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Introduction 
The forecasted growth rate of containerized trade for the future years has 

driven competing container terminals to enhance their individual ability in 

fulfilling customer demand with high standard quality service, while keeping 

operations lean. A natural corollary to this level of commitment is found in the 

daily pursuit of terminal managers to obtain a nearly seamless system and 

maintain its operational efficiency. A similar goal calls for the use of 

systematic design and verification methodologies that can cope with the major 

sources of system complexity and return “reliable” measures for terminal 

performance such as container throughput, vessel/vehicle turn-a-round time 

and/or unproductive times. 

In modern container terminals the use of Operations Research methods and 

models as a response to this quest is becoming a rather “large” issue. Indeed, 

container terminal logistics have received great interest in the scientific 

literature from both the theoretical and practical standpoint. In most cases, the 

common approach to problem design and solution is based on decomposing 

the original problem into several related smaller models. However, a 

satisfactory contribution to these complex, dynamic and random-based logistic 

problems often requires the combination of multiple stand-alone OR 

techniques to deliver overall system performance measures. This awareness 

leads to the introduction of an integrated methodology which can significantly 

aid decision-making under uncertainty. 

Chapter 1 of this dissertation first introduces the three major operational 

concerns in a maritime container terminal (i.e. the berth planning, the quay 

crane scheduling and the yard management) and discusses how in related 

precedent industrial-oriented R&D activities three queuing-based network 

models were solved via simulation to investigate performance evaluation. It 

then illustrates how, for each problem, the practical need to extend simulation 

research efforts beyond a classical what-if approach naturally yields a more 

promising methodology, focused on systematic moves for optimum-seeking, 

also known as simulation-based optimization. 
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Chapter 2 focuses on the prospect of selecting the “best” among k  

simulated competing designs, policies or system configurations according to a 

pre-assigned level of probability. To this end, the major Ranking and Selection 

(R&S) approaches are illustrated for cases in which all alternative simulated 

system designs are known in advance. In particular, two newly proposed so-

called indifference-zone based R&S procedures are presented. The first builds 

an “artificial” process with the same mean as the output observations of 

interest, but with a smaller variance. The second bases its sampling process on 

the corresponding variance behavior and uses a variance-weighted decisional 

mechanism during simulation run. Both algorithms are compared with the 

performances of some previously discussed classical R&S statistical 

techniques. 

Chapter 3 deals with the case in which a combinatorial, unknown number 

of simulated configurations needs to be explored. A simulated annealing (SA) 

algorithm is introduced as system generating algorithm (SGA) to sequentially 

reveal k  different systems configurations (with 1≥k ) during a simulation run. 

An in-depth description of the SA algorithm and its properties follows, along 

with a discussion on the practical limits experienced when customizing this 

approach to the study of a well-known problem in port logistics: the quay 

crane scheduling problem. The closing paragraph presents an integrated SA-

R&S procedure and preliminary numerical experiments for the above problem. 

In the final chapter, simulation-based optimization models are integrated 

and applied to the container terminal in Gioia Tauro, Italy. The application is 

required by the top manager who is currently evaluating a hypothesis of 

reorganization in the yard system infrastructures in conjunction with 

alternative operational policies and procedures pertaining to the yard area and 

all bordering zones. The proposed simulation-based optimization approach 

benefits from suitably designed advanced statistical methods for input and 

output data analysis. 
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Chapter 1 
Optimum-seeking by simulation 
issues in maritime container 
terminals 
 

 

 

 

1.1 Introduction 

Container terminals are multi-modal facilities serving the role as interface 

between sea and land-based container transport. Their core business consists 

in providing a wide range of integrated services across the logistic chain of 

container movement (e.g. handling, stacking, inspection, inter-modal 

dispatching, etc.). 

According to the figures provided by UNCTAD (2004), containerized 

trade, measured in TEUs (twenty-foot equivalent units), is forecasted to grow 

by an average annual rate of 5.32% over the next two decades. As a result of 

this trend, the number of container terminals worldwide keeps increasing and 

competition has become both price driven and service driven. In this market 

struggle among container terminals, the success of individual companies 

mostly depends upon their ability to fulfill customer demand with high 

standard quality service and keep their operations lean; otherwise, they are 

bound to lose clients to competition. 

In response to this pursuit, more and more terminal managers are drawing-

up investment plans and seeking funding to improve the performance of their 

main logistic processes in terms of both operational efficiency and asset 

utilization, while saving on costs and risks. In this concern, companies are not 
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alone: Operations Research (OR) has become a very valuable reference for 

those who intend to acquire and apply successful practices and support 

complex decisional processes based on the results of research and 

development studies. 

The use of Operations Research methods and models in modern container 

terminals and operations management problems is exhaustively discussed in 

recent literature survey papers (Vis and de Koster 2003, Steenken et al. 2004, 

Stahlbock and Voß 2008). A wide variety of different approaches are 

presented for process optimization including exact methods, heuristic methods 

as well as simulation approaches. Due to the inherent uncertainties in both 

terminal (sub)system and input data modeling, growing attention is getting 

paid to simulation-based techniques, which are especially suitable for both 

estimating the performance measures of interest in these complex facilities and 

supporting decision-making processes at a strategic, tactical and operational 

level. 

This logic is also the bottom line shared throughout the entire thesis. This 

chapter first introduces three of the major operational concerns in a container 

terminal: the berth planning, the quay crane scheduling and the yard 

management. Then, for each of these problems, an emerging awareness is 

addressed: whatever stand-alone OR technique is being used, especially in 

industry-oriented R&D activities, it needs to interact with other methodologies 

to give a satisfactory, practical contribution to the complex logistic problems 

at hand and, thus, deliver maximum results for each of them. This 

understanding leads to the introduction of simulation-based optimization, an 

integrated methodology which can significantly aid decision-making under 

uncertainty. 

 

 

1.2 Berth planning 

A berth is a properly-equipped space in a harbor beside a quay or pier where a 

vessel can be moored for  discharging and/or loading (containerized) cargo, as 
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shown by Figure 1.1. In a container terminal, this limited resource is usually 

organized in a number of segments and/or slots to be assigned to incoming 

vessels. 

 

 
Figure 1.1 - Bird view of a berth in a container terminal and its bordering areas 

 

The choice of berthing one vessel rather than another into a specific slot could 

depend on a variety of factors including: 

• contractual agreements (e.g. in respect of formal guarantees, likely 

based on fixed time windows or priority mechanisms, granted to 

certain vessels); 

• technical feasibility (e.g. a berth segment must be physically compliant 

with the requiring vessel’s length and draft and, at the same time, not 

disregard the minimum-security distance between current or potential 

neighboring vessels); 

• operational efficiency (e.g. to minimize the distance between the berth 

segment assigned to a candidate-vessel and the source/destination point 

of the vessel’s container stacking area in the storage yard). 

The above points help to clarify why terminal managers usually practice 

different berth assignment policies for different clients. “Primary” vessels are 

often entitled to receive reserved berth segments that are in close proximity to 

the yard area in which their container slots are located. On the contrary, the 

berthing requests of “secondary” vessels are fulfilled according to a “fill in” 
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procedure along the free berth and on a first-in first-out basis between 

competing secondary vessels. 

Practically, to avoid that an arriving primary vessel must wait in the 

roadstead until some secondary vessel releases its berth space, a priority 

mechanism is typically used. It can be based on a “look ahead” over the 

expected time of arrival (ETA) of primary vessels. In brief, the secondary 

vessel is forced to wait in the roadstead whenever its arrival instant falls too 

close to the ETA of the next primary vessel, making it impossible for the 

secondary vessel to leave the berth before the arrival of the next primary 

vessel claiming the same berth space. 

With reference to this specific subsystem, in (Legato and Mazza 2001) a 

hierarchical model is proposed to estimate congestion effects on the sojourn 

time of vessels (customers) belonging to any given shipping company (class of 

customers), out of a fixed number visiting the terminal. The outer model in 

Figure 1.2 focuses on the terminal admission policy: as on may observe, the 

berth slots serve as “passive resources” to be held before vessel entrance until 

vessel exit. This feature affects the berth assignment and, thus, admission to 

the port facility for secondary vessels whose arrival instant is close to the next 

arrival instant of a primary vessel. Therefore, it prevents an analytical solution 

of the outer queuing network model. 

 

 

Figure 1.2 - The outer model 
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Figure 1.3 - The inner model 

 

Resource representation in the inner model depicted by Figure 1.3 reveals that 

tugs are not a critical resource, while, in contrast, the limited number of quay 

cranes along the berth segments may generate waiting phenomena among the 

requiring berthed vessels. The overall closed queuing network model with 

multiple classes of customers is solved via simulation to represent a berthing 

policy with priorities, multiple crane (servers) allocation and non-

exponentially distributed time between arrivals of major vessels. Some other 

queuing based simulation models for these core logistic processes at real 

container terminals can be found in (Silberholz et al. 1991; Gambardella et al. 

1998; Yun and Choi 1999; Shabayek and Yeung 2002). However, all of them 

share the common lack of attention to the waiting phenomenon that arises 

when an incoming vessel stops in the roadstead, first to ask for a berthing 

position and then to receive one or more tugs and/or pilots that will maneuver 

it to the berthing position. This refinement is the subject of a more recent study 

(Canonaco et al. 2007) conducted on behalf of Medcenter Container Terminal 

S.p.A. (MCT), the company that manages the container terminal located at the 

port of Gioia Tauro in Southern Italy. In this work, a new queuing network 

model accounts for and satisfies the requirements proposed by MCT. In 

principle, a sort of semaphore-like device is considered to represent the 

holding time at the entrance channel (before berth assignment) and the cause 

of such delay, along with its random duration. The entire queuing network 
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model holds in store a wide range of useful alternative configurations to be 

evaluated by simulation in order to support major strategic-tactical decisions. 

For example: 

• What kind of admission policy should be adopted for vessels on wait in 

the roadstead?  

• How many berth segments should be organized for active shipping 

services?  

• How many quay cranes - out of the total, fixed number of these 

available resources - should be allocated along each of the above berth 

segments? 

• In which segment(s) should vessels entering the port be berthed, 

provided that this decision may be based on some suitable attributes 

shared by any given subset of the active services? 

To take simulation research efforts to a higher level, particular attention 

needs to be given to the statistical methods used to analyze simulation output. 

Indeed, the availability of credible simulation results can extend the use of a 

simulation model even beyond a classical what-if approach performed on the 

capacity planning of logistic resources or the management of logistic 

operations. The problem of finding a queuing system configuration that 

optimizes the expected value of some measures of system performance on the 

long-run, such as terminal throughput and lead time, is strongly demanded. 

More precisely, in future work the goal to pursue is twofold: on one hand, 

generate and simulate a sequence of system configurations (each 

corresponding to particular input settings) so that a configuration providing a 

near-optimal solution is eventually obtained; on the other, obtain such a 

solution with the least amount of computational expense possible (i.e. number 

and length of simulation runs). 
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1.3 Quay crane scheduling 

The quay or ship operation area is one of the main sub-systems in a container 

terminal. In this area ship-to-shore cranes, such as rail-mounted gantry cranes 

(RMGCs) or rubber-tired gantry cranes (RTGCs), perform container 

discharge/loading operations from/on a vessel, while selected shuttle vehicles 

provide container transfer from the quay to the yard and vice versa. As in most 

European and North-American container terminals, the present description 

refers to a direct transfer system (DTS), which implies the use of straddle 

carriers (SCs) - special vehicles designed to pick-up/set-down and transfer 

one or more containers per time. 

For both discharge and loading operations, a quay crane operates by 

moving (on wheel or rail) in horizontal directions to reach different holds 

within the same vessel or on different vessels. At the basis of each quay crane, 

a very restricted area (e.g. a 6-slot space) is naturally provided for buffering a 

limited number of containers. When performing discharge operations, a quay 

crane picks-up containers from the vessel and “feeds” them to straddle carries 

which provide for their direct transfer from the quay area to the assigned yard 

positions within the terminal storage area. As one may observe in Figure 1.4, 

the representation of this discharge process from the ship to the yard features a 

joining point in blue between the unloaded container (TEUs waiting line under 

crane) and the SC (SC waiting line on quay) sent for its pick-up (set-up time) 

and transfer to the yard. 

As far as loading operations are concerned, a quay crane picks-up 

containers delivered from the terminal yard by the SCs and places them on the 

ship in the assigned vessel holds. Figure 1.4 accounts for this process from the 

yard to the ship as well: in particular, the forking point in red represents the 

physical separation carried out by an SC (SC waiting line on quay) when it 

first sets-down the container (set-down time) in the quay crane buffer area 

(TEUs waiting line under crane) and then returns empty to the yard to retrieve 

other containers. 
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Figure 1.4 - The discharge/loading process 

 

When a different number of cranes are called to work in parallel on the 

same vessel at the same instant (as required, for example, by contractual 

agreements), a well-known operational problem arises: the quay crane 

scheduling problem (QCSP). The objective of this problem consists in 

determining the so-called crane split or crane schedule or, in other words, 

which and in what order holds should be assigned to the single quay cranes to 

minimize the vessel’s overall completion time (also known as makespan), 

provided that: 

• a minimum distance must be left between quay cranes to avoid boom 

collision (non-simultaneity constraints); 

• some vessel holds must be operated before others (precedence 

constraints); 

• not every quay crane is always immediately available for requiring 

vessel holds (release constraints). 

The solution of the QCSP has been successfully dealt with in literature by 

using both deterministic approaches (and solving the relaxation of the related 
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IP formulation) and metaheuristics algorithms (see for example Daganzo 

1989, Kim and Park 2004, Lim et al. 2007, Sammarra et al. 2007). 

Nevertheless, it is worth observing that in real-life management of logistics at 

a maritime container terminal, the QCSP is not an isolated problem, but rather 

a decisional step within the entire discharge/loading process depicted in Figure 

1.4. Therefore, dealing with this process as a whole, requires finding a solution 

to the QCSP within a wider OR-based methodology, as well as adopting cost-

effective techniques in terms of results realism and quality of the solution 

returned. 

The awareness of this methodological “lag” first occurred in a previous 

research by (Canonaco et al. 2008) that investigated the representational 

capabilities offered by consolidated modeling languages such as queuing 

networks (Gross and Harris 1998) and event graphs (Yücesan and Schruben 

1992, Schruben 2000). Due to the complexity and the dynamic, non 

deterministic features of the discharge/loading process, at that time a discrete-

event simulation approach was used to incorporate both the low level 

operational policies and work rules and the specific scheduling constraints 

involved in the vessel hold-quay crane assignment. During numerical 

experimentation, some what-if experiments were performed to obtain 

improved resource and system performance measures. 

 

 
Figure 1.5 - The “test a move” approach by simulation 
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In particular, a “test a move” approach, based on a selective modification of 

either the crane-holds allocation schedule or the straddle carriers-crane 

assignment policy, was adopted. These what-if attempts were logically 

arranged as shown in Figure 1.5 and consisted in performing a manual local 

search on a few neighbor configurations of the schedule set by the end-user. 

It then occurred that this schema could be envisioned as the basis to evolve 

from a what-if approach - suitable just for evaluating the goodness of an 

existing praxis - to a what-to approach for determining a (sub)optimal solution 

in new system design. To the latter case, the above manual local search would 

have to be replaced by an optimization procedure aimed to first generate an 

initial feasible configuration and then explore the whole feasible region until 

no further improvements of the makespan could be obtained or no further 

computation time remained. Once again, a similar methodology, focused on 

systematic moves for optimum-seeking, called for the use of both simulation 

and optimization. 

 

 

1.4 Yard crane management 

The role of a yard in a maritime container terminal is to provide storage space 

for containers from their import by truck to their export by vessel and vice 

versa, and during their (pure) transshipment from vessel to vessel. 

The present description is referred to a pure transshipment terminal, where 

a unique storage area is shared among a certain number of shipping companies 

to which properly sized portions of the yard must be assigned to stack/retrieve 

container batches (i.e. a set of containers sharing some common properties). 

