
Università degli Studi della
Calabria
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Chapter 1

Introduction

This work is dedicated to the development and exploitation of a new three-
dimensional (3D) particle code for equilibrium plasma configurations. The
code is of the so-called hybrid type, that is ions are treated as particles and
electrons as fluid. The development of the code involved the use of techniques
such as ion tracing, semi-Lagrangian methods, quadratic interpolation on a
3D grid, and 3D fast Fourier transforms. An iterative procedure was devel-
oped to asses the convergence of the required solution. The code has been
applied to the study of the equilibrium structure of the Earth’s magnetotail
current sheet. Investigating such a structure has become a major scientific
challange since the unambiguos detection, by the Cluster spacecraft, of bi-
furcated current sheets. We have obtained a relatively wide class of solutions
for the current sheet structure, and we found that the double peak current
profile is due to electrons when the ions are injected into an Harris-like quasi-
neutral sheet, computing ion moments on a 3D grid in space, and the electron
fluid equations are solved with appropriate boundary conditions.
A detailed comparison of the simulation results with in situ spacecraft ob-
servations is carried out, too, showing that our solutions are consistent with
the experimental data.

1.1 Solar-Wind Magnetosphere Interactions

The sun generates a strong solar wind, which is quite different from our sur-
face winds created by differences in our atmospheric pressures. The solar

wind is a flow of ionized solar plasma and a remnant of the solar magnetic
field that pervades interplanetery space. It is a result of the huge difference
in gas pressure between the solar corona and interstellar space. This pressure
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difference drives the plasma outward, despite the restraining influence of solar
gravity. The existence of a solar wind was surmised in the 1950s [70, 27, 66]
on the basis of the evidence that small variations in the Earth’s magnetic
field (geomagnetic activity) were produced by observable phenomena on the
sun (solar activity), as well as from theoretical models for the equilibrium
state of the solar corona. It was first observed directly and definetively by
space probes in the mid-1960s.
Measurements taken by spacecraft-borne instruments since that time (and
until recently) have yielded a detailed description of the solar wind across an
area from inside the orbit of Mercury to well beyond the orbit of Neptune
and, lately, of the solar wind termination shock. Solar-wind observations and
theory have been the subject of several books [71, 12, 40] and a continuing
series of conferences summarizing new research (e.g., [73]). Why has this dis-
tant and tenuos plasma been the subject of sustained interest in the scientific
community? The answer to this question stems from two important aspects
of solar-wind research.
The first of these concerns the role of the solar wind in the interdisciplinary
subject known as solar-terrestrial relations. The solar wind is significantly
influenced by solar activity (or, in physical term, by changes in the solar
coronal conditions and magnetic field) and transmits the influence to plan-
ets, comets, dust particles, and cosmic rays that are immersed in the wind.
The origin of the solar influence through interaction of the solar magnetic
field with the expanding coronal plasma has become a major topic in present-
day solar-wind research. The second important aspect of solar-wind research
that helps to explain the sustained interest in the subject concerns the phys-
ical processes that occur in its formation and expansion from the hot solar
corona to the cool and far more tenuos regions of the outer solar system.
This expansion causes the magnetized plasma through huge variations in its
properties; for example, collisions among ions or electrons in the expanding
plasma are frequent in the corona, but extremely rare in interplanetary space.
Thus the physics of this plasma system can be examined under a wide variety
of conditions, some of which are difficult to attain in terrestrial laboratories
or in the immediate vicinity of the Earth. Yet the solar wind is accessible to
space probes, and its properties can be measured and its physical processes
studied at a level of detail impossible for most astrophysical plasmas.



1.1.1 A brief Survey of Solar Wind Properties

The solar wind carries about one million tons of hot plasma, at a temper-
ature of about 105 K, away from the sun every second. Solar wind plasma
contains a mixture of 95.9% protons (H+) and 4% α particles (He2+). The
remaining 0.1% is made up of ions of other elements, including carbon, ni-
trogen, oxygen, neon, magnesium, silicon, and iron and enough electrons to
electrically balance all the positive ions. The exact composition has been
routinely measured on Ulysses and ACE, two spacecraft carrying a Solar
Wind Ion Composition Spectrometer. The plasma behaves like an electri-
cally conducting fluid, carrying with it a magnetic field arising from systems
of electrical currents within the sun’s corona. The strength of this magnetic
field decreases with increasing distance from the sun.
Because plasma particles have sufficient kinetic energy to escape the sun, the
solar wind becomes an extension of the sun’s corona, continuously present
in the interplanetary space. Evidence of the solar wind has been observed
well beyond the orbit of Neptune, at a distance of about 88 AU by Voyager
II and 94 AU by Voyager I.
Solar wind streams move at different speeds. When streams collide, they
produce regions of strong, turbulent magnetic fields. After escaping from the
sun’s gravitational field, the solar wind flows radially outward. A rotating
garden sprinkler is a good analogy. Each drop moves straight out from the
source, but the pattern rotates. The streams’ travel speeds vary from 300 to
1000 km/sec and are independent of their distance from the sun. The density
of the solar wind varies between 1 and 10 particles/cm3 at the orbit of Earth
and diminishes with the inverse square of the distance from the sun’s center.

1.1.2 The Geomagnetic Tail

Solar activity can cause sporadic order-of-magnitude fluctuations of the solar
wind parameters, however.
The solar wind has a negligible effect on the movements of planets, but it
can have other profound effects in their immediate vicinity.
So what has protected the Earth’s atmosphere, its water supply, and its in-
habitants from the searing effect of the solar wind? The ionized gases of the
solar wind are prevented from striking the Earth’s atmosphere by its mag-
netic field. Earth, infact, is one of the planets that has a strong internal
magnetic field. In the absence of any external drivers, the geomagnetic field
can be approximated by a dipole field with an axis tilted about 11 degrees
from the spin axis. The forcing by the solar wind is able to modify this field,
creating a cavity called the magnetosphere. This cavity shelters the surface



Figure 1.1: Schematic of Earth’s magnetosphere. The solar wind flows from
left to right.

of the planet from the high energy particles of the solar wind.
The Earth’s magnetosphere and the solar wind do not interact smoothly.
When the solar wind plasma flows past the Earth, it has difficulty penetrat-
ing into the planet’s magnetic field. This leads to the creation of a huge
bow-shaped shock wave, similar to that of the wake of a speed boat mov-
ing through water, which deflects the solar wind around the magnetopause.
The bow shock, which marks the limit of the Earth’s magnetic influence,
occurs where the velocity of solar wind particles decreases from supersonic
to subsonic speeds.

The solar wind compresses the Earth’s magnetic field on the sunward
side, and, as the magnetic field accompanying the solar-wind plasma par-
tially merges with that of the planet, the planetary field is stretched into a
magnetotail, an elongated “wake” on the side opposite the sun. The geo-
magnetic tail is a region of great importance to the magnetosphere, for, as
we shall see, it acts as a reservoir of plasma and energy. The energy and
the plasma are released into the inner magnetosphere aperiodically during
magnetically disturbed episodes called magnetospheric substorms.
The length of the Earth’s magnetotail was determined by spacecraft instru-
mentation to be at least several million kilometers long. This part of the
magnetosphere is quite dynamic, since large changes can take place there,



and ions and electrons are often energized.
Most of the volume of the tail is taken up by two large bundles of nearly
parallel magnetic field lines. In the bundle north of the equator, the mag-
netic field points earthwards and leads to a roughly circular region including
the northern magnetic pole, while in the southern bundle the magnetic field
points away from Earth and is linked to the southern polar region. These two
bundles, known as the “tail lobes”, extend far from Earth: ISEE-3 and Geo-
tail found them well-defined even at 200-220 RE (Earth radii) from Earth. At
those distances the lobes are already penetrated by some solar wind plasma,
but near Earth they are almost empty.

The extremely low tail lobe density suggests that field lines of the lobe
ultimately connect to the solar wind, somewhere far downstream from Earth.
Ions and electrons then can easily flow away along lobe field lines, until they
are swept up by the solar wind; but very, very few solar wind ions can oppose
the wind’s general flow and head upstream, towards Earth. With such a one-
way traffic, rather little plasma remains in the lobes.
Separating the two tail lobes is the “neutral plasma sheet”, a layer of weaker
magnetic field and denser plasma, centered on the equator and typically 2-6
Earth radii thick. Unlike field lines of the tail lobes, those of the plasma sheet
do cross the equator, though they are quite stretched out. A weak magnetic
field means that the plasma is less restrained here than nearer to Earth, and
on occasion it sloshes or flaps around.

In the early 1960s, spacecraft observations estabilished the existence of
the tail. The hystory of those early observations has been reviewed by [65].
Those early measurements showed that the geomagnetic field strength in
the near-Earth tail (that is, at about 10-20 RE from the Earth) lobes is
about 20 nT. Here we shall use this one observational parameter, together
with parameters derived from observations of the Earth’s polar ionosphere,
the polar cap, to derive the basic properties of the tail. The magnetic flux
from each tail lobe connetcs to one of the polar caps. By requiring that the
magnetic flux be conserved between the polar cap and the tail lobe, we can
obtain an estimate of the radius of the tail. The polar cap is the area around
the geomagnetic pole bounded by the auroral oval. The flux leaving the polar
cap, given by integral of the vertical component of the field strength over the
area of the polar cap, is:

ΦPC = 2π(RE sin θPC)2B0

where θPC is the colatitude of the equatorward edge of the polar cap (assumed
circular), and B0 is the equatorial field strength (half the polar field strength).
This must equal the flux in a tail lobe (assumed to be a semicircle in the



cross section):

ΦT =
1

2
πR2

T BT (1.1)

where RT is the tail radius and BT is the magnetic-field strength in the tail
lobe. Equating the fluxes in the tail lobe and the polar cap gives:

RT

RE
=

(

4B0

BT

)
1

2

sin θPC

Taking θPC = 15o, B0 = 31000 nT and BT = 20 nT, we find RT = 20RE;
if BT = 10 nT (which is more typical of the distant tail), RT = 29RE. In a
static tail there must be pressure equilibrium between the tail lobe and both
the plasma sheet and the solar wind. We can use this to estimate the plasma
sheet properties and the geometry of the distant tail. Equating the magnetic
pressure (which is much larger than the particle pressure) in the tail lobes
with the particle pressure (which is much larger than the magnetic pressure)
in the plasma sheet, we find

B2
T

2µ0
= nk(Ti + Te)

where n is the particle number density in the plasma sheet, k is the Boltzmann
constant and Ti and Te are the ion and electron temperatures, respectively.
Again, using BT = 20 nT, we get a plasma sheet pressure of 0.24 nPa or 1500
eV cm−3. This argument tells us nothing about n or T separately, but agrees
well with typical plasma sheet parameters of n ∼ 0.3 cm−3, Ti ∼ 4.2 keV, and
Te ∼ 0.6 keV [11]. We can calculate the current that must be carried by this
plasma by applying Ampere’s law across the current sheet. The total change
in magnetic field across the plasma sheet is twice the lobe field strength,
because the fields on either side are equal in size but oppositely directed. So:

∆B = 2BT = µ0I

Where I is the sheet height-integrated current density. Again, using BT = 20
nT gives I = 30 mAm−1. This may appear to be a rather small current,
until we consider the length of the current sheet. This same current height-
integrated density can also be given as 30 Akm−1 or 2 × 105 AR−1

E . Thus,
106 A is carried in each 5RE of the length of the tail, which means that the
diversion of only a small part of the tail current is sufficient to explain the
ionospheric auroral electrojet currents observed during substorms.

Pressure balance across the tail magnetopause was used by [18] to deduce
how the tail radius increases with the distance down the tail or how the tail



flares. If the tail flares there will be a component of the solar wind dynamic
pressure normal to the tail magnetopause. So the normal pressure used in the
balance must include a component of the dynamic pressure plus an isotropic
pressure p0, which includes both thermal and magnetic pressures. Balancing
this with the tail-lobe magnetic pressure gives:

ρu2
sw sin2 α + p0 =

B2
T

2µ0

where ρ = n(me + mi) is the mass density and the subscript sw in the flow
speed refers to solar wind.
The tail flaring angle α is related to the increase in tail radius with distance,

dRT

dx
= tanα

and the magnetic field strength in the lobe, BT , is given by

BT (x) =
2ΦT

πR2
T (x)

where ΦT is the total magnetic flux in one tail lobe and equals ΦPC . We
shall assume that ΦT is not a function of downtail distance. Neither of
these assumptions is strictly true, but as we shall see, over a limited range
of distances along the tail axis the amount of flux crossing both of these
boundaries is small. If α is small so that sin α ∼ tanα = dRT /dx, where x
is positive in the antisolar direction, then:

ρu2
sw

(

dRT

dx

)2

+ p0 =
1

2µ0

(

2ΦT

πR2
T

)2

Rearranging, we get:

M2

(

dR2
T

dx

)2

+ 1 =

(

R∗

RT

)4

(1.2)

where M = (ρu2
sw/p0)

1

2 is the solar-wind Mach number (sonic or Alfvén,
depending on the dominant part of p0) and

R∗ =

(

2Φ2
T

µ0π2p0

)
1

4

(1.3)

is the asymptotic radius of the tail. Rewriting equation (1.2) we get

dRT

dx
=

1

M

[(

R∗

RT

)4

− 1

]
1

2

(1.4)



Integrating equation (1.4) and applying an earthward boundary condition
that RT = R0 at x = x0 gives

x − x0

MR∗
=
∫ RT /R∗

R0/R∗

dr

(r−4 − 1)
1

2

(1.5)

where r = RT /R∗. The distant downtail at which tail flaring ceases, x∗, is
finite and can be estimated by evaluating equation (1.5) for the case RT = R∗.
Ref. [18] shows that this gives

x∗ − x0 ' MR∗

[

0.6 − 1

3
(R0/R∗)

3

]

(1.6)

Taking as the solar-wind parameters M = 9 and p0 = 3.2× 10−11 Nm−2, the
estimate of ΦT from equation (1.1) as 4.3×108 Wb and the initial tail radius
and distance as R0 = 18RE and x0 = 10RE yields R∗ ∼ 27RE and x∗ ∼
140RE and an asymptotic lobe field strength of 9 nT. Thus, the tail reaches
an asymptotic radius when the magnetic pressure of the lobes balances the
thermal pressure of the solar wind. This occurs at around 150RE, but clearly
depends on solar-wind conditions. Numerical estimates for geotail properties,
starting from rather simple assumptions of static equilibrium, show that these
estimates agree remarkably well with observations.

1.2 Hybrid Codes

In many plasmas, in particular in space science, protons govern much of the
essential physics. However, electron effects usually appear on much smaller
spatial and temporal scales. For more than two decades, scientists have re-
fined computational models that concentrate on the dominating and larger-
scale ion kinetic physics, while treating the much ligher electrons, presumably
less important, as a charge-neutralizing fluid.
These physics-based, algorithmic model descriptions are called hybrid codes,
which have estabilished an invaluable position for themselves - clearly dis-
tinct from Magnetohydrodynamic (MHD) calculations, but simpler and much
more efficient than full-particle simulations. Broadly speaking, there are
three main techniques used to address issues concerning plasma physics:
methods that examine the behaviour of single charged particles (Vlasov
method, the PIC method, Monte Carlo simulation, test particle method);
statistical methods (i.e, solving the kinetic equation for the particle distri-
bution function); and fluid theory.



