expressive.
It has also been used as an expressiveness yardstick for node-selecting XML
query languages. By restricting the structures considered to trees, monadic
datalog acquires a number of nice properties. XLog [167] is very closed to
Elog.

7.2 Spatial Query Languages

Languages aimed at manipulating visual information. Kong et al. presented
[102] a formalism that uses the visual appearance of Web pages in order to
extract relevant information from them. Such a formalism, named spatial
graph grammars (SGGs), extends graph grammars by incorporating spatial
notions into language constructs. SGG productions are used to describe parts
of Web pages by a graph representation. The representation includes spatial
relations of the following types: direction relations that describe an order
in the space, topological relations that express neighborhood and incidence,
and distance relations such as near and far. The system allows for extracting
page contents of interest for the user, but it is quite complex in term of both
usability and efficiency.

A recent and interesting work has been presented in [48]. In this approach
the extraction of information is driven by the spatial arrangement of the
elements in the web page (e.g., spatial relations such as “right” of or “in-
cluded in”). In order to query the spatial relations the authors have designed
a SQL-like query language, namely SRQL (Spatial Relation Query Language),
which allows one to write queries based on the visual arrangement of the web
page contents in an intuitive way. Moreover, the SRQL can also use further
attributes of the web page elements to refine the queries, thus providing a
framework where the information extraction can be performed integrating
spatial relations, visual attributes, textual content and document structure.

7.3 Multimedia Query Languages

A lot of work is available in the field of query languages for multimedia
database and presentation.

A relevant work is due to Lee et al. [108]. In this work authors discuss the
problem of storing, querying and manipulating multimedia presentations by
using a single database management system software. In this paper authors
present a graph data model where multimedia presentations are represented as
directed acyclic graphs. Each node of a presentation graph represents a media
stream. Edges depict sequential or concurrent playout of streams during the
presentation. For querying multimedia presentation graphs, authors present
three presentation graph query languages that use temporal operators Next,
Connected, and Until, and path formulas. This way path formulas can specify

7.3 Multimedia Query Languages 69

paths constructed by the nodes of a presentation graph, and content changes
among frames of streams and hierarchical relationships between a stream and
its contents.

Adah et al [2] present a framework and an algebra for creating and query-
ing multimedia interactive presentations. In the proposed framework an inter-
active presentation consists of a tree whose nodes represent ”non-interactive
presentations” (e.g., a sequence of Power Point slides, an HTML page, or a 2-
min video clip). Edges from parents to a children corresponds to an interaction
(transition between presentation). Authors define a multimedia presentation
algebra (MPA) that contains generalizations of select, project and join opera-
tions in the relational algebra. The operators allow the querying of interactive
presentation databases based on the contents of individual nodes as well as
querying based on the presentations tree structure. Existing approaches and
languages are specifically aimed at querying presentation databases or de-
scribing the layout of web pages . However, these languages are too complex
and not suitable for querying Web pages.

Part III

Information Extraction: New Approaches

The best way to predict the future is to invent it.∼ Alan Curtis Kay ∼

8

Towards a Spatial and Semantic Information
Extraction System

In this chapter is presented a reference architecture of an information ex-
traction system capable of extracting information from presentation-oriented
documents by using spatial and semantic document features. Figure 8.1 de-
picts the high-level architectural view of the reference spatial and semantic
information extraction system. Beside standard capabilities of existing IE sys-
tems (i.e. the ability to manage natural language text, navigate the Web and
create Web wrappers [18] as happens in Web IE systems, exploit knowledge
encoded in ontologies as happens in OBIE systems), the system presented
in this dissertation exploits the high level semantic relations made available
by the spatial arrangement of presentation-oriented documents. As shown in
next chapters the ability to exploit spatial features of PODs enables more
effective features that improve and simplify wrapper definition and learning
tasks. Furthermore, the system is able to manage in unified way large docu-
ments having different internal formats, and provides facilities that enable a
better interaction with users.

8.1 Architecture and Functionalities

The system takes as input presentation-oriented documents having different
internal format (i.e. HTML, PDF) and queries defined by users. It internally
represent PODs in unified way and use such a representation for computing
queries and learning extraction rules (wrappers). So the possible outputs are:
query answers, learned wrappers, information extracted from documents and
stored in structured form in a knowledge base that is automatically populated.
The high level architecture of the system consists of several linked units that
are described in the following.

The internal document representation builder creates the spatial repre-
sentation of PODs used in the system for computing queries and learning
extraction rules. This unit exploit layout engines of Web browsers and ren-
dering engines of PDF document visualization tools in order to obtain the

74 8 Towards a Spatial and Semantic Information Extraction System

Fig. 8.1. Architecture of an Information Extraction System

spatial positioning of content items in documents. The output of this unit are
the 2-Dimensional Flat document representation and the SDOM.

The wrapper generator is the unit that supports the user in the query
writing process by exploiting the spatial document representation. It gener-
ates the wrapper that answer to a specific query written by the user or creates
wrappers in unsupervised way. During the query design process this unit sup-
ports the user by parsing user queries and displaying on screen the results of
the edited query. This way the user can refine the query in order to obtain
the desired result. The user can ask this unit to learn automatically wrap-
per for data records or tables contained in Web pages or PDF documents.
Wrapper learning includes the generalization of examples. For instance, an
expression that precisely identifies a specific data item, could be generalized
replacing some elements by wildcards. So, the result is a generalized wrapper
that matches several similar data items on similarly structured pages. If the
extraction process requires the navigation of a Web site, navigation actions
required for accessing the target page (for example, hyperlink navigation and
form filling) can be automatically registered and reproduced during the wrap-
per execution. Generated wrappers are stored in the wrapper repository, this
way wrappers can be reused or executed in batch mode.

The wrapper executor is the unit that applies wrappers created by the
wrapper generator to target PODs. It executes Deep Web sites navigation ac-
tivities registered along with the wrapper, opens PDF documents, etc. The
application of the wrapper to target documents consists in the identification

8.1 Architecture and Functionalities 75

of target objects described in the wrapper, and in the generation of the struc-
tured output format.

The semantic engine is the unit of the system that enables to answers user
queries in semantic way and allows to populate ontologies. When user queries
involve concepts stored in an ontology, natural language processing, entity
recognition, and semantic analysis of the lexicon are required for computing
query results. For example, the WordNet toolkit is widely used for the En-
glish language. It groups English words into sets of synonyms (called synsets)
and provides semantic relationships between them including a taxonomy. The
ontology that is used by the system may be extended or even generated inter-
nally by an ontology generator component. Humans may assist the system in
the ontology generation process, by applying population rules or by manually
editing the ontology.Beside traditional extraction facilities from flat text pro-
vided by existing OBIE systems, the proposed information extraction system
is able to extract information by taking into account the spatial arrangement
of contents in order to identify structures like tables, and also to consider
images or other multimedia information.

The wrapper repository unit stores wrappers, navigation tasks and their
metadata. This way wrapper templates, that could use also domain knowledge,
can be reused, updated, and executed in batch mode.

It is noteworthy that because the system can carry out different goals, in
a specific wrapping process some architectural components could not be used.
Thus, for instance, when a user needs to extracts table structures, it is not
necessary to exploit the knowledge base; or if a user want to query specific
information in a web pages, automatic tasks can help the users but are not
mandatory.

The system is supplied by a visual interface that allows the user to: (i)
visualize results; (ii) define which data should be extracted from web pages,
for instance by selecting the pieces of information that are relevant and by
assigning labels to them; (iii) describe how this data should be mapped into
a structured format; (iv) improve, in graphical way, the definition of wrap-
pers. The visual interface itself can include several windows, such as: (i) a
browser window that renders PODs for the user. Thus, a user can explore the
interesting information also using visual features. For instance, s/he is able to
individuate in simply way which is the interesting data region of Deep Web
pages; (ii) a parse tree window that shows the HTML parse tree or a tree
structure obtained by a document understanding process, of the current POD
rendered by the browser. A user can click on a node of the parse tree, and the
system immediately highlights the corresponding part of the example page
in the browser, and vice versa. Thus, is more simple for a user to generate,
check and correct errors even considering the tree representation. (iii) a con-
trol window that allows the user to view and control the overall progress of the
wrapper design process and to input textual data (e.g. labels); (iv) a program
window that displays the wrapper program constructed so far and allows the

76 8 Towards a Spatial and Semantic Information Extraction System

user to further adjust or correct the program, also showing the results in the
original visualized document;

In the following chapters of this dissertation approaches, techniques, and
algorithms that allows for building units of the system presented above are
described in detail.

9

Document Model for PODs

Presentation-Oriented Documents (PODs) have a very different internal rep-
resentation. The internal encoding of HTML documents is based on the tree
structure, whereas PDF documents are described by a content stream, which
contains a sequence of graphical and textual objects located at precise po-
sitions within the document pages that express only where contents have
to be visualized after rendering. Moreover, the internal document models of
PODs are inadequate to support the spatial and/or semantic querying, as
described in Sections 2.1 and 2.2. For these reasons, it is very difficult to ex-
tract relevant content from such various sources. Querying data from PODs,
for purposes such as information extraction, requires the consideration of tree
structures as well as the consideration of spatial relationships between laid out
elements. The information contained in the internal structure could, if cor-
rectly processed, be combined with spatial information and used to improve
the robustness of information extraction and querying of PODs.

This chapter define a data model that allow for exploiting visual cues
of presentation-oriented documents. The Spatial Document Object Model
(SDOM) is able to describe visual objects arrangement when the input docu-
ment is (i) without any semi structure, e.g. flat text documents, scanned im-
ages, PDF documents; (ii) supplied with some type of structured information,
like HTML documents. Firstly, the used spatial algebra used for representing
spatial relations is described. The subsequent Section of this chapter presents
a 2-dimensional flat document model, which allows for obtaining simply spa-
tial information. Then, the logical structure encoded in HTML documents
or that can be obtained by segmenting in bottom up way PDF documents
is considered. Finally, the logical structure of PODs is extended by spatial
relations and ordering information among elements. The obtained model is
thought in order to have a lossless representation, make available spatial and
pre-existing internal format information. Data model presented in this chapter
were described partially in IJAIT 2009 [143] and in VLDB 2010 [145].

78 9 Document Model for PODs

9.1 Qualitative Spatial Relations

This section aims at presenting spatial models and basic ideas which the
Information Extractions approaches are founded on. Tables and textual areas
recognition by human readers is a visual process based on spatial relationships
existing among content items. In such a process alignment among groups of
content items is visually observed in order to recognize text areas and tables.

PODs can be seen as a Cartesian plane on which cues are arranged. More
complex relations among cues can be recognized reproducing the human be-
havior also only looking at the visualization areas where such information are
placed. In the following we introduce the minimum bounding rectangle of any
information recognized in a document, and a formal model used to represent
relations among such rectangles.

Definition 9.1. Let n be a visual clue of a presentation-oriented document,
the minimum bounding rectangle (MBR) of n is the minimal rectangle r that
surrounds the contents of n and has sides parallel to the axes (x and y) of the
Cartesian plane (see Fig. 9.1). The function mbr(n) returns the rectangle r
assigned to the visual cue n. We call rx and ry the segments that are obtained
as the projection of r on the x-axis and the y-axis respectively. Then, each side
of the rectangle is represented by the segments (r−x, r+x) and (r−y , r+y), where r−x
(resp. r−y) denote the infimum on the x-axis (y-axis) and r+x (resp. r+y) denote
the supremum on the x-axis (y-axis) of the segments rx and ry.

Fig. 9.1. An example of MBR

The function mbr that returns the minimum bounding rectangle is imple-
mented by the layout engine, for instance a PDF visualizer or a browser.

For representing the SDOM we exploit rectangle algebra (RA) [13] as a
very fine-grained and expressive model that allows for computations of spatial
relations as well as algebraic optimizations. However, the rectangle algebra is

9.1 Qualitative Spatial Relations 79

often too fine grained and verbose, for instance to state querying primitives.
Therefore we introduce more intuitive models rectangular cardinal relations
(RCR) [132] and topological relations [79] for spatial relationships. Moreover,
RCRs and topological relations are mapped into RA such that we can choice
to store all RA relationships in the SDOM and exploiting the mapping the
actual navigation of the SDOM can be performed by means simple axes.

Rectangle Algebra

The rectangle algebra model (RA) has been introduced in [13, 14], which
allows for representing all possible relations between rectangles the sides of
which are parallel to the axes of some orthogonal basis in a 2-dimensional
Euclidean space. RA is a straightforward extension of the standard model
for temporal reasoning, the Interval Algebra (IA) [8], to the 2-dimensional
case. IA models the relative position between pairs of segments by a set of 13
atomic relations (Rint), namely before (b), meet (m), overlap (o), start (s),
during (d), finish (f), together with theirs inverses {bi, mi, oi, si, di, fi}
and the relation equal (e). For a pictorial representation of IA relations see
Table 9.1.Let s and s1 be two segments the IA relation s b s1 represents that
the segment s is preceded by the segment s1.

Relation Symbol Meaning Inverse
before b s1!"""# !"""#s bi

meets m s1!"""#!"""#s mi

overlaps o s1!"""#!"""#s oi

starts s s1!"#!"""#s si

during d s1!"#!""""#s di

finish f s1!"#!"""#s fi

equals e s1!"""#!"""#s e

Table 9.1. IA Relations.

Similarly, the domain considered in RA is the set of rectangles REC whose
sides are parallel to the axes (x and y) of a Cartesian plane, as happens
for MBRs in Definition 9.1. RA models the relative spatial relations between
rectangles in REC. Let a and b be two rectangles a Basic RA relation between
them is a pair (ρx, ρy) of IA relations in Rint: a (ρx, ρy) b. Such a relation
holds iff the IA relations ax ρx bx and ay ρy by hold for segments that are
obtained as projections of rectangle sides along x (i.e. ax, bx) and y (i.e. ay, by)
respectively. The expressiveness of RA covers the modeling of all qualitative
spatial relations between two MBRs. For a pictorial representation of RA
relations see Fig. 9.2.The set of possible Basic RA is called Rrec and it is
given combining Rint relation on x and y-axes. Thus Rrec = R2

int contains
132 = 169 elements as shown in Figure 9.2. Furthermore, since the RA model

80 9 Document Model for PODs

is an algebra, it holds many important properties (e.g. invertibility) that allow
optimized query evaluation.

Since for each visual cue of a presentation oriented document is associated
a MBR by means of the function mbr, the Basic RA relations between couple
of nodes can be used to model spatial relations in the SDOM.

Fig. 9.2. Pictorial Representation of the RA relations

Rectangular Cardinal Relations

In the Rectangular Cardinal Relations model (RCR), proposed in [132], di-
rectional relations hold between rectangles in REC. Let r1 and r2 be two
rectangles in REC. RCRs are expressed by analyzing the 9 regions (cardi-
nal tiles) formed, as shown in Figure 9.3, by the projections of the sides

9.1 Qualitative Spatial Relations 81

of the reference rectangle r1. We are interested in how the reference rect-
angle r1 is related to r2, which we call resulting rectangle, through a car-
dinal relation. By considering cardinal tiles atomic RCRs are tradition-
ally expressed by means of the 9 symbols contained in the following set
RA

card = {B, S, SW, W, NW, N, NE, E, SE}. The symbol B denotes
the central tile and the relation belongs to. Other symbols in RA

card corre-
spond to the peripheral tiles and denote the eight RCRs South, SouthWest,
West, NorthWest, North, NorthEast, East, and SouthEast.

Fig. 9.3. Cardinal tiles

Given r1, r2 ∈ REC and R ∈ RA
card, the expression r1 R r2 means that r2 lies

entirely on the tile R of r1. When a rectangle r2 holds contemporary in more
tiles w.r.t. a reference rectangle r1, then we call the relation that links r2 to r1

a multi-tile relation and it is represented by R1 ∶ ⋅ ⋅ ⋅ ∶ Rk where R1, ...,Rk are
atomic RCRs. Atomic and multi-tile relations are called Basic Relations. For
instance, by considering Figure 9.3 the RCR between the reference rectangle
r1 and the resulting rectangle r2 is expressed as r1 E:NE r2. This rectangular
cardinal relation means that the rectangle r2 lies on east and north-east of
the rectangle r1. In the RCR model, the set Rcard of all basic RCRs between
any couple of MBRs contains 36 elements [132] as shown in Table 9.2.

Disjunctions of Rectangular Cardinal Relations

In qualitative spatial reasoning based on the RCR model it is common to
express uncertain spatial relations, between couples of rectangles in REC, by
means of disjunctions of basic RCRs that generate the power set 2Rcard . Let
δ = {δ1, . . . , δn} be an element in 2Rcard we write the corresponding disjunctive
RCR as δ = δ1∣ . . . ∣δn. So let r1, r2 ∈ REC, r1 δ r2 is satisfied iff r1δ1r2∨r1δ2r2∨⋅ ⋅ ⋅ ∨ r1δnr2.

Example 9.2. By considering Figure 9.4a and 9.4b the relation r1 N: NW:NE |
B:W:NW:N:NE:E r2 satisfies both the spatial arrangements because the basic
relation r1 N:NW:NE r2 holds for Figure 9.4a and r1 B:W:NW:N:NE:E r2 holds
for Figure 9.4b.

82 9 Document Model for PODs

RCR := RA-relations
1 B := { d, s, f, e} × { d, s, f, e }
2 S := { d, s, f, e} × { m, b }
3 N := { d, s, f, e} × { mi, bi }
4 W := { m, b} × { d, s, f, e }
5 E := { mi, bi} × { d, s, f, e }
6 NW := { m, b} × { mi, bi }
7 NE := { mi, bi} × { mi, bi }
8 SW := { m, b} × { m, b }
9 SE := { mi, bi} × { m, b }
10 B:S := { d, s, f, e } × { fi, o }
11 B:N := { d, s, f, e } × { si, oi }
12 B:W := { fi, o } × { d, s, f, e }
13 B:E := { si, oi } × { d, s, f, e}
14 S:SW := { fi, o } × { m, b }
15 . N:NW := { fi, o } × { mi, bi }
16 S:SE := { si, oi } × { m, b }
17 N:NE := { si, oi } × { mi, bi }
18 W:SW := { m, b } × { fi, o }
19 W:NW := { m, b } × { si, oi }
20 E:SE := { mi, bi } × { fi, o }
21 E:NE := { mi, bi } × { si, oi }
22 B:W:E := { di } × { d, s, f, e }
23 B:S:N := { d, s, f, e } × { di }
24 S:SW:SE := { di } × { m, b }
25 NW:N:NE := { di } × { mi, bi }
26 SW:W:NW := { m, b } × { di }
27 NE:E:SE := { mi, bi } × { di }
28 B:S:E:SE := { si, oi } × { fi, o }
29 B:N:NE:E := { si, oi } × { si, oi }
30 B:S:SW:W := { fi, o } × { fi, o }
31 B:W:NW:N := { fi, o } × { si, oi }
32 B:S:SW:W:NW:N := { fi, o } × { di }
33 B:S:SE:E:NE:N := { si, oi } × { di }
34 B:S:SW:W:E:SE := { di } × { fi, o }
35 B:W:NW:N:NE:E := { di } × { si, oi }
36 U := {(di,di)}

Table 9.2. RCRs as cartesian products of RA Relations

9.1 Qualitative Spatial Relations 83

Fig. 9.4. (a) r1 N:NW:NE r2. (b) r1 B:W:NW:N:NE:E r2.

Topological Relations

Qualitative topological relations among objects in a 2-dimensional Euclid-
ian space are described in the region connection calculus (RCC) model and
its variants. Two of the most known RCC models are RCC5, which is de-
picted in Figure 9.5 and RCC8 [157]. In this paper we introduce 3 topolog-
ical relations, inspired by the RCC5 model, namely: contained (CD), con-
tainer (CR), and equivalent (EQ). We denote the set of topological relation as
Rtopo = {CD,CR,EQ}. Let r1 and r2 two MBRs, r1 CD r2, r1 CR r2, and
r1 EQ r2 means that the rectangle r2 is contained in r1, is the container of
r1, and is equivalent to r1 respectively.

Fig. 9.5. RCC5 model

Example 9.3. By considering Figure 9.5, we have r1 CD r2 (RCC5 relation
covers), r1 CR r2 (RCC5 relation covered by), and r1 EQ r2 (RCC5 relation
equal).

It is worthwhile nothing that the three topological relations in Rtopo satisfy
the transitive closure property. Let r1, r2, r3 be three rectangles and τ ∈ Rtopo

be the considered spatial relation, if r1 τ r2 and r2 τ r3 hold, then r1 τ r3 is
also satisfied.

Top. rel. := RA-relations
37 EQ := { (e,e) }
38 CR := {{ fi, di, e, si } × { si, di, e, fi }} - {(e,e)}
39 CD := {{ d, s, f, e } × { d, s, f, e }} - {(e,e)}

Table 9.3. Topological relations mapped into RA Relations

84 9 Document Model for PODs

Mapping

The correspondence between RCRs and RA relations and between topological
and RA relations can be computed by means of the mapping function defined
as follows.

Definition 9.4. Let Rcard, Rtopo and Rrec be the set of basic (atomic and con-
junctive) RCRs, topological and RA relations respectively, then the mapping
function µ ∶ 2Rcard ∪Rtopo → 2Rrec that maps RCRs and topological relations
in terms of RA relations is:

µ(R) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

as in table 9.2 if R ∈ Rcard

as in table 9.3 if R ∈ Rtopo

µ(R1) ∪ ... ∪ µ(Rk) if R = R1∣...∣Rk

Example 9.5. The relation NW reported in table 9.2 has µ(NW) = {m,b} ×{mi, bi} i.e. µ(NW) = {(m,mi), (m,b), (b,mi), (b, bi)}.
A pictorial representation of the Mapping Function µ (Def. 9.4) is shown

in Fig. 9.2.

9.2 2-Dimensional Flat Representation

Broadly speaking, the main idea which this model is based on is that POD
can be considered as a Cartesian plane on which are arranged MBRs, which
contains content items (CIs).

A CI is an atomic piece of content (i.e. an images, an alphanumeric string
written with unique font features, a graphical or typographical element like a
line etc.) visualized in a rectangular area of the plane.

So the spatial document model of a POD consists in a set of CIs which
are formally defined as follows.

Definition 9.6. Let T be a set of type names arranged in a taxonomy, a
content item is a 3-tuple of the form:

CI = ⟨τ, σ,α⟩
where:

• τ ∈ T is the type of the content item (such as image, text, number, per-
centage, currency, etc).

• σ is the value of the content item (such as a string, the URL of an image,
etc).

• α = ⟨r−x, r−y , r+x, r+y ⟩ is an MBR that surround the contents σ (see Figure
9.6), where (r−x, r−y) and (r+x, r+y) are the Cartesian coordinates of the two
opposite vertices (top-left and bottom-right).

9.2 2-Dimensional Flat Representation 85

!

!

!

!

! !

!"
#! !"

$!

!%
$!

!%
#!

Fig. 9.6. A page of Ebay Web Site with highlighted some CIs

Figures 9.6 and 2.6 show some CIs bounded by rectangles having sides
parallel to the axes of the Cartesian plane (that is, MBRs).

Presentation-oriented documents are visualized by layout engines embed-
ded in web browsers (e.g. Netscape Gecko for Firefox1) and PDF visualizers
(e.g. Adobe Acrobat Reader2). The main feature of layout engines and PDF
visualizers is that they consider the area of the screen aimed at visualizing
a document, as a 2-dimensional Cartesian plane on which they arrange CIs.
In particular, Layout Engines of Web Browsers assign to each node in the
DOM a visualization area on the plane computed by applying rendering rules.
Rendering rules take into account the DOM structure and cascade style sheets
(CSS) [180] that equip the web document. It is worthwhile noting that the
appearance of a Web page depends from visualization conditions, such as
browser windows size and font dimension. Therefore, the model is produced
in function of the rendering condition. Whereas, PDF visualizers interpret
parameters encoded in the PDF stream [4] and assign a visualization area
on the plane to each content item. In a PDF document, visualization areas
are defined during document editing and encoded in the PDF Stream (i.e.
sequence of instructions in the PDF language) when the document is stored
[4]. So, different PDF visualizers interpret the PDF Stream in a standard way
and give to documents the same appearance.

In order to compute the 2-D flat model, we exploit the coordinates of
the MBRs assigned by the layout engine to each visualized DOM node and
parameters encoded in the PDF stream, for HTML and PDF format respec-

1 https://developer.mozilla.org/en/Gecko
2 http://www.adobe.com/products/reader/

86 9 Document Model for PODs

tively. For better identify CIs of PDF documents, the strategy described in
the Section 10.1 can be used. Besides spatial coordinate, to support the com-
posability of the complex full-text query, strings contained in the CIs, may
be processed. Such processing consists in: (i) tokenization of strings contained
in final CIs, and the acquisition, for each token, of its position and linguistic
features (i.e. POS-Tag and lemma) by means of a NLP tool; (ii) the matching
of dictionary pattern on obtained strings; (iii) the extraction of presentation
features (e.g. font style, type, color, size, link) for each CI, directly acquired
by using node attributes or PDF metadata.

The 2-D flat model enable to reproduce the human behavior. In fact, tables
and textual areas recognition by human readers is a visual process based on
spatial relationships existing among content items. In such a process alignment
among groups of content items is visually observed in order to recognize text
areas and tables. Section 10.1 shows as the 2-D model flat can be exploited in
order to implement a system, named PDF-TREX, the allows for analyzing,
recognizing and extracting information from PDF files. PDF-TREX starts
from an initial set of basic elements, and by using a heuristic algorithm that
considers only their spatial features, aligns and groups them in bottom-up
way in order to identify text areas and tabular arrangements of information.
Moreover, Section 11.2 and Chapters 12, rather than concentrate only on
the documents physical structure, consider also the textual content. So, they
enables to express 2-dimensional composition rules that permit to recognize
and extract information and even ontology objects contained in PODs also
when information is arranged in tabular form.

9.3 Spatial Document Model – SDOM

Querying data from Web documents, such as from other presentation-oriented
formats such as PDF, requires a versatile machinery to abstract from presen-
tation structure into conceptual relationships. Germane to such abstraction is
the transformation into structural languages such as XML, indeed quite often
such XML languages are used as presentation formats, e.g. HTML 5. Based
on these structural languages, one may use query formalisms such as XPath
and XQuery in order to turn presentation structure into meaningful relational
or logical representations.

While, the internal representation of HTML documents in terms of DOM
represents an abstraction from presentation structure of documents into con-
ceptual relations, the intrinsic print/visual oriented nature of PDF encoding
poses many issues in defining “ad hoc” IE approaches. Techniques of docu-
ment understanding can be applied in order to detects a tree structure that
facilitate further processing, and model an equivalent structure like for HTML
documents. The obtained tree will be correspond to a HTML DOM, where
root and elements node will be corresponds to composite CIs (CCIs) that is
defined in the following, whereas leaf nodes are simple CIs.

9.3 Spatial Document Model – SDOM 87

Definition 9.7. A Composite Content Item (CCI) is a 2-tuple of the form:

CCI = ⟨Γ,α⟩
where:

• Γ is a non empty set of CIs.
• α = ⟨r−x, r−y , r+x, r+y ⟩ is an MBR such that:

– r−x =min (r−xγ
∣γ ∈ Γ ∧ γ = (τ, σ, r−xγ

, r−yγ
, r+xγ

, r+yγ
))

– r−y =min (r−yγ
∣γ ∈ Γ ∧ γ = (τ, σ, r−xγ

, r−yγ
, r+xγ

, r+yγ
))

– r+x =max (r+xγ
∣γ ∈ Γ ∧ γ = (τ, σ, r−xγ

, r−yγ
, r+xγ

, r+yγ
))

– r+y =max (r+yγ
∣γ ∈ Γ ∧ γ = (τ, σ, r−xγ

, r−yγ
, r+xγ

, r+yγ
))

In this section we do not bind the spatial document model to any document
understanding techniques for the following motivations:

• The tree representation does not allow us to express all the relationships
we might need to locate wrapping instances, so we want not include a
priori a subset of relations in this section. Nevertheless, in next chapter,
we will propose a simple tree structure for PDF documents, which may
help users to query documents in intuitive way and enable automatic table
recognition process.

• It is crucial that the document understanding process detects the desired
structures. However, document understanding is inherently an inaccurate
process, and this approach lacks robustness.

As shown in Section 2.1, the tree-based structures of XML are often not
convenient and sometimes even not expressive enough in order to represent
the presentation layout and its corresponding conceptual relationships. The
layout often indicates the semantics of data items but arising on real-world
web pages, such spatial arrangements are rarely explicit and frequently hidden
in complex nestings of layout elements. Therefore, we enrich the tree docu-
ment model by visual/spatial relations among visualized elements.

The Spatial DOM (SDOM) is a XML document model (DOM) rep-
resented by a node labeled sibling ordered tree [112, 76, 124] enriched by: (i)
basic spatial rectangle algebra (RA) relations [14] existing between pairs of
nodes visualized on screen.(ii) spatial total orders among nodes.

Definition 9.8. SDOM is a node labeled sibling ordered tree [76, 112, 124]
enriched by RA relations. It is described by the following 7-tuple:

SDOM = ⟨V, root, (labela)a∈Σ ,R⇓,R⇒,A, fs⟩
where:

• V is the set of labeled DOM nodes. V = Vv ∪ Vnv, where Vv is the set
of nodes visualized on screen, and Vnv is the set of nodes that are not
visualized.

88 9 Document Model for PODs

• root is a unary relation, which contains the root of the tree.
• label is a unary relation, such that labela(n) is true if n is labeled a in

the tree.
• R⇓ is the firstchild relation. Let n and n′ be two nodes in V , nR⇓n′ holds

iff n′ is the first child of n.
• R⇒ is the nextsibling relation. Let n and n′ be two nodes in V , nR⇒n′

holds iff n′ is the next sibling of n.
• A ⊆ Vv × Vv is the set of arcs that represent spatial relations between pairs

of nodes visualized on screen.
• Let Rrec be the set of RA relations, fs ∶ A → Rrec is the function that

assigns to each element in A a RA relation in Rrec. So, let n and n′ be
two nodes in Vv, we have a = (n,n′) ∈ A holds iff mbr(n) fs(a) mbr(n′).

Fig. 9.7. A SDOM Fragment of the Web Page Portion in Fig. 11.1

Fig. 9.7 depicts the SDOM for a portion in Fig. 9.1 of web page shown
in Fig. 2.2. Solid arrows represent the classical DOM tree structure that is
equivalent to the DOM depicted in Fig. 2.3. Dashed labeled arcs represent
the RA relations between pairs of nodes. For instance, the arc (d, d) between
nodes ul and li represents the RA relation mbr(ul)(d, d)mbr(li), i.e. both
IA relations mbr(ul)x d mbr(li)x and mbr(ul)y d mbr(li)y hold, and means
that the rectangle mbr(li) is spatially contained in the rectangle mbr(ul). In
order to improve readability of the figure, spatial relations are represented
only for a subset of nodes.

The SDOM model provides orders among nodes defined as follows.

Definition 9.9. Document order relations for a SDOM are:

9.3 Spatial Document Model – SDOM 89

• the document total order <doc, (as already defined in Def. 2.2). Let u,w ∈ V
be two nodes, then u <doc w iff the opening tag of u precedes the opening
tag of v in the (well-formed version of the) document.

• the document directional total orders ⩽↑ (from south), ⩽→ (from west), ⩽↓
(from north), and ⩽← (from east). Let u,w ∈ Vv be two nodes with MBRs
a =mbr(u) and b =mbr(w) respectively, we have u < w (or u = w) iff:
– a−y < b−y (a−y = b−y) for ⩽↑,
– a−x < b−x (a−x = b−x) for ⩽→,
– a+y > b+y (a+y = b+y) for ⩽↓,
– a+x > b+x (a+x = b+x) for ⩽←.

• the containment partial order ⩽t. Let u,w ∈ Vv be two nodes with a =
mbr(u) and b = mbr(w) respectively, we have u ≤ w iff a−x ⩽ b−x ⩽ b+x ⩽ a+x
and a−y ⩽ b−y ⩽ b+y ⩽ a+y . In particular, u = w if a−x = b−x, b+x = a+x, a−y = b−y , and
b+y = a+y .

In the following we introduce the concept of layering adopted for comput-
ing spatial order among nodes of a given node set.

Definition 9.10. Let Γ ⊆ Vv be a set of SDOM nodes, for each spatial order⩽z, where ⩽z∈ {⩽↑,⩽→,⩽↓,⩽←,⩽t}, the spatial layering of nodes in Γ w.r.t. ⩽z

is an ordered list of non-empty lists L⩽z(Γ) = {l1⩽z
,⋯, lh⩽z

}, where let u,w be
two nodes in Γ :

• if u = w w.r.t. ⩽z, then u,w ∈ li⩽z
for some i⩽z ∈ {1,⋯, h⩽z}.

• if u < w w.r.t. ⩽z, then u ∈ li⩽z
and w ∈ lj⩽z

where i⩽z and j⩽z are the
smallest numbers such that i⩽z , j⩽z ∈ {1,⋯, h⩽z} and i⩽z < j⩽z .

Example 9.11. Considering Fig. 5 and the spatial order ⩽↑, we obtain the lay-
ering L⩽↑({n1, . . . , n6}) = {l1⩽↑ , l2⩽↑ , l3⩽↑} where l1⩽↑ = {n1}, l2⩽↑ = {n2, n4, n6},
and l3⩽↑ = {n3, n5}. The layering corresponds to the following directional total
order from south: n1 ⩽↑ n2 =↑ n4 =↑ n6 ⩽↑ n3 =↑ n5.

In order to facilitate the definition of SXPath language semantics we intro-
duce the concepts of spatial index function and last index function as follows.

Definition 9.12. Let Γ ⊆ Vv be a set of SDOM nodes, and let L⩽z(Γ) ={l1⩽z
, ⋯, lh⩽z

} be the spatial layering of nodes in Γ w.r.t. ⩽z, where ⩽z∈ {⩽↑
,⩽→,⩽↓,⩽←,⩽t}. The spatial index function pidx⩽z(u,Γ) returns the index of the layer which the node u belongs to (where 1 is
the smallest index). The last directional index function plast⩽z(Γ) returns the
index h⩽z .

The SDOM makes machine processable the high level semantics expressed
in the spatial arrangement of content items of presentation-oriented docu-
ments. Then SDOM allows the definition of XML query languages that con-
sider tree structures as well as spatial relationship.

90 9 Document Model for PODs

mbr(n2)

mbr(n3) mbr(n5)

mbr(n6)

From East
to West

 From South to North

From North to SouthFrom West
to East

mbr(n1)

mbr(n4)

Fig. 9.8. Ordering directions

SDOM Implementation

In this section it is briefly described the processing strategies, depicted in Fig-
ure 9.9, that has been implemented for obtaining the SDOM of presentation-
oriented documents. First, the classical hierarchical representation (DOM)
augmented with spatial coordinates, i.e. for each DOM node its MBR is
created. We call this structure Positional DOM (PDOM). Then, the SDOM
Builder computes RA relations nodes and defines nodes directional orders
giving a structured representation to visual cues planned by web designers,
so the SDOM is obtained. The subprocess the allow us to obtain the PDOM
is related to the type of the internal structure of the presentation oriented
document.

For documents encoded in HTML the SDOM Builder takes as input the
DOM and the visualization areas respectively produced by the HTML parser
and the Layout Engine embedded in the browser. The Layout Engine of the
browser for creating the visual representation uses the DOM structure that
encode content items to display, and the Style Sheets that encode the visual
appearance of content items planned by web designers. So, visualization areas
hold the coordinates that define the MBRs in which DOM nodes are visualized
on screen. It is worthwhile noting that for web documents the SDOM Builder
produces the SDOM real time at each rendering of the page (e.g. browser
window resizing). The appearance of a web page, in fact, depends from vi-
sualization conditions (e.g. screen resolution, dimensions of the visualization
area assigned to the browser on the screen). Thus, for each web page, each
layout engine (i.e. the web browser), and in each visualization condition there
is a unique corresponding SDOM.

In a PDF document, visualization areas are defined during document edit-
ing and encoded in the PDF Stream (i.e. sequence of instructions in the PDF
language) when the document is stored [4]. So, different PDF visualizers inter-
pret the PDF Stream in a standard way and give to documents the same ap-
pearance. The PDF Harvester analyzes the PDF stream and identifies content
items and their visualization parameters. (i.e. coordinates of the rectangles in
which content items are visualized on screen). Then, a technique of document
analysis and understanding is apply to obtain an ad-hoc PDOM.

9.3 Spatial Document Model – SDOM 91

Fig. 9.9. The SDOM building process

The implemented classes accomplish the goal of maintain the complete
compatibility with W3C specification. In fact, classes implements interfaces
(indicated with “I” as start symbol in the Figure 9.10) that agree with
W3C specifications. A PDOM is a Document (DOM) having its nodes of
PositionalNode type, which subsumes the types HTMLPositionalNode and
PDFPositionalNode

Fig. 9.10. Class Diagram of Document Model Implementation

92 9 Document Model for PODs

9.4 Discussion

In this section have been presented the 2-Dimensional Flat Model and the Spa-
tial Document Model (SDOM). The first model represents a POD as a set of
2-Dimensional content items. The second model extends the first one by means
of rectangle algebra relations between pairs of content items. Furthermore, the
SDOM extends the standard DOM model allowing to use navigation facilities
characteristic for this kind of document representation. The main feature of
such models is that they allow for representing in a unified way presentation-
oriented documents having different internal encodings. This feature enable
the definition of languages and automatic wrapper learning techniques (pre-
sented in next chapters) that are able to query PODs and learn wrappers from
them independently from the internal encodings. In particular, the ability to
represent the geometric structure of PODs enables to define query languages
more intuitive for human users and wrapper induction techniques that ex-
ploit the spatial arrangement of content items for inferring tables and groups
of data records presented in PODs. Motivations that draw the definition of
such document models is that designers of PODs tend to take the properties
of rendering engines for more important than a sound conceptual modeling of
document elements. In fact, designers use the spatial arrangement of content
items as a way for better expressing the semantics of presentation-oriented
document contents. Hence, from a conceptual point of view presented models
make machine processable the high level semantics expressed in the spatial
arrangement of content items of PODs. The extension of the spatial document
model by further semantic annotations of content items, and further semantic
relation between pairs of content items, could allow for defining object extrac-
tion methods for PODs independent from the structure of documents. Roughly
speaking, the exploitation of spatial and semantic relation represented in an
extended version of the SDOM could allow to define novel approaches (that
go beyond those described in this thesis) aimed at recognizing a single or mul-
tiple instances of a given class of objects in documents having very different
layouts.