Such a situation actually occurs at the port of Gioia Tauro, where oceanic 

(mother) vessels from the Eastern Asia maritime route discharge containers 

mainly addressed to other ports in Northern Europe. Due to the lack of 

adequate rail services and road infrastructures, containers stored on the Gioia 

Tauro yard site are almost completely retrieved by secondary vessels (both 

dedicated and common feeders). 
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Generally speaking, from an organizational point of view, a yard may be 

divided into large areas called zones. In each zone, containers are stacked into 

blocks. As shown in Figure 1.6, a block has: a number of lanes or rows 

ranging from 6 to 13 (eventually plus one if transfer occurs by internal truck) 

placed side by side; usually 5 containers in height called tiers for each lane; 20 

or more containers in length. A vertical section of a block (e.g. 5 tiers * 6 

lanes) is normally referred to as bay. 

 

 
Figure 1.6 - Organization of a yard operated by cranes 

 

If container stacking/retrieval on the yard is performed by transfer cranes, 

such as RMGCs or RTGCs, then a common operational issue consists in 

periodically deciding how many and which cranes are to be assigned to a 

block. This decision usually depends on the expected daily workload in each 

block and, therefore, on the total crane capacity (measured in time units) 

required to complete container stacking/retrieval operations. To do so, cranes 

must be transferred from one block to another. For example, Figure 1.7 

illustrates how RTGCs can travel between adjacent yard blocks without any 

turning motion (e.g. from block 1 to block 3) or by changing lanes (e.g. from 

block 1 to block 4). In the former case, crane transfer can take about 10 

minutes; in the latter, about 5 additional minutes are required to perform 90 

degree turns. These movements are exclusively referred to inter-block (and not 

inter-zone) crane transfer.  
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Figure 1.7 - Crane transfer between yard blocks 

 

The point to remark is that, in many terminals the management of yard 

cranes has been quite experience-based and did not receive a great deal of 

attention until the last decade. In particular, despite the popularity of yard 

cranes and the importance of their role in the yard operation, there still has 

been a limited number of systematic studies on the yard crane deployment 

problem. 

In particular, the RTGC deployment problem has been addressed via 

mathematical models (see for example Zhang et al. 2002, Cheung et al. 2002, 

Lim et al. 2002, Linn et al. 2003). However, in most of these formulations, 

some of the underlying modeling assumptions are necessary to simplify a 

complex analysis, yet questionable. Practically speaking, they are seldom met 

in the real world and can be misleading when investigating the performance of 

different yard crane deployment rules. 

To begin with, most of the times data is assumed to be deterministic and 

static. Still, on-the-field experience bears out that daily workloads vary 

according to contingent requirements and/or circumstances, among which the 

calling vessels’ ETA - expected time of arrival. Therefore, workloads are often 

known and revised in just a matter of hours. In such a case, the crane 

deployment problem should be solved again and a periodic update of the crane 

deployment schedule should follow immediately. 

In the second place, converting the daily workload in terms of crane time is 

not as straightforward as usually assumed to be. As a matter of fact, the 

service time of a yard crane is not deterministic and the amount of work done 
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in a container block per time period isn’t typically proportional to the number 

of cranes operating in the block during that period. As the number of cranes in 

a block increases, crane productivity may decrease because the space for 

cranes to maneuver and work becomes more limited. In addition to this, other 

“irregular phenomena”, such as crane starvation, blocking and/or failure, could 

and should be taken into account. Any of the previous may occur during the 

ordinary work cycle for container retrieval/stacking in the yard and cause 

delay upon yard operations. 

In the end, the solutions obtained from stand-alone models are likely to 

provide only partial guidance when modeling time-evolving systems such as a 

storage yard in a container terminal. 

On the strength of the above considerations, one may acknowledge the 

usefulness of reproducing via simulation the system dynamics over multiple 

periods, under some conditions of uncertainty due to randomly occurring 

events and random duration of logistic activities. In this sense, (Kim et al. 

2006) use simulation to address dispatching and task sequencing rules for 

container yards operated by multiple dual rail-mounted gantry cranes 

(DRMGCs, where one crane is larger than the other, thus they can pass each 

other without interfering with one another) in a yard block. 

 

 
Figure 1.8 - The architecture of the integrated crane deployment framework 
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Instead, (Canonaco et al. 2009) extend a similar approach to the RTGC 

problem by introducing the integrated framework illustrated in Figure 1.8. The 

proposed simulation-based architecture includes an optimization model to 

determine the block pairs between which cranes should be transferred during 

the period under examination, as shown by the queuing network in Figure 1.9, 

in order to satisfy the crane capacity requirements and minimize the total cost 

for block matching and crane activation. 

 

 
Figure 1.9 - Crane transfer between yard blocks 

 

In conclusion, for a third time, the need for an all-inclusive simulation and 

optimization approach has sprung from bottom-up requirements in the 

operation of container terminals. 

 

 

1.5 Simulation-based optimization 

In the attempt to further address the problems described in the previous 

sections, one may start by recognizing that terminal containers, as well as 

many other modern day systems providing products and services in the fields 

of logistics, manufacturing, transportation, network-centric computing, etc., 
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are event-driven and, thus, can be modeled as discrete-event systems (DES) 

with the objective of carrying-out performance analysis and optimization. As a 

result of this standing, the growing importance of discrete stochastic 

optimization is easily understood especially in the design and operation of the 

above systems. 

A general problem of discrete stochastic optimization can be defined as 

follows: 

( )[ ]θ
θ

fE
Θ∈

min        (1.1) 

where 

Θ  is the  solution space; 

θ  is the set of controllable (input) design variables; 

( )θf  is the performance measure of interest; 

( )[ ]θfE  is the mathematical expectation of the performance measure of 

interest. 

The goal is to minimize (maximize) the objective function ( )[ ]θfE  over all 

possible combinations of the controllable design variables θ . In many 

contexts ( )θf  is a random variable subject to variance and, thus, the actual 

value of ( )θf  cannot be optimized. This is straightforward if one considers 

the operational activities in a container terminal: vessel arrival, container 

movements, equipment failure, congestion phenomena, weather conditions 

and so on. The random nature and variety of the activities governed by 

uncertainty leads to the definition of a class of problems in which whatever 

expected performance measure cannot be determined analytically, but must be 

estimated on sample paths generated via discrete-event simulation. 

With respect to these issues, the ultimate solution effort is known as 

simulation-based optimization (or optimum-seeking by simulation or 

simulation optimization). Formally, simulation-based optimization (SO) means 

searching for the settings of controllable decision variables that yield the 

minimum (maximum) expected performance of a stochastic system that is 

represented by a simulation model (Fu and Nelson 2003). 
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In a simulation-based optimization procedure, a structured iterative 

approach calls an optimization algorithm to decide how to change the values 

for the set of input parameters (i.e. configuration) and then uses the responses 

generated by the simulation runs to guide the selection of the next set. The 

logic of this approach is shown in Figure 1.10. 

 

Simulation
(evaluation process)

Initial 
configuration

Optimization
(search process)

Stop 
criterion 

met?

Begin

Final 
configuration

End

yes

no

 
Figure 1.10 - Logic of a simulation-based optimization approach 

 

In particular, the simulation process cannot return an estimate of the 

objective function by simply fitting a set of possible decision variables into a 

simple closed-form formula: input variables may be either quantitative or 

qualitative. Furthermore, the computational expense of a single replication of 

the simulation model of interest is likely to exceed the typical computation 

time required by any medium-sized (thousands of variables) linear program. 

Thus, the trade-off between the amount of computational time needed to 

find improved configurations on the optimization side (search process) versus 
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the effort in estimating via simulation the performance at a particular 

configuration (evaluation process) becomes a key issue and some practical 

“compromises” need to be made. 

According to (Banks et al. 2001), the main simulation-based optimization 

approaches must: 

• guarantee a pre-specified probability of correct selection since 

performance evaluation is based on observations that are random 

variates returned from a simulation process and, thus, do not guarantee 

the selection of the best design among competing alternatives, despite 

it being truly representative of the best system configuration; 

• guarantee asymptotic convergence to the (global/local) optimal 

solution in finite time as it must be in practice; 

• guarantee optimality for deterministic counterpart which, practically 

speaking, consists in verifying that the SO algorithm would find the 

optimal solution if the performance of each design could be evaluated 

with certainty; 

• be based on robust heurisitcs, meaning that heuristics should be 

effective with limited or no dependence on problem structure and/or 

variable types, as well as tolerant to some sampling variability (e.g. 

simulated annealing, genetic algorithms, tabu search). 

(Fu 2001) divides the types of simulation-based optimization techniques in 

the following main categories: 

• statistical procedures (e.g. ranking & selection procedures and multiple 

comparison for the comparison of two or more alternative system 

configurations); 

• metaheuristics (methods directly adopted from deterministic 

optimization search strategies such as simulated annealing); 

• stochastic optimization (random search, stochastic optimization); 

• other, including ordinal optimization and sample path optimization. 

The present thesis focuses on procedures included in the first category (i.e. 

ranking & selection in chapter 2) to estimate the best among a set of 
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alternatives whether they are all known in advance or actually generated 

during simulation run. To favor the management of the latter case, a 

metaheuristic approach is used (i.e. simulated annealing algorithm in chapter 

3) to amend for solution generation when having to decide what alternative 

system configurations to simulate. As a whole, the simulation-based 

optimization models proposed are then integrated and applied to address yard 

and infrastructures organization in a real container terminal (in chapter 4) with 

the goal of selecting the “best” alternative overall system configuration for 

greater yard utilization and productivity. 
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Chapter 2 
Selecting the best system 
 

 

 

 

2.1 Introduction 

A major objective of a simulation study and that which has been dominant in 

Management Science and Operations Research over the history is system 

analysis, where the intent is to mimic behavior to understand or improve 

system performance (Nance and Sargent 2002). When simulating competing 

system designs and/or alternative policies of system management, whether 

these alternative configurations exist or are just envisioned, the singular 

overriding objective of simulation becomes the detection of the solution that 

returns the best performance (i.e. the best value of a selected performance 

metric). Solution “comparison” is actually based on statistical estimates of the 

average performance measure of interest. These estimates are computed from 

a certain number of direct observations of the simulation process, that should 

be properly rearranged to minimize the effect of autocorrelation. Since the 

above statistical estimates are, in turn, random variates from unknown 

distributions with a non negligible variance, returned from one or multiple 

simulation runs, there are no guarantees of selecting the best design during the 

solution comparison, despite it being truly representative of the best system 

configuration. 

To this end, in literature homogeneity tests (Milton and Arnold 1986) are 

conventionally applied to assess whether there are statistically significant 

differences in various populations (observation samples) with respect to some 

characteristics. However, they provide no information in the prospect of 

selecting the “best” of these populations, once the null hypothesis of the 
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homogeneity test has been rejected. Bearing in mind this expectation, Ranking 

and Selection techniques are the next step to take when searching for a 

decision procedure that allows to perform a correct selection at a pre-assigned 

level of probability.  

In this chapter the major Ranking and Selection approaches are presented 

for cases in which all alternative simulated system designs are known in 

advance. Two newly proposed Ranking and Selection procedures are also 

illustrated, followed by numerical experiments meant to compare their 

performances with those of the previously discussed classic Ranking and 

Selection techniques. 

  

  

2.2 Ranking and Selection 

In (Goldsman et al. 2002), Ranking and Selection (R&S) is defined as a 

natural statistical technique used to identify the best among a set of k  

competing designs, policies or system configurations. This method is 

applicable when system parameters (e.g. allocated resources, scheduling 

policies, etc.) are discrete and the number of competing designs is both 

discrete and small (e.g. 20,...,2=k ). The method is applied once a sample 

mean for a measure of system performance has been constructed from 

simulated or real data. At the basis of the method there is the evaluation of the 

sample variance associated to each sample mean to be compared. The smaller 

the sample variance is, the more one is confident that a sample mean is better 

(smaller or higher) than another and, therefore, that the related system is to be 

preferred. As usual in classical statistics, the normality assumption of the 

sample mean is of great help in determining the confidence level of the 

selection process. 

Most of the research work in R&S can be classified into the following 

general approaches: 
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• subset selection procedures, which aim at producing a subset of (small) 

random size that contains the best system, with a user-specified 

probability; 

• indifference-zone procedures, where either the best or whatever 

solution evaluated within a fixed distance from the best can be 

selected, with a user-specified probability. 

When operating a selection of the best system or a subset of the best 

among a set of simulated competing alternatives, using an R&S technique 

rather than another depends on which of the available procedures will most 

benefit a given objective or constraint set by the experimenter. An “educated” 

choice of an R&S procedure also requires a good knowledge of the structure 

of the feasible solutions space in view of the fact that the said structure 

impacts on the performance of the procedures that can be used for problem 

solving. 

Everything considered, the performance level of an R&S procedure can be 

affected by: 

• the probability of selecting the alternative which is truly representative 

of the best system configuration (PCS – probability of correct 

selection); 

• the above probability returned within a given predetermined time 

budget; 

• the existence of extreme configurations in which, for example, all 

solutions have an equal mean value (i.e. the equal-mean configuration) 

or every solution is distant exactly delta units from the best (i.e. the 

least favorable configuration) or ordered solutions are equally spaced 

from one another (i.e the equally-spaced configuration); 

• the difference between solutions which is assumed to be statistically 

insignificant; 

• the structure of the feasible solutions space. 

This stated, it is quite logical that different problems require different 

approaches. For example, in complex systems one of the following situations 
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might occur: i) all the possible alternative system configurations are known 

before experimentation or ii) system configurations are revealed (meaning 

generated) during experimentation. Obviously, these cases also call for the use 

of specific (meaning different) procedures. 

In the following, the selection of the best system(s) is performed according 

to a user-defined probability under a pre-assigned time budget, whenever the 

solutions are all known a priori (see Bechhofer et al. 1995 for a complete 

summary). Both simple and combined R&S procedures that belong to the 

subset-selection and indifference-zone approaches are examined. For most 

cases, numerical experiments based on real systems and real data are 

conducted in the attempt to justify research efforts in searching for 

“intelligent” sample allocation when solving well-structured problems with 

significant constraints, especially within large, real-sized contexts. Practically 

speaking, avoiding over-sampling can affect the termination of the selection 

procedures and, thus, results can be obtained with a less amount of simulation 

(i.e. execution time). 

As far as notation is concerned, let: 

k   the number of alternative simulated system designs 

( ki ..1= ); 

n   the number of observations ( nj ..1= ) sampled from 

each system design; 

kµµµ ,...,, 21   the unknown k  expected values of the performance 

measure of interest; 

[ ] [ ]1... µµ ≥≥k   the ordered unknown k  expected values of the 

performance measure of interest (i.e. the system design 

in position k  is the greatest); 

ijX   the thj  observation taken from system design i ; 

1,..., XX k   the sample means of the performance measure of 

interest for each system design; 
2σ   the common (unknown) variance of the alternative 

system designs; 
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2
1

2 ,..., SSk   the sample variance of the performance measure of 

interest for each system design; 

α−1   the confidence level (or user-specified probability *P ) 

It is worth observing that the basic underlying assumptions for all the R&S 

procedures considered herein, meaning independent and identically distributed 

normal data with common variance, usually depart from the realistic settings 

involved when simulating real-world systems. However, some important 

statistical results allow to extend the application of these simulation-based 

methods to problems in which simulation output data is not independent, nor 

normally distributed. These issues range from performing the proper process 

initialization (Law and Kelton 2000) to finding a consistent estimator for the 

sample variance (Meketon and Schmeiser 1984; Goldsman et al. 1990; Glynn 

and Whitt 1991; Damerdji 1994; Song and Schmeiser 1995; Steiger and 

Wilson 2002). 

 

 

2.3 Subset-selection procedures 

Rather than claiming that one population is the best, perhaps it is more 

convenient to claim that one is confident that the best population is contained 

in a subset I  of the { }k,...,2,1  competing simulated systems. Subset selection 

procedures are based on this logic. These R&S procedures aim at producing a 

subset of (small) random size that contains the best system, with a user-

specified probability. 

This R&S approach was first introduced by (Gupta 1965) with the purpose 

of obtaining a subset { }kI ,...,2,1⊆  according to which 

{ } .1 α−≥∈ IkP        (2.1) 

Basically, Gupta’s idea was to include in I  all the systems k  that fall in the 

following interval: 
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( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
− nX

n
hnX kk ,2σ       (2.2) 

where σ  is the common, known standard deviation and ( )nX k  is the 

maximum among the sample means. Obviously, the most favorable case 

would be 1=I . 

