
D I PA RT I M E N T O D I M AT E M AT I C A E I N F O R M AT I C A

D OT T O R AT O D I R I C E R C A

X X X I I I C I C L O

S E T T O R E S C I E N T I F I C O D I S C I P L I N A R E I N F / 0 1 - I N F O R M AT I C A

T E S I D I D O T T O R AT O

A L O G I C - B A S E D D E C I S I O N S U P P O R T S Y S T E M F O R T H E
D I A G N O S I S O F H E A D A C H E D I S O R D E R S A C C O R D I N G
T O T H E I C H D - 3 I N T E R N AT I O N A L C L A S S I F I C AT I O N

R O B E R TA C O S TA B I L E

S U P E RV I S O R E C O O R D I N AT O R E

Prof. Marco Manna Ch.mo Prof. Gianluigi Greco

Novembre 2017 - Marzo 2021

C O N T E N T S

1 I N T RO D U C T I O N 2
1.1 Context and State-of-the-Art . 2
1.2 Motivation and Objectives . 4
1.3 Challenges and Contribution . 5
1.4 Structure of the Thesis . 6

I P R E L I M I N A RY N OT I O N S A N D N OTAT I O N S

2 T H E I C H D C L A S S I F I C AT I O N 8
2.1 History and Objectives . 8
2.2 Structure and Content Organization 8
3 A N S W E R S E T P RO G R A M M I N G 11
3.1 Syntax . 11
3.1.1 Terms . 12
3.1.2 Atoms and Literals . 12
3.1.3 Rules, Constraints, Queries and Programs 14
3.2 Semantics . 18
3.2.1 Theoretical Instantiation . 19
3.2.2 Interpretations . 21
3.2.3 Answer Sets . 22
3.3 The Guess-Check-Optimize Technique 25
3.4 Applications and Examples . 26
3.4.1 Three-colorability . 26
3.4.2 Hamiltonian Path . 27
3.4.3 k-Clique . 29
3.4.4 Maximal Clique . 30

II T H E H E A D - A S P S Y S T E M

4 K N O W L E D G E B A S E O F T H E S Y S T E M 32
4.1 Relational Schema and Assertions . 32
4.2 Methodology for Diagnoses Encoding 34
4.3 Examples of Encoded Diagnoses . 36
5 T H E L O G I C A L D E C I S I O N M O D U L E 37
5.1 ASP Encoding . 38
5.1.1 Pruning the Search Space . 38
5.1.2 Selecting a Candidate Question . 39
5.1.3 Evaluating the Impact of a Candidate Question 40
5.2 The Next Question Strategy . 40
6 S Y S T E M I M P L E M E N TAT I O N A N D T E S T I N G 42
6.1 The System Architecture . 42

ii

C O N T E N T S iii

6.2 Verification and Validation of the Approach 43

III R E L AT E D W O R K A N D C O N C L U S I O N

7 R E L AT E D W O R K 47
8 C O N C L U S I O N 50

A B S T R A C T

Decision support systems play an important role in medical fields as they can augment
clinicians to deal more efficiently and effectively with complex decision-making
processes. In the diagnosis of headache disorders, however, existing approaches
and tools are still not optimal. On the one hand, to support the diagnosis of this
complex and vast spectrum of disorders, the International Headache Society released
in 1988 the International Classification of Headache Disorders (ICHD), now in
its 3rd edition: a 200 pages document classifying more than 300 different kinds of
headaches, where each is identified via a collection of specific nontrivial diagnostic
criteria. On the other hand, the high number of headache disorders and their complex
criteria make the medical history process inaccurate and not exhaustive both for
clinicians and existing automatic tools. To fill this gap, we present HEAD-ASP, a
novel decision support system for the diagnosis of headache disorders. Through a
REST Web Service, HEAD-ASP implements a dynamic questionnaire that complies
with ICHD-3 by exploiting two logical modules to reach a complete diagnosis while
trying to minimize the total number of questions being posed to patients. Finally,
HEAD-ASP is freely available on-line and it is receiving very positive feedback from
the group of neurologists that is testing it.

1

1
I N T R O D U C T I O N

1.1 CONTEXT AND STATE-OF-THE-ART

The thesis work is a contribution to an experimental development and industrial re-
search project, whose name is Alcmeone, funded by the Italian Ministry of Economic
Development. The aim of the project is to provide an innovative organizational and
management model, and an advanced technological platform of services for support-
ing the integrated clinical management of headache patients. This work, therefore,
focuses on the management of headache disorders in the context of decision support
systems. Decision Support System (DSS) have been conceived for providing the “in-
formation and analysis necessary for the decisions that must be made” [Don76]. After
almost 50 years, DSSs are still evolving, and they play an important role in various
application domains, in particular in the medical field, as they can help clinicians
to deal more efficiently and effectively with complex decision-making processes
such as diagnostics, disease management, and drug control [SPB+20]. Since the
seventies, a lot has been done both in medicine and computer science to make DSS
more and more robust and reliable. But in some specific fields, such as the diagnosis
of headache disorders, existing approaches and tools are still not optimal. Headache
disorders represent one of the most common and disabling conditions of the nervous
system throughout the world [SHJ+07]. In particular, about 90% of all headaches
are primary, namely, magnetic resonance imaging of the brain reveals no abnormal-
ity [Eva17].Many of them are severe enough to compromise, even very significantly,
the quality of life of those who are affected.

The diagnostic evaluation of such disorders is notoriously one of the most difficult,
since they are devoid of biochemical or neuroradiological markers. Therefore, their
evaluation is mainly based on the description of symptoms by the patient, that is,
on what in medicine is the collection, by the doctor, of information on the patient’s
clinical history. The elements to be taken into account are extremely varied, and the
set of possible headache disorders, so far recognized by the medical community, is
also very extended. To support the diagnosis of this complex and vast spectrum of
disorders, in 1988, the International Headache Society [IHS18] released the first
edition of the International Classification of Headache Disorders (ICHD), now in its
3rd edition: a 200-page document classifying, in a taxonomic way, more than 300
different kinds of headaches, and where each single form of headache is identified
via a collection of specific nontrivial diagnostic criteria (see Figure 1.1). Due to the
complexity and vastness of the considered domain, the medical history process may
be inaccurate and not exhaustive, thus, it is of paramount importance, in this specific

2

1.1 C O N T E X T A N D S TAT E - O F - T H E - A RT 3

1.1 Migraine without aura
Diagnostic criteria:
A. At least five attacks1 fulfilling criteria B–D

B. Headache attacks lasting 4–72 hours (when untreated or unsuccessfully treated)

C. Headache has at least two of the following four characteristics:

1. unilateral location

2. pulsating quality

3. moderate or severe pain intensity

4. aggravation by or causing avoidance of routine physical activity (e.g. walking or climbing stairs)

D. During headache at least one of the following:

1. nausea and/or vomiting

2. photophobia and phonophobia

E. Not better accounted for by another ICHD-3 diagnosis.

Figure 1.1: Diagnostic criteria of an ICHD-3 diagnosis.

medical field, to support clinicians and specialists during the entire diagnostic phase,
in order to improve disease management.

As said, a number of approaches in this domain have been already proposed in the
literature. The most related ones are briefly discussed next. De Simone et al. (2004)
developed AIDA Cefalee, a system consisting of a database for the storage of symp-
toms and diagnostic data of patients paired with a module that can suggest possible
diagnosis but only when all symptoms have been acquired [DSMB04]. In particular,
the database can be synchronized over the network allowing a continuous sharing of
the patients’ information and a cooperation between different research groups. The
diagnostic tool has been validated experimentally but no details of the classification
method are provided. Simìc et al. (2008) presented a novel tool that makes use of
rule-based fuzzy logic but is limited to a few forms of disorders [SSSSI08]. The
researchers showed the workflow of the basic rule-based fuzzy logic systems model
in which the rules are expressed as a collection of if-then statements. In particular,
the information can be extracted by the patients in the form of if-then statements and
these rules can be modeled using a fuzzy logic system; once the rules are provided
to the system, it can be viewed as an input-to-output mapping. Eslami et al. (2013)
proposed a DSS implementing a dynamic questionnaire, but neither the system is pub-
licly available nor the underlying classification method is described [EREHN+13]. In
particular, the system provides questions related to headache disorders and, eventually,
derives the most appropriate type of headache using simple human-like algorithmic
logic; the accuracy of the diagnosis depends also on the accuracy of the patient’s
response. Dong et al. (2014) proposed a general architecture of a DSS based on the
ICHD-3 classification [DYH+14]. In particular, the researchers’ work is based on
a 3-steps translation of the ICHD-3: first in terms of flow-charts, then in terms of
an ontological model and, finally, in terms of rules. The system is described mostly
from an architectural point-of-view and in-depth details of the translation and of
the diagnostic process are not provided. Vandewiele et al. (2018) proposed a DSS
based on machine learning which generates an interpretable predictive model from
the collected data [VDBL+18]. In particular, the system consists of three modules:
a mobile application that captures symptomatic data from patients; an automated
diagnosis support module that generates an interpretable decision tree, based on data
semantically annotated with expert knowledge; and a web application that helps the

1.2 M OT I VAT I O N A N D O B J E C T I V E S 4

clinicians to interpret captured data and learned insights by means of visualizations.
The diagnostic process is based on supervised machine learning models.