10

Automatic Information Extraction

This Chapter describes two approaches that allow for recognizing and extract-
ing in automatic way valuable information and visual structures (like tables
and data records) from PODs.

The first approach, implemented in the PDF-REX system, allow for per-
forming document analysis of PDF documents. Given page of a PDF docu-
ments, it performs bottom-up segmentation on the text and construct a tree
DOM structure that enable document understanding steps. In particular, the
heuristic technique for table recognition and extraction from PDF documents
is presented. The system uses only document-generic knowledge and is de-
signed to work on an any PDF documents. Moreover, the approach proposed
works directly on the geometric structure of PDF documents, thus avoiding
to miss relevant information. Empirical evaluation has been performed on a
dataset of 100 PDF documents containing complex tables mixed with text. A
detailed analysis of type of errors is performed and results are compared to
the state of art system [88] that performs automatically table extraction from
PDF files. This approach was first published at ICDAR 2009 [140].

The second approach is aimed at automatically extracting information
from Deep Web sites. The SDOM representation is exploited in order to auto-
matically recognize repetitive data records in Deep Web pages, and learn the
wrapper. In particular, such a process exploits the internal structure as well as
the spatial regularities and allow for obtaining better results compared to the
existing approaches. The first prototype has been implemented in a system
named SILA (Spatial Instance Learning Approach) [146]. Empirical evalua-
tion on 100 Deep Web sites (which consider also web pages used in DEPTA
[198] and STAVIES [150] papers) has been performed for testing its perfor-
mances and comparing results with two systems presented in literature, which
also are aimed at automatically recognizing repetitive records. This approach
was first presented as a ICAR-CNR technical report in 2010 [146].

94 10 Automatic Information Extraction

10.1 PDF-TREX: Understanding PDF Documents

This section describes the technique used in PDF-TREX system to create a
DOM representation for PDF documents. The PDF-TREX approach consid-
ers a PDF document as a Cartesian plane on which are placed MBRs (see
Definition 9.1). The PDF-TREX approach reproduces human behavior. Ta-
bles and textual areas recognition by human readers, in fact, is a visual process
based on spatial relationships existing among content elements. In such a pro-
cess alignment among groups of content elements is visually observed in order
to recognize text areas and tables. So, for instance, a group of characters can be
interpreted as a word when it is separated from other groups of characters by
a given space, a group of words constitutes a text line or a text block depend-
ing from spatial words distribution. Moreover, a group of lines or one or more
text blocks can constitute a text paragraph or a table depending from their
mutual spatial positioning. Similarly, the PDF-TREX approach starts from
an initial set of CIs, and by using a heuristic algorithm aligns and groups them
in bottom-up way in order to identify text areas and tabular arrangements
of information. For instance, in Figure 10.4 are depicted the Cartesian plane
and final MBRs obtained from the PDF document shown in Figure 10.61.
Figure 10.4 also highlights the box β = ⟨”$ Tornado Warning”,1,32,4,33⟩.
It is noteworthy that coordinates assigned to MBRs preserve their relative-
positions. An additional output of the approach is a DOM. That is a set of
node with associate a specific MBR, which can be organized in hierarchical
way. Each node corresponds to: (i) a Content Item (CI) (see Definition 9.6),
where it is a leaf node; (ii) a Composite CI (CCI) (see Definition 9.7), where
it is the root or an element node.

The PDF-TREX approach is based on an heuristic algorithm, which steps
are described in the following:

1. CI harvesting. By accessing the PDF content stream of a document, initial
CIs are identified and acquired with their spatial coordinates (MBRs) (see
Figure 10.2) and, if available, with presentation features (e.g. font style,
type, color, size, link).

2. Space distribution analysis. This is a fundamental step that allows to
identify how MBRs are distributed in a page. The algorithm analyzes the
horizontal and vertical space distribution among MBRs of a page, and
defines horizontal and vertical distance threshold values based also on
local features (e.g. blank size depends on used font size).

3. Lines building. In this step the algorithm checks the horizontal coordinates
of MBRs and identifies those that can be considered belonging at the same
line.

4. Segments building and lines tagging. MBRs belonging to the same line are
clustered in order to obtain segments, by considering distance thresholds.
When a line contains only one segment it is tagged as "text line" if the

1 Obtained from http://english.wunderground.com

10.1 PDF-TREX: Understanding PDF Documents 95

Fig. 10.1. The Input PDF Document

segment cover more that half line length, as "unknown line" otherwise.
When a line contains more that one segment it is tagged as "table line".

5. Areas building. The algorithm analyzes the sequence of lines and identifies
possible text and table areas as sequences respectively of text lines and
table lines, eventually with inserted unknown lines. When images that
cover a significant number of lines are identified an image zone is defined.

6. Blocks and Rows building. Segments contained in an areas are clustered
until vertical distance is below the related threshold value. Segments em-
braced in a cluster are arranged in a blocks (Figure 10.3) which coordinates
depend from those of contained segments. Blocks are represented by boxes
which strings are obtained by concatenating strings (preserving visualiza-
tion order) of segments contained in the block. In order to identify table
rows, shown in Figure 10.4, the same approach used for constructing lines
is applied to blocks.

7. Columns Building. When segments and blocks belonging to a table area
are overlapped in vertical direction, then they are assigned to a table col-
umn. When a segment or a block overlaps more then one other segment or
block, it is assigned to two different columns. This trick allows to recognize
column headers spanning on multiple columns.

96 10 Automatic Information Extraction

8. Tables and paragraph building. In this step the algorithm crosses identified
table rows and columns for defining the grid of table cells (Figure 10.4).
Paragraph are identified merging lines belonging to text areas.

Fig. 10.2. Initial CIs obtained from the input in Fig. 10.1

Fig. 10.3. Clusters obtained from the input in Fig. 10.1

Fig. 10.4. Cartesian plane and final MBRs obtained from the input in Fig. 10.1

PDF-TREX takes a PDF document as input. The PDF document is ana-
lyzed in order to construct its 2-dimensional flat representation (see Section
9.2) and its DOM.

Besides taking as input a PDF document, PDF-TREX is able to take
dictionaries of regular expressions representing specific named entities, and
also to interact with NLP tools. As described in Section 9.2, strings contained
in the CIs, may be furthermore processed. Such processing consists in: (i)
tokenization of strings contained in final CIs, and the acquisition, for each

10.1 PDF-TREX: Understanding PDF Documents 97

Fig. 10.5. Logical architecture of Types of PDF DOM

token, of its position and linguistic features (i.e. POS-Tag and lemma) by
means of a NLP tool; (ii) the matching of dictionary patterns on obtained
strings; (iii) the extraction of presentation features (e.g. font style, type, color,
size, link) for each CI, directly acquired by using PDF metadata. In this way,
complex full-text query is enabled.

Likewise for HTML documents, PDF DOM can be extended by spatial
relations and orders in order to create the SDOM, as described in Section 9.3.

In the following the heuristic approach aimed at recognizing and extracting
tables, is defined in detail.

10.1.1 Recognizing and Extracting Tables

Tables are widely used in digital documents as an essential structuring compo-
nent to concisely convey content. A relevant topic in document understanding
and analysis is indeed regarded as table detection and reconstruction.

98 10 Automatic Information Extraction

Definition 10.1. A Table is data structure to organize the tuples of a rela-
tion: {⟨valueix, valueiy, . . . ⟩, ⟨valuejx, valuejy, . . . ⟩, . . .} in a structured way.

A table represents an arrangement of numbers, words, symbols or items of
any kind, in columns and rows. Tables are visual oriented arrangements of
information widely used in many different domains as a ways to present and
communicate complex information to human readers. They allow humans to
rapidly and simply read and understand relation among different set of in-
formation, to understand trends and the behavior of a given quantity. For
example, companies’ financial statements contain a lot of tables regarding
companies’ assets, liabilities, and net equity in a given point in time; scientific
documents present experimental results in a synthetic way by using tables;
furthermore, in decision support systems tables (generated by OLAP tools),
are the principal way to present information needed for decision making.

Tables are an effective way to show values, making comparisons but when
represented in unstructured documents, they are well suited for human users
but need automatic extraction for store them in structured way. Automat-
ically extracting information contained in tables and storing them in struc-
tured machine-readable form is of paramount importance in many applica-
tion fields. Tables have many different layouts and are mostly contained in
semi-structured and unstructured documents having various internal encod-
ings (e.g. HTML, PDF, flat text). More specifically, table contained in docu-
ment encoded by the portable document format (PDF) are particularly diffi-
cult to recognize and extract because such a document format is completely
without structures and their internal encoding needs to be interpreted. For
these reasons table recognition and extraction is a very challenging problem
that poses many issues to researchers and practitioners in defining effective
approaches.

As described in Section 5.2 a significant body of work concerning ap-
proaches and systems for table recognition and extraction (TREX) is currently
available in literature. However, currently there is not a winning approach.
An important limitation of TREX, as a “per se” research field, is the lack of
available standard datasets that hinders objective and complete comparisons
among existing approaches. Furthermore, TREX approaches for PDF docu-
ments suffer from the following limitations: (i) there is not a clear definition
of exploited document features; (ii) handled objects are somehow high level
document structures (e.g. text fragments) and graphical feature but is not
clear how they are obtained and combined.

PDF-TREX is an heuristic approach for table recognition and extraction
from PDF documents. The scope of the approach is to recognize tables con-
tained in PDF documents as a 2-dimensional grid on a Cartesian plane and
extract them as a set of cells equipped by 2-dimensional coordinates. The
PDF-TREX approach considers a PDF document as a Cartesian plane on
which are placed content elements contained in MBRs. The heuristics starts

10.1 PDF-TREX: Understanding PDF Documents 99

from an initial set of basic content elements and aligns and groups them, in
bottom-up way by considering only their spatial features, in order to identify
tabular arrangements of information. So, the approach does not requires: (i)
linguistic or domain knowledge; (ii) graphical metadata and ruling lines; (iii)
predefined table layouts. To better show how the approach works, a running
example is considered. The output obtained by PDF-TREX can be serialized
in a preferred document format (e.g. excel, XML) or in a structured form (like
tuples Datalog). Recognized tables can be further processed for understanding
table contents and improving information extraction from PDF documents.
For instance, in [139] is described a reasoning method that exploits a logic-
based representation of extracted cells and domain knowledge for storing table
contents as instances of a knowledge base.

Preliminary Definitions

Let be α1 = ⟨xt
1, y

t
1, x

b
1, y

b
1⟩ and α2 = ⟨xt

2, y
t
2, x

b
2, y

b
2⟩ two MBRs, the following

definitions hold.

Definition 10.2. α1 and α2 are said to be horizontally overlapped when by
projecting α1 from left to right along the Y -axis, α2 is contained in (or inter-
sect) such a projection. The following inequalities formally describe horizon-
tal overlapping conditions: (i) yt

2 ≤ yt
1 ≤ yb

2 ≤ yb
1; (ii) yt

1 ≤ yt
2 ≤ yb

1 ≤ yb
2; (iii)

yt
1 ≤ yt

2 ≤ yb
2 ≤ yb

1; (iv) yt
2 ≤ yt

1 ≤ yb
1 ≤ yb

2.

Definition 10.3. Let δ = min((yb
1 − yt

1), (yb
2 − yt

2)) The horizontal overlap-
ping ratio between α1 and α2 is respectively one of the following expres-
sions (depending from overlapping conditions presented in definition 3): (i)
ρh(α1, α2) = yb

2−yt
1

δ ; (ii) ρh(α1, α2) = yb
1−yt

2
δ ; (iii) ρh(α1, α2) = yb

2−yt
2

δ ; (iv)

ρh(α1, α2) = yb
1−yt

1
δ .

Definition 10.4. When α1 and α2 are horizontally overlapped their horizon-
tal distance is: (i) Dh(α1, α2) = (xt

2 − xb
1), if xb

1 < xt
2; (ii) Dh(α1, α2) =(xt

1 − xb
2), if xb

2 < xt
1. When α1 and α2 are not horizontally overlapped

Dh(α1, α2) =∞.

Vertically overlapped elements, vertical overlapping ratio and vertical dis-
tance are defined in analogous way.

Heuristic Algorithm

The heuristic algorithm is organized in eight steps elements harvesting, lines
building, lines tagging, areas building, rows building, columns building, tables
building and tables extraction. Their behavior is described in the following by
using as running example the PDF page2 shown in Figure 10.6.
2 The page has been obtained from a balance sheet of an Italian company

100 10 Automatic Information Extraction

Fig. 10.6. The Running Example Page

Elements Harvesting.

In the harvesting step initial basic that have the form described in Definition
Defintion 9.6, are identified by accessing the PDF document, and then ac-
quired and stored. In basic CIs: (i) the string σ is a characters sequence that
do not contain blank chars; (ii) coordinates of MBRs are assigned, starting
from positional information contained in the PDF document, so that there
are no couples of basic CIs that have both horizontal and vertical overlap-

10.1 PDF-TREX: Understanding PDF Documents 101

ping ratio greater than 0. In Figure 10.7 are depicted basic CIs (graphically
represented by rectangular box) acquired from a section of the input page.
The figure also shows a visualization area (which box is highlighted by bold
border) and the Cartesian plane in which its coordinates are defined. In the
harvesting step horizontal and vertical distance threshold values (hT and vT)
are computed. These values, used in next steps, are evaluated by analyzing
white space sizes and horizontal and vertical distance distributions among
visualization areas.

Fig. 10.7. Basic Content Items

Lines Building.

In this step lines, having the form described in the following definition, are
built.

Definition 10.5. A line is a 2-tuple λ = ⟨E,α⟩ in which: (i) E is a set of CIs;
(ii) horizontal coordinates of α correspond respectively with the minimum and
the maximum horizontal coordinates of a page; (iii) vertical coordinates of α
are assigned so that do not exist lines horizontally overlapped.

Basic CIs are assigned to a line when their horizontal overlapping ratio
is over a given threshold3. It is noteworthy that CIs assigned to lines are
obtained from basic CIs by adapting their vertical coordinates to those of
the line that contain them. Figure 10.8 depicts lines (highlighted by dashed
border) obtained in a section of the running example page.

Segments Building and Lines Tagging.

Vertical sequences of lines can generate either text paragraphs or tables. The
lines tagging step assigns to each line a tag: text line (TxL), table line (TbL),
unknown line (UnL). In order to tag lines, CIs contained in a line are grouped
in segments having the form defined in the following.
3 In experiments horizontal overlapping ratio has been set to 50%.

102 10 Automatic Information Extraction

Fig. 10.8. Elements, Segments, Lines, Text and Table Areas

Definition 10.6. A segment is a 2-tuple θ = ⟨E,α⟩ where: (i) E = {εi ∣ εi =⟨σi, αi⟩ ∧ i = 1, ..., n ∧ αi = ⟨xt
i, y

t
i , x

b
i , y

b
i ⟩} is a set of CIs; (ii) coordinates of α

are: xt =minn
i=1 xt

i, yt =minn
i=1 yt

i , xb =maxn
i=1 xb

i , yb =maxn
i=1 yb

i .

To construct segments an agglomerative hierarchical clustering algorithm
[97] is used. The algorithm works line by line. Initially each CI of a line is
assigned to a cluster, then the algorithm agglomerates clusters until horizontal
distance is lower than hT . Final clusters represent segments.

A line that contains only one segment is tagged either as text line when
the segment spans over half horizontal line length, or as unknown line other-
wise. Whereas, a line is tagged as table line when it contains more than one
segment. Figure 10.8 depicts segments (highlighted by rectangles having gray
background) and line tags obtained in a section of the running example page.

Table Areas Building.

This step aims at analyzing sequences of lines in order to identify table areas
defined as shown in the following.

Definition 10.7. A table area is a 2-tuple Ta = ⟨L,α⟩, where: (i) L is an
ordered list of consecutive lines L = {li ∣ li = ⟨Ei, αi⟩ ∧ i = 1, ..., n ∧ αi =⟨xt

i, y
t
i , x

b
i , y

b
i ⟩} tagged only as table lines or unknown lines; (ii) vertical coor-

dinates of α are: yt =minn
i=1 yt

i , yb =maxn
i=1 yb

i (iii) horizontal coordinates (xt

and xb) of α are set by using horizontal coordinates of a MBR of any line in
L.

10.1 PDF-TREX: Understanding PDF Documents 103

Block and Row Building.

Row building step aims at constructing table rows defined as shown in the
following.

Definition 10.8. A row is a 2-tuple r = ⟨L,α⟩ where: (i) L is a subset of con-
tiguous lines contained in a table area; (ii) horizontal coordinates of α are set
by using horizontal coordinates of related table area; (iii) vertical coordinates
of α are assigned so that all rows of a table area are contiguous.

In order to recognize lines belonging to a same table row, blocks, defined
as shown in the following, are used.
Definition 10. A block is a 2-tuple β = ⟨S,α⟩ in which: (i) S = {si ∣ si =⟨E,αi⟩ ∧ i = 1, ..., n ∧ αi = ⟨xt

i, y
t
i , x

b
i , y

b
i ⟩} is a set of segments; (ii) coordinates

of α are: xt =minn
i=1 xt

i, yt =minn
i=1 yt

i , xb =maxn
i=1 xb

i , yb =maxn
i=1 yb

i .
To construct blocks the same agglomerative hierarchical clustering algo-

rithm is adopted for constructing segments is used. In this case, segments are
the initial clusters, the algorithm agglomerates these clusters until vertical
distance is lower than vT . Final clusters represent needed blocks. Normally
each line constitutes a row, but when there is a block that embraces segments
of a set of consecutive lines and only one line in the set is tagged as TbL
whereas the others are tagged as UnL, the set of line is grouped in a single
row. This behavior is very useful for recognizing rows which headers span on
multiple lines as a unique logical structure. In Figure 10.9 rows obtained in
the running example page (highlighted by dotted lines) are shown.

Column Building.

Column building step aims at creating table columns defined as shown in the
following.

Definition 10.9. A column is a 2-tuple c = ⟨S,α⟩ in which: (i) S is a set
of segments; (ii) horizontal coordinates of α are assigned so that all columns
of a table area are contiguous; (iii) vertical coordinates of α are set by using
vertical coordinates of related table area.

Columns are built by using vertical overlapping ratio among segments
and distances among columns contained in table areas. Segments are assigned
to the same column when they are vertically overlapped. When a segment
overlaps more columns it represents a column headers spanning on multiple
columns. When there are columns composed by only one segment (for exam-
ple column headers not overlapped with column values) horizontal distances
are considered. When the distance between such a column and a consecutive
column containing more than one segment is below the horizontal threshold
hT the two columns are merged in a new single column. Figure 10.9 depicts
(by using dotted lines) columns obtained in the running example table areas.

104 10 Automatic Information Extraction

Table Building.

This step generates final tables as sets of 2-dimensional cells defined as follows.

Definition 10.10. A cell is a 2-tuple c = ⟨σc, α⟩ where: (i) α the is obtained
by crossing a row and a column; (ii) let E be the set of elements embraced in
α, σc is the string obtained by concatenating strings contained in E preserving
visualization order from left to right and top to bottom.

Figure 10.9 shows final cells grid. It is worthwhile noting that the heuristic
algorithm is able to recognize cells containing multi line row headers, null
values and column headers spanning on multi column as highlighted in Figure
10.9 by using bold border.

Extraction.

This step produces the output of the PDF-TREX approach by serializing
in XML table cells recognized in previous step. The output can be further
processed for fitting table layouts, understanding table contents, enabling in-
formation extraction and document annotation.

<TABLE>
<ROWS>
<ROW>

<COORDINATE x_tl=..., y_tl=..., x_br=..., y_br=... \>
...

</ROW>
</ROWS>
<COLUMNS>
...

<\COLUMNS>
<CELLS>
...

<\CELLS>
</TABLE>

10.1.2 Experiments

Evaluation Measures

To measure the goodness of data extracted have been used Precision (P)
and Recall (R), two widely used metrics for evaluating the correctness of
a pattern recognition algorithm. So, Recall measures the ability of extract
relevant material. Precision measures the ability to not extract non relevant
material. They can be defined formally on 2X2 contingency table shown in
Table 10.1.

Formally, Precision and Recall can be defined as follows:

10.1 PDF-TREX: Understanding PDF Documents 105

Fig. 10.9. Blocks, Rows, Columns and the Final Cells Grid

Conditions
True False

True TP (true positive) FP (false positive)
Prediction

False FN (false negative) TN (truenegative)

Table 10.1. Precision and Recall

106 10 Automatic Information Extraction

P = #correctlyRetrievedDataItems

#RetrievedDataItems
= TP

TP + FP

R = #correctlyRetrievedDataItems

#dataItemsInDataSet
= TP

TP + FN

Often, there is an inverse relationship between precision and recall, where
it is possible to increase one at the cost of reducing the other. Thus, also in this
dissertation, both are combined into a single measure, such as the F-measure
(F), which is the weighted harmonic mean of precision and recall.

F = 2PR

P +R

Experimental Results

PDF-TREX performances are evaluated by using a dataset composed by 100
pages containing tables mix to text, coming from different domains and writ-
ten in different languages (e.g. companies’ financial statements, economic re-
ports). Experiments, carried out on a dataset composed of tables contained
in documents coming from different domains, shows that the approach is well
performing in recognizing table cells. This dataset 4 aimed at contributing
to the definition of standard datasets in the TREX field. Indeed, it allowed
to perform comparative experiments with a state-of-art tool. In the paper
[86] Hassan compared its system with our old version on partial dataset (70
instead of 100 documents). The Table 10.2 reports the precision, recall and
F-measure calculated for two version of the presented PDF-TREX system,
and compares their results with the Hassan [88] system. The old version of
the PDF-TREX approach (v 0.1) considered a table as a perfect matrix, and
tried to duplicate cell value in presence of spanning columns; instead in the
new version of PDF-TREX (v 0.2), this procedure has been replaced with
a more simple, but more effective step necessary to recognize the spanning
column.

0 Tables Cells
P R F-Measure P R F-Measure

PDF-TREX v0.2 63.78% 96.73% 76.87% 90.41% 99.64% 94.80%
PDF-TREX v0.1 60.15% 95.48% 73.80% 83.66% 98.08% 90.30%

Hassan-tool 63.68% 88.07% 73.92% 84.35% 93.74% 88.80%

Table 10.2. Comparison of precision and recall results for both table areas and
cells

4 Dataset available at http://staff.icar.cnr.it/ruffolo/trex/dataset.zip

10.1 PDF-TREX: Understanding PDF Documents 107

Documents have been analyzed by hand in order to identify table areas
and table cells existing within them. Then results automatically obtained
by the systems have been compared to those manually computed by using
precision and recall measures. Considering the choices made by Hassan in
paper [86], in order to compute results, the average of the total numbers
of detected cells directly over the complete dataset is considered. With this
method, documents containing more information (more table areas/cells) were
also given more weighting in the final result. The table shows that the new
version of PDF-TREX (v 0.2) is better performing and both hither precision
and recall.

Evaluation Method

This relatively simple model that consider TP, FP, TN, FN have to consider
various types of errors that can occur. Therefore, in this section how the errors
are evaluated is described. This methods takes in account the choices done by
Hassan in the paper [86] and try to better explain some error conditions and
evaluation formula.

Cells errors

In a table we can identify two types of cells: cell containing data and empty
cell that does not contain data. These cell, if recognized correctly, are classi-
fied as Found Correctly Data and Found Correctly Blank respectively.

Splitting Error. Such type of error occurs when a cell is wrongly split into
multiple cells. We have two different forms of splitting error:

• A cell is split but not its content, so this kind of split add new empty
cells. We obtain a split full cell that is the cell that contains the data, and
additional empty cells that are classified as void blank. Figures 10.10(b)
show an example of full split obtained taken as input the Figure 10.10(a):
a new whole column is created, but the data within them are not split.
The cells highlighted in green are classified as split full, while Cells in
blue are classified as void blank.

• A cell and also its content are split. In this case we call the original cell
as split data, while the additional cell, which also contains a data portion
are classified as void data.

• A cell spanning several rows or several column is wrongly split. In this
case, the splitting is classified in according to cell contents, as shown in
previous cases. Figure 10.11(b) show the output obtained from the real
table in Figure 10.11(a) which contains horizontal and vertical spanning
cells. split full and void blank related to the horizontal spanning cell
are highlighted in green and in blue respectively. While, split data and
void data related to the vertical spanning cell are highlighted in purple
and in orange respectively.

108 10 Automatic Information Extraction

(a)

(b)

Fig. 10.10. Full Split Error: (a) Input table; (b) output table.

(a)

(b)

Fig. 10.11. Split Spanning Error: (a) Input table; (b) output table.

Merging Error. Such type of error occurs when two or more cells are
wrongly merged. The merging error can take place for a pair of cells (see Fig-
ures 10.12(a) and 10.12(b) that represent the input and output table respec-
tively), or also for entire rows or columns, as shown in Figures 10.13(b) w.r.t.
the input table in Figure 10.13(b). cells, as shown in Figures 10.12(a),10.12(b)
where the merging error has been highlighted in green.

Sometimes, merging and splitting errors occurs together. The horizon-
tal error has greater priority then the vertical errors. For instance, Figure
10.14(b), which refers to input Figure 10.14(a), shows a split error of the first
and fourth column (horizontal splitting), and a merge error of the third row
with the fourth (vertical merging). In this case, split has greater priority.

Table errors

In the following possible errors that can occur in the recognition process of
the entire table are classified. A table recognized correctly will be named as

10.1 PDF-TREX: Understanding PDF Documents 109

(a)

(b)

Fig. 10.12. Full Split Error: (a) Input table; (b) output table.

(a)

(b)

Fig. 10.13. Whole Rows and Multi-columns Merging Error: (a) Input table; (b)
output table.

Found Correctly.

Additional lines and columns. This type of error corresponds to add rows
or columns outside of the input table. In this case the table is classified as
Merged Into Surroundings, while the additional cells are classified as Extra
Data if the cell contains data, or as Extra Blank if the additional cell is empty.
The Figure 10.15(b) shows an example where the table in Figure 10.15(a)
is classified as merged into surroundings because a row is added, and the
cells highlighted in red are classified as extra data.

Wrongly data added to boundary cells. This error occur when data is
added to a cell along the edge of the table, but not extra cells are added to the
table). The table is considered Found Correctly, but the additional cells are
classified as Merged External. Figure 10.16(b) show an example where inside

110 10 Automatic Information Extraction

(a)

(b)

Fig. 10.14. Splitting and Merging Errors occur in a same table: (a) Input table;
(b) output table.

(a)

(b)

Fig. 10.15. Additional lines and columns: (a) Input table; (b) output table.

the table, in particular in the first cell, there is an additional data w.r.t. the
table in Figure 10.16(b). So this table is classified found correctly, while
the cell highlighted in red will be classified as merged external.

Rows and Columns Not Recognized. When rows or columns that be-
long to the table are not extracted, the table is classified as Partially Found
Table, cells belonging to the extracted table are normally classified, while
the cells belonging to the rows or columns that have not been extracted are
classified as Not Recognized. In Figures 10.17(b) the table will classified as
partially found table because the first has been not detected, cells within
it are classified normally, whereas the cells of the first line are classified as not
recognized.

10.1 PDF-TREX: Understanding PDF Documents 111

(a)

(b)

Fig. 10.16. Wrongly data added to boundary cells (a) Input table; (b) output table.

(a)

(b)

Fig. 10.17. Rows and Columns Not Recognized: (a) Input table; (b) output table.

Not Detected Table. If a table is not detected, it will be classified as Not
Found, and the cells belonging to the table are also classified as Not Found.

Split Table Error. There are two cases of split of tables:

• When a table is split into two or more tables, the first table is classi-
fied as Split Table, while the other tables as Extra Table. An example is
given is figure 10.18, where the input table is split in five tables, then first

112 10 Automatic Information Extraction

is classified as split table, whereas the following four tables as extra
tables.

• When the table is split but only across the header cells, whereas all data
cells remain together. In this case the table containing all data is classi-
fied as Data Cells Found, and the additional tables as Extra Table. For
instance, the input table 10.20 is split in the header (Figure 10.21) and in
data table (Figure 10.22).

Fig. 10.18. Input Table

Fig. 10.19. The table 10.18 split in five tables

Merge Table Error. When two or more separated tables are merged, the
first table is classified as Merged, while the other tables are classified as Not
recognized. All cells of the resulting tables are classified as normal. Figure
10.23(b) show an example of merged table in which two tables, shown in
Figure 10.23(a), are merged into one. The part highlighted in green and in

10.1 PDF-TREX: Understanding PDF Documents 113

Fig. 10.20. An input table having a header not closely to data cells

Fig. 10.21. Header of the table 10.20

Fig. 10.22. Data cells of the table 10.20

red corresponds to the first and second table respectively.

Nonexistent Table. Another mistake is extract tables that do not exist.
These tables are classified as Table Not Exist, the cell within this table are
classified as Cells Not Exist. Figure 10.24(b) represent a table recognized from
Figure 10.24(a) where does not appear any table.

Classifications for Table Areas and Cells

In order to compute precision and recalls, the following mapping between TP,
FP, TN, FN and the type of table and cells is defined in the following. In
order to penalize partial correctly found tables and cells and maintain a value
between [0,1], the numbers of: (i) cells in the dataset table (DD), (ii) cells
that are extracted but that do not belong to the table (WE), (iii) cells that
are extracted (EE) and (iv) cells that are not extracted (NE) are considered
during the computation.

114 10 Automatic Information Extraction

(a)

(b)

Fig. 10.23. Merged Table Error: (a) Input tables; (b) output table.

Found correctly TP
Data cells found TP

Split table TP
Extra table FP

Merged into surroundings TP
Merged TP

Not recognized FN
Not found FN

Partially table TP = DD−NE
DD

Table not exist FP

Table 10.3. Classifications for table areas

10.1 PDF-TREX: Understanding PDF Documents 115

(a)

(b)

Fig. 10.24. (a) Input PDF document; (b) “nonexistent” recognized table.

Found correctly data TP
Found correctly blank TP

Split full TP
Split data TP = DD

EE

Split blank TP
Void data FP
Void blank FP
Extra data FP
Extra blank FP

Merged TP = EE
DD

Cells not found FN
Cells not exist FP

Merged external TP = DD
WE+DD

Table 10.4. Classifications for cells

116 10 Automatic Information Extraction

10.2 SILA: Extracting Data Records from Deep Web
Sites

In this section is presented the Spatial Instance Learning Approach (SILA),
a wrapper induction method that exploits the spatial arrangement of Deep
Web page produced by layout engines of web browsers. SILA is founded on:
(i) a spatial similarity function that takes into account visual cues available
after document rendering that help human readers to make sense of page
contents independently from the internal structure of the web page; (ii) the
definition of a very efficient and effective wrapper induction algorithm based
only on hierarchical clustering that make no use of the internal structure of
web pages. SILA analyzes the SDOM of Deep Web pages, introduced in Sec-
tion 9.3, and learns wrappers that allow for extracting information from Web
pages and storing them in structured form. Main innovations proposed by
SILA are: (i) the direct exploitation of the structure of layouted page without
using intermediate algorithms that interpret the spatial representation of the
page;(ii) the ability to identify all data records of a Deep Web page indepen-
dently from spatial patterns adopted for arranging the contents of deep web
pages. This way SILA allow for recognizing data records in a wide variety of
deep web sites. In the following are given motivations that draw the defini-
tion of the SILA wrapper induction method and then are shown: (i) the novel
spatial similarity measure between nodes of a web page represented by the
spatial document model; (ii) the data regions and data records identification
algorithms. Finally, experimental results obtained from a dataset of 100 Deep
Web pages are given and discussed.

Motivations

Web designers plan web pages contents in order to provide visual patterns
that help human readers to make sense of document contents. This aspect is
particularly evident in Deep Web pages [122], where designers always arrange
data records and data items with visual regularity to meet the reading habits
of humans. Figure 9.6 shows a characteristic Deep Web page in which are
contained a set of repetitive records. All data records are generated through
a query on a database in the back-end of the web site. Data items of the
data records (i.e. attributes of the corresponding tuples in the database) are
arranged by using the same layout.

Existing wrapper induction approaches (e.g. [37, 198]) have exploited reg-
ularities in the underlying document structures, which led to such similar lay-
out, to translate such information into relational or logical structures. How-
ever, surveying a large number of real (deep) web pages, we have observed
that the document structure of current Web pages has become more compli-
cated than ever implying a large conceptual gap between document structure
and layout structure. In particular, we discovered that data records can be

10.2 SILA: Extracting Data Records from Deep Web Sites 117

internally represented by different HTML tree structures. More in detail we
discovered that data records are organized by the following four arrangement:

• standard when a data record is identified by a parent node in SDOM that
contains all other nodes representing record items. In this case data items
are all child of a single SDOM node.

• flat when in the SDOM data records are spread in multiple nodes that
contain only portions of the data records (e.g. a single data item). In this
case there is no a parent nodes that groups all data items belonging to a
single record. Wrapper induction for this kind of data records arrangement
is very difficult.

• nested when data records are organized in groups each having a parent
node. In this case the are nodes in the SDOM that contain multiple data
records.

• flat nested when nodes of the SDOM contain other nodes that, in turn,
contain pieces of final records. This is the most difficult case, because there
are no nodes that contain a complete data records, but the are nodes that
contain multiple portion of many data records.

Such kind of arrangements are mede very difficult for existing wrapper
induction approaches (e.g. [75, 198]) to infer the regularity of the structure of
Deep Web pages [31] by only analyzing the intricate tag structure. Hence, the
effectiveness of existing wrapper induction methods suffers from the require-
ment to analyze HTML documents with increasing structural complexity. At
the contrary human readers can exploit visual patterns that they recognize on
the screen. In particular a human reader can relate information on the page in
Fig. 9.6 by considering the spatial arrangement of layouted elements. He can
interpret the spatial proximity of images and nearby strings as a correspond-
ing aggregation of information, namely as the complete record describing the
details of a product and one of its photos. So the SILA approach exploits
visual patterns, instead of DOM structures, for inferring web wrappers.

Spatial Similarity

The main idea which the spatial similarity is founded on is that two nodes are
spatially similar if they contain a set of syntactic similar leaf nodes arranged
in a similar way. Two nodes are syntactically similar if they have the same
name (function name()) and a shared set of attributes. In order to formally
define spatial similarity we define the spatial context as follows.

Definition 10.11. The spatial context of a node is the a set of 3-tuples of
the form ⟨u,w, r⟩ where u, and w are leaf nodes in Vv and r is the rectangle
algebra relation between u and w.

The function spatialContext ∶ Vv → 2Vv×Vv×RA computes the spatial con-
text of n. The spatial similarity between two SDOM nodes n1 and n2 is
computed by the Algorithm 2, where the function synSimilarity 3 computes
the syntactic similarity between two nodes.

118 10 Automatic Information Extraction

Algorithm 2: spatialSimilarity
Input : Two nodes n1, and n2 and threshold λ
Output: Spatial similarity between n1, and n2 in [0,1]
l1 ∶= getLeafs(n1);1
l2 ∶= getLeafs(n2);2
if ∣l1∣ = 0 ∨ ∣l2∣ = 0 then3

return 0 ;4
end5
if ∣l1∣ = 1 ∧ ∣l2∣ = 1 then6

return synSimilarity(getFirst(l1),getFirst(l2));7
end8
e′ ∶= spatialContext(l1);9
e′′ ∶= spatialContext(l2);10

if ∣e′∣ > ∣e′′∣ then11

swap(e’,e”);12
end13

maxCardinality ∶= ∣e′′∣;14
s ∶= ∅;15

foreach ⟨src′, dest′, ra′⟩ ∈ e′ do16
foreach ⟨src′′, dest′′, ra′′⟩ ∈ e′′ do17

if synSimilarity(src’,src”) ≥ λ ∧18
synSimilarity(dest’,dest”) ≥ λ ∧
ra′ = ra′′ then

s ∶= s⋃{src′}⋃{dest′};19

e′′ ∶= e′′ − ⟨src′′, dest′′, ra′′⟩;20
break;21

end22
end23

end24

return ∣SET ∣
maxCardinality ;25

Algorithm 3: synSimilarity
Input : Two nodes n1, n2
Output: The syntactic similarity between n1, n2

if name(n1) ≠ name(n2) then return 0;1
a1 ∶= attributes(n1);2
a2 ∶= attributes(n2);3
maxCard ∶=max (∣a1∣ , ∣a2∣);4
if maxCard = 0 then return 1;5
SET ∶= a1⋂a2;6

return ∣SET ∣
maxCard ;7

10.2.1 The SILA Algorithm

The Algorithm 4 implements the SILA wrapper induction method. The algo-
rithm takes in input a the SDOM representation od a Deep Web page and
returns a set of data records with aligned data items. In instruction 1, the
algorithm evaluates all possible data regions in a Web page by the procedure
getDataRegions. The instruction 2 computes the data region having the great-
est area. By instruction 3 data regions similar to the greatest data region are
computed by means of the procedure findSimilarRegion. instruction 4 gets

10.2 SILA: Extracting Data Records from Deep Web Sites 119

data record contained in all data regions identified in the Web page. Finally,
instruction 5 returns aligned data items present in all recognized data records.

Algorithm 4: SILA
Input : A SDOM
Output: Data Records with Aligned Data Items RECs

REGs ∶= getDataRegions(getRoot(DOC),ε);1
REG ∶= maximalDataRegion(REGs, µ);2
REGs′ ∶= findSimilarRegions(REG,REGs);3
RECs ∶= getDataRecords(REGs’);4
return getDataItems(RECs);5

The Algorithm 5 (getDataRegions) computes a list of all possible data
regions. In instruction 1 the algorithm gets all children node of a node n.
Instruction 2 computes a data region by means of the computeDR procedure
that takes in input a parent node n and all its children. Instructions 4, 6
perform a depth-first search along the containment tree in the SDOM in order
to find all possible data regions.