MHD methods have an important role in plasma research. This is at-
tributable to the relative simplicity of their mathematical description (com-
pared with the methods of kinetic theory) and their ability to produce highly
graphic descriptions due to the use of averaged characteristics. The MHD
codes are based on the fluid equations, that is plasma dynamics problem
is approached from the point of view of a fluid. Depending on the nature
of the problem, the plasma can be treated by the multiple fluid equations
describing the different species present or the single fluid description can be
used.
Although the MHD approximation has been successfully used for several
decades, the MHD theory is incaple of adeguately describing certain small
scale phenomena that are of considerable interest in physics. The MHD ap-
proximation breaks down for very weak magnetic fields, in the magnetic field
dissipation region at small scales, where electron and ion motion decouple,
such as, in thin current sheets like the magnetopause and the magnetotail
neutral sheets. The validity of MHD model is doubtful also in the presence
of strong currents parallel to the magnetic field, in these cases, adeguate de-
scription of plasma behaviour requires using the kinetic theory.
Numerical models describing the hydrodynamic behaviour of plasma ignore
physical effects that are of considerable interest in some applications. More-
over, the MHD equations do not describe physical processes that take place
at distances of the order of several ion inertial lengths. The MHD approach
has the advantage of being able to use large cells with a superior computa-
tional performance compared with particle simulations.
On the other hand, kinetic models, that address the problem of plasma dy-
namics by addressing the motion of individual particles, produce a descrip-
tion of plasma behaviour which is too detailed for macroscopic global scale
studies. Kinetic codes are the most accurate numerical simulation approach
available for the simulation of plasma dynamics, but complete simulation,
with all plasma components represented by a collection of discrete particles,
is very difficult problem because of excessive computer resource requirements
(primarly computer time): the electrons with relatively large electron plasma
frequency ωpe and electron gyrofrequency Ωce have to be advanced at a rel-
atively small ∆te, while the ions, with much smaller ion plasma frequency
ωpi and ion gyrofrequency Ωci, have to be advanced at a relatively large ∆ti.
Moreover spatial scale must include the Debye length in a plasma and the
number of particles that, although large, is never anywhere as large as in
nature (tipically 107 particles).
On one hand, MHD codes cannot capture all the physics in these plasma
problems, (e.g. finite Larmor radius effect). On the other hand, full particle
codes are computationally demanding and it is not possible to simulate such



large scale phenomena in three dimensions.
To model phenomena that occur on ion inertia and gyroradius scales, which
fall between longer scales obtained by magnetohydrodynamic simulations and
shorter scales attainable by full particle simulations, it makes sense to use
hybrid codes, that is codes which assume different models of the medium for
different plasma components. In hybrid algorithms one or more ion species
are treated kinetically via standard PIC methods, Monte Carlo simulations
or test particle methods used in particle codes and the electrons are treated
as a single charge neutralizing massless fluid.
Physical processes in a magnetized plasma are fairly often studied by ap-
plying the particle method for the ion component only, while the electrons
are considered as a fluid. Although all hybrid codes have similar proper-
ties, there are differences in their numerical implementation. This primarily
concerns the methods used to solve the field equations. Much experience
has been gained over time on these numerical properties. In recent years,
the majority of published computations have used one of the three following
types: a direct solver (one-pass method) [104, 69], the predictor-corrector
scheme [15, 28, 78], a modified predictor-corrector scheme [44, 47, 68], and
algorithms based on the moment method [78, 57]. Other variations of the
hybrid code employ a tensor description of the electron pressure [111] and
retain a finite electron mass term [54, 109], or simply include a different nu-
merical method for the electric field solver and magnetic field advance [102].
Here, we develop a stationary conventional (particle ions and massless elec-
trons) hybrid code. In such a model, the plasma is assumed quasi-neutral,
and the displacement current is ignored in the Maxwell equations. In this
approximation, the motion of plasma particles should be regarded as non-
relativistic. The quasi-neutrality condition assumes the the electron density
is almost equal to the ion density. To trace the evolution of the system on
long time and large spatial regions, the fast electron dynamics must be com-
pletely eliminated. This is accomplished by using hybrid codes, in which ions
are treated as particles and electrons as a massless fluid (me = 0).
The general scheme of hybrid calculations can be described as follow:

- the electromagnetic fields are determined from the Ampere and Faraday
equations;
- the parallel electric field is determined from the equation of motion of the
electron component of the plasma;
- the dynamics of the ion component is simulated by particle integration
method and the macroscopic ion characteristics are determined (as the mo-
ments of the ion distribution function);
- the electron temperature is obtained from its relation with the ion temper-



ature.

For simulation of physical processes in outer space, electrons are often con-
sidered in the isothermal or adiabatic approximation.
This work address the development and use of a hybrid particle code ap-
proach to magnetotail-like simulations.

1.3 Magnetotail Current Sheets

In space physics, current sheets play a key role. According to the Alfvén ter-
minology [1], current sheets are the physical active regions, the processes in
which determine the situation in the ambient physical passive space. These
are fundamental structures for many physical phenomena, appearing mainly
at the contact of different magnetic field configurations, for example in the
Earth magnetopause, which separates the solar wind magnetic field from the
magnetospheric field, and at the central plasma sheet in the magnetotail
of the Earth’s magnetosphere that separates oppositely directed magnetic
fields.
The structure of the magnetotail has attracted much attention both on the
theoretical and observational point of view. Literature on hybrid simulation
of magnetotail current sheets provides results quite good at reproducing tail
global configuration. Since the first analytical work by [30] our view of the
tail has changed a lot; in previous years the theory was mostly based on one
simplest 1D solution, known as Harris sheet. Its basic property is that both
current and plasma density vary across the sheet as cosh−2(z/L), whereas the
sheet is considered as isothermal (with Te=Ti) and with equal contributions
from protons and electrons to the electric current.
The one-dimensional (1D) current sheet due to Harris is the simplest analyt-
ical description. Harris showed that this description is self-consistent using
either MHD or kinetic theory. In a Harris neutral sheet, the magnetic field
and plasma pressure are given by:

B(z) = B0 tanh(z/h)x̂

p(z) = p0 cosh−2 z/h

It is simple to verify that the total pressure is constant in this structure. So
the plasma pressure at the center of the neutral sheet balances the pressure
of the asymptotic value of the magnetic field B0 far from the sheet, where
the plasma pressure becomes negligible. To complete this description of the



Figure 1.2: Equilibrium profiles of the density, magnetic field and current
density.

current sheet , we can obtain the current from Ampere’s law:

(∇× B)y = B0
d

dz

(

tanh
z

h

)

=
B0

h
cosh−2 z

h
= µ0jy(z)

and show that there is force balance between the gradient of pressure and
the j × B force.

j × B =
B2

0

µ0h
cosh−2

(

z

h

)

tanh

(

z

h

)

ẑ =

=
d

dz
p0 cosh−2

(

z

h

)

ẑ = ∇p

In the last 40 years, the semplicity of this current sheet has resulted in its
often being used in theoretical models. The tail-like current sheets exhibts
additionally a small component of the normal magnetic field [51, 52].
On the other hand, spacecraft observations have shown that the magnetotail
current sheet exhibits a variety of different profiles, even during quiet (non
disturbed) times. These profiles are often different from the Harris j current
profile reported above (Figure 1.2).
Bifurcated current sheets have been observed or inferred in the near-Earth
[90] or in the distant tail [39] and more recently and with great detail (using
Cluster data) in the middle tail at about 20 RE [63, 80, 81, 91]. The thick-
ness of the current sheet and its dynamical structure has also been studied
in the near-Earth magnetotail, using Geotail data [3, 5]; the current sheet



temporarily forms a double-peaked current sheet in which the current density
becomes the largest away from the neutral sheet. Recent analysis of Voyager
2 data has shown that bifurcated current sheet can be found in Jupiter’s
magnetotail, too [41].
Such current sheets even exhibit magnetic overshoots, beside the double peak
[60, 91, 116], which imply a current profile very different from the simple
Harris sheet. Even when the magnetotail current profile is not bifurcated, it
often exhibits a thin current sheet embedded in a thick plasma sheet, which
again is different from the Harris solution, where the constant Vy velocity
implies that the current profile coincides with the density profile (see Fig-
ure 1.2). Therefore, an investigation of current sheet structure which allows
for a variety of solutions, different from the Harris one, is strongly needed.
If such equilibrium solutions are obtained, an appropriate parametric study
can allow to understand which physical conditions determine a given current
profile.

1.4 Hybrid Simulations of Magnetotail Cur-

rent Sheets

Hybrid simulation of the one-dimensional current sheet in the magnetotail
has been used in [75, 14, 17]. The structure of the x-independent (one-
dimensional) forced current sheet including a self-consistent By component
is investigated for the case of small normal field component. A hybrid sim-
ulation model is used to demonstrate that such a current sheet has a time-
dependent structure which radiates incompressible Alfvén waves with am-
plitude of the order of the asymptotic (lobe) field strength B0 [75]. A one-
dimensional, hybrid simulation code is used to study current sheets with a
non-zero normal magnetic field Bz and a dawn-to-dusk electric field Ey. Such
configurations are dependent upon only two parameters: the normalized nor-
mal magnetic field bn and the drift velocity vD [14]. One-dimensional hybrid
simulations of the current sheet have been carried out for parameters corre-
sponding to a quiet tail (vD, bn <<1) [17]. The determination of the prop-
erties of the distribution function of the magnetotail current sheet ions has
been carried out with self-consistent hybrid simulations (e.g.,[33, 34, 49, 61]).
In Refs. [46, 53] the authors have shown that the ion distribution func-
tion changes during ion motion from magnetotail lobes to the plasma sheet,
with a two-dimensional hybrid simulation, discussing the non-Maxwellian
distribution in plasma sheet boundary layer. On the basis of adiabatic and
quasi-adiabatic particle motion, the formation of non-Maxwellian distribu-



tions have been presented [49].
Two-dimensional hybrid simulations of magnetotail reconnection have been
developed to study ion dynamics [62], or kinematic effects in the reconnection
layer [55]; because of the small magnetic field curvature, drifting cold ions
move from magnetotail lobes toward the the center of the reconnection region
along the so-called Speiser orbits [97], then return to the lobe magnetic lines,
showing that the cross-tail current in the thin current sheet is due primarly
to ion drift motion.
On the other hand, hybrid simulations about the analysis of charged particle
behaviour during thin current sheet formation [35, 36] have shown that most
of the current is transported by electrons due to the formation of strong lo-
calized electric fields; because of E × B drift, these fields reduce ion current
and increase the electron one.

Electron processes have been studied much less intensively than ion pro-
cesses, although they are implicitely included in full particle models. Hybrid
simulation of these processes have been carried out to study collisionless tear-
ing instabilities and magnetic reconnection with electron anisotropy effects
[34, 50, 32, 33, 48]; some works have studied the mechanism that mantains
the reconnection-region electric field sustaining the nonlinear growth of the
collisionless tearing instability in the one dimensional current sheet [32, 33].
The simulation results show that the dominant term in the electric field
equation on the magnetic neutral line is proportional to the divergence of
the off-diagonal component of the electron pressure tensor and the electron
effects substantially alter the growth of the, initially 1D, ion tearing mode.
Additional studies covered nongyrotropic electron effects in the collisionless
tearing mode dynamics of 2D current sheets with a small normal magnetic
field component [34]; self-consistent structure and dynamics of the dissipa-
tive region in the neighborhood of the X-line, which ultimately may form in
the magnetotail thin current sheets [50]; the simulation results show that in
the neighborhood of the neutral X-line, where the plasma pressure exceeds
magnetic pressure, the electric field is primarly determinated by electron
quasi-viscosity (the off-diagonal electron pressure terms are retained in the
generalized Ohm’s law, derived from the electron momentum equation) and
to a lesser extent by the electron stream inertia; in the weak magnetic field
region the amplitude scale of the ‘Speiser’ orbits is approximately equal to the
half-width of the region where the contribution of the non-gyrotropic com-
ponent of electric field exceeds the contributions of all other components;
electron inertia effects may dominate quasi-viscosity effects only if the char-
acteristic evolution time is comparable to the time for the thermal electron
to pass a distance of the order of electron skin length. The main equations
of the model studied by [50] do not assign a specific scale for the evolution



of the system. In principle, electron dynamics includes scales that are de-
terminated by electron cyclotron frequencies. However, a detailed study of
the system evolution shows that the evolution time scale is dominated by
ions, which are responsible for most of the pressure and the inertia. Their
large mass allows the ions to break the magnetization condition already on
spatial scales comparable with the ion inertia length. The Hall effect leads
to a separation of ion and electron dynamics at distances smaller than these
scales.
Although the dynamic properties of the system as a whole are determindi-
mension ed by ions, electrons produce the dissipation necessary for breaking
the frozen-in condition of the electron stream.

1.5 Plan of Thesis

In Chapter 2 we begin with the fundamental aspects of the hybrid method
used in this work and lay out the basic underlying assumptions and equations
of the model.

In Chapter 3 the details of a three-dimensional hybrid algorithm as well
as the numerical methods used in the analysis are presented. The topics
include a discussion of alternative methods to solve the electromagnetic field
equations in the massless electron fluid approximation.

In Chapter 4 we discuss a few simple numerical tests, which are useful
in verifying the accuracy of the calculations, that is how sensitive are the
results to the numerics.

In Chapter 5 the results of the study of the three-dimensional simulation
for a set of parameters close to the observed values in the Earth’s magnetotail
are presented, together with several numerical iterations which show the
convergence of the numerical method.

In Chapter 6 the most interesting effects anticipated in the previous chap-
ter are identified and their dependence on the simulation parameters are
discussed.

Finally, in Chapter 7, a summary of the relevant conclusions is made;
some final remarks are made and future developments are suggested.



Chapter 2

The Hybrid Model

One and two dimensional electromagnetic hybrid codes (fluid electron, par-
ticle ions) have been used extensively in the past to study a variety of phe-
nomena occurring in the magnetotail structure and have proved to be quite
good at reproducing the global configuration, well comparing with in situ
observations. On the other hand, plasma dynamics evolve in a more compli-
cated manner and 1D or 2D field geometry is an obvious limitation. It is of
fundamental importance to learn the nature of three-dimensional properties
of magnetotail because it is the three-dimensional properties that determine
how the magnetotail current sheet propagates away from the Sun. This work
addresses the development and the use of a stationary 3D hybrid particle
code to search for possible equilibrium magnetotail-like configurations.

2.1 Governing Equations

In modeling plasma phenomena one needs to decide how to describe the elec-
tric and magnetic field as well as the plasma species, electrons and ions. In
our hybrid model these are electromagnetic fields, massless fluid electrons,
and kinetic ions. Specifically, the following equations are used.

(A) Maxwell’s equations in the low frequency approximation, which im-
plies the displacement current is neglected in Ampere’s law (2.1), supple-
mented by Faraday’s law (2.2), and two field divergence equations (2.3,2.4):

∇× B =
4π

c
J +

1

c

∂E

∂t
(2.1)

∇× E = −1

c

∂B

∂t
(2.2)
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∇ · B = 0 (2.3)

∇ · E = −4πqe(ne − ni) (2.4)

where J is the total current density, qe is the electron charge, and ne with ni

are the densities of electrons and singly charged ions, respectively.

(B) Fluid equations for the electrons including finite electron temperature
(Te); the continuity (2.5) and electron momentum (2.6) equations:

∂ne

∂t
+ ∇ · (neve) = 0 (2.5)

mene

(

∂ne

∂t
+ ve · ∇

)

ve = −∇ · Pe + neqe

(

E +
ve × B

c

)

+ Re (2.6)

The last term in (2.6) represents the effect of the collisional drag between
the electrons and ions.
The momentum flux is closely related to a generalized definition of pressure,
in the case where pressure is viewed as a tensor quantity, the ‘pressure tensor’.
This pressure tensor Pe is defined in index form by

Pij = m n(〈vivj〉 − uiuj)

where we have used the components of mean velocity u and where the angle
brakets denote an ensamble average. For the special case of a Maxwellian
distribution Pij = 0 for i 6= j, and Pij = nT for i = j; then, in the case
where the plasma is nearly Maxwellian (or at least nearly isotropic), ∇ · Pe

can be replaced by the gradient of a scalar pressure, ∇pe. Even in the very
simplest cases where the pressure tensor is isotropic, to provide a complete
set of equations, some kind of ‘equation of state’ must be added to describe
how the plasma pressure p changes as a function of the other moments. To
avoid dealing with the heat-flux tensor explicitly, we will approximate heat
flow by introducing a thermodinamic equation of state for the plasma. This
is an equation of the form

p = Cnγ
e (2.7)

which relates the scalar pressure p to the density n. The quantity γ ex-
presses how much the temperature of plasma increses as it is compressed,



since pV γ = constant, where V is the plasma volume. As such, the equa-
tion of state constitutes a simple (and therefore only approximate) statement
about the heat flow.
For the case of compression that is slow compared to thermal conduction, we
have γ = 1, i.e. isothermal compression. The pressure goes up only because
the density goes up. In many cases, bacause particles can freely stream along
magnetic field B, conduction parallel to B provides an avenue for the plasma
to remain isothermal, if the compression is, for example, periodic or wave-like
along B.
On the other hand, if the compression is fast enough to be adiabatic (faster
then heat conduction), but slow enough that energy is collisionally exchanged
between the three degree of freedom, then γ = 5/3. Later, we will see that
a plasma can support a number of different types of waves, some of which
compress the plasma isothermally, while others compress it adiabatically, but
this has a no significant effect on the large scale dynamics.

(C) Kinetic treatment of the ions so that for individual particles, the non-
relativistic equations of motion can be written:

mi
dvi

dt
= qi

(

E +
vi × B

c

)

(2.8)

dri

dt
= vi (2.9)

Here mi is the mass of the ion, vi its velocity, qi its charge and ri is the
location of the ion.