1.2 MOTIVATION AND OBJECTIVES

From the above overview, it should be already clear that none of the existing systems
provides, at the same time, (i) the same level of accuracy required by ICHD-3, (ii) a
solid, extensible and open knowledge representation model for fully and faithfully
representing the ICHD-3 criteria, (iii) a dynamic questionnaire to support clinicians
during the entire diagnostic phase, and (iv) an optimization strategy to minimize the
number of questions posed to patients. Moreover, (v) none of the aforementioned
systems is made available to be tested or used.

To make considerable steps forward in the diagnosis and management of headache
disorders, the Italian Ministry of Economic Development appreciated and funded the
research project Alcmeone, whose aim has been described in Section 1.1. In particular,
concerning the headache diagnosis, the goal is to develop a Decision Support System
(DSS) that meets the following five main project specifications.

1. strictly represent ICHD-3 information, structure and criteria;

2. focus on primary headaches, namely, on the first four chapters of the interna-
tional classification;

3. implement an interactive questionnaire that rigorously guides both clinicians
and patients during the medical history process;

4. reach a complete diagnostic picture of each patient by marking each primary
headache diagnosis as compatible or not compatible;

5. keep reasonably low the number of questions posed to patients during the
medical history process.

Driven by the lack of effective tools in the headache domain and by the project
specifications, this thesis work has consisted of the development of HEAD-ASP, a
novel DSS for the diagnosis of headache disorders, according to their classification
provided within the most recent version of the ICHD.

Table 1.1 shows a comparative analysis of the tools existing in literature, including
HEAD-ASP, with respect to some important parameters, highlighting the approach
used for the development of each system. Regarding the type of questionnaire im-
plemented, it is worth noting that static means the patient has to answer all possible
questions in some order, whereas dynamic means the patient has to answers a subset
of questions dynamically proposed by the system, thus, the length of the questionnaire
may vary. Moreover, in the table are also shown the reference ICHD version, if the
system has been verified and validated and if it is available online.

1.3 C H A L L E N G E S A N D C O N T R I B U T I O N 5

System Approach Latest
Release

Questionnaire
Type

ICHD
Version

Verification
& Validation

Online
Access

AIDA
CEFALEE

Flowcharts 2007 Static ICHD-2 ✓ ✗

SIMIC
ET AL.

Fuzzy
Logic

2008 Dynamic ICHD-2 ✗ ✗

ESLAMI
ET AL.

Algorithmic
Logic

2013 Dynamic ICHD-2 ✓ ✗

DONG
ET AL.

Logic Programming 2014 Static ICHD-3 ✓ ✗

VANDEWIELE
ET AL.

Supervised
Machine Learning

2018 Static ICHD-3 ✓ ✗

HEAD-ASP Logic Programming
(ASP)

2020 Dynamic ICHD-3 ✓

(still in progress)
✓

Table 1.1: Comparison between HEAD-ASP and the current state of the art systems.

1.3 CHALLENGES AND CONTRIBUTION

During the development of the system, we faced three main technical challenges:
designing a knowledge representation model being able to accommodate domain
medical knowledge (often implicit in ICHD-3) together with a natural and formal
encoding of the ICHD-3 diagnoses (among the most complex in the medical field);
designing a standard methodology to encode ICHD-3 diagnoses into logical rules over
the data model mentioned above; and designing an efficient and effective heuristics
offering a good trade-off between the average number of questions and the time
required to determine the next question.

After more than two years of work, HEAD-ASP does fulfill all the aforementioned
desiderata and project specifications. From a technological viewpoint, the system
consists of a REST Web service implementing a dynamic and interactive questionnaire
that supports clinicians during the diagnostic phase. From a knowledge representation
and reasoning perspective, the Web service encapsulates and manages two formal
logical modules expressed in Answer Set Programming (ASP): the first one is a
deductive module that faithfully encodes all primary headache diagnoses and criteria
of ICHD-3, whereas the second one is an optimization module for minimizing the
number of questions that are necessary to complete the diagnostic picture of patients.

Overall, I believe that HEAD-ASP fully meets the real needs in this domain. This has
been made possible thanks to the adoption of a declarative knowledge representation
formalism and to a close interaction between clinicians and computer scientists.
Indeed, although it is still a research prototype, it is receiving very positive feedback
from the group of neurologists that are testing and using it within Alcmeone. Some
statistics on its effectiveness are reported in Section 6.2. The system is freely available
on-line at https://head-asp.github.io/ichd-dss/.

https://head-asp.github.io/ichd-dss/

1.4 S T RU C T U R E O F T H E T H E S I S 6

1.4 STRUCTURE OF THE THESIS

The thesis is organized into three parts:

- In the first part we present an overall introduction of the main concepts that will be
discussed in this work. In particular, in Chapter 2 the guidelines will be analyzed in
detail identifying the essential aspects of the classification from a structural point
of view. Since both the deductive module that encodes all diagnoses and criteria
and the optimization module that implements the questionnaire are expressed in
ASP, Chapter 3 will briefly introduce declarative languages focusing on Answer Set
Programming. We will formalize its syntax and semantics and we will provide some
example of known Knowledge Representation and Reasoning (KRR) problems
solved using ASP.

- In the second part of this work we focus on the design and implementation of
the HEAD-ASP system. More in detail, Chapter 4 will describe the designing of
the knowledge representation model being able to accommodate domain medical
knowledge and of the formal methodology to encode diagnoses into ASP logical
rules; Chapter 5 will focus on the description of the logical decision module
analyzing all the stages of the ASP encoding that implements the questionnaire.
Eventually, Chapter 6 will present the HEAD-ASP system from a technological
perspective, i.e., it will report about the system architecture and its implementation.
Furthermore, it will present the results obtained during a testing phase run to verify
and to investigate the performance of the approach.

- The thesis is closed with a third part, in which (i) we describe some of the most
recent works concerning decision support systems for the diagnosis of headache
that can be found in literature (Chapter 7), and (ii) we draw conclusions outlining
possible future work (Chapter 8).

Part I

P R E L I M I N A R Y N O T I O N S A N D N O TAT I O N S

2
T H E I C H D C L A S S I F I C AT I O N

In this chapter we analyze the guidelines in detail identifying the essential aspects of
the classification from a structural perspective.

2.1 HISTORY AND OBJECTIVES

The International Classification of Headache Disorders (ICHD) is a detailed hierar-
chical classification of all headache-related disorders published by the International
Headache Society. It is considered the official classification of headaches by the
World Health Organization, and, in 1992, was incorporated into the 10th edition
of their International Classification of Diseases (ICD-10). Each class of headache
contains explicit diagnostic criteria, meaning that the criteria include quantities rather
than vague terms like several or usually, that are based on clinical and laboratory
observations.

ICHD-3 is the document that contains the guidelines for the diagnosis of headaches.
It describes the diagnostic criteria for all known headache disorders. The original
document, written in English, has been translated into various languages. The Italian
translation is currently only available for its third beta edition and has not yet been
updated for ICHD-3. ICHD-3 was published as the first issue of Cephalalgia in 2018,
exactly 30 years after the first edition of the International Classification of Headache
Disorders, ICHD-I. This first version was based primarily on expert opinion, but still
proved largely valid. ICHD-II, published in 2004, included a number of changes,
partly resulting from new evidence and partly from revised expert opinions. The new
scientific evidence has played an even more important role in the changes that led to
ICHD-3 beta and all further changes included in ICHD-3 are based on that evidence.
The classification of headaches will, therefore, in the future, be guided entirely by
research. ICHD-3 reports a systematic classification with explicit diagnostic criteria
for each entity of the disorder. It is very broad and is not intended to be learned by
heart; even for the members of the classification committee it is difficult to remember
all its contents. It is a document designed to be consulted several times and, in clinical
practice, it is useful when the diagnosis is uncertain.