Algorithm 5: getDataRegions
Input : A node n and a similarity threshold ε
Output: All the possible Data Region REGs in n

children ∶= getChildrenOf(n);1
REG ∶= computeDR(children,n, ε);2
REGs ∶= {REG};3
foreach n′ ∈ children do4

REGs ∶= REGs ⋃ getDataRegions(n’)5
end6
return REGs;7

The Algorithm 6 (computeDR) evaluate if a node n contains a data region
and return it if it exists. The Algorithm takes in input a node, the set of
its children nodes and a spatial similarity threshold. The threshold has been
experimentally tested in thousand Depp Web pages. In instruction 2 the al-
gorithm computes in SN , groups of similar nodes (procedure clusterize) by
using the single linkage clustering strategy and the spatial similarity measure
defined in Algorithm 2. By instruction 4 the algorithm heuristically filters
clusters that contain a number of nodes 30% less than the average number of
nodes in all clusters. In instruction 5 the algorithm rearranges (procedure 7)
clusters in order to build a new group of dummy nodes each representing a
data record. Dummy nodes are introduced in order to represent final records
or set of records by a single parent node when the spatial arrangement of
nodes is nested or flat nested. In the standard spatial arrangement of data
records dummy nodes coincide with the parent node that contain all data

120 10 Automatic Information Extraction

items of a record. By instructions 8-22 the algorithm performs a search for
discovering nested, flat and flat nested record structures.

Algorithm 6: computeDR
Input : A node n, the set S of its children nodes, and a similarity threshold ε
Output: A Data Region REG

REG ∶= ∅;1
SN ∶= clusterize(S,ε);2
if SN ≠ ∅ then3

SN ∶= filter(SN);4
dummyNodes ∶= regroup(REC);5
dummyNodesSize ∶= ∣dummyNodes∣;6
done ∶= false;7
while ¬done do8

list ∶= ∅;9
foreach node ∈ dummyNodes do10

list ∶= list⋃ getGrandChildrenOf(node);11
end12
SN ′ ∶= clusterize(list,ε);13
tmpDummyNodes ∶= regroup(SN’);14
SN ′′ ∶= clusterize(tmpDummyNodes,ε);15
if ∣SN ′′∣ = 1 ∧ (∣tmpDummyNodes∣ > dummyNodesSize) then16

dummyNodesSize ∶= ∣tmpDummyNodes∣;17
dummyNodes ∶= tmpDummyNodes;18

else19
done ∶= true;20

end21
end22
REG.REC ∶= dummyNodes;23
REG.NODE ∶= n;24

end25
return REG;26

The Algorithm 7 (regroup) computes dummy nodes by regrouping nodes
belonging to different clusters of similar nodes. In instruction 1-3, for each
cluster c, a spatial ordering among nodes is built on the base of node positions
on the web page. In particular, nodes are sort from top to bottom and from left
to right. In instruction 4 the algorithm spatially orders clusters in the set C on
the base of the spatial position of the top-left nodes. More in detail, clusters
are sort from top to bottom and from left to right (considering only the top
left nodes). Instruction 5 computes the seed cluster, that is, the cluster having
the greatest number of nodes. Instructions 8-13 create a dummy nodes, assign
to the dummy nodes all remaining nodes as children and computes the MBR
of the dummy nodes by considering all MBRs of children (instruction 12). In
instructions 14-18 for each dummy node, closest nodes are found and assigned
to it (closeness is computed by considering the distance between the center
of the MBR of the dummy node and the center of the MBR of the analyzed
nodes). This way the dummy node will be parent of a set of close nodes that
constitute the data record. The MBR of a dummy node is recomputed by
considering MBRs of all children nodes.

10.2 SILA: Extracting Data Records from Deep Web Sites 121

Algorithm 7: regroup
Input : A set of cluster C
Output: The set of cluster C containing regrouped Data Records

foreach c ∈ C do1
sortIntraCluster(c);2

end3
sortInterCluster(C);4
seed ∶= findBiggestCluster(C);5
C ∶= C − biggestCluster;6
V ∶= ∅;7
foreach n ∈ seed do8

dummyNode ∶= createPosNode();9
setParent(n,dummyNode);10
V ∶= V ⋃{dummyNode};11
reAllocateMBR(dummyNode);12

end13
foreach c ∈ C do14

foreach n ∈ c do15
findClosestNode(cn,V);16

/* la seguente unisce due nodi in termini di area
e li assegna ad un unico nodo padre fittizio.*/

setParent(n,cn);
reAllocateMBR(cn);

end17
end18
C ∶= {V };19
return C;20

The Algorithm 8 (maximalDataRegion) computes the region that has the
greatest area (among those computed by getDataRegion).

Algorithm 8: maximalDataRegion
Input : A List of Data Regions REGs and a threshold number of records µ
Output: A Data Region REG with the biggest area and at least µ records inside

sumax ∶= 0;1
BESTreg ∶= null;2
foreach REG ∈ REGs do3

CL ∶= getFirst(REG);4
if ∣CL∣ ≥ µ then5

sum ∶= 0;6
foreach NODE ∈ CL do7

sum ∶= sum + area(mbr(NODE));8
end9
if sum > sumax then10

sumax ∶= sum;11
BESTreg ∶= REG;12

end13
end14

end15
return BESTreg;16

122 10 Automatic Information Extraction

Algorithm 9: getDataRecords
Input : A set of Data Region REGIONS
Output: A set of records RECs containing data items. Every record in RECs is an array

of nodes

RECs ∶= ∅;1
foreach REG ∈ REGIONS do2

foreach ROOT ∈ REG.REC do3
createanarray V ;4
extract images , textnodesandput themintoV ;5
RECs ∶= RECs⋃V ;6

end7
end8
return C;9

Algorithm 10: getDataItems
Input : A set of regrouped records RECs where every record is an array of items, every

item is a positional node
Output: Aligned records in a n*m matrix of positional nodes, n is the number of records

retrieved in the web page, every row contains almost m items belonging to a
record

//find therecordR with thehighestnumber of iteminside;1
RECs ∶= RECs −R;2
for i← 1 to ∣R∣ do3

M1,i ∶= Ri;4
end5
for i← 1 to ∣RECs∣ do6

R′ ∶= RECsi;7

for j ← 1 to ∣R′∣ do8
N1 ∶= R′j ;9
for k ← 1 to ∣R∣ do10

N2 ∶= Rk;11
SS ∶= synSimilarity(N1,N2);12
ED ∶= 1 − editDist(valueOf(N1),valueOf(N2));13

TEMPj,k ∶= SS+DD
2 ;14

end15
end16

for j ← 1 to ∣R′∣ do17 ⟨maxj ,maxk⟩ ∶= nextMax(TEMP);18
Mi+1,maxk

∶= R′maxj
;19

end20
end21
return M ;22

10.2.2 Experiments

Evaluation Measures

Like for the experiments performed for PDF-TREX tool (see Section 10.1.2),
to measure the goodness of data extracted have been used Precision (P), Recall
(R), and F-Measures (F). A dataset of 100 heterogenous HTML documents
is used. The structure of the data records may be flat (Figure 10.25), nested
(Figure 10.26) or standard (Figure 10.27).

10.2 SILA: Extracting Data Records from Deep Web Sites 123

 Capitolo 4 SILA: A Spatial Instance Learning Approach

143

4.3.2. Algoritmo per l’identificazione della Data Region

L’algoritmo per l’identificazione della Data Region inizia calcolando la massima

profondità dell’albero. Successivamente parte dal nodo radice e analizza ricorsivamente

i nodi al primo livello di contenimento applicando il Single Linkage Clustering. La

visita ricorsiva termina a tre quarti della profondità massima, questo perché, la

DataRegion solitamente è situata nella prima metà dell’albero PDOM. Quando la Data

Region non viene trovata nei primi tre quarti dell’albero PDOM, l’algoritmo prosegue

nella ricerca della Data Region fino alla massima profondità.

Nei documenti deep web la struttura interna di una Data Region può assumere varie

forme, in particolare, visitando l’albero dall’alto verso il basso nella maggior parte dei

casi sono tre le forme che possiamo incontrare nel processo di identificazione dell’area

che contiene i dati da estrarre. Più precisamente i data record sono disposti all’interno

della Data Region secondo la seguente suddivisione.

i. I data record sono disposti in forma appiattita (caso flat).

ii. I data record sono disposti in forma innestata (caso nested).

iii. I data record sono disposti in forma standard(caso standard).

Caso Flat.

La figura 4.12 mostra il tipico esempio in cui i data record sono disposti in veste

appiattita all’interno della Data Region.

Figura 4.12 Flat Records Fig. 10.25. Flat Structure

Data region structure may be vertical or horizontal. Moreover, the docu-
ment may have a single region or a multi region (Figure 10.28.

Experimental Results

The Table 10.5 reports the precision, recall and F-measure calculated for the
SILA system and compares its results with the MDR [114] and ViNTs [201]
systems, which are available for download and for browser queries respectively.
It is noteworthy that MDR and ViNTs allow for performing data record ex-
traction, but they do not allow the data item extraction. However, both system
implemented a more complete version that allow both steps, but that are not
available on internet.

For the experiments, a dataset

124 10 Automatic Information Extraction

Entrambi i data record 1 e 2 hanno come nodo genitore

Caso Nested.

Nella figura 4.13 possiamo notare

TR, quest’ultimi non rappresentano direttamente i record ma contengono a loro volta

ulteriori record, possiamo quindi dire che

super-record ognuno contente 2 record.

Capitolo 4 SILA: A Spatial Instance Learning Approach

Entrambi i data record 1 e 2 hanno come nodo genitore TBODY.

possiamo notare, come al di sotto del nodo TBODY vi siano due nodi

, quest’ultimi non rappresentano direttamente i record ma contengono a loro volta

ulteriori record, possiamo quindi dire che nella Data Region in figura 4.13

record ognuno contente 2 record.

Figura 4.13 Nested Records

: A Spatial Instance Learning Approach

144

vi siano due nodi

, quest’ultimi non rappresentano direttamente i record ma contengono a loro volta

nella Data Region in figura 4.13 abbiamo due

Fig. 10.26. Nested Structure

0 Tables Cells
P R F P R F

SILA 96.01% 94.33% 95.16% 93.62% 99.01% 96.24%
MDR 24.26% 42.85% 30.98% – – –
ViNTs 51.52% 47.46% 49.41% – – –

Table 10.5. Comparison of precision and recall results for both table areas and
cells

10.2 SILA: Extracting Data Records from Deep Web Sites 125

Caso Standard.

Il caso standard mostrato in figura 4.14

Region contente 4 data record ben distinti tra di loro. La distinzione è nitida poiché vi

sono quattro TR , ognuno segna l’inizio del sotto albero che contiene le

estrarre.

Nella fase di identificazione della Data Region non ci cureremo di effettuare una precisa

distinzione tra i tre casi menzionati in precedenza, ma ci limiteremo

flat dagli altri due. Demanderemo il compito di distinguere il caso nested da quello

standard alla fase di identificazione dei Data Record.

In input al processo di estrazione della data region abbiamo l’albero PDOM, in output

otterremo il nodo che identifica la DataRegion

cluster che caratterizza appunto la struttura interna di DR, più precisamente se

otteniamo un set di cluster siamo di fronte ad un caso di tipo flat, altrimenti se abbiamo

un unico cluster di nodi siamo dinanzi agli altri

Capitolo 4 SILA: A Spatial Instance Learning Approach

standard mostrato in figura 4.14 ci suggerisce che siamo di fronte ad una Data

Region contente 4 data record ben distinti tra di loro. La distinzione è nitida poiché vi

ognuno segna l’inizio del sotto albero che contiene le informazioni da

Figura 4.14 Standard Records

Nella fase di identificazione della Data Region non ci cureremo di effettuare una precisa

distinzione tra i tre casi menzionati in precedenza, ma ci limiteremo a separare il caso

Demanderemo il compito di distinguere il caso nested da quello

standard alla fase di identificazione dei Data Record.

In input al processo di estrazione della data region abbiamo l’albero PDOM, in output

otterremo il nodo che identifica la DataRegion DR e inoltre avremo un insieme di

cluster che caratterizza appunto la struttura interna di DR, più precisamente se

un set di cluster siamo di fronte ad un caso di tipo flat, altrimenti se abbiamo

un unico cluster di nodi siamo dinanzi agli altri due casi nested o standard. Come si è

: A Spatial Instance Learning Approach

145

ci suggerisce che siamo di fronte ad una Data

Region contente 4 data record ben distinti tra di loro. La distinzione è nitida poiché vi

informazioni da

Nella fase di identificazione della Data Region non ci cureremo di effettuare una precisa

a separare il caso

Demanderemo il compito di distinguere il caso nested da quello

In input al processo di estrazione della data region abbiamo l’albero PDOM, in output

DR e inoltre avremo un insieme di

cluster che caratterizza appunto la struttura interna di DR, più precisamente se

un set di cluster siamo di fronte ad un caso di tipo flat, altrimenti se abbiamo

due casi nested o standard. Come si è

Fig. 10.27. Standard Structure

Evaluation Method

Data Record Errors

A record correctly recognized is classified as Found Correctly Record. At this
stage, we do not take care about the correctness of the data items, but we
only consider the “area” of the record.

Not Recognized Record. This error occur when a record is not recognized
at all.

Not Correctly Found Record. This error occur when:

126 10 Automatic Information Extraction

Fig. 10.28. Html fragment with a vertical region and a horizontal region

• are extracted not real records. For instance, the Figure 10.29(b) shows
false positive records extracted from the input Web page shown in Figure
10.29(a);

• separated records are merged. For instance, records shown in Figure
10.30(a) are merged as shown in figure 10.30(b);

• two or more records are split.

Data Item Errors

An item correctly found and aligned with the other items of the same type, is
classified as Found Correctly Item. For instance, Figures 10.31(a) and 10.31(b)
represent the input Web page and the output records with aligned items rep-
resented in a table, respectively.

Not Recognized Item. This error occur when a record is not detected at all.

Not Correctly Found Item. An Item is not correctly found if it is not
correctly aligned to the other items of the same type. For instance, the input
page shown in Figure 10.32(a) contains three records. As shown in 10.32(b)
all three records are correctly extracted, but two items highlighted in blue are
not aligned properly (because the second position should contain the name
of the model of the bike, and not information about the negotiations that
should be at the fourteenth place). So, they are classified as not correctly
found items, while the other items are classified as correctly found items.

Classifications for Records and Items

In Figure 10.6 is defined the mapping between the classification adopted and
the parameters that assess the quality of the systems.

10.2 SILA: Extracting Data Records from Deep Web Sites 127

(a)

(b)

Fig. 10.29. Extraction of wrong records: (a) input Web page; (b) extracted records

128 10 Automatic Information Extraction

(a)

(b)

Fig. 10.30. Merging of records: (a) input Web page; (b) extracted records

10.2 SILA: Extracting Data Records from Deep Web Sites 129

(a)

(b)

Fig. 10.31. Correctly extracted records and items: (a) input Web page; (b) ex-
tracted records and items

Data Record
Correctly Found Record TP

Not Correctly Found Record FP
Not Recognized Record FN

Data Item
Correctly Found Item TP

Not Correctly Found Item FP
Not Recognized Item FN

Table 10.6. Classifications for Records and Items

130 10 Automatic Information Extraction

(a)

(b)

Fig. 10.32. Extracted records with items not aligned: (a) input Web page; (b)
extracted records and items

.

10.3 Discussion 131

10.3 Discussion

In this section have been presented: (i) the PDF-TREX approach that allows
for understanding PDF documents structure and recognizing and extracting
tables from them, (ii) the SILA wrapper induction approach that allow for
learning wrapper by using only the spatial arrangement of content items of
Deep Web pages.

The PDF-TREX approach uses the 2-Dimensional flat document repre-
sentation of PODs. The approach has been designed for recognizing a wide
variety of table layouts and does not use any graphical or linguistic docu-
ment feature. It aligns and groups content items in order to identify tabular
arrangement of information. The approach is able to detect multi-line row
headers and column headers spanning on multi row/column. The output of
the approach is a set of 2-dimensional table cells that form a grid. Table cells
can be seen as initial bricks well suited for understanding table layouts and
contents by using spatial reasoning. PDF-TREX approach features contribute
to improve document annotation and information extraction from PDF docu-
ments. The evaluation of system performances on a dataset composed of 100
documents and 164 tables shows that the system can be considered the state
of the art in recognizing and extracting tables from PDF documents. In the
future this approach will be also applied to the recognition and extraction of
tables from Web pages.

The SILA approach uses the SDOM representation of PODs. It allows for
inferring wrappers for Deep Web pages by analyzing only the spatial arrange-
ment of content items produced by the layout engine of a Web browser. So
SILA do not requires external algorithms that produce specific representation
of Web pages starting from the HTML DOM as happens, for instance, in the
VIDE approach [116]. Furthermore, the SILA approach allows for overcoming
limitations of wrapper induction approaches based on the tag structures. In
fact, tag structures of current web pages is very involved and undergoing, dif-
ficult to process for wrapper induction methods like MDR [114] and ViNTS
[201] as shown in experiments. Experiments also show that SILA in very ef-
fective with high level of precision and recall on a wide variety of real Deep
Web pages.

11

Querying PODs

Querying data from presentation formats like HTML or PDF, for purposes
such as information extraction, requires a versatile machinery to abstract
from presentation structure into conceptual relationships. Germane to such
abstraction is the transformation into structural languages such as XML. In-
deed quite often XML languages are used as presentation formats, e.g. HTML
5. Based on these structural languages, one may use well founded and known
query formalisms such as XPath and XQuery (see Section 2.2) in order to
turn presentation structure into meaningful relational or logical representa-
tions. Unfortunately, as described in Section 2.1, the tree-based structures
of XML are often not convenient and sometimes even not expressive enough
in order to represent the presentation layout and its corresponding concep-
tual relationships that is indicated to the reader of such documents by its
presentation.

Chapter 7 describes approaches and frameworks proposed in literature that
are aimed at manipulating Web pages by leveraging the visual arrangement
of page contents, and representing and querying multimedia and presentation
databases. However, such approaches and frameworks provide limited capa-
bilities in navigating and querying Web documents for information extraction
purposes. Therefore, we have proposed Spatial XPath (SXPath), an extension
of XPath 1.0 that allows for inclusion of spatial navigation primitives into the
language resulting in conceptually simpler queries on Web documents. SXPath
enables to navigate the innovative Spatial Document Object Model (SDOM),
presented in Section 9.3, which constitutes a mixed spatial and structural
hierarchical model (DOM). The SXPath language is based on a combina-
tion of a spatial algebra with formal descriptions of XPath navigation, and
maintains polynomial time combined complexity. Practical experiments have
demonstrated the usability of SXPath. This language will be first presented
at VLDB 2011 [145].

In order to recognize recognize a wide variety of content structures (e.g.
repetitive records, tables, news, infoboxes, profiles, etc) by exploiting their
spatial arrangement, SXPath may be used as building block of more expressive

134 11 Querying PODs

languages, such as XQuery. Whereas XPath and XQuery 2.2 are well known
Web Query languages, grammars 2.3 represent the more formal syntactic de-
scriptions of languages, indeed, they are the starting point for descriptions of
the syntax of natural human languages. In PODs, a lot of information is rep-
resented in natural language, therefore we investigated as combine the spatial
construct with the power of the grammars. Thus, a Spatial Grammar (SG) is
defined and a query on a document is constituted by a set of spatial production
rules. Work related to spatial grammars has been published at ICTAI 2010,
and ICAART 2011 [135, 136] and it is related to [142].

11.1 SXPath: Spatial Querying of PODs

As described in the Section 2.1, presentation-oriented documents like PDF
and HTML are human oriented and the spatial arrangements help humans to
understand the semantic of contained information. This aspect is particularly
evident in Deep Web pages [122], where designers always arrange data records
and data items with visual regularity to meet the reading habits of humans
or in professional documents like invoices that contains a standard content
arrangement and tables. In Section 2.1 we have shown examples deep web
pages, where records have the similar structure and are clearly recognizable.

The SXPath language allows for navigating SDOM, thus it allows for
querying the internal structure of pages like XPath 1.0, as well as for ex-
ploiting the spatial layout of DOM nodes. Therefore, SXPath can be used not
only for classical Web pages after their rendering, but also other types of pre-
sentation oriented documents. In the following examples we give an intuition
about novel features and capabilities of the SXPath language.

In the rendered page each DOM node is visualized in a rectangle having
sides parallel to the axes of the Cartesian plane. Fig. 11.1 depicts rectangles
created by a layout engine for the page in Fig. 2.2. Some rectangles are an-
notated by fragments of XPath 1.0 location paths that characterize related
DOM nodes.

The Web page in Fig. 2.2 allows us to show how to extract data about
music bands by a corresponding conventional query using existing XQuery 1.0
and XPath 1.0 (see Section 2.2) on the DOM partially depicted in Fig. 2.3.

Example 11.1. XQuery 1.0 and XPath 1.0

for $li in document ("last-fm.htm")
(1.1) //div[@id=’content’]//ul/li return

<music-band>
(1.2) <name> {$li/a/strong/text()} </name>

<photo>
(1.3) {$li/a/span/span/img}

</photo>

11.1 SXPath: Spatial Querying of PODs 135

../ul/li[2]../ul/li[2]/a[2]
../ul/li[2]/a[2]/text()

../ul/li[2]/a[1]/strong
../ul/li[2]/a[1]/strong/text()

../ul/li[2]/p[1]
../ul/li[2]/p[1]/text()

../ul/li[2]/p[2]

../ul/li[2]/p[2]/text()[1]

../ul/li[2]/p[2]/a[2]
../ul/li[2]/p[2]/a[2]/text()

../ul/li/a[1]../ul/li[2]/a[1]/span
../ul/li[2]/a[1]/span/span

../ul/li[2]/a[1]/span/span/img

../ul/li[2]/p[3] ../ul/li[2]/p[3]/a
../ul/li[2]/p[3]/a/span

../ul/li[2]/p[3]/a/span/text()

../ul/li[2]/p[2]/text()[4]

Fig. 11.1. Rectangles that Bound Visualized DOM Nodes

<number-of-listening-and-listeners>
(1.4) {$li/p[1]/text()}

</number-of-listening-and-listeners>
<similar-bands>

(1.5) {$li/p[2]//text()}
</similar-bands>
<genre>

(1.6) {$li/p[3]/a/span/text()}
</genre>

</music-band>

For writing the query in Example 11.1 above, a human user must know the
intricate DOM structure of the input Web page (a sketch of which is given
in Fig. 2.3. The intricate DOM structure makes it difficult for the user to
pose this query. The location path (1.1) is the shortest relative path found
by performing many attempts. In fact, shorter location paths like //li or
//div//ul/li (that does not use attributes) make the query unsound.

Examples in the following show how the spatial arrangement can be ex-
ploited for navigating and querying content items on the base of the visual
interpretation given by a human reader. Examples give an intuitive explana-
tion of SXPath capabilities. Formal syntax and semantics of SXPath are more
rigorously presented and discussed in Section 11.1.1.

Example 11.2. XQuery 1.0 and SXPath
In contrast of the Example 11.1 above, the following query exploits SXPath

that allows for extracting details of music bands by exploiting only the DOM
nodes of type img and text, and their spatial relationships.

A human reader can relate information on the page in Fig. 2.2 by consid-
ering the spatial arrangement of laid out content elements. He can interpret
the spatial proximity of images and nearby strings as a corresponding aggre-
gation of information, namely as the complete record describing the details of

136 11 Querying PODs

a music band profile and one of its photos. A music band profile is: the music
band photo that has at east its descriptive information. That is its name, a
number of hits, a list of similar music artists and a music genre, which are
on top of each other.

for $img in document ("last-fm.htm")
(2.1) /CD::img[N|S::img] return

<music-band>
(2.2) <name> {$img/E::text[W,1][N,1]} </name>

<photo>
(2.3) {$img}

</photo>
<number-of-listening-and-listeners>

(2.4) {$img/E::text[E,1][N,2]}
</number-of-listening-and-listeners>

<similar-bands>
(2.5) {$img/E::*[W,1][N,3][max]/CD::text}

</similar-bands>
<genre>

(2.6) {$img/E::text[E,1][S,1]}
</genre>

</music-band>

The spatial location path (2.1) returns images that vertically listed in the
page. These are exactly the photos of music bands. Such kind of visual patterns
(i.e. alignment in a given direction) are very frequent in Deep Web pages, but
often hard to recognize in the DOM structure.

The spatial location path $img/E::
text in (2.2) returns all nodes labeled by text that lie on east (spatial axis E)
of the context node represented by the variable $img (photos of music bands).
Among these nodes the predicates [W,1] and [N,1] select the node that is
the first from west and from north, i.e. the name of the bands (e.g. Coldplay
and Radiohead).

The spatial location path (2.5) selects the nodes that are first from
west, third from north, and are not contained in other nodes (predicate
[max]) among all nodes on east of each photo of music bands (see the node
..ul/li[2]/p[2] in Fig. 11.1). So, all similar bands are selected.

Example 11.2 demonstrates that human users can exploit visual patterns
that they recognize on the screen. They can define spatial location paths
based on layout and DOM structure1. We argue that in the future machines
will be able to perform a likewise step of exploiting visual patterns for learning
extraction rules, because the spatial location paths are conceptually simpler
than their XPath 1.0 based counterparts.

1 In this example, the DOM structure in use was restricted to XML node types.

11.1 SXPath: Spatial Querying of PODs 137

Example 11.3. SXPath allows also to navigate and query strongly unstruc-
tured presentation-oriented documents.

The PDF document in figure 2.4, can be represented by the simple DOM
in Figure 11.2. DOM of PDF documents has the shape of flat trees with all leaf
nodes that represent document content items, and a root node that represents
the whole document. This structure is built by considering both visualization
areas and content items in the PDF stream as described in Section 9.2. The
DOM cannot be used to pose query to the document because of its completely
flat structure.2

Fig. 11.2. A DOM Portion of the PDF Page in Fig. 2.4

At the contrary, by considering the spatial arrangement of content items
in the PDF document suggests to a human reader that s/he is looking at
information organized in tabular form. The meaning of each content item
in the table comes from the alignment of rows and columns. So the reader
interprets strings in the first row and first column as row and column headers
and each number in the table body on the base of its headers. SXPath, by
exploiting spatial information modeled in the SDOM shown in Figure 11.3,
allow for spatially selecting nodes of the PDF document.

The following XQuery, based on SXPath, allows to acquire table data
and store them in structured form. We want to extract row headers, column
headers and table values.

for $rh in document ("table.pdf")
(3.1) //text [not(W::*)]

return
<table-triples>
{
for $ch at $j in document ("table.pdf")

(3.2) //text [not(N::*)]
<row-header>

(3.3) {$rh}

2 It is noteworthy that a document analysis and understanding process may ap-
plied in order to create a more significative DOM. However, it is inherently an
inaccurate process and lacks robustness.

138 11 Querying PODs

Fig. 11.3. A SDOM Fragment of the PDF Page in Figure. 2.4

</row-header>
<column-header>

(3.4) {$ch}
</column-header>
<value>

(3.5) {$rh/E::text [W,$j]}
</value>

}
</table-triples>

This XQuery allows for acquiring the table in the PDF document in Fig-
ure 2.4 as a set of triples of the form <row-header, column-header, value>.
Firstly spatial location paths 3.1 and 3.2 select row headers (all nodes that
have nothing on west) and column headers (all nodes that have nothing on
north) respectively. Then, starting from row headers a value related to the $jth

column header is identified by the spatial location step $rh/E::* [W,$j] that
navigate step by step nodes on east of row headers by means of position pred-
icates. It is worthwhile noting that spatial arrangement of the PDF document
enables to consider the table as a matrix, so the query navigates the table in
a very intuitive way.

Example 11.4. In figures 11.4a, 11.4b, and 11.4c friend lists extracted from
different social networks pages 3 are depicted. Each friend is represented by
a photo and its name below the photo. So each friend can be represented
by the couple of content items <photo, name>. Figures 11.4a and 11.4b also
show a simplified DOM where dashed arrows represent some spatial relations
expressed in a high level qualitative way. Figures show some interesting aspects
3 http://www.bebo.com

http://my.care2.com
http://it.netlog.com

11.1 SXPath: Spatial Querying of PODs 139

that are common in HTML documents: (i) Each couple is organized in a
single DOM sub tree. (ii) couples in the same DOM are represented by similar
subtrees, whereas, in different DOMs couples are represented by subtrees that
significantly differ. More in detail, couples <photo, name> are represented by:
TR and TD tags of an HTML table in Figure 11.4a and DIV tags (suitably
nested) in Figure 11.4c UL and LI tags of a HTML list could be also used
(Figure 11.4b) as well as more intricate tag structures. (iii) Different subtrees
are visualized in the same way. Exploiting only the spatial arrangement, photo
and name couples can be captured by the following XQuery based on SXPath:

for $img in document ("http://www.bebo.com
/friendlist.html")

(4.1) //img[ES::*[N,1][self::text]]
return

<friend>
<photo>

(4.2) {$img}
</photo>
<name>

(4.3) {$img/ES::text[N,1]}
</name>

</friend>

The spatial location paths 4.1 and 4.3 use the spatial axis ES (Extended at
South) that allows for selecting nodes that are at south of a context node and
that can be horizontally extended over the south tile of the context node. So
spatial location paths: (i) 4.1 returns a node set composed of images that have
immediately on ES a text (predicate [self::text]). In fact, the predicate
[N,1] selects, among nodes on ES, those that are more close to the image.
(ii) 4.3 returns the set of text nodes that are immediately (predicate [N,1])
on ES of the image node (the photo). This query can be used for acquiring
friend lists from all the web pages shown in Figure 11.4 because it exploits
only spatial relation between nodes and is independent from the DOM tree
structure.

The Figure 11.5c4 shows that: content items that form a single data record
(i.e. the couples <image, descriprion> in Figure 11.5a) can be split in dif-
ferent sub-trees. In this case each subtree contains the same kind of content
items that belong to more data records. Visualization areas, obtained by ren-
dering the document, follow the DOM tree structure that separates images
and descriptions in different rows of a table as depicted in Figure 11.5b. Such
a situation is a problem for wrapper induction techniques like DEPTA [199]
because they recognize data records when they are encoded in the DOM as
consecutive similar subtrees. With SXPath the previous XQuery can be used,
as it is, to obtain the couples <image, descriprion>. This example shows
4 http://www.alibris.com/

140 11 Querying PODs

Fig. 11.4. Fragments of Web Pages representing friend lists of social networks (a)
Bebo and (b) Care (c) Netlog, with associated DOM structures.

how: (i) information having the same spatial arrangement but different HTML
representation can be captured in the same way. (ii) SXPath can be exploited
in subtasks of wrapper induction techniques. In fact, spatial arrangement of
web pages can help in correctly identifying DOM nodes without use of tag
nesting.

Fig. 11.5. (a) Data items representing books. (b) Visualization areas. (c) DOM
tree encoding of data items

11.1 SXPath: Spatial Querying of PODs 141

11.1.1 Syntax and Semantics

The SXPath language extends the W3C’s XPath 1.0 standard language 2.2
with spatial capabilities. Intuitive navigational features and querying capa-
bilities of XPath 1.0 are central to most XML-related technologies. For this
reason XPath 1.0 has attracted great attention in the computer science re-
search community. Even though XPath 2.0 reached recommendation status,
it is not well suited for our objectives. In fact, the XPath Core 2.0 query eval-
uation is PSpace-complete [176, 175, 174, 35] in contrast to the polynomial
time complexity of XPath 1.0 [77, 78, 151] (combined complexity). Further-
more, a strong theoretical background on XPath 1.0 is currently available,
and specific subsets of the language with attractive properties and essential
language features have been characterized [21, 78, 20]. These investigations
lay the foundations for understanding the formal properties of SXPath. The
SXPath language adopts the path notation of XPath 1.0 augmented by a user-
friendly syntax having a natural semantics that enables spatial querying. In
particular, SXPath provides: (i) A new set of spatial axes that allow for select-
ing nodes that have a specific spatial relation w.r.t. context nodes; (ii) New
node set functions, namely spatial position functions, that allow for expressing
predicates working on positions of nodes in the plane. As already shown in
Example 11.2, such extensions are very useful in practice because they enable
both end-user to spatial query web documents on the base of what they see on
the document, and automatic application to induce ageneral spatial wrapper,
simplifying and upgrading existing approaches (i.e. [96], and [199, 126]). In
this section, we first the SXPath spatial capabilities, then we incrementally
provide the formal syntax and semantics, and the computational complexity
of the language.

Spatial Axes

SXPath allow for navigating the SDOM (see Section 9.3). RA relations, stored
in the SDOM, represent all qualitative spatial relations between MBRs, but
they are too fine grained, verbose and not intuitive for querying. Therefore,
for defining SXPath spatial axes we considered the more synthetic and intu-
itive Rectangular Cardinal Relation (RCR) [132] and Rectangular Connection
Calculus (RCC) [157] models, presented in Section 9.1. Each spatial axes
(expressed by a RCR or a topological relation) corresponds to a set of RA
relations expressed by the mapping function presented in Definition 9.4, in
the Section 9.1.

Like in XPath 1.0, SXPath axes are interpreted binary relations χ ⊆ V ×V
(see Section 2.2.1). Let self ∶= {⟨u,u⟩∣u ∈ V } be the reflexive axis, remaining
SXPath axes are partitioned in two sets: ∆t and ∆s. The set ∆t contains
traditional XPath 1.0 axes (forward, e.g. child, descendant, and reverse, e.g.
parent, ancestor) that allow for navigating along the tree structure. They are
encoded in terms of their primitive relations (i.e. firstchild, nextsibling and

142 11 Querying PODs

their inverses), as shown in Section 2.2.1. The set ∆s contains the novel (di-
rectional and topological) spatial axes corresponding to the RCRs and Topo-
logical Relations that allow for navigating along the spatial RA relations. In
the following we formally define spatial axes in terms of their primitive RA
relations stored in the SDOM.

Definition 11.5. SXPath spatial axes are interpreted binary relations χs ⊆
Vv × Vv of the following form χs = {⟨u,w⟩∣u,w ∈ Vv ∧mbr(u) ρ mbr(w) ∧ ρ ∈
µ(R)}. Where R is the RCR or topological relation that names the spatial axis
relation and µ is the mapping function.

In order to define the semantics of SXPath we give a trivial generalization
of the document total order w.r.t. an axis [184] and define the relative index
function.

Definition 11.6. The document total order w.r.t. the axis χ written as <doc,χ

is: (i) the reverse document order >doc when χ is a traditional reverse axis
[184]; (ii) the document total order <doc (Def. 9.9) otherwise.

Definition 11.7. Let Γ ⊆ V be a set of nodes, the index function idxχ(u,Γ)
returns the index of the node u in Γ w.r.t. <doc,χ (where 1 is the smallest
index).

In the following we present the formal syntax of two important fragments
of SXPath, namely: Core SXPath and Spatial Wadler Fragment. The gram-
mar of their unabbreviated version is incrementally provided. Like XPath 1.0,
SXPath has also a number of syntactic abbreviations, used in Example 11.2.
But they are just syntactic sugar and are not considered in the following.

Core SXPath

We define the fragment of Core SXPath as the navigational core of SXPath.
It is obtained extending Core XPath [76] (the navigational core of XPath 1.0)
by spatial axes introduced in Sec. 11.1.1.

Definition 11.8. The EBNF grammar of Core SXPath is:

locpath ::= ‘/’ locpath | locpath ‘/’ locpath |
locpath ‘|’ locpath | locstep

locstep ::= axis ‘::’ t | locstep ‘[’ bexpr ‘]’
bexpr ::= bexpr ‘and’ bexpr | bexpr ‘or’ bexpr|

‘not(’ bexpr ‘)’ | locpath
axis ::= xpathAxis | spatialAxis
xpathAxis::= ‘self’ | ‘child’ | ‘parent’ | ⋯
spatialAxis::= topAxis | dirAxis
topAxis ::= ‘EQ’ | ‘CD’ | ‘CR’
dirAxis ::= ‘B’ | ⋯ | ‘U’

11.1 SXPath: Spatial Querying of PODs 143

where:

• locpath is the start symbol.
• axis denotes axis relations that are traditional XPath axis (xpathAxis)

and atomic directional and topological axes (spatialAxis).
• t is the node test.

Spatial Wadler Fragment

Since Core SXPath lacks the ability to exploit spatial position of nodes, we
define the Spatial Wadler Fragment (SWF). SWF is the spatial extension of
the Extended Wadler Fragment (EWF) [77]. It allows positional, logical and
arithmetic features.

Definition 11.9. The syntax of the SWF-Queries is defined by the Core SX-
Path grammar with the following extensions.

expr ::= locpath | bexpr | nexpr
dirAxis ::= ‘B’ | ⋯ | ‘U’ | disjDirAxis
bexpr ::= bexpr ‘and’ bexpr | bexpr ‘or’ bexpr| ‘not(’ bexpr ‘)’ |

nexpr relop nexpr | sexpr relop sexpr | locpath |
locpath relop sexpr | locpath relop number

nexpr ::= number | nexpr arithop nexpr |
‘position()’ | ‘last()’ | ‘posFromS()’ |
‘lastFromS()’ | ‘posFromN()’ | ‘lastFromN()’|
‘posFromW()’ | ‘lastFromW()’ | ‘posFromE()’ |
‘lastFromE()’ | ‘posSpatialNesting()’

sexpr ::= string
arithop ::= ‘+’ | ‘-’ | ‘*’ | ‘div’ | ‘mod’
relop ::= ‘=’ | ‘!=’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’

where:

• expr (instead of locpath) is the start symbol.
• dirAxis considers disjunctive directional relation disjDirAxis5.
• nexpr extends traditional XPath numerical expressions with spatial posi-

tion functions. number and string denote constant real-valued numbers
and strings respectively.

We don’t give here the syntax of the full SXPath language. The reason for
this is lack of space. However, by considering [184] extending the syntax is an
easy exercise.
5 Core SXPath does not allow for querying spatial orders, so spatial axes corre-

sponding to disjunction of RCRs do not add expressiveness.

144 11 Querying PODs

Abbreviated Syntax

As for XPath 1.0, SXPath has an abbreviated syntax.The meaning of abbre-
viations used in examples is described in Table 11.1.