2.2 Ions: Test Particle Simulation

As already explained in the Introduction, we are searching for stationary so-
lutions (∂/∂t = 0) of magnetotail configurations, in which ions are treated
as particles.
At a first step, we assign time-independent magnetic and electric fields, say
B0 and E0 respectively. Ions move in these fields in accordance with the

equations of motion (2.8, 2.9). From the solution of equation (2.8), we cal-



culate the ion moments, namely ion density ni, ion current density Ji, ion
temperature Ti and so on.

2.3 Electrons: Fluid Description

In contrast to ions, electrons are assumed to be a fluid. The electron mo-
mentum equation, which represents the first moment of the Vlasov equation
for the electrons and the continuity equation have the form of equations
(2.5)-(2.6), without any approximations. We now go on the make a few ap-
proximations in order to specialize equations (2.5)-(2.6) to the conditions
appropriate tp the Earth’s magnetotail.

2.3.1 Approximations to Electron Equations: our Hy-

potheses

-The magnetotail plasma sheet is characterized by a particle density in the
range of 1-10 cm−3 and a temperature of about 1-10 keV; the density is
low enough and the temperature is high enough, that the collisions can be
neglected, because the plasma time scales of interest are shorter than the
particle collision times τei; this suggests that the last term in equation (2.6)
is negligible:

Re =
neme(ve − vi)

(me/mi)τei

→ 0

-In order to eliminate kinetic electron effects, the electrons are treated as
an inertia-less fluid (me → 0). This will be valid for phenomena that are
sufficiently slow that electrons have time to reach dynamical equilibrium in
regard to their motion along the magnetic field.

-We substitute the full electron pressure tensor by the scalar pressure pe,
which we calculate using the isothermal equation of state

pe = nekBTe ; (2.10)

this hypothesis is justified by experimental observations that show that no
substantial global gradients in electron temperature occur in the magnetotail
[72]. Moreover, we made runs with the adiabatic approximation and we did
not find any substantial difference between the cases.



-Ignoring effects on the electron Debye length scale implies that the plasma
is quasi-neutral, so that the electron and ion charge densities are equal.

ne ≈ ni = n

The density of particles is low enough that the characteristic plasma fre-
quencies will not be small compared with the the collision frequency, so that
damping of the plasma perturbations will occur very slowly; this condition
excludes the electron plasma oscillation;

-Finally, in accordance with the steady state limit, ∂/∂t = 0.
The motivation behind this approach is the realization that over a single time
step the particle equations and the corresponding moment or fluid equations
do not differ very much. One can then use an impicit set of equations to
estimate the fields at the next iteration step. In the implicit scheme the
solution of the new quantities involves knowledge of these quantities at the
new iteration. The particles are then advanced using these new fields and
the equations are reinitialized at each iteration step using the new particle
information. The plasma is simulating as a collection of particles immersed
in and evolving with an electromagnetic field that they self-consistently pro-
duce. The time evolution of the model is achieved through the repeatition
of this iteration procedure until the desired convergent solution is reached.

With the general assumptions described above, the equations (2.1-2.6) re-
duce to:

∇× B =
4π

c
J (2.11)

∇× E = 0 (2.12)

∇ · B = 0 (2.13)

∇ · E = 0 (2.14)

∇ · (nve) = 0 (2.15)

E =
ve × B

c
− ∇pe

nqe

(2.16)



2.3.2 Electron Perpendicular and Parallel Velocity

The electrons are treated using an isothermal equation of state and the quasi-
neutrality approximation, thus where the electron density is needed, one uses
ne ≈ ni=n, which is found from moving the ions.
The momentum equation (2.16) can be solved for perpendicular electron
bulk velocity, by taking its cross product with B0, being B0 and E0 the
initial ambient magnetic and electric field, respectively:

0 = E0 × B0 +

(

ve × B0

c

)

× B0 −
∇pe

nqe
× B0 (2.17)

The cross product (hereafter we’ll omit the index 0) of (ve × B) and B is
easily obtained as

(ve × B) × B = −B2ve − B(B · ve)

with (B · ve) = ve‖B. This gives

0 = E × B − B2ve

c
+

B

c
(ve‖B) − ∇pe × B

nqe

(2.18)

Then equation (2.18) can be solved for ve:

ve =
c(E × B)

B2
+ ve‖

B

B
− (∇pe × B)c

nqeB2
(2.19)

where B/B = b̂ gives parallel electron velocity direction along magnetic field,
yielding an equation for the perpendicular component of the electron bulk
velocity:

ve⊥ =
c(E × B)

B2
− (∇pe × B)c

nqeB2
(2.20)

In order to obtain the parallel electron bulk velocity ve‖, we use the electron
continuity equation (2.15). By splitting velocity components into the parallel
and perpendicular part:

vex = (ve‖ + ve⊥)x

vey = (ve‖ + ve⊥)y

vez = (ve‖ + ve⊥)z

we can write the continuity equation (2.15) in the form:

∇ · (nve‖b̂) = −∇ · (nve⊥) (2.21)



or in the Cartesian coordinates:

∂

∂x
(nve‖x) +

∂

∂y
(nve‖y) +

∂

∂z
(nve‖z) = Φ (2.22)

where the function Φ is given by:

Φ = −
3
∑

i=1

∂

∂xi

(

nve⊥i

)

Rearranging the equation (2.22):

nve‖

B
(∇ · B) + (B · ∇)

nve‖

B
= Φ (2.23)

Since the divergence of magnetic field is zero, see equation (2.13), the first
term of (2.23) no longer appears in the equation, hence the resulting equation
to solve is:

(B · ∇)
nve‖

B
= Φ . (2.24)

The advantage of this method is that ve⊥ is obtained in a relatively simple
and almost noise free way from equation (2.20), while the density, obtained
from the ion test particle simulation, has a very low statistical noise, since
number density is the zero order moment of the ion distribution function.
Therefore, this tecnique promises for good numerical stability and rapid con-
vergence of the iterative procedure (see later).

2.4 Self-consistent Magnetic Field

At this point the electron current density is obtained from the electron ve-
locity as Je = (nqeve) = nqe(ve⊥ + ve‖). Once we have the total current
J = Ji + Je, the new magnetic field is obtained from the Ampere’s law
equation (2.11):

∇× Bnew =
4π

c
J (2.25)

The right-side of equation (2.25) contains the ion contribution which is ob-
tained directly, along with the density, from moving the ions and collecting
the moments, and the electron one which is obtained from the fluid equa-
tions. We make the hypothesis that the new magnetic field is the sum of the
input magnetic field B0 plus a correction b as

Bnew = B0 + b.



We assume that b is periodic along x, y and z directions and we impose
parity rules for its components. In particular, the x component has to have
even parity respect to the z plane, while the y and the z components have
to have odd parity.
The equation (2.25) becomes an equation for the correction b as:

∇× b = ∇× Bnew − 4π

c
J0 =

4π

c
(J − J0) (2.26)

being J0 = c/4π∇ × B0 and J the input and the calculated total current
densities, respectively.
With the position b = ∇ × a, where a is the reduced-potential vector (i.e.,
restricted to b), the resulting equation is

∇2a = −4π

c
(J− J0) (2.27)

The solution of this equation gives the vector potential over the space, which
can then be used to calculate the correction b and then, the new magnetic
field.

2.5 Electrostatic Potential and Electric Field

As for the magnetic field, we assume thet the new electric field is the sum of
the input electric field E0, plus a correction e

Enew = E0 + e

Since we consider an irrotational electric field, ∇×E = 0, we can write it as
the gradient of some scalar field, because the curl of a gradient is authomat-
ically zero. This is clearly a useful thing to do since it enables us to replace
a vector field by a much simpler scalar field:

e = −∇ϕ (2.28)

The quantity ϕ in the above equation is the well-known electric scalar poten-
tial. The dot product between equation (2.16) and the input magnetic field
B provides:

nqeE‖ = ∇‖p (2.29)

from which we can obtain the relation for the variation of the density along
a field line in equilibrium (Boltzmann equilibrium). If we combine equa-
tion (2.28) and equation (2.29), remembering the isothermal assumption, we
obtain:

nqe∇‖ϕ + kBTe∇‖n = 0 (2.30)



or equivalently

ln n +
qeϕ(s)

kBTe
= constant , (2.31)

which determines the variation of the electric potential ϕ along s, the curvi-
linear coordinate along the magnetic field. When this electric field has been
created, the electrons are in force balance. Provided the scale-length of the
density hump is much larger than the Debye length, charge-neutrality will
be maintained by ne remaining almost equal to ni. Unless the electrons are
highly collisional, rapid parallel thermal conduction assures a flat electron
temperature along the field line, i.e. ∇‖Te ≈ 0. Then with equation (2.10)
and the quasi-neutrality assumption, equation (2.31) becomes

ϕ(s) = ϕ0 +
kBTe

e
ln

n(s)

n0
(2.32)

where ϕ0 is the electrostatic potential associated with the input electric field
and n0 the density on the boundaries of the configuration or simulation box.
The result of equation (2.32) is the knowledge of the electrostatic potential in
each grid point. The electric field correction will be given by ex = −∂ϕ/∂x,
ey = −∂ϕ/∂y, ez = −∂ϕ/∂z.

Obviously, both electrons and ions cannot simultaneously be in Boltz-
mann equilibrium in the presence of an electric potential that varies along
the field lines, or else charge neutrality would be violated in the absence
of some externally introduced charge. The only charge-neutral equilibrium
under normal circumstances is one in which the electric potential and ion
and electron densities are costant along the field lines. However, if a den-
sity variation, say a density ‘hump’, is created dynamically along a field line
in a charge-neutral plasma, electron and ion flow velocities parallel to the
magnetic field will arise. The larger mass of the ions results in them re-
sponding relatively slowly to the presence of the ‘hump’ in n along a field
line. Meanwhile, the lighter electrons respond much more quickly and set
up a Boltzmann distribution in the presence of the density hump. Then, the
electrons come to equilibrium on a time-scale much faster than the ions.



Chapter 3

3D Simulation Code

In the previous Chapter we have given the basic equations and the approx-
imations of the model. Their numerical implementation is the next task to
be discussed.

3.1 Dimensionless Variables

From B0 and E0, the static ambient fields, we can define the inverse ion
gyrofrequency ω−1

0i = mic/qiB0 as the time unit and the drift velocity VE =
cE0/B0 as the velocity unit. With these units the spatial scales are in terms
of l = VE/ω0i.
In order to model the geomagnetic tail, we fix L = 104 km, E0 = 0.1 mV/m
and B0 = 10 nT [25], so that the drift velocity VE = cE0/B0 is equal to
10 km/s. We summarized the normalization and the typical values of the
physical quantities in the code in Table 1.

Table 1. Normalization Used in the Model

Physical quantities normalization Typical values
Time ω−1

0i 1 s
Electric field E0 0.1 mV/m
Magnetic field B0 10 nT
Current density cB0/4πL 0.8 nA/m2

Velocity VE = cE0/B0 10 km/s
Temperature T0 = miV

2
E/kB 1.2×10 K

Ion density n0=cB0/4πeLVE 0.5 cm−3

Pressure p0 =n0kBT0 8.4×10−5 nPa
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With this choice there are no costants (4π, c, etc.) in electron equations
and in (2.8) for ion motion, while ion velocity (2.9) and momentum (2.16)
equations are expressed in terms of a constant parameter χ, which value
comes from normalization parameters in Table 1:

χ =
ω−1

0i L

VE
= 103

In part this choice of normalization represents well-estabilished and convenient-
sized units. One could instead normalize lengths to the unit length L and
time to the inverse ion gyrofrequency ω0i. The other variables are normalized
using L and ω0i with magnetic field background value B0. The table below
lists these normalization units (Table 2):

Table 2.

Physical quantities normalization Typical values
Length L 104 km
Time ω−1

0i 1 s
Electric field E0 = (B0ω0iLζ)/c 0.1mV/m
Magnetic field B0 10 nT
Current density cB0/4πL 0.8 nA/m2

Velocity VE = cE0/B0 10 km/s
Temperature T0 = miV

2
E/kB 1.2×10 K

Ion density n0=1/L3 0.5 cm−3

Pressure p0 =n0kBT0 8.4×10 nPa

In these units, the free value electric field in ion motion (2.8), electron per-
pendicular velocity (2.20) and electric field potential (2.32) equations, is ex-
pressed as ζE, where ζ-factor is defined by

ζ =
cE0

B0ω0i
L = 3 × 105

according to typical values of physical quantities in Table 2.
We carry out our simulation runs with normalization parameters which are
shown in Table 1.



3.1.1 Spatial Grid

We consider a rectangular simulation box, with dimension coordinates x, y, z
such that:

−0.5L ≤ x ≤ 0.5L

−2.5L ≤ y ≤ 2.5L

0 ≤ z ≤ 5L

where L is the total length along x-direction, as already explained.
The spatial domain is subdivided into Nx, Ny, Nz computational cells of
equal length, ∆x = Lx/Nx, ∆y = Ly/Ny, ∆z = Lz/Nz, respectively. From
a physical point of view, we choose the cell size (1/64L) in order to resolve
the ion Larmor scales and the physical processes which occur on these scales.
The number of cells in each direction is chosen equal to 26 = 64. Nx = Ny =
Nz=64, is a reasonable number that yields a total number of grid points
218 = 262144. This requires, at least, a number of ∼ 107 particles. With this
number the statistical error on the ion moments is of the order of 2% (see
later).
The spatial grid is made up of 64×64×64 mesh points, that define the centers
of the Nx, Ny, Nz cells in the physical domain. All source terms (densities and
currents), electromagnetic field components and scalar potential are specified
at the mesh points, i.e., the cell centers.

3.2 Simulation Algorithms

At this point, the general scheme of hybrid calculations can be described as
follows [22]:

1. the dynamics of the ion component is simulated by the particle
method and the macroscopic ion characteristics are determinated (as
the moments of the ion distribution function) on the above spatial
grid;

2. the electron parallel and perpendicular bulk velocity equations are
solved to compute the electron current density;

3. the magnetic field is determined from Ampere equation;

4. the electric field is determinated from Faraday equation.



5. repeat all steps in the new fields in order to obtain the convergence of
the iterative process.

We discuss the numerical implementation of our hybrid model, describing
the methods used to solve each equation in turn.

3.2.1 Ion Dynamics

To introduce the discussion of the ‘mechanics’ of the hybrid code, we turn
to how to get started: the initialization. We need to load the particles to
initialize the fields. After all the particles are loaded, we can ‘move’ them to
collect the moments and solve the field equation at first iteration.