In order to guarantee (2.1), the value of h  in (2.2) is determined as 

follows: 

{ }=∈ IkP  

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

≠∀−≥= ki
n

hnXnXP ik ,2σ     (2.3) 

( ) ( ) ( ) ( ) .,
22 ⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧
≠∀

−
−≤

−−−
= ki

n
h

n

nXnXP kikiki

σ

µµ

σ

µµ    (2.4) 

If kµ  is the unknown performance measure of the “best” system, then 

( )

n

ki

2σ

µµ −
−  is a positive value, thus 

{ } ( ) ( ) ( )
⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧
≠∀≤

−−−
≥∈ kih

n

nXnXPIkP kiki ,
2σ

µµ   (2.5) 

and finally 

{ } { } α−=−=≤≥∈ 11,...,2,1, kihZPIkP i    (2.6) 

where ( )121 ,...,, −kZZZ  are distributed according to a multivariate normal 

distribution with means equal to 0, variances equal to 1 and common pair-wise 

correlation equal to 21 . In order to guarantee (2.1), h  must be the α−1  

quantile of the maximum value of ( )121 ,...,, −kZZZ . 
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The following pseudo-code provides a high-level description of Gupta’s 

approach for a maximization problem: 

 Algorithm 2.1: Gupta’s subset-selection procedure 
1: k , α−1 , n , h  ←  select procedure settings 
2: for i = 1 to k  do 
3: for j = 1 to n  do 
4: ijX  ←  take a random sample of n  from each of the k  systems 

5: end for 
6: 

iX  ←  compute an estimate of the performance index of interest for 

system i  
7: if ( ) ( )[ ]nXnhnXX kki ,2σ−∈  then 

8: { }......iI ⊆  ←  include system i  in subset I  
9: end for 

In the above procedure, the choice of  α−1  is left to the experimenter. 

Practically, α−1  should be greater than or equal to 5.0 , since any system 

could be included in I  by simply tossing a fair coin. At the same time, α−1  

should also be greater than or equal to k1  which is the probability of 

randomly selecting a system for inclusion in the subset. A pure empirical rule 

(Gibbons et al. 1979) recommends ( )k5.05.01 +≥−α . 

Whereas Gupta’s procedure requires balanced (normal) data 

( nnnn k ==== ...21 ) with common known variance, in (Nelson et al. 2001) 

a more general case is proposed that allows to deal with unknown and 

(perhaps) unequal variances, 2
iσ  ki ,...,1= , across all systems. To guarantee 

that the interval I  contains a system i , this alternative approach requires that 

the difference between the best and the second best is at least δ . In particular, 

if δ  is set equal to 0 , this case becomes a generalization of Gupta’s procedure 

allowing unequal variances. 

 Algorithm 2.2: General subset-selection procedure 
1: k , α−1 , n , 

( ) 1,11 1
1

−−− − nk

t
α

 ←  select procedure settings 

2: for i = 1 to k  do 
3: for j = 1 to n  do 
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4: ijX  ←  take a random sample of n  from each of the k  systems 

5: end for 
6: 

iX  ←  compute the sample mean estimate of the performance index

of interest for system i  
7: 2

iS  ←  compute the sample variance estimate of the performance

index of interest for system i  
8: end for 
9: 2

1
22

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⋅=

n
S

n
S

tW ji
ij  ←  compute this amount for all ji ≠  

10: if ( ) ijji WnXX −≥  ij ≠∀  then 

11: { }......iI ⊆  ←  include system i  in subset I  

As one may observe, ijW  decreases as the size of the random sample taken 

from each system ( n ) increases and as the ( ) 1
1

11 −−− kα  quantile of Student’s 

t  law with 1−n  degrees of freedom decreases. 

 

2.3.1 An application in logistics 

In this example, a primitive Gupta-like subset-selection procedure is used to 

select the best yard crane assignment and transfer policy in a terminal 

container. In particular, once container stacking/retrieval operations are 

completed in a yard block, crane transfer to another block in need can occur in 

agreement with different suitable policies. Since the site currently under 

investigation does not feature at the moment similar equipment, nor related 

organizational solutions, to fix ideas one may consider the following five 

alternative options (or system configurations) derived from resource allocation 

policies in computer science: 

• crane transfer to the yard block with shortest workload (policy 1); 

• crane transfer to the yard block with greatest workload (policy 2); 

• crane transfer to the closest yard block (policy 3); 

• crane transfer to the yard block with greatest priority (policy 4); 

• crane transfer to a random yard block (policy 5). 
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[Observe that results obtained when applying the “crane transfer to a random 

yard block” option are conceived as a lower bound reference for comparison 

with the results of the other policies.] 

The objective of this study is to select the policy which allows to minimize 

the maximum average time to complete stacking/retrieval operations of 

suitable batches of containers (BCT) in the yard blocks (YB). 

The simulation model and experiments have been verified and validated in 

compliance with the classes of techniques conventionally used for this purpose 

in (Banks et al. 2001). They have also been carefully designed and conducted 

within Rockwell’s Arena (2000), one of the major general-purpose discrete-

event simulation packages available on the market. The two Arena diagram  

flows (Figures 2.1 and 2.2) used to model the core logistic processes at the 

heart of all the yard crane activity are composed of standard and user-defined 

blocks which allow to account for non-customary policies and procedures. 

 

 
Figure 2.1 - A diagram flow for the crane monitoring process in Arena 

 

One periodically monitors the status of an available crane (e.g. Crane 1) and 

schedules its future use according to the idle, busy or in-transfer condition of 

the resource. The other generates multiple job requests consisting in batches of 

containers that require retrieval if scheduled for departure from the yard and/or 

stacking if planned for storage on the yard.  

 

 
Figure 2.2 - A diagram flow for container generation and retrieval/stacking in Arena 
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During numerical experimentation performed on a personal computer 

equipped with a 1.73 Ghz Intel Pentium M processor and 1 Gb of RAM, in 

order to favour an easier and less time-consuming data input and output for 

every scenario, separate VBA (Visual Basic® for Applications) windows have 

been used to obtain an integrated interaction with Arena and Microsoft® Excel 

2002. For instance, a great number of experiments have been rapidly 

performed (approximately 2 seconds per run) by limiting data entry to the 

fields portrayed in Figures 2.3 and 2.4 and listed below: 

• average workload per yard block; 

• number of available RTGCs; 

• seed (i.e. a value used to initialize the random-number generator in 

order to obtain the unique sequences of pseudorandom numbers behind 

each stochastic simulation run); 

• policy for RTGC assignment to yard blocks and, if applicable, priority 

specification; 

• yard block coordinates (to define yard layout). 

 
Figure 2.3 - The VB window for general data input 
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Figure 2.4 - The VB window for priority specification among yard blocks 

 

No transient suppression schemes have been used during output analysis  

based on the following grounds. First of all, given a certain yard definition (i.e. 

number and position of yard blocks), terminating simulations have been 

performed in order to minimize the average maximum time to complete a 

container batch processing under different crane transfer policies.  

 

Average Completion Time for Container Batches
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Figure 2.5 - Example of the nonexistence of the warm-up period 

 



Chapter 2 - Selecting the best system 

 

30

Therefore, there has been no need to evaluate steady-state parameters. 

Secondly, the “requests” to stack/retrieve a batch of containers have been 

assumed to occur according to a renewal process, as defined in (Heyman and 

Sobel 1982). The nonexistence of the warm-up period for the performance 

index of interest is illustrated in Figure 2.5. 

To illustrate the subset-selection procedure under examination, the specific 

scenario proposed features medium container traffic intensity and high crane 

transfer time among yard blocks (thus, policy n°3 is expected to be best 

performer). All experiments are carried out by setting 90.0* =P , 5=k  and 

10=n , under the realistic assumption of unknown, but common variance for 

each system design. To this end, Bartlett’s test (1937) has been used to verify 

the common variance assumption. 

The application of the subset-selection procedure (SSP) described by 

Algorithm 2.2 requires the definition of the proper quantile of Student’s t  law 

66.2
9,90.01 4

1 ≅
−

t  and the quantity ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
⋅=

n
SS

tW ji
ij
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 for all ji ≠ . The latter is 

computed on the estimates provided in Table 2.1 used to compute both the 

sample mean and the sample variance for each system i . 

 

Table 2.1 – Sample means and sample variance for the five alternative yard policies 

estimate/ i  1 2  3  4  5  
N=1 90.71 85.91 75.98 100.01 82.17
N=2 87.79 77.19 70.73 92.16 74.42
N=3 106.38 95.52 80.08 112.71 100.34
N=4 82.47 81.59 73.90 94.93 78.40
N=5 99.79 95.29 79.64 93.78 97.92
N=6 94.73 97.60 86.34 86.08 101.38
N=7 97.95 89.52 77.63 109.96 91.35
N=8 111.83 103.78 80.38 111.15 91.83
N=9 101.41 87.56 82.92 102.60 97.05
n=10 100.64 96.47 74.17 97.13 108.57

iX  97.37 91.04 78.18 100.05 92.34
2
iS  76.49279 66.099 21.6283 79.95434 120.3002
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A matrix representation of the ijW s given by the above operations is provided 

in the following.  

[ ]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−

==

91.1103.1049.1181.11
91.1148.817.1053.10
03.1048.888.734.8
49.1117.1088.705.10
81.1153.1034.805.10

ijWW  

 

In this particular (minimization) problem, the system i  for which 

ijji WXX +≤  for all ij ≠  is only one: { }3=I . 

This result has also been compared with those returned by another two 

R&S procedures that will be examined in the next section: Rinott’s procedure 

(RP) (1978) and the OP procedure proposed in (Canonaco et al. 2009). 

 

Table 2.2 - Simulation results for the five alternative yard policies 

N° of 
Observations Policy i 

SSP RP OP 

Average 
BCT 

(minutes) 
Policy 1 10 31 10 97.369 
Policy 2 10 27 17 91.043 
Policy 3 10 10 10 78.177 
Policy 4 10 32 26 100.052 
Policy 5 10 48 17 92.343 

 

As one may easily calculate from Table 2.2, a cumulative number (over all 

policies) of 148 and 80 observations are required by these two procedures, 

respectively, whereas the SSP accomplishes the same result with only 50 

observations. The case study just presented is representative of a typical 

situation where system configurations are well-spaced from each other, with 

respect to the performance metric adopted for comparison. Here one may 

recognize that the SSP allows to screen suitable configurations with a very 

limited number of observations. 
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2.4 Indifference-zone approach 

Similar to any other selection procedure dealing with random variates returned 

from a simulation process, the indifference-zone (IZ) based approach may or 

may not select the simulated system configuration which is truly 

representative of the best solution (if it does, then a correct selection (CS) is 

said to have been made). The novelty lies in the fact that this selection 

approach is statistically indifferent to which system configuration is chosen 

among a set of competing alternatives when these alternatives all fall within a 

fixed distance from the best solution. 

This stated, let { }CSP  be the probability of correct selection and δ  the 

indifference-zone chosen by the experimenter. In a maximization problem the 

probability of performing a correct selection with at least probability *P  is 

{ } { } .|ˆ *PkiPCSP ikik ≥≥−≠∀>= δµµµµ    (2.7) 

The probability of correct selection (2.7) was first computed in (Rinott 1978) 

by resorting to numerical integration under the hypothesis of normality of the 

statistics involved. If ( )CSP  is the probability that ( )kk nX  is the true “best” 

sample mean, namely it corresponds to [ ] ( )kk nX , then 

( ) =CSP  

( ) [ ] ( )[ ]kkkk nXnXP ==        (2.8) 

( ) ( )[ ]11 −−>= kkkk nXnXP ,  for short [ ]1−> kk XXP    (2.9) 
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 are distributed according to 

Student’s law with 01 nnn kk === − L  degrees of freedom (Law and Kelton 
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2000) and since kX  and 1−kX  are assumed to follow a Normal distribution, 

then 

( ) =CSP  

[ ] [ ]
⎥
⎦

⎤
⎢
⎣

⎡ −
>−= −

− h
TTP kk

kk δ
µµ 1

1       (2.11) 

[ ] [ ] .1
1 ⎥
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− h
TTP kk

kk δ
µµ

     (2.12) 

According to the total probability distribution conditioned on kT ,  

[ ] =<− kk TTP 1  
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− +≤<∗+≤<≤=

0
1 |

t
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Because of independence between kT  and 1−kT  then 
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TT dttftF
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       (2.15) 

In the particular case under examination (maximization) 
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 (2.16) 

Since [ ] [ ] δµµ ≥− −1kk , the final result is 

( ) ( ) ( ) .
0

1∫
∞

=

+≥
−

t
TT dttfhtFCSP

kk
     (2.17) 
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Note that in (2.17) equality is verified when [ ] [ ] δµµ =− −1kk . If the integral is 

set equal to *P  and solved numerically for h , for different values of n  (the 

number of observations taken from the system to compute the sample mean), 

the results can be tabled and read to obtain h , which is also known as Rinott’s 

constant. Numerical values for h  are tabled in (Wilcox 1984). 

  

2.4.1 Indifference-zone procedures 

In IZ-based Ranking and Selection, making a correct selection with at least 

probability *P  can be successfully pursued in different ways. In (Bechhofer 

1954) a single-stage procedure is proposed according to the following steps: 

 Algorithm 2.3: Bechhofer’s single-stage IZ procedure 
1: *,Pkc , δ  ←  select procedure settings 

2: ( )⎡ ⎤2
, * δσ
Pk

cN ⋅=  ←  determine the sample size to take from each 

system 
3: for i = 1 to k  do 
4: for j = 1 to N  do 
5: ijX  ←  take a random sample of N  from each of the k  systems 

6: end for 
7: 

iX  ←  compute an estimate of the performance index of interest for

system i  
8: end for 
9: 

ii Xmax  ←  select system with greatest sample mean as best 

where *,Pkc  can be taken from (Bechhofer et al. 1995). 

As one may observe, deriving this result is straightforward, but, on the 

other hand, a single-stage procedure does not enable system feedback aimed at 

an adaptive control. To this end, two-stage solution algorithms have been 

introduced. The following pseudo-code provides a high-level description of a 

two-stage indifference-zone procedure: 

 Algorithm 2.4: General two-stage IZ procedure 
Stage 1 
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1: α−1 , δ , 0n , h  ←  select procedure settings 

2: for i = 1 to k  do 
3: for j = 1 to 0n  do 

4: ijX  ←  take a random sample of 0n  from each of the k  systems 

5: end for 
6: 

iX  ←  compute an estimate of the sample mean of the performance

index of interest for system i  
7: 2

iS  ←  compute an estimate of the sample variance of the

performance index of interest for system i  
8: end for 
9: ( )222

0 ,max δii ShnN =  ←  determine the sample size to take from each 

system 
Stage 2 

10: if ii Nn max0 ≥  then 

11: 
ii Xmax  ← select system with greatest sample mean as best and

stop 
12: else 
13: for i = 1 to k  do 
14: for j = 0n +1 to iN  do 

15: ijX  ←  take an additional random sample of 0nNi −  from each 

of the k  systems 
16: end for 
17: 

iX  ←  compute an estimate of the sample mean of the

performance index of interest for system i  
18: end for 
19: 

ii Xmax  ←  select system with greatest sample mean as best 

The number of observations required to select the best system design with 

{ } *PCSP ≥  is a major impact factor on procedure performance. As shown at 

line n°9 of the general scheme presented above, this amount mostly depends 

on the sample variance and, thus, on how the sample mean is computed 

earlier. To this end, different methods use different approaches. In pioneer 

two-stage R&S procedures, (Rinott 1978) uses a classic sample mean, while in 

(Dudewicz and Dalal 1975) a weighted sample mean is used during the second 
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stage. In the next section, the moving-average sample mean investigated in 

(Canonaco et al. 2009) is presented. 

  

2.4.1.1 OP: a new two-stage indifference-zone procedure 

This approach was inspired by the graphical technique used by Welch (Law 

and Kelton 2000) to deal with the problem of the initial transient or the start-

up problem. This procedure builds an “artificial” process with the same mean 

as the output observations of interest, but with a smaller variance. It then 

smoothes out the high-frequency random deviations by introducing a moving-

average with a moving window of w  values. In brief, the underlying purpose 

of the method is to give an unbiased estimator that has lower variance than 

other unbiased estimators for all possible values of the system performance 

measure under examination. When found, a similar estimator allows to choose 

the best system at a lower computational cost. 

  

Table 2.3 - The moving-average based R&S approach with 1=w  

Simulation output of b m-sized groups of data 
1 

1,1Y  2,1Y  3,1Y  ... 
2,1 −mY  1,1 −mY  mY ,1  

2 
1,2Y  2,2Y  3,2Y  ... 