Full Syntax Shortcut Notes
S∣S:SW∣S:SE∣S:SW:SE ES Extended at South

W∣SW:W∣W:NW∣SW:W:NW EW Extended at West
N∣NW:N∣N:NE∣NW:N:NE EN Extended at North

E∣NE:E∣E:SE∣NE:E:SE EE Extended at East[posFromS()=1] [S,1] (Similarly for the[posFromS()=2] [S,2] spatial orders
... W, N, E, and[posFromS()=i] [S,i] Containment.)[posFromS()=lastFromS()] [S,last()][posSpatialNesting()=1] [maximal] Equivalent to [CD,1]
Table 11.1. Abbreviated syntax

Semantics

In this section we define the semantics of SXPath by adopting the denotational
semantics proposed in [185]. Like in XPath 1.0 the main structural feature of
SXPath are expressions, that return a value from one of the following types:
node set, number, string, or Boolean. Every expression evaluates relative to
a context. Context and domain of context are defined in the following as
extension of the definition given in [185].

Definition 11.10. The Context is the following 12-tuple:

c = ⟨n, p<doc , s<doc , p⩽↑ , s⩽↑ , p⩽→ , s⩽→ , p⩽↓ , s⩽↓ , p⩽← , s⩽← , p⩽t⟩
where: (i) n is a context node. (ii) p⩽z are natural numbers that indicate
the context positions w.r.t. orders ⩽z ∈ {<doc,⩽↑,⩽→,⩽↓,⩽←,⩽t}. (iii) s⩽z are
natural numbers that indicate the context sizes w.r.t. orders in {<doc,⩽↑,⩽→
,⩽↓,⩽←}.
Definition 11.11. The Domain of Contexts is the following set:

C = {⟨n, p<doc , s<doc , p⩽↑ , s⩽↑ , p⩽→ , s⩽→ , p⩽↓ , s⩽↓ , p⩽← , s⩽← , p⩽t⟩
∣ n ∈ V ∧ 1 ⩽ p<doc ⩽ s<doc ⩽ ∣V ∣ ∧ 1 ⩽ p⩽z ⩽ s⩽z ⩽ ∣Vv ∣ ∧ 1 ⩽ p⩽t ⩽ ∣Vv ∣}

where ⩽z∈ {⩽↑,⩽→,⩽↓,⩽←}.
Definition 11.12. Let Σ be the labeling alphabet (i.e., “tags”). We define the
node test function T ∶ (Σ ∪ {∗} ∪ {text}) → 2V (“node test”) which assigns
to each label (XML tag or textual leaf node) the set of nodes labeled with it.
Furthemore, T (∗) ∶= V .

11.1 SXPath: Spatial Querying of PODs 145

In the following we first define the auxiliary semantic function for location
paths then we give the semantics of SXPath.

Definition 11.13. Location path semantics. Considering the grammar,Let
π,π1, π2 be location paths, let locstep be a location step over an axis χ, let
bexpr be a boolean expression and let n be a context node, then the semantics
function of SXPath location paths
P : LocationPath → node → nodeset is defined as follows:
P !/π"(n) := P !π"(root)
P !π1/π2"(n) := {n2∣n1 ∈ P !π1"(n) ∧ n2 ∈ P !π2"(n1)}
P !π1∣π2"(n) := P !π1"(n) ∪P !π2"(n)
P !axis ∶∶ t"(n) :={n′ ∣ !axis"(n,n′)} ∩ T (t)
P !locstep[bexpr]"(n) := {n′ ∣ W=P !locstep"(n) ∧ n′∈W ∧

ε!bexpr"(cn′) = true ∧ cn′ ∶= ⟨w, idxχ(n′,W), ∣W∣, pidx⩽↑(n′,W)
plast⩽↑(W), pidx⩽→(n′,W), plast⩽→(W), pidx⩽↓(n′,W),
plast⩽↓(W), pidx⩽←(n′,W), plast⩽←(W),pidx⩽t(n′,W)⟩}

where T is the node test function defined in Def. 11.12, and the semantics of
an axis (!axis") is defined as follows:

• ! spatialAxis ":={(n,n′) ∣ mbr(n) ρ mbr(n′) ∧ ρ = µ(spatialAxis)} for
spatial axes;

• let ○, ∗, + denote the concatenation, reflexive and transitive closure of
binary relations R1 and R2), respectively, and let R−1 = {(n′, n)∣R(n,n′)}
denote the inverse binary relation of a binary relation R. We have:
!self":= {(n,n′) ∣ n = n′}
!child":={(n,n′) ∣ n (R⇓ ○R⇒∗) n′}
!parent":= !child"−1
!descendant":= !child"+
!descendant or self":= !child"∗
!ancestor":= !descendant"−1
!ancestor or self":= !descendant or self"−1
!following sibling":= {(n,n′) ∣ n R⇒+ n′}
!preceding sibling":= !following sibling"−1
!following":= !ancestor or self"○!following sibling"○!descendant or self"
!preceding":= !ancestor or self"○!preceding sibling"○!descendant or self"

Definition 11.14. Given an SXPath expression e and a context c, the seman-
tics function ε ∶ SXPathExpression → C → SXPathType returns number,
string, boolean, or node set values:

146 11 Querying PODs

ε!π"(c) ∶= P !π"(n) ε!posSpatialNesting()"(c) ∶= pt

ε!position()"(c) ∶= p<doc ε!last()"(c) ∶= s<doc

ε!posFromN()"(c) ∶= p⩽↓ ε!lastFromN()"(c) ∶= s⩽↓
ε!posFromS()"(c) ∶= p⩽↑ ε!lastFromS()"(c) ∶= s⩽↑
ε!posFromW ()"(c) ∶= p⩽→ ε!lastFromW ()"(c) ∶= s⩽→
ε!posFromE()"(c) ∶= p⩽← ε!lastFromE()"(c) ∶= s⩽←
ε!Op(e1, ..., em)"(c) ∶= F !Op"(ε!e1"(c), . . . , ε!em"(c))
where:

P is the function in Def. 11.13. (ii) F !Op" ∶ O1×...×Om → O, is defined in
Tab. 11.2 (for a complete list of functions we refer to [76, 184]). The meaning
of each expression is given by the meaning of its subexpressions.

F ! constant number i: → num "() ::=i
F ! ArithOp: num × num → num " (i1, i2) ::= i1 ArithOp i2, where

ArithOp ∈ {+,−,∗, /,%}
F ! constant string s: → str "() ::=s
F ! and: bool × bool → bool " (b1, b2) := b1 ∧ b2

F ! or: bool × bool → bool " (b1, b2) := b1 ∨ b2

F ! not: bool → bool " (b) := ¬b
F ! boolean: nset → bool " (I) ::= if I ≠ ∅ then true else false
F ! true(): → bool " () ::= true
F ! false(): → bool " () ::= false
F ! RelOp: num × num → bool " (i1, i2) ::= i1 RelOp i2, where

RelOp ∈ {=,≠,⩽,<,⩾,>}
F ! RelOp: str × str → bool " (s1, s2) ::= s1 RelOp s2

F ! RelOp: nset × constant string → bool " (Γ, s) ::= ∃u∈Γ :strval(u) RelOp s
F ! RelOp: nset × bool → bool " (Γ, b) ::= F ! boolean "(Γ)RelOp b

Table 11.2. Semantics of Functions in SXPath

11.1.2 Complexity Issues

This section summarizes the computational complexity results of the SXPath
query evaluation problem. We show that Core SXpath, Spatial Wadler Frag-
ment (SWF), and Full SXpath allow polynomial time combined complexity
query evaluation with increasing degree of the polynomial. In the following
theorems we denote by D the XML document, which has size Θ(∣V ∣), where∣V ∣ is the number of nodes of its SDOM representation. It is noteworthy that
the SDOM (see Section 9.3) has size O(∣V ∣2).

11.1 SXPath: Spatial Querying of PODs 147

Core SXPath Complexity

In [76] it has been shown that Core XPath 1.0 has linear time combined
complexity. We extend the Core XPath 1.0 by introducing spatial axes. The
following spatial axis function returns the set of nodes reached from a set of
context nodes along a spatial axis.

Definition 11.15. Let χs denote a spatial axis in ∆s. The spatial axis func-
tion, which overloads the relation name χs, χs ∶ 2V → 2Vv is defined as
χs(Γ) ∶= {u∣∃c ∈ Γ ∶ cχsu} , where Γ ⊆ V is a set of nodes. Moreover,
the inverse spatial axis function χ−1s ∶ 2V → 2Vv is defined χ−1s (Γ) ∶= {c ∈
V ∣χs({c}) ∩ Γ ≠ ∅}.

The spatial axis function exploits the following RA function:

Definition 11.16. Let ρ denote a RA relation in Rrec. The related RA func-
tion fρ ∶ Vv → 2Vv is defined as fρ(u) ∶= {v ∣ uρv ∧ u, v ∈ Vv ∧ ρ ∈ Rrec}

The function fρ works on the SDOM represented as a nested direct-access
data structure. Such data structure for SDOM can be computed in a prepro-
cessing step, which runs in O(∣Vv ∣2) and requires O(∣Vv ∣2) more space than a
standard DOM. It is noteworthy that fρ takes as input a single node u ∈ Vv,
accesses in constant time the hash set representing the SDOM, and returns
the node set associated to u by the RA relation ρ in constant time. For the
function fρ the following property holds.

Lemma 11.17. Let ρ be an RA relation. For each pair of nodes u, v ∈ Vv,
u ρ v iff v ρ−1 u.

Now we are ready to define as the spatial axis function works:
Let Γ ⊆ V be a set of nodes of a SDOM, let χt ∈∆t be an axis from the XPath
language other than self, let χs ∈ ∆s be a spatial axis, let 8 be a set of RA
relations, and let E(χt) denote a regular expression based on the primitives
firstchild and nextsibling, as presented in Section 2.2.1, that define χt ∈∆t.

The Algorithm 11 computes the set of nodes reached from a set of nodes
Γ by means of an axis χ. We distinguish between traditional and spatial
axis. So, for traditional axes in (1.1) and (1.2) the algorithm requires time
O(∣V ∣) [76]. Whereas, for spatial axis in (1.3) and (1.4), we have to consider
the mapping function µ that runs in constant time (see Def. 9.4) and returns
a set of atomic/conjunctive RA relations 8 representing the axis given as
input. The function eval) (1.5)-(1.10), for each input node u and for each RA
relation ρ ∈ 8 takes the reached nodes using the function fρ . The union of the
resulting set of nodes (1.9) runs in time O(∣Vv ∣), hence the total time required
is O(∣V ∣2). Now, we are ready to prove the theorem 11.18.

By taking into account previous definition, we can give the following the-
orem.

148 11 Querying PODs

Algorithm 11: Axis evaluation
Input: A set of nodes Γ and an axis χ ∈∆
Output: χ(Γ)
Method: evalχ(Γ)
(1.1) function evalself(Γ) ∶= Γ .
(1.2) function evalχt(Γ) ∶= evalE(χt)(Γ).
(1.3) function evalχs(Γ) ∶= eval{ρi ∣ρi∈µ(χs)}(Γ).
(1.4) function evalχ−1s

(Γ) ∶= eval{ρ−1i ∣ρi∈µ(χs)}(Γ).
(1.5) function eval#(Γ) begin
(1.6) Γ ′ ∶= ∅;
(1.7) foreach u ∈ Γ ∩ u ∈ Vv do
(1.8) foreach ρi ∈ % do
(1.9) Γ ′ ∶=Γ ′ ∪set fρi(u)

od
od

(1.10) return Γ ′
end.

Theorem 11.18. Core SXPath queries can be evaluated in time O(∣D∣2∗∣Q∣),
where ∣D∣ is the size of the XML document, and ∣Q∣ is the size of the query Q.

Proof. In [77] it has been shown that Core XPath 1.0 has linear time combined
complexity by mapping its queries to an algebraic expression. Likewise for
Core XPath 1.0 and its extension, every query that falls in the Core SXPath
can be mapped in time O(∣Q∣) to an algebraic expression Φ over the set of
operations ∩,∪,¬, χ (the axis function) and its inverse χ−1 and V

root(Γ) ∶= {x ∈
V ∣root ∈ Γ} (that is, returns V if root ∈ Γ and ∅ otherwise). In the query Q
there are at most O(∣Q∣) of such operations. Each operation in our algebra can
be computed in time O(∣V ∣) except for the axis function that is computable
in O(∣Vv ∣2) time bound in the spatial case as shown in Algorithm 11. Hence,
the computation has time bound O(∣V ∣2 ∗ ∣Q∣).
Full SXPath and SWF Complexity

In this section we first prove the Full SXPath query evaluation combined com-
plexity. Then, considering some restrictions, we prove the better complexity
bound for the Spatial Wadler Fragment (SWF).

In order to obtain a polynomial-time combined complexity bound for Full
SXPath and then SWF, we use dynamic programming adopting the Context-
Value Table (CV-Table) principle proposed in [76]. Given an expression e
belonging to an input query, the CV-Table of e specifies which value is ob-
tained given a valid context c: (c, ε!e"(c)). The CV-Table of each expression
is obtained combining the values of its subexpressions. Moreover, we adopt the

11.1 SXPath: Spatial Querying of PODs 149

simple idea, first presented in [185], that for evaluating each expression just
the necessary information of the context (relevant context) can be taken into
account. Thus, the CV-Tables can be restricted. The relevant contexts of any
expression e associated to a node q of Q can be computed in a preprocessing
step as follows: (i) If q is leaf node of the query parse tree, the relevant context
depends on e. If e is a constant, then its evaluation does not depends on the
input context and thus the relevant context is empty. If the expression is a
location path or a positional function, then the relevant context corresponds
to the ith value of the context6 that defines the semantics of the expression as
defined in Def. 11.14. (ii) Otherwise, if e is a location path, then the relevant
context of q is the context node. In the other cases, the relevant context of
q is given by the union of the relevant context of children parse tree nodes
(q1, ..., qk) of q. That is, RelevantContext(q) ∶= ∪k

i=1RelevantContext(qi).
The context-value table principle avoids exponential time complexity be-

cause it guarantees that no evaluation of the same subexpression for the same
context is done more than once. So it allows simultaneous evaluation for all
possible contexts (node). As in [77] where position and size are computed
on demand, we compute all spatial position functions in a loop for all pairs
of previous/current nodes. For evalauting SXPath location steps we use the
min context algorithm presented in [77] with the substantial difference being
the computation of location step and spatial position functions. Spatial posi-
tion functions are effectively used only in predicates of location steps, so the
complete context will be needed only for predicates of location steps that use
spatial position functions. In the following, for lack of space, we describe only
the most costly part of the location step evaluation algorithm that computes
complete contexts.

The Algorithm 12 corresponds to the semantic definition of location step
presented in Def. 11.13. But it considers only the most expensive case that
requires the computation of the complete context. Such a case is sufficient
for proving the combined complexity of Full SXPath. We need to compute
complete context when all expressions e1 . . . em, in the input location step,
require the evaluation of positions w.r.t. document and spatial orders. As
detailed in [77], when expressions do not require evaluation of positions we
can pre-compute the CV-Tables because the relevant context is empty or
corresponds to a single node. In the instruction (2.2) we obtain the nodes
reachable via χ ∶∶ τ . In (2.3)-(2.7) we select nodes that satisfy the predicates
e1 . . . em. We have to compute the complete context c corresponding to any
pair of previous and current nodes u and w, respectively. The instruction (2.7)
builds the context c that considers the position of the node w in W w.r.t.
the document order and all spatial orders (see definition 11.10). For obtaining
spatial ordering we need to apply the layering function (instruction (2.6))
to W (i.e. the set of nodes reached from u). Such a function assigns to each

6 Given a context c then c[i] represents the ith value of the context (e.g., c[3]
represents the context size w.r.t. the document order).

150 11 Querying PODs

Algorithm 12: Location step evaluation algorithm
Input: A set of nodes Γ and a location step

e = χ ∶∶ τ[e1] . . . [em]
Output: P !e"(Γ)
Method: eval(e, Γ)

begin
(2.1) Res ∶= ∅
(2.2) W ∶= χ(Γ) ∩ T (τ);
(2.3) for each u ∈ Γ do
(2.4) W ′ ∶= {w ∣w ∈W ∧ u χ w}
(2.5) for each ei with 1 ⩽ i ⩽m (in ascending order) do
(2.6) W ∶= layering(W ′)
(2.7) W ′ ∶= {w ∣ w∈W ∧ε!ei"(cw) = true ∧

cw ∶= ⟨w, idxχ(w,W), ∣W∣, pidx⩽↑(w,W),
plast⩽↑(W), pidx⩽→(w,W), plast⩽→(W),
pidx⩽↓(w,W), plast⩽↓(W), pidx⩽←(w,W),
plast⩽←(W), pidx⩽t(w,W)⟩}

od
(2.8) Res ∶= Res ∪W ′

od
(2.9) return Res

end;

node a layer in order to allow the functions pidx⩽z(u,Γ) and plast⩽z(u,Γ)
(see Def. 9.12) for computing spatial position of w in W. The layering for
each spatial order (directional or topological) can be obtained by applying a
topological layering algorithm [55]. For lack of space and because the layering
for the other orders can be obtained in similar way, only the layering for the
topological order is shown in the following.

Definition 11.19. Let Γ ⊆ Vv be a set of SDOM nodes, the topological directed
acyclic graph (TDAG) Gt = (Γ,At) is the graph obtained from the SDOM by
considering RA relations that express containment among nodes. So for each
pair of nodes n,n′ in Γ , an arc is added to At iff n′ is spatially contained in
n.

Definition 11.20. Let Γ ⊆ Vv be a set of SDOM nodes, and let Gt = (Γ,At) be
the corresponding TDAG, the topological layering Lt(Gt) = {l1,⋯, lht} (Def.
9.10) is obtained applying to Gt a topological layering algorithm [55].

Layering algorithm runs in time O(∣Γ ∣ + ∣At∣) by using appropriate data
structures with minor modifications to the standard topological sorting al-
gorithm. Topological layers allow for defining a topological ordering among
nodes in Γ based on their spatial nesting. So, for example, the first layer rep-
resents nodes in Γ that are not contained in other nodes. The second layer

11.1 SXPath: Spatial Querying of PODs 151

represents nodes that are directly contained in nodes in the first layer at first
level of nesting, and so on. The layering for each directional order can be
obtained also by using optimized methods that work on a pre-layered version
of the SDOM, not explained here for lack of space.

Having obtained the complete context c, the instruction (2.7) allows for
computing the set of nodes W ′ reached from the current node u and that
satisfy the predicates e1 . . . ei. For the current node w, the value of ε!ei"(cw)
is looked up from the table if cw exists in the CV-Table of ei, computed oth-
erwise. The resulting nodeset (instruction (2.9)) is the union of nodes reached
from each current node u in Γ and satisfying e1 . . . em predicates.

By taking into account previous definitions and algorithms, we can give
the following theorem.

Theorem 11.21. Full SXPath queries can be evaluated in time O(∣D∣4∗ ∣Q∣2)
and space O(∣D∣2 ∗ ∣Q∣2), where D is the XML document, and Q is a Full
SXPath query.

Proof. Space complexity. In the preprocessing step we create the SDOM struc-
ture, then in order to save the spatial relations O(∣Vv ∣2) additional space is
required w.r.t. the XML document. During the query computation, we know
that an input Full SXPath query Q has at most ∣Q∣ subexpressions, thus
at most ∣Q∣ CV-Tables are required. We explicitly set up the CV-table for
a subexpression e only if the relevant context of e corresponds to a node
(i.e. {c[1]}), or to the empty set. Hence, the CV-Table has at most ∣V ∣ rows
(O(∣D∣)). Moreover, since Full SXPath and Full XPath 1.0 have the same set
of operations and return the same result types, then the most costly oper-
ation w.r.t. space size is concatenation on string [77]. We have O(∣D∣ ∗ ∣Q∣)
maximal size for one entry value in the CV-Table. Hence we obtain the bound
O(∣D∣2 ∗ ∣Q∣2) space combined complexity.
Time complexity. The SDOM computation, which costs O(∣V ∣2), precedes the
query evaluation step. An SXPath expression Q has at most ∣Q∣ subexpressions
that have to be evaluated. Each subexpression e of the input query Q has to
be evaluated for at most O(∣V ∣2) different contexts that can be computed in
a loop over all possible values c corresponding to pairs previous/current of
context-nodes (see algorithm 12). Moreover, it was shown in [77] that time
required for computing each XPath operation on any context c is bounded
by O(∣D∣2 ∗ ∣Q∣). In our case, we add only spatial relations and the position
functions. The former ones, given in input only one context c can be computed
in time O(∣Vv ∣) (In fact, in this case the method eval) of the algorithm 11, has
to run only for a node u (see instruction (1.7)). Given a context c, a positional
function returns the value corresponding to the ith value of the context that
defines the semantics of the expression (see Def. 11.14). As shown in Algorithm
12 topological layering is needed (see instruction (2.2) in the Algorithm 12)
for computing the complete context, but this operation does not impact the
worst case bound. Hence we have the time combined complexity O(∣D∣4∗∣Q∣2).

152 11 Querying PODs

In order to prove that queries falling in the Spatial Wadler Fragment can
be evaluated in better time than full SXPath queries (Theorem 11.21), we:
(i) Consider the syntax defined by the grammar presented in Def. 11.9. (ii)
Adopt restrictions described in [77] for EWF. Such restrictions imply that
functions which select data from the XML document, and boolean expressions
that compare node sets are not allowed. Furthermore, boolean expressions of
the type locpath relop sexpr or locpath relop number (see the formal
grammar of SWF in Defnition 11.9) consider only numbers and strings which
size do not depend on the XML document (i.e. are values fixed in the query).
(iii) Adopt the bottom-up/top-down query evaluation strategy proposed in
[77]. Such an evaluation strategy distinguish between outer and inner location
paths, where an inner path appears within a predicate, whereas an outer path
does not.

For showing computational complexity of SWF and for lack of space, we
describe how the node set resulting for a SWF query can be computed by
exploiting the Algorithm 12. In particular, outer location paths are computed
by the Algorithm 12 as it is (top-down and forward evaluation). Whereas,
inner location paths are bottom-up and backward computed. In this case the
evaluation algorithm starts from the last location step in a inner location
path, and takes as initial input node set Γ either: all nodes in V (when the
considered boolean expression coincides with the inner location path itself),
or the set of nodes that satisfy (taking into account above considerations)
boolean expressions of the form locpath relop sexpr or locpath relop
number (see the formal grammar of SWF in Defnition 11.9). Then evaluation
algorithm computes node sets as in the Algorithm 12 where: in instruction
(2.2) the axis is χ−1 instead of χ (backward evaluation), instruction (2.3) is
for each previous u ∈W , and in instruction (2.4) current node w is in Γ .

Having in mind above discussion we can give the following complexity
result.

Theorem 11.22. SXPath queries that fall in the Spatial Wadler Fragment
can be evaluated in time O(max(∣D∣3 ∗ ∣Q∣, ∣D∣2 ∗ ∣Q∣2)), where D is the XML
document, and Q is a SWF query.

Proof. Time complexity. An SWF query Q has at most ∣Q∣ subexpressions that
have to be evaluated. Such subexpressions are computed by the Algorithm 12
used as described in the above discussion for enabling both top-down and
bottom-up evaluation. Location path evaluation is performed in time O(∣V ∣2)
in instruction (2.2) of the Algorithm 12 (see Algorithm 11). For any expression
e, the computation of the result value of e for a single context c takes at most
O(∣Q∣) time (see restrictions presented above). Furthermore, we have O(∣V ∣2)
contexts (instructions (2.3) and (2.7)) and at most ∣Q∣ sub expressions, hence
the total time required by each expression e of Q is limited by O(∣V ∣2 ∗ ∣Q∣).
However, let u be the node under evaluation, we have to compute the layering
for reached nodes in order to obtain the complete context (instruction (2.6) in
the Algorithm 12). The layering method costs O(∣V ∣2) and has to be computed

11.1 SXPath: Spatial Querying of PODs 153

for reach node under evaluation. So, we need O(∣V ∣3) time for computing
all contexts (see operations (2.3)-(2.6) in Algorithm 12). Hence, the total
computational complexity is bounded by O(max(∣V ∣3∗ ∣Q∣, ∣V ∣2∗ ∣Q∣2)). Since
normally, V >> Q then, the complexity bound follows.

Complexity Comparison

The complexity results are summarized in Table 11.1.2. These results are
compared with the fragment of XPath 1.0 that they extend.

XPath 1.0 SXPath
Space Core[76] O(∣D∣ ∗ ∣Q∣) Spatial O(∣D∣2 ∗ ∣Q∣)
Time O(∣D∣ ∗ ∣Q∣) Core O(∣D∣2 ∗ ∣Q∣)
Space EWF[77] O(∣D∣ ∗ ∣Q∣2) SWF O(∣D∣2 ∗ ∣Q∣2)
Time O(∣D∣2 ∗ ∣Q∣2) O(max(∣D∣3 ∗ ∣Q∣, ∣D∣2 ∗ ∣Q∣2))
Space Full[76] O(∣D∣2 ∗ ∣Q∣2) Full O(∣D∣2 ∗ ∣Q∣2)
Time Xpath 1.0 O(∣D∣4 ∗ ∣Q∣2) SXPath O(∣D∣4 ∗ ∣Q∣2)

Table 11.3. Comparison between complexity bound of SXPath and XPath 1.0 for
a XML document D and a query Q.

11.1.3 Implementation and Experiments

We have implemented the language in a system that embeds the Mozilla
browser and computes the SDOM in real time at each variation of visualiza-
tion parameters (i.e. screen resolution, browser window size, font type and
dimension). This way for each Web page and visualization condition there is
a unique corresponding SDOM that enables the user to query the Web page
by considering what s/he sees on the screen. For computing the SDOM the
system exploits the Mozilla XULRunner7 application framework that allows
for implementing the function mbr (see Def. 9.1) that acquires coordinates
of the MBRs assigned by the layout engine to each visualized DOM node.
Queries posed by users are parsed and evaluated on the SDOM by the query
evaluator that returns query answers, and visualizes returned SDOM nodes on
the Web page by rectangles with highlighted borders and allows for serializing
results as XHTML format.

System Efficiency

For evaluating the SXPath system efficiency we have performed experiments
that evidence the practical system behavior for both increasing document and
query sizes.
7 https://developer.mozilla.org/en/XULRunner 1.9.2 Release Notes

154 11 Querying PODs

We have considered: (i) a dummy web page that presents a table with 3
columns and an increasing number of rows; (ii) 3 types of queries, falling in the
SWF, based on: (a) traditional axes and position functions, (b) spatial axes
(both directional and topological) and spatial position functions; (c) a mix of
traditional and spatial axes and position functions. Queries were constructed
using the following simple patterns. For query types (a) and (c), the first query
was given by: “/descendant::TD/following-sibling::TD[1]”. For query
type (b), the first query was given by: “/CD::TD/E::TD[W,1]”. The (i+1)-th
query was constructed by appending the following location paths to the i-th
query: (a) “/following-sibling::TD[1]/preceding-sibling::TD[1]”; (b)
“/E::TD[W,1]/W::TD[E,1]”, and (c) “/following-sibling::TD[1]/W::TD[
E,1]”. For instance, the third query (i = 2) for the spatial query type (b) was
“/CD::TD/E::TD[W,1]/E::TD[W,1]/W::TD[E,1]/E::TD[W,1]/W::TD[E,1]”.
All queries aim at extracting the central column of the table in the page. They
are based on opposite axes (i.e. “at-east” and “at-west”), so they redundantly
jump back and forward within the input documents. Our rationale was that
by this way the query processor must handle many different spatial paths in
parallel coping thus with an intuitively “difficult” query. We illustrate and
compare results for queries falling in SWF.

For evaluating data efficiency of the query evaluator, which is indepen-
dent from SDOM construction, we have used a fixed SWF query having size∣Q∣=167, (where ∣Q∣ is the number of subexpressions in the parse tree of Q).
Then, we have computed the needed query time for increasing documents sizes
from ∣D∣=50 to double the maximum size we found on real-world Web pages,
i.e. ∣D∣=7500 nodes. Fig. 11.6 depicts obtained curves (in log log scale) indi-
cating polynomial time efficiency w.r.t. document size. In particular, curves
slopes are all 1, which indicates linear time behavior. The time needed for
constructing the SDOM is depicted as a straight line on the log log scale
(see Fig. 11.7). In particular, the line slope is 2 indicating quadratic runtime
behavior — as expected. Thus, the runtime requirements for the integrated
system with SDOM construction and query evaluation remains polynomial.

For evaluating query efficiency we tested the whole system with fixed
document sizes (∣D∣=1000, ∣D∣=3000, ∣D∣=6000) and increasing query sizes
(i ∈ [0,30]). Fig. 11.8 depicts obtained curves on a log log scale. For this
experiment time grows linearly with the query size (curves slopes are all 1).
Thus, empirical behavior of the system is better than expected from the SWF
worst case upper bound.

Language Usability

In this section we present experiments aimed at assessing the usability of our
approach and the enhancements provided by SXPath language over XPath 1.0.
For the evaluation we have considered the situation of an expert user aiming at
manually developing web wrappers for Deep and Social Web sites. As for this
expert we assume that s/he has a good command of XPath. S/he visualizes

11.1 SXPath: Spatial Querying of PODs 155

10
2

10
3

10
4

10
1

10
2

10
3

Docs, Log |D|

T
im

e
,
L
o
g
 m

ill
is

e
c

(a) Traditional (c) Mix (b) Spatial

Fig. 11.6. Linear-time Data Efficiency of SXPath Query Evaluation

10
2

10
3

10
4

10
1

10
2

10
3

10
4

Docs, Log |D|

T
im

e
,

L
o

g
 m

ill
is

e
c

SDOM

Fig. 11.7. Quadratic-time Complexity of SDOM Construction

10
0

10
1

10
2

10
3

Query Log #repetitions

T
im

e
,

L
o

g
 m

ill
is

e
c

|D|=1000 |D|=3000 |D|=6000

Fig. 11.8. Linear-time Query Efficiency of SXPath Query Evaluation

156 11 Querying PODs

and explores Web pages by using the SXPath system where the embedded
Mozilla browser is configured using a typical setting for which Web pages are
generally developed (i.e. screen resolution of 1280x800 pixels, browser window
size of 1024x768 pixels, standard font type and dimension). We investigate the
following questions in our evaluation: (1) How robust is the SXPath language
w.r.t. Web browser and visualization parameters variations? (2) How “easy” is
it for this expert to understand and apply SXPath? (3) How suitable is SXPath
for manual wrapper construction, giving the expert the possibility to look
only at the visualized Web page, in comparison to XPath? (4) How suitable is
SXPath for manual wrapper construction, giving the expert full insight into
the SDOM/DOM, when compared against XPath? (5) How transportable
is SXPath across multiple Web sites in comparison to XPath? Experiments
described in the following explore these questions. In the experiments we have
used a dataset of 125 pages obtained by collecting 5 pages per site from 25
Deep Web sites already exploited for testing wrapper learning approaches
[75, 150, 198] (see Tab. 11.5). Experiments have involved ten users who were
students well trained in XPath with no experience in SXPath.

Experiment 1. In this experiment we have explored question (1) by eval-
uating the robustness of SXPath w.r.t. Web browser and visualization pa-
rameters variations. Firstly, considering the dataset of 25 Web sites listed in
Tab. 11.5, we have varied values for screen resolution (i.e. 1280x800, 1024x768,
800x600 pixels), browser window size (i.e. 1024x768, 800x600, 640x480 pixels),
font dimension (i.e. small, standard, large, huge), and font type (i.e. times,
times new roman, tahoma, arial) and tested if the spatial relations between
node change. We have observed that modifications in: (i) Screen resolution and
font type do not cause changes in the spatial arrangement of visualized nodes.
(ii) Browser window size does not affect 20 Web sites (highlighted by “†” in
Tab. 11.5) because they are based on absolute positioning properties, whereas
for 5 sites we have changes in the spatial arrangement of visualized nodes. (iii)
Font dimension affects the spatial arrangement of visualized nodes. In partic-
ular, by using large and huge fonts, visual appearance of Web pages strongly
changes w.r.t. standard font dimension. Thus, modifications in screen reso-
lution and font type do not affect query results, whereas changes in browser
window size and font dimension could affect the query result. However, this
aspect does not impact SXPath usability because the SXPath system: (i) Em-
beds the browser and computes the SDOM real time (i.e. at each changing
of visualization parameters). So, users can query what they see on the screen
at each moment. (ii) SXPath queries are stored with visualization parameter
settings adopted by the user during the query design process. Thus, when a
query is reused on a Web page the embedded browser is set with visualization
parameters for which the query has been designed.

Secondly, we have constructed a dataset of 200 Deep Web pages, present-
ing either data records or tables, randomly selected from the www.completep-
lanet.com web site (the largest portal of Deep Web sites). We have visualized
pages by the four most used Web browsers, i.e. Microsoft Internet Explorer,

11.1 SXPath: Spatial Querying of PODs 157

Mozilla Firefox, Google Chrome, Safari set with default visualization param-
eters and standard window size (i.e. 1024x768 pixels). We have observed that,
even if coordinates returned by different browsers for rectangles bounding vi-
sualized nodes were slightly different, the qualitative spatial arrangement of
visualized SDOM nodes remained stable. Such a result was expected because
rendering rules of most diffused layout engines8 have been strongly standard-
ized as it is possible to verify by tests available in [1]. So, SXPath queries do
not depend on the browser for fixed visualization parameters.

Experiment 2. In this experiment we have investigated question (2) by
evaluating the effort needed for learning SXPath and the feeling perceived
by users in applying the language. We have defined the user task “identify
product data records and extract product names and prices” from the web
site www.bol.de. We have asked users to learn the SXPath language and com-
plete the task by writing a sound and complete SXPath query looking only
at the visualized web page. For learning the language, we have provided users
with a short manual explaining spatial axis and position function behavior.
We have computed both the number of attempts and the time needed by
users for defining the query by using the SXPath system. For evaluating the
level of “easiness” and “satisfaction” perceived by users in learning and ap-
plying the SXPath language, at the end of the experiment, we have asked
users to answer a questionnaire based on the seven-item Likert scale: very
easy/satisfactory (3), easy/satisfactory (2), quite easy/satisfactory (1), neu-
tral (0), quite difficult/unsatisfactory (-1), difficult/unsatisfactory (-2), very
difficult/unsatisfactory (-3).

Tab. 11.4 reports results of the experiment: (i) in column 1 the users
identifiers; (ii) in column 2 the time needed for learning SXPath and manually
writing the assigned query; (iii) in columns 3 and 4 answers provided by users
to the questions “How easy is the SXPath language?” and “What is your level
of satisfaction in using the SXPath language?” respectively. (iv) in columns
5 and 6 the number of attempts that each user needed for writing spatial
location paths for names and prices respectively; (v) in the last two rows the
average values and the standard deviations for all observed values.

We have observed that users have required an average number of 4.3 and
3.6 attempts for recognizing The language was assessed as easy to learn and
quite satisfactory to use (i.e. average values 2, and 1.2 respectively). Since
the system prototype highlights nodes selected by a given SXPath query on
the screen, users were able to refine the query by visually verifying results for
each attempt. For instance, user #9 has written the following spatial location
paths /CD::img/E::text[W,1][N,2], and /CD::img/E::text [N,1][W,2]
for names and prices respectively, by using two attempts for both.

Experiment 3. In this experiment we have explored question (3) by as-
sessing whether spatial information is helpful for a human aiming at manually

8 Trident for Microsoft Internet Explorer, Gecko for Firefox, WebKit for Safari and
Google Chrome

158 11 Querying PODs

#user Time (min) Easiness/ Satisfaction/ #attempts
Difficulty Unsatisfaction name price

1 75 2 0 7 6
2 45 3 2 4 2
3 65 1 1 5 4
4 40 2 1 2 3
5 50 3 2 4 4
6 30 3 3 2 1
7 125 -1 -1 9 8
8 50 2 1 3 4
9 35 3 2 2 2
10 55 2 1 5 2

Average 57 2 1.2 4.3 3.6
σ 26 1.18 1.1 2.2 2

Table 11.4. Evaluation of the Effort Needed for Learn and Apply SXPath

writing Web wrappers. We have asked users to perform the same extraction
task of Experiment 2 by identifying, for each Web site in the dataset and only
by looking at the displayed web pages, the best XPath and SXPath queries
they could achieve by using at the most 5 attempts.

Table 11.5 reports results: : (i) the average number of pairs (product names
and prices) correctly extracted (“Cr.”) using SXPath and XPath in columns 2
and 5 respectively; (ii) in columns 3 and 6 the corresponding average number
of pairs wrongly (Wr.) extracted (false positive – FP/ false negative – FN);
(iii) in columns 4, and 7, the average number of attempts performed by users
for obtaining the most accurate results (the maximal number of attempts
was fixed to 5); (iv) in the last two rows the average recall and precision
respectively. Results indicate average precision of 99% and recall of 100%
for SXPath and average precision of 42% and recall of 99% for pure XPath
1.0. Users were able to define a good SXPath query by using 2 attempts on
average, whereas all the 5 available attempts were not enough for finding a
good pure XPath query for all Web pages in the dataset.

We have investigated the reasons underlying such different levels of effec-
tiveness and have come up with the following observations: (i) SXPath queries
were constructed by using only spatial constructs that allow for quering visual
patterns existing among XML elements that are leaf nodes in the DOM (e.g.
img and text tags) and that help human readers to make sense of document
contents; (ii) few errors arise in SXPath caused by noise nodes that are vi-
sually very similar to the correct ones; (iii) data records in the dataset are
constructed by using mainly the tags: table, ul and div. When the tag used
in the Web site is div, it is very difficult to guess a good pure XPath query;

11.1 SXPath: Spatial Querying of PODs 159

The experiment clearly shows the advantage of SXPath over pure XPath. In
fact, only SXPath makes spatial layout information explicitly available for
querying.