2.2 STRUCTURE AND CONTENT ORGANIZATION

International Classification of Headache Disorders - 3rd Edition (ICHD-3) provides
specific criteria, defined in natural language, for diagnosing known headaches. The
possible diagnoses are organized in a hierarchical structure that expresses the existing

8

2.2 S T RU C T U R E A N D C O N T E N T O R G A N I Z AT I O N 9

relations between them. Each type of headache diagnosis includes its own sub-
categories, that is, other more specific types of headache, which correspond to a
higher level of detail.

The classification consists of 14 chapters grouped into 4 parts. This work focuses
on primary headaches (part 1, chapters 1–4) according to the project specifications
reported above. Anyway, the designed methodology can be definitely also applied to
encode the rest of the diagnoses since they do not differ substantially in the structure.

Each chapter concerning primary headaches collects diagnoses related to a particu-
lar type of headache: Migraine, Tension-type headache (TTH), Trigeminal autonomic
cephalalgias (TACs) and Other primary headache disorders. In the following, we
describe the structural aspects of the diagnoses, and then we report the main notions
that underlie their content.

The diagnosis represents the fundamental structural unit of ICHD-3. Each diagnosis
is identified by a set of criteria that appear within a list marked with letters (“A”,“B”,...).
Each criterion includes a series of requirements framed within the symptomatic state
of the diagnosis the criterion refers to. A diagnosis is considered compatible if,
considering the ailments the patient suffers from, the conditions expressed by all its
criteria are met. A criterion can be presented in a monothetic or polythetic form. A
criterion is considered monothetic when it identifies a set of specific requirements.
The necessary condition for it to be validated is that all its requirements are met. A
criterion is considered polythetic when it consists of requirements that appear in an
enumerative list format within its own statement. To make such type of criterion as
simple as possible, we assign the meaning of sub-criterion to each set of requirements
identified by an element of this numbered list (thus, each sub-criterion is marked with
a number). The necessary condition for the validation of a polythetic criterion is to
verify a minimum number of sub-criteria on the basis of a fixed inclusion threshold,
as shown in Figure 1.1 of Chapter 1. A systematic analytical phase was necessary
to identify the main notions of a diagnosis (see Figure 2.1). At the basis of ICHD-3
there is the notion of symptom; it can be identified as a key notion because it is
involved in the criteria of all the diagnoses of primary headaches. Throughout the
systematic analysis of ICHD-3 contents, we extracted the attributes associated with
the symptoms: (i) location of pain (unilateral, bilateral, etc.); (ii) aggravating factors
that worsen the pain (such as the movement, etc.) and any limitations caused by pain
(such as perform routine physical activities); and (iii) type of pain associated with
headache (pulsating, intense, etc.). Furthermore, symptoms can be also characterized
by: (i) duration, meant as the persistence over time of the pain caused by a symptom;
(ii) frequency of pain attacks, i.e., the number of times the pain caused by a symptom
occurs over a specified length of time (such as how many times a day, how many
days a month the pain occurs) and, moreover, the (continuous) time interval in which
a certain frequency lasts (as an example “headache occurs on 1-14 days/month on
average for >3 months”); (iii) number of attacks that affect the patient; and (iv)
information relating to the report of a particular clinical exam previously done by the
patient.

2.2 S T RU C T U R E A N D C O N T E N T O R G A N I Z AT I O N 10

Figure 2.1: Identification of the notions which characterize the diagnostic criteria.

3
A N S W E R S E T P R O G R A M M I N G

Logic Programming (LP) is a high level and human oriented programming paradigm,
primary based on formal logic, to describe problems to computers without specifying
how to solve them. Namely, LP’s purpose is to make machines able to solve a problem
by describing the problem themselves, lifting the programmers from the burden of
defining how to solve it. In particular, in LP a single formalism has to suffices for
both logic and computation, and that logic subsumes computation [KB83]. This
aim is achieved by representing a given computational problem by means of a logic
program whose intended models correspond to solutions, which can be found using a
solver [VEK76, Llo12, Kow88, Lif99].

Around the 1950s, John McCarthy [LGP+90] discussed how logic is particularly
suited to be a full-fledged declarative programming paradigm, allowing to model prob-
lems in a natural and human-oriented fashion, and effectively represent knowledge
representation and rational human reasoning. In the same years, a new computer sci-
ence field was born: AI, and logic-based languages gained more and more importance
and popularity. A breakthrough happened when Alain Colmerauer and its research
group introduced Prolog [CR96] (from the French, PROgrammation en LOGique),
the first logic programming language. However, it emerged that the first-order logic
on which Prolog is based is not capable of modelling the commonsense human
reasoning, which is non-monotonic: we as humans, starting from some premises,
may rationally regret them whenever new information become available, while in
first-order logic, logical consequences cannot be invalidated since the underlying
reasoning is monotonic. Subsequently, new logic formalisms devoted to represent
non-monotonic reasoning were introduced, such as Default Logic [Rei80], Autoepis-
temic Logic [Moo85] and Circumscription [McC80]. In the late ’80s and early ’90s,
Michael Gelfond and Vladimir Lifschitz presented the logic formalism Answer Set
Programming (ASP) [GL88, GL91] allowing to express non-monotonic reasoning
in purely declarative fashion [BET11, EFLP00, EIK09a, GL91, MT99, Nie99]. ASP
became widely used in AI and recognized as a powerful tool for KRR.

3.1 SYNTAX

Let I be a set of identifiers. An identifier is a non-empty string starting with some
lowercase letter and containing only alphanumeric symbols and the symbol “_”
(underscore).

Example 3.1.1. Examples of identifiers are: a, a1_B, a_ID, vertex

11

3.1 S Y N TA X 12

3.1.1 TERMS

A term is either a constant, a variable, an arithmetic term or a functional term.
In particular, constants and variables can be considered as “basic terms”, while
arithmetic and functional terms are defined inductively as combinations of terms.

Definition 3.1.1 (Constant Term). A constant is either a symbolic constant, if it is an
identifier, a string constant, if it is a quoted string, or an integer.

Definition 3.1.2 (Variable Term). A variable is a non-empty string starting with
some uppercase letter and containing only alphanumeric symbols and the symbol “_”
(underscore).

Furthermore a special variable, namely anonymous variable, is represented by the
symbol “_” (underscore). This syntactic shortcut is intended to indicate a fresh
variable, that does not appear elsewhere in the context in which it is located.

Definition 3.1.3 (Arithmetic Term). An arithmetic term has the form -(t) or (t13t2)
for terms t1 and t2 with 3 ∈ {+,−,∗,/}. Parentheses can optionally be omitted, and
standard operator precedences apply.

Definition 3.1.4 (Functional Term). A functional term has the form f (t1, . . . , tn),
where f is an identifier, known as functor, t1, . . . , tn are terms and n > 0.

Example 3.1.2. Examples of terms are:

– Constants: a, x, “http://google.com”, 0, 123

– Variables: X , X_134, X2, Color

– Arithmetic terms: -X , X +Y , 2∗ (-5), X + ab, X/3

– Functional terms: f (X), f ather(aristotle), g(2∗5,“abc”)

A term is ground (i.e., variable-free) if it does not contain any variable. For, instance
in Example 3.1.2 all the constants, the arithmetic term 2 ∗ (-5) and the functional
terms f ather(aristotle) and g(2∗5,“abc”) are ground.

3.1.2 ATOMS AND LITERALS

Definition 3.1.5 (Predicate). Given an identifier p and an integer n with n≥ 0, the
expression p/n represents a predicate. p is said predicate symbol and n represents
the associated arity.

Example 3.1.3. Examples of predicates are: a/2, p/3, predicate_3/1, true/0.

In the following, when no ambiguities arise we denote a predicate p/n simply as
p.

3.1 S Y N TA X 13

Definition 3.1.6 (Predicate Atom). A predicate atom has the form p(t1, . . . , tn), where
n≥ 0, p/n is a predicate with predicate name p and arity n and t1, . . . , tn are terms; if
n = 0, parenthesis are omitted and the notation p is used.

Definition 3.1.7 (Classical Atom). A classical atom is either −a or a where a is a
predicate atom and − denotes the strong negation symbol.

Definition 3.1.8 (Built-in Atom). A built-in atom has the form t1 ▷ t2 where t1, t2 are
terms and ▷∈ {<,<=,=,<>, !=,>,>=}.

Definition 3.1.9 (Naf-Literal). A naf-literal can either be a built-in atom or have
form a or not a where a is a classical atom, and not is the negation as failure symbol.

Example 3.1.4. Some examples are shown below.