2,2 −mY  1,2 −mY  mY ,2  
... ... ... ... ... ... ... ... 
... ... ... ... ... ... ... ... 
b 

1,bY  2,bY  3,bY  ... 
2, −mbY  1, −mbY  mbY ,  

        
 

1Y  2Y  3Y  ... 
2−mY  1−mY  mY  

 
 

 ( )11Y  ( )12Y  ( )13Y    ( )11−mY   

  

Practically, n  output observations of a performance index are organized 

into b  groups (one per simulation run), each of size m  ( 1>>m ), and then 

used to compute an average value of the i -th observation across these groups 

(see Table 2.3) 
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The above values mYYY ,...,, 21 , are then used to define the moving-average 

( )wYi  with a window length of w  as follows: 

.1
12

w,...,mwi
w

Y
(w)Y

w

ws
si

i −+=
+

=
∑
−=

+

    (2.19) 

For example, to compute the moving average ( )12Y , one must first 

compute 2Y , and then average this result out with the w  values to its left and 

the w  values to its right. In this specific case, if 1=w , then 

( ) ( ) 31 3212 YYYY ++=  and, in general, ( ) ( ) 31 11 +− ++= iiii YYYY  for 

1,...,2 −= mi . 

To conclude, the ( )wYi s become the observations that will be used when 

computing the sample mean and variance for each system, as required by both 

stages in Algorithm 2.4. 

This stated, the OP procedure has been applied and compared with Rinott’s 

(R) and Dudewicz and Dalal’s (D&D) on the logistic problem described in 

§2.3.1 to verify which of the five assignment policies is likely to be the best. 

The comparison means to provide a measure of how the OP procedure 

responds in terms of the total number of observations (nobs) to be taken from 

each alternative configuration in order to obtain the statistics used in selecting 

the best system design with at least probability *P . To this end, four different 

classes of problems have been defined by providing combinations of 

smoothly-varying container traffic intensity (low, medium, high) on the four 

yard blocks considered and the time (low, high) required, and therefore the 

distance to cover depending on the yard size, when transferring an idle crane 

from one yard block to another bearing insufficient crane capacity. These 

classes are listed in Table 2.4. 

  

Table 2.4 - Classes of problems tested in the yard simulation 
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Problems Description 
Class 1 Low traffic, high transfer time 
Class 2 Medium traffic, high transfer time 
Class 3 Medium traffic, low transfer time 
Class 4 High traffic, low transfer time 

 

As demonstrated by the results reported in Table 2.5, in the worst case (i.e. 

for Class 1 and 3 problems) the other procedures have reached the same 

correct result but with an average 5% reduction in the number of total 

observations drawn for the two-stage sampling procedure; in the best case (i.e. 

for Class 2 and 4 problems), these procedures have been outperformed by the 

OP procedure by an average of 40%. 

 

Table 2.5 - Classes of problems tested in the yard simulation 

Problems R D&D OP 
Class 1 -5% -5% nobs
Class 2 nobs nobs -40%
Class 3 -5% -5% nobs
Class 4 nobs nobs -40%

 

To fully complete the example, a Class 2 scenario is considered, along with 

the following specific settings required by the R&S algorithms: 5=δ  

minutes, 90.0* =P , 317.3=h , 100 =n . All three procedures select policy 

n°3 as likely being the best. Observe that, when dealing with cases like these 

in which the workload and crane transfer time are approximately of the same 

order, due to the yard size and layout, this particular result is expected to 

emerge and, therefore, it is also used as a validation sample. However, the OP 

procedure arrives to this conclusion with only 80 observations, whereas Rinott 

and Dudewicz and Dalal need more than 150 observations for the same 

accomplishment as shown in Table 2.6. 
 

Table 2.6 - Results of the R&S procedures for a Class 2 problem 

Max average container-batch completion time (min) Procedure Nobs 
Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 

R 151 97.21 93.67 79.76 101.57 95.52 
D&D 151 97.19 93.41 82.32 101.01 90.95 
OP 80 95.54 91.73 79.51 103.00 92.72 
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2.4.1.2 CP: a new multi-stage combined procedure 

More recent and advanced indifference-zone R&S procedures are based on an 

n -step logic, with 2>n . (Kim and Nelson 2001) first take a single 

observation from the systems still in play and then choose whether or not to 

cease sampling from the systems that no longer appear to be competitive. This 

practice is normally referred to as a “sequential selection”. A similar approach 

is proposed in (Chen and Kelton 2005): it takes into account both the sample 

variances and the differences between sample means when determining the 

sample sizes. 

In the combined procedure (CP) proposed herein, the idea of “efficient” 

sampling is pursued by basing the number of output observations to be taken 

from each system on the corresponding variance behavior within a certain 

number of simulation runs. Thus, for the present enhancement, it is necessary 

to establish how such variance is to be estimated. 

If for system i  ( kii ..= ) the n  elementary output observations 

{ }njXX iji ..1,ˆ ==  returned from a simulation run are independent and 

normally distributed, one may pursue variance estimation by simply using 

classical statistics and computing the sample mean 

,1
1
∑
=

=
n

j
iji X

n
X        (2.20) 

followed by the sample variance which is used as variance estimator 

[ ] ( ) .
1

1
1

22 ∑
=

−
−

==
n

j
iijii XX

n
SXVAR     (2.21) 

Should this not be the case - as customary in a simulation-based study of 

practically any real-life system - then one must start from the output stochastic 

process, organize its data and compute the process variance. 
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For example, for system i  let { }nj XXX ,...,,,...,1  be a weekly dependent 

stationary output process with mean Xµ  and variance 2
Xσ . This process is said 

to be weakly dependent if the lag-j covariance 

[ ] K,2,1,0,,ˆ ±±== + jXXCov jiijγ     (2.22) 

satisfies 0→jγ  as ∞→j  (Billinglsey 1995). 

If one chooses to organize this data in batches of size k , the sample mean 

for batch i  is given by: 

∑
+

+=

=
ki

ij
ji X

k
kX

1

1
ˆ)(        (2.23) 

and according to the Central Limit Theorem 

1),/)(,()( 2 >>→ kkkZkX X

D

i σµ , i∀     (2.24) 

where 

.12)(
1

1

22 ∑
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k

j
jX k

jk γσσ      (2.25) 

Furthermore, 

{ })(),...,(),...,(1 kXkXkX ni  grow independent as ∞→k   (2.26) 

and 

[ ] 22 )(lim)(lim σσ ==
∞→∞→

kXVarkk ikk
, i∀ .    (2.27) 

By (Hogg and Craig 1978) 
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       (2.28) 

Applying the mathematical expectation to (2.28) 
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and thus 

[ ] 22 ),( σ=⋅ knSkE
X

       (2.30) 

where 

( )( )∑
=

−
−

=⋅
n

i
iX

knXkX
n
kknSk

1

22 ,)(
1

ˆ),(     (2.31) 

is the sample variance of the estimator of the process sample mean. 

This stated, the combined procedure uses a variance-weighted decisional 

mechanism based on the variance estimator described above to guide the 

sampling activity on the number of additional simulation output observations 

to be taken from each system. Practically speaking, when process variance 

decreases this multi-stage procedure is expected to terminate faster than 

classical two-stage R&S algorithms because of its auto-adaptive control. In 

every other case, the number of iterations during which the sample variance 

either remains constant or increases is controlled by an upper bound on the 

number of additional simulation runs to carry-out. 

The following pseudo-code provides a high-level description of this new 

combined approach: 

 Algorithm 2.5: Combined procedure (CP) 
1: α−1 , δ , 0n , h , x , UB  ←  select procedure settings 

2: for i = 1 to k  do 
3: for j = 1 to 0n  do 

4: ijX  ←  take a random sample of 0n  from each of the k  systems 

5: end for 
6: 

iX  ←  compute an estimate of the sample mean of the performance

index of interest for system i  
7: 2

iS  ←  compute an estimate of the sample variance of the

performance index of interest for system i  
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8: end for 
9: ( )222

0 ,max δii ShnN =  ←  determine the sample size to take from each 

system 
10: if ii Nn max0 ≥  then 

11: 
ii Xmax ←  select system with greatest sample mean as best and stop 

12: else 
13: for I = 1 to k  do 
14: while UBNi ≤  do 

15: ←ijX  take one additional random sample for system i  

16: ←iX  compute an estimate of the sample mean of the

performance index of interest for system i  
17: 2

iS  ←  compute a run-weighted estimate of the sample variance 

of the performance index of interest for system i  
18: ( )222

0 ,max δii ShnN =  ← determine the new sample size for 

system i  
19: if 10≤iN  or  constant2 =iS  in last x  runs then 

20: stop sampling for system i  
21: end while 
22: end for 
23: 

ii Xmax  ←  select system with greatest sample mean as best 

Once again, the logistic problem described in §2.3.1 will be used as test-

bed for the evaluation of Algorithm 2.5 in terms of efficient sampling when 

comparing alternative system configurations with different variance patterns. 

In particular, with respect to an operational scenario in which container traffic 

in yard blocks is medium and crane transfer times are high (i.e. Class 2 

problems), Figure 2.6 illustrates an example of the variance behavior for the 

five policies under examination. Observe that for the first three policies 

variance behavior is stable, meaning that are no significant numerical changes 

in variance estimation as the sampling procedure progresses. Thus the 

algorithm continues adding single observations (or batches or simulation runs) 

as required by the “stable” variance estimate until the upper bound provided 

by Rinott’s procedure is reached. When the variance pattern is increasing, as 

for policy n°4, the upper bound is still provided by Rinott’s procedure. 
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Figure 2.6 - Example of the variance behavior in a Class 2 experiment 

 

Instead, in policy n°5 the variance estimate has a decreasing trend and, thus, 

the algorithm is expected to terminate faster. This expectation is justified by 

the auto-adaptive control of the combined procedure which can be monitored 

according to a step-by-step logic. In this sense, Table 2.7 provides a trace of 

the variance behavior for policy n°5. As one may observe, Rinott’s procedure 

requires 38 additional observations (i.e. 48 - initial 10 runs) to guarantee the 

predefined probability of correct selection. Alternatively, the CP procedure 

after a supplementary run at step 11, requires 32 additional runs (i.e. 43 – 11 

previous runs) and, thus, realizes a gain of 6 runs after a single step. 

 

Table 2.7 - Step-by-step trace of variance behavior for policy n°5 

N° of observations for policy i = 5  Step 
Sample mean Sample variance 

Ni 

10 92.34 120.30 48 
11 92.39 108.30 43 
12 92.96 102.34 41 
13 92.48 96.85 39 
14 92.20 90.49 36 
... ... ... ... 
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In numerical terms, in the worst case the CP procedure returns the same 

results as Rinott’s two-stage procedure (∆=0%), while for decreasing variance 

behavior the CP procedure is more efficient by 31,25%, as illustrated in Table 

2.8. 

 

Table 2.8 - Comparison of observations required by Rinott’s procedure and the 
combined R&S procedure 

N° of 
observations Alternatives 
RP CP 

CP 
Performance 

(∆%)  
policy 1 31 31 0% 
policy 2 27 27 0% 
policy 3 9 9 0% 
policy 4 32 32 0% 
policy 5 48 33 +31.25% 

 

At this point of the methodological framework under examination, some 

final considerations can be drawn when investigating the performance of 

indifference-zone based Ranking & Selection procedures. Basically, in this 

chapter two different types of approaches have been followed to “hopefully” 

deliver more efficient sampling than classical two-stage algorithms. In the first 

case, (see the OP procedure in §2.4.1.1) efforts focus on using a moving-

average sample mean as a low-variance unbiased estimator, rather than a 

classical sample mean. In the second case, (see the CP procedure in §2.4.1.2) 

tracking of the variance behavior reveals the improvement trend when 

variance pattern is decreasing. A further possibility may lie in investigating 

how to use an estimate of the skewness of the sample mean distribution, given 

that the normality assumption is approximately verified only after a large 

number of simulation runs…a condition one should avoid, due to the 

computational burden it bears. 
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Chapter 3 
Simulation-based optimization 
using simulated annealing 
 

 

 

 

3.1 Introduction 

The Ranking and Selection procedures examined in the previous chapter are 

based on the common assumption that a (small) number of system 

configurations are known a priori. In this particular case, the guarantee of 

selecting the best or near-best alternative when all solutions have already been 

sampled and retained appears to be both very appealing and practicable. 

However, at times, a combinatorial, unknown number of configurations needs 

to be explored. When this occurs, k  different systems configurations (with 

1≥k ) can be revealed sequentially during a simulation run by means of a so-

called system generating algorithm (SGA) (Hong and Nelson 2007). An 

example of a framework, providing both system design generation and 

evaluation for selecting the best among a great number of competing 

alternatives, is summarized by the pseudo-code given below. 

 Algorithm 3.1: System Generating Algorithm 
1: k , n , stopping condition[0] ←  select procedure settings 
2: ii =*  ←  set best system design = initial system design 
3: while stopping condition[ n ]= false do 
4: n  = n  + 1 
5: ( ) ( ) ( )ninini k,...,, 21  ←  at iteration n  generate k  alternative system 

designs 
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6: ( ) ( ) ( )[ ]{ }nininiii k,...,,,best 21
** =  ←  compare the k alternative 

system designs generated at iteration n with current best and, 
eventually, update the best  

7: update stopping condition[ n ] 
8: end do 
9: *i  ←  return best system design 

At this point, it should be easy to observe that the R&S procedures 

previously examined are suitable for system comparison and selection at line 6 

in the above schema, while it is now necessary to focus on the algorithm that 

can be properly adopted as SGA at line 5. In particular, should an exhaustive 

coverage of all the possible system combinations be not reasonable, nor 

affordable from a computational point of view, then metaheuristic-based 

approaches would have to be addressed. Examples of similar new, promising 

methodologies use a simulated annealing based approach (Alrefaei and 

Andradóttir 1999, Ahmed and Alkhamis 2002, Prudius and Andradóttir 2005) 

or an adaptive balanced explorative and exploitative search (Prudius and 

Andradóttir 2004; Prudius 2007). In the next sections an in-depth description 

of the simulated annealing algorithm and its properties is given, followed by a 

discussion on the practical limits experienced when customizing this approach 

to the study of a well-known problem in port logistics. Numerical experiments 

are presented in the closing paragraph. 

  

  

3.2 Simulated Annealing 

3.2.1 Basic description 

The original simulated annealing (SA) algorithm was introduced by 

developing the similarities between combinatorial optimization problems and 

statistical mechanics. This analogy was first pointed out by (Kirkpatrick et al. 

1983) that show how the Metropolis algorithm (Metropolis et al. 1953) for 

approximate numerical simulation of the behavior of a many-body system at a 

finite temperature provides a natural tool for bringing the techniques of 
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statistical mechanics to  bear on optimization. In their work, the SA algorithm 

is applied to a number of problems arising in the optimal design of computers 

and then used on traveling salesman problems, with as many as several 

thousand cities, to test its power. 

Practically speaking, the annealing process is aimed to generate feasible 

solutions, explore them in a more or less restricted amount and, finally, stop 

when a satisfactory criterion is met. To avoid getting caught in local minima, 

during the exploration process a transition (or move) to a worse feasible 

neighboring solution (higher-energy state) can occur with probability 
Tep ∆−= , where ∆  is the difference between the values of the objective 

function (energy) of the candidate solution (state) j  and the current solution i  

and T  is the process temperature. A prefixed value of T  (e.g. 001.0=T ) can 

be used to determine the stop of the entire process. As time elapses, T  can 

decrease according to a so-called cooling schema. 

In the following, some pseudo-code is given for the original SA algorithm 

with reference to a minimization problem. 

 Algorithm 3.2: Simulated Annealing 
1: i  ←  set initial solution = current solution 
2: for time = 1 to time-budget do 
3: T  ←  cooling-schema[time] 
4: if 001.0=T  then  
5: present current solution as the estimate of the optimal solution and 

stop 
6: generate a random neighbor j  of the current solution i  by performing 

a move. 
7: ( ) ( )ifjf −=∆  
8: if 0<∆  then  
9: ji ←  accept j  as current solution 

10: else 
11: ji ←  accept j  as current solution with probability Tep ∆−=  
12: end for 

Although this optimization technique is used in many other fields other 

than Operations Research, in the next sections attention remains focused on 
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combinatorial problems. In particular, the application of a powerful tool, such 

as Markov chains, is exploited to present convergence results of the simulated 

annealing algorithm. In this analysis, the temperature (T ) plays the role of a  

control parameter that changes as the optimization progresses, and 

thermodynamic equilibrium is replaced by equilibrium of a Markov process. 