Querying Querying
Without DOM/SDOM With DOM/SDOM

Deep Web Sites SXPath XPath SXPath Abs. XPathRel. XPath
Cr. Wr. Att. Cr. Wr. Att.Att. StepsAtt. Steps Att. Steps

amazon.com ⊙◇ 58 0/0 2.5 43 32.5/15 5 2.5 5.5 6.5 24 13 10
bestbuy.com † 68 0/2 2.2 70 825/0 5 4.2 4.5 3 12.5 2.5 6
bigtray.com ⊙◇ 125 5/0 2 125 130/0 5 4 4.5 3 10 6 7

bol.de † 60 0/0 2 60 15/0 5 2 4.5 3 16.5 3.5 6.5
buy.com † 100 2/0 3.2 100 30/0 5 4.2 5.5 3 19 4.5 8
ebay.com ◇ 258 0/0 3 258 60/0 5 3 5.5 4.5 21 9 7

mediaworld.it †⊙ 125 0/0 2 125 30/0 5 2 5 3.5 21.5 2 5
shopzilla.co.uk †⊙◇ 100 0/0 1.5 100 937/0 5 1.5 4 6.5 23 4 9

apple.com †⊙ 50 0/0 1.4 50 0/0 5 1.4 4 4 14 2 4
venere.com †⊙ 75 0/0 3.2 75 75/0 5 3.2 4.5 3 9 2.5 4
powells.com ⊙ 125 0/0 1.5 125 247.5/0 5 1.5 5 3 11.5 2 4

barnesandnoble.com †⊙ 50 0/0 2.3 50 255/0 5 2.3 4.5 3 15.5 2.5 7
shopping.yahoo.com †⊙ 75 0/0 1.7 75 187.5/0 5 1.7 4 3 21 3 5

cooking.com † ◇ 100 7.5/0 3.2 100 180/0 5 7.2 7.5 8 36 6 9
cameraworld.com †⊙ 125 0/0 2 125 10/0 5 2 5.5 3 11.5 2 4.5

drugstore.com † ◇ 45 0/4 1.5 41 5/0 5 5.5 8 6.5 16.5 2.5 4.5
magazineoutlet.com †⊙ 45 0/0 1 45 125/0 5 1 5 3 21.5 5 9

dealtime.com †⊙ 150 0/0 1 150 20/0 5 1 5.5 3 16 3.5 7
borders.com †⊙ 125 0/0 1.6 125 40/0 5 1.6 6 3.5 18 4 6

google.com/products ⊙ 50 0/0 1.5 50 130/0 5 1.5 5.5 3.5 9.5 2.5 5.5
nothingbutsoftware.com†⊙ 80 0.8/0 2.2 80 55/0 5 4.2 6.5 3.5 28 3 8

abt.com †⊙◇ 200 5/0 1.3 200 0/0 5 2.3 6.5 4.5 27 4 6
cutleryandmore.com †⊙◇ 150 1/0 1.5 150 68/0 5 2.5 5 10 36 4 10

cnet.com †⊙◇ 150 0/0 2 130 0/20 5 2 4 4 17.5 5.5 8
target.com † 50 0/0 3 50 2/0 5 3 5.5 3.5 16.5 2.5 5
Average 2 5 2.7 5.3 4.2 18.9 4 6.6
Total 253527.3/6 25063459.5/35
Recall 100% 99%

Precision 99% 42%

Table 11.5. Usability Evaluation of SXPath on Deep Web Pages.

Experiment 4. In this experiment we have investigated question (4). We
have asked users to perform the same extraction task of Experiment 2 by
identifying, for each Web site in the dataset and looking at both visualized
Web pages and internal page structures (i.e. DOM and SDOM), sound and
coplete XPath and SXPath queries by using at the most 10 minutes. For
writing XPath queries we have provided users by the DOM Explorer of the
SXPath System. DOM explorer visualizes the DOM of a Web page as a tree
and allows for selecting a node in the DOM by clicking on an element in the
rendered Web page and vice versa. This way users were provided with a visual
facility for navigating DOMs of Web pages. This way users were provided with
a visual facility for navigating DOMs of Web pages.

160 11 Querying PODs

Tab. 11.5 gives: (i) in column 8 and 10 the average number of attempts
needed by all users for writing sound and complete XPath and SXPath queries
respectively. For SXPath queries already sound and complete in Experiment 3
users have not defined new queries, so we have reported in column 8 the value
of attempts already observed in column 4. (ii) in column 9, and 11 the average
number of location steps in SXPath and pure XPath queries respectively.
These numbers has been computed as the average between the number of
location steps in location paths that identify product names and prices; (iii)
in column 12, and 13 the average number of further attempts and the average
number of location steps needed for expressing pure relative XPath queries
respectively.

Results (shown in Tab. 11.5) indicate that: (i) For writing queries users
needed 4.2 and 2.7 average attempts for pure XPath and SXPath respectively.
Since the number of attempts is proportional to needed time, a greater number
of attempts indicate that to write queries in pure XPath requires more time
in comparison to SXPath. (ii) In defining pure XPath queries all users have
shown the tendency to write absolute location paths by deeply analyzing the
DOM structure, hence the average number of location steps for pure XPath
and SXPath has been 18.9, and 5.3 respectively. Hence, we asked users to
write queries by using relative pure XPath location paths by using at most 5
minutes. We observed that further attempts needed by users are proportional
to the complexity of the DOM structure.

We have observed that all users have written sound and complete: (i)
XPath queries by using more attempts than for SXPath queries; (ii) SXPath
queries by adding a pure XPath location path to not sound and complete
queries obtained in Experiment 3. XPath Location paths to add have been
selected by users looking at the DOM of the pages and choosing the best node
to use as data record container. Furthermore, all users have noticed that for
some Web sites (highlighted by “◇” in Tab. 11.5) it has been very difficult
to find a sound and complete pure XPath query because of the very intricate
DOM structures that make necessary long disjunctions of location paths. Such
difficulties are due to the fact that data records in these web sites are con-
tained in discontinuous pieces of the DOM (e.g. www.amazon.com), and that
the tag structure representing a given data item can be different from a record
to another (e.g. www.ebay.com), even though records have the same spatial
arrangement in all selected pages. The experiment shows that, nevertheless
both languages have the same effectiveness, writing wrappers for Web pages
by pure XPath is more complex than by SXPath. For manually writing pure
XPath queries users have needed to deeply analyze the intricate DOM struc-
ture for all Web pages, whereas for writing SXPath queries users have mainly
looked at the displayed Web pages, this way data records having complex
internal structures can be easily and completely described by visually defined
manual wrappers. Furthermore, tag structure variety and discontinuities ob-
served in pages DOM are phenomena already known in wrapper induction
literature [198, 75]. Such phenomena requires to induce disjunctions, so they

11.1 SXPath: Spatial Querying of PODs 161

hinder both manual definition of web wrappers and automatic learning of
extraction patterns based on XPath.

Experiment 5. In this experiment we have aimed at answering ques-
tion (5) by evaluating whether SXPath queries are more general and abstract
than pure XPath queries given different Web pages and the same extraction
task. So, given standard browser settings for all Web sites, we have evalu-
ated wether it is possible to reuse a SXPath query written for a given Web
site on other Web sites that present the same information arranged by uni-
form visual patterns. Firstly, we have considered the subset of Web sites in
the dataset that show the same visual pattern for product names. In such
Web pages records are vertically listed. Each record is represented by the
product image that has at east more than one product attribute, the first
attribute from north is the product name. Such Web sites are highlighted by
”⊙” in column 1 of Tab. 11.5. We have observed that the spatial location path
/CD::img[GS|GN::img][GE::* [W,1][N,2][self::text]]/GE::text[W,1
][N,1] is able to identify product names in all these Web sites in a sound and
complete way. In contrast, pure XPath location paths for the same subset of
sites were all completely different and no reuse of code was possible.

Secondly, we have asked users to write a SXPath query aimed at extracting
the list of friends in a social network randomly chosen among those listed in
Tab. 11.6. Then we have asked users to try to apply the same query to other re-
maining social networks in the list. Table 11.6 gives: (i) in column 2 sound and
complete queries defined by user #6 without looking at the (S)DOM; (ii) in
column 3 the pure XPath location paths that allow for extracting friend names
produced by the user looking at the DOM. Even though the internal tag struc-
ture of various social networks differ strongly (so different pure XPath queries
are needed), all users have been able to use almost the same SXPath query
for all social network Web sites. The queries have the following simple ba-
sic structure: /CD::text[.=‘‘Amici" or .=‘‘Friends"]/CR::*[CR,1]/CD
::img/GS::*[N,1]. The SDOM node containing friends list is recognized as
the container that either contains the string ‘‘Amici’’ or ‘‘Friends’’. Then
friend names are spatially recognized as the first nodes that lie at least in the
south tile (spatial axis GS, and spatial predicates [N,1]) of an image. The va-
riety of location paths produced by users, looking at the DOM, and listed in
Tab. 11.6 indicates the large heterogeneity of internal tag structures observed
for different social networks. This experiment points out that SXPath allows
for more general and abstract queries, that are independent from the internal
structure of Web pages, in comparison to XPath. Hence, SXPath queries are
reusable when information are presented by the same visual pattern.

Experiments provide a strong evidence for believing that humans aiming
at manually defining Web wrappers and manipulating Web pages, may benefit
from using SXPath navigation instead of pure XPath navigation. Moreover,
the transportability of SXPath queries from one Web site to the next simplify
manual definition of Web wrappers and can also support wrapper induction
from sparsely annotated data, while the lack of such transportability observed

162 11 Querying PODs

Social Queries
Networks SXPath Pure XPath
facebook /CD::text[.="Amici"]/ //div[@id=’profile friends box

CR::*[CR,1]/CD::img/GS::*[N,1] inner content’]/div//div/div/div/a

youtube /CD::text[.="Amici"]/ //div[@id=’user friends’]//
CR::*[CR,2]/CD::img/GS::*[N,1] div[1]/div/center/a

netlog /CD::text[.="Amici"]/ //div[@id=’nicknameFriends’]/
CR::*[CR,2]/CD::img/GS::*[N,1] div/div/a[2]

care /CD::text[.="Friends"]/ //td[@id=’col right’]//
CR::*[CR,1]/CD::img/GS::*[N,1] table[1]/tbody/tr[1]/td/a[2]

bebo /CD::text[.="Friends"]/ //div[@id=’content Friend’]/
CR::*[CR,2]/CD::img/GS::*[N,1] ul[2]/li/span[2]/a

Table 11.6. Generality of SXPath Queries on Social Network Sites

for pure XPath is detrimental for both manual wrapper definition and wrapper
induction.

11.2 Spatial Grammars 163

11.2 Spatial Grammars

In this Section we present a query language, named ViQueL, that allows for
querying information contained in PODs, on the base of their spatial arrange-
ment. The language is based on context free grammars extended by spatial
constructs, named Spatial Grammars (SG). A query on a POD is constituted
by a set of spatial production rules (s-rule) of a SG. Basically s-rules describe
how to spatially compose CIs (see Definition 9.6) in order to identify mean-
ingful content structures (e.g. repetitive records, tables, etc.). A SG takes a
POD as input, and parsers the POD modeled by the 2-D flat representation
9.2. The parsing strategy extends the CYK parsing algorithm (See Section
2.3) so that spatial directions are considered.

In the following, syntaxt and semantics of the ViQueL language is pre-
sented, also by using some running examples. Then, the implemented parsing
technique is described, complexity is discussed and experimental results are
shown.

11.2.1 Syntax and Semantics

In the following we give by example and intuitive explanation of Spatial Lan-
guage capabilities and features. Examples describe how users can pose query
by considering visual cues that they see on the screen without considering the
internal document representation. We will use angular brackets in order to
indicate non terminal symbols, whereas uppercase letters for naming terminal
symbols. Each terminal symbol of the SG refers to a specific type of CI (see
Definition 9.6), whereas each non terminal symbol will specify a Composite
CI (see Definition 9.7).

Example 11.23. The Web page shown in Figure 9.6 is a typical answer of Deep
Web pages, in which are contained a set of repetitive records. In Figure 11.9
is highlighted one of its records. Dashed rectangles depict CIs and Composite
CIs. The spatial arrangement of CIs, and the type of their contents, help
human readers to immediately understand the meaning of the record. For
identifying and extracting all records in that page, the user could pose the
following SG query, expressed in EBNF.

1. <record> W→ IMG <description>

2. <description> E→ <textDesciption> TEXT+

3. <textDesciption> N→ TEXT TEXT

Rule 1 describes the whole record, which is identified by an image and
a description on West (W). A description (rule 2) is composed by a textual
description and an horizontal sequence (E) of features that are represented by
text. A textual description (rule 3) is the name of the product on top of (N)
a descriptive text.

164 11 Querying PODs

! !"#$!%& &"#$"%#&'()*")+,! ! ! ! !%"'#!()*($+&& &&&&&&

!

!

-./!! ! 0120! ! !!!!!!!0120! ! ! ! ! 0120! ! !!0120! ! !!!!!!!0120! !

Fig. 11.9. Basic and inferred CIs of a data record of the Ebay Web Page (Fig. 9.6).

Example 11.24. Figure 2.6 depicts information in tabular form contained in a
PDF document. In the figure each CI is highlighted by using rectangles with
solid sides. In the following we show a query that allows for recognizing the
table.

1. <table> S→ <header> <body>

2. <header> E→ TEXT+
3. <body> S→ <row>+

4. <row> W→ TEXT <values>
5. <values> E→ PERCENT NUMBER+

The rule 1 recognizes the table as an header on top of a body. Rule 2
identify the header of the table as a sequence of text-type CIs. Whereas
the body (rule 3) is a vertical sequence of rows. Each row is obtained by
composing, along the west direction, a text-type CI and numerical values.

Example 11.25. In this example we consider the New York Times Web page
shown in Figure 11.10 where rectangles with Solid Sides Highlights CIs that
Identify a News. Each Rectangle is annotated by the CI type. Each news
is composed by a title in blue text (bluetext-type CI), optional names of
authors in gray text (graytext-type CI), a block of plain text (text-type
CI), and sometimes an image (img-type CI).

Frequently significant information is visualized following specific visual
patterns that help to interpret its meaning. A SG query that allows for iden-
tifying and extracting most relevant news by means visual patterns is show
in the following.

1. <news> N→ <title> <authors>? <article>
2. <title> → BLUETEXT
3. <authors> → GRAYTEXT

4. <article>
W ∣W ∶B→ TEXT IMG?

The rule 1 allows for recognizing a news composed by a vertical sequence
of a title, an optional CI (the symbol “?” is used) that represents authors, and
the newspaper article. Rule 2 and 3 can be interpreted as is a relations. Rule 4
represent the body of a news that is represented by flat text and optionally by

11.2 Spatial Grammars 165

Fig. 11.10. The New York Times Web page.

an image. The MBR of the image could overlap (W:B) the region of the text.
Such a query, written in EBNF, exploits some CI types recognized during the
document preprocessing step: text-type that represents plain text, number-
type that represents integer and floating point numbers (text-type is more
general than number-type), percent-type that represents percentage and it is
a sub type of number.

Formally, ViQueL queries are expressed by spatial production rules (s-
rules) of a Spatial Grammar (SG) defined as follows.

Definition 11.26. A spatial grammar is a 5-tuple of the form:

SG = (Σ,N,S,Rcard,Π)
where:

• Σ is a set of terminal symbols that corresponds to CI types and identifies
all the CIs the 2-D flat model.

• N is a set of nonterminal symbols that identifies Composite CIs (see Def-
inition 9.7).

• S ∈ N is the grammar axiom.
• Rrec is the set of basic cardinal direction relation introduced in Section 9.1.
• Π is a finite set of spatial production rules (s-rules) of the form A

dir→ β,
where: A ∈ N , β ∈ (Σ ∪N)+, and dir ∈ (Rcard)∗.

Σ, N , are disjoint and finite sets .

A nonterminal symbol allows the annotation of CCIs. In the current imple-
mentation, only s-rules of the form form A

dir→ νβ and A→ν, where: A ∈ N ,
ν, β ∈ (Σ ∪N), and dir ∈ (Rcard)∗ are permitted. It is noteworthy that, with-
out less of generality, rules having as spatial direction a disjunctive RCRs (like

166 11 Querying PODs

in rule 4 of the example 11.25) are not implemented. They are syntactic sugar,
in fact, they correspond to alternative s-rules (e.g. <article>W→ TEXT IMG?

and <article>
W ∶B→ TEXT IMG?). Moreover, in the current implementation, in

order to compose CCIs, only spatially continuos CIs are considered .

Definition 11.27. Let cci = ⟨Γ,α⟩ be a CCI, where α = ⟨r−xγ
, r−yγ

, r+xγ
, r+yγ
⟩,

then the set of CIs contained in Γ are spatially contiguous iif α do not overlaps
with other CIs not in Γ .

A rule of the form A→ν, where ν ∈ V , and A ∈ N allows for creating a CCI
corresponding to a CI identified by the terminal symbol ν. This operation
constitutes a generalization of the terminal ν into the nonterminal A, and at
the same time a transformation of the CI related to ν into the CCI related
to A. Rules of the form A

dir→ ν β, where ν, β ∈ Σ, and A ∈ N , compose
the two contiguous CIs related to the terminal symbols ν and β, along the
direction specified by the relation dir→ , in order to obtain a new CCI A having
the structure described in Definition 9.7. S-rules having the form A

dir→ BC,
where A,B,C ∈ N , compose the sets ΓB and ΓC of CIs in the CCIs related to
the nonterminals B and C respectively, in order to obtain a new CCI having
coordinates computed as specified in Definition 9.7. Similar considerations can
be done for rules that combine terminal and nonterminal symbols.

By taking into account the concept of composed content item we can now
give the semantic of the ViQueL language in terms of the semantic of a spatial
grammar.

Definition 11.28. Semantic of ViQueL queries. Let Q be a ViQueL query
(i.e. a SG grammar), let σ be a content structure (i.e. a sentence in the
language L(Q) of Q), let D be a set of CIs that constitutes the 2-D model of
a POD, and let D∗ be the ”spatial closure” of D (i.e. the set of all possible
CCIs that can be obtained by properly composing spatially contiguous CIs in
D), the semantic function P ∶D →D∗ is P !Q" ∶= {σ ∈D∗∣S ⇒∗Q σ}, where the
relation⇒∗Q is computed by means of the spatial CYK algorithm.The algorithm
works by associating the set Σ of CI types and the set N of CCI identifiers to
terminal and nonterminal symbols in Q respectively.

In the following we present the spatial CYK (SCYK) algorithm that com-
putes ViQueL queries. SCYK extends the CYK algorithm (see Section 2.3)
by: (i) the ability to manipulate two-dimensional CIs and CCIs associated to
terminal and nonterminal symbols of the spatial grammar respectively; (ii)
some techniques borrowed from Early parsing algorithm. In the following we
present the pseudo-code of the SCYK algorithm. In the algorithm the CNF-
like normal form is adopted defined as follows (Definition 11.29), because it
allows a more intuitive pseudo-code. It is possible and easy to extend the
algorithm to parse any type of rules.

11.2 Spatial Grammars 167

Definition 11.29. A SG is in SG-normal form if all its production rules are
either in the form A

dir→ BC, or A → ν where A,B and C are non-terminals,
while ν is a terminal symbol. Production of type A→ ν are called unary spatial
production rules.

The algorithm takes as input a SG Q and a set of CIs D. In instruction 1
the algorithm creates two ordered sets Lx and Ly that contain coordinates r−x
and r−y of all CIs ∈D respectively. It is noteworthy that in the worst case sizes
n = ∣Lx∣ and m = ∣Ly ∣, can be at most equal to the size of the document ∣D∣.
But in real cases both ∣Lx∣ and ∣Ly ∣ have a size smaller than ∣D∣. In instruction
4 s-rules in Q are acquired in the set RS. Instruction 6 assigns to RSU all
unary s-rules in RS. In instruction 7 non unary s-rules are split in two subsets
RSH and RSV that contain rules of the type V

dir→ XY , where dir is a RCR
that expresses basic or multi-tiles relations obtained from the subsets of basic
RCR {E, SE, NE, W, SW, NW , B} for RSH and {N, NW, NE, S, SE, SW
, B} for RSV (see Section 9.1). Instructions 8 and 9 generate tables T1 and
T2 respectively. This two tables are handled by using dynamic programming.
Indices in the first four positions of T1 and T2, namely i2, i1, j2, and j1 identify
the CCI having as bottom-left vertex (Lx[i2], Ly[j2]) and as top-rigth vertex(Lx[i2 + i1], Ly[j2 + j1]). The last position in table T1 contains a nonterminal
symbol.

The general idea which guides the algorithm is that elements in T2 repre-
sent CCIs by the corresponding coordinates, while elements in T1 are boolean
values that state if a given nonterminal symbol V in the grammar is as-
sociated to the corresponding CCI in T2 (it is noteworthy that a CCI can
have different associated nonterminal symbols). Instruction 10 creates a two-
dimensional table I where elements I[i1, j1] contain a set of couples < i2, j2 >
which indicate that the CCI in T2[i2, i1, j2, j1] is not null. Instruction 11 cre-
ates the table res that represents the result of the algorithm (i.e. the set of
CCIs that satisfies the axiom S in the grammar Q). Instruction 12 initializes
tables T1, T2, and I by using the set D of input CIs and the set RSU of unary
s-rules. The initialization procedure works as follows: if an area having as ver-
tices (Lx[i2], Ly[j2]) and (Lx[i2 + i1], Ly[j2 + j1]) contains only one CI, the
couple < i2, j2 > is added to I[i1, j1] and T2[i2, i1, j2, j1] is filled by entering
coordinates of that CI. Let ν be a CI type (i.e. a terminal symbol), then for
each unary rule V → β, where β isa ν (isa is computed by using the taxon-
omy of CI types), element T1[i2, i1, j2, j1, V] is set to true (such an operation
corresponds to the generation of a CCI for each initial CI). Remaining values
in tables T1, T2 and I are computed in the main loop (instructions 13-36).
CCIs of increasing sizes are discovered by iterating with the two most exter-
nal cycle by using indexes i1 (to increase length) and j1 (to increase height)
in instructions 13 and 14 respectively. Two different internal loops are then
used in order to find larger CCIs in horizontal and vertical directions respec-
tively, by merging contiguous CCIs. In instruction 15 each iteration uses pairs< i2, j2 > in the entry I[i1, j3] of table I (instruction 16) in order to consider

168 11 Querying PODs

Algorithm 13: Spatial CYK
Input : A SG Q and a set D of CIs (i.e. the document)
Output: A set of CCIs that satisfy the grammar Q

< Lx, Ly > = createOrderedCoordinateSets(Q);1

n = ∣Lx∣;2

m = ∣Ly ∣;3

RS =getRuleSet(Q);4

R = getNonTerminalNumber(RS);5

RSU = getRuleSet(RS);6 < RSH ,RSV > = splitRuleSetByDirection(RS −RSU);7

createTable T1[n,n,m,m,R];8

createTable T2[n,n,m,m];9

createTable I[n,m];10

createSet res;11 < T1, T2, I >=initialize(D,RSU);12

for i1 ← 1 to n do13

for j1 ← 1 to m do14

for j3 ← 1 to j1 − 1 do15

indexSet = I[i1, j3];16

foreach < i2, j2 > ∈ indexSet do17

if j2 + j1 ≤m then18

for i3 ← i1 downto 1 do19

verify(i2, i1, j2, j1,i1, j3, i2, i3, j2 + j3, j1 − j3,20

T1, T2,RSV , res);
end21

end22

end23

end24

for i3 ← 1 to j1 − 1 do25

indexSet = I[i3, j1];26

foreach < i2, j2 > ∈ indexSet do27

if i2 + i1 ≤ n then28

for j3 ← j1 downto 1 do29

verify(i2, i1, j2, j1,i3, j1, i2 + i3, i1 − i3, j2, j3,30

T1, T2,RSH , res);
end31

end32

end33

end34

end35

end36

return < res, T1 >;37

11.2 Spatial Grammars 169

Procedure verify(i2, i1, j2, j1,i1
′
, j1

′
,i2

′′
, i1

′′
, j2

′′
, j1

′′
, T1, T2,RS, res)

p1 = Q[i2, i1′ , j2, j1′];1

p2 = Q[i2′′ , i1′′ , j2′′ , j1′′];2

if p2 ≠ null then3

foreach V
dir→ XY ∈ RSV do4

c1 = T1[i2, i1′ , j2, j1′ ,X] ∧ T1[i2′′ , i1′′ , j2′′ , j1′′ , Y] ∧ (p1 dir p2);5

c2 = T1[i2, i1′ , j2, j1′ , Y] ∧ T1[i2′′ , i1′′ , j2′′ , j1′′ ,X] ∧ (p2 dir p1);6

if c1 ∨ c2 then7

T1[i2, i1, j2, j1, V]← true;8

update(T2[i2, i1, j2, j1]);9

if V is axiom then add(res, T2[i2, i1, j2, j1]);10

end11

end12

break;13

end14

each existing CCI cci1 having width equals to ∣Lx[i2 + i1]−Lx[i2]∣ and height
equals to ∣Ly[j2 + j3]−Ly[j3]∣. The inner cycle (Instruction 19 and procedure
verify in instruction 20) takes (if exists) the widest CCI cci2 contiguous to
cci1. It is necessary to iterate from i1 to 1 with index i3 because we have
to consider also inclusion relations (B) between two CCIs. If we don’t con-
sider inclusion relation we can take as contiguous CCI cci2 the one having as
corners (Lx[i2], Ly[j2 + j3]) and (Lx[i2 + i3], Ly[(j2 + j3), (j1 − j3)]). If such

CCI exists the algorithm examines each rule V
dir→ XY ∈ RSV . If values of the

two elements in T1 referring to (cci1,X) and (cci2, Y) are true and cci1 is at
dir to cci2 then T1[i2, i1, j2, j1, V] is set to true and value of T2[i2, i1, j2, j1]
is set to the proper dimension of the CCI. If V is the start symbol in Q, the
CCI just found is added to the result set res. Specular operations are done
in the second sub-loop in order to evaluate s-rules in RSH . At the end the
algorithm returns the set res containing founded CCIs and the table T1 that
can be used for generating the query (grammar) parse tree by a trace-back
procedure.

11.2.2 Complexity Issues and Experiments

The parsing strategy is an ad hoc extension of the CYK parsing algorithm.
Despite a considerable expressive power, combined complexity of ViQueL is
in P-Time.

Considering that the CYK algorithm has polynomial complexity bound
O(∣w∣3 ⋅ ∣G∣) (See Section 2.3), where ∣w∣ is the string size and ∣G∣ is number
of nonterminals in the grammar, the increased expressiveness of spatial gram-

170 11 Querying PODs

mars w.r.t. traditional CFG leads only to moderate increase in worst case
computational complexity as shown in the following.

Theorem 11.30. Let D be the SDM of a presentation-oriented document,
the evaluation of a ViQueL query Q, performed by Algorithm 13, requires
space O(∣D∣4 ⋅ ∣Q∣) and time O(∣D∣6 ⋅ ∣Q∣), where ∣D∣ and ∣Q∣ are the size of
the document in terms of CIs and the size of the query in terms of SPRs
respectively.

Proof. Space complexity. Memory usage of the algorithm corresponds to the
size of table T1. In table T1, R represents the number of nonterminals in the
query Q, so the space complexity is O(m2 ⋅ n2 ⋅R). Since the number of non
terminals can be at most ∣Q∣, and in the worst case we have that m = n = ∣D∣.
The space complexity bound O(∣D∣4 ⋅ ∣Q∣) follows.

Proof. Time complexity. Filling ordered sets Lx and Ly can be done in
O(∣D∣ ⋅ lg(∣D∣)). Comparisons in the algorithm can be all done in constant
time using appropriate data structures. Remember also that m and n are both
bounded by ∣D∣. Operations concerning splitting of SPRs in Q are done in lin-
ear time, i.e. O(∣Q∣). Initialization procedure can be performed in O(∣D∣2 ⋅ ∣Q∣).
Main loop is clearly the part of the algorithm that takes more time. Proce-
dure verify is manifestly in O(∣Q∣). The maximum number of couple < i2, j2 >
that can be contained in a element I[i1, j1] of table I is O(m ⋅n), in the worst
case scenario we have O(∣D∣2)) because m = n = ∣D∣. So time complexity in
the worst case is computed as O(n ⋅m ⋅ (m2 ⋅ n ⋅ (n ⋅ ∣Q∣) + n2 ⋅m ⋅ (m ⋅ ∣Q∣)))= O(n3 ⋅m3 ⋅ ∣Q∣). By considering the size of the input document ∣D∣ the com-
bined time complexity bound O(∣D∣6 ⋅ ∣Q∣) follows.

If we don’t consider the inclusion spatial relation B (see Section 9.1), then
we don’t need iterations over n or m before the verify procedure. In this
case complexity lowers to O(n2 ⋅m2(m ⋅ ∣Q∣ + n ⋅ ∣Q∣)), i.e. O(∣D∣5 ⋅ ∣Q∣). In the
average case the number of couples < i2, j2 > in I[i1, j1] is very low, typically
O(1). By these assumptions average case complexity is O(n2 ⋅m2 ⋅ ∣Q∣), i.e.
O(∣D∣4 ⋅ ∣Q∣), considering inclusion relations and O(n ⋅m ⋅ (m ⋅ ∣Q∣ + n ⋅ ∣Q∣)),
i.e. O(∣D∣3 ⋅ ∣Q∣), without.

In Figure 11.11 are shown results of experiments carried out for empirically
verify Theorem 11.30. We ran experiments on a Windows 7 machine with 2,53
GHz Intel core-duo processor and 4 GB of RAM. We considered the table and
the query in Example 11.24 and linearly increased their sizes by adding table
rows and dummy rules respectively. Figures 11.11a and 11.11b show required
space and time for document sizes that grown from ∣D∣ = 25 to ∣D∣ = 1020.
Figures 11.11c and 11.11d show required space and time considering query
sizes form ∣Q∣ = 10 to ∣Q∣ = 108. Curves in the figures refer to normalized
values and has been drown in loglog scale. Experiments show that required
space in the average case is linear w.r.t. both the size of Q and D, while
required time, in the average case, is linear w.r.t. the size of Q and polynomial
(with a degree smaller that in the worst case) w.r.t. the size of D. In Example
2 the system takes about 200 milliseconds for recognizing the table, so the

11.3 Discussion 171

implemented system results effectively usable in real cases. We have, also,
performed usability experiments by asking 10 user to learn the language and
apply it for extracting tables and data records from a dataset composed of 5
PDF documents and 5 web pages. Experiments have shown that the language
is easy to learn and that can by intuitively applied for real extraction tasks.
We don’t give further details about usability experiments for lack of space.

Fig. 11.11. Results of Experiments

11.3 Discussion

In this Section has been presented the SXPath and the ViQueL languages.
SXPath extends XPath to include spatial navigation into the query mecha-
nism. ViQueL is founded on spatial grammars that are obtained by combining
classical context free grammars and qualitative spatial reasoning constructs.
Both languages allow for querying presentation-oriented documents on the
base of their visual appearance.

172 11 Querying PODs

The SXPath language uses navigational primitives based on spatial alge-
bras. Queries are evaluated over the extension of the XML document object
model (DOM), i.e. the SDOM. The theoretical complexity of the extended
query language has also been evaluated. Furthermore, the theory has been
implemented in a SXPath tool. Empirical evaluation has been performed for
testing its performances and functionality. Results on representative real web
pages have evidenced practical applicability of SXPath. The language can
still be handled efficiently, yet it is easier to use and allows for more general
queries than pure XPath. The exploitation of spatial relations among data
items perceived from the visual rendering allows for shifting parts of the in-
formation extraction problem from low level internal tag structures to the
more abstract levels of visual patterns. The SXPath query language will be
a stepping stone for future work on extracting information from Web pages.
Can be argued that SXPath could improve both human and automatic ca-
pabilities in querying and extracting information. For instance, the popular
LIXTO system [75], which allows users to visually define web wrappers, uses
XPath patterns and depends on internal HTML tag structure. It could ex-
ploit SXPath in order to leverage visual patterns as desired by authors of
[19]. Furthermore, SXPath can be profitably applied in information extrac-
tion approaches that make use of pages as rendered by a web browser like the
one proposed in [72]. SXPath, in fact, could allow existing wrapper induction
and web table extraction approaches (e.g [72] and [198]) to circumvent com-
plex internal representation of web page that hinder extraction rules learning.
The new navigational primitives can be used for building of and automated
learning of wrappers. In particular, SXPath could be used for: (i) defining
novel wrapper induction techniques that learn web wrappers by exploiting
the regularity of visual patterns. In particular, SXPath can be seen as a query
language for spatial graphs (i.e. the SDOM), so different keygraph searching
techniques (see [166] for a survey and [149, 200]) could be applied in order to
learn subgraphs that represent data records in a deep web pages. (ii) describ-
ing relationships between data entities, such as in this paper, or for co-learning
ontology and data extraction, such as discussed in other recent papers [126].

The main feature of ViQueL is that it allows for easily defining visual
queries that enable to recognize complex content structures in both HTML
and PDF documents. ViQueL queries are computed by the SCYK algorithm,
a spatial extension of the well known CYK algorithm. Despite the increased
expressiveness of spatial grammars, the complexity of the SCYK algorithm
remains in P-Time. Furthermore, experiments prove that the algorithm is
efficient and usable in real-life cases with satisfactory results. The proposed
approach can be improved by adopting a stochastic extension to SGs in order
to better manage ambiguous queries. The ViQueL language can be combined
with graph based representation of Web pages (i.e. the SDOM), and with
inductive approaches that allow for learning ViQueL wrappers from portions
of documents visually selected by users. This way no manual code writing will
be required to the users.

12

Semantic Information Extraction

Nowadays, there is a growing interest in ontologies that are expected to extend
current information technologies capabilities. Ontologies enable to directly en-
code domain knowledge in software applications, so ontology-based systems
can exploit the meaning of information for providing advanced and intelligent
functionalities, such as information extraction. In this chapter an approach
that allows the semantic extraction of information from PODs, named eX-
traction ONTOlogies (XONTO), is presented. It enables to use ontologies for:
(i) describing in a combined way semantic and syntactic structure of informa-
tion to extract; (ii) providing the schema in which extracted information can
be directly stored during the extraction process; (iii) extracting information
from both natural language (flat text) and 2-dimensional spatial arrangement,
such as tables, infoboxes, etc.

The ontology-based system XONTO is founded on the idea of self-
describing ontologies(SDOs), which bring together : the expressive power
of ontologies, the spatial grammar with attribute formalisms and the 2-
dimentional document model. A SDO is an ontology in which objects and
classes can be equipped by a set of rules, named descriptors, Descriptor are
object-oriented spatial grammar rules that describe how automatically recog-
nize and extract ontology objects contained in PODs, also when information
is arranged in tabular form. Thus a SDO, expresses the semantic of the in-
formation to extract and the rules that, in turn, populate itself. In order to
allow for extracting information having valuable spatial arrangement, such as
tabular form, the SDO takes as input PODs represented by the 2-D document
model (see Section 9.2).

In order to yield the actual semantic of a SDO, i.e. recognize and extracting
information, two approaches are used: (i) The first approach, implemented in
XONTO-L system, exploits the logic representation of ontologies and encodes
the spatial grammar into logic rules, and then infer new objects by means the
reasoning process. It has been published in [137, 139, 143]. (ii) The second
approach, implemented in XONTO-G system, extends existing efficient pars-

174 12 Semantic Information Extraction

ing algorithms for CFGs, in order to parse by means descriptors PODs taken
as input. It has been published in [138].

The remainder of this chapter is organized as follows. Section 12.1 describes
the SDO approach and shows a running example. The XONTO-L and the
XONTO-G system are described in the Section 12.2 and 12.3 respectively.

12.1 Self-Describing Ontologies – SDO

The XONTO system implements the self-describing ontology (SDO) ap-
proach. In the following the formal structure and the syntax of SDOs is
presented. To facilitate SDO approach understanding a running example re-
garding the extraction and storing of information on weather, coming from
the page depicted in Figure 10.1, is described. Weather information are col-
lected and used by different scientific institutions to study forecast models
and weather changes at global level.

Definition 12.1. A SDO is a triple:

SDO = ⟨OZ ,∆, δ⟩
where:

• OZ = ⟨D,A,C,R, I,⪯, σ,ϕ, ι⟩ is an ontology (see Section 2.4.1);
• ∆ is a the set of descriptors and it is expressed by the tuple ⟨SG,Attr,Func,

Pred⟩ that represents an attribute grammar (see Section 2.3) in which
SG = ⟨Σ,N,S,Rcard,Π⟩ is its underlying Spatial Grammar (SG). A SG
is defined in Definition 11.26.

• δ ∶ Ic ∪C → ∆, where Ic ∈ I are class-instances, is the descriptor function
that associates an object i in Ic or a class c in C with its descriptor.
In particular, δ(i) is called object descriptor while δ(c) is called class
descriptor.

The ontology OZ is obtained extending Datalog by object-oriented con-
structs, such as, class, object andinheritance, see Section 2.4.1.

The peculiarity of the SDO paradigm is that elements OZ and ∆ are
strictly coupled. In fact, in SDO classical attribute grammars has been ex-
tended by means of object-oriented features and 2-dimensional capabilities,
as follows.

• Sets N and Attr in ∆ coincide with the set of classes (C ∪ I) and of of
attributes (A) inOZ respectively. That is, nonterminal symbols correspond
to oid and class names defined in OZ .

12.1 Self-Describing Ontologies – SDO 175

• Let a ∈ Attr(Y) be an attribute of a nonterminal symbol Y ∈ N , then t is
the type of a if and only if such type is specified in the schema of the class
Y , that is ⟨a, t⟩ ∈ σ(Y). That is, when a nonterminal symbol correspond to
a class name in OZ its attributes are constituted by the attributes of the
corresponding class defined in OZ . When a nonterminal symbol correspond
to an oid no attributes are defined.

• Only synthesized attributes (see Section 2.3) are used in Attr, in fact at-
tribute values of a nonterminal in the head of a descriptor are derived only
considering values of nonterminal in the body.

• Funcions have the form of an instruction in imperative programming. Each
function assign a value (i.e. oid or data-type value) to a variable that, in
the left-side, represents a synthesized attribute. Set Func contains arith-
metic expressions, string expressions, list expressions.

• Predicates are constraints, on the attributes values of nonterminal symbols
contained in the right-side, expressed by means of queries on OZ . Set Pred
contains: (i) comparison predicates on integers, strings or lists; (ii) decision
queries on O+

Z
that extend OZ by new instances (generated during the ex-

traction process); (iii) a default predicate (associated to each production)
checking whether computed attribute values are consistent with respect toO+

Z
.

• Production rules are expressed in EBNF notation.