– Predicate Atoms: edge(X ,Y), atom(f (a,b),c), true

– Classical Atoms: edge(X ,Y), atom(f (a,b),c), true, -true

– Built-in Atoms: f ather(aristotle) = nicomachus, X ! = Y , X ∗2 = Y

– Naf-Literals: f ather(aristotle) = nicomachus, X ! =Y , X ∗2 =Y , edge(X ,Y),
-atom(f (a,b),c), true, -true, not -true, not true

In addition to the type of atoms above illustrated, aggregate atoms have been intro-
duced to permit aggregation operations on multi-sets of terms by means of concise
expressions.

Definition 3.1.10 (Aggregate Element). An aggregate element is composed as:
t1, . . . , tm : l1, . . . , ln, where t1, . . . , tm are terms l1, . . . , ln are naf-literals for n≥ 0, m≥ 0.

Definition 3.1.11 (Aggregate Atom). An aggregate atom has the form:

a f{e1, . . . ,en}▷ t

where:

– a f ∈ {#count,#sum,#max,#min}

– e1, . . . ,en are aggregate elements for n≥ 0

– ▷∈ {<,<=,=,<>, !=,>,>=}

– t is a term

Definition 3.1.12 (Aggregate Literal). An aggregate literal is either a or not a where
a is an aggregate atom.

Example 3.1.5. For instance, the following are aggregate literals: not #max{ X ,Y :
age(X ,Y)}< 20, #sum{X ,Y : age(X ,Y)}= s(S), #count{1 : a(1)}> 3. Moreover,
the latter two literals are also aggregate atoms.

3.1 S Y N TA X 14

An atom is ground if it does not contain any variable. A literal is ground if its
atom is ground. In Examples 3.1.4 and 3.1.5 f ather(aristotle) = nicomachus, -
atom(f (a,b),c), true, -true, not -true, not true, #count{1 : a(1)}> 3 are ground.

In the following we will refer to classical, built-in and aggregate atoms as atoms.
Similarly, we will indicate naf and aggregate literals as literals. A literal is negative if
the not symbol is present, otherwise it is positive.

3.1.3 RULES, CONSTRAINTS, QUERIES AND PROGRAMS

After defining the basic constructs, we now describe the main components of an ASP
logic program.

Definition 3.1.13 (Rule). A rule r has the following form:

a1 | . . . | an :− b1, . . . ,bm.

where:

– a1, . . . ,an are classical atoms

– b1, . . . ,bm are literals

– n≥ 0,m≥ 0

The disjunction a1 | . . . | an is the head of r, while the conjunction b1, . . . ,bm is the
body of r. We denote by H(r) the set {a1, . . . ,an} of the head atoms, and by B(r)
the set {b1, . . . ,bm} of the body literals. B+(r) denotes the set of literals occurring
positively in B(r); while B−(r) is the set of negative literals in B(r). A rule having
precisely one head literal (i.e., n = 1) is said to be a normal rule; if n > 1 the rule is
disjunctive.

Example 3.1.6. Examples of rules are:

hasUmbrella(X) | doesNotHaveUmbrella(X) :− person(X).

isRaining | -isRaining :− cloudyWeather.

Definition 3.1.14 (Fact). A rule r is a fact with B(r) = /0, |H(r)|= 1 and H(r) = {a}
where a is a classical ground atom.

Example 3.1.7. Examples of facts are:

cloudyWeather. -isRaining. person(alice). person(bob).

the :− sign is usually omitted.

In the following, as it is common, we will adopt the notation reported next to rep-
resent in a compact way a set of facts: p(m11 ..m12 , . . . ,mn1 ..mn2). where p/n is a

3.1 S Y N TA X 15

predicate of arity n, and mi j with i ∈ {1, . . .n} and j ∈ {1,2} are terms. For instance,
a(1..2, f (3..4)). defines the facts: a(1, f (3)). a(2, f (3)). a(1, f (4)). a(2, f (4)).

A predicate p/n is referred to as an EDB predicate if, for each rule r in which p/n
appears in H(r), r is a fact; all others predicates are referred to as IDB predicates. The
set of facts in which EDB predicates occur, is called Extensional Database (EDB),
the set of all other rules is the Intensional Database (IDB).

Definition 3.1.15 (Strong (or Integrity) Constraint). A strong constraint s is a rule
with |H(s)|= /0.

Definition 3.1.16 (Weak Constraint). A weak constraint c is a special type of rule, of
the form:

:∼ b1, . . . ,bm. [w@l, t1, . . . , tn]

where:

– n≥ 0, m≥ 0

– b1, . . . ,bm are literals

– w, l, t1, . . . , tn are terms; w and l are referred to, respectively, as weight and level
for c; if l = 0, the expression @0 can be omitted.

Basically, a weak constraint is like a strong one, where the implication symbol :− is
replaced by :∼. The informal meaning of a weak constraint :∼ B. is “try to falsify B,”
or “B should preferably be false”.

For a weak constraint c we will indicate as weak specification, denoted W (c), the
part within the square brackets.

Example 3.1.8. Examples of constraints are:

:− isRaining,not isWetStreet.

:∼ isRaining, person(X),not hasUmbrella(X). [1]

A rule r is ground if all the atoms in H(r) are ground and all the literals in B(r) are
ground. A strong constraint s is ground if all the literals in B(s) are ground. A weak
constraint c is ground if all the literals in B(c) are ground, and all the terms in its
weak specification W (c) are ground.

In Example 3.1.6 the rule isRaining | -isRaining :− cloudyWeather. is ground, as
well as the two constraints in Example 3.1.8.

For a literal l, let var(l) be the set of variables appearing in l; if l is ground
var(l) = /0. For a conjunction of literals C, var(C) denotes the set of variables
occurring in the literals in C; similarly, for a disjunction of atoms D, var(D) denotes
the set of variables in the atoms in D. Inductively, for a rule r, var(r) = var(H(r))∪
var(B(r)); for a strong constraint s, var(r) = var(B(s)); for a weak constraint c,
var(c) = var(B(c))∪ var(W (c)).

Given a rule or weak constraint r, a variable X is global if it appears outside of an
aggregate element in r; we denote as varg(r) the set of global variables in r. Given an

3.1 S Y N TA X 16

aggregate element e in a rule or weak constraint r, varl(e) = var(e)\ var(r) denotes
the set of local variables of e, i.e., the set of variables appearing only in e, while the set
of global variables of e contains variables appearing in both r and e, i.e., varg(e) =
var(r)∩ var(e). Suppose that r contains the aggregate elements E = {e1, . . . ,en},
then var(r) can be also defined as var(r) = varg(r)∪

⋃n
i=1{varl(ei)|ei ∈ E}; if n = 0

and thus E = /0, i.e., r does not contain any aggregate element, then var(r) = varg(r).

Example 3.1.9. As an example, given the following rule r:

a(X) :− b(X), not c(X),#sum{Y : d(X ,Y);Z : f (Z)}.

we can observe that var(r) = {X ,Y ,Z}, varg(r) = {X}, varl(Y : d(X ,Y)) = {Y},
varl(Z : f (Z)) = {Z}.

In the following, we will denote rules and constraints (weak or strong) simply as
rules.

Definition 3.1.17 (Query). A query has the form: a? where a is a classical atom.

Example 3.1.10. Examples of queries are: -isRaining?, hasUmbrella(X)?.

A query is ground if its atom is ground. In Example 3.1.10 -isRaining? is ground.

Definition 3.1.18 (Program). A program is a finite set of rules, possibly accompanied
by a single query.

A program is ground if all its rule, constraints, and the possible query are ground. A
program containing disjunctive rules is disjunctive, otherwise it is non disjunctive.

Example 3.1.11. The following constitutes a disjunctive program:

hasUmbrella(X) | doesNotHaveUmbrella(X):− person(X).

isRaining | -isRaining:− cloudyWeather.

:− isRaining,not isWetStreet.

:∼ isRaining, person(X),not hasUmbrella(X). [1]

cloudyWeather. -isRaining.

person(alice). person(bob).

hasUmbrella(bob)?

Programs are also classified according to their structural properties, such as depen-
dencies among predicates [CCIL08].

Definition 3.1.19. (Dependency Graph) The Dependency Graph of P is a directed
graph GP = ⟨N,E⟩, where N is the set of IDB predicates of P, and E contains an edge
(p/n,q/m) if there is a rule r in P such that q/m occurs in the head of r and p/n
occurs in a classical atom of B(r) or in a classical atom within an aggregate literal of
B(r).