Initialization: Ion Injection Scheme

Following [25], we set up an injection scheme corresponding to the inflow in
the plasma sheet from the lobes of the magnetotail, that is particles entering
from the planes at x = ±0.5L, with a distribution corresponding, in velocity
space, to the flux of a shifted Maxwellian [8]:

f(v‖, v⊥) = (
√

2πv3
th)

−1exp

(

− (v‖ − u)2 + v⊥
2

2v2
th

)

(3.1)

here vth =
√

kBT/m is the thermal velocity and u is the streaming velocity.
The values of z and y are choosen at random on the planes x = ±0.5L. Since
the particles are entering the simulation box by moving along x, this yields
F (vx, vy, vz) ∝ vxf(v‖, v⊥). We express v‖ and v⊥ through vx, vy and vz to
have

v‖ =
v · B
|B| =

vxBx + vyBy + vzBz
√

B2
x + B2

y + B2
z

(3.2)

v⊥ = v2 − v2
‖ = v2

x + v2
y + v2

z − v2
‖ (3.3)

The unperturbed magnetic field components at x = ±0.5L surface are equal
to Bx = Bn, By = 0, |Bz| = B0. We introduce the components of the unit
vector along B at x = ±0.5L,

b̂x =
Bn

√

B2
n + B2

0

(3.4)

b̂z =
B0

√

B2
n + B2

0

(3.5)



Inserting these expressions into equation (3.1), we finally come to the equa-
tion that has to be solved for the variables vx, vy and vz, distributed according
to a shifted Maxwellian:

exp(−u2/2v2
th)

(
√

2πv3
th)

exp

(

− v2
z − 2ub̂zvz

2v2
th

)

exp

(

− v2
y

2v2
th

)

vx exp

(

− v2
x − 2ub̂xvx

2v2
th

)

dvxdvydvz = Cdξdηdζ (3.6)

where ξ, η ζ are random numbers evenly distributed in the interval [0,1], and
C is a constant calculated from the condition specified below. The coefficient√

2πv3
th)

−1 exp(−u2/v2
th) depends only on the constant parameters u and vth

and hereinafter cam be included in the constant C. We will also assume
for this discussion, that all velocities are normalized to the thermal velocity
vth, and drop vth in what follows. As it is clear from the equation (3.6),
the dependence on each of the velocity components is factorized, and we can
solve independently three different equations, namely:

vx exp

[

−
(

v2
x − 2ub̂xvx

)

/2

]

dvx = Cξdξ (3.7)

exp

[

− v2
y/2

]

dvy = Cηdη (3.8)

exp

[

−
(

v2
z − 2ub̂zvz

)

/2

]

dvz = Cζdζ (3.9)

Clearly, vy is distributed according to a Maxwellian and we can use the
Central Limit Theorem for vy [106].
For vx and vz we have to take into account the assymetry introduced by the
streaming velocity u. Assuming that ζ varies in the interval 0 < ζ < 1 with
the uniform probability, and integrating the equation (3.9) from −∞ to vz

on the l.h.s. and from 0 to ζ on the r.h.s., we can easily obtain the equation
to be solved for vz:

1 + erf

[(

vz − ub̂z

)

/
√

2

]

= Cζζ (3.10)

where the coefficient (
√

π/2) exp(u2b̂2
x/2) can again be assumed to be included

in Cζ , and erf(z) is the well-known Error function:

erf(z) = (2/
√

π)
∫ z

0
exp(−t2)dt



It is evident that for ζ = 0, vz = −∞ (erf(−∞) = −1). The coefficient Cζ

is fixed by the condition that for ζ = 1, vz is equal to +∞. Thus for Cζ we
obtain from the equation (3.10): Cζ = 1 + erf(+∞) = 2. Finally, to get the
distribution of vz corresponding to function given by equation (3.9) we have
to solve for each random number ζ (0 < ζ < 1) the equation:

1 + erf

[(

vz − ub̂z

)

/
√

2

]

= 2ζ

The integral in the equation (3.9) for vz is positively defined over all the
interval of integration. This is not the case of vx component (see equation
(3.7)), where we have to consider separately positive and negative vx for
particles entering into the current sheet from the lower (x = −0.5L) and
upper (x = 0.5L) boundaries, respectively, of the simulation box. Integrating
the equation (3.9) for x > 0 in the interval −∞ < vx < 0 we obtain:

I−(vx, u) = − exp

[(

v2
x − u2b̂2

x

)

/2

]

+ αerf

[(

vx − ub̂x

)√
2

]

(3.11)

where α ≡
√

π/2ub̂x exp(u2b̂2
x/2). For vx = 0 we will have

I−(0, u) = −1 + α(1 − Φ) ≡ C−1

where Φ ≡ erf(ub̂x/
√

2). Here we have used the asymmetric propery of the
error function, erf(−z) = −erf(z). C−1 defines the weight of negative veloci-
ties vx in the distribution. Now, integrating equation for vx in the equation
(3.7) for x < 0, in the interval 0 < vx < ∞, it is easy to show that the
corresponding integral on the left side is equal to I+(vx, u) = −I−(−vx,−u).
Introducing the coefficient C+ as the weight of positive vx in the distribution,
we will obtain

C+ ≡ I+(0, u) = 1 + α(1 + Φ) (3.12)

Now, the interval [0, 1] for the random number ξ has to be divided, according
to the corresponding weights, in two intervals: 0 < ξ < ξ1 for negative vx

and ξ1 < ξ < 1 for positive vx, where ξ1 is equal to

ξ1 =
|C−|

|C+| + |C−| =
1 − α(1 − Φ)

2(1 + αΦ)
(3.13)

Here we have used the fact that C− is negative and C+ is positive for
any positive u. Integrating now equation (3.7) for the proper intervals, we
will have for negative and positive vx the following relations, respectively,



I−(vx, u) = C−
ξ ξ and I+(vx, u) = C+

ξ (1 − ξ), where the coefficients C−
ξ and

C+
ξ have to satisfy the following conditions

C−
ξ ξ1 = I−(0, u) ≡ C−, C+

ξ (1 − ξ1) = I+(0, u) ≡ C+ (3.14)

From this system of equations and the expressions for C− and C+, given by
the equations (3.12) and (3.13) we will obtain for the coefficients C−

ξ and
C+

ξ :
C−

ξ = −2(1 + αΦ), C+
ξ = 2(1 + αΦ) (3.15)

solving equations (3.14) and (3.15) for each random number ξ in the corre-
sponding interval we will obtain the required particle distribution.

Calculation of Ion Distribution Function Moments

In the numerical simulation, we follow the particles and record the positions
ri(t) and velocities vi(t) when they pass from one cell of size ∆y to the next
along the y direction [106]. ‘Virtual detectors’ are perpendicular to the y
direction because the main current is along y. Following [45], for an ensemble
of M particles the fine-grained distribution function can be represented as

f(r,v, t) =
M
∑

i=1

δ[r − ri(t)]δ[v − vi(t)] (3.16)

The fine-grained particle density n(r, t) is

n(r, t) =
∫

f(r,v, t)d3v =
M
∑

i=1

δ[x − xi(t)]δ[y − yi(t)]δ[z − zi(t)] (3.17)

Now we want to obtain a coarse-grained particle density by considering those
particles that cross the planes at y = ym considered above in a window of
amplitude ∆x∆z around xl and zn. Assuming that the flow of particles is
stationary we can average over ∆x and ∆z and over a very long time period
∆t to obtain

n(xl, ym, zn) =
1

∆t∆x∆z
×
∫ ∆t/2

−∆t/2
dt
∫ xl−∆t/2

xl+∆x/2
dx
∫ zn−∆t/2

zn+∆z/2
dz n(x, y, z, t) =

1

∆t∆x∆z

∫ ∆t/2

−∆t/2
dt

M ′

∑

i=1

δ[ym − yi(t)] (3.18)

where M ′ represents the number of particles which at any time pass through
[xl −∆x/2, xl +∆x/2] and [zn−∆z/2, zn +∆z/2]. The change of integration
variable inside the δ function gives

δ[ym − yi(t)] =
∑

k

δ[t − tk
i(ym)]

|dyi/dt| =
∑

k

δ[t − tk
i(ym)]

|vi
y,k(ym)| (3.19)



where the sum over k denotes the multiple zeros of ym − yi(t) and vi
y,k(ym)

indicates the velocity at the time tk
i(ym) of the k-th crossing of the window

∆x∆z at y = ym by the i-th particle. Thus, the coarse grained density is
obtained numerically on a three-dimensional grid as [106]

n(xl, ym, zn) =
1

∆t∆x∆z

∑

i,k

1

|vi
y,k(ym)| (3.20)

(in the following, we shall omit the index k). In the numerical computation,
every time that a particle crosses the detector grids at ym the contribution to
n and to the other moments is taken into account. In the above expression
there is a free parameter, ∆t, which is fixed by specifying the density in a
particular point. This may corresponds to the density required to have the
right amount of total electric current. Moreover, ∆t is taken long enough for
ions to evolve in the plasma sheet and exit from the magnetic field model.
The other moments of the distribution function, namely bulk velocity V(r, t),
pressure tensor P , including the off diagonal components Pij and the heat
flux Q(r, t), are defined as

nV =
∫

vfd3v (3.21)

Pij = nkBTij = m
∫

(vi − Vi)(vj − Vj)fd3v (3.22)

Q =
m

2

∫

(v − V)2(v − V)fd3v (3.23)

and are obtained in a way similar to equation (3.20). We also define the
temperature parallel to the local magnetic field as

T‖ =
mi

nkB

∫

(v‖ − V‖)
2fd3v

where v‖ = v · B/B and the perpendicular temperature as

T⊥ =
1

2
(Txx + Tyy + Tzz − T‖)

3.2.2 Electron Bulk Perpendicular and Parallel Veloc-

ity Methods

We solve for ve⊥ (equation (2.20)) by using a 4-th order finite difference
scheme to compute the pressure gradient in each mesh point. A Semi-
Lagrangian scheme [101, 13] for solving the advection-reaction problem (equa-
tion (2.24)) for computing electron bulk parallel velocity is proposed. The



Figure 3.1: We integrate the equations (3.24) and (3.25) from the grid points
(x, y, z) on the other planes (2-32) backward to the reference plane-1 (refer-
ence point r0), where the value of f is known.

method of characteristics for each point in the regular mesh is applied. This
scheme is a combination of elements of the Eulerian and the Lagrangian
approach. In an Eulerian advection scheme an observer watches the world
evolve around him at a fixed point. Such schemes work well on regular
Cartesian meshes, but often lead to overly restrictive iterative steps due to
considerations of computational stability. In a Lagrangian advection scheme
the observer watches the world evolve around him as he travels with a fluid
particle. Such schemes can often use much larger iterative steps than Eulerian
ones, but have disadvantages that initially regularly spaced set of particles
will generally evolve to a highly irregularly spaced set, and important fea-
tures of the flow may consequently not be well represented. The idea behind
Semi-Lagrangian advection schemes is to try to get the best of both worlds:
the regular resolution of Eulerian schemes and the enhanced stability of La-
grangian ones. In this numerical scheme at each “time” step the grid-points
of the numerical mesh are representing the arrival points of backward tra-
jectories at the future “time”. The point reached during this back-tracking
defines where a “particle” was at the beginning of the time-step. Essentially,
all variables are then found through interpolation (using values at the previ-
ous time-step for the interpolation grid) to this departure point.
Taking into account that (B·∇)/B is equal to ∂/∂s, where s is the curvilinear
coordinate along the magnetic field, equation (2.24) becomes

∂f

∂s
=

Φ

B
, (3.24)



where f = nve‖/B. We solve it simultaneously with the magnetic field line
equation

dr

ds
= −B

B
, (3.25)

looking for the value of f at the mesh points. We assume Φ, n and the
vector field B are defined on all grid points in the computational domain.
The basic idea of the Semi-Lagrangian scheme is that it solves the equation
(3.24) as an ordinary differential equation along the trajectory that connects
the reference point r0 at length s to the point r at length s + ∆s. In general
it can be written as

f(s + ∆s) = f0(s) +
∫ s+∆s

s

Φ

B
(r(s′))ds′ (3.26)

Actually, we choose r0 on a reference plane in the simulation box (which
does not belong to the computational mesh in space) where the value of f
is known (see Sec. 3.3.1) and integrate equations (3.24) and (3.25) from the
grid points (x, y, z) on the other planes backward to this plane. Then the
equation (3.26) becomes

f0(r0) = f(x, y, z) +
∫

r0

r=x,y,z

Φ

B
(r)dr (3.27)

We use a three-dimensional quadratic interpolation [74] to evaluate Φ and B

along the magnetic field force lines and a 4-th order Runge-Kutta method to
calculate the term ∆f =

∫ r0

r=x,y,z
Φ
B

(r)dr. We stop the integration when the
magnetic field line reaches the reference plane and the value of f on the grid
point r is given by f0 − ∆f .
The use of Semi-Lagrangian techniques are popular in the computer com-
munity. The Semi-Lagrangian scheme allows the use of large time-steps
without limiting the stability. Therefore, the choice of time-step in the
Semi-Lagrangian scheme is only limited by numerical accuracy. However,
despite its stability properties severe truncation errors may cause misleading
results. In particular, error is introduced through the linear particle trace
and the interpolation. The linear trajectories introduce O(k) error and the
interpolation introduces O(h2) error for each length step k = ∆s (where
h = ∆x = ∆y = ∆z is the grid spacing), giving the total error:

O(k) + O

(

h2

k

)

Thus the method is first order accurate if k ≥ Ch, for some arbitrary constant
C [101]. For an excellent introduction, review and details see [99, 98].



Method of Interpolation

Because both the function Φ and the magnetic field B are interpolated in a
technically similar way, we briefly describe the method only for B interpola-
tion. For a more detailed description see [74].
From any point r = (x, y, z), we have to determine the components of the
magnetic field

B(r) =
(

Bx(r), By(r), Bz(r)
)

that is Bk(r) with k = 1, 2, 3. To realize a quadratic interpolation we have to
calculate, for each k-component, ten coefficients, namely αi

k (i = 0, 1, 2, 3...9)
which verify the following relation:

Bk(r) = α1
kx

2 + α2
ky

2 + α3
kz

2 + α4
kxy + α5

kxz+

α6
kyz + α7

kx + α8
ky + α9

kz + α0
k . (3.28)

In order to solve this problem and find the ten coefficients for each component
k, ten conditions have to be obtained by considering the magnetic field values
in the ten points ri around r. The first point (x0 = x(l), y0 = y(m), z0 = z(n))
is the nearest point to r on the grid, with the index l, m and n in the three
directions of the simulation grid. It is obvious to choose in the interpolation
the six points around (x0, y0, z0) on the grid, that are

(x(l±1), y(m), z(n))

(x(l), y(m±1), z(n))

(x(l), y(m), z(n±1))

The remaining three points are chosen from the vertexes of the octant in the
grid where the point r lies; this choice gives four points, so there is one point
in excess. We eliminate the farthest one: the point (x(ll), y(mm), z(nn)). For
more details see [74].
When the equation (3.28) is written for each of the ten points, three systems
of ten equations are obtained for each component. The equation (3.28) can
be written in matricial form:

Bk
i = MijA

k
j (3.29)

where Bk
i is a column vector formed by the ten values of the k-component of

magnetic field B and Ak
j is another column vector made by the coefficients

αj
k that are the unknown of the system. In the 10 × 10 matrix Mij (clearly

Mij is the same for each k because the ten points of the lattice are the



same for all three components of the magnetic field), each i row contains the
values (x2

i , y
2
i , z

2
i , xiyi, xizi, yizi, xi, yi, zi, 1) for each of the ten points chosen

for the interpolation. To get the solution we have only to invert the system
for each components k. We note that two techniques can speed up the
calculation. The matrix Mij does not depend on the component k of the
magnetic field B, thus the first step of the inversion, can be realized only
once, and then the final part of the inversion has to be done for each of the
three components for the triangular matrix Mij. The second improvement is
the analytic reduction of the 10×10 system in a 9×9 system, since in the last
column of the matrix Mij all the terms are equal to one. This can be done for
example by substracting the first equation from all the others, keeping the a
9×9 system, without the coefficients α10

k . In this case all the coefficients αi
k,

except α0
k, are determinated by inverting the 9×9 system. The last coefficient

is determinated by considering any equation of the 10×10 system. In the
matricial form, while the first equation corresponds to the nearest point to r,
that is r0 = (x0, y0, z0), the reduced matrix M ′

ij (9×9), will therefore contain
on each row i the following values:
(x2

i −x2
0, y

2
i −y2

0, z
2
i −z2

0 , xiyi−x0y0, xizi−x0z0, yizi−y0z0, xi−x0, yi−y0, zi−z0)
for i = 1, 2, 3, ...9, corresponding to the other nine points. Having about N 2

operations for the inversion of a N×N system, it is possible to gain 20% time
by reducing the system from 10 to 9 equations. For a further description and
deeper insight see [74].

3.2.3 Ampere’s Law: 3D FFT Method

In general we have expressed the magnetic field as the sum of a initial mag-
netic field B0 and the correction b. Then, the components of the new field
are:

Bx = Bx
0 + bx (3.30)

By = By
0 + by (3.31)

Bz = Bz
0 + bz (3.32)

We have assumed b to be periodic along each spatial direction, according to
the parity rules we have to respect for these corrections. In particular the x
component of the magnetic field corrections has to have even parity respect
to the x=0 plane, i.e

bx(x, y, z) = bx(−x, y, z)

and the z component of b has to have odd parity:

bz(x, y, z) = −bz(−x, y, z)



The by component has authomatically odd parity from these conditons. Ap-
plying the Ampere’s law to the correction b, the equation, in dimensionless
form, to be solved is (see Ch. 2)

∇2a = (J − J0) (3.33)

The solution to this eqaution gives the vector potential over the space, which
can then be used to calculate the correction and then the new magnetic
field. Poisson’s equation can be solved by various methods, including spec-
tral methods (Discrete Fourier Transforms), finite element or finite volume
methods. Here we consider a domain with periodic boundary conditions,
then our algorithm takes a particularly simple form. The periodicity allows
us to evaluate the vector potential components into the Fourier domain: we
build a three dimensional FFT algorithm. We are given the current density
(J−J0) and want to solve for the potential a. The space has been discretized
by breaking it into a uniform mesh. Solving for the potential on this mesh
will give us an approximate answer to the continous solution and as long as
the mesh is “fine enough” the approximation will be reasonably good. For
semplicity, let’s start by assuming 1-dimensional space, and let’s consider the
Discrete Fourier Transform (DFT) of the current density J(x). The DFT is

θj =
n−1
∑

x−32<xl<x32

J(x)e2πixj/n

which transforms our current density function into a set of frequency com-
ponents (i is the imaginary number

√
−1). Since the Poisson’s equation is

linear we can solve for each frequency component separately. Lets use the
notation kj = 2πj/n and consider the jth frequency component of the current
density function : fj(x) = θje

ikj x. If we plug this component into Poisson’s
equation, we get

∇2aj(x) = −θje
ikj x

The solution to this equation is

aj(x) = θj
1

k2
j

eikj x =
1

k2
j

fj(x)

since ∇2eikj x = −k2
j e

ikj x. In other words, to solve for jth frequency compo-
nent of the vector potential a we simply multiply the j th frequency component
of the current density function by −1/k2

j .