SDO approach is obtained by extending the DLP+ ontology representa-
tion language (see Section 2.4.1) by means of object and class descriptors.
DLP+ enables to represent an ontology, descriptors allow to recognize on-
tology objects within PODs, extract and directly store them in the ontology
itself. Descriptors exploit some advanced constructs that enable to deal with
2-dimensional information arrangement (i.e. tables). The XONTO system be-
side the complete and expressive ontology representation language DLP+,
uses also powerful reasoning capabilities over represented knowledge provided
by the DLV+ system [109, 158]. A SDO allows to represent extensional and
intensional aspects of domain knowledge by means of ontology schemas and
their instances.

12.1.1 Logic 2-D Representation

In order to allow the process that yields the actual semantic information
extraction provided by the XONTO system, the 2-D model of PODs, which
also supply the full-text processing results (i.e. MBRs, strings, tokens, NL
properties, presentation features etc. – see Section 9.2), is directly stored as a
part of the SDO instances itself. In the following default SDO schemas used
to internally represent objects directly obtained from the input document and
some examples of instances are shown.

MBRs and 2-dimensional strings, obtained as output of the pre-processing
of PODs documents described in Section 9.2, are stored in the SDO by means
of classes mbr, and maxString.

176 12 Semantic Information Extraction

class mbr(contains:maxString).
@2:mbr(@2ms).
@4:mbr(@4ms).
...

class maxString(str:string).
@2ms:maxString(str:"South at 8.0 mph").
@4ms:maxString(str:"$ Tornado Warning").
...

Class mbr gathers objects representing not overlapped MBRs obtained dur-
ing pre-processing. The attribute contains:maxString of the class mbr allows
to express which is the string contained in a given MBR. Class maxString
collects strings contained in MBRs.

class element()
class token(txt:string) isa {element}.
@68torW:token(txt:"Tornado").
...

class image(uri:string) isa {element}.
@78imTorW:image(uri:"C:\figures\tornadoWarning").
...

Class token collects objects representing: (i) sub-strings recognized during
the pre-processing by matching, on strings, regular expressions defined in the
SDO; (ii) tokens obtained by applying the tokenizer of a NLP tool on strings.
Class image collects images contained in the input document, the attribute
uri:string refers the physical position where the image has been stored
during the pre-processing.

The semantic IE approach implemented in the XONTO system exploits
general linguistic knowledge coming from already existing named entity the-
saurus and semantic networks (e.g WordNet [63]), or created using a GUI
(e.g. regular expressions inherent a given knowledge domain can be defined
and classified by hand). Such a linguistic knowledge is represented and stored
in special areas of a SDO, named dictionaries, having as root the class
dictionaryPattern. Just a small taxonomy of a dictionary that allows to
recognize meteorological information is sketched in the following.

class dictionaryPattern(regex:string,mode:integer,delimiters:integer).
class dNumber() isa {dictionaryPattern}.

class dFloat() isa {dNumber}.
float_001:dFloat("[-+]?\d+(?:\.\d+)?",2,1).
...

class unitOfMeasure(symbol:string) isa {dictionaryPattern}.
class temperatureUnit() isa {unitOfMeasure}.

fah_001:temperatureUnit("Fahrenheit"|"F").
...

class velocityUnit() isa {unitOfMeasure}.
mph_001:velocityUnit("miles per hour|mph",2,1,"mph").
...

12.1 Self-Describing Ontologies – SDO 177

class fractionUnit () isa {unitOfMeasure}
percent_001:fractionUnit("%|perc(?:ent)?",2,1).
...

class dCardinalPoint() isa {dictionaryPattern}.
n_001:dCardinalPoint("north|n",2,1,"N").
...

class dMeteorologicalWord() isa {dictionaryPattern}.
cloudy_001:dMeteorologicalWord("cloudy",2,1).
clear_001:dMeteorologicalWord("clear",2,1).
cloud_001:dMeteorologicalWord("cloud",2,1).
...

class dWeatherWarning() isa {dictionaryPattern}.
torn_001:dWeatherWarning("tornado warning",2,1).
...

class dCity() isa {dictionaryPattern}.
chicago_001:dCity("chicago",2,1).
...

In the class dictionaryPattern attributes regex:string, mode:integer
and delimiters:integer respectively represent regular expression used to
identify the dictionary entry, matching mode (default value 2 is the case in-
sensitive mode) and the flag delimiters (default value 1 means that standard
token-delimiters are used to match a regular expression on document strings).

In the XONTO internal document representation the relation defBy as-
sociates, as shown in the following, regular expression patterns that are in-
stances of the class dictionaryPattern to tokens recognized by matching
related regular expression.

relation defBy(token:token, regex:dictionaryPattern).

Linguistic and presentation features of text are stored in the following
SDO relations which tuples are created at pre-processing time by exploiting
a NLP tool.

relation hasNLProperties(tok:token, lemma:string, pt:pos_tag).
hasNLProperties(tok:@68torW, lemma:"tornado", pt:NN).
...

relation hasStyle(tok:token, style:charStyle).
relation hasLink(e:element, uri:string).

For each token obtained from the pre-processing: (i) Relation hasNLPro-
perties stores its lemma and POS-Tag computed by analyzing 2-dimensional
strings by means of an existing NLP tool [34]. The hierarchy pos tag allows,
for example, to describe verb tense and plurals associated to tokens. The hier-
archy reproduces the standard Penn Treebank tag set. (ii) Relation hasStyle
stores presentation features by using an internal representation of styles which
class charStyle is the root. (iii) Relation hasLink stores the URI when the
image or the token has a link in the document. In the following pos tag and
charStyle hierarchies are shown.

178 12 Semantic Information Extraction

class pos_tag().
class noun(num:string) isa {pos_tag}.

NN: posTag (num:"singular").
NNS: posTag(num:"plural").

class verb(tense:string) isa {pos_tag}
VB: verb(tense:"base form").
VBD: verb(tense:"past tense").

...

class charStyle().
class fontType(name:string) isa {charStyle}.

arial:fontType(name:"Arial").
tnr:fontType(name:"Times New Roman").
...

class fontStyle(name:string) isa {charStyle}.
bold:fontStyle (name:"Bold").
italic:fontStyle (name:"Italic").
...

class fontSize(ptValue:float) isa {charStyle}
fs12:fontSize (ptValue:12).
fs14:fontSize (ptValue:14).
...

class colour(hexValue:string) isa {charStyle}
red:charColour(hexValue:"FF0000").
blue:charColour(hexValue:"0000FF").
...

Furthermore, to exploit coordinates during the reasoning process, the
XONTO system stores positions (spatial coordinates) of objects extracted
at pre-processing time by the following set of predefined relations.

relation mbr_coord_2d(b:mbr, x1:integer, y1:integer, x2:integer,
y2:integer).

mbr_coord_2d(@04,1,32,4,33)
...

relation token_coord_1d(o:token, ms:maxString, char1:integer,
char2:integer).

token_coord_1d(@68torW,@4ms,2,9)
...

relation image_coord_1d(o:image, ms:maxString, char1:integer,
char2:integer).

image_coord_1d(@78imTorW,@4ms,0,1)
...

MBRs hold as described in Section 9.2 hold 2-dimensional coordinates.
Whereas, tokens and images are strings stored in a maxString, their positions
are defined by the positions of the initial and final character in the maxString.

12.1 Self-Describing Ontologies – SDO 179

12.1.2 Object and Class Descriptors

The peculiarity of SDO is the ability to express grammatical rules describing
patterns of ontology objects and classes that allow for automatically recog-
nizing ontology objects in SDOs. Roughly speaking, descriptors are rules that
describe how information can be extracted from PODs, and stored as ontology
objects. The main important feature of descriptors is that they can exploit
each other in describing concepts, so each ontology object can be described by
the composition of other objects. This mechanism reproduce natural language
behavior in which terms having a given meaning (semantics) are combined,
by means of the grammatical rules of a given language, for expressing more
complex concepts.

Descriptors are production rules where the right-side (descriptor-body)
constitutes an (extraction) pattern which recognition in a document means
that the object in the left-side (descriptor-head) either: exists in the docu-
ment (object descriptor) or can be extracted and stored as a class instance
(class descriptor).

As defined in Definition 12.1, descriptors represent attribute grammars ex-
tended by means of 2-dimensional composition capabilities (because they ex-
ploit Spatial Grammars capabilities, Definition 11.26, and furthermore short-
cut constructs are provided) that enable to recognize and extract information
having also tabular form.

From a syntactical point of view, a descriptor d ∈∆ has the following form:
h

dir→b, where dir represents a direction as described in SG definition (Definition
2.3), or a special construct [] that allow for expressing tabular arrangement
of objects, or a topological containment relation CD. In particular, using [],
the object in the head constitutes spatially a grid where each row (or column)
has the structure represented by the body b. Whereas, h CD→ b1 b2 expresses
that the object represented by the nonterminal b2 is spatially contained in
the object represented by the nonterminal b1.

In the following are presented a subset of descriptors needed for semanti-
cally extracting the table contained in the document shown in Figure 10.1. The
object sterling is recognized in an input document when a specific token de-
fined by the regular expression sterling 001 is identified. The corresponding
descriptor follows:

<sterling> -> <T:token(),defBy(T,sterling_001)>. (1)

Object descriptors like (1) allow for recognizing the already declared instance
of the class city. When the dictionary instance sterling 001 is matched
in the document the related object is recognized in the same position. It
is noteworthy that descriptors having oid in the head (object descriptors)
act just as recognition rules (object attributes are already set). Whereas,
descriptors having a class name in the head can either create new objects by
setting attribute values on the base of document contents, or recognize objects
already declared for the class.

180 12 Semantic Information Extraction

The following descriptor allows to extract instances of the class temperatu-
re described as a sequence of number and unit of measure of temperature.

class temperature(value:float,unit:string).
<temperature(V,U)> -> (2)

<T:token(S),defBy(T,X),X:dNumber()>{V:=#str2float(S);}
<T:token(),defBy(T,X),X:temperatureUnit(symbol:S)>{U:=S;}.

The following class descriptor allows to recognize a percentage by using
the dictionaryPattern percent 001.

class percentage(value:float).
<percentage(value:V)> -> (3)

<T:token(S),defBy(T,X),X:dNumber()>{V:=#str2float(S);}
<T:token(),defBy(T,percent_001)>.

Weather descriptions are recognized by using the following class descrip-
tors that exploit NLP capabilities.

class weatherTerm(term:string)
<weatherTerm(WT)> -> (4)

<T:token(S),hasNLProperties(tok:T,p:"JJ")>{WT:=S;}?
<T:token(S),hasNLProperties(tok:T,lemma:L),

dMeteorologicalWord(regex:L)> {WT:=WT+S;}.

class weatherDescription(descr:string).
CD

<weatherDescription(D)> --> (5)
<MS:maxString(S)>{D:=S;} <T:weatherTerm()>.

The descriptor weatherTerm is a general linguistic pattern which means
that a “weather term” is a string composed by an optional adjective follows
by a meteorological word (e.g. “Mostly Cloudy”, “Clear”). The descriptor
weatherDescription is represents the whole string of a MBR which contains
weather terms. As mentioned above, this kind of production rules (CD→) check
spatial containment between the first and the second object. On flat text, such
productions, act essentially as a substring operator.

To recognize the table and store it in structured form the following de-
scriptors are needed. The first descriptor describes how is composed a record,
the second defines a table as a sequence of such records.

class weatherRecord(wCity:city,wWarns:warnings,wTemp:temperature,
wHumid:percentage,wPress:pressure,wDescr:weatherDescription,
wWind:wind).

EE|ES
<weatherRecord(C,Wa,T,H,P,D,Wi)> ----> (6)

<X:city()>{C:=X;} <X:warnings()>{Wa:=X;}
<X:temperature()>{T:=X;} <X:percentage()>{H:=X}
<X:pressure()>{P:=X;} <X:weatherDescription()>{D:=X;}
<X:wind()>{Wi:=X;}.

12.2 XONTO-L: Logic-Based System for Extracting Objects 181

class weatherTable(records:[weatherRecord]).
[EE|ES]

<weatherTable(R)>------> (7)
<X:weatherRecord()>{R:=@addLast(X);}+.

A weatherRecord is the sequence of objects described in the body.

The descriptor is obtained by using the symbol
EE∣ES→ which means that

2-dimensional coordinates of objects must be considered in constructing a
record. When is 1-dimensional (i.e. it is recognized as a substring), the MBR
that contains it, is automatically considered. Furthermore a record is recog-
nized either as horizontal or vertical objects sequence.

The descriptor weatherTable describe a table as a sequence of one or

more records in either horizontal or vertical direction. The construct
[EE∣ES]→ ,

that is the combination of the symbol [] and the directions EE∣ES, assures
that the table is obtained by concatenating (either horizontally or vertically)
records that have the same internal structure (i.e. records composed of objects
of the same types in the same order). So such a kind of descriptors allows to
extract a table and its transposed analogous. Other constructs can be used
to enable the recognition of tables, also when they contains unknown objects
and/or null values.

It is worthwhile noting that by using only 1-dimensional coordinates the
system allows to recognize and extract objects contained in flat text by ex-
ploiting also NLP capabilities. While by adopting 2-dimensional coordinates
the system allows to recognize tabular presentation of information. Thus, by
combining 1 and 2-dimensional capabilities complex information arrangement
can be managed.

12.2 XONTO-L: Logic-Based System for Extracting
Objects

The logic-based approach of XONTO (XONTO-L) implements a compiling
and reasoning strategy that exploits the logical 2-D representation of PODs
and the SDO opportunely rewritten in terms of logical programs (see Section
2.4) in order to yield the actual semantic and extracting information from
PODs. In the following the prototypical implementation of the XONTO-L
system is described. The prototype XONTO-L is built on top of the DLV+
(see Section 2.4.1) system that allows to represent SDOs and to yields the
actual information extraction from PODs by executing logic programs that
implement descriptors. As shown in Figure 12.1 the system prototype, that
implements the SDO approach, is constituted by the following modules: Doc-
ument Analyzer, Descriptors Compiler, Rules Selector and Reasoning Engine.

In the XONTO-L system the SDO taked as imput is compiled by the
Descriptors Compiler in DLP+ object-oriented logic rules. An IE process is

182 12 Semantic Information Extraction

Fig. 12.1. Architecture of the XONTO System

composed by the following steps: (i) PODs pre-processing. In this step the
XONTO internal document representation of PODs shown in Section 12.1.1
is obtained by the Document Analyzer. (ii) Query analysis and rules selection.
In this step the user ask for the extraction of one or more concepts from PODs.
The input query, the ontology and the logic program encoding descriptors are
analyzed be the Rules Selector that provides the minimal. (iii) Reasoning.
In this step rules are applied on the input documents. Reasoning result is a
SDO+ that is the original SDO augmented by concept instances extracted
from the input document. It is worthwhile noting that a SDO can be used for
many extraction processes where are used different documents and/or queries.
In the following the behavior of each system module is described in detail.

Document Analyzer

The Document Analyzer takes in input a POD (e.g. a PDF document) and
dictionary patterns contained in the SDO. The POD is analyzed in order to
construct the 2-D Representation, described in Section 12.1.1. In particular,
the document analysis consists in: (i) the identification of CIs (ii) the matching
of dictionary pattern on obtained strings; (iii) the extraction of presentation
features directly acquired by using HTML node attributes or PDF metadata;
(iv) the tokenization of available strings in CIs and the acquisition, for each
token, of linguistic features (i.e. POS-Tag and lemma) by means of a NLP
tool.

Descriptor Compiler

The Descriptor Compiler takes in input a SDO and rewrites all the descriptors
in term of DLP+ object-oriented logic rules. This section describes founda-
tions of the adopted compiling process.

To understand Descriptor Compiler behavior the first aspect to take into
account is that the set of descriptors of a SDO constitutes an attribute CFG

12.2 XONTO-L: Logic-Based System for Extracting Objects 183

extended by 2-dimensional capabilities. Since the backbone of descriptors is a
CFG for recognizing ontology objects from PODs a parsing strategy is needed.
The XONTO system adopts a parsing technique based on the Aumented Tran-
sition Networks (ATNs) (see Section 2.3). In the XONTO-L system ATNs
are enriched by object-oriented capabilities. Such structure is named Object-
Oriented Augmented Transition Network (OO-ATN) and are constituted by a
collection of transition networks that mutually call each other. In particular in
OO-ATNs: (i) each transition network corresponds to a single nonterminal in
the grammar and has a unique name; (ii) transition network arcs are labeled
either by class names or object identified (i.e. nonterminal symbols) and hold
functions and/or predicates; (ii) each transition network path, from the start
state to the final state, corresponds to a rule for such a nonterminal, and the
sequence of arc labels in the path is the sequence of symbols in the descriptor
body (i.e. grammar rule).

XONTO parsing strategy has a RTN backbone. Naive RTN-parsers re-
cursively attempts to find a path through the RTN starting from the axiom
by using backtracking approaches [121]. So this kind of parsers could require
exponential-time. More efficient parsing algorithms like Early or CYK [61, 56]
are dynamic programming algorithms that can be implemented by inference
systems with time complexity O(n3), where n is the number of symbols in
the input (See Section 2.3.2).

For this reason the Descriptor Compiler produces RTNs based on logic
programs of an inference system (i.e DLV+) that adopt a dynamic program-
ming approach. Such an approach, by eliminating the repetitive solution of
sub-problems inherently in backtracking techniques, reduces the problem of
parsing a string by means of RTNs to polynomial-time. However an inference
system iterates over all values of all free variables for each rule and for every
instance of a rule of a logic program [57]. Thus, in order to optimize the parser,
the Descriptor Compiler creates logic programs that avoid to apply unneces-
sary rules and iterate over free variables. More in detail, the compiler rewrite
each grammar rule as a set of logic rules (one for each state of the transition
network that represent the grammar rule). Thus, natural joins among chain
of free variables are avoided. Furthermore final transition networks, produces
by Descriptor Compiler, are deterministic, have the minimal set of nodes and
transitions, and have no epsilon transitions.

Figure 12.2 depicts the RTN that encods the descriptors number (6) that
call the transition network related to the descriptor (7). In the figure transition
networks related to nonterminals in descriptor (7) are not shown.

In the following the logic program that encodes the transition network
weatherTable drawn in Figure 12.2 is shown.

weatherTable_finState_2d(’v’,X1,Y1,X2,Y2):-
weatherRecord_coord_2d(X,’h’,X1,Y1,X2,Y2).

weatherTable_finState_2d(’v’,X1,Y1,X2,Y3):-
weatherTable_finState_2d(’v’,X1,Y1,X2,Y2),
weatherRecord_coord_2d(X,’h’,X1,Y2,X2,Y3).

184 12 Semantic Information Extraction

Fig. 12.2. A sample of some transition network aimed to recognize a weather table.

weatherTable_finState_2d(’h’,X1,Y1,X2,Y2):-
weatherRecord_coord_2d(X,’v’,X1,Y1,X2,Y2).

weatherTable_finState_2d(’h’,X1,Y1,X2,Y2):-
weatherTable_finState_2d(’h’,X1,Y1,X2,Y2),
weatherRecord_coord_2d(X,’v’,X2,Y1,X3,Y2).

The previous program shows how coordinates of objects are handled during
the parsing process. In fact, it enables to recognize both horizontal and vertical
tables as required by grammar rules expressed by means of the descriptor (7).
In particular, a weatherTable finState is obtained by concatenating either
exclusively horizontal or exclusively vertical weatherRecord. It is worthwhile
noting that object coordinates are handled by using, for each object, an ad
hoc relation that link the object with its coordinates. Schemas of such kind of
relations are created by the Descriptor Compiler during compiling. Relations
that hold coordinates are also arranged in taxonomies by following taxonomies
of linked object. This way to represent and manage object coordinates allows
to reduce the running time.

In order to fully compile descriptors the Descriptors Compiler enriches the
RTNs by adding functions and predicates to transition networks arcs. Figure
12.3 depicts a fragment of the ATN obtained by compiling descriptor (7).

For instance, the transition network related to the descriptor number (7)
(Figure 12.3) is translated by the Descriptors Compiler in the following logic
program.

weatherTable_finState_2d(R,’v’,X1,Y1,X2,Y2):-
weatherRecord_coord_2d(X,’h’,X1,Y1,X2,Y2), R:=#addLast(X,[]).

weatherTable_finState_2d(R1,’v’,X1,Y1,X2,Y2):-
weatherTable_finState_2d(R,’v’,X1,Y1,X2,Y2),
weatherRecord_coord_2d(X,’h’,X1,Y2,X2,Y3), R1:=#addLast(X,R).

12.2 XONTO-L: Logic-Based System for Extracting Objects 185

Fig. 12.3. Fragment of the OO-ATN aimed at recognizing and acquiring information
about weather tables.

weatherTable_finState_2d(R,’h’,X1,Y1,X2,Y2):-
weatherRecord_coord_2d(X,’v’,X1,Y1,X2,Y2), R:=#addLast(X,[]).

weatherTable_finState_2d(R1,’h’,X1,Y1,X2,Y2):-
weatherTable_finState_2d(R,’h’,X1,Y1,X2,Y2),
weatherRecord_coord_2d(X,’v’,X2,Y1,X3,Y2), R1:=#addLast(X,R).

ID:weatherTable(R):-
weatherRecord_finState_2d(R,_,X1,Y1,X2,Y2),
ID:=#getID("weatherTable",R).

weatherRecord_coord_2d(ID,DIR,X1,Y1,X2,Y2):-
weatherRecord_finState_2d(R,DIR,X1,Y1,X2,Y2), ID:weatherTable(R).

This program is the RTN previously presented enriched by functions
that assign values to attributes. Functions are implemented by built-in (e.g.
R:=#addLast(X,[])) executed at run-time outside of the logical program by
invoking imperative external procedures. In the previous example when a table
is recognized and final state verified the built-in #getID("weatherTable",R)

186 12 Semantic Information Extraction

is executed in order to assign an (oid) to the new object. The (oid) is com-
puted by considering class type and attribute values.

In Figure 12.3 the fragment of the ATN that allows to recognize objects of
the class city (descriptor (1)) is also depicted. It is worthwhile noting that this
example shows how semantic capabilities of the SDO approach are concretely
exploited in the XONTO system. In fact, a call the transition network of
the nonterminal city correspond to a call to all transition networks of the
instance of the class city.

Rules Selector

The module Rule Selector takes in input user queries, the ontology and the
OO-ATN obtained from the Descriptors Compiler and constructs the final
logical program to execute by means of the Reasoning Engine. The module
starts from the non-terminal symbols contained in the user queries (start-
ing concepts), and explores semantic and logic dependencies among classes
and objects in the ontology. For each class the set of logical programs im-
plementing its class and objects descriptors are selected and gathered in a
single logical program. The obtained program can be run by the Reasoning
Engine for yielding the extraction of objects asked by means of user queries.
For instance, the query X:weatherTable([L])? can be used to return weather
tables contained in PDF document like that show in Figure 10.1.

Reasoning Engine

The Reasoning engine is constituted by DLV+ system (See Section 2.4.1)
[158] which in turn is founded on the DLV system [109, 58].

The Reasoner takes in input the logical program created by the Rule
Selector and the internal representation of the PODs created by the Doc-
ument Analyzer. It provides the set of objects recognized within the doc-
ument (both objects already existing in the SDO and extracted from the
document itself) as asked in the user query. For example the previous query
X:weatherTable([L])? returns the following set of instances:

@113:weatherTable(records:[...,@107,...]).
@107:weatherRecord(wCity:sterling,wWarns:@4ws,wTemp:@4tem,wHumid:@7hum,

wPress:@6pr,wDescr:@7des,wWind:@6wind).
sterling:city(name:"Sterling",population:15451,inState:illinois).
@4ws:warnings(warns:["Tornado Watch",...]).
@4tem:temperature(value:86.7,unit:F).
@7hum:percentage(value:100).
@6pr:pressure(value:29.58, unit:in, trend:falling).
@7des:weatherDescription(descr:"Mostly cloudy").
@6wind(dir:S, value:8.0, unit:mph). ...

12.3 XONTO-G: Grammar-Based System for Extracting Objects 187

Instances returned in output can be serialized by using XML, RDF, etc.
and used for many analytical and/or semantic-based applications. It is note-
worthy that annotation can be performed automatically because coordinates
associated to all objects extracted are known. Thus the XONTO system en-
ables also documents annotation.

12.3 XONTO-G: Grammar-Based System for Extracting
Objects

The grammar-based approach of XONTO (named XONTO-G) compiles a
SDO in a pure grammatical production and perform a parsing strategy that
exploits the logical 2-D representation of PODs and the SDO opportunely
rewritten in terms of grammatical productions in order to yield the actual
semantic and extracting information from PODs.

In this section the prototypical implementation of the XONTO-G system
is described. Features and behavior of the prototypical implementation of the
XONTO-G system are illustrated by means of a running example: the Web
page shown in Figure 12.41, the Cartesian plane and MBRs are depicted in
Figure 12.5. Moreover, the tractability of the grammatical approach is proven.

Figure 12.6 shows the prototype architecture. A SDO is used for many
ontology population processes that are sequences of the following steps: pre-
processing, 2-D matching, population. The input of a population process is
constituted by a SDO produced by the compiler, an unstructured document
and a user query. The output is the SDO+ that is the original SDO aug-
mented by concept instances extracted from the input document. Compiling,
2-dimensional matching and population phases are described in the following.
Whereas preprocessing phase is equivalent to the document analyzing accom-
plished by the XONTO-L system and already described in Section 12.2.

In the following the behavior of each system module is described in detail.
For semplicity but without of generability, spatial production rules of descrip-
tors will consider only horizontal and vertical direction of concatenation,
and containment.

Compiler

The compiler translates a SDO in pure grammatical terms. Descriptors are
extraction rules that constitutes an abstract way for expressing ∆ productions
extended by objects and 2-dimensional capabilities.

In order to formally define language the L(SDO), we extend SG =⟨Σ,N,S, Rcard,Π⟩ and ∆ = ⟨SG,Attr,Func,Pred⟩ by SG⪯ = ⟨Σ,N,S,Rcard,
Π⪯⟩ and AG⪯ = ⟨SG⪯,Attr,Func⪯, P red⟩, respectively, making use of OZ

in such a way that: (i) Π⪯ = Π ∪ {c1 → c2 ∣ c1, c2 ∈ C, c2 ⪯ c1}; (ii)
1 http://weather.yahoo.com

188 12 Semantic Information Extraction

Fig. 12.4. Yahoo Chicago Weather Page

Fig. 12.5. Cartesian Plane and MBRs for the Table contained in Figure 12.4

12.3 XONTO-G: Grammar-Based System for Extracting Objects 189

Fig. 12.6. Architecture of the SPO System Prototype.

Func⪯(p) = {c1.a:= c2.a ∣ ⟨a, t⟩ ∈ σ(c2) for some type t}, for each production
p ∶ c1 → c2 in Π⪯ ∖Π.

Definition 12.2. Grammar AG⪯ is equivalent to SDO, that is L(SDO) =L(AG⪯).
In the following examples, descriptors allow for recognizing and extract

object of the class weatherTerm.

class weatherTerm(descr:string).

sunny:weatherTerm("sunny").

<sunny> -> <T:token(), hasLemma(tok:T,lemma:"sunny")>.(12.1)
shower:weatherTerm("showers").

<shower>-> <T:token(),hasLemma(tok:T,lemma:"shower")>.(12.2)

The descriptor of the class weatherTerm exploits linguistic capabilities. For
instance, it allows to recognize the object sunny when in the text a token with
lemma "sunny" is present.

The object descriptor number (12.1) is translated in term of AG⪯ produc-
tion rules as follows:

WEATHERTERM0 → TOK SUNNY1, id(0):=sunny, value(0):="sunny",

##hasLemma(id(1),"sunny").
TOK SUNNY0 → ‘sunny’, id(0):=#newID(), value(0):="sunny".(12.3)
TOK SUNNY0 → ‘sunnier’, id(0):=#newID(), value(0):="sunnier".

TOK SUNNY0 → ‘sunniest’, id(0):=#newID(), value(0):="sunniest".

In this production the attributes id and value of the non terminal
WEATHERTERM are set respectively to sunny(constant in Oz) and "sunny"
(string) by using the related functions when the predicate ##hasLemma(id(1),
"sunny") answers that the string recognized in the document has as lemma the

190 12 Semantic Information Extraction

word sunny. This predicate is executed by the 2-D matcher because lemmas
depend from the position of a word in a string.

The following descriptors allow to recognize and extract object of the
classes temperaturesPair and temperature.

class temperaturesPair(high:integer, low:integer).

<temperaturesPair(high:H, low:L)> -> {integer TMP;}
<temperature(value:T)> {TMP:=T;}
<T:token(), defBy(T,rx lowHigh)> (12.4)
<temperature(value:T)> {H:=#max(TMP,T); L:=#min(TMP,T);}
SEPBY <blankSequence>.

class temperature(value:integer).

<temperature(value:V)> ->

<T:token(value:S),defBy(T,rx d2)>{V:=#str2int(S);}(12.5)
<T:token(value:"○")>.

A weather temperature object is a sequence of a number (with two digits)
and the symbol ‘○’. The function #str2int converts a string in the corre-
sponding integer value. The objects recognized by means of the temperature

descriptor, are exploited by the descriptor of the class temperaturesPair that
describes a sequence of: a temperature, a token and a second temperature all
separated by a blankSequence object. The construct SEPBY is “syntactic sugar”
and expresses that each couple of objects must be separated by one or more
blank characters. The higher and the lower temperatures are calculated in
procedural mode.

The object descriptor number (12.5) is translated in term of production
rules as follows:

TEMPERATUREPAIR0 → TEMPERATURE1 SEPARATOR2 TOK RX LOWHIGH3

SEPARATOR4 TEMPERATURE5,

id(2) == blankSequence, id(4) == blankSequence
high(0):=#max(value(1), value(5)),
low(0):=#min(value(1), value(5)).

TOK RX LOWHIGH0 → ‘low’, id(0):=#newID(), value(0):= "low".(12.6)
TOK RX LOWHIGH0 → ‘high’, id(0):=#newID(), value(0):= "high".

TOK RX LOWHIGH0 → ‘min’, id(0):=#newID(), value(0):= "min".

TOK RX LOWHIGH0 → ‘max’, id(0):=#newID(), value(0):= "max".

12.3 XONTO-G: Grammar-Based System for Extracting Objects 191

This production is labeled as ”horizontal” because it express an horizon-
tal sequence of the non-terminals in left side. In particular, TOK RX LOWHIGH

non terminal represents tokens defined by the regular expression trans-
lated in standard AG productions. Predicates #max(value(1), value(5)) and
#min(value(1), value(5)) are evaluated by the populator because they do not
depends from positions.

2-D Matcher

2-D matcher, shown in Figure 12.7, is composed by two main sub modules:
selector and parse tree builder.

Fig. 12.7. Module 2-Dimentional Matcher of the SPO System Prototype.

Selector takes in input the user query and AG⪯. It starts from the non-
terminal symbol contained in the user query (start concept), explores AG⪯ in
order to identify the subset of productions AG⪯ that constitutes the grammar
that has as axiom the start concept. Then the AG⪯ labeled dependency graph
(AGLDG⪯) is built up. As shown in Figure 12.8 for the weather forecast exam-
ple, each node of the AGLDG⪯ is equipped by a label that expresses which kind
of spatial check must be executed.

Parse tree builder takes as input the document representation generated
by the preprocessor, the AG⪯ and the AGLDG⪯ . The output of the parse tree
builder are all the admissible parse tree ofAG⪯ obtained by applying a suitable
variant of the bottom-up version of Earley’s chart parsing algorithm (See
Section 2.3) that is able to handle strings contained in the 2-dimensional
document representation. Figure 12.9 shows a sketch of the output AG⪯ parse
tree corresponding to the encompassed area of the AGLDG⪯ shown in Figure
12.8 when the user query is X : weatherForecastTable([L])?.

In XONTO-G we consider the following rescrictions: The set Func con-
tains arithmetic expressions, string expressions, list expressions and all the
functions that allow to manipulate attribute values in P-TIME. Furthermore,

192 12 Semantic Information Extraction

Fig. 12.8. Labeled Dependency Graph

Fig. 12.9. A sketch of the parse tree resulting from the query
X:weatherForecastTable()?

let p be any production in SDO, then each attribute in the right-hand side of
p appears at most once in all the expressions of Func(p). In the following the
polynomial complexity of the approach is proven.

Lemma 12.3. Let t be any parse tree2 of AG⪯ and x(t) the string that yields
t such that ∥x(t)∥ = n. Then, each attribute value in t has length O(n).
Proof. Let x1, . . . , xk be the attributes of AG⪯. Without loss of generality, we
assume to deal with attributes on strings. Given a node v in t, we denote by∥v∥ the length of the string obtained concatenating all the attribute values in
v. Since any attribute can be exploited at most once in all the functions of a
production, then ∥v∥ ≤ c+ ∣x1

1∣+ . . .+ ∣x1
k ∣+ . . .+ c+ ∣xh

1 ∣+ . . .+ ∣xh
k ∣ holds, where

2 Note that t could also be invalid for AG⪯.

12.3 XONTO-G: Grammar-Based System for Extracting Objects 193

any xj
i is attribute xi in the jth child of v (0 ≤ i ≤ k), and c is the length

of the longest (constant) string in Func⪯. So the rise in length of each node
is at most k ∗ c and size(t) ≤ ∣N ∣ ∗ (2n − 1) where ∣N ∣ is the number of AG
non-terminal symbols, then ∥ρ(t)∥ ≤ k∗c∗ ∣N ∣∗(2n−1) where ρ(t) is the root
of t. Clearly any attribute value in t has length O(n).
Definition 12.4. Given a SDO in which AG⪯ is unambiguous, then problem
og-parse is defined as follows. Given an input string w, does w belong toL(AG⪯)?
Theorem 12.5. SDO-parse is P-complete.

Proof. (Membership) Let w to parse for membership in L(AG⪯). Since G⪯
is unambiguous, so if w ∈ L(G⪯), there exists exactly one parse tree t forG⪯. Then, all the functions in Func⪯ related to the nodes of t can be com-
puted from the leaves of t to its root. The union of OZ with the new ob-
jects generated in t composes O+

Z
. Hence, for each non-leaf node v0 of t,

having children v1, . . . , vh, are evaluated the related predicates. In particular,
to each query ⟨p(X1, . . . ,Xn),Q⟩ in v0 corresponds the evaluation of expres-
sion C(O+

Z
) ∪Q ⊧ p(z1, . . . , zn), where z1, . . . , zn are attribute values of node

vi (0 ≤ i ≤ h). Consider now that t is generated in polynomial time, and all
functions are polynomial time computable. Moreover, let D = C(O+

Z
)∖ C(OZ)

the ground facts representing the new objects, then D is polynomial in the
size of w as shown in the proof of by Lemma 1. Therefore, since decidingQ ∪ D ⊧ p(z1, . . . , zn) is P-complete [45] when Datalog query Q is fixed,
whereas database D and atom p(z1, . . . , zn) are an input (data complexity),
then C(OZ) ∪D ∪Q ⊧ p(z1, . . . , zn) is polynomial in ∥w∥ because C(OZ) andQ are fixed while p(z1, . . . , zn) and D are an input.

(Hardness) It is enough to notice that since decidingQ∪D ⊧ p(z1, . . . , zn)
is P-complete, so C(OZ) ∪ D ∪ Q ⊧ p(z1, . . . , zn) is P-hard, then og-parse
cannot be easier.

Populator

The populator, takes all the admissible parse trees as input. For each of them
it evaluates functions that assign values to object attributes (including OIDs)
and predicates that are queries on the SDO that check if obtained objects
are allowed for SDO. If the check goes well, obtained objects are added to the
initial SDO in order to produce the SDO+. It is noteworthy that if new objects
are added to SDO then a subset of the strings in input constitutes a language
for L(AG⪯). By considering the user query X :weatherForecastTable([L])?

new objects added to the initial SDO are shown in the following.

@t_001:weatherForecastTable(weathers:[@wf_01,@wf_02,@wf_03,@wf_04,@wf_05]).
@wf_01:weatherForecast(day:@wday_03,descr:@tok_max09_01,hTemp:79,lTemp:59).
...
@wf_05:weatherForecast(day:@wday_07,descr:@tok_max23_01,hTemp:78,lTemp:61).

194 12 Semantic Information Extraction

@wday_03:weekDay(day:"Thursday").
@tok_max_09_01:tok_maximun(value:"Mostly Sunny").
...
@wday_07:weekDay(day="Monday").
@tok_max_23_01:tok_maximun(value:"Sunny").

12.4 Discussion

In this section the ontology-based system for semantic IE from PDF docu-
ments, named XONTO, has been presented. The Self-Describing Ontologies
paradigm (SDO), which the system is founded on, has also been described
by means of a running example, and its tractability has been proved. The
paradigm brings together: the expressive power of ontologies, the Spatial
Grammar with attribute formalisms, and the Spatial document model. This
approach allow for: exploiting semantics represented in a Knowledge Base in
ordert to recognize information organized in both textual and tabular form,
and directly storing extracted information in a Knowledge Base as classes in-
stances (i.e. objects). So, the most interesting feature of XONTO system is
that it exploits the knowledge represented in an ontology for extracting in-
formation and populate the ontology itself with objects extracted from PDF
documents. XONTO system enables to turn in structured form unstructured
information. This way extracted information can be queried and analyzed by
means of already existing techniques coming from the database world. Fea-
tures of the XONTO system empower unstructured information management
capabilities of existing applications for creating valuable solutions for enter-
prises.