3.1 S Y N TA X 17

The graph GP induces a partition of P into subprograms (also called modules). For
each strongly connected component (SCC)1 C of GP (a set of predicates), the set of
rules defining the predicates in C is called module of C and is denoted by MC. A rule r
occurring in a module MC (i.e., containing in its head some predicate q/m∈C) is said
to be recursive if there is a predicate p/n ∈C in the positive body of r; otherwise, r is
said to be an exit rule. Moreover, we say that p/n and q/m are recursive predicates.
A program containing at least a recursive rule is said recursive.

Definition 3.1.20. (Component Graph) The Component Graph of a program P is a
directed labelled graph Gc

P = ⟨N,E, lab⟩, where N is the set of strongly connected
components of GP, and E contains:

– an edge (B,A) with lab((B,A)) =“+”, if there is a rule r in P such that a ∈ A
occurs in the head of r and b ∈ B occurs in a classical atom of B(r) or in a
classical atom within an aggregate literal of B(r);

– an edge (B,A), with lab((B,A)) =“-”, if there is a rule r in P such that a ∈ A
occurs in the head of r and b ∈ B occurs in a negative naf-literal of B(r) or in a
negative naf-literal within an aggregate literal of B(r), and there is no edge e′

in E, with lab(e′) =“+”.

A predicate p/n is stratified [ABW88] with respect to negation if it does not occur in
cycles in Gc

P involving negative dependencies (i.e., edges labelled with “-”), otherwise
p/n is said unstratified. Consequently, a program P is stratified with respect to
negation if every predicate appearing in it is stratified, or equivalently, if no cycles
in Gc

P involve negative dependencies, otherwise P is said unstratified. A predicate
is solved if: (i) p/n is defined solely by non-disjunctive rules (i.e., all rules with
p/n in the head are non-disjunctive), and (ii) q does not depend (even transitively)
on any unstratified predicate or disjunctive predicate (i.e., a predicate defined by a
disjunctive rule).

The Component Graph induces a partial ordering among the SCCs of the Depen-
dency Graph as follows. For any pair of nodes A,B of Gc

P, A positively precedes B in
Gc

P (denoted A≺+ B) if there is a path in Gc
P from A to B in which all arcs are labeled

with “+”; A negatively precedes B (denoted A≺− B), if there is a path in Gc
P from A

to B in which at least one arc is labeled with “−”. This ordering induces admissible
component sequences C1, . . . ,Cn of SCCs of GP such that for each i < j

– C j ⊀+ Ci;

– if C j ←Ci then there is a cycle in Gc
P from Ci to C j (i.e., either Ci ≺+ C j or

Ci←C j).

Several sequences exist in general.

1 We briefly recall that a strongly connected component of a directed graph is a maximal subset of the
vertices, such that every vertex is reachable from every other vertex.

3.2 S E M A N T I C S 18

Example 3.1.12. As an example let us consider the following program P1:

r1 : a(X):− b(X),not c(X).

r2 : b(Y):− a(Y),Y = X + 1, f (X).

r3 : c(X):− d(X),not a(X).

r4 : d(X):− f (X),not g(X).

The dependency and component graphs are illustrated in Figure 3.1. In the dependency
graph GP1 , there are three components: (1) a first component C1 is formed by predicate
a/1 and b/1, (2) the predicate c/1 forms another component C2, and (3) a third
component C3 is composed by the predicate d/1. Hence, MC1 = {r1,r2}, MC2 = {r3},
MC3 = {r4}. Moreover, the rules r1 and r2 are recursive, thus P1 is recursive. Finally,
in the component graph Gc

P1
there is a cycle involving components {a/1,b/1} and

{c/1}, and so P1 is unstratified under negation.

{a/1, b/1} {c/1}

{d/1}

-

- +

a/1 b/1

GP GP
c

c/1 d/1

11

Figure 3.1: Dependency and Component Graphs.

3.2 SEMANTICS

The semantics of an ASP program is given by the set of its answer sets. Each
answer set corresponds to a solution for the encoded problem. Notably, ASP is a
fully declarative paradigm: the order in which the program is composed by rules,
constraints and query, as well as the order of literals and atoms in the rules bodies
and heads, have no effect on the semantics.

Furthermore, answer sets are defined for ground programs only. However, for
every non-ground program, a semantically equivalent ground program can be defined.
The process of producing such a ground program is referred to as instantiation
or grounding. Essentially, for each rule of a non–ground program its variables are
considered universally quantified and ranging over the set of ground terms defined
by the program Herbrand Universe. Intuitively, variables are just an abstraction to
represent ground terms.

3.2 S E M A N T I C S 19

In the following, we formalize the semantics of ASP-Core-2, obtained by inher-
iting the semantics proposed in [GL91] as a generalization of stable model seman-
tics [GL88], extended to aggregates according to [FLP04, FPL11].

3.2.1 THEORETICAL INSTANTIATION

Let P be an ASP program.

Definition 3.2.1 (Herbrand Universe). The Universe of Herbrand of P, UP, is the set
of all integers and ground terms constructible from constants and functors appearing
in P. In case no constant appears in P an arbitrary constant c is added to UP.

Definition 3.2.2 (Herbrand Base). The Base of Herbrand of P, BP, is the set of all
ground classical atoms obtainable by combining predicate names appearing in P with
terms from UP as arguments.

Example 3.2.1. As running example, let us consider the program P1:

b(1). b(2). c(1).

a(X) :− b(X), not c(X ∗1).

d(Y) :− #count{X : a(X)} = Y .

then UP1 = {1,2} and BP1 = {a(1),a(2),b(1),b(2),c(1),c(2),d(1),d(2)}.

Definition 3.2.3 (Substitution). Given a Herbrand Universe UP of a program P and
a set of variables V , a substitution is total function σ : V 7→ UP that maps each
variable in V to an element in UP. For some object O occurring in P (term, atom,
aggregate atom, literal, rule, weak constraint, query, etc.), we denote by Oσ the object
obtained by replacing each occurrence of a variable v ∈ var(O) by σ(v) in O. σ

is well-formed if the arithmetic evaluation, performed in the standard way, of each
arithmetic sub-term t in Oσ is well-defined.

In the following, we will denote a substitution σ also as the set {X = c |σ(X) = c}.

Definition 3.2.4 (Global and Local Substitutions). Given a rule or weak constraint
r in P a substitution is global if it involves variables in varg(r); for an aggregate
element e in r, a substitution is local if it involves variables in varl(e).

We remark that for terms, classical atoms, naf-literals and queries a substitution is
implicitly global, due to the absence of aggregate elements. In the following for
the above mentioned constructs we will indicate substitutions for them as global
substitutions.

Example 3.2.2. Consider the rule r1 from P1 and the (global) substitution σ1 =

{X = 1}, then r1σ1 = a(1) :− b(1), not c(1∗1). Note that σ1 is well-formed, while
for instance, supposing that UP contained also the symbolic constant abc, then a
substitution σ2 = {X = abc} would not be well-formed.

3.2 S E M A N T I C S 20

Now, consider the rule r2 from P1 and the global substitution σ3 = {Y = 1}, then
r2σ3 = d(1) :− #count{X : a(X)} = 1. If instead, we consider the local substitution
σ4 = {X = 1}, then r2σ4 = d(Y) :− #count{1 : a(1)} = Y .

The instantiation of an aggregate element e is obtained by considering well-formed
local substitutions for e; formally, the instantiation of e consists of the following set
of ground aggregate elements:

inst(e) = {eσ |σ is a well-formed local substitution for e}

Inductively, the instantiation of a series of aggregate elements {e1, . . . ,en} is provided
by the set of aggregate elements reported below:

inst({e1, . . . ,en}) =
n⋃

i=1

{eiσ |σ is a well-formed local substitution for ei}

A ground instance of a term, classical atom, naf-literal, a rule, weak constraint, or
query o is obtained in two steps: (i), a well-formed global substitution σ for o is
applied to o; (ii), for every aggregate atom a f{e1, . . . ,en} ▷ t in rσ its aggregate
elements {e1, . . . ,en} are replaced by inst({e1, . . . ,en}).

Example 3.2.3. Consider the aggregate element e = {X : a(X)} of rule r2 from P1,
then the instantiation inst(e) of e consists of inst(e) = {1 : a(1);2 : a(2)}.

At this point, a ground instance of r2 is obtained by applying the substitution
σ3 = {Y = 1}, and replacing e with inst(e): d(1) :− #count{1 : a(1);2 : a(2)} = 1.

The arithmetic evaluation of a ground instance g of some term, classical atom, naf-
literal, rule, weak constraint or query is obtained by replacing any maximal arithmetic
subterm appearing in g by its integer value, which is calculated in the standard way.

The ground instantiation of a program P, denoted by grnd(P), is the set of arith-
metically evaluated ground instances of rules, strong and weak constraints in P.