We can similarly solve for each of the other frequency components of the
vector potential, then add up the solutions to get the solution to our ini-
tial problem. This is equivalent to convolving the frequency component j
with 1/k2

j and then trasforming back to coordinate space, which can be done
with a second FFT. This idea is applied in three dimensions by defining a
1-dimensional FFT on vectors in all dimensions. In this case the solution for
a particular component with frequencies kj,ki and km is

ajim(r) =
1

k2
j + k2

i + k2
m

fjim(r)

where j,i and m are the frequency components in the x, y and z dimensions
respectively.
So the overall algorithm in three dimensions follows the following conceptual
steps:

1. Break space into discrete uniform mesh points.

2. Determine J(r) and J0 for each point.

3. Do a 3D-FFT of (J − J0) on the mesh.

4. Convolve the results with the sum of inverse square frequencies.

5. Calculate the magnetic field b in the Fourier space as ik × a

6. Do an inverse FFT back to the original mesh point.

This will give a(r) over the mesh from which we can derive the magnetic
field components. For N mesh points the algorithm will take O(N log N)
time steps.

3.2.4 Faraday’s Law Method: Electric Field

As we have seen in Sec. 2.5, unless the electrons are highly collisional, rapid
parallel thermal conduction assures a flat electron temperature along the field
line, i.e, ∇‖Te ≈ 0. Then with pe = nkBTe, the equation (2.30) becomes an
exact derivative along field line:

∂ϕ

∂s
= − 1

nqe

∂pe

∂s
(3.34)



Figure 3.2: Parabolic field line configuration.

which integrates yields

ϕ = ϕ0 −
kBTe

qe

ln
n

n0

(3.35)

The equation (3.35) is the Boltzmann relation used in mirror plasma [100].
It is applied in a new way here to infer how the potential varies from field
line to field line. The equation (3.35) is solved with the Semi-Lagrangian
scheme earlier described. The result is the knowledge of the electrostatic
potential in each grid point. The new electric field components, Ex,Ey and
Ez, can be found from equation (3.35) by differentiating with respect to
spatial coordinates, with an usual 4-th order finite difference algorithm.

3.3 Initial and Boundary Conditions: Appli-

cation to the Magnetotail Configuration

We use a coordinate system where the z-axis is defined along the line con-
necting the center of the Sun to the center of the Earth. The origin is defined



at the center of the Earth, and is positive away from the Sun. The y-axis is
along the dawn-dusk direction. The x-axis is defined as the cross product of
the y- and z-axes. The magnetic dipole axis lies within the xz plane. In this
reference frame, the considered input magnetic field configuration consists of
two component: a sign reversing component, directed along the Earth-Sun
axis, B0z(x) = B0z(x)ez, such that B0z(x) = −B0z(−x) and a constant com-
ponent normal to the sheet Bn = Bnex; thus, the total magnetic field is given
by B = B0z(x)+Bn. The reversing field component B0z(x) is negative in the
upper (northern) lobe of the tail and positive in the lower lobe. Following
[106], we use for B0z(x) the expression of a modified Harris magnetic field
reversal, setting it in such a way that the asymptotic value B0 is reached
smoothly at the edges of the simulation box at x = ±0.5L, where also the
derivative of the field with respect to x becomes zero [106]:

B0z(x) = −B0
tanh(x/λ) − (x/λ) cosh−2(L/2λ)

tanh(L/2λ) − (L/2λ) cosh−2(L/2λ)
. (3.36)

L is the total thickness of the considered magnetic field configuration and λ =
0.25L is the current sheet half thickness. This model describes the parabolic
field line geometry which is found in the Earth’s tail from approximately 10
to 60 RE (RE is the Earth’s radius) downtail, and is shown for Bn = 0.1 B0

in Figure (3.2). Since usually Bn � B0, this configuration is referred to as
quasi-neutral current sheet.
In addition to the above magnetic field configuration, a cross tail electric field
E = Eyey (Ey is constant, say E0) oriented in the dawn-dusk direction and
whose origin lays in the solar wind-magnetosphere coupling, is also included
[25].

3.3.1 Boundary Condition for the Parallel Electron Bulk

Velocity and the New Electric Field

As it is easy to note, the x-component of the magnetic field, described in
the previous paragraph, is an even function respect to x = 0 plane while
the z-component is odd. With these parity conditions, the parallel electron
bulk velocity ve‖ is odd respect to x = 0 plane (this can be inferred from the
equation (2.23)). This means that it must satisfy ve‖ = 0 on this plane; the
product of charge density function n (even function) and parallel electron
bulk velocity is once more an odd function, then the value of f in the Sec.

3.2.2 is 0 on the plane x = 0. We choose this plane as the reference one and
it is sufficient to integrate the equation (3.24) with the magnetic field line
equation on a half-space (i.e. x > 0), because we are able to reconstruct the



function ve‖ on the whole simulation box with the condition ve‖(x, y, z) =
−ve‖(−x, y, z) for any values of x, y, z on the mesh.

In order to solve the equation (2.32) we need to specify the value of
electron temperature Te and the value of ϕ on the boundaries of the sim-
ulation box. For the electron temperature Te we make the assumption
that Te ≈ 1/5 < Ti >xyz (the average is over x, y and z directions) as in
[89, 72, 43, 115] and as frequently observed in the magnetotail [11]; observa-
tions, indeed, have estabilished that in the plasma sheet the ion temperature
is almost always greater than the electron temperature. In [96] the authors
performed a statistical survey using ISEE 3 satellite data, and it was found
that the ion to electron temperature ratio (Ti/Te) varied between 4.8 and
7.8 in the deep magnetotail from 30 to 220 RE downtail (see also [11]).
In the near-Earth magnetotail, a statistical study of the plasma sheet us-
ing Active Magnetospheric Particle Tracer Explorer (AMPTE) satellite data
showed that more than 80% of the particle data measurements fell within
the range 5.5< Ti/Te < 11, with a best fit in the inner central plasma sheet
of Ti =7.8 Te [9]. More recent Geotail satellite observations shows that on
average Ti ∼ 5Te.

For the value of ϕ on the boundaries of the simulation box, we impose
that on the boundary planes, where B ∼ B0 (the lobe value), the new electric
field has the constant value Ey = E0, so that ϕ0 = −E0∆y, where ∆y is the
y-displacement along the magnetic field line.
Moreover from the same parity arguments explained above, the electrostatic
potential ϕ is an even function, so it is sufficient to integrate the equation
(2.32) in the positive half-space, and then ϕ(x, y, z) = ϕ(−x, y, z) for any
value of x, y, z on the mesh.



Chapter 4

Checks of Accuracy and

Internal Consistency of the

Simulation Algorithm

Having developed a simulation code for the analysis of the magnetotail cur-
rent sheets, we call attention to the question of the accurancy of the calcula-
tions, that is how sensitive are the results to the numerics. In the following
sections we briefly discuss a few simple numerical checks which are performed
to be certain that the obtained results are not influenced by numerical inac-
curacy, which is useful in differentiating between physics and numerics.

4.1 Numerical Check on Ion Moments

The granularity of a particle representation inevitably introduces short-scale
fluctuations, which are superimposed upon a smoother component. The av-
eraged amplitude of these flucuations is proportional to

√
Nc, where Nc is

the ion number per cell. The ratio of the averaged amplitudes of the fluctu-
ations to the slowly varying component varies as 1/

√
Nc. In the real systems

these fluctuations cause particles to be scattered at frequency which we call
the collision frequency. Because our numerical model typically uses far fewer
particles than are present in reality, the effect of these fluctuations is greatly
enhanced. This produces anomalously large collision frequencies. We need
to take steps to reduce the significance of these fluctuations. Fortunately
we do not need to reduce the fluctuation amplitudes to their correct values,
but merely to levels at which they no longer influence the particles signifi-
cantly during the course of our simulation. There are two ways to reduce the
importance of the statistical fluctuations, either by increasing the number
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Figure 4.1: Two-dimensional contour plots of dimensionless ion density ni

in the meridian plane for two different numbers of injected ions: N=70×106

(panel (a)) and N=106 (panel (b)). The contours are computed for a fixed
position along y. Fixing the position along z, too, the zoom in on a certain
area shows the noise level of the ion density vertical profiles for N=70×106

(panel (c)) and N=106 (panel (d)).



of particles per cell, or by decreasing the grid size. One simple numerical
test was to vary the number of simulation macroparticles from 106 (∼244
particles/cell) to about ten milions (typically 2441-17090 particles/cell), on
a three-dimensional grid of Nx×Ny×Nz=643 points. Increasing the number
of particles, reduces the noise level, however it is very dufficult to reduce this
noise by increasing the number of particles, N , since statistical noise only de-
creases as 1/

√
Nc for random loading. Moreover, there is a tradeoff, as more

particles increases the run time, and hence the expense of the calculation, for
this reason we used 70×106 particles because it seemed a good compromise
between the run time and the statistical fluctuations, which are reduced from
∼ 10%, for runs with N=106 particles, to ∼ 1% (see Figure 4.1).

4.2 Numerical Check on Electron Velocity

We obtain the electron parallel bulk velocity ve‖ by solving the advection-
reaction equation (3.24) with a Semi-Lagrangian scheme (see Ch. 3). The
integration procedes by steps from the initial point r0 towards the point r.
An approximate solution f is computed at each step. For each solution of
f , the error made in the step, that is the local error, is estimated. The step
size is choosen authomatically so that the integration will proceed efficiently,
while keeping this local error estimate smaller than a tolerance that we spec-
ify by means of a parameter TOL in the simulation code, being TOL the
desired relative accuracy. Roughly speaking, the code produces a solution
that satisfies the differential equation (3.24) with a discrepancy bounded in
magnitude by the error tolerance. To judge the accuracy of the numerical
solution, we vary TOL from 10−3 to 10−12.

Tolerance (TOL) values

10−3

10−5

10−7

10−10

10−12

If we assume that the number density n is constant and that ∂/∂z and
∂/∂y << ∂/∂x, an analytical solution of equation (3.24) can be explicitly



Figure 4.2: Vertical profiles of the electron parallel bulk velocity for different
tolerance values: TOL=10−3 (black line), TOL=10−5 (blue line), TOL=10−7

(red line), TOL=10−10 (green line), TOL=10−12 (yellow line). The analytical
solution (short-dashed line) coincides rather well with the electron parallel
bulk velocity computed for TOL=10−12.

written down. With the assumptions given above, the electron perpendicular
bulk velocity components (see the equation (2.20)), in the dimensionless form,
become:

ve⊥x ≈ EyB0z

B2
; ve⊥y ≈ −∂pe

∂x

B0z

nB2
; ve⊥z ≈ −EyBn

B2
(4.1)

giving an analytical expression for the function Φ

Φ ≈ −n
d

dx

(

ve⊥x

)

= −n
d

dx

(

EyB0z

B2

)

= −nEy
dB0z

dx

(

B2 − 2B0z

B4

)

, (4.2)

where B =
√

B2
n + B2

0z is the magnitude of the magnetic field. The continuity
equation in the Cartesian coordinates (equation (2.22)) yields

n
d

dx

(

ve‖
Bn

B

)

≈ Φ = −n
d

dx

(

EyB0z

B2

)

(4.3)



Figure 4.3: Vertical profiles of the electron parallel bulk velocity ve‖x for
different tolerance values: TOL=10−3 (black line), TOL=10−5 (blue line),
TOL=10−7 (red line), TOL=10−10 (green line), TOL=10−12 (yellow line).
The electron parallel bulk velocity computed for TOL=10−12 rather coincides
with the analytical solution (short-dashed line) that is the opposite of the
perpendicular electron bulk velocity ve⊥x (black line with crosses).

and the analytical expression for electron parallel bulk velocity can be com-
puted:

ve‖ ≈ − 1

B

EyB0z

Bn
(4.4)

At this point, we integrate, with the Semi-Lagrangian method explained in
Ch.3, the equation

d

dx

(

ve‖
Bn

B

)

= −Ey
dB0z

dx

(

B2 − 2B0z

B4

)

varying TOL, in order to obtain the numerical value of ve‖. In the Figure 4.2
a comparison between the numerical and analytical solutions of the electron
parallel bulk velocity is presented in terms of the tolerance values listed in
the table above. We can note that the level of noise drastically decreases
with the value of TOL, so that the numerical solution approaches to the



Figure 4.4: Vertical profiles of the electron parallel bulk velocity ve‖z for
different tolerance values: TOL=10−3 (black line), TOL=10−5 (blue line),
TOL=10−7 (red line), TOL=10−10 (green line), TOL=10−12 (yellow line).
The analytical solution (short-dashed line) rather coincides with the electron
parallel bulk velocity computed for TOL=10−12.

analytical expression for ve‖ (short-dashed line). The analytical expression
for the x component of the electron parallel bulk velocity is

ve‖x = ve‖
Bn

B
≈ −EyB0z

B2
(4.5)

which, in turn, is opposite to ve⊥x, then vex = ve‖x+ve⊥x ∼ 0. The expression
for the z component of ve‖ is

ve‖z ≈ −EyB
2
0z

BnB2
. (4.6)

The run results with such tolerance values for ve‖x and ve‖z are plotted in
Figure 4.3 and Figure 4.4, respectively. As seen in the Figures, there is again
a reduction in the numerical noise, resulting in a smoother profile (yellow line
-TOL=10−12- of Figures 4.3 and 4.4) and a rather good convergence of the
model results to the analytical solution (short-dashed lines of the two Figures)



Figure 4.5: Vertical profiles of the electron parallel bulk velocity for different
x spatial resolution and TOL=10−12: Nx=128 (black line), Nx=256 (blue
line), Nx=1024 (red line). The analytical solution (short-dashed line) rather
coincides with the electron parallel bulk velocity computed for Nx=1024.

with decreasing tolerance. Clearly, since the numerical solution approaches
better to the expression (4.5), we have the validation that vex ∼ 0.
Making TOL smaller should normally make the integration more expensive.
However, in the range of tolerances we used, the increase in cost is modest.

Once we have checked that the most suitable value of TOL which we can
use is TOL=10−12, we tested the simulation on the electrons by decreasing
the step size used in the spatial discretization scheme. The accuracy of the
method is assessed by integrating the equation (3.24) on a three-dimensional
grid of fixed arbitrary number of points along y and z respectively, and
varying the spatial resolution with 128, 256 and 1024 points along x; we think
that the most significant effects and variations, as pressure gradient terms,
are along x direction, whereas z is the statistically ignorable coordinate and
the y dependence is weak. We again consider the number density constant
and ∂/∂y and ∂/∂z << ∂/∂x. Unlike the previous case when we use the
analytical expression of Φ (equation (4.2)), this time we evaluate the function



Φ by means of the interpolation of the following expression

Φ ≈ −n
d

dx

(

ve⊥x

)

(4.7)

on a grid of Nx×Ny×Nz, varying Nx with 128, 256 and 1024 points, and we
again integrate the equation

d

dx

(

ve‖
Bn

B

)

≈ − d

dx

(

ve⊥x

)

with the well-known Semi-Lagrangian method. A comparison is presented
between the numerical and analytical solutions in terms of the increasing spa-
tial resolution (Figure 4.5). Qualitatively, the comparison of the numerical
to the analytical solutions indicates good agreement when we use Nx =1024.
The results of varying the spatial resolution of the numerical model indi-
cate rapid convergence to the analytical solution (short-dashed line) with
increasing resolution (red line).

4.3 Summary and Conclusions

We have considered the important issue of the effect of the inherent noise
in the simulation of the ions. As we have shown in detail, increasing the
number of simulation macroparticles reduces the numerical noise level from
10% for runs which have 106 macroparticles, to 2% when we inject 70 ×106

ions in the simulation box.
We have also discussed two numerical tests to check the accuracy of the

electron calculations. An analytical solution has been presented for the case
of constant number density and quasi-null y and z partial derivatives. The
analytical solution is useful for the validation of the model. We considered
the comparison of the numerical and analytical solutions of the electron par-
allel bulk velocity and its components in terms of the tolerance value. We had
TOL=10−3 as well as TOL=10−5, TOL=10−7, TOL=10−10 and TOL=10−12.
Decreasing the tolerance we can observe a well defined decrease of numerical
fluctuations, resulting in a rather good convergence of the model to the an-
alytical solution when we have the lowest value of tolerance. The numerical
results for three different grid resolutions (Nx=128, Nx=256, Nx=1024) have
also been presented as an example of how the analytical solution can be used
for such validation processes. The numerical results with the highest spatial
resolution were shown to converge to that of the analytical model.