  

3.2.2 Convergence proof 

In a combinatorial optimization problem let: 

S   the feasible state space given by a finite number of 

points; 
*S   the set of global optimal solutions; 

i   the system state (or configuration) Si∈∀   

( ) RSif →:   the objective function to minimize (maximize). 

For each configuration i , let ( )iN  be a subset of configurations called the 

neighborhood of i . If a transition allows to obtain a new configuration from a 

given one, then a neighborhood can be defined as the set of configurations that 

can be obtained from a given configuration in one transition or move. When 

the system is in state i , the probability of generating candidate state j  as next 

is given by probability ijg , thus ( ) { }0: >= ijgjiN . 

As the system transitions from state to state, in order to examine the 

underlying state path in terms of a Markov chain, some other definitions and 

properties must be provided for future use. To begin with, given any two states 

i  and j , if there exists a finite sequence of K  states Klll ,...,, 21  such that 

1li = , Klj =  and 0
1
>

+mmllg  with ( )mm iNi ∈+1  for 1,...,2,1 −= Km , then S  is 

connected and { }ijgG =  is irreducible. 

Once a candidate state j  (with ( )iNj∈ ) has been generated from i , the 

SA algorithm will accept configuration j  with a probability given by 

=ija  
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( )( )
( )( ) ( )( )TifTjf

Tjf
/exp/exp

/exp
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−
=  

( ) ( )( )( )Tifjf /(exp1
1
−+

=  

( ) ( )( )( )Tifjf /(exp −−≅       (3.1) 

As one may observe, the probability of choosing j  decreases for increasing 

values of ( ) ( )( )ifjf −  and for decreasing values of T . Obviously, cost-

decreasing transitions where ( ) ( )ifjf <  are always accepted (in that case, in 

fact, the aforementioned probability is equal to 1). 

By keeping a fixed value of T  (as the iterations progress), the 

configurations that are consecutively visited by the SA algorithm can be seen 

as the states of a time-homogeneous Markov chain with transition matrix 

( )TPP =  whose elements are defined as: 
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If the neighboring states are equiprobable, the generation probabilities ijg  in 

(3.2)  are given by 

( ) ( )
,

otherwise0

if1

⎪⎩

⎪
⎨
⎧ ∈

=

− iNjiN
gij      (3.3) 

while the acceptance probabilities in (3.2)  ( )Taij  are 

( ) ( ) ( )( ) .exp,1min
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −−

=
T

ifjfTaij     (3.4) 

Note that for 0>T , the irreducibility of G  together with ( ) 0>TA  implies 

that P  is irreducible, which means that in the corresponding Markov chain 
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any two states are accessible to each other in a finite number of steps (Bhat 

1984). Furthermore, every single element of P  is given by the product of two 

independent measures, which is also a fundamental hypothesis behind the 

possibility of adopting Markov chains for process modeling. 

The existence of the stationary distribution of the above Markov chain (i.e. 

the probability distribution of the configurations after an infinite number of 

transitions) or the selection of a proper cooling schedule for the temperature - 

T if is not fixed - is at the basis of the convergence results for the simulated 

annealing algorithm. 

To prove the former, for short, let ( ) ifif = , Si∈∀  and let iπ  be defined 

as ( ) ( ) Tff
i

iiN 1expˆ 1
−−⋅= ππ , Si∈∀ . In addition, let G  be symmetric (i.e. if i  

is a neighbor of j  then j  is a neighbor of i ). 

Recalling that 

1=∑ ∈Sk kπ        (3.5) 

then from the following 

( ) ( ) ,1exp 1
1 =⋅⋅∑ ∈

−−
Sk

TffkkNπ      (3.6) 

1π  can be obtained as 

( ) ( ) .
exp

1
11 ∑ ∈

−−⋅
=

Sk
TffkkN

π      (3.7) 

Replacing 1π  in iπ  

( ) ( ) ( ) ( ) Tff

Sk
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i
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These iπ s satisfy the detailed balance equations 

jijiji PP ππ =̂        (3.9) 

Proof 
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can be written 

( )[ ] ( )[ ]TffTfTffTf jijiji −−−−−− ⋅=⋅ exp,1minexpexp,1minexp   (3.11) 

If ij ff < , then the above expression becomes 

( ) TffTfTf jiji −−−− ⋅= expexpexp      (3.12) 

thus equivalence is reached with TfTf ii −− = expexp . Similarly, if ji ff <  then 

from (3.10) equivalence is reached with TfTf jj −− = expexp .  

As far as the cooling schedule is concerned, clearly, the choice of T  must 

be based on conditions that bring the algorithm state to converge in probability 

to the set of global minimum solutions. In a pioneer work, (Geman and Geman 

1984) prove that to obtain a global minimum of ( )if , it suffices to select a 

schema according to which T  decreases no faster than ( ) kTkT ln0= , with 0T  

“large enough”. For the special case in which ( ) ( )kckT += 1ln , (Hajek 1988) 

proves that a simple and necessary condition is that c  be greater than or equal 

to the depth, suitably defined, of the deepest local minimum which is not a 

global minimum state. 

Practically speaking, one may consider the probability density for 

acceptance of a new state given the just previous value expressed by (3.4) in 

the following form: 
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( ) ( ) ( ) ( )( )[ ].exp1 Tifjf
iN

Taij −−⋅=     (3.13) 

To assure from a statistical point of view that any state Sj∈  can be sampled 

infinitely often during the annealing run, one may prove that the joint 

probability of not doing so in the iterations successive to 0k  is equal to zero, 

meaning that: 

( )( )∏
∞→

=−
k

k

ij Ta 01        (3.14) 

which is equivalent to 

( ) .∞=
∞→

∑
k

k
ij Ta        (3.15) 

This stated, the point becomes proving that a chosen cooling schedule satisfies 

(3.15). For example, considering ( ) kTkT ln0=  in (3.13) yields 

( ) .1)lnexp(
0 00

∑ ∑∑
∞

=

∞

=

∞

=

∞==−≥
kk kkkk

ij kkTa     (3.16) 

Thus, (3.15) is satisfied. 

   

3.2.3 Some variants 

Many types of modifications of the Simulated Annealing algorithm have been 

designed to solve discrete stochastic optimization problems. 

Several variants proposed use different, consistent estimates of the 

objective function values. For instance, (Bulgak and Sanders 1988) introduce 

confidence intervals to determine if in each iteration of their procedure the 

difference between the estimates of the objective function values obtained for 

the current state and the candidate state is statistically significant. In (Haddock 

and Mittenthal 1992) the value of the objective function in a given state is 

estimated with one long simulation run. Due to the computational burden 

required to return an accurate solution, the use of a rapidly decreasing cooling 
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schedule is preferred here. However, this feature does not guarantee 

convergence in probability to the set of global optimal solutions. (Fox and 

Heine 1995) are the first to retain observations from previously generated 

solutions and use them to estimate the value of the objective function at the 

current iteration. 

Other forms of investigations focus on a more theoretical analysis. For 

example, (Gelfand and Mitter 1989) prove convergence with normally 

distributed noise ( )2,0 kN σ  on the estimated objective function, with variance 

( )kk To=σ  as ∞→k , provided that the sequence { }kT  is chosen properly. 

Convergence results for this analysis are presented by (Gutjahr and Pflug 

1996) as well. They also generalize their convergence proof for other noise 

distributions on the estimated objective function that are symmetric around 

zero and more peaked than Gelfand and Mitter’s ( )2,0 kN σ . 

At this point, attention is drawn to a major and more recent modification of 

the original simulated annealing presented in (Alrefaei and Andradóttir 1999). 

The method proposed herein discards the basic assumption common to all of 

the above studies in which the positive control parameter 0→kT  as ∞→k . 

The primary innovation consists in letting the SA algorithm work on a 

constant temperature 0>= TTk  for all N∈k . This stated, two different 

variants are proposed to estimate the optimal solution. 

In the first approach, the most visited configuration (divided by a 

normalizer) is used for the above estimation. To do so, in iteration k  kL  

observations are sampled from both the current and candidate states (i.e. 

)(rX i  and ( )rX j , kLr ..1= ), where { }kL  is assumed to be a sequence of 

positive integers such that ∞→kL  as ∞→k . These samples are then used to 

estimate the values of the corresponding objective functions (i.e. ( )if  and 

( )jf , respectively), as shown in Algorithm 3.3. 

 Algorithm 3.3: Simulated Annealing with constant T  
1: R , N , T , { }kL  ←  select procedure settings 

2: 0=k  ←  set initial iteration 
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3: Si ∈0  ←  set initial solution 

4: 
0

* iik =  ←  store most visited solution 

5: ( ) 100 =iV , ( ) 00 =iV  0, iiSi ≠∈∀  ←  count initial visit 

6: for k  = 0 to ∞  do 
7: kii =  ( )iNjj k ∈=  ←  generate neighbor of ki with probability 

( )jiR ,  
8: for r = 1 to kL  do 

9: ( )rX i  ←  generate kL i.i.d. unbiased observations for current 

solution 
10: ( )rX j  ←  generate kL  i.i.d. unbiased observations for candidate

solution 
11: end for 
12: 

( ) ( )( )∑
=

=
kL

r
s

k

rXf
L

sf
1

1 , jis ,=  ←  estimate competing solutions 

13: [ ]1,0UU k ∼  ←  generate a random number 

14: 
( ) ( ) ( )[ ]

⎥
⎦

⎤
⎢
⎣

⎡ −−
=

+

T
ifjfkgij exp  ←  compute the acceptance probability 

15: if ( )kgU ijk ≤  then  

16: jik =+1  ←  accept candidate solution 

17: else 
18: iik =+1  ←  accept current solution 

19: 1+= kk  ←  increase iteration 
20: ( ) ( ) 11 += − kkkk iViV  ←  count visit for accepted solution 

21: ( ) ( )iViV kk 1−=  kiiSi ≠∈∀ ,  ←  do not count visits for other solutions 

22: if ( ) ( ) ( ) ( )*
1

*
1 −−> kkkkkk iDiViDiV  then  

23: 
kk ii =*  ←  update best solution 

24: else 
25: 

1
*

−= kk ii  ←  keep current best solution 

26: end for 
27: *

ki  ←  return best solution 

Under the proper assumptions, the sequence of states { }ki  visited by the 

proposed SA algorithm is a time-inhomogeneous Markov chain. 
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Let ( )iVk  ( Si∈ ) be defined as the number of times the Markov chain { }ki  

has visited state i  in the first k  iterations and ( )iD  be a normalizer defined as 

( ) ( ).','
'∑ ∈

=
Si

iiRiD        (3.17) 

By one of the ergodic properties of Markov chains (Heyman and Sobel 1982), 

for which Andradóttir presents a more general case in Lemma 3.1 of 

(Andradóttir 1995), 

( )
( ) ( ) { } ( )iD

I
kiDikD

iV i
k

l
ii

k
l

π
→⋅= ∑

=
=

0

11  a.s. as ∞→k    (3.18) 

for all Si∈ , where { }iil
I =  is an indicator random variable defined as 

{ } .
otherwise0

if1

⎪⎩

⎪
⎨
⎧ =

==

ii
I

l

iil
      (3.19) 

From the definition of iπ  (the stationary distribution of P  which is greater 

than zero for all Si∈ ) ( ) ( )iDjD ij ππ ≤  if and only if ( ) ( )ifjf ≥ . This 

shows that 

( ) .maxarg *S
iD
i

Si
=

∈

π
       (3.20) 

Now let A  be such that ( ) 1=AP  and for all A∈ω  ( ) ik kiV πω →,  as 

∞→k  for all Si∈ . Let A∈ω . Then, since S  is finite and 

( ) ( ) ( )iDikDiV ik πω →,  as ∞→k  for all Si∈ , it follows from (3.20) that 

there exists ωK  such that for all ωKk ≥ , ( ) ( ) ( ) ( )iDiViDiV kk ωω ,, ** >  for all 

ωKk ≥ , ** Si ∈  and *\ SSi∈ . Hence, ( ) ** Sik ∈ω  for all ωKk ≥ . 

It is worth observing that Algorithm 3.3 also converges with any consistent 

estimates of the objective function values. 

The second approach in (Alrefaei and Andradóttir 1999) is based on a very 

similar structure, but, unlike the first variant, it selects the state with the best 

average estimated objective function value as optimal solution. This estimate 
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is obtained from all the previous estimates of the objective function values 

sampled for that state. 

In particular, { }kL  is assumed to be a sequence of positive integers that 

satisfies ∞≤=∞→ LLkklim . In the case in which ∞=L , if ( )iAk  is defined as 

the cumulative value of the estimates of the objective function values over the 

first k  iterations for all Si∈  and ( )iCk  is the corresponding number of 

observations, then the convergence theorem is proved by the strong law of 

large numbers by which ( ) ( ) ( )ifiCiA kk →  a.s. as ∞→k  for all Si∈ . If 

∞<L , the new transition probability matrix 'P  is proven to be still 

irreducible and aperiodic with a stationary distribution r , where 0>ir  for all 

Si∈ . The rest of the proof is similar to the proof with ∞=L . 

It is worth observing that for large values of L , this variant has a greater 

convergence rate to the set of global optimal solutions than the previous one. 

However, practically speaking, it is quite difficult to determine in advance the 

value of L  for which the search is drawn to the good states. 

The constant temperature approach is then pursued by other authors. 

(Ahmed and Alkhamis 2002) propose a method that combines a constant 

temperature-based simulated annealing with a two-stage Ranking and 

Selection procedure and is known by the acronym “SARS”. They show that 

the most visited configuration during the first m  iterations converges almost 

surely to a globally optimum solution. 

In particular, they replace the classical sample mean with the more 

sophisticated linear combination first introduced by (Dudewicz and Dalal 

1975): 

( ) ( ) ( ) ( )00 1~ nnXwnXwnX iiiiiii −−+=     (3.21) 

where the weights ( iw ) are defined as 

( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅−
−−+=

0
22

2
0

0

0 111
nSh

nn
n
n

n
n

w
i

ii

i
i

δ
    (3.22) 
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and ( )0nX i  and ( )0nnX ii −  are respectively the sample mean computed in the 

first and second stage of the R&S procedure. At this point, the authors 

demonstrate that ( ) ( ) ( ) ( )( ){ } ( )ifnknXwnXwkX iiiiikik
=−−+=

∞→∞→ 00 1lim~lim  with 

probability 1 and, thus, they propose ( )kX i
~  as estimate for ( )if  at iteration 

k . 

Reminding that the convergence of the simulated annealing algorithm lies 

in the homogeneity of the underlying Markov chain, one may recognize that 

the core of their work relies on the following preposition: 
( )

ij
kk

ijk pPpP =→= − ,1  as ∞→k  where P  is the transition matrix of the time 

homogeneous Markov chain given by equation (3.2). 

Proof 

Let 
( ) ( )[ ]

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−
=

+

T
kXkX

p ij
k

~~
exp . If ji ≠  then 

( ) =− kk
ijp ,1  

{ }iiji kk === −1|Pr        (3.23) 

{ }kkij pUg ≤= Pr        (3.24) 

{ } ( )∫ =≥=
1

0

|Pr kkkkkkij duufuUupg     (3.25) 

( )( )∫ −=
1

0

1 kkpij duuFg
k

       (3.26) 

[ ]kij pEg=        (3.27) 

( ) ( )[ ]( )[ ]TkXkXEg ijij
+

−−= ~~exp      (3.28) 

and 

( ) ( ) ( )[ ]( )[ ].~~explimlim ,1 TkXkXEgp ijkij
kk

ijk

+

∞→

−

∞→
−−=    (3.29) 
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Since ( ) ( )[ ]( ) 1~~exp ≤−−
+

TkXkX ij , the bounded convergence theorem gives 

( ) =−

∞→

kk
ijk

p ,1lim  

( ) ( )[ ]( )[ ]TkXkXEg ijkij
+

∞→
−−= ~~explim     (3.30) 

( ) ( )[ ]( )( )[ ].~~limexp TkXkXEg ijkij
+

∞→
−−=     (3.31) 

Using  ( )kX i
~  as estimate for ( )if  

( ) ( ) ( )[ ]( )[ ]Tifjfgp ij
kk

ijk

+−

∞→
−−= explim ,1     (3.32) 

If ji =  then 

( ) ( )∑ ≠
−− −=

ji
kk

ij
kk

ij pp ,1,1 1       (3.33) 

( ) =−

∞→

kk
ijk

p ,1lim  

( )[ ]∑ ≠
−

∞→
−=

ji
kk

ijk
p ,11lim        (3.34) 

∑≠
−=

ji ijp1        (3.35) 

.iip=        (3.36) 

Therefore 

( )
ij

kk
ijk

pp =−

∞→

,1lim  ., Sji ∈∀       (3.37) 

Once that ( ) PkP →  as ∞→k  has been demonstrated, the discussion of the 

convergence of the sequence of states { }*
ki  described by the SARS algorithm 

follows the framework already provided by (Alrefaei and Andradóttir 1999).     