Example 3.2.4. Eventually, let us consider P1, grnd(P1) consists of:

b(1). b(2). c(1).

a(1) :− b(1), not c(1).

a(2) :− b(2), not c(2).

d(1) :− #count{1 : a(1);2 : a(2)} = 1.

d(2) :− #count{1 : a(1);2 : a(2)} = 2.

Note that the substitution {X = 1,X = 2} has been applied to r1, and the arithmetic
terms (1∗1) and (2∗1) have been evaluated respectively to 1 and 2.

Remark 3.2.1. The instantiation of a program is idempotent: for each program P,
ground(P) = ground(ground(P)).

3.2 S E M A N T I C S 21

3.2.2 INTERPRETATIONS

Once that a ground program is obtained, the truth values of atoms, literals, rules,
constraints etc. is properly defined according to interpretations.

Definition 3.2.5 (Herbrand Interpretation). A (Herbrand) interpretation I for P is
a consistent subset of BP; to this end, for each predicate atom a ∈ BP, {a,−a} ⊈ I
must hold.

Literals can be either true or false w.r.t. an interpretation. To illustrate how their truth
values are determined, as a preliminary step, we need to define a proper total order ⪯
on terms in UP. Several orderings may be defined, in ASP-Core-2 the one reported
next has been adopted.

Let t and u be two arithmetically evaluated ground terms, then:

– t ⪯ u for integers t and u if t ≤ u,

– t ⪯ u if t is an integer and u is a symbolic constant,

– t ⪯ u for symbolic constants t and u with t lexicographically smaller or equal
to u,

– t ⪯ u if t is a symbolic constant and u is a string constant,

– t ⪯ u for string constants t and u with t lexicographically smaller or equal to u,

– t ⪯ u if t is a string constant and u is a functional term,

– t ⪯ u for functional terms t = f (t1, . . . , tn) and u = g(u1, . . . ,un) if either:

– m < n or,

– m = n and g ⪯̸ f (f is lexicographically smaller than g) or,

– m = n, f ⪯ g and, for any 1 ≤ j ≤ m such that t j ⪯̸ u j, there is some
1≤ i < j such that ti ⪯̸ ui (i.e., the tuple of terms of t is smaller than or
equal to the arguments of u).

At this point, we are ready to properly define literals satisfaction. Let I ⊆ BP be a
consistent interpretation for P.

The satisfaction of built-in atoms can be easily defined according to the total
order ⪯, in the intuitive way, as they represent comparisons among terms. A ground
classical atom a ∈ BP is true w.r.t. I if a ∈ I. A positive ground naf-literal a is true
w.r.t. I if a is a classical or built-in atom that is true w.r.t. I; otherwise, a is false w.r.t.
I. A negative ground naf-literal not a is true (or false) w.r.t. I if a is false (or true)
w.r.t. I.

Given a ground aggregate atom a f{e1, . . . ,en}▷ t, in order to correctly evaluate
its semantics according to its aggregate function, the expression a f{e1, . . . , en} has
to be mapped to a term, say u. Indeed, aggregate functions can be seen as mappings
from set of terms to a term. Let T be the set of terms in {e1, . . . ,en}, then:

3.2 S E M A N T I C S 22

– if ag = #count, then u = |T |;

– if ag = #sum, then u = ∑ti∈T ti is an integer;

– if ag = #max, then u = max{ti|ti ∈ T}

– if ag = #min, then u = min{ti|ti ∈ T}

Essentially, #count depends on the cardinality of the set of terms T , #sum is evaluated
as the sum of the integers in T , while #max and #min functions strictly rely on the
total order ⪯ on terms in UP. In case T = /0, the following convention is adopted:
#max{ /0} ⪯ u and u⪯ #min{ /0} for every term u ∈UP .

Fixed an interpretation some aggregate elements may not contribute to the seman-
tics of an aggregate atom. Intuitively, an interpretation can filter out some aggregate
elements according to their truth values w.r.t. the interpretation itself. More formally,
the interpretation I maps a collection E of aggregate elements to the following set of
tuples of ground terms:

eval(E, I) ={(t1, . . . , tn)|{t1, . . . , tn : l1, . . . , lm} occurs in E and

{l1, . . . , lm} are true w.r.t. I}

Let a = a f{e1, . . . ,en} ▷ t be an aggregate atom, a is true (or false) w.r.t. I if
a f{eval(e1, . . . ,en, I)} ▷ t. A positive aggregate literal a is true (or false) w.r.t. I
if a is an aggregate atom that is true (or false) w.r.t. I. A negative aggregate literal
not a is true (or false) w.r.t. I if a is false (or true) w.r.t. I.

Let r be a ground rule in grnd(P). The head of r is true w.r.t. I if H(r)∩ I ̸= /0.
The body of r is true w.r.t. I if all body literals of r are true w.r.t. I (i.e., B+(r) ⊆ I
and B−(r)∩ I = /0) and is false w.r.t. I otherwise. The rule r is satisfied (or true) w.r.t.
I if its head is true w.r.t. I or its body is false w.r.t. I.

Example 3.2.5. Let

I1 = {b(1),b(2),c(1),a(1),d(1),d(2)}

be an interpretation for grnd(P1), then:

3.2.3 ANSWER SETS

Definition 3.2.6 (Model). A model for P is an interpretation M for P such that every
rule r ∈ grnd(P) is true w.r.t. M.

Definition 3.2.7 (Minimal Model). A model M for P is minimal if no model N for
P exists such that N is a proper subset of M. The set of all minimal models for P is
denoted by MM(P).

3.2 S E M A N T I C S 23

b(1). b(2). c(1). are satisfied w.r.t. I1.

a(1) :− b(1), not c(1). is not satisfied because not c(1) is false
w.r.t. I1.

a(2) :− b(2), not c(2). is not satisfied because a(2) is false
w.r.t. I1.

d(1) :− #count{1 : a(1);2 : a(2)} = 1. is satisfied w.r.t. I1 since eval({1 :
a(1);2 : a(2)}, I1) = {1 : a(1)}, and
#count{1 : a(1)}= 1.

d(2) :− #count{1 : a(1);2 : a(2)} = 2 is not satisfied w.r.t. I1 because of the
evaluation reported above.

b(1). b(2). c(1). are satisfied w.r.t. I2.

a(1) :− b(1), not c(1). is satisfied w.r.t. I2 because both the
body and the head are false.

a(2) :− b(2), not c(2). is satisfied w.r.t. I2.

d(1) :− #count{1 : a(1);2 : a(2)} = 1. is satisfied w.r.t. I2 since eval({1 :
a(1);2 : a(2)}, I2) = {2 : a(2)}, and
#count{2 : a(2)}= 1.

d(2) :− #count{1 : a(1);2 : a(2)} = 2 is satisfied w.r.t. I2 because of the eval-
uation reported above, thus both the
body and the head are false.

Example 3.2.6. The interpretation I1 is not a model for P1, while the interpretation

I2 = {b(1),b(2),c(1),a(2),d(1)}

is a model for P1:

Moreover, I2 is also a minimal model for P1.

Definition 3.2.8 (Reduct). Given a ground program P and an interpretation I, the
reduct of P w.r.t. I is the subset PI of P, which is obtained from P by deleting rules in
which a body literal is false w.r.t. I.

It is worthwhile noting that the above definition of reduct, proposed in [FLP04],
simplifies the original definition of Gelfond-Lifschitz (GL) transform [GL91], but is
fully equivalent to the GL transform for the definition of answer sets [FLP04].

Definition 3.2.9 (Answer Set). [Prz91, GL91] Let I be an interpretation for a program
P. I is an answer set for P if I ∈MM(PI) (i.e., I is a minimal model for the program
PI). The set of all answer sets for P is denoted by AS(P).

3.2 S E M A N T I C S 24

Example 3.2.7. Let us consider grnd(P1) and I2, then the reduct grnd(P)I2 is:

b(1). b(2). c(1).

a(2) :− b(2), not c(2).

d(1) :− #count{2 : a(2)} = 1.

I2 is a minimal model for grnd(P1)I2 since no proper subset of I2 exists such that is a
model for it, and thus I2 an answer set for P1.

In particular, since P1 is a not disjunctive and stratified program, I2 is the unique
answer set for P1, i.e., AS(P1) = {I2}. This type of program admits a unique answer
set, which corresponds to its perfect model [EIK09b].

Furthermore, we distinguish coherent and incoherent programs: coherent programs
admit at least one answer set, while incoherent programs have no answer sets.

Equivalence of logic programs is a fundamental property also from a practical
perspective. For instance, it is common that one looks for an equivalent version Π′ of
a logic program Π which can be possibly evaluated more efficiently.