The results presented in the following refer to runs with a value of toler-
ance equal to 10−12. The ion motion is integrated on a simulation grid of 643



points. For the function Φ, the spatial grid is made up of 2048×16×16 mesh
points, in order to resolve better its characteristic variations around x = 0.
Then, the electron moments are computed on a simulation grid of 643 points,
as well as the ions.



Chapter 5

Numerical Results

Lastly, we conclude the presentation of our simulation code with the descrip-
tion of the recent state of the art. In the version of code discussed here,
various quantities are plotted out. These include the x vertical profiles and
two-dimensional contour plots of electromagnetic fields and various moments
of the ion distribution function plotted for specified number of particles to
study the effect of the inherent noise in the simulation. These profiles are
plotted with scales that adjust the minimum and the maximum value dis-
played in order to insure that all important effects are visible.

5.1 Ion Moment Results

The self-consistent system of equations for the plasma density and the other
ion moments, the magnetic and electric fields, the total and the partial (ion
and electron contributions) current densities as well as the electrostatic po-
tential are solved numerically when we inject 70×106 ions and we use a value
of the normal magnetic component Bn = 0.02B0. The ion injection energy
corresponds to 0.8 keV and the drift velocity at the edges of the simulation
box equal to vD = 500 km/s. We also define ε = vth/vD as a parameter
which quantifies the ion source anisotropy of the injection distribution func-
tion. These plasma parameters have been choosen to be close to the observed
values in the Earth’s magnetotail [6]. The first results of this model are shown
in Figure 5.1, where the vertical profile and two-dimensional contours of ion
density ni are plotted. In the top panel, the ion density on the xy-plane
is diplayed, panel (a), and in the meridian plane xz, panel (b). It can be
seen that the density has relatively small variations along y and z directions
(save for some very weak variations near the sides where some boundary ef-
fects are found), therefore we can consider these directions as statistically
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Figure 5.1: Top: two-dimensional contour plots of dimensionless ion density
ni: in the xy-plane (panel (a)) and in the meridian one (panel (b)). On the
middle (c) and in the bottom (d) panels, density and temperature vertical
profiles are shown in units of density peak value and miV

2
E/kB, respectively.



Figure 5.2: Panel (a): vertical profiles of velocity components Vx (long
dashes), Vy (solid) and Vz (short dashes). Panel (b): vertical profiles of
velocity components Jix (long dashes), Jiy (solid) and Jiz (short dashes). Ion
velocities are in units of VE and ion current densities in units of cB0/4πL.

homogeneous. Then ion density, as well as the other ion distribution func-
tion moments in the following, has been averaged over z and y, to show the
characteristic dependence on the x coordinate (Figure 5.1, panel (c)).
The vertical profile of the temperature at the bottom of Figure 5.1 (panel
(d), long-dashed line) is rather flat and temperature appears to be increased
with respect to the injection value (' 20 times larger). In addition, the ions
are heated in the direction perpendicular to the magnetic field resulting in a
smaller temperature value in the central region, which may be roughly char-
acterized in terms of ion T‖ (solid line) temperature, and two small peaks at
|x| ' 0.1 L due to the mixing of incoming ions, which have large velocity
dispersion, with ions performing mandering orbits (see [25]). Note that there
are substantial differences between T‖ and T⊥ (short-dashed line), showing
that the heating is rather anisotropic.

From the panel (a) of Figure 5.2, it can be seen that the x component of



the bulk velocity Vx (long-dashed line) is smaller than Vy (solid line) and Vz

(short-dashed line), it is zero on average and there are no spatial features.
This means that at any location in the simulation box there are as many
particles going up along x as many going down. On the other hand, Vy is
oriented along the electric field E0 = Ey, and it is clearly larger in the central
region around x = 0, where |B0z| is smaller and the ions are unmagnetized.
The z component Vz is negative. Taking into account the fact that the z axis
in our system of coordinates is orientated toward the Sun, this means that
the plasma flow is toward the Earth, the well known Earthward convection
due to the dawn-dusk electric field [25].

The panel (b) of the Figure 5.2 displays the three components of the ion
current density Ji: the current density has features similar to the ion bulk
velocity. As for Vz, the z component of current density is a current toward
the Earth and it is not a drift current because in the centre of the current
sheet ions are not magnetized (B0z(0) ∼ 0). Both Vy and Jiy (solid line)
vertical profiles are narrow and peaked and they do not exhibit any bifurcated
structure, according to the fact that the level of magnetic fluctuations is zero
and that the ratio between the ion thermal velocity and streaming velocity
at injection is very small [25]. Indeed, the value of the anisotropy parameter
is ε ∼ 0.3 and the obtained one-peaked density profile is in agreement with
the analytical results of [92]. Beside, Jiy presents negative values around
z ∼ ±0.2 L due to the diamagnetic currents. This diamagnetic current is
made up of three contributions: the ∇B drift, the curvature drift and the
magnetization currents [76, 112]. These negative current “wings” are not so
important for the choosen value of normal magnetic field component, but
they could become very profound for larger value of Bn (see later).

5.2 Electron Moment Results

By solving the equation (2.20), the perpendicular electron velocity compo-
nents are obtained. The profiles of the velocity components are shown in
the panel (a) of Figure 5.3. The x and z components (ve⊥x is shown with
long-dashed line and ve⊥z with short-dashed line) are completely due to the
electric drift term and they are equal to

ve⊥x =
EyB0z

B2
(5.1)

ve⊥z = −EyBn

B2
; (5.2)

where B = B0z(x) + Bn; indeed, the pressure gradient term does not con-
tribute because the z and y derivatives are neglegible respect to the x deriva-



Figure 5.3: Panel (a): vertical profiles of the three components of the electron
perpendicular bulk velocity: ve⊥x (long dashes), ve⊥y (solid) and ve⊥z (short
dashes). Panel (b): vertical profiles of the two non-null components of the
parallel electron bulk velocity: ve‖x (long dashes), ve‖z (short dashes). Panel
(c): vertical profiles of total electron velocity: vex (long dashes), vey (solid)
and vez (short dashes). Electron velocities are in units of VE.

tive (being z the statistically ignorable coordinate and y dependence weak).
On the contrary, the y component of the electron perpendicular velocity



Figure 5.4: The dependence of the sign of ve⊥y on the shape of ion number
density. Top: vertical profile of number density (panel (a)) and ve⊥y (panel
(b)). Here Bn = 0.02B0 and vD = 500 km/s. Bottom: vertical profile of
number density (panel (c)) and ve⊥y (panel (d)). Here Bn = 0.05B0 and
vD = 500 km/s. Ion density vertical profiles are shown in units of density
peak and electron perpendicular bulk velocity in units of VE.

(displayed with solid line) is dominated by the x pressure gradient term as

ve⊥y = − B0z

neB2

∂p

∂x
(5.3)

and it shows a bifurcated structure which comes out from the combination of
the x derivative of the electron pressure (or density) and the sign reversal field
B0z . At this point it is important to note that the sign of the y component of
the electron perpendicular velocity depends on the shape of the ion density
along x vertical direction: if it presents a peak (panel (a) of Figure 5.4, solid
line) in the centre of the current sheet (as for this choice of parameters) then
the y component of the electron perpendicular velocity is mostly negative
(panel (b) of Figure 5.4, solid line), otherwise, if density has a depression
around x = 0 (panel (c)), as for example when we use a new value for the
normal magnetic field Bn = 0.05B0 and the same drift velocity at the edges
of the simulation box equal to vD = 500 km/s, whereas we inject 50×106 ions



Figure 5.5: The behaviour of the electron bulk velocity respect with the
equation of state, i.e isothermal (solid line) or adiabatic (short-dashed line).
Panel (a): vertical profiles of y component of electron bulk velocity. Panel
(b): vertical profiles of total current density along y. Velocities and currents
are in units of VE and cB0/4πL, respectively. The total result seems to be
insensitive to the use of different equations of state.

with a larger energy corresponding to about EK=4.4 keV, then the electron
perpendicular velocity along y is mostly positive (panel (d)). Beside, the
behaviour of this component of the electron bulk velocity could depend on
the equation of state, i.e isothermal or adiabatic. Actually, as shown in
Figure 5.5, when we sum together the ion and electron current densities, the
total result seems to not feel the effect of different equations of state.

By solving the equation (2.24) the parallel electron bulk velocity is com-
puted. If we suppose that ∂/∂z and ∂/∂y << ∂/∂x, we could write the
equation (2.24) as :

Bn
∂

∂x

(

nve‖

B

)

≈ − ∂

∂x

(

nve⊥z

)

(5.4)



The analitical solution of equation (5.4) yields two results: first we ob-
tain that nvex ∼ 0, which means that vex ∼ 0; second the expression of
ve‖ ≈ −(EyB0z)/BBn is also obtained. The vertical profiles of the velocity
components are shown in the middle panel of Figure 5.3. The x-component
of the parallel electron bulk velocity is depicted with long-dashed line; it
shows a bipolar variation in the centre of the neutral sheet, around x ' 0:
ve‖x < 0 at x > 0 and ve‖x > 0 at x < 0. This indicates an equal but opposite
flux of electrons moving along magnetic field from the edges to the centre
of the current sheet; it is opposite to the perpendicular component in order
that the total electron bulk velocity along x (shown in the panel (c) with
long-dashed line) is almost zero, as expected. The z component of the total
electron bulk velocity is shown with short-dashed line and it is equal to the
expected value ≈ −40VE; it is the largest component and this indicates a
tailward flux in the center of the current sheet and a Earthward flux at the
edges. Finally, according to our model parameters, the y velocity component
is null.

Once we have the parallel and perpendicular electron bulk velocity, the
electron current density is computed from the expression Je = (nqeve) =
nqe(ve‖ +ve⊥), where n is the ion density and qe = −e is the electron charge.
The ion number density obtained from a test particle simulation is defined
in arbitrary units, therefore the electron current density Je is known except
for a free parameter, say n0. We can fix it requiring that the total current
along y direction (made up with the ion and electron contributions) has to
be strong enough to reproduce the magnetic field B0z on the planes x = ±0.5
L of the simulation box [25]. In order to have the right normalization, we
have to multiply ion, electron and total current densities by this new value
of n0.

5.3 Total Current Density and Comparison

with Observations

The panels (a)-(c) of Figure 5.6 show vertical profiles of x and z components
of ion, electron and total current densities. Along the Earth-Sun line con-
nection, the electron current density is almost opposite to the ion one, so the
total current density is very small (the solid line in the top panel). Along
the direction perpendicular to the current sheet no current density appears
(the solid line in the panel (a)).
The y component of the total current density is displayed in the panel (b) of
the same Figure 5.6 with the ion and electron contributions. It is clear from



Figure 5.6: Vertical profiles of the dimensionless total current density (solid
line), showing contributions of partial ion (short-dashes) and electron (long-
dashes) current densities; x components on panel (a), y components on panel
(b) and z components on panel (c), respectively. Currents are in units of
cB0/4πL.

this figure that both the ions and electrons contribute to the total cross-tail
current: the role of electrons is the most substantial in the center of the
current sheet [26], where they support a double peak structure embedded in
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Figure 5.7: Left-hand panel: Cluster observation and position on interval
under study in [6]. Rigth-hand panel: relative occurence frequency of bi-
furcated current sheets (solid line) and center-peaked current sheets (dotted
line), from [6].

the ion current, although the ion net contribution is seen to be about 70 %
of the total current density. In turns, the bifurcated structure in the electron
current density derives from the finite Larmor radius term ∇pe/ne. The ob-
tained profiles of the current density show the same spatial scale for ions and
electrons. In [115], the authors consider an anisotropic electron pressure.
Due to this anisotropy, they take into account the influence of curvature
drifts, in electron current, which are predominant in a very narrow region in
the center of the sheet (where the magnetic field clearly shows the larger cur-
vature gradient). This leads to the narrow electron current maximum in the
vicinity of the neutral plane, which is embedded inside a thicker ion current.
In our model, the electron pressure is isotropic, so that the anisotropy effects
are due to ions. Also in [10, 95], the electron anisotropy seems to be one
of the most important physical explanation for the formation of bifurcated
(and also tripled) structure of the current sheets. On the contrary, in [21]
the authors invoke a resonant mechanism of scattering of crossing ions into
non-crossing region of phase space. This leads to a charge separation across
the current sheet which in turn produces an electrostatic potential. The lat-
ter produces the bifurcated structure in the enhanced electron flow velocity.
The effect of bifurcation seem to be quite widespread in the tail of the Earth’s
magnetosphere. Recent in-situ measurements by Cluster spacecraft [6] have
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Figure 5.8: Summary of the current density distributions: center-peaked
(type I), bifurcated (type II), and asymmetric (type III) current sheets to-
gether with the averaged vertical profiles (red lines).

shown that the occurence frequency of bifurcated current sheets is 17 %, in
a current sheet of thickness of about ∼ 1500 km, without any fast flows or
significant turbulence, and increases up to 48 % in association with fast flow,
as shown in Figure 5.7 taken from [6]. Similar analysis performed for flap-
ping current sheets, have given similar results [85]. Thus, the deviation from
the Harris model seems to be significant, and it is most likely a stable effect
rather than a transitory feature of the current sheet (see also [6, 105, 86]).
The width of the bifurcated structure (Figure 5.6) is estimated as ≤ 1λ ∼



Figure 5.9: October 8, 2001: Cluster data (left panel); reconstructed vertical
profiles of current density (cross-tail component) and magnetic field (rigth
panels).

10 rLi, where λ is the current sheet half thickness and rLi is the ion Larmor
radius at the edges. This means that we are describing a moderately thick
current sheet and we are slightly above the typical length where ions are
decoupled from electrons.

The analysis of some rapid crossing of the magnetotail current sheet by
the Cluster spacecraft, during July-October 2001 at a geocentric distance
of 19 RE, [86] shows that three types of current sheet distributions are dis-
tinguished (center-peaked, bifurcated and asymmetric sheets) indicating that
the typical scale of the bifurcated current structures is ∼ 4000 km (see middle
panel in Figure 5.8), which corresponds to ∼ 10 rLi. This is in good agree-
ment with our numerical results which show a typical separation between
the current peaks of about 2000-3000 km. Recently, using Cluster four-point
measurements about magnetotail current sheet crossing of October 8, 2001
[84], the reconstructed spatial profiles of the cross-tail current density show
that the electric current (depicted in Figure 5.9) has a typical intensity of
about 12 nA/m2 with an error of 20%; these observations agree well with the



Figure 5.10: Panel (a): vertical profiles of ni. Panel (b): vertical profiles
of the y component of the ion current density (long-dashed line), electron
current density (short-dashed line) and total current density (solid line).
Density and current profiles are shown in units of density peak value and
cB0/4πL, respectively.

numerical peak value obtained from our simulation of (14 ÷ 15) cB0/4πL ∼
(11 ÷ 12) nA/m2 (see Figure 5.6).

5.3.1 Three-peak Current Sheet

We now discuss the numerical results of the hybrid simulation when we use
the same value of the previous run for normal magnetic field component
Bn = 0.02B0 and the same drift velocity at the edges of the simulation box
equal to vD = 500 km/s, whereas we inject 106 ions with a larger energy
corresponding to about EK = 4.4 keV. The panel (a) of Figure 5.10 shows
the vertical density profile: the central peak is much broader and it is due to
the larger Larmor radius of the ion orbits which move in the current sheet;
this result is in good agreement with the study in [116] for large values of



Figure 5.11: Reconstructed current density jy (left-hand panel) and jx

obtained for the rapid current-sheet crossing event between 19:03:33 and
19:03:38 UT (from [64]).

the ion injection energies. On the panel (b), we display the y component
of the total current density with the ion and electron contributions. The
ion current density is also much broader and the electron one is partially
negative; this profile of the electron current density is quite different from
that one obtained using the previous set of magnetotail parameters. We argue
that this could depend on the fact that the density profile has changed (see
Figure 5.2 and 5.10) and in turn this influences the x derivative in the term
∇pe/ne. The most interesting result of this run is, however, the triple peak
structure which appears in the total current density profile and which is due,
once again, to the electrons. Some analytical models predict current sheets
with a sharp peak at the center and secondary peaks at the edges due to the
anisotropy of electron and/or ion temperatures [115, 95]. In Ref. [115], the
authors obtain cross-tail current profiles with tripled peaks by using a one-
dimensional self-consistent model based on the Vlasov-Maxwell equations
which takes into account the electron anisotropy and a ratio between ion
and electron temperature equal to 5. The dynamics of tripled-peak current



Figure 5.12: Panel (a): vertical profile of the magnetic field correction b:
bx (long-dashed line), by (solid line) and bz (short-dashed line). Panel (b):
vertical profile of the total magnetic z field component (solid line) and Harris
field B0z (short-dashed line). Magnetic field corrections are in units of B0.

sheets are also explored using a full particle code with realistic ion anisotropy
(ηi=1.2 (T‖i > T⊥i)) and an electron-to-ion mass ratio equal to 1/64 [95].
Such three-peaked current sheet profiles (Figure 5.11) were indeed found in
the examination of the structure of thin current sheet and their evolution
during a substorm interval on August 24, 2003, using multi-point Cluster
data [64]. Although there is a single observation of triple-peak current sheets,
up to now, it seems interesting to investigate this new class of equilibria, too.