13

Visual Information Extraction

This chapter aims at showing how novel approaches, models and algorithms
described in previous chapters have been implemented in order to pro-
vide to final users better visual capabilities in extracting information from
presentation-oriented documents. In the following will be first shown the SX-
Path and SILA systems visual features that enable to query and extract infor-
mation from Deep Web sites by using visual capabilities. Then functionalities
for wrapping information and tables from PDF documents of the PDF-TREX
system will be explored. 1

13.1 Visual Fetuares in the SILA and SXPath System

The visual interface of the SXPath and SILA system is shown in Figures 13.1
and 13.2. They embeds the Mozilla Firefox browser 2 and includes several win-
dows, such as: (i) the browser window that renders web pages and enables to
both visually select the area of a Web page for which the user intend to define
a wrapper and visually show wrapper obtained by induction; (ii) a DOM tree
window that shows the HTML DOM tree of the current web page rendered by
the browser; (iii) a navigation window that allows the user to inspect and ma-
nipulate navigation and extraction actions needed for a complete information
extraction task. A mapping window can be open on demand by the user for
inspecting the structure wrappers and defining mappings of extracted records
to specific XML structures. (iv) a query windows (see Figure 13.1) that allows
for writing SXPath queries and shows the textual results (visual results can
be highlighted on the document in the browser window as well as saved in
other document format, such as XHTML and XML).
1 Features shown in this section are used in the context of the spin-off company

Altilia srl (www.altiliagroup.com) of the Italian National Research Council that
builds semantic technologies in the field of content management and text analyt-
ics.

2 http://www.mozilla.org/

196 13 Visual Information Extraction

Fig. 13.1. Visual Interface of the SXPath System

Fig. 13.2. Visual Interface of the SILA System

13.1 Visual Fetuares in the SILA and SXPath System 197

Fig. 13.3. Visual Selection of a Data Record for Wrapper Learning

Fig. 13.4. Data Records Identified by the Visual Wrapper

198 13 Visual Information Extraction

In Figure 13.3 is shown how users can select a portion of a page for which
they need to define a wrapper. By using only the mouse they can select an
object that intend to extract. The system automatically selects the portion of
the SDOM related to the visualized area and defines the wrapper. Wrappers
can be composed either as: (i) a set of SXPath rules that allow for identifying
the portion of the page by using its visual structure; or as (ii) a set of pro-
ductions of the SGG describing the spatial arrangement of elements that the
user intent to extract by the wrapper. Navigation actions needed for reaching
a specific Web page, filling Web form, and obtaining desired pages or lists of
data records on multiple pages, can be visually registered navigating the Web
by the embedded browser. An ad hoc component of the system is aimed at
registering user actions and made them repeatable. Extraction rules for pages
containing multiple data records can be automatically learned by the SILA
algorithm and stores as extraction actions. In this case the system visually
show to users the set of records that can be extracted by using learned ex-
traction rules. Navigation and extraction actions can be edited, modified and
stored by users. Furthermore actions can be automatically executed in order
to perform navigation and extraction tasks in batch mode.

Visual navigation and extraction features are very powerful and allow users
to write no code for defining complex extraction tasks.

13.2 Visual Features in the PDF-TREX System

The visual interface of the PDF-TREX system is shown in Figure 13.5, it em-
beds the PDFBox PDF rendering library 3, and the Open Office spreadsheet4.
The interface includes a main menu, a tool bar, and some windows, such as:
(i) the explorer window that allow for browsing the file system in order to
find PDF document to process; (ii) the PDF rendering window that visual-
izes opened PDF documents. This window is interactive because it show to
users recognized tables and text areas by graphical grids. Furthermore users
can modify the result of an automatic table extraction task simply by using
mouse clicks on the visualized grids. So users can merge tables, remove table
rows and columns, add table by specifying to the system the area in which
a table must be found, etc. It is worthwhile nothing that by using this win-
dows users can specify extraction template (wrappers) to use multiple times
on multiple documents. Users have just to draw rectangles by using mouse
clicks. This way the wrapping design process is completely visual. Moreover,
the system is able to suggest a possible wrapper by using a wrapper induc-
tion approach for PDF document. Wrappers suggested by the system can be
edited and modified by users using only mouse clicks; (iv) the spreadsheet
window that visualizes tables recognized and extracted on PDF documents.

3 http://pdfbox.apache.org/
4 http://www.openoffice.org/

13.2 Visual Features in the PDF-TREX System 199

For each document opened in the PDF rendering window there is a tab in the
spreadsheet that contain recognized tables. Extracted tables ca be saved in
HTML, XLS, XML, CSV format.

Main menu and tool bar allow for performing system actions on visual-
ized PDF documents. Users can automatically recognize tables and text areas
contained in a multipage document, learn a wrapper for a give type of docu-
ments, visually design wrappers for specific documents, edit recognized table
and text areas in order to remove columns, rows, text areas, add table and
text areas, merge tables and text areas, etc. The same set of feature can be
also called by using the system contextual menu attached to right click or the
main menu available on the menu bar.

In the following an example of table extraction is shown. In Figure 13.6
is depicted a PDF document opened in the PDF-TREX system. By selecting
the extract table menu item the system automatically recognize tables and
text areas in the document and visually shows to the user the result by using
a graphical grid as shown in Figure 13.7. Extracted tables are also available
in the embedded spreadsheet in structured form.

Fig. 13.5. Teh User Interface of the PDF-TREX System

A user interested in the extraction of a particular table, can use the add
table menu item. So s/he can select, by using only the mouse, the area of
the document containing the table and obtain the resulting table highlighted
in the document and structured in the spreadsheet as shown in Figure 13.7.
Tables can be stored in HTML, XLS, CSV, XML form.

200 13 Visual Information Extraction

Fig. 13.6. Tables Automatically Recognized In a PDF Document

Fig. 13.7. A Table Recognized by a Visual Selection

14

Real World Applications

This chapter aims at showing how approaches, methods and algorithms de-
scribed in this PhD thesis can help in real life application scenarios. The
unified spatial document model, as well as automatic information extrac-
tion techniques and query languages, in fact, support the definition of visual
tools capable to simplify user activities in managing contents of presentation-
oriented documents and getting knowledge from them. In the following of this
section is shown how tools and approaches described in this thesis are used
for managing: clinical processes [144, 141], company records like invoices, and
official bulletin of a public administration.

14.1 Medical Process Management

In this section is described an Ontology-based Clinical Knowledge Represen-
tation Framework (OCKRF), that aims at supporting a semantic process-
centered vision of health care practices, and its prototypical implementation.
The OCKRF allows for representing and managing both static and dynamic
aspects of medical knowledge. It allows for extracting information from clin-
ical records, and enables to adopt semantics for better designing, executing,
controlling and managing clinical processes. In the following are shown: (i) the
process meta-model adopted in the OCKRF also by using a running example;
(ii) theoretical foundations of OCKRF and how to use it by example; (iii) an
example of information extraction from medical records.

14.1.1 Process Modelling

A significant amount of research has been already done in the specification
of mechanisms for process modeling (see, [73] for an overview of different
proposals). The most widely adopted formalism is the control flow graph,
in which a workflow is represented by a labeled directed graph whose nodes
correspond to the activities to be performed, and whose arcs describe the

202 14 Real World Applications

precedences among them. In this paper, we adopt the graph-oriented workflow
meta-model shown in Figure 14.1.a and 14.1.b, inspired by the JPDL [98]
process modeling approach. The adopted meta-model: (i) covers the most
important and typical constructs required in workflow specification; (ii) allows
to implement the OCKRF by using the JBPM workflow engine; (iii) allows
to use workflow mining techniques grounded on graph-oriented meta-models.
Since our scope is to extend the meta-model by semantic features we need
firstly to formally define it as the following 6-tuple:

P = ⟨N,Ar,Ev,An, Tk,E⟩
where:

• N is a finite set of nodes partitioned in the following subsets: task nodes
NT (that represent activities in which a human perform tasks), subpro-
cess nodes NSP (that model activities that refer processes external to the
current one), group nodes NG (that represent a set of nodes that can be ex-
ecuted without a specific order), custom nodes NC (that model activities
in which custom methods can be executed and handled automatically),
wait nodes NW (that represent activities that temporary stop the execu-
tion while they execute methods), join nodes NJ , fork nodes NF (that are
respectively used to combine or split execution paths) and decision nodes
ND (that allow to control the execution flow on the base of conditions,
variables or choices performed by human actors).

• Ar is a set of actors. Actors can be human or automatic. They represent
the agents that execute a given task or activity.

• An is a set of actions. An action is a special activity that can be performed
as answer to the occurrence of an event.

• Tk is a set of tasks that represent tasks to execute in task nodes.
• E = {⟨x, y⟩ ∶ x ∈ NFrom ∧ y ∈ NTo} is a set of transitions in which the

following restrictions hold, when NFrom ≡ NFN ∪ND then NTo ≡ NFN ∪
NFCN ∪Nend and when NFrom ≡ NFCN then NTo ≡ NFN ∪ND. Moreover,
for each process there is a transition of the form estart = ⟨Nstart, y⟩ where
y ∈ NFN and one of the form eend = ⟨x,Nend⟩ where x ∈ {NFN ∪ ND}.
The subset Ed ⊂ E where Ed = {⟨x, y⟩ ∶ x ∈ ND ∧ y ∈ NFN} is the set
of decisions. A decision relates a decision node to a flow node and could
hold a decision rule that is used at run-time to automatically control the
execution flow of a process.

• Ev is a set of events. An event causes the execution of an action that
constitutes the answer to the event. An event can be, for example, the
throwing of an exception during the execution of a task.

A Clinical Process for Caring Breast Neoplasm

This section describes a clinical process for caring the breast neoplasm (Figure
14.1.c). This process will be used in the rest of the paper as running example

14.1 Medical Process Management 203

Fig. 14.1. (a) The process meta-model. (b) The nodes hierarchy. (c) A clinical
process for caring the breast neoplasm

for demonstrating OCKRF features. The example considers practices carried
out in the oncological ward of an Italian hospital, hence it is not general
but specific for the domain of the considered ward. The clinical process is
organized in the following 10 activities:

1. Task node Acceptance models patient enrollment. A patient arrives to the
ward with an already existing clinical diagnosis of a breast neoplasm. This
activity can be performed manually by an oncologist that collects patient
personal data, and directly acquiring information from medical records
(Electronic Medical Records EMRs). Such information are stored into an
Ontology. The extraction is performed exploiting the semantic information
extraction approach described in Chapter 12.

2. Group node Anamnesis represents a set of anamnesis activities: gen-
eral anamnesis in which physiological general data (e.g. allergies, intoler-
ances) are being collected; remote pathological anamnesis, concerning past
pathologies; recent pathological anamnesis, in which each data or result
derived from examinations concerning the current pathology (or patholo-
gies) are acquired. These activities can be executed without a specific
order, and exploiting semantic extraction rules that enable the recogni-
tion of information into unstructured source like EMR.

3. Task node Initial clinical evaluation allows to acquire the result of an
examination of the patient by an oncologist.

4. Decision node More clinical test requested represents the decision to per-
form or not additional examination on the patient.

5. Group node Other exams models possible additional clinical tests. If re-
quested these tests are conducted to find out general or particular con-
ditions of patient and disease not fully deducible from the test results
already available.

204 14 Real World Applications

6. Task node Therapeutic strategy definition models the selection of a guide-
line with related drug prescription. At execution time the physician picks
a guideline (selected among the guidelines already available in the knowl-
edge base) that depends upon actual pathology state as well as other
collected patient data.

7. Task node Informed agreement sign models the agreement of the patient
concerning understanding and acceptance of consequences (either side ef-
fects or benefits) which may derive from the chosen chemotherapy, and
privacy agreements.

8. Sub-process Therapy administration, models a subprocess that constitutes
the guideline to execute for caring the patient.

9. Decision node Therapy ended models a decision activity about effects of
the therapy and the possibility to stop or continue cares.

10. Task node Discharging models the discharging of the patient from the
ward end allows to acquire final clinical parameter values.

In the activities (6) and (8) risk and error conditions can be identified. At each
guideline, chosen in (6), corresponds a prescription of drugs (chemotherapy).
Hence the computation of doses, which may depend on patient’s biomedical
parameters such as body’s weight or skin’s surface, is required. Cross-checking
doses is fundamental here, because if a wrong dose is given to the patient the
outcome could be lethal. Furthermore, therapy administration ((8)-th activ-
ity) must contain checks that aims at verify type and quantity of chemother-
apeutic drugs to submit to the cared patient.

14.1.2 Ontology-based Clinical KR Framework

The Ontology-based Clinical Knowledge Representation Framework (OCKRF)
is based on the DLP+ ontology representation language [158] that, beside com-
plete and expressive ontology representation features, holds also powerful ASP
reasoning capabilities [58, 109] over represented knowledge. Thus the OCKRF
allows to represent in a combined way clinical processes (procedural medical
knowledge) and medical ontologies (declarative medical knowledge). By means
of user friendly interfaces the framework is well suited for enabling agile knowl-
edge representation. Furthermore, it provides powerful reasoning mechanisms
that works over represented knowledge. OCKRF reasoning capabilities allow
to express decisions, risk and error rules in a declarative way. More in detail,
the OCKRF allows to represent extensional and intensional aspects of both
declarative and procedural medical knowledge by means of: (i) Medical Ontol-
ogy and Clinical Process Schemas. The former expresses concepts related to
different medical domains (e.g. diseases, drugs, medical examinations, med-
ical treatments, laboratory terms, anatomy, patients administration, risks).
Ontology contents can be obtained by importing other existing medical on-
tologies and thesaurus or by means of direct manual definition. The latter
are expressed according with the workflow meta-model illustrated in Section

14.1 Medical Process Management 205

14.1.1. The key idea which the framework is based on is that elements of the
workflow meta-model (i.e. processes, nodes, tasks, events, transitions, actions,
decisions) are expressed as ontology classes. This way workflow elements and
medical knowledge can be easily combined in order to organize clinical pro-
cesses and their elements as an ontology; (ii) Ontology and Process Instances
both expressed in term of ontology instances. In particular, ontology class
instances can be obtained by importing them from already existing medical
ontologies or by creating them during process execution. Clinical process in-
stances are created exclusively during process execution. Instances are stored
in a knowledge base; (iii) Reasoning Tasks that express decision and risk
rules computed by exploiting reasoning capabilities of DLP+ [158, 109]. More
formally an ontology in the OCKRF is the 5-tuple: O = ⟨D,A,C,R, I⟩. In
the following the meaning of O and the DLP+ language syntax (that express
them) are explained by describing the implementation of the running example
presented in Section 14.1.1.

Medical Ontology and Clinical Process Schemas

Schemas are expressed by using elements of D, A, C and R in OZ that are
finite and disjoint sets of entity names respectively called data-types, attribute-
names, classes and relations. The set of classes C is organized in taxonomies
and partitioned in two subsets: (i) the set of process classes CP = N ∪Ar∪An∪
Tk∪Ev that represents elements of the workflow meta-model. It is constituted
by the union of classes representing nodes, actors, actions, tasks and events;
(ii) the set of medical classes CM that represent concepts related to different
medical domains. The set R is partitioned in two subsets: (i) the set of relations
RP = E ∪Dc aimed at representing transitions and decisions; (ii) the set of
relations RM used for representing medical ontologies.

A class can be thought as an aggregation of individuals (objects) that have
the same set of properties (attributes). From a syntactical point of view, a
class is a name and an ordered list of attributes identifying the properties of its
instances. Each attribute is identified by a name and has a type specified as a
data-type or class. In the following the DLP+ implementation of the workflow
meta-model is presented. In particular, nodes in CP are implemented by using
the class hierarchy (built up by using isa key-word) shown below.

class process(name:string).
class node(name:string, container: process, start_time:integer, end_time:integer).

class start_node() isa{node}.
class end_node() isa{node}.
class common_node () isa{node}.

class flowControl_node() isa{common_node}.
class fork() isa{flowControl_node}.
class join() isa{flowControl_node}.
class wait_node() isa{flowControl_node}.

class flow_node() isa{common_node}.
class task_node(tasks:[task], handler:human_actor) isa{flow_node}.
class custom_node(handler: automatic_actor, method:string) isa{flow_node}.
class group_node(nodes:[node]) isa{flow_node}.
class sub_process_node(sub_proc: process) isa{flow_node}.

206 14 Real World Applications

class decision_node(handler:actor) isa{common_node}.
class automatic_decision_node(handler:automatic_actor) isa{decision_node}.
class manual_decision_node(task:task, handler:human_actor) isa{decision_node}.

Task nodes and manual decision nodes contain tasks that are performed
by humans. Tasks (class task(name: string).) collects values of activity
variables given in input by human actor. Actors of a process (that can be
human or automatic) represent the agents that execute a given task. They
are represented by means of the following classes in CP :

class actor(name:string).
class human_actor() isa {actor}.
class automatic_actor(uri:string) isa {actor}.

During the process enactment, by running risk and errors rules, events
may occur. Furthermore, an event can be generated by an exception during
the execution of a task. Events, and related actions to performs in response,
are represented in CP by the following classes.

class event(relativeTo:object, timestamp:integer).
class node_event(relativeTo:node) isa{event}.
class task_event(relativeTo:task) isa{event}.
class process_event(relativeTo:process) isa{event}.

class action(method:string).

Relationships among objects are represented by means of relations, which
like classes, are defined by a name and a list of attributes. Transitions and
decisions, in RP , that relate couple of nodes, are represented by means of the
following ontology relations.

relation transition(name:string, from:node, to:node).
relation decision(name:string, from:decision_node, to:node).

When the user defines a specific process schema s/he can specialize orig-
inal meta-model elements for adding new semantic attribute required by the
specific process. In the following are shown some classes representing nodes
of the running example depicted in section 14.1.1.

class acceptance_node(tasks:[acceptance_form],handler:physician) isa{task_node}.
class anamnesis_node(nodes:[general_anamnesis_node,remotePathological_anamnesis_node,

recentPathological_anamnesis_node]) isa {group_node}.
class recentPathological_anamnesis_node(tasks:[pathology_form],handler:physician)

isa {task_node}.
class therapeutic_strategy_definition_node(tasks:[therapeutic_strategy_form],handler:nurse)

isa {task_node}.
class therapy_administration_node(sub_process:therapy_administration_process)

isa{sub_process_node}.
class more_tests_node(task:more_tests_form) isa{manual_decision_node}.

acceptance and therapeutic trategy definition process activities are
represented as subclasses of task node class, in fact they represent activities
in which tasks consist in the execution of forms filled by humans. Whereas
anamnesis node, which Recent Pathological anamnesis activity belongs
to, is represented as a subclass of group node class. therapy administration
node and more tests node are specializations of sub proc node and decision

14.1 Medical Process Management 207

node respectively. Human actors that operate in the clinical process used as
running examples could be physicians, nurses and patients. They are repre-
sented by a person hierarchy that exploits multiple inheritance capabilities of
DLP+ in order to express that persons are also human actors of the clinical
process.

class person(fiscalCode:string,name:string,surname:string,sex:sex_type,
bornDate:date,address:address).

class patient(hospitalCard:string, weight:float, heigthCm:float) isa {person,human_actor}.
class healthCareEmploy(occupation:string, role:string) isa {person,human_actor}.

class nurse() isa {healthCareEmploy}.
class physician() isa {healthCareEmploy}.

Class schemas representing tasks related to task-nodes can be expressed by
using the following class schemas. Attribute types can be classes represented in
CM expressing different medical concepts (e.g. diseases, drugs, body parts).
During task execution values of resulting class instances are obtained from
fields filled in forms.

class task(name: string).
class acceptance_form(patient:patient, acc_date:date) isa{task}.
class pathology_form(disease:disease) isa{task}.
class chemotherapeutic_strategy_form(strategy:therapeuticStrategy) isa{task}.
class more_tests_form(choice:boolean)isa{task}.

In a clinical process, an event can be activated by an exception during the
execution of a node or by a reasoning task aimed at control possible risks and
errors. A reasoning task checks parameters values of running node and already
acquired node instances and throws an event related to an error. An example
of different kinds of possible errors is shown in the following taxonomy, where
the attribute msg of the class view msg (action) is the message to display when
the error occurs.

class task_event(relativeTo:task) isa{event}.
class medicalError(msg:string) isa{task_event}.

class drugPrescriptionError() isa {medicalError}.
class view_msg(msg:string) isa {action}.

Class schemas in CM expressing knowledge concerning anatomy, breast
neoplasm disease and related therapies and drugs have been obtained (im-
ported) from the Medical Subject Headings (Mesh) Tree Structures , the In-
ternational Classification of Diseases (ICD10-CM).and the Anatomical Ther-
apeutic Chemical (ATC/DDD).

class anatomy(name:string).
class bodyRegion() isa {anatomy}.

class disease(descr:string).
class neoplasm() isa {disease}.

class malignant_neoplasm() isa {neoplasm}.
class primarySited_neoplasm(site:bodyRegion,zone:string) isa {malignantNeoplasm}.

class breast_primarySited_neoplasm() isa {primarySited_neoplasm}.
class drug(name:string, ddd:float, unit:unitOfMeasure,admRoute:[string], notes:string).

class antineoplasticAndImmunomodulatingAgent() isa {drug}.
class endocrineTherapy() isa {antineoplasticAndImmunomodulatingAgent}.

class hormoneAntagonistsAndRelatedAgents()isa {endocrineTherapy}.
class enzymeInhibitors()isa {hormoneAntagonistsAndRelatedAgents}.

class hormoneAndRelatedAgents()isa {endocrineTherapy}.

208 14 Real World Applications

class estrogens() isa {hormoneAndRelatedAgents}.
class code(c:string).

class icd10Code(chapter:integer, block:string,category:string, subCat:string) isa {code}.
class mesh08Code(category:string, subCat:string) isa {code}.

class therapy(name:string, dru:drug, dose:float).
class therapeuticStrategy(patient:patient, therapy:therapy,startDate:date, nDay:integer).

The previous classes are a fragment of a medical ontology inherent (breast)
neoplasm cares and are used to model the clinical process shown in Section
14.1.1. Class primarySited neoplasm shows the ability to specify user-defined
classes as attribute types (i.e. site:bodyRegion). Class drug has a list-type
attribute admRoute:[string] representing possible Route of administration
for a drug (for example inhalation, nasal, oral, parenteral). Relation schemas
expressing medical knowledge can be declared by using the following syntax:

relation suffers (patient:patient, disease:disease).
relation relatedDrug (dis:disease, dru:drug).
relation sideEffect (dru:drug, effect:string).
relation classifiedAs (dis:disease, c:code).

Relation suffer asserts diseases suffered by a patient. Relations relatedDrug
and sideEffect associates respectively drugs to a diseases and side effects to
drugs. Moreover, relation classifiedAs enables users to query the ontologies
by using codes defined in the original medical ontologies.

Ontology and Process Instances

Clinical process instances are expressed by ontology instances and created
exclusively during process execution. Classes instances (objects) are defined
by their oid (that starts with #) and a list of attributes. Instances obtained
by executing the running example, are shown in the following.

#1:neoplasm_process(name:"Breast Neoplasm").
#2:therapy_administration_process(name:"Therapy Administration").
#1_1:acceptance_node(name:"Acceptance", container:#1, start_time:6580, end_time:16580,

tasks:[#1_1_1], handler:#27).
#1_2:anamnesis_node(name:"Anamnesis", container:#1, start_time:16570, end_time:26580,

nodes:[#1_2_1, #1_2_2, #1_2_3])
#1_2_3:recentPathological_anamnesis_node(name:"Recent Pathological Anamnesis", container:#1,

start_time:19580, end_time:26570,tasks:[#1_2_3_1],handler:#27).
...

As described in section 14.1.1, instance of anamnesis node #1 2 is com-
posed by a set of anamnesis activities represented by means of their id. The
object #1 2 3 belongs to #1 2. Objects #1 1, #1 2 3 are tasks executed in
custom and manual decision node and are stored as their attributes. When
execution arrives in a task node or in a manual decision node, task instances
is created and the user input is stored as values of the task attributes. Some
tasks related to task nodes are shown in the following.

#1_1_1:acceptance_form(name:"Acceptance", patient:#21, acc_date:#data_089).
#1_2_3_1:pathology_form(name:"Recent Pathology", disease:#neoB_01).

14.1 Medical Process Management 209

For example, acceptance form and object is obtained by a form filled by
an oncologist. It contains an instance of patient class.

Transition and decision tuples, created during the process execution, are
shown in the following. In the example, the decision is obtained as a man-
ual choice of an oncologist, but instances of decisions could be automatically
generated by means of reasoning tasks.

transition(name:"Acceptance-Anamnesis",from:#1_0, to:#1_1).
decision(name:"More Clinical Tests requested - No",from:#1_4, to:#1_6).

By considering the running example, instances for the classes bodyRegion,
breast primarySited neoplasm, for the subclasses of drug and code, can be
obtained by importing them from already existing medical ontologies and can
be declared as follows:

#A01.236: bodyRegion(name:"breast").
#neoB_01: breast_primarySited_neoplasm(descr:"Malignant neoplasm of breast", site:#A01.236,

zone:"Nipple and areola").
#L02BG03: enzymeInhibitors(name:"Anastrozole", ddd:1, unit:mg, admRoute:["oral"], notes:"").
#L02AA04: estrogens(name:"Fosfestrol", ddd:0.25, unit:g, admRoute:["oral","parenteral"],

notes:"").
#icd10_C50.0: icd10Code(c:"C50.0", chapter:2, block:"C", category:"50", subCat:"0").
#mesh08_C04.588.180: mesh08Code(c:"C04.588.180",category:"C", subCat:"04").

The object having id #neoB 01, is an instance of the breast primary-
Sited neoplasm class. Its attributes descr and zone (which type is string)
have respectively value "Malignant neoplasm of breast" and "Nipple and
areola", whereas the attribute site has value #A01.236 that is an id repre-
senting an instance of the class bodyRegion. Tuples expressing medical knowl-
edge can be declared by using the following syntax:

suffer (pat:#21, dis:@neoB_01).
relatedDrug (dis:@C50.9, dru:@L02BG03).
sideEffect (dru:@L02BG03, effect:"Chest pain").
sideEffect (dru:@L02BG03, effect:"Shortness of breath").
classifiedAs (dis:@neoB 01, c:@icd10 C50.0).
classifiedAs (dis:@neoB 01, c:@mesh08 C04.588.180).

The tuple of the relation suffer asserts that the patient @p 002 suffers
of the disease @neoB 01. The same diseases is classified in the ICD10-CM
with identifier code @icd10 C50.0, and is stored in Mesh tree structure with
identifier code @mesh08 C04.588.180. By means of the relation classifiedAs
an user is enabled to querying ontology concept referring to the correspondent
identifiers.

Information Extraction

Information extraction tasks are applied to input Electronic Medical Records
(EMRs) and risk reports coming from different hospital wards. An EMR is
generally a flat text document (having usually 3 pages) written in Italian
natural language. EMRs are weakly structured, for example, the personal
data of the patient are in the top of the document, clinical events (e.g medical

210 14 Real World Applications

exams, surgical operations, diagnosis, etc.) are introduced by a date. Risk
reports, filled at the end of clinical process, are provided to patients by wards
to acquire information about errors with or without serious outcomes, adverse
events, near misses.

The goal of the application is to extract semantic metadata about oncology
therapies and errors with temporal data. The application extracts personal in-
formation (name, age, address), diagnosis data (diagnosis time, kind of tumor,
body part affected by the cancer, cancer progression level), care and thera-
pies information. Extracted information are exploited to construct, for each
cared patient, an instance of lung cancer clinical process. Acquired process in-
stances are analyzed by means of data and process mining techniques in order
to discover if errors happen following patterns in phases of drugs prescription,
preparation or administration.

The application has been obtained by exploiting a Semantic Model inher-
ent to lung cancer that contains: (i) concepts and relationships referred to the
disease, its diagnosis, cares in term of surgical operations and chemothera-
pies with the associated side effects. Concepts related to persons (patients),
body parts and risk causes are also represented. All the concepts related to
the cancer come from the ICD9-CM diseases classification system, whereas
the chemotherapy drugs taxonomy, is inspired at the Anatomic Therapeutic
Chemical (ATC) classification system. (ii) a set of descriptors enabling the
automatic acquisition of the above mentioned concepts from Electronic Med-
ical Records (EMRs). In the following a piece of the medical Semantic Model
that describes (and allows to extract) patient name, surname, age and disease
is shown.

It is noteworthy that in this example keywords, e.g. CONTAIN and SEPBY
are used. CONTAIN is syntactic sugar used to represent the containment, only
E direction is used, so they are not indicated SEPBY represents a separator
between each pair of recognized object.

class anatomy ().
class bodyRegion (bp:string) isa {anatomy}.

class organ isa {body_part}.
lung: organ("Lung").
<lung>-><X:token(), matches(X,"[Ll]ung")>.

...
...

class disease (name:string).
tumor: disease("Tumor").
<tumor>-><X:token(), matches(X,"[Tt]umor")>.
cancer: disease("Cancer").
<cancer>-><X:token(), matches(X,"[Cc]ancer")>.
...

relation synonym (d1:disease,d2:disease)
synonym(cancer,tumor).
...

class body_part_desease () isa {disease}.
lung_cancer: body_part_disease("Lung cancer").
<lung_cancer>-><diagnosis_section> CONTAIN <lung> & <X:desease(),synonym(cancer,X)>
...

collection class patient_data (){}
collection class patient_name (name:string){}

<patient_name(Y)> -> <T:token(),defBy(T, "name:")> <X:token()> {Y := X;}

14.1 Medical Process Management 211

SEPBY <X:space()>.
collection class patient_surname (surname:string){}

<patient_surname(Y)> ->
<X:hiStr(),matches(X,"sur(:?name)?:")> <X:token()> {Y:=X;} SEPBY <X:space()>.

collection class patient_age (age:integer){}
<patient_age(Y)>-><X:token(),matches(X,"age:")> <Z:token()>{Y := $str2int(Z);}

SEPBY <X:space()>.
...

collection class patient_data (name:string, surname:string,
age:integer, diagnosis:body_part_disease){}

<patient_data(X,Y,Z,lung_cancer)> ->
<hospitalization_section> CONTAIN <P:patient_name(X1)>{X:=X1}
& <P:patient_surname(Y1)>{Y:=Y1} & <P:patient_age(Z1)>{Z:=Z1} & <lung_cancer>.

...

The classes diagnosis section and hospitalization section used in the
above descriptors represent text paragraphs containing personal data and di-
agnosis data recognized by proper descriptors that aren’t shown for lack of
space. The extraction mechanism can be considered in a WOXM fashion:
Write Once eXtract Many, in fact the same descriptors can be used to en-
able the extraction of metadata related to patient affected by lung cancer
in unstructured EMRs that have different arrangement. Moreover, descrip-
tors are obtained by automatic writing methods (as happens, for example,
for the cancer and tumor concepts) or by visual composition (as happens for
patient data)

Metadata extracted by using the Semantic Model are stored as collection
class instances into a knowledge base. For the simple piece of Semantic Model
shown above the extraction process generates the following patient data
class instance for an EMR: "@1": patient data("Mario","Rossi","70",
lung cancer).

The application is able to process many EMRs and risk reports in a single
execution and to store extracted metadata in XML format.

Reasoning Over Schemas and Instances

Since the OCKRF is built on top of DLP+ [109, 158], integrity constraints
and complex inference rules can be expressed over schemas and instances re-
spectively by means of axioms and reasoning tasks. For example, the following
axiom prevents the prescription of a drug to a patient that has an allergy to
a particular constituent of the drug.

::-therapyStrategy(patient:P, therapy:T, drug:D),hasActivePrinciple(drug:D,constituent:C),
allergy(patient:P,actPrin:C).

Axioms could be, also, used for: (i) specify constraints about transitions be-
havior. For example, the axiom "::-P:process(), not start node(container:P)."

expresses that a start node must exist for each process. Constraints express,
also, that a transition links nodes belonging to the same process, and corre-
sponds to an effective edge of the process model as shown in the following:

::-transition(from:N1,to:N2), N1:node(container:P1), N2:node(container:P2), P1!=P2.
::-transition(from:N1,to:N2), N1:node(start_time:ST1), N2:node(start_time:ST2), ST1>=ST2.

212 14 Real World Applications

::-P:neoplasm_process(), transition(from:N1,to:N2), N1:acceptance_node(container:P),
not N2:anamnesis_node(container:P).

...

A reasoning task can be used to throw a medical error when the pre-
scribed dose exceed the recommended dose based on individual characteristics
(i.e. age and weight) of the interested patient. Such a check is useful when a
therapeutic strategy form is created while therapeutic strategy definition node

is active.
ID:drugPrescription_medicalError(relativeTo:TASK,timestamp:TIME,msg:MSG):-

TASK:chemotherapeutic_strategy_form(strategy:STR),STR:therapeuticStrategy(patient:P,
therapy:T),
P:patient(bornDate:DATE,weight:W), @age(date,AGE), T:therapy(dru:DRUG,dose:DOSE),
recommendedDose(drug:DRUG, dose:RD, minAge:MA, MinWeight:MW), AGE<MA, W<MW, DOSE>RD,
MSG:="Prescribed dose " + DOSE + "exceed recommend dose " + RD, @newID(ID), @now(TIME).

The generated prescription error event must be properly handled in the
process, for example an error message is visualized by means of a GUI to the
physician.

ID:view_msg(method:"exception.jar", msg:MSG):-
X:drugPrescription_medicalError(relativeTo:TASK, timestamp:TIME, msg:MSG), @newID(ID).

Queries can be also used for exploring clinical processes ontologies in a se-
mantic fashion. For instance malNeoplasm f patient(patient:P)? returns every
female patients suffering of any malignant neoplasm (e.g P=#21, P=#34 ids are
given for answer), where malNeoplasm f patient(patient:P):

malNeoplasm_f_patient(patient:P):- P:patient(sex:#F),suffer(patient:P,disease:D),
D:malignant_neoplasm().

During process execution, process and ontology instances are extracted
from clinical records and acquired, and stored in a knowledge base. The execu-
tion can be monitored by running (over clinical process schemas and instances)
reasoning tasks that implements error and risk rules. Extracted information
could be analyzed for identifying main causes of medical errors, high costs
and, potentially, suggesting clinical processes improvement able to enhance
cost control and patient safety.

14.2 Records Management

In this section is summarized the application of visual wrapping capabilities
describe in this thesis to the extraction and acquisition of metadata from
administrative records like invoices. Companies of all industries, in fact, are
overwhelmed by huge amounts of electronic and paper administrative records
like: invoices, order and purchase forms, waybills (consignment notes), etc.
having different layouts and presentation templates. To manually manage ad-
ministrative documents limits visibility and efficiency in business processes
and exposes companies to financial and operational risks. For instance, lack

14.3 Document Understanding 213

of visibility on invoices can create discrepancies, lost discount opportunities,
overpayments, among other risks.

Visual information extraction capabilities made available by approaches,
techniques, languages and algorithms described in this thesis allow for au-
tomatically acquiring information and metadata contained in administrative
documents in order to correctly include them in business processes execution.
This way errors and risks due to loss of information can be limited and bet-
ter performances in terms of efficiency and efficacy can be obtained. Users
can chose in a flexible way information and metadata to acquire from admin-
istrative documents. For instance, dates, total amounts, VAT codes, items,
supplier codes, prizes per unit, quantities, etc. can be automatically identified
in invoices and extracted. Visual Wrappers for administrative documents can
be automatically learned. Then the wrapper can be easily refined (if needed)
and validated in few clicks. Learned wrappers can be reused for extracting
automatically information from thousand pages.

Fig. 14.2. A Visual Wrapper for an Invoice

For example, invoices can be automatically handled. As shown in Figure
14.2 for each different invoice template, a visual wrapper can be learned and
edited. By visual wrappers, a set of user defined information (e.g. addresses,
items, dates, total amounts and so on) can be automatically extracted from
invoices and stored in structured form as depicted in Figure 14.3.

14.3 Document Understanding

In this section is briefly explained an application aimed at extracting informa-
tion and metadata from the official bulletin of region government. Spatial and

214 14 Real World Applications

Fig. 14.3. The Result of the Visual Wrapping Process for an Invoice

semantic information extraction techniques defined in this thesis, in fact, allow
Document Layout Analysis and Recognition techniques that enable document
decomposition and splitting. In particular, by applying capabilities of the
XONTO systems Titles, Sections, Paragraphs, Columns, Tables, Sentences,
Image, Graphical Areas etc. can be automatically recognized and extracted.
For example, a law contained in the official bulletin of a regional government
can be identified on the base of their contents and split in its part as shown
in Figure 14.4. Then each part can be analyzed and annotated over concepts
like: public funding for a cultivation in the agricultural industry. Furthermore,
the law can be transformed in another format like HTML or DOC in order to
publish it on a Web site or Edit it in a word processor.

14.4 News Paper Review

In this section is shortly described the application of visual Web wrapping
methods, presented in this thesis, for enabling automatic information extrac-
tion from Web source that makes available specific information to users. For
instance, knowledge bases containing company profiles or product catalogs,
where each product is described by its features, can be automatically created
by using wrappers automatically learned from the Web sources. In Figure
14.5 and 14.6 it is shown how wrappers for news of on-line newspapers can
be learned, so news can be automatically extracted, stored in XML form and
reused in mash-up applications.

14.4 News Paper Review 215

Fig. 14.4. The Result of the Visual Wrapping Process for an Official Bulletin

Fig. 14.5. The Result of the Visual Wrapping Process for the NYT Web Site

216 14 Real World Applications

Fig. 14.6. The Result of the Visual Wrapping Process for the ANSA Web Site

Part IV

Conclusion and Future Work

I am enough of an artist to draw freely upon my imagination.
Imagination is more important than knowledge.

Knowledge is limited.
Imagination encircles the world.∼ Albert Einstein ∼

15

Conclusion and Future Work

15.1 Conclusion and Future Work

This thesis has addressed the problem of extracting information from presen-
tation-oriented documents by using spatial features of layouted content items
and, also, semantic features of presented information made available by ad hoc
domain knowledge representations. The rest of this chapter will summarize the
content of this work, remark the main contributions and briefly discuss future
trends in the considered research field.

15.1.1 Content Summary

Motivation that draw this thesis work have been laid out in Chapter 1 of
Part I by investigating some possible applications of information extraction
approaches and technologies, and major open research challenges in the field.
A detailed description of existing information extraction and query languages
for presentation-oriented documents has been given in Part II. Related work
has been classified on the base of the document format on which existing
techniques can be applied and by considering the level of automation of ap-
proaches in literature. Another classification direction has been the possibility
to use prior domain knowledge for defining wrappers and extraction rules.