Definition 3.2.10 (Equivalent Logic Programs). [GL88] A logic program Π1 is said
to be equivalent to a logic program Π2 in the sense of the answer set semantics if Π1

and Π2 have the same answer sets.

Definition 3.2.11 (Strongly Equivalent Logic Programs). [LPV01] A program Π1 is
said to be strongly equivalent to a program Π2 if for every logic program Π, Π1∪Π
has the same answer sets as Π2∪Π.

In case of weak constraints, answer sets need to be further examined, and classified
as optimal or not. Intuitively, strong constraints represent conditions that must be sat-
isfied, while weak constraints, introduced originally in [LPF+06b, BLR00], indicate
conditions that should be satisfied; their semantics involves minimizing the number
of violations, thus allowing to easily encode optimization problems.

Optimal answer sets of P are selected among AS(P), according to the following
schema. Let I be an interpretation, then:

weak(P, I) ={(w@l, t1, . . . , tm)

:∼ b1, . . . ,bn[w@l, t1, . . . , tm] occurs in grnd(P)

and b1, . . . ,bn are true w.r.t. I}

For any integer l, let

PI
l = ∑

(w@l,t1,...,tm)∈weak(P,I),w is an integer

w

denotes the sum of integers w over tuples with w@l in weak(P, I).
In other words, for each weak constraints satisfied by I in grnd(P) we sum the

weights per level: these numbers represent a sort of penalty paid by I: the lower they
are, the higher is the possibility for I, if it represents an answer set, to be optimal.

3.3 T H E G U E S S - C H E C K - O P T I M I Z E T E C H N I Q U E 25

More formally, we define the notion of domination among answer sets as follows.
Given an answer set A ∈ AS(P), it is said dominated by another answer set A′ if there
is some integer l such that PA′

l < PA
l and PA′

l′ < PA
l′ for all integers l′ > l. An answer

set A ∈ AS(P) is optimal if there is no A′ ∈ AS(P) such that A is dominated by A′. In
general, a coherent program may have one or more optimal answer sets.

Example 3.2.8. Let us consider the following ground program P2:

c(1). c(2).

a(1) | b(1):− c(1).

a(2) | b(2):− c(2).

:∼ a(1). [1@1]

:∼ b(1). [1@2]

:∼ a(2). [2@1]

:∼ b(2). [2@2]

The set AS(P2) consists of:

as1 : c(1). c(2). a(1). b(2)

as2 : c(1). c(2). a(1). a(2)

as3 : c(1). c(2). b(1). b(2)

as4 : c(1). c(2). b(1). a(2)

For an answer set a, we will represent as < {w1, l1}, . . . ,{wn, ln}> the sum of weights
w1, . . . ,wn for l1, . . . , ln, n ≥ 0. Now, for as1 we obtain < {1,1}, {2,2} >, for as2

< {3,1},{0,2} >, for as3 < {0,1},{3,2} > and finally for as4 < {2,1},{1,2} >.
Hence, P2 admit a unique optimal answer set, namely as2, since it is not dominated
by any other answer sets.

3.3 THE GUESS-CHECK-OPTIMIZE TECHNIQUE

The Guess/Check/Optimize (GCO) paradigm is a declarative programming methodol-
ogy which allows to encode complex queries and, more generally, search problems
in a simple and highly declarative fashion; even some optimization problems of
rather high computational complexity can be declaratively encoded by using this
methodology.

One of the most important element that distinguishes ASP from other Logic
Programming languages is the implementation of the so called “Guess & Check”
paradigm which is, sometimes, also called “Generate & Test” methodology [Lif02,
EIK09c]. The idea behind the Guess & Check paradigm is to proceed as follows:

– the guess part uses nondeterminism that comes with unstratified negation, or
equally well with disjunction in rule heads, to create candidate solutions to a
problem (program part G⊆ P), whereas

3.4 A P P L I C AT I O N S A N D E X A M P L E S 26

– the check part, with further rules and/or constraints, filters the solution candidate
in such a way that they are admissible for the current program instance (program
part C ⊆ P). This part may also involve auxiliary predicates, if needed.

More in details, the part G defines the search space, and the part C prunes illegal
branches.

inS(X) | outS(X) :− node(X).

}
Guess

:− edge(X ,Y), not inS(X), not inS(Y).

}
Check

An extension and refinement of the Guess & Check paradigm is the Guess/Check/Op-
timize (GCO) methodology, which adds one more step to the traditional ones (the
optimization part) which can be described as follows:

– the optimization part O ⊆ P of the program allows to express a quantitative
cost evaluation of solutions by using weak constraints.

It implicitly defines an objective function f : AS(G∪C∪FI)→N mapping the answer
sets of G∪C∪FI to natural numbers, where FI represents a set of facts that specify
an instance I of some problem P . The semantics of G∪C∪FI ∪O optimizes f by
filtering those answer sets having the minimum value; this way, the optimal (least
cost) solutions are computed [LPF+06a].

:∼ outS(X). [1@1,X]

}
Optimize

Sometimes, an additional define part is used to model auxiliary predicates and their
relationships with other parts of the logic programs. This part usually consists of
rules [Lif08].

For further and deeper details about GCO methodology, the reader can refer
to [Lif02, LPF+06a, EIK09c]

3.4 APPLICATIONS AND EXAMPLES

3.4.1 THREE-COLORABILITY

As first example, consider the well-known NP-complete problem Three-colorability:

Given an undirected graph G = (V ,E), assign to each vertex one of three
colors such that adjacent vertices always have distinct colors.

Firstly, we can start defining a problem instance via facts. In this case, we need to
model an undirected graph G = (V ,E):

3.4 A P P L I C AT I O N S A N D E X A M P L E S 27

– vertices can be encoded as facts of the form vertex(x);

– for edges, facts of type edge(x,y) can be used to encode that is there an edge
between the vertices x and y.

The next step consists of encoding the actual problem into an ASP GCO program
P3col . In the guessing part we define the search space, thus we assign to each vertex
exactly one color among the three available, say red, green and blue. In the checking
part we ensure that no two connected vertices are associated with the same color.
For this problem, we do not need an optimize part, indeed, there are not preferences
among solutions to be expressed.

% Guessing Part (1 rule)

color(X ,red) | color(X ,green) | color(X ,blue):− vertex(X).

% Checking Part (1 rule)

:− edge(X ,Y),color(X ,C),color(Y ,C).

Notably, thanks to the declarative capability of ASP, when designing the encoding the
focus is on how to model the problem at hand, rather than on how to actually solve it.

By coupling P3col with a set of facts F for vertex and edge, if the program P3col ∪F
is coherent, than each answer set represents an admissible solution. For instance,
suppose that

F = {vertex(1),vertex(2),vertex(3),edge(1,2),edge(1,3),edge(2,3)}

then the input graph is complete (i.e. every pair of distinct vertices is connected by an
edge) and the answer set of P3col ∪F are:

as1 : color(1,blue). color(2,red). color(3,green).

as2 : color(1,blue). color(2,green). color(3,red).

as3 : color(1,red). color(2,blue). color(3,green).

as4 : color(1,red). color(2,green). color(3,blue).

as5 : color(1,green). color(2,red). color(3,blue).

as6 : color(1,green). color(2,blue). color(3,red).

3.4.2 HAMILTONIAN PATH

As next example, let us consider a classical NP-complete problem in graph theory,
namely Hamiltonian Path:

Given a directed graph G = (V ,E) and a vertex v ∈V of this graph, does
there exist a path in G starting from v and passing through each vertex in
V exactly once?

3.4 A P P L I C AT I O N S A N D E X A M P L E S 28

Similarly to Example 3.4.1 the graph G = (V ,E) can be specified by means of
facts over predicates vertex/1 and edge/2. Moreover, we need to define the starting
vertex v: it can be specified by the predicate start/1. Consequently, the following
program Php encodes a solution to the problem:

% Guessing Part (3 rules)

{inPath(X ,Y)}:− start(X),edge(X ,Y).

{inPath(X ,Y)}:− reached(X),edge(X ,Y).

reached(X) :− inPath(Y ,X).

% Checking Part (3 rules)

:− inPath(X ,Y), inPath(X ,Y 1),Y <> Y 1.

:− inPath(X ,Y), inPath(X1,Y),X <> X1.

:− vertex(X),not reached(X),not start(X).