The same authors, in another work (Ahmed  and Alkhamis 2004) extend 

the constant temperature approach to deal with the sampling error stemming 

from the stochastic nature of the simulation output used to estimate the 
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objective function value. To this end, in iteration k , kN  independent 

observations (where ∞→kN  as ∞→k ) are generated for ijji XXD −= , 

which represents the difference between the value of the objective function in 

state j  and i . 

Let ∑
=

=−=
kN

l

l
ji

k
ijji D

N
XXD

1

1  and ( )∑
=

−
−

=
kN

l
ji

l
ji

kk
k DD

NN 1

2

1
11σ̂  be 

respectively jiD ’s sample mean and sample standard error of the mean. In 

their variant of the SA algorithm, the transition matrix for the k -th step is 

given by 

( ) { }==== + iijiPkp kkij |1  

[ ] ( )

( )
( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=−

∈
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−−
≤

=
∑
∈

+

ijkP

iNj
T

tXX
UPg

iNl
il

kkij
kij

if                                           1

if   
ˆ

exp
σ

  (3.38) 

where kt  denotes a selected upper critical value of Student’s distribution with 

1−kN  degrees of freedom and kU  is a uniform random variable defined on 

the interval [ ]1,0 . To verify that their approach is guaranteed to converge 

almost surely to the set of global solutions, again, they concentrate on proving 

that ( ) PkP →  as ∞→k . Specifically: 

( ) [ ]
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−−
≤=

+

∞→∞→ T
tXX

UPgkp kkij
kkijijk

σ̂
explimlim   (3.39) 

[ ]
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−−
=

+

∞→ T
tXX

Eg kkij

kij
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explim     (3.40) 

( ) ( )[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −−
=

+

T
ifjfEgij exp      (3.41) 
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.ijp=        (3.42) 

Therefore, since 0ˆ
p

k →σ  as ∞→kN , which is an assumption at the basis of 

this work, the rest is very similar to (Alrefaei and Andradóttir 1999), including 

the use of the state that is most visited by the algorithm as the estimated 

optimal solution. 

 

 

3.3 Practical limits 

In the previous section, the convergence results given for the constant 

temperature-based simulated annealing variants are obtained as k , the number 

of iterations required by the SA algorithm, goes to infinity. Bearing this in 

mind, the numerical applications proposed in these modifications involve very 

simple test cases such as an 1// MM  queuing system (Alrefaei and 

Andradóttir 1999) or a system with at the most 20 configurations (Ahmed and 

Alkhamis 2002). Therefore, from a computational point of view, it is possible 

to carry out multiple visits to every state of the system and estimate the best 

performing configuration. In contrast, larger problems are likely to be 

unsolvable in a reasonable amount of time and this restriction brings similar 

approaches to be non-applicable to many practical situations. For example, the 

SA algorithm proposed in (Roenko 1990) is marked as “non-realistic” by 

different authors since it calls for storing all the feasible solutions encountered 

during the execution of the algorithm in order to perform comparison with 

each newly generated solution. This is also the case of the quay crane 

scheduling problem (QCSP) described in §1.3. 

Let n  be the number of fixed holds to be operated for discharge/loading 

operations and 0≥in  the number of holds assigned to crane i , mi ..1=  

( nnm

i i =∑ =1
 is a necessary imposition). Although the state space of this 

particular problem is finite, the number of states is very large and equal to the 

number of unordered partitions of n  holds among m  cranes (Liu 1968): 
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( )
( )

( )( )
( ) .
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1
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⎝

⎛
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−+
=
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mnn

m

mn
   (3.43) 

As one can observe, even a very limited number of cranes and holds may 

generate difficult-to-solve combinatorial problem instances. For example, for a 

medium-size vessel with 8 holds waiting to be operated by 3 cranes, the total 

number of possible combinations is 1.814.400. Therefore, a frequent 

exploration of every alternative hold-crane schedule goes beyond practical 

possibilities. 

In response to this concrete request for performance, a non-prohibited 

option currently under investigation consists in introducing a guided-search 

refinement in the SA algorithm based on a different choice of the candidate 

solution. In particular, at iteration k , let i  be the current solution in a 

minimization problem and m , with 1>m , the number of candidate 

neighboring configurations to be generated from the current solution. At this 

point, the refinement consists in defining j  as 
( )

( )l
iNj

ml
jfj

l∈
=

=
..1

minarg , meaning 

that, among the m  neighboring solutions mjjj ,...,, 21  of configuration i , j  

will be chosen as the candidate solution. This statement does not affect the 

mechanism of solution acceptance, according to which the corresponding 

probabilities are still given by (3.4). If G  is proven to remain irreducible, then 

once again, the configurations that are consecutively visited by the SA 

algorithm can be seen as the states of a time-homogeneous Markov chain with 

transition matrix ( )TPP =  defined in (3.2) and with stationary distribution 

defined by (3.8). 

Clearly, on one hand, the object of the above approach is to reach a 

globally optimum solution within a finite number of iterations by evaluating a 

sufficient, but not exhaustive, number of configurations. On the other, the 

approach requires accurate estimates for ( )1jf ,..., ( )mjf  and ( )if , while also 

guaranteeing the selection of the best configuration according to a pre-defined 

level of confidence. Both of these prerequisites can be met by using an n -
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stage Ranking and Selection procedure within the SA algorithm, as illustrated 

by the following pseudo-code, in which 2=n . 

 Algorithm 3.4: Modified Simulated Annealing 
1: G , N , kT , fT , α , m , 0n , δ , h  ← select input parameters 

2: 0=k  ←  set initial iteration 
3: Si ∈0  ←  set initial solution 

4: 
0

* iik =  ←  store best solution 

5: while kT  > fT  do 

6: kii =  ←  set current solution 

7: for l = 1 to m   do 
8: ( )iNjl ∈  ←  generate neighbor of i  with probability ( )ljiG ,  

9: for r = 1 to 0n  do 

10: ( )rX
lj

 ←  generate 0n i.i.d. unbiased observations for candidate 

solution lj  

11: end for 
12: 

( )( ) ( )( )∑
=

=
0

10
0

1 n

r
ljl rXf

n
njf , 

( )( ) ( )( ) ( )( )( )∑
=

−
−

=
0

1

2
0

0
0

2

1
1 n

r
ljllj njfrXf

n
njS

l
 ←  compute first-

stage sample mean and variance of candidate solution lj  

13: 2

0 ,max ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
=

δ
lj

lj

Sh
nN  ( )iNjl ∈∀  

14: end for 
15: if 

lj
Nn <0  ( )iNjl ∈∀  then 

16: for r = 0n  + 1 to 
lj

N  do 

17: ( )rX
lj

 ←  generate 0nN
lj
−  i.i.d. unbiased observations 

( )iNjl ∈∀  

18: end for 
19: ( )

ljk Xf  ←  generate 0nN
lj
− i.i.d. unbiased observations for 

candidate solution lj  

20: ( )( ) ( )( )∑
=

=
lj

l

l

l

N

r
j

j
jl rXf

N
Njf

1

1  ←  compute second-stage sample 
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mean of candidate solution lj  

21: 
( )

( )l
iNj

ml
jfj

l∈
=

=
..1

minarg  ←  set i ’s best neighbor as final candidate 

solution 
22: [ ]1,0UU k ∼  ←  generation of a random number 

23: 
( ) ( )( ) ( )( )[ ]

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−
=

+

k

ij
ij T

NifNjf
ka exp  ← compute acceptance 

probability 
24: if ( )kaU ijk ≤  then  

25: jik =+1  ←  accept the candidate solution 

26: else 
27: iik =+1  ←  accept the current solution 

28: 1+= kk  ←  increase iteration  
29: if ( ) ( )*

kk ifif <  then  

30: 
kk ii =*  ←  update best solution 

31: 1−⋅= kk TT α   ←  decrease temperature 

32: end while 
33: *

ki  ←  return best solution  

Clearly, a further enhancement on Algorithm 3.4 could be achieved by 

introducing (at line 23) either an interval estimate as presented in (Alkhamis 

and Ahmed 2004) or a hypothesis test on the “differences” between candidate 

and current solutions. Both modifications would represent a supplementary aid 

to reduce statistical errors that affect the acceptance probability of a given 

solution. 

  

 

3.4 Application of the SA algorithm 

As previously stated, the simulated annealing algorithm is widely used in 

many disciplines other than Operations Research. As a matter of fact, the SA 

list of applications includes combinatorial optimization problems related to 

diverse scientific and technical fields among which very-large-scale 
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integration (VLSI) design, image processing, neural networks and so on (Aarts 

and van Laarhoven 1987). 

Whatever the discipline or project, if a decreasing temperature schema is 

chosen, then the initial temperature ( 0T ), cooling schedule and final 

temperature (if the latter is eventually adopted as a stopping criteria) must all 

undergo a setting and calibration process in order to provide results that are 

consistent with the goal of the application. With respect to this issue, it is 

worth recalling that:  

• if some (weak) hypotheses hold on the cooling schedule, it is possible 

to demonstrate that the algorithm converges in probability to the set of 

global optimal solutions; 

• if the temperature is high and a minimum-state energy is found, then 

the algorithm continues running to eventually escape from the above 

state should it just be a local minimum; 

• if the temperature decreases too rapidly, then some thermal fluctuations 

are frozen: in the OR language, this means that the algorithm may stay 

trapped in a local minimum; 

• if the temperature decreases too slowly, then the search process may 

take too long and, thus, the system may not reach the steady state (i.e. a 

global minimum). 

 

Table 3.1 - Examples of cooling schedule for SA 

Discipline Cooling Schedule Properties 
mathematics/combinatorics ii TT α=+1  99,070,0 ≤≤ α  

data analysis 1−= ii FTT  ( ) cyclesNTTF 1
maxmin /=  

Biology ii TT γ=+1  ( ) ( )11/ −= cyclesN
initialfinal TTγ  

Finance iTi TrT =+1  10 ≤≤ Tr  ad hoc selection 

 

Unfortunately, in the literature there is no algorithm that can determine 

“correct” values for the initial (final) temperature and cooling schema, but, as 

suggested by empirical knowledge, simple cooling schemas seem to work 
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well. With respect to specific disciplines, some examples are given in Table 

3.1 (Ingber 1993). 

To remark the importance of temperature parameters and how their correct 

setting impacts on the search process, one may start by considering the simple 

cooling scheme adopted in mathematics/combinatorics ii TT α=+1 . With the 

cooling rate 9.0=α , the initial temperature 0T  set equal to 100  and the final 

temperature 1=fT , in terms of cycle length or number of competing 

configurations evaluated, the SA algorithm generates and explores 44 

alternative solutions, as depicted by the blue trend-line in Figure 3.1. 

However, in a highly combinatorial optimization problem, this number may be 

far from satisfactory. The inadequacy of α ’s previous setting is even more 

pronounced for low values of the initial temperature: for example, if 100 =T , 

then the corresponding cycle length drops to 22 as illustrated by the red trend-

line in Figure 3.1.    
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Figure 3.1 - Configurations explored by a single cycle SA 

 

The introduction of nested cycles in the SA procedure can prevent a 

premature termination of the search process. In logistics, this type of 
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adjustment can be found in (Kim and Moon 2003) where the SA approach 

involving a pair of nested loops is applied to the berth scheduling problem; in 

a preliminary study by (Legato and Mazza 2007) a three-level nested SA 

algorithm is at the basis of an optimization by simulation procedure for the 

quay crane scheduling problem. As for a clarifying example, in the 

mathematics/combinatorics schema one may consider maintaining the same 

cooling schedule, cooling rate and final temperature, as well as the values for 

the initial temperatures (i.e. 1000 =T  and 100 =T ). With these settings, the 

number of solutions evaluated by a three-level nested algorithm, rise to 132 

and 66, respectively as shown by Figure 3.2. 
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Figure 3.2 - Configurations explored by a 3-level nested SA 

 

In the next sections, these and other issues will be further discussed and 

tailored to the quay crane scheduling problem, followed by numerical 

experiments on real data. 
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3.4.1 Customization to the QCSP 

The application of the simulated annealing approach to determine the 

makespan in the QCSP is set-off by performing some choices required by the 

customization process for the problem at hand. 

To begin with, as previously stated, choosing the proper cooling schema 

impacts on reaching a global minimum. In this particular problem, it affects 

the number of hold-quay crane assignment schedules (solutions) evaluated by 

running the SA algorithm. To this end, testing continues on the so-called 

simple “mathematics” cooling schema ii TT ⋅=+ α1  according to which the best 

results have been returned for an initial temperature 1000 =T  and a decreasing 

rate 995.0=α . 

The “move” definition for neighborhood generation is also very context-

sensitive. For the QCSP, with respect to (eventual) release, precedence and 

non-simultaneity constraints that determine the feasibility (or lack thereof) of a 

container discharge/loading schedule, some examples of moves are: 

• move hold l  assigned to crane i  from position r  to position s  ( sr ≠ ) 

within the same crane i ; 

• move hold l  from position r  on crane i  to position s  on crane j  

( ji ≠ ); 

• swap the positions of holds l  and k  ( kl ≠ ) on crane i ; 

• swap the positions of holds l  and k  ( kl ≠ ), originally assigned to 

cranes i  and j  ( ji ≠ ), respectively. 

In the SA implementation currently under examination, the second option for 

the move definition has been adopted. 

As far as the stopping criteria is concerned, QCSP designers can chose 

among the following possibilities: 

• stop when the algorithm has reached a fixed number of iterations n  or 

an upper bound on the available time-budget; 

• stop when the current solution has not been updated in the last m  

iterations; 
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• stop when the cooling schema has reached a fixed lower bound on the 

temperature value ( fT ). 

For this setting, the lower bound temperature value 510−=fT  has been 

chosen. 

  

3.4.2 Numerical experiments 

Numerical experiments discussed in this section use a simplified simulation 

model referred to the queuing network for the discharge/loading process 

depicted by Figure 1.4 and describing the operations around the QCSP. 

Specifically, both the “SC waiting line on quay” and the “TEUs waiting line 

under crane” have been short-circuited with the purpose of isolating and 

highlighting the random effects of process discharge/loading times upon the 

schedules and, therefore, on the makespan. 

The object of the analyses reported in the following is twofold. On one 

hand, experiments on the QCSP mean to investigate and compare the 

performance of the SA algorithm when system dynamics are affected by one 

major source of uncertainty: the discharge/loading service times operated by 

the quay cranes (measured in container moves per hour). The results returned 

are also examined in relation to the optimal value found by the commercial LP 

software CPLEX for the stand-alone optimization model proposed in section 3 

of (Legato et al. 2008b), which provides a lower bound on the value of the 

makespan when data is deterministic. On the other hand, the same tests intend 

to show how a simulation-based optimization algorithm is often the only 

practical solution method available when dealing with difficult-to-solve 

combinatorial problem instances, embedded in realistic, dynamic 

environments characterized by several elements of randomness. 

This matter is even more evident as soon as one considers the real 

medium-size vessel illustrated in Figure 3.3 (courtesy of the container terminal 

in Gioia Tauro) for which a limited number of holds 14=n  must be operated 

by a small number of cranes 3=m . 
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Figure 3.3 - Map with discharge/loading info per vessel bay 

 

Although the state space of this particular problem is finite, the number of 

states is very large: as a matter of fact, as many as 131004614.1 ⋅  possible 

combinations may occur. Therefore, the exploration of every alternative 

schedule could go beyond practical possibilities. However, in this case, the 

number of feasible schedules that can be generated and, thus, evaluated is 

smaller due to the precedence and non-simultaneity constraints between vessel 

holds (i.e. task pairs) summarized in Table 3.2. 