In Part III has been given the detailed description of original contribution
in the filed of information extraction obtained during the PhD course. In par-
ticular, in Chapter 9 has been presented the spatial documents models that
allows for representing in unified way PODs having both HTML and PDF
internal representation. In Chapter 10 has been described the PDF-TREX
approach based on document understanding techniques that led to automatic
table recognition and extraction, and the SILA approach for wrapper induc-
tion for Web documents. In Chapter 11 has been presented the SXPath lan-
guage, that extends XPath and allows for querying PODs by means of spatial
navigation constructs, and the spatial grammars formalism that allows for

220 15 Conclusion and Future Work

expressing wrapper as a set of productions of a CFG extended in order to
consider spatial and semantic relations among elements displayed on PODs.
In Chapter 12 has been presented ontology-based information extraction ca-
pabilities made available by the XONTO approach. This approach exploits
a particular version of spatial grammars that provide the ability to model
and handle spatial relations, and the ability to consider domain knowledge
about the information to extract modeled in a knowledge base. In Chapters
8, 13, and 14 have been described the system that can be built by using ap-
proaches described in previous chapters, the visual capabilities made available
by SILA, SXPath and PDF-TREX approaches, and some applications to real
world scenarios respectively.

15.1.2 Contributions

The research done during the PhD and described in this thesis has led to the
following main contributions:

• Definition of a unique spatial model for representing PODs having different
internal formats. By such a model content items in documents having
HTML and PDF internal encodings can be represented along with their
spatial features and relations.

• Definition of techniques, based on heuristics and machine learning algo-
rithms, for automatic recognition and extraction of tables from PODs.
Automatic table extraction algorithms are very well performing as show
by experiments. From the comparison with existing approaches results
that defined algorithm constitute the current state of the art in this field.

• Definition of wrappers learning approaches based only on spatial PODs
features. Defined techniques, in fact exploit only the spatial relations
among content items in order to learn wrappers for repetitive records con-
tained in Deep Web Pages. Such techniques do not require preprocessing
of the HTML tags aimed at inferring spatial arrangement, at the contrary
they use directly the layouted Web page. Experiments show that the SILA
algorithm performs better than approaches available in literature.

• Definition of formal languages aimed at describing and querying PODs.
In particular, the SXPath language allows user to write very intuitive
pattern similar to XPath expressions and capable to exploit spatial features
of PODs resulting in a more simple query mechanism for this kind of
documents as experiments shown. The spatial grammars formalism allow
user to write wrapper a set of spatial productions that can be intuitively
designed by considering only what the user see on the screen. Both SXPath
and spatial grammars open the doors to novel wrapper learning techniques
that considers the spatial structure of PODs and the semantic of contents.

• Definition of methods, languages and approaches for knowledge represen-
tation that support information extraction and semantic annotation by
enabling the description and automatic recognition of concepts contained
in PODs.

15.1 Conclusion and Future Work 221

Future Trends

Information extraction is a research field with a lot of potential [52, 39], it
can be expected to grow in different directions. A first future work direc-
tion comes from current new user needs. Nowadays Web users, in fact, need
objects (having a clear semantics) retrieved from different Web pages and ar-
ranged in a comprehensible way. Hence, the Web should be viewed as a set
of linked objects (like persons, events, products, companies, locations, etc.)
described by attributes and relations among them. This new vision has been
originally introduced by Berners-Lee and takes the name of Web of Objects
(WOO) or Web of Concepts (WOC) [12, 44, 148]. A second future work di-
rection is related to semantic Web search and mush-up. In this direction users
need intelligent applications capable to retrieve contents on the base of their
semantics and combine retrieved contents on the base of their semantic re-
lations. For example, by means of these features search engines will be able
to provide to users that search for a conference, flights, hotels, car rental ser-
vices, colleagues that will participate to the same conference by mashing-up
semantically related objects coming from different sources [162].

References

1. Acid Tests, http://www.acidtests.org. Web Standards Project.
2. S. Adali, M. L. Sapino, and V. S. Subrahmanian. An algebra for creating and

querying multimedia presentations. Multimedia Syst., 8(3):212–230, 2000.
3. B. Adelberg. Nodose - a tool for semi-automatically extracting structured

and semistructured data from text documents. In Proceedings of the 1998
ACM SIGMOD international conference on Management of data, SIGMOD
’98, pages 283–294, New York, NY, USA, 1998. ACM.

4. Adobe Systems Incorporated, www.adobe.com/ devnet/ pdf/
pdf reference.html. PDF Reference and Specification.

5. M. Aiello, C. Monz, L. Todoran, and M. Worring. Document understanding
for a broad class of documents. IJDAR, 2002.

6. J. Aitken. Learning Information Extraction Rules: An Inductive Logic Pro-
gramming approach. In Proceedings of the 15th European Conference on Artifi-
cial Intelligence, pages 355–359, 2002. http://citeseer.ist.psu.edu/586553.html.

7. H. Alblas. Introduction to attributed grammars. In Proceedings on At-
tribute Grammars, Applications and Systems, pages 1–15, London, UK, 1991.
Springer-Verlag.

8. J. F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.

9. O. Altamura, F. Esposito, and D. Malerba. Transforming paper documents
into xml format with wisdom++. International Journal of Document Analysis
and Recognition, 4:2001, 2000.

10. A. Arasu and H. Garcia-Molina. Extracting structured data from web pages. In
SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international conference
on Management of data, pages 337–348, New York, NY, USA, 2003. ACM.

11. Y. Aumann, R. Feldman, Y. Liberzon, B. Rosenfeld, and J. Schler. Visual
information extraction. Knowl. Inf. Syst., 10(1):1–15, 2006.

12. R. Baeza-Yates. Searching the web of objects. In ICOODB, 2010.
13. P. Balbiani, J.-F. Condotta, and L. F. d. Cerro. A model for reasoning about

bidimensional temporal relations. In Proc. of KR-2008, pages 124–130, 1998.
14. P. Balbiani, J.-F. Condotta, and L. F. d. Cerro. A new tractable subclass of

the rectangle algebra. In IJCAI, pages 442–447, 1999.
15. M. Banko, M. J. Cafarella, S. Soderl, M. Broadhead, and O. Etzioni. Open

information extraction from the web. In In IJCAI, pages 2670–2676, 2007.

224 References

16. R. Baumgartner, S. Flesca, and G. Gottlob. The elog web extraction language.
In Proceedings of the Artificial Intelligence on Logic for Programming, LPAR
’01, pages 548–560, London, UK, 2001. Springer-Verlag.

17. R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction
with lixto. In VLDB, pages 119–128, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

18. R. Baumgartner, W. Gatterbauer, and G. Gottlob. Web data extraction. En-
cyclopedia od Database Systems. Springer-Verlag, 2009.

19. R. Baumgartner, G. Gottlob, and M. Herzog. Scalable web data extraction for
online market intelligence. VLDB, 2(2):1512–1523, 2009.

20. M. Benedikt, W. Fan, and G. Kuper. Structural properties of xpath fragments.
Theor. Comput. Sci., 336(1):3–31, 2005.

21. M. Benedikt and C. Koch. Xpath leashed. ACM Comput. Surv., 41(1):1–54,
2008.

22. T. Berners-Lee, W. Hall, J. A. Hendler, K. O’Hara, N. Shadbolt, and D. J.
Weitzner. A framework for web science. Found. Trends Web Sci., 1(1):1–130,
2006.

23. M. A. Bhatti and A. Ahmad. Pdf to html conversion: Having a usable web
document. In Digital Information Management, 2006.

24. S. Boag, A. Berglund, D. Chamberlin, J. Siméon, M. Kay, J. Robie, and M. F.
Fernández. XML path language (XPath) 2.0. W3C recommendation, W3C,
January 2007. http://www.w3.org/TR/2007/REC-xpath20-20070123/.

25. S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, and J. Siméon.
XQuery 1.0: An XML query language. W3C Working Draft, 2005.

26. A. Bozzon, M. Brambilla, S. Ceri, and P. Fraternali. Liquid query: multi-
domain exploratory search on the web. In Proceedings of the 19th international
conference on World wide web, WWW ’10, pages 161–170, New York, NY,
USA, 2010. ACM.

27. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensi-
ble markup language (xml) 1.0 (fourth edition). World Wide Web Consortium,
Recommendation REC-xml-20060816, August 2006.

28. D. Buttler, L. Liu, and C. Pu. A fully automated object extraction system for
the world wide web. In ICDCS, 2001.

29. A.-Y. S. B. C. and S. J. Te xquery: A full-text search extension to xquery. In
WWW, 2004.

30. D. Cabeza and M. Hermenegildo. Distributed www programming using (ciao-
)prolog and the pillow library. Theory Pract. Log. Program., 1(3):251–282,
2001.

31. A. Cal̀ı and D. Martinenghi. Querying the deep web. In EDBT ’10: Proceedings
of the 13th International Conference on Extending Database Technology, pages
724–727, New York, NY, USA, 2010. ACM.

32. M. Califf and R. Mooney. Relational learning of pattern-match rules for infor-
mation extraction. In AAAI, 1999.

33. J. Carme, M. Ceresna, and M. Goebel. Web wrapper specification using com-
pound filter learning. In IADIS International Conference WWW/Internet,
2006.

34. X. Carreras, I. Chao, L. PadrÛ, and M. PadrÛ. Freeling: An open-source suite
of language analyzers. In Proceedings of the 4th International Conference on
Language Resources and Evaluation (LREC’04), 2004.

References 225

35. B. t. Cate and C. Lutz. The complexity of query containment in expressive
fragments of xpath 2.0. J. ACM, 56(6):1–48, 2009.

36. D. Chamberlin, J. Robie, and D. Florescu. Quilt: an XML Query Language for
Heterogeneous Data Sources. In Lecture Notes in Computer Science. Springer-
Verlag, December 2000.

37. C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A survey of web
information extraction systems. TKDE, 18(10):1411–1428, 2006.

38. C.-H. Chang and S.-C. Lui. Iepad: information extraction based on pattern
discovery. In WWW ’01: Proceedings of the 10th international conference on
World Wide Web, pages 681–688, New York, NY, USA, 2001. ACM.

39. L. Chiticariu, Y. Li, S. Raghavan, and F. R. Reiss. Enterprise information
extraction: recent developments and open challenges. In SIGMOD ’10: Pro-
ceedings of the 2010 international conference on Management of data, pages
1257–1258, New York, NY, USA, 2010. ACM.

40. P. Cimiano and J. Völker. Text2onto. In NLDB, pages 227–238, 2005.
41. E. Cortez, A. S. da Silva, M. A. Gonçalves, and E. S. de Moura. Ondux:

on-demand unsupervised learning for information extraction. In SIGMOD ’10:
Proceedings of the 2010 international conference on Management of data, pages
807–818, New York, NY, USA, 2010. ACM.

42. V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: Towards automatic data
extraction from large web sites. In VLDB ’01: Proceedings of the 27th Inter-
national Conference on Very Large Data Bases, pages 109–118, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

43. H. Cunningham, K. Bontcheva, V. Tablan, and D. Maynard. General Archi-
tecture for Text Engineering. http://www.gate.ac.uk, 2003.

44. N. Dalvi, R. Kumar, B. Pang, R. Ramakrishnan, A. Tomkins, P. Bohannon,
S. Keerthi, and S. Merugu. A web of concepts. In PODS ’09: Proceedings of
the twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 1–12, New York, NY, USA, 2009. ACM.

45. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive
power of logic programming. In IEEE Conference on Computational Complex-
ity, pages 82–101, 1997.

46. A. Das Sarma, A. Jain, and D. Srivastava. I4e: interactive investigation of
iterative information extraction. In SIGMOD ’10: Proceedings of the 2010
international conference on Management of data, pages 795–806, New York,
NY, USA, 2010. ACM.

47. T. Declerck, C. Federmann, B. Kiefer, and H.-U. Krieger. Ontology-based in-
formation extraction and reasoning for business intelligence applications. In
A. Dengel, K. Berns, T. M. Breuel, F. Bomarius, and T. Roth-Berghofer, ed-
itors, KI, volume 5243 of Lecture Notes in Computer Science, pages 389–390.
Springer, 2008.

48. G. Della Penna, D. Magazzeni, and S. Orefice. Visual extraction of information
from web pages. J. Vis. Lang. Comput., 21(1):23–32, 2010.

49. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query
Language for XML. In Proceedings of the 8th Int. World Wide Web Conf.
(WWW’8), Toronto, May 1999, pages 1155–1169. Elsevier Science B.V., 1999.

50. W. Dilger. Automatic translation with attribute grammars. In Proceedings of
the 8th conference on Computational linguistics, pages 397–404, Morristown,
NJ, USA, 1980. Association for Computational Linguistics.

226 References

51. H. Djean and J.-L. Meunier. A system for converting pdf documents into
structured xml format. In Workshop on Document Analysis Systems, 2006.

52. A. Doan, R. Ramakrishnan, and S. Vaithyanathan. Managing information ex-
traction: state of the art and research directions. In SIGMOD ’06: Proceedings
of the 2006 ACM SIGMOD international conference on Management of data,
pages 799–800, New York, NY, USA, 2006. ACM.

53. R. W. W. Draft. XQuery 1.0 and XPath 2.0 Full-Text 1.0.
http://www.w3.org/TR/xpath-full- text-10-requirements/.

54. W. W. Draft. XQuery 1.0 and XPath 2.0 Full-Text 1.0.
http://www.w3.org/TR/xpath-full-text-10/.

55. P. Eades and K. Sugiyama. How to draw a directed graph. J. Inf. Process.,
13(4):424–437, 1990.

56. J. Earley. An efficient context-free parsing algorithm. Commun. ACM,
13(2):94–102, 1970.

57. J. Eisner and J. Blatz. Program transformations for optimization of parsing
algorithms and other weighted logic programs. In S. Wintner, editor, Pro-
ceedings of FG 2006: The 11th Conference on Formal Grammar, pages 45–85.
CSLI Publications, 2007.

58. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions
on Database Systems, 22(3):364–418, 1997.

59. D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W. Liddle, D. W. Lonsdale,
Y.-K. Ng, and R. D. Smith. Conceptual-model-based data extraction from
multiple-record web pages. Data Knowl. Eng., 31(3):227–251, 1999.

60. D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W. Liddle, Y.-K. Ng, D. Quass,
and R. D. Smith. Conceptual-model-based data extraction from multiple-
record web pages. In Data Knowl. Eng., 1999.

61. G. Erbach. Bottom-up earley deduction. CoRR, cmp-lg/9502004, 1995.
62. B. Fazzinga, S. Flesca, A. Tagarelli, S. Garruzzo, and E. Masciari. A wrapper

generation system for pdf documents. In SAC ’08: Proceedings of the 2008
ACM symposium on Applied computing, pages 442–446, New York, NY, USA,
2008. ACM.

63. C. D. Fellbaum. WordNet – An Electronic Lexical Database. MIT Press, 1998.
64. G. Fiumara. Automated information extraction from web sources: a survey.

2007.
65. S. Flesca, S. Garruzzo, E. Masciari, and A. Tagarelli. Wrapping pdf documents

exploiting uncertain knowledge. In CAiSE, 2006.
66. S. Flesca, E. Masciari, and A. Tagarelli. A fuzzy logic approach to wrapping

pdf documents. TDKE, 2010.
67. R. Florian, H. Jing, N. Kambhatla, and I. Zitouni. Factorizing complex mod-

els: a case study in mention detection. In Proceedings of the 21st International
Conference on Computational Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, ACL-44, pages 473–480, Morris-
town, NJ, USA, 2006. Association for Computational Linguistics.

68. G. Fourny, D. Kossmann, T. Kraska, M. Pilman, and D. Florescu. Xquery in
the browser. In Proceedings of the 2008 ACM SIGMOD international confer-
ence on Management of data, SIGMOD ’08, pages 1337–1340, New York, NY,
USA, 2008. ACM.

69. G. Fourny, M. Pilman, D. Florescu, D. Kossmann, T. Kraska, and D. McBeath.
Xquery in the browser. In Proceedings of the 18th international conference on

References 227

World wide web, WWW ’09, pages 1011–1020, New York, NY, USA, 2009.
ACM.

70. D. Freitag. Machine learning for information extraction in informal domains.
In Machine Learning, 2000.

71. D. Freitag and N. Kushmerick. Boosted wrapper induction. In Proceedings
of the Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial Intelligence, pages 577–583.
AAAI Press, 2000.

72. W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl, and B. Pollak. Towards
domain-independent information extraction from web tables. In WWW ’07:
Proceedings of the 16th international conference on World Wide Web, pages
71–80, New York, NY, USA, 2007. ACM.

73. D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow man-
agement: from process modeling to workflow automation infrastructure. Dis-
trib. Parallel Databases, 3(2):119–153, 1995.

74. G. Gottlob and C. Koch. Monadic datalog and the expressive power of lan-
guages for web information extraction. J. ACM, 51:74–113, January 2004.

75. G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, and S. Flesca. The lixto
data extraction project: back and forth between theory and practice. In PODS,
pages 1–12, 2004.

76. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing xpath
queries. In VLDB, pages 95–106, 2002.

77. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing xpath
queries. ACM Trans. Database Syst., 30(2):444–491, 2005.

78. G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The complexity of xpath
query evaluation and xml typing. J. ACM, 52(2):284–335, 2005.

79. M. Grigni, D. Papadias, and C. Papadimitriou. Topological inference. In
IJCAI, pages 901–906, 1995.

80. R. Grishman and B. Sundheim. Message understanding conference - 6: A
brief history. In Proceedings of the International Conference on Computational
Linguistics, 1996.

81. J. Ha, R. M. Haralick, and I. T. Phillips. Recursive x-y cut using bounding
boxes of connected components. In ICDAR, 1995.

82. J. Hammer, J. McHugh, and H. Garcia-Molina. Semistructured data: The
tsimmis experience. In ADBIS, pages 1–8, 1997.

83. A. Harth, M. Janik, and S. Staab. Handbook of Semantic Web. Springer, 2011.
84. T. Hassan. Graphwrap: a system for interactive wrapping of pdf documents

using graph matching techniques. In DocEng ’09: Proceedings of the 9th ACM
symposium on Document engineering, pages 247–248, New York, NY, USA,
2009. ACM.

85. T. Hassan. User-guided wrapping of pdf documents using graph matching
techniques. In ICDAR ’09: Proceedings of the 2009 10th International Confer-
ence on Document Analysis and Recognition, pages 631–635, Washington, DC,
USA, 2009. IEEE Computer Society.

86. T. Hassan. Towards a common evaluation strategy for table structure recog-
nition algorithms. In DocEng, 2010.

87. T. Hassan and R. Baumgartner. Intelligent text extraction from pdf docu-
ments. In CIMCA-IAWTIC, Volume 02, pages 2–6, Washington, DC, USA,
2005. IEEE Computer Society.

228 References

88. T. Hassan and R. Baumgartner. Table recognition and understanding from
pdf files. In ICDAR ’07: Proceedings of the Ninth International Conference on
Document Analysis and Recognition, pages 1143–1147, Washington, DC, USA,
2007. IEEE Computer Society.

89. C. D. L. Higuera and J. Oncina. Inferring deterministic linear languages.
In COLT ’02: Proceedings of the 15th Annual Conference on Computational
Learning Theory, pages 185–200, London, UK, 2002. Springer-Verlag.

90. K. Hofmann and W. Weerkamp. Web corpus cleaning using content and struc-
ture. C. Fairon, H. Naerts, A. Kilgarrif, and G. de Schryver, 2007.

91. J. L. Hong, E.-G. Siew, and S. Egerton. Information extraction for search
engines using fast heuristic techniques. Data Knowl. Eng., 69(2):169–196, 2010.

92. C.-N. Hsu and M.-T. Dung. Generating finite-state transducers for semi-
structured data extraction from the web. Inf. Syst., 23:521–538, December
1998.

93. G. Huck, P. Fankhauser, K. Aberer, and E. J. Neuhold. Jedi: Extracting and
synthesizing information from the web. In COOPIS ’98: Proceedings of the 3rd
IFCIS International Conference on Cooperative Information Systems, pages
32–43, Washington, DC, USA, 1998. IEEE Computer Society.

94. U. Irmak and T. Suel. Interactive wrapper generation with minimal user ef-
fort. In Proceedings of the 15th international conference on World Wide Web,
WWW ’06, pages 553–563, New York, NY, USA, 2006. ACM.

95. ISO8879:1986. Information processing – Text and Office Systems – Standard
Generalized Markup Language (SGML). Standard No. ISO 8879:1986, Inter-
national Organization for Standardization, 1986.

96. K. Ito and Y. Tanaka. A visual environment for dynamic web application
composition. In HYPERTEXT, pages 184–193. ACM, 2003.

97. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Comput. Surv., 31(3):264–323, 1999.

98. JBoss. jpdl. jBPM Process Definition Language (jPDL).
http://www.jboss.org/jbossjbpm/jpdl/.

99. D. Johnson. What is tagged PDF? http://www.planetpdf.com/ enterprise/
article.asp?ContentID=6067, 2005.

100. D. Johnson. Microsoft Office Word 2007 Rich Text Format (RTF) Specifica-
tion., 2007.

101. T. Kieninger and A. Dengel. An approach towards benchmarking of table
structure recognition results. In ICDAR, pages 1232–1236, 2005.

102. J. Kong, K. Zhang, and X. Zeng. Spatial graph grammars for graphical user
interfaces. ACM Trans. Comput.-Hum. Interact., 13(2):268–307, 2006.

103. R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, S. Vaithyanathan, and H. Zhu.
Systemt: a system for declarative information extraction. SIGMOD Rec.,
37(4):7–13, 2008.

104. B. Krüpl, M. Herzog, and W. Gatterbauer. Using visual cues for extraction
of tabular data from arbitrary html documents. In WWW, pages 1000–1001,
New York, NY, USA, 2005. ACM.

105. N. Kushmerick, D. S. Weld, and R. Doorenbos. Wrapper induction for infor-
mation extraction. In Proc. IJCAI-97, 1997.

106. A. H. F. Laender, B. Ribeiro-Neto, and A. S. da Silva. Debye - date extraction
by example. Data Knowl. Eng., 40(2):121–154, 2002.

107. A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S. Teixeira. A
brief survey of web data extraction tools. SIGMOD Rec., 31(2):84–93, 2002.

References 229

108. T. Lee, L. Sheng, T. Bozkaya, N. H. Balkir, Z. M. Özsoyoglu, and G. Özsoyoglu.
Querying multimedia presentations based on content. TKDE, 11(3):361–385,
1999.

109. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.
The dlv system for knowledge representation and reasoning. ACM Trans.
Comput. Logic, 7(3):499–562, 2006.

110. K. Lerman, L. Getoor, S. Minton, and C. Knoblock. Using the structure of
web sites for automatic segmentation of tables. In SIGMOD ’04: Proceedings
of the 2004 ACM SIGMOD international conference on Management of data,
pages 119–130, New York, NY, USA, 2004. ACM.

111. Y. Li and K. Bontcheva. Hierarchical, perceptron-like learning for ontology-
based information extraction. In Proceedings of the 16th international confer-
ence on World Wide Web, WWW ’07, pages 777–786, New York, NY, USA,
2007. ACM.

112. L. Libkin. Elements Of Finite Model Theory. SpringerVerlag, 2004.
113. R. Lima, B. Espinasse, and F. Freitas. An adaptive information extraction

system based on wrapper induction with pos tagging. In SAC ’10: Proceedings
of the 2010 ACM Symposium on Applied Computing, pages 1815–1820, New
York, NY, USA, 2010. ACM.

114. B. Liu, R. Grossman, and Y. Zhai. Mining data records in web pages. In
KDD ’03: Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 601–606, New York, NY, USA,
2003. ACM.

115. L. Liu, C. Pu, and W. Han. Xwrap: An xml-enabled wrapper construction
system for web information sources. In Proceedings of the 16th International
Conference on Data Engineering, pages 611–, Washington, DC, USA, 2000.
IEEE Computer Society.

116. W. Liu, X. Meng, and W. Meng. Vide: A vision-based approach for deep web
data extraction. IEEE Trans. on Knowl. and Data Eng., 22(3):447–460, 2010.

117. Y. Liu, K. Bai, P. Mitra, and C. L. Giles. Improving the table boundary
detection in pdfs by fixing the sequence error of the sparse lines. In ICDAR,
ICDAR ’09, pages 1006–1010, Washington, DC, USA, 2009. IEEE Computer
Society.

118. Y. Liu, P. Mitra, and C. L. Giles. Identifying table boundaries in digital
documents via sparse line detection. In Proceeding of the 17th ACM conference
on Information and knowledge management, CIKM ’08, pages 1311–1320, New
York, NY, USA, 2008. ACM.

119. S. J. Løvborg. Declarative programming and natural language, 2007.
120. B. Ludäscher, R. Himmeröder, G. Lausen, W. May, and C. Schlepphorst. Man-

aging semistructured data with florid: a deductive object-oriented perspective.
Inf. Syst., 23(9):589–613, 1998.

121. G. F. Luger. Artificial Intelligence: Structures and Strategies for Complex
Problem Solving. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1997. Preface By-Stubblefield,, William A.

122. J. Madhavan, S. R. Jeffery, S. Cohen, X. . Dong, D. Ko, C. Yu, A. Halevy, and
G. Inc. Web-scale data integration: You can only afford to pay as you go. In
CIDR, 2007.

123. A. Maedche, G. Neumann, and S. Staab. Bootstrapping an ontologybased
information extraction system, 2002.

230 References

124. M. Marx and M. de Rijke. Semantic characterizations of navigational xpath.
SIGMOD Rec., 34(2):41–46, 2005.

125. L. McDowell and M. J. Cafarella. Ontology-driven information extraction with
ontosyphon. In International Semantic Web Conference (ISWC), pages 428–
444, 2006.

126. S. Mir, S. Staab, and I. Rojas. Unsupervised approach for acquiring ontologies
and rdf data from online life science databases. In ESWC, 2010.

127. A. A. Muchnik. One application of real-valued interpretation of formal power
series. Theor. Comput. Sci., 290(3):1931–1946, 2003.

128. I. Muslea. Extraction patterns for information extraction tasks: A survey. In In
AAAI-99 Workshop on Machine Learning for Information Extraction, pages
1–6, 1999.

129. I. Muslea, S. Minton, and C. A. Knoblock. Hierarchical wrapper induction
for semistructured information sources. Autonomous Agents and Multi-Agent
Systems, 4(1-2):93–114, 2001.

130. G. Nagy and S. Seth. Hierarchical representation of optically scanned docu-
ments. In ICPR, 1984.

131. G. Nagy, S. Seth, and M. Viswanathan. A prototype document image analysis
system for technical journals. Computer, 25(7):10–22, 1992.

132. I. Navarrete and G. Sciavicco. Spatial reasoning with rectangular cardinal
direction relations. In ECAI, pages 1–9, 2006.

133. K. Nicholas. Wrapper induction for information extraction. PhD thesis, 1997.
Chairperson-Weld, Daniel S.

134. OASIS. OASIS, Open Document Format for Office Applications (OpenDocu-
ment). http://docs.oasis-open.org/office/ v1.1/OS/, 2007, 2007.

135. E. Oro, F. Riccetti, and M. Ruffolo. Viquel: A spatial query language for
presentation-oriented documents. In ICTAI, 2010.

136. E. Oro, F. Riccetti, and M. Ruffolo. A spatial approach for extracting infor-
mation from presentation-oriented documents. In ICAART, 2011.

137. E. Oro and M. Ruffolo. Description ontologies. In ICDIM, pages 369–374,
2008.

138. E. Oro and M. Ruffolo. Towards a system for ontology-based information
extraction from pdf documents. In OTM Conferences (2), pages 1482–1499,
2008.

139. E. Oro and M. Ruffolo. Xonto: An ontology-based system for semantic infor-
mation extraction from pdf documents. In ICTAI (1), pages 118–125, 2008.

140. E. Oro and M. Ruffolo. Pdf-trex: An approach for recognizing and extracting
tables from pdf documents. In ICDAR, pages 906–910, 2009.

141. E. Oro and M. Ruffolo. Towards a semantic system for managing clinical
processes. In ICEIS (2), pages 180–187, 2009.

142. E. Oro, M. Ruffolo, and D. Saccà. Combining attribute grammars and ontolo-
gies for extracting information from pdf documents. In SEBD, pages 153–160,
2009.

143. E. Oro, M. Ruffolo, and D. Saccà. Ontology-based information extraction from
pdf documents with xonto. International Journal on Artificial Intelligence
Tools (IJAIT), 18(5):673–695, 2009.

144. E. Oro, M. Ruffolo, and D. Saccà. A semantic clinical knowledge representation
framework for effective health care risk management. In BIS, pages 25–36, 2009.

145. E. Oro, M. Ruffolo, and S. Staab. Sxpath - extending xpath towards spatial
querying on web documents. PVLDB, 4(2):129–140, 2010.

References 231

146. E. Oro, M. Ruffolo, and F. Valentini. Sila: A spatial instance learning approach
from deep web pages. In ICAR-CNR Technical Report, 2010.

147. T. J. Ostrand, M. C. Paull, and E. J. Weyuker. Parsing regular grammars with
finite lookahead. Acta Inf., 16:125–138, 1981.

148. Oxford University, Domain-centric intelligent automated data extraction
methodology, http://www.w3.org/html/. DIADEM- Domain-centric Intelli-
gent Automated Data Extraction Methodology.

149. L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism
algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell.,
26(10):1367–1372, 2004.

150. N. K. Papadakis, D. Skoutas, K. Raftopoulos, and T. A. Varvarigou. Stavies:
A system for information extraction from unknown web data sources through
automatic web wrapper generation using clustering techniques. TKDE,
17(12):1638–1652, 2005.

151. P. Parys. Xpath evaluation in linear time with polynomial combined complex-
ity. In PODS, pages 55–64. ACM, 2009.

152. F. Pereira, A. Rajaraman, S. Sarawagi, W. Tunstall-Pedoe, G. Weikum, and
A. Halevy. Answering web questions using structured data: dream or reality?
Proc. VLDB Endow., 2:1646–1646, August 2009.

153. A. Pivk, P. Cimiano, Y. Sure, M. Gams, V. Rajkovic, and R. Studer. Trans-
forming arbitrary tables into logical form with tartar. Data Knowl. Eng.,
60(3):567–595, 2007.

154. B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff, and M. Gora-
nov. Kim - semantic annotation platform. In International Semantic Web
Conference, pages 834–849, 2003.

155. L. D. Raedt, A. Kimmig, and H. Toivonen. Problog: a probabilistic prolog
and its application in link discovery. In IJCAI, pages 2468–2473. AAAI Press,
2007.

156. J. Raposo, A. Pan, M. Álvarez, J. Hidalgo, and A. Vi na. The wargo system:
Semi-automatic wrapper generation in presence of complex data access modes.
In DEXA ’02: Proceedings of the 13th International Workshop on Database
and Expert Systems Applications, pages 313–320, Washington, DC, USA, 2002.
IEEE Computer Society.

157. J. Renz. Qualitative spatial reasoning with topological information. Springer,
2002.

158. F. Ricca and N. Leone. Disjunctive logic programming with types and objects:
The dlv+ system. J. Applied Logic, 5(3):545–573, 2007.

159. E. Riloff. Automatically generating extraction patterns from untagged text.
In Proceedings of the thirteenth national conference on Artificial intelligence -
Volume 2, AAAI’96, pages 1044–1049. AAAI Press, 1996.

160. G. Rozenberg and A. Salomaa, editors. Handbook of formal languages, vol.
1: word, language, grammar. Springer-Verlag New York, Inc., New York, NY,
USA, 1997.

161. D. Rus and K. Summers. Geometric algorithms and experiments for automated
document structuring. Mathematical and Computer Modelling, 26:55–83, 1997.

162. M. B. S. Ceri. Search Computing Challenges and Directions. Springer, 2010.
163. H. Saggion, A. Funk, D. Maynard, and K. Bontcheva. Ontology-based infor-

mation extraction for business intelligence. In ISWC/ASWC, pages 843–856,
2007.

232 References

164. A. Sahuguet and F. Azavant. Building intelligent web applications using
lightweight wrappers. DKE, 36(3):283–316, 2001.

165. J. Schürmann, N. Bartneck, T. Bayer, J. Franke, E. Mandler, and
M. Oberländer. Document analysis-from pixels to contents. Proceedings of
the IEEE, pages 403–421, 2002.

166. D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and applications of
tree and graph searching. In PODS, pages 39–52, 2002.

167. W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan. Declarative infor-
mation extraction using datalog with embedded extraction predicates. In Pro-
ceedings of the 33rd international conference on Very large data bases, VLDB
’07, pages 1033–1044. VLDB Endowment, 2007.

168. W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan. Declarative infor-
mation extraction using datalog with embedded extraction predicates. In Pro-
ceedings of the 33rd international conference on Very large data bases, VLDB
’07, pages 1033–1044. VLDB Endowment, 2007.

169. K. Simon and G. Lausen. Viper: augmenting automatic information extraction
with visual perceptions. In Proceedings of the 14th ACM international confer-
ence on Information and knowledge management, CIKM ’05, pages 381–388,
New York, NY, USA, 2005. ACM.

170. D. Simovici and R. Tenney. Theory of Formal Languages with Applications.
World Scientific, Singapore, 1999.

171. S. Soderland, C. Cardie, and R. Mooney. Learning information extraction rules
for semi-structured and free text. In Machine Learning, pages 233–272, 1999.

172. S. Staab and R. Studer. Handbook on Ontologies. Springer Publishing Com-
pany, Incorporated, 2nd edition, 2009.

173. K. Sudo, S. Sekine, and R. Grishman. An improved extraction pattern rep-
resentation model for automatic ie pattern acquisition. In Proceedings of the
41st Annual Meeting on Association for Computational Linguistics - Volume
1, ACL ’03, pages 224–231, Morristown, NJ, USA, 2003. Association for Com-
putational Linguistics.

174. B. ten Cate and M. Marx. Navigational xpath: calculus and algebra. SIGMOD
Rec., 36(2):19–26, 2007.

175. B. ten Cate and M. Marx. Axiomatizing the logical core of xpath 2.0. Theor.
Comp. Sys., 44(4):561–589, 2009.

176. B. ten Cate and L. Segoufin. Xpath, transitive closure logic, and nested tree
walking automata. In PODS, pages 251–260. ACM, 2008.

177. J. Turmo, A. Ageno, and N. Catal. Adaptive information extraction. ACM
Computing Surveys, 38(2), 2006.

178. S. Vadrevu, F. Gelgi, and H. Davulcu. Information extraction from web pages
using presentation regularities and domain knowledge. World Wide Web,
10(2):157–179, 2007.

179. M. Vargas-vera, E. Motta, J. Domingue, S. B. Shum, and M. Lanzoni. Knowl-
edge extraction by using an ontology-based annotation tool. In In K-CAP 2001
workshop on Knowledge Markup and Semantic Annotation, pages 5–12, 2001.

180. W3C, http://www.w3.org/Style/CSS/. Cascading Style Sheets.
181. W3C, http://www.w3.org/DOM/. Document Object Model (DOM).
182. W3C, http://www.w3.org/html/. HTML.
183. W3C, http://www.w3.org/XML/Query/. XML Query (XQuery), 1.0 edition.
184. W3C, http://www.w3.org/TR/xpath. XML Path Language (XPath) Version

1.0, 1.0 edition, November 1999.

References 233

185. P. Wadler. Two semantics for xpath. Draft: http://homepages
.inf.ed.ac.uk/∼wadler/papers/xpath-semantics, 2000.

186. Y. Wang. Document analysis: a table structure understanding and zone content
classification. PhD thesis, 2002.

187. G. Weikum and M. Theobald. From information to knowledge: harvesting
entities and relationships from web sources. In PODS ’10: Proceedings of the
twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems of data, pages 65–76, New York, NY, USA, 2010. ACM.

188. K. Wich. Exponential ambiguity of context-free grammars. In G. Rozenberg
and W. Thomas, editors, Proceedings of the 4th International Conference on
Developments in Language Theory, pages 125–138. World Scientific, Singapore,
July 2000.

189. D. C. Wimalasuriya and D. Dou. Ontology-based information extraction: An
introduction and a survey of current approaches. Journal of Information Sci-
ence, 2009.

190. M. M. Wood, S. J. Lydon, V. Tablan, D. Maynard, and H. Cunningham. Popu-
lating a database from parallel texts using ontology-based information extrac-
tion. In NLDB, pages 254–264, 2004.

191. W. A. Woods. Transition network grammars for natural language analysis.
Commun. ACM, 13(10):591–606, 1970.

192. F. Wu and D. S. Weld. Autonomously semantifying wikipedia. In Proceedings
of the sixteenth ACM conference on Conference on information and knowledge
management, CIKM ’07, pages 41–50, New York, NY, USA, 2007. ACM.

193. R. Yangarber, R. Grishman, P. Tapanainen, and S. Huttunen. Automatic
acquisition of domain knowledge for information extraction. In Proceedings of
the 18th conference on Computational linguistics - Volume 2, pages 940–946,
Morristown, NJ, USA, 2000. Association for Computational Linguistics.

194. B. Yildiz, K. Kaiser, and S. Miksch. Pdf2table: A method to extract table
information from pdf files. In IICAI, pages 1773–1785, 2005.

195. F. Yuan, B. Liu, and G. Yu. A study on information extraction from pdf files.
In ICMLC, 2005.

196. R. Zanibbi, D. Blostein, and R. Cordy. A survey of table recognition: Models,
observations, transformations, and inferences. Int. J. Doc. Anal. Recognit.,
7(1):1–16, 2004.

197. Y. Zhai and B. Liu. Web data extraction based on partial tree alignment. In
WWW ’05: Proceedings of the 14th international conference on World Wide
Web, pages 76–85, New York, NY, USA, 2005. ACM.

198. Y. Zhai and B. Liu. Structured data extraction from the web based on partial
tree alignment. TKDE, 18(12):1614–1628, 2006.

199. Y. Zhai and B. Liu. Extracting web data using instance-based learning. In
WWW, pages 113–132, 2007.

200. S. Zhang, J. Li, H. Gao, and Z. Zou. A novel approach for efficient supergraph
query processing on graph databases. In EDBT ’09: Proceedings of the 12th
International Conference on Extending Database Technology, pages 204–215,
New York, NY, USA, 2009. ACM.

201. H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu. Fully automatic wrapper
generation for search engines. In Proceedings of the 14th international con-
ference on World Wide Web, WWW ’05, pages 66–75, New York, NY, USA,
2005. ACM.

	1-frontespizio_XXXIII
	2-frontespizio_XXXIII
	Thesis Ermelinda Oro.pdf