5.4 Field Results: New Magnetic Field

The top panel of Figure 5.12 displays the vertical profile of the non-null
component of the magnetic field correction b: namely bz. The bx component
is almost zero because it is proportional to the y and z derivatives of the
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Figure 5.13: Panel (a): two dimensional contour plot of vector potential ϕ
in the plane xy. Panel (b) : vertical profile of ϕ as function of coordinate x
for y = 0.

reduced vector potential a, which are very small. Therefore, the new mag-
netic field does not vary, remaining equal to the normal component Bn. The
component by is very small because it comes from the presence of a negligi-
ble current density along z direction. Then, the new magnetic field in the
dawn-dusk direction remains zero. Finally, on the contrary, the correction
bz is not small; typical values are of the order of 0.5 B0, where B0 is the
input magnetic field reached at the edges x = ±0.5L. It is worth to note that
this correction to the input magnetic field B0z is due to the electrons which
modify the profile of the input current density ∂B0z/∂x along y direction,
providing the two off-center peaks and more profound negative wings. As a
consequence, the new magnetic field along z, Bnew

z = B0z + bz display two
overshoots and it is steeper in the center of the current sheet than the Harris



field B0z, as shown in the panel (b) of Figure 5.12. It is important to note
that it is not possible to obtain information about all of Bx, By and Bz if a
1D or 2D numerical model is used to describe the magnetotail configurations
or dynamics, because some components of the current may not be computed.
For example in Refs. [115, 95] (and the earlier study of [72]), the authors
show only the self-consistent profiles of Bz, because they do not consider the
other two component of the current, Jx and Jz.

5.4.1 New Electric Field

In the panel (a) of Figure 5.13, the two-dimensional contour plot of the
electrostatic potential ϕ is depicted in the plane xy; ϕ displays a linear
dependence on y (it comes from the y dependence on ϕ0) and it depends
on x through the density n, as the equation (3.35) shows. The electrostatic
potential is mostly positive for negative values of y and becomes negative for
positive values. In the panel (b) we show the vertical profile vs x of ϕ for y =
0. The panel (a) of the Figure 5.14 shows the x component of the new electric
field Ex; this new component is due to the pressure gradient term ∇pe along
the direction normal to the current sheet. It has a quadrupole variation, but
it mostly points away from the current sheet. This electric field is different
from that which comes from the Hall term (due to charge separation within
the ion diffusion region near a X-line): whereas the latter points towards
the neutral sheet, the former points away from it. The presence of these two
kinds of electric fields in the magnetotail are confirmed by Cluster crossing
on August 17, 2003, that shows that an electric field due to the electron
pressure tensor of the order of 1 mV/m points away from the current sheet
along the direction normal to the sheet [31] (rigth-hand side of the Figure
5.14). This observation is in agreement with our numerical results which
display an electric field with a peak value of the order of 15 E0 ∼ 1.5 mV/m.
Finally, the y component of the new electric field Ey is constant (panel (b) of
Figure 5.14) and it is equal to the input electric field into dawn-dusk direction
E0, while the electric z field component is equal to zero, depending on small
variation of charge density with y and z coordinates.



Figure 5.14: Left. Panel (a): vertical profile of electric x field component
(solid line) and profile of electric z field component (short-dashed line). Panel
(b): vertical profile of the y component of the elctric field E. Electric field
components are in units of E0. Right. Electric field data of Cluster crossing
on August 17, 2003. The perpendicular components of the electric field from
Hall term (red line) and the electron pressure divergence (black).



5.5 Further Iterations

The numerical model that we described in the previous chapter, requires
an iterative self-consistent procedure to study what is the effect of the new
fields (Bz and Ex) on particles. To reach the convergence more iterations are
needed, although the first iteration already shows a rapid convergence, when
compared to the following iterations.

5.5.1 Numerical Investigation

We recall that our hybrid method treats the full motion of the ions, but
treats the electrons as a charge-neutralizing fluid using an isothermal equa-
tion of state. The ions are initially traced through the input electric (E0) and
magnetic (B0z(x)+Bn) fields, with the resulting moments calculated on the
simulation grid (643 points). The new fields (Bnew, Enew) are then computed
using these moments, as explained in the previous chapters, and the particles
are traced through these new fields. This process should be repeated until
the fields converge from one iteration to the next.

The electric field is initially set to E0. On subsequent iterations, we
calculate it by

Enew = E0 + e (5.5)

with e = −∇ϕ
The magnetic field on the zeroth-order iteration is given by the hyperbolic

tangent with a constant normal component. On the subsequent iterations,
we find the magnetic field by:

Bnew = B0 + b (5.6)

with b = ∇×a and ∇2a = (J−J0), where J = Ji +Je and all other symbols
have their usual meaning. The ion current density is computed directly from
the particle distribution at each grid point. The electron current density is
computed by electron bulk velocity ve = v‖e + v⊥e. An additional electric
field in the x direction and a magnetic field correction along z arise from the
zeroth-order iteration. The electrons acquire a perpendicular bulk velocity

ve⊥x =
EyBz

B2
− Bz

∂pe

∂y

1

nqeB2
(5.7)

ve⊥y = −ExBz

B2
−
(

Bn
∂pe

∂z
− Bz

∂pe

∂x

)

1

nqeB2
(5.8)

ve⊥z = −EyBn

B2
− Bn

∂pe

∂y

1

nqeB2
(5.9)



Figure 5.15: Total current density Jy in units of cB0/4πL. Comparison of
the first three iterations. The red and green curves on the graph correspond
to the second and third iteration respectively, while the black curve displays
the first-order solution.

caused by the changing electric and magnetic fields

Ex = ex

and
Bz = B0z + bz.

The derivatives in the y and z directions are very small, so that they do not
influence the calculation of the electron perpendicular velocity, as already
seen. The new electric and magnetic fields introduce a drift term (ExBz/B

2)
in the y component of ve⊥ and modify the terms due to the pressure gradient
of ve⊥x (Bz∂pe/∂y) and ve⊥y (Bz∂pe/∂x).

The total current density is thus used to calculate the new magnetic field
correction b and finally the new magnetic field using the equation (5.6). To
calculate the new electric field correction e, the ion density of the first iter-
ation is substituted again in the equation (2.32). The electrostatic potential
is thus used to calculate the new electric field correction and the new electric
field by the equation (5.5). This iteration procedure is then repeated until
the desired convergent solution is reached. Due to the very large number of
ion trajectories which we need to integrate, a single iteration takes a very
long computational time, but the convergence for this method typically takes
only a few iterations. We report here the first three iterative step results.
The total current density along the y direction is plotted in Figure 5.15.
The calculated Jy for the first, second and third iteration are indicated with
black, red and green line, respectively. The two profiles determined by the



Figure 5.16: Magnetic field correction bz in units of B0. Comparison of the
first three iterations. The red and green curves on the graph correspond to
the second and third iteration respectively, while the black curve displays the
first-order solution. The input (Harris) magnetic field is depicted with the
blue line.

second and third iterations, are similar but not identical. These two itera-
tions decrease the thickness of the inner current sheet with respect with the
first-order iteration, and this effect is probabily due to the modified fields.
It is interesting that already for the third iteration, we predict a value of
current density supporting the idea that the procedure is converging. The
comparison between the red and green profile indicates the existence of a
stationary solution, and indicates the stability of the method. The corre-
sponding magnetic field profiles are shown in Figure 5.16 (panels (a) and
(b)). The 1st-order magnetic field correction bz (panel (a), black line) is
compared to that of the 2nd (red line) and 3rd (green line) order solutions.
Note the reduction in magnitude and the spreading of the magnetic field
correction. The total magnetic field Bz of the 1st-order calculation (black
line), of the 2nd iteration (red line) and of the 3rd iteration (green line) are



Figure 5.17: Electric field Ex in units of E0. Comparison of the first three
iterations. The red and green curves on the three consecutive graphs corre-
spond to the second and third iteration respectively, while the black curve
displays the first-order solution.

plotted on the panel (b) of the Figure 5.16. From this panel we note the less
steep slope at x = 0 for the 1st-order case. These preliminary investigations
show that, for the given number of iterations, with this self-consistent hy-
brid approach, it can be possibile to give a convergent value of the magnetic
field correction bz and of the total magnetic field Bz. Further iterations are
performed for the electric field, too. Once this is done, Ex changes and the
previous and new functions can be compared in the Figure 5.17. The process
shoud continue until the results have converged, but already the first three
step profiles can considered to be close enough to each other.

Summing up, to reach the exact convergence a few more iterations are
needed; the first three iterations already showing a rapid convergence; it
seems quite possible that a stationary solution of the studied current sheet
can exist.



Chapter 6

Current Sheet Simulations in

The Quiet Magnetotail

For many years kinetic studies of current sheets in space and laboratory plas-
mas were based on the Harris equilibrium model [30]. In particular, the Harris
model was used to fit observations of the current sheet structure [59, 87, 105].
However, significant deviations from the Harris model have been reported,
with the most notable effects being observed for thin current sheets, whose
thickness is comparable to a few thermal ion gyroradii based on the field
outside the sheet. In particular, [58, 90, 87, 77] found relatively thin cur-
rent sheets with unusually large current densities, embedded in much thicker
plasma sheets. On the other hand, [90] reported several cases, in which the
current density, estimated from the differences between the magnetic fields
measured by two spacecraft ISEE 1 and 2 had a minimum at the center of
the current sheet. However, all those earlier results were based on one or at
best two spacecraft observations. Therefore, they could not fully explain the
mechanism of observed effects, because of the difficulties in reconstructing
their spatial profile. Under which conditions and how often they are formed
is still unrevealed. As a result, they left significant freedom for theoretical
interpretations. For instance, [90] interpreted current splitting as an effect of
the plasma anisotropy, while [39] discussed a possible model to explain the
formation of the double-peaked current sheet in terms of large-scale magnetic
reconnection associated with slow shocks. Everything drastically changed af-
ter the launch of four-spacecraft Cluster mission, which enabled separation
of spatial and temporal effects for the first time. Even the first studies of
the 2001 Cluster tail period data with spacecraft separations from 1500 to
2000 km confirmed that the spatial structure of the cross-tail current sheet
is often different from the normal Harris-type sheets, i.e. the shape of the
current density profile may substantially evolve with time, exhibiting double
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or multiple peaks [63, 80, 81, 82, 91]. A few models attempted to explain
such complicated current sheet structures that at least in some cases could
not be explained either by the classical picture of collisionless reconnection
or by flapping motions [91, 2]. Finding bifurcated current sheets has become
a challange for theoreticians. Observations demand a significant general-
ization of the steady state models of current sheets, and in particular the
Harris equilibrium. In the late seventies [19, 20], with a model based on a
fluid theory for gyrotropic plasmas, showed that rather modest values of the
plasma anisotropy should provide drastic changes in the current sheet struc-
ture. However, significant nongyrotropic effects may indeed appear in the
current sheets when their thickness becomes comparable to the thermal ion
gyroradius [56]. Recently, [93] presented a kinetic and nongyrotropic general-
ization of the theory presented in [19, 20], which interprets current splitting,
taking into account the ion pressure anisotropy outside the sheet; the bifur-
cation of the current sheet appears in the case of small ion anisotropy with
T⊥i > T‖i (pancake ion distribution). Moreover, [113, 114] have developed
a self-consistent model where the current sheet aging leads to the splitting
of the sheet. Another mechanism has been proposed, considering magnetic
turbulence [25] concentrated in a quasi-neutral sheet. A substantial level of
turbulence, δB/B0 > 0.2, where B0 is the the magnetic field outside the
sheet, is needed to have the bifurcation of the current sheet, but the level of
turbulence grows with that of Bn, where Bn is the normal field component,
and it is necessary to have δB ∼ 5Bn to find this effect. Other mechanisms
have been also proposed, considering ion-ion kink instability [42, 43] cou-
pling the lower-hybrid drift instability with the Kelvin-Helmoltz instability
[79] or showing the formation of the bifurcated current sheet as a feature of a
steady-state Vlasov model [10]. In this chapter we elaborate a new approach
[23], which generalize the Harris current sheet theory, taking into account
the effects of a certain number of current sheet parameters, as well as using
our 3D hybrid particle code. This allow us to explain some interesting new
effects in the thin magnetotail current sheets revealed by Cluster mission.
The properties of the current sheet, indeed, depend on a number of parame-
ters, including the drift velocity vD = (cEy/B0)/vth and bn = Bn/B0, where
vth is the ion thermal velocity.

6.1 Parametric Study: Different Bn

Following [7], we assume, as typical values, that vD = 200 km/s and vth = 170
km/s, corresponding to a particle energy EK = 0.3 keV and to an ion source
anisotropy ε = 0.85, and we varied bn from 0.02 to 0.05.



Figure 6.1: Vertical profiles of density n, ion current density Jiy and temper-
ature T for ε = 0.85 and vth = 170 km/h. Here bn = 0.02 (long dashes) and
bn = 0.05 (solid line). Dimensionless units. See Table 1 for the normalizza-
tion.

6.1.1 Ion Moments

Figure 6.1 shows profiles of ion density n, dawn-dusk directed current den-
sity Jiy and temperature T , for bn ranges between 0.02 (long dashes)-0.05
(solid line). The number density profiles are rather flat, with a small broad



maximum in the vicinity of the neutral sheet, being narrower for the smallest
value of bn.
The current density profiles are narrow and peaked near the neutral plane,
where the ions are demagnetized, experiencing non adiabatic motion and
cross field acceleration. This result supports the experimental observations
of a thin current sheet embedded inside a more thicker current sheet. At in-
jection, the ion Larmor radius in the asymptotic field B0 is rL = 0.026 L, so
that rL ' λ/10. Thus, this choice of parameters corresponds to a moderately
thick current sheet [107].

With the increase of bn from 0.02 to 0.05, we can see that the influence
of the diamagnetic current (∇B drift, curvature drift and magnetizzation
currents) on the final current profile in the current sheet, becomes more
evident. The temperature profiles are rather flat, showing an increasing
behaviour with the decrease of bn and a characteristic kinematic effect for
the smallest normal component: two small peaks off the center at about
|x| = 0.1 L; they are due to the mixing of incoming ions, which have large
velocity dispersion, with ions performing mandering orbits (see [25]).

6.1.2 Electron Moments

The increase of temperature can be expresed as a function of bn [103]. Apart
from very small values of bn, the temperature increase scales as b−2

n (see [25]).
The corresponding electron contribution to the current density (Jey) and the
total current density are shown in Figure 6.2. The electrons are not only a
neutralizing background, but their presence leads to the characteristic cur-
rent sheet splitting into a double layer, as we can see from the top panel of
Figure 6.2. The electron current density shows two narrow peaks at about
|x| = 0.1 L, and a strong bn dependence of their maximum values in the
neutral plane can be seen: the peak intensity increases with the decrease
of bn. As already explained, the electron current density is computed as a
function of electron velocity: Je = nq

e
ve = nq

e
(v⊥e + v‖e); Jey is the sum

of y component of electron perpendicular and parallel velocity , respectively.
The y component of perpendicular velocity is due to x pressure gradient
drift term (B0z∂pe/∂x)/(nqeB

2) (the z pressure gradient drift term does not
contribute, being z the statistically ignorable coordinate), while y parallel
velocity is null, according to our model parameters. The shape of electron
current density is due to the combination of the x derivative of the electron
pressure, namely of density n, and the temperature value. Being the density
rather flat, Jey is mostly influenced by temperature, showing an increase with
the temperature increase, i.e. ranging bn from 0.05 to 0.02. The total current
density represents the relative ion and electron contributions to the plasma



sheet current density. The total current density profile rather concides with
the ion current, showing double-humped structure due to electrons (small-
scale structure), while the large-scale structure is formed by current-carrying
ions (diamagnetic wings persistence). The density n used to calculate the
electron current density, is the ion density obtained from the ion test particle
simulation therefore, the normalization for the number density, say n0 is, to
as good extent, arbitrary. Following [25], we can fix it on the consideration
that the total current has to be strong enough to reproduce the unperturbed
magnetic field B0z introduced in our model. In order to have the right nor-
malizzation, electron and total current densities have to be multiplied by
n0.