Numerical experiments are carried out on three different scenarios 

according to which the quay crane discharge/loading times can either be 

deterministic or follow an exponential or hyper-exponential distribution law. 

Computational efforts focus on these two particular laws because of their 

aptitude to represent a growing process variance related to the 

discharge/loading times. 

 

Table 3.2 - Problem constraints 

Constraints Task pairs 
(1,2) (3,4) (5,6) precedence (7,8) (9,10) (12,13) 
(1,3) (5,7) (7,9) 

(12,14) (2,4) (6,8) 
(8,10) (1,4) (2,3) 
(5,8) (6,7) (7,10) 

non-simultaneity

(8,9) (10,11) (13,14) 
 

While the specific settings for the simulation-based optimization procedures 

have already been discussed and reported in paragraph 3.4.1, here a special 

mention is deserved by Rinott’s two-stage indifference-zone based Ranking 



Chapter 3 - Simulation-based optimization using simulated annealing 

 

70

and Selection procedure (1978), which has been introduced in the over-all 

framework to perform a correct selection between competing schedules with at 

least probability *P . The common parameters of the R&S procedure are: the 

initial number of simulation runs 100 =n , the confidence level α−1  with 

1.0=α  and the indifference zone 25.0=δ h on the makespan value. 

Additional input specifications concern both the quay crane discharge/loading 

rate (i.e. 28  container moves per hour) and the initial hold - quay crane 

assignment schedule for the QCSP which is selected randomly. 

In general, once parameters are set, the estimate of the objective function 

produced by the algorithm converges to the value of the optimal solution, as 

the number of iterations grows. In the long run, if compared to algorithms 

characterized by particular global-local search paradigms (see Legato et al. 

2008b), the SA algorithm slightly outperforms these other classes in terms of 

average execution time and quality of the makespan estimate. This is due to 

the algorithm’s specific capability of jumping out of local minima by 

accepting candidate solutions that are worse than the current solution. In 

contrast, the SA convergence begins at a later stage (see Figure 3.4), as a result 

of procedure set-up where a random generation of the initial hold-crane 

assignment takes place. Recalling that in the context of simulation-based 

optimization evaluating the objective function entails running the simulation 

model, being able to find high quality solutions early in the search is of critical 

importance. A logical answer to this fault can consist in providing an 

“educated” starting solution intended for (eventual) improvement. In this case, 

the SA search process can appear to be more effective since the starting point 

is set on a solution that is “close” to high quality ones which can be reached by 

a single move according to the predetermined mechanism for neighborhood 

definition. 

As one may observe in Figure 3.4, under deterministic quay crane service 

times, the average makespan value determined by the SA algorithm for the 

problem at hand converges to the lower bound of 10.536 hours returned by 

CPLEX for the IP formulation (1)-(8) proposed in (op. cit.). Despite that an 

exhaustive coverage of all the possible combinations in the quay crane 
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scheduling problem is not performed by the above algorithm, nor is any sort of 

control running on which part of the feasible set is being explored, the 

schedule returned as final output (in a large number of numerical tests carried 

out within these experiments) is already situated within the indifference-zone 

of the optimal solution (i.e. 15 minutes) after 2000 iterations. Results are 

provided in just a few seconds, while CPLEX returns the optimal solution after 

several minutes ( 25≅ ). 
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Figure 3.4 - Makespan for deterministic service times 

 

When quay crane service times are non-deterministic the optimal solution 

of the IP formulation is no longer truly representative of the discharge/loading 

operations since the corresponding mathematical model does not account for 

uncertainty. This becomes more pronounced as the process variance increases 

due to greater randomness in the quay crane operational cycle (e.g. delays, 

blockages, failures). As shown in Figure 3.5, after more or less 2500 iterations, 

the SA algorithm returns a makespan value of 10.7 hours. This value is still 

close to the optimal value previously returned by CPLEX (deterministic case) 

because the randomness introduced by the exponential law does not produce 

significant effects on the non-simultaneity and precedence constraints. 
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Figure 3.5 - Makespan for exponential service times 

 

It is worth observing that algorithm performance does not deteriorate when 

dealing with exponential service times (see Figure 3.6). 
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Figure 3.6 - Algorithm performance for exponential service times 
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Conclusions differ a great deal when in the last scenario discharge/loading 

operations are modeled with a hyper-exponential distribution (according to 

which quay crane service occurs with probability 95.0  at a rate of 28  

container moves per hour and with probability 05.0  at a rate of 2 container 

moves per hour). As mentioned previously, a similar set-up is particularly 

suitable for modeling quay crane stoppage events during operations. Figure 

3.7 shows how the SA algorithm achieves an average makespan estimate 

which departs from the value of the objective function of the solution found 

with CPLEX by more than 80%. 
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Figure 3.7 - Makespan for hyper-exponential service times 

 

Thus, as the uncertainty of the logistic process grows, the simulation-

based optimization procedure becomes the more suitable and challenging 

solution for representing system dynamics. 
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Chapter 4 
Integration and application of 
simulation-based optimization 
models in container terminals 
 

 

 

 

4.1 Introduction 

The need to increase the productivity and efficiency of the yard subsystem at 

the container terminal in Gioia Tauro has, once again, paved the way to seek 

for OR methods and models yielding more effective, affordable and safer  

solutions than stand-alone technology and experienced-based advice. 

The present case study is another cornerstone on the simulation side of the 

above paradigm. It follows a previous research and technology transfer project 

reported in (Canonaco et al. 2007) and based on an enhanced modeling of the 

integrated logistic process for vessel entrance and berthing at the Gioia Tauro 

terminal. At that time, the object was to verify whether the entrance channel 

shared by container vessels and “other traffic” could have become a bottleneck 

in view of a future increase in containerized traffic. Today, similar concern is 

attributed to the yard and to providing a model which may hold in store a wide 

range of useful alternative configurations to be evaluated in order to support 

major decisions related, but not limited to: 

• the size and TEU capacity of yard blocks; 

• the types and fleet size of the shuttle vehicles serving each block; 

• the purchase of yard cranes for container handling and, eventually, 
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• the location of the yard crane buffer area. 

In this chapter, these and other matters of investigation that affect yard 

organization and infrastructures are addressed by using a simulation-based 

optimization approach to pursue the goal of selecting the “best” alternative 

overall system configuration for greater yard utilization and productivity. In 

particular, the proposed sequence of problem definition, input modeling, 

output analysis and final comparison of competing scenarios will be reviewed 

and discussed in light of the key system features to be modeled in component-

like integrated modules and embedded in a custom-made operations simulator. 

  

  

4.2 The modeling problem 

The Medcenter Container Terminal SpA (MCT) in Gioia Tauro is considering 

for future development a hypothetical change of yard system infrastructures in 

conjunction with alternative organizational and operational policies and 

procedures pertaining to this area and all bordering zones. 

The container yard is currently operated according to a direct transfer 

system (DTS) based on the use of straddle carriers as equipment for both on-

the-yard handling and transportation between the quay and the yard 

subsystems (for a complete classification based on yard equipment see 

Steenken et al. 2004). 

As for forthcoming projects, the top management intends to prepare and 

evaluate alternative transfer systems, whether direct, indirect or combined, as 

well as yard layouts to improve the performance of existing facilities by 

stages. To this end, site set-ups (e.g. number, general dimensions and locations 

for all major facilities) and internal connection areas required for 

organizational and operational purposes will also be taken into account. 

A joint academic-industrial modeling effort has been undertaken to fully 

disclose the advanced knowledge required to provide a “correct” 

representation of the complex nature of the real yard subsystem. In this sense, 

if attention is drawn to discharging operations and, thus, container transfer to 
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the yard area for stacking purposes, the corresponding work cycle can be 

represented by the model in Figure 4.1 and described in the following. 
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Figure 4.1 - Work cycle for container stacking in yard 
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[Clearly, when considering container loading operations and, thus, retrieval 

from a yard block and transfer to the quay area, the order of the resource 

request and acquisition is reversed.] 

The work cycle under examination is triggered by the container workload 

occurring from discharge (loading) operations on the vessels scheduled for 

berthing. All parties involved in the modeling stage agree to consider the berth 

weekly plan generated by the CALEMA simulator in (Canonaco et al. 2007) as 

the natural, initial event source for the yard problem at hand. 

 

 
Figure 4.2 – Example of a weekly plan returned by Calema 

 

Figure 4.2 illustrates an example of this weekly plan in a graphical version 

which, given a fixed time unit (e.g. hour or shift), aids a horizontal reading 

across the entire berth subsystem. This practical feature provides useful insight 

for resource planning and management. As a matter of fact, quay cranes in this 

area are known to operate under a significant degree of parallelism which 

strongly depends on the intensity of incoming vessels. However, the number 

of available cranes is not always sufficient to guarantee the completion of 

discharge/loading operations, for each vessel, within the related expected time 

of un-berthing. Therefore, when modeling the container yard operations a 

simulated weekly plan can be seen as a feasible starting point and, with respect 

to the above limitations, it should contain for every vessel-occurrence: 
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• a lower bound on the berthing time: this results from relaxing the 

constraints on quay crane availability for assignment and deployment. 

As previously mentioned, in real-life situations a vessel’s actual time 

of berthing and un-berthing (or berth window) is heavily constrained 

by the number and position of the available cranes assigned and 

deployed for its operations. Thus, a complete or partial lack of or delay 

in crane availability will lead to postponing the operations for the 

vessels already berthed and, consequently, for those waiting to be 

berthed along the same segments; 

• the berth position given by the from-to bollards that delimit the berth 

segment of interest; 

• the basic physical characteristics such as length, meaning the 

measurement of the vessel extent, and draft which quantifies the 

minimum requirement for vessel berthing in terms of water depth; 

• the service name which identifies the sequence of ports (AKA port 

rotation) visited by a vessel belonging to that service; 

• the number and composition of each cluster of containers “on hold” for 

discharge (loading) operations, depending on the service of reference. 

It is important to remark that, since this weekly plan provides only a lower 

bound on the berthing time, then it should also be coupled with optimization 

models providing for crane assignment to the berthed vessels and crane 

deployment along the berth. Examples of integer programming models that 

well-support these critical decisions are given in (Cordeau et al. 2005, Legato 

et al. 2008a). 

This stated, as soon as a vessel is berthed and properly equipped with 

human and mechanical resources, container discharge is carried-out by one or 

more quay cranes that leave the containers in the limited buffer areas (e.g. six 

single-space slots) located at their feet. Once discharged, a container is picked-

up by a shuttle vehicle (e.g. carriers or internal trucks) that provides for 

transportation to the yard area. If a shuttle vehicle is not immediately available 

then the container must attend in the buffer until this occurs. Since this area 

has a limited capacity, should it be full, then the quay crane will have to hold-
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up its discharging activities, causing a congestion phenomenon to rise in the 

transfer system where functionality is governed by the relationship between 

equipment speed and container flow. 

After the container reaches the yard via shuttle vehicle, it is handled by the 

yard equipment that serves this area by: 

• identifying the slot position in the block (i.e. lane, column and tier); 

• performing moving tasks when the slot position is at a ground or 

intermediate level; 

• setting-down the container in the designated position. 

To do so, whatever the type of container mover employed (e.g. yard cranes, 

straddle carriers, reach stackers), it must be available for container stacking 

(retrieval) and have available operation space as well (e.g. the transfer lane 

along the side of a yard block used by rail mounted gantry cranes as handover 

point). 

The entire work cycle described above is based on a sequence of seize-

delay-release actions stemming from container flow between bordering 

terminal areas: further details and options referring to the processes herein 

involved (i.e. container discharge/loading, container transfer and container 

stacking/retrieval) are given later in the operational features section. In any 

case, the cycle continues looping until all containers have been stacked in the 

yard (loaded on the vessel). 

 

 
Figure 4.3 - The simulation-based optimization scheme 
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From a methodological point of view, at the most outer level the 

simulation-based optimization approach adopted in this problem is fed by the 

berth weekly plan along with the crane set-up. This means that, given an initial 

berth-crane configuration, the S&O model runs a precise scenario in which 

yard layout and transfer and stacking systems are already fixed, as depicted by 

the scheme in Figure 4.3. However, the simulation-based optimization can also 

be extended to inner levels. For instance: 

• with preset container transfer and handling equipment, various yard 

layouts can be evaluated by varying the number of yard blocks, their 

position (e.g. vertical, horizontal) or their capacity; 

• for a given yard layout and container handling solution, alternative 

transfer systems can be tested (e.g. direct, indirect and combined); 

• once the transfer system and the yard layout are defined, different 

container handling equipment and services can be explored (e.g. rail 

mounted grantry cranes with side lane rather than front buffer). 

Clearly, in the above examples, the outcome and output from inner-level 

configuration set-ups will in turn affect each other (e.g. in the first case, 

different yard layouts impact on the service times of  transfer and handling 

equipment) and, ultimately, the “outer” berth-crane configuration (e.g. berth 

windows could require tuning adjustments). Thus, the problem solution is not 

straightforward and an iterative structural simulation-based optimization 

should be exploited. 

 

 

4.3 Input modeling 

Input modeling is a major task from the standpoint of time and resource 

requirement common to many different disciplines. Since the input provides 

the driving force for running the model, one must always bear in mind that if 

the input data is inaccurately collected, inappropriately analyzed, or not 

representative of the environment, the output data could be misleading and 
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possibly damaging or costly when used for policy or decision making (Banks 

et al. 2001). 

In the approach considered herein, the data model must be developed 

from two complementary directions: on one hand, in a much broader sense, 

data characterization is required to model communication, coordination and 

cooperation rules, regulations and practices adopted for business organization 

and/or resource management; on the other, in terms of a more strict 

interpretation, numerical data is collected and used to quantify resource 

utilization according to the workload generated by applications/users trying to 

carry-out a sequence of requests throughout the system. In the former case, to 

both enhance the quality of the resulting model and increase the confidence of 

using the model in scenario analysis, data should be obtained in close 

cooperation with company managers, analysts and end-users. In the latter, data 

is always obtained by means of statistical analysis on the past and/or expected 

system behavior. 

 

4.3.1 Operational features 

Many different company-based rules, regulations and practices are widely 

used across the subsystems of the container terminal under examination and, 

thus, call for representation. In particular, attention is drawn to organizational 

and operational issues required to define the yard layout and manage the yard 

activity with respect to policies and equipment employed for container 

stacking/retrieval, respectively. 

As far as yard layout is concerned, block location, size and TEU capacity 

are the most common three degrees of freedom provided to the user to model 

this limited resource in a variety of ways. An example of two alternative yard 

layouts is given in Figure 4.4. 
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Figure 4.4 - Two alternative yard layouts 

 

It is worth observing that both the number of blocks and the TEU capacity of 

each block in a given yard layout affect the average travel time of shuttle 

vehicles cycling between the quay and the yard areas, as well as the container 

handling time on the yard. For instance, in the yard configuration depicted by 

Figure 4.4.(a), the average distance to be covered in order to reach a container 

is greater than the average distance deriving from the solution portrayed in 

Figure 4.4.(b). On the other hand, more container handling equipment can be 

concentrated in a specific area in the former case, thus returning a smaller 

service time, whereas this possibility is prevented in the latter case due to 

potential interference between container movers meant to operate on adjacent 

yard bays. 

As for container stacking (retrieval) policies, storage strategies are 

extremely critical for the management of containers on many levels. For 

example, the higher the tier, the greater the saving on ground space; then 

again, as stack height grows, the number of reshuffles/rehandles required to 

reach a specific container grow as well. Only after the appropriate stack layout 

has been determined, consideration is granted to another major question 

concerning the identification and assignment of a container storage location. 

An experience-based strategy usually stores containers in groups or stacks 

according to some basic attributes such as: 

• length (e.g. 20’, 40’ and 45’); 

• height (e.g. standard, high-cube); 

• weight class (e.g. heavy and light); 
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• type (e.g. reefer, IMO-class-x); 

• out-of-gauge (e.g. top-OOG, side-OOG and front-OOG); 

• loading vessel; 

• port of destination. 