Figure 6.2: Vertical profiles of electron current density Je in the dawn-dusk
direction and total current density J = Ji + Je, for ε = 0.85 and vth = 170
km/h. Here bn = 0.02 (long dashes) and bn = 0.05 (solid line).



6.1.3 Electromagnetic Fields

The profiles of x-component of electric field Ex, the non null magnetic field
correction bz and the total magnetic field z-component Bz, are presented in
Figure 6.3. All plasma parameters show the characteristic dependence only

Figure 6.3: Vertical profiles of x-component of electric field Ex, magnetic
field correction bz and z-component of magnetic field Bz, for ε = 0.85 and
vth = 170km/h. Here bn = 0.02 (long dashes) and bn = 0.05 (solid line).



on the x coordinate, while z is the statistically ignorable coordinate and y is
the coordinate the dependence on which is usually weak. The electric field
profiles show a quadrupolar behaviour, out of the neutral sheet. We interpret
this situation as a quasi-neutrality condition: the ions have all the inertia and
momentum, and the electrons tend to follow the ion dynamics, setting up
small quadrupolar electric fields to mantain quasi-neutrality in the plasma.
Indeed, the x component of the new electric field is due to the x derivative of
electrostatic potential, therefore depends on the temperature value and the
x derivative of the density logarithm. As already explained for the electron
current density, the temperature contribution is dominant and a temperature
increase causes a more intense electric field in the x direction. This effect is
more important for small bn.
The new magnetic field in y direction is due solely to magnetic field correction
by correction, because we had not any input magnetic field along dawn-dusk
direction. The z component of ion current density (not shown) is positive
and it is not a drift current because the ions are not magnetized in the center
of the neutral sheet (B ∼ 0). The z component of electron current density,
Jez, is again given by the sum of z component of electron perpendicular and
parallel velocity. The z component of perpendicular velocity is dominated by
the electric drift (∝ EyBn/B2). The z component of parallel electron velocity
is the largest component of electron bulk velocity and it is dominant with
respect to the perpendicular one. If we sum the ion and the electron current
density they cancel each other giving a negligible total current density along
z direction, then the new magnetic field in the dawn-dusk direction remains
zero, By = by ' 0. The parallel velocity along z direction grows with bn de-
crease and its dominant contribution to the total current sees that the total
current density works in the same way.
The corresponding new magnetic Bz = B0z + bz field profiles and the mag-
netic field correction bz, shown in the middle and lower panel of Figure 6.3,
respectively, are nearly the same. Indeed, the correction bz = B0z/B0 is
due to the x derivative of the total y current density (bottom panel of Fig-
ure 6.2); as the total current is little sensitive to bn but for the appearence
of double-peaks (bn = 0.02) and much more pronounced diamagnetic wings
(bn = 0.05), the Bz profiles exhibit overshoots at about |x| = 0.1L, which
intensity derives from diamagnetic wings deepness.

6.2 Different EK

The next parameter that is investigated is the total injection kinetic en-
ergy EK = 1

2
miv

2
i . In the first run, at injection the Larmor radius in the



asymptotic magnetic field B0 is rL ' 0.064 L, so that rL ' 3λ/10, corre-
sponding again to a moderately thick current sheet. In order to investigate
more fully the ion dynamics in a thick current sheet, we make other runs
decreasing the ion Larmor radius, that is decreasing the injection velocity
(thermal and streaming velocity, respectively), while keeping all the other

Figure 6.4: Vertical profiles of density n, ion current density Jiy and tem-
perature T for ε = 0.85 and bn = 0.02. Here vth = 50 km/s (solid line), and
vth = 170 km/s (short dashes), and vth = 400 km/s (long dashes).



parameters the same, that is bn = 0.02 and ε = 0.85. The injection ki-
netic energy is varied from EK ' 690miV

2
E (corresponding to 0.6 keV - long

dashes), to EK ' 345miV
2
E (corresponding to 0.3 keV - short dashes), and

EK ' 92miV
2
E (corresponding to 30 eV - solid line, with the typical values of

the parameters). Accordingly, the ratio between the ion Larmor radius at the
injection and the current sheet thickness varied as rL/λ ' 3/10, 1/10, 3/100.

6.2.1 Ion Moments

The results about the ion moments are shown in Figure 6.4 and it can be
seen that the ion number density and ion current density decrease with the
increase of the injection velocity and there is no current splitting, in each of
the studied runs. Decreasing the thermal velocity means reducing the ion
Larmor radius, forcing the ions in a narrow region in the very center of the
current sheet. Moreover, as vth diminishes, the injection energy rate and the
temperature increase.

6.2.2 Electron Moments

We checked whether the current splitting is consistent with the structure
of the electron moments, showing electron current density and the effect on
total current density in Figure 6.5. The electron current density profiles
show a splitting into a double layer that is more evident for higher injection
velocity and this introduces a splitting into the total current density. The
current splitting persists for each injection velocity and for each current sheet
thickness. This shows once more that the double current sheet is due to the
electron dynamics and not to the thinness of the current layer. Moreover,
we can see that the maximum of electron current in the center of the current
sheet varies in an inverse proportion to the value of ion injection thermal
velocity. As already explained, the electron current depends on tempera-
ture value (or vth values) and pressure gradient (i.e. density gradient). The
vertical profiles of ion density show larger variations for smaller vth, which
determine electron and total current dependence on ion injection thermal
verlocity: Je and J increase as vth decreases. As for ions, the electrons, ex-
periencing a Larmor radius decreasing, describe a narrowing of the current
sheet.

6.2.3 Electromagnetic Fields

The corresponding electric and magnetic field components are shown in Fig-
ure 6.6. The x electric field component decreases with vth decreasing and



a reletive maximum and minimum profile shift around |x| ' 0.1 L to the
neutral sheet crossing is noted. The density variations affect the electric field
intensity and its dependence on vth. Even with this new set of parameters,
the total current density along z direction is negligible giving a negligible
new magnetic field along y direction. By the same analysis made above for
the total current density along y direction, we explain the shape of the total
Bz magnetic field. The magnetic overshoots are more pronounced for larger
vth. Indeed, the profiles of the total current density along y direction show
more pronunced diamagnetic wings for bigger vth. The peak-values of these
currents characterize a substantial steepness near the neutral plane and the
more the thermal velocity increases, the less the steepness is evident.

Figure 6.5: Vertical profiles of electron current density Je in the dawn-dusk
direction and total current density J = Ji + Je, for ε = 0.85 and bn = 0.02.
Here vth = 50 km/s (solid line), and vth = 170 km/s (short dashes), and
vth = 400 km/s (long dashes).



Figure 6.6: Vertical profiles of x-component of electric field Ex, magnetic
field correction bz and z-component of magnetic field Bz, for ε = 0.85 and
bn = 0.02. Here vth = 50 km/s (solid line), and vth = 170 km/s (short
dashes), and vth = 400 km/s (long dashes).

6.3 Different ε

Finally the influence of varying the ion anisotropy is explored.



6.3.1 Ion Moments

In Figure 6.7 the vertical profiles of ion density n, current density in the dawn-
dusk direction Jiy and the temperaure T are shown for bn = 0.02 and different
values of the ion source anisotropy. In the first run ε = 2, which corresponds

Figure 6.7: Vertical profiles of density n, ion current density Jiy and tem-
perature T for for vth = 170 km/s and bn = 0.02. Here ε = 0.3 (solid line),
ε = 0.85 (short dashes), and ε = 2 (long dashes).



to an high anisotropy, whereas a small anisotropy value corresponds to an
high streaming velocity u. The density grows with ε, remaining roughly the
same, as a function of x, showing a small peaked profile and small variations.
A bell-shaped current density profile is obtained and the peak value is higher
for bigger ε. The temperature profiles (in the bottom panel of Figure 6.7)
are rather flat, except for ε = 0.3, and the temperature appears to increase
with the decrease of ε. In particular, as the anisotropy decreasing is obtained
fixing the thermal velocity (vth = 170 km/s), varying the streaming velocity
from 85 km/s, 200 km/s to 510 km/s, ε decreasing corresponds to a current
sheet heating and to the temperature increasing.

6.3.2 Electron Moments

It appears (Figure 6.8) that the presence of electrons has a strong influence
on the global current sheet dynamics, causes the double humped profiles of

Figure 6.8: Vertical profiles of electron current density Je in the dawn-dusk
direction and total current density J = Ji+Je, vth = 170 km/s and bn = 0.02.
Here ε = 0.3 (solid line), ε = 0.85 (short dashes), and ε = 2 (long dashes).



the current as in the previous cases. The peak amplitude of electron current
density is directly proportional to the decreasing anisotropy and this is due
to a dominant effect of the temperature with respect to the pressure gradient.

Figure 6.9: Vertical profiles of x-component of electric field Ex, magnetic
field correction bz and z-component of magnetic field Bz, for vth = 170 km/s
and bn = 0.02. Here ε = 0.3 (solid line), ε = 0.85 (short dashes), and ε = 2
(long dashes).



6.3.3 Electromagnetic Fields

The anisotropy dependence of magnetic field results in a decrease of by with
anisotropy for |x| < 0.1 L. However, in the vicinity of neutral sheet, by in-
creases with ε increasing. The bottom panel of Figure 6.9 shows the total z
magnetic field profiles computed for different anisotropy levels; the diamag-
netic currents are deeper for higher ε , then the magnetic overshoots increase
with anisotropy and the profile of magnetic field converges to the injection
limiting profile (compare to similar results of of [116]). As already observed
in the case of different bn, the same order-like peak-value of the total current
density affects the behaviour of Bz, showing the same steepness in the very
center of the current sheet. On the top panel of Figure 6.9, we present the
electric field structure. The quadrupolar shape grows with anisotropy and it
is more evident for bigger ε. Here the temperature effect is again stronger
than the density gradient. Moreover, the density term in the equation 2.32
becomes more negative for small values of n/n0, explaining the electric field
variation with anisotropy.



Chapter 7

Summary and Discussion

We have motivated the need for and the usefulness of a hybrid plasma de-
scription in which ion kinetics are retained and the electrons are represented
as a massless fluid. The details of a 3D hybrid code to study the equilibrium
structure of the magnetotail have been discussed, and test problems have
been illustrated. Predictions from this hybrid model have been compared
with the observations in the magnetotail, which are currently available due
to Geotail and Cluster missions. The result of hybrid simulation have demon-
strated that the dominant contribution in the cross-tail current density comes
from ions, but the electrons are responsible for the current bifurcation and
also tripled structure of the current sheets. Moreover, it was shown that the
current bifurcation effect could be explained by the pressure gradient term.
The results recently provided by the Cluster spacecraft show typical scales
and peak values of the bifurcated structures very close to those obtained from
the numerical simulation. Further, for certain parameters of the magneto-
tail configuration, as the normal component of the magnetic field and ion
injection energy and anisotropy, we obtain a triple peak in the total current
density profile due, once again, to electrons. There is a single observation of
a triple peaked structure up to now [64], and it is very interesting that our
code can reproduce this observation.
Another implication of the electron dynamics is that the x component of the
magnetic field is modified showing two overshoots and a steeper behaviour
in the center of the current sheet than the Harris field profile. The magnetic
overshoots are frequently found in the observations, too.
The effect of the electron dynamics correspond also to a different electric
field structure inside the current sheet: whereas we find a constant electric
field along y direction equal to the input one, a perpendicular electric field
appears. This new component is due to the pressure gradient term ∇pe along
the direction normal to the current sheet. The presence of this electric field
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in the magnetotail is confirmed by Cluster crossing on August 17, 2003, that
shows that an electric field due to the electron pressure tensor of the order
of 1 mV/m points away from the current sheet along the direction normal
to the sheet [31]. This observation is in agreement with our numerical re-
sults which display an electric field with a peak value of the order of 15 E0

corresponding to 1.2 mV/m. We can conclude from our study that a self-
consistent structure of the current sheet should require the presence of an
electrostatic potential and a magnetic field different from the Harris model
[10, 95].
To study what is the effect of these new fields (Bz and Ex) on particles, a few
iterations are needed. Convergence typically takes only three iterations. This
indicates the existence of a stationary solution and guarantees the stability
of the numerical method.

We have also studied by hybrid simulations the current sheet for the pa-
rameters typical of the plasma sheet which correspond to the near-Earth
magnetotail, including the drift velocity vD = (cEy/B0)/vth and the normal
magnetic field bn = Bn/B0. It is found that there exists solutions of 3D
current sheet configuration which are sensitive to the normal magnetic field
component bn, ion injection kinetic energy EK and ion anisotropy ε at injec-
tion. The model presented here may be applied to explain some features of
the current sheets observed in the magnetotail plasma layer. It is emphasized
that the amplitude of current and plasma densities as well as of electric and
magnetic fields profiles depends on the above mentioned parameters. The
density decreases with the decrease in the normal magnetic field component,
as the ion and total current density. The electron current density shows a
double-humped profile with two peaks which are more narrow, with a larger
intensity, for small bn than for higher bn; this effect leads to the current sheet
splitting into a bifurcated structure for the smallest bn value. In this case,
Ex field profile decreases with bn. Then, the magnetic z field component is
quite insensitive to bn changing, indeed the two profiles roughly coincide.
We have undertaken the parametric study of current sheet structure for dif-
ferent values of ion kinetic energy EK . It is seen that as the thermal velocity
increases (i.e. the Larmor radius increases) the amplitute of the densities
decreases and their width increases. The temperature profile is roughly flat-
tened increasing in a direct proportion to the value of ion thermal velocity.
The ion current density exhibits a bell-shaped profile, it has a narrow sharp
peak in the very center of the sheet which becomes much broader in the cases
of higher thermal velocity, so that the bifurcated profile of current sheet is
due to electrons once again. The electric and magnetic field components in-
crease mostly with the decrease of thermal velocity except for a very small
regions (|x| < 0.1 L) in Bz profile. The magnetic overshoots are more pro-



nounced for larger vth and this is due to the diamagnetic wings in the total
current density profiles, whose intensity affects the magnetic field steepness
in the center of the current sheet: the more the thermal velocity increases,
the less the steepness is evident. Finally we have shown the variation of typ-
ical current sheet features with the ion source anisotropy. Here, we observe
that number and current density increase with ε. On the other hand, electron
current density decreases showing, in all cases, a bifurcated structure which
supports the current sheet bifurcation. The total current density shows dia-
magnetic wings sensitive to anisotropy growth whose intensity affects Bz, i.e.
the magnetic overshoots appear explicitly in its profiles and the variation of
overshoot amplitudes with increasing anisotropy is observed, as shown on the
curves.

Our study shows that a variety of different equilibria could be obtained
by varying the input parameters, something which is similar to the solutions
of the Grad-Shafranov equations, which depend on the arbitrary functions of
the magnetic surface. In this connection, we point out that the Harris equi-
librium, appealing as it may be, is by no way the only possible equilibrium,
but just one for which a complete analytical solution is possible. Indeed, a
wider class of Vlasov equilibria has been investigated [114, 93]. Here we show
that further configurations can be obtained by varying the parameters of our
hybrid code.
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Sauvaud, J. A., Frey, H. U., Fast flow during current sheet thinning,
Geophys. Res. Lett., 29, 23, 2140, (2002)

[64] Nakamura, R. , Baumjohann, W., Runov, A., Asano, Y., Balogh, A.,
R‘eme, H., Thin current sheet measured by Cluster at 200 km tetra-
hedron scale, paper presented at second Workshop on Thin current
Sheets, College Park, Md. (available at http://www.glue.umd.edu/ sit-
nov/TCS/tcs 1 files/online.html)

[65] Ness, N. F., Magnetotail research: the early years, pp. 11-20 in Mag-
netotail Physics, edited by A.T.Y. Lui, The Johns Hopkins University
Press, (1987)



[66] Neugebauer, M., and Snyder, C. W.,The Mission of Mariner 2: Pre-
liminary observations, solar plasma experiment, Science, 138, 1095,
(1962)
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erties of a bifurcated current sheet observed on august 29, 2001, Ann.

Geophys., 22, 2535, (2004)

[83] Runov, A., Nakamura, R., Baumjohann, W., Zhang, T. L., Volwerk,
M., Eichelberger, H., Balogh, A., Cluster observations of a bifurcated
current sheet, Geophys. Res. Lett., 30, 1036, (2005)

[84] Runov, A., Sergeev, V. A., Nakamura, R., Baumjohann, W., Zhang, T.
L., Asano, B., Volwerk, M., Vörös, Z., Balogh, A., Réme, H., Recon-
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