The benefits of this approach are evident when considering, for example, a 

group of containers scheduled for loading on the same vessel. If they are in the 

same stack, then the order in which the containers are transferred and loaded is 

irrelevant and, most of all, the performance of on-the-yard handling equipment 

is improved since this homogenous stacking policy guarantees that such a 

container is always located at the top position of a stack and, thus, 

nonproductive movements of the above equipment can be reduced. In 

addition, if these stacks are also dispersed throughout the yard blocks, then 

during vessel loading, each quay crane working is sure to be supported by 

several container movers on the yard and, thus, quay crane starvation is likely 

not to occur. Container dispersion will also contribute in balancing each yard 

block’s workload at any given point in time. 

In most cases, these and other practical matters are left to the providers of 

advanced ICT solutions which support the yard planning process by 

implementing user-defined planning parameters and taking into account the 

already existing procedures on the terminal. 

The ultimate decision affecting yard organization is related to the type of 

equipment involved in the container cycle. In particular, within the constraints 

of the available budget, different solutions can be built around the choice of 

the transfer system and the on-the-yard handling equipment, along with the 

terms of employment and management for both categories. Some of the 

possible options that can be explored are: 

• single modality systems (e.g. sole employment of straddle carriers for 

container transportation and slot positioning, set-down and pick-up); 

• mixed modality systems (e.g. combined use of straddle carriers and rail 

mounted gantry cranes or a mixed combination of straddle carriers, 

trailers and rail mounted gantry cranes); 
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• buffer areas for container movement on the yard blocks (e.g. definition 

and localization of front or lateral areas including width for truck 

and/or rail-car access). 

Clearly, once the above settings and the stack height are defined, the TEU 

capacity of each yard block will be defined as well. 

 

4.3.2 Statistical data issues 

When dealing with numerical values, specific statistical models are used to 

collect, summarize and, thus, represent the data referring to the input process 

of interest. 

If data is available, it is used to identify a probability distribution (or 

distribution family) that best describes the probabilistic behavior of the input 

process. With reference to the objectives of the present simulation study, the 

work cycle illustrated in Figure 4.1 calls for the following data collection: 

• composition and routing of container clusters flowing between 

“discharge/loading points”, “transshipment points” and “service points 

in the corresponding yard area”; 

• service time of the container transfer vehicle(s); 

• service time of the on-the-yard container handling equipment; 

• other operational features (e.g. failures, stops, maintenance, lead times, 

etc.). 

When data is not available, then system knowledge, experience and 

“educated guesses” usually step forward to fill-in the related gap. By example, 

one may think of simulating a scenario based on the employment of specific 

equipment which is currently not on the premises, but placed under evaluation 

for future purchase as for rail mounted gantry cranes meant for yard operations 

at the port of Gioia Tauro. Clearly, in this case no quantitative, nor qualitative 

data is present in the company records. As a consequence, configuration and 

operation settings must occur according to the individual know-how of experts 
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working across the company or by outsourcing to partner terminals already 

using similar technologies. 

Whatever the case, once information on data variance and data skewness is 

available, then a tuning phase of the corresponding input models will follow. 

In this sense, the flexibility of the probabilistic models can be better 

guaranteed by using a mixture distribution-based methodology (Titterington et 

al. 1985) in which the density of a single mixture distribution, also called 

compound distribution, can be expressed as a weighted sum of the component 

distributions. Previous experience related to modeling yard operations in a 

container terminal (Legato et al. 2000) has proved the above methodology to 

be successful (see Figure 4.5). 

 

Real data Model data 

(a) (b) 
Figure 4.5 - Real data compared to model data for on-the-yard container sojourn time 

 

In particular, the following mixture distribution has already been used to 

represent the container sojourn time in a specific yard area of the terminal 

managed by MCT S.p.A.: 

10,)()1()(ˆ)( 21 ≤≤−+= ααα xFxFxF    (4.1) 

where 

( )xxF µ−−= exp1)(1        (4.2) 

is an exponential distribution with rate 8.31=µ  and 
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is a two-stage erlang distribution ( 2=n ) with rate 8.31=λ . 

The goodness-of-fit of distribution (4.1) and the associated parameters has 

been formally evaluated via the Kruskal-Wallis statistical test. This method 

has been applied to test the null hypothesis that the two different samples 

under comparison - the real data in Figure 4.5.(a) and the model data in Figure 

4.5.(b) generated via Monte Carlo simulation - have been drawn from the 

same distribution. 

 

 

4.4 Development and use of the simulation model 

The design and implementation of the simulation model is bound to be 

carried-out in compliance with the conventional steps used to guide a thorough 

and sound simulation study. Figure 4.6 provides a high-level view of the 

modeling process, but other sources and more detailed discussions can be 

found in (Banks et al. 2001, Law and Kelton 2000). 

 

Real Model

Conceptual Model

Operational Model

Verification

Validation

Input analysis Output analysis

Calibration

Objectives

Degree of detail

 
Figure 4.6 - Modeling logic in a simulation study 
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As one may observe, the primary function of the conceptual model is to 

bridge the troublesome gap between the real model and the operational model. 

The conceptual model to develop depends on the objectives of the study, 

the complexity of the issues being analyzed and the necessary degree of detail 

required in system representation, but, in general, it can be structured in a 

network model form in which every single object has a more or less complex 

nature. Starting from the graphs used in Operations Research to model 

network flows and simple queuing systems with one or more servers and one 

or more buffers (whether dedicated or not), more complex, perhaps 

hierarchically-organized and powerful data structure-based objects can be 

envisioned and attained. In such a case, the model complexity can be better 

managed by making use of a special programming language. This may appear 

to be even more likely if one thinks of having to model the container stacking 

area in a container terminal. 

Once the conceptual model is addressed and implemented, the operational 

model can be simulated to generate the trajectory followed by the state 

variables and, therefore, carry-out simulation experiments with the objective 

of performing output analysis by means of statistical models. The first 

experiments will always serve the purpose of establishing the overall 

credibility of the simulator! In this sense, two most direct and intuitively 

accessible measures of simulation credibility are given by verification and 

validation. Both are based on the replication of experiments followed by 

output analysis, but, on a conceptual level, they are to remain distinguished 

from each other: verification is concerned with the correspondence between 

the input parameters and logical structure of the conceptual model and the 

operational model, while validation refers to determining if the real system is 

accurately represented by the operational model (in terms of system operation 

rules and data). Although verification and validation are placed in a specific 

pattern and order in Figure 4.6, they are to be considered both iterative and 

continuously repeated processes as the design and use of the model progresses. 
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Verification is made possible by the application of a wide range of 

techniques than can be grouped in the following classes (Banks et al. 2001, 

Carson 2002): 

• common-sense techniques, used in developing any sort of software 

project, suggest to closely examine the model output for 

reasonableness under a variety of settings of the input parameters in 

order to aid the detection of mistakes in model logic and data 

misspecifications. For example, model reasonableness can be evaluated 

by observing the values returned for certain output indices (e.g. waiting 

time) as certain input parameters expected to have correlation with the 

former vary (e.g. service time); 

• thorough documentation ranges from providing brief comments and 

definitions for all variables and parameters to describing each major 

section to clarify the logic of a model and allow (the modeler or 

someone else) to verify its completeness; 

• tracing produces a detailed printout of the state of the simulation 

model as it changes over time; it usually covers rare events, specific 

locations and particular conditions. 

As far as validation is concerned, a three-step approach suggested by 

(Naylor and Finger 1967) consists in first building a model that has high face 

validity. This requires user involvement for major insight on both system 

structure and reliable data, followed by sensitivity analysis in which efforts 

can be addressed to monitor whether the model behaves as expected when 

input changes. 

The second step is reserved to test major assumptions in terms of model 

structure and data. In the former case, observation and discussion with key 

figures of the system are critical activities; in the latter, random samples are 

used to identify the appropriate probability distribution, estimate the related 

parameters and validate the assumed statistical model by a goodness-of-fit test. 

In the end, model input-output transformations are compared to the 

corresponding input-output transformations for the real system with reference 
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to the entire system (for existing systems) or subsystems (for nonexistent 

systems). 

 

 
Figure 4.7 - Modeling logic in a simulation study 

 

This final stage of the study is depicted in Figure 4.7. For this purpose, once 

again, statistical tests can be applied for making quantitative decisions about a 

given process or processes: for example, a typical point of inquiry aims at 

investigating whether there is enough evidence to “reject” the hypothesis that 

the mean value of the simulated results is equal to the mean value obtained 

from real data. The iterative process according to which real system data is 

compared with model data in order to reduce the estimated differences is 

called calibration of the simulation model. 

 

 

4.5 Output analysis 

The design and simulation of a set of highly relevant, yet quite dissimilar 

scenarios has a sole purpose: obtaining estimates of given performance 

measures under a variety of conditions. In the study case at hand, plausible 

scenario instances are generated by coupling alternative transfer systems, 

whether direct, indirect or combined, with different yard layouts to improve 

the average value of the following performance measures: 

• yard occupation; 

• waiting time per equipment type; 



Chapter 4 - Integration and application of simulation-based optimization in container 
terminals 

 

90

• productivity (i.e. throughput) per equipment type with particular 

reference to the GCP - gross crane productivity (AKA GCR - gross 

crane rate), one of the most important performance measures in a 

container terminal. 

Economically speaking, the “predictions” returned by the simulation study 

must favor cost-effective decision making, meaning that the total cost required 

to pursue and obtain facility improvements, in terms of the above indices, 

must be less than savings resulting from the greater service quality achieved 

over the period of time considered. On the other hand, the optimal economic 

solution must lie within the boundaries of technical feasibility in order to 

prevent terminal subsystems from making little or no progress due to critical 

resources that become exhausted or too limited to perform needed operations. 

To make this clearer, one may wish to investigate via simulation the extent 

to which cost-effective operational set-ups serve as a powerful strategy for 

improving GCP. In (Petering and Murty 2008), a first set of preliminary 

experiments is designed around a similar objective: two different policies for 

yard crane deployment are proposed within both a large and small terminal to 

show how GCP depends on the yard block length. In their empirical tests 

across a certain number of artificially generated scenarios, the concavity of 

GCP seems to hold with respect to block length as shown, for example, in 

Figure 4.8. 

 

 
Figure 4.8 - GCP point estimation for different block length 
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Without loss of generality, the same GCP investigation can be conducted 

with reference to 

• volume of container traffic; 

• type of transfer system; 

• number of active units in the transfer system; 

• type of on-the-yard handling system; 

• number of active units in the on-the-yard handling system; 

• location and area size devoted to internal connections and buffers 

in order to detect threshold values beyond which the growth of crane marginal 

productivity is low or most likely to crash (e.g. the thrashing phenomenon that 

arises when a great number of active cranes interfere with one another’s 

operations). 

In the attempt to provide a more “robust” answer to these and other 

specific GCP evaluations, an effective method for interval estimates of 

average GCP or average point estimates followed by variance estimation is 

strongly demanded. In particular, the choice of what method to apply must be 

made considering that the most usual form of policy evaluation is based on an 

extensive empirical investigation of “simulation outcomes” with the aim of 

obtaining a representative reading of the model behavior. Consequently, 

different alternative configurations of the system of interest need to be 

compared on the basis of the long-run average values of GCP under the goal 

of detecting significant differences among the configurations and selecting the 

best one, or a near-best, with a user-specified probability of correct selection. 

Unfortunately, as discussed in section 2.2, any available statistical 

technique has proven performance for the asymptotic case in which the 

simulation output process is stationary and the observations are independent 

and identically distributed data from a normal distribution. Thus, the problem 

to deal with lies on the way of batching output observations and on the 

empirical evaluation of the properties of any batch-based estimator of the 

asymptotic variance constant of the simulation output processes. Clearly, this 
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is at the basis of pursuing the true probability of correct selection of the 

adopted R&S procedure. 

In this sense, personal experience (see Canonaco et al. 2007 for details) in 

generating confidence intervals and, thus, estimating the sample mean and 

sample variance of long-term based performance indices in container terminal 

simulations, confirms the substantial robustness of the coverage properties 

with respect to the different ways of arranging observations into batches and 

distributing them into one or multiple replications. In particular, experimented 

options have included: 

• 30 batches taken from a unique replication (classical batch means 

method) and used to compute both the sample mean and the sample 

variance; 

• 15 batches taken from the same replication to estimate the sample 

mean and 15 additional batches taken from another 15 replications to 

obtain an independent estimate of the sample variance; 

• 1 batch per replication (classical independent replication method). 

The 30-batch case study revealed that correlation among batches is not 

expected to generate significant errors when producing interval estimates for 

an average performance measure, due to the ergodic property of the underlying 

stochastic process. This property guarantees a non-biased estimate of the 

sample mean accompanied by a sufficiently small sample variance estimate 

bearing an error (due to the unavoidable correlation among batches) which 

becomes irrelevant. 

Vice versa, the other border case in which a single batch is taken from a 

single replication seems to be jeopardized by the opposite possibility of 

incurring in a significant error on the estimation of the sample mean, while 

obtaining a good estimate of the sample variance, due to the absence of 

correlation among batches. 

Finally, the intermediate case of taking all 15 batches from the same 

replication was designed to combine the benefit of ergodicity on the sample 
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mean estimate with the need to avoid a significant correlation error on the 

sample variance thanks to the additional 15 independent replications. 

Indeed, the strength of such considerations leads to choosing the first 

option which, however, could result in a computationally intensive activity if 

the batch normality and non-correlation assumptions are to be granted. In view 

of the fact this effort has to be repeated at each iteration of a simulation-based 

optimization procedure, the overall computational burden is likely to be 

unaffordable. To this end, a practical approach consists in working with small 

batch sizes as long as their associated batch means belong to a distribution 

shape with a sufficiently limited skewness. The rationality of this 

recommendation is explained by the following. 

Let ( )kX i  be the sample mean of the k  observations in batch i  (not 

normally distributed if k  is relatively small) and consider the biased sample 

variance estimator: 

( ) ( ) ( )( ) .1ˆ
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where ( )nO 1  is a term that basically looks like a constant C  divided by n  

(Hall 1987). Observe that the error in the normality assumption is basically 

described by the second term of the right-side member and, in particular, by 

the skewness ( )( )[ ]
3

3

σ
µγ −

=
kXE  of the unknown distribution of ( )kX , due to 

the fact that the number of batches ( n ) appears under square root. Thus, k  

becomes the parameter by means of which one can control both the error upon 

the normality assumption and the computational burden in output analysis and, 
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to this purpose, it should be dimensioned just large enough to size-down the 

skewness. 

In conclusion, the more symmetric the shape of the batch mean is, the 

better the CLT approximation holds and the more accurate the sample variance 

approximation to the process variance is. 
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Conclusions 
Queuing network models have been developed and applied in the planning and 

management of logistic resources and processes at a pure transshipment 

container terminal located in Southern Italy throughout the entire duration of 

this thesis. Solution of these models by discrete-event simulation has been 

discussed and experienced both within a practical “what-if” approach and a 

theoretical “what-to” approach to the optimization of port logistics by 

simulation. An example of the former approach is given by the simulator for 

managing vessel entrance and berth assignment; an example of the latter 

approach is provided by the simulator for assigning holds to cranes and 

scheduling the discharge/loading operations. A further example arises with the 

queuing network model of the yard organization and yard-crane deployment, 

where a relatively small number of configurations and policies should be 

simulated and compared. Hence, this thesis has focused on statistical 

techniques for ranking and selection of the best in all of the above examples, 

followed by the integration of these techniques with an algorithm for best 

solution search which behaves as a homogeneous Markov chain. 

The computational burden of the search process has been considered with 

respect to the problem of establishing how many simulation experiments 

should be carried out to guarantee the fixed probability of correct selection, 

provided that the output of simulation is, usually, a sequence of correlated 

measures. Numerical results seem to confirm the goodness of the proposed 

estimator for the sample mean of the simulation output process, as well as the 

goodness of the idea of modulating the number of simulation runs in 

dependence on the behavior of the sample variance. 

A second methodological contribution comes from the analysis of the 

convergence proofs of the simulated annealing-based search process 
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experienced on the simulator for container discharge/loading operations. In 

particular, two modifications have been proposed and remain under current 

investigation: one regards the step of selecting the candidate solution to be 

compared to the current solution; the other regards the step of comparing the 

estimate for the objective function of the candidate solution against the 

estimate of the current solution. The former modification is based on selecting 

as candidate solution the best out of a suitable subset of solutions in the 

neighborhood of the current one; the latter modification uses an interval 

estimate for the difference between the sample mean related to the objective 

function evaluation of the candidate solution and the sample mean related to 

the current solution. 
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