In the guessing part, the two choice rules guess a subset S of the edges to be in the
path, while the rest of the program checks whether S constitutes a Hamiltonian Path.
Here, an auxiliary predicate reached is used, which is associated with the guessed
predicate inPath using the third rule. Note that reached is completely determined by
the guess for inPath, and no further guessing is needed. In turn, through the second
rule, the predicate reached influences the guess of inPath, which is made somehow
inductively: initially, a guess on an edge leaving the starting vertex is made by the
first rule, followed by repeated guesses of edges leaving from reached vertices by the
second rule, until all reached vertices have been handled.

In the checking part, the first two constraints ensure that the set of edges S selected
by inPath meets the following requirements, which every Hamiltonian Path must
satisfy: (i) there must not be two edges starting at the same vertex, and (ii) there
must not be two edges ending in the same vertex. The third constraint enforces that
all vertices in the graph are reached from the starting vertex in the subgraph induced
by S.

It is easy to see that any set of edges S which satisfies all three constraints must
contain the edges of a path v0,v1, . . . ,vk in G that starts at vertex v0 = a, and passes
through distinct vertices until no further vertex is left, or it arrives at the starting
vertex a again. In the latter case, this means that the path is in fact a Hamiltonian
Cycle (from which a Hamiltonian path can be immediately computed, by dropping
the last edge).

Thus, given a set of facts F for vertex, edge, and start, the program Php∪F has an
answer set if and only if the corresponding graph has a Hamiltonian Path.

3.4 A P P L I C AT I O N S A N D E X A M P L E S 29

3.4.3 K-CLIQUE

In this example we focus on the relation between stratification negation and disjunc-
tion. To this end, let us consider the following NP –complete problem in graph theory,
referred to as k–Clique:

Given an undirected graph G = (V ,E) and an integer k, a k− clique of
G is a complete subgraph of G with k vertices.

As in previous examples, a graph can be encoded by means of facts representing
vertices and edges and a fact of form k(n) can be used to represent the integer k,
while the problem can be encoded in the following Pk−clique program:

% Guessing Part (2 rules)

clique(X):− vertex(X),not nonClique(X).

nonClique(X):− vertex(X),not clique(X).

% Checking Part (2 rules)

:− #count{X : clique(X)}! = N,k(N).

:− clique(X),clique(Y),X ! = Y ,not edge(X ,Y),not edge(Y ,X).

The guessing part generates potential cliques. Notably, in these two guessing rules
there is a negative dependency between the predicates clique/1 and nonClique/1,
thus Pk−clique is unstratified under negation. Interestingly, we are using unstratified
negation to simulate disjunction: by replacing the two rules with the rule

clique(X) | nonClique(X):− vertex(X).

we obtain a semantically equivalent program. Indeed, even if only in some cases,
unstratified negation can, somehow, model disjunction. More in detail, unless the
polynomial hierarchy collapses, this correspondence holds for NP problems, as in
general disjunction allows to express problems up to ΣP

2 = NPNP. In the checking
part, the first constraint verifies that only k-cliques are considered and the second one
ensures that vertices belonging to a clique are connected. Given an instance I fixing
k to k1, if Pk−clique∪ I has no answer set, then no k1−clique exists, otherwise each
returned answer set will represent a clique of the desired size k1.

As final remark, for the guessing part we could instead use a choice rule as in the
following Qk−clique program:

% Guessing Part (1 rule)

N = {clique(X) : vertex(X)}:− k(N).

% Checking Part (1 rule)

:− clique(X),clique(Y),X ! = Y ,not edge(X ,Y),not edge(Y ,X).

3.4 A P P L I C AT I O N S A N D E X A M P L E S 30

By doing so, the first constraint can be removed, since the requirement on the
clique size can be directly specified in the choice rule.

3.4.4 MAXIMAL CLIQUE

So far, we considered problems without an optimizing part. As example of complete
GCO program let us consider a NP-hard problem, namely Maximal Clique. It can be
considered as a variant of the k-clique problem:

Given an undirected graph G = (V ,E) and an integer k, determine a
clique C of maximal size in G, i.e. for each other clique C′ in G, the
number of vertices in C must be larger than or equal to the number of
nodes in C′.

Readopting the same instance representation of Example 3.4.3, with few modifica-
tions to the program Pk−clique we obtain the following encoding Pmax−clique:

% Guessing Part (2 rules)

clique(X):− vertex(X),not nonClique(X).

nonClique(X):− vertex(X),not clique(X).

% Checking Part (1 rule)

:− clique(X),clique(Y),X ! = Y ,not edge(X ,Y),not edge(Y ,X).

% Optimizing Part (1 weak constraint)

:∼ nonClique(X). [1,X]

The guessing part remains unchanged, while in the checking part we removed the
constraint on the cliques size. Indeed, in this case we want to find cliques with the
maximal size, which is unknown, thus a weak constraint allows us to express this
requirement. Each answer set will pay a penalty at level 0 according to how many
vertices are not included in the clique it represents, hence the optimal answer set(s)
will be the ones with the cliques of the biggest possible size.

Part II

T H E H E A D - A S P S Y S T E M

4
K N O W L E D G E B A S E O F T H E S Y S T E M

During the development of the system, one of the main technical challenges we
faced up, was the designing of a knowledge representation model being able to
accommodate domain medical knowledge, in order to provide a natural and formal
encoding of the ICHD diagnoses and criteria.

4.1 RELATIONAL SCHEMA AND ASSERTIONS

The model is based on a core relational schema consisting of 18 predicates of three
different types, both intensional and extensional. Three of these predicates are inten-
sional (type 3) and are used to derive diagnoses, criteria and subcriteria of a specific
patient; the remaining ones are extensional. Among the latter, six of them (type 1) are
used to represent key notions of ICHD-3, such as all possible diagnoses, symptoms
and their attributes; the remaining ones (type 2) are used to encode patient history,
such as specific symptoms and the number of their attacks. Hence, all instances
of predicates of type 1 and type 3, as well as all rules, are always present in P .
Conversely, instances of predicates of type 2 vary with patients.

TYPE 1. As said, this group of predicates models key notions of ICHD-3. We first
represent all possible diagnoses, symptoms and attributes via the following binary
predicates: ichdDiagnosis(Id, Name), ichdSymptom(Id, Name) and ichdAttribute(Id,
Name), where, in all the cases, the first term is an identifier and the second one its
name. For example, ichdDiagnosis(d.1.1, “migraine without aura”) represents the
diagnosis “1.1. Migraine without aura”, ichdSymptom(s4, “headache”) represents
the symptom “headache” identified by code s4, and ichdAttribute(loc2, “bilateral
location”) represents the attribute “bilateral location” with its identification code
loc2. Moreover, we also make explicit some properties of attributes that are only
implicit in ICHD-3. First, there are cases in which the presence of an attribute
associated to a specific symptom excludes the possibility to have some other attribute
for the same symptom. We use the predicate mutuallyExclusive(Id_attr_1, Id_attr_-
2) to model such kind of information. For example, if a headache is characterized
by a unilateral location, then it cannot be characterized, at the same time, by a
bilateral location. Hence, we may have mutuallyExclusive(loc1, loc2) to express the
mutual exclusion between the attribute “unilateral location” identified by code loc1
and the attribute “bilateral location” identified by code loc2. Clearly, these two
identifiers occur in two facts of the form: ichdAttribute(loc1, “unilateral location”)
and ichdAttribute(loc2, “bilateral location”). Similarly, we also have sameAs(Id_-
attr_1, Id_attr_2) to specify that, if an attribute is associated with a specific symptom,

32

4.1 R E L AT I O N A L S C H E M A A N D A S S E RT I O N S 33

then, at the same time, also the attribute semantically equivalent to the first one should
be associated with the same symptom. This is very important because ICHD-3 often
uses different synonymous terms in different diagnostic criteria; without modeling
such similarities our encoding would not completely reflect the intended ICHD-3
meaning. For example, we include in P sameAs(int2, int10), ichdAttribute(int2,

“strong intensity”), and ichdAttribute(int10, “acute intensity”). Finally, we represent
the dependence between diagnoses, symptoms and attributes via the predicate isA(Id_-
1,Id_2). An example concerning the symptoms is the atom isA(s18, s54), where
s18 and s54 are provided by ichdSymptom(s18, “diplopia”) and ichdSymptom(s54,

“visual symptom”).

TYPE 2. In this group we have predicates used to encode patient history. We start
with symptom(Id_sym) and symAttribute(Id_sym, Id_attr), modelling the fact that
a patient has a specific symptom and the fact that his/her symptoms have some
peculiarity modeled via what we called attributes (e.g., symptom location, pain
type); for example, symptom(s4) and symAttribute(s4, loc2) represent that the patient
reported the symptom “headache” with the attribute “bilateral location”; indeed,
ichdSymptom(s4, “headache”) and ichdAttribute(loc2, “bilateral location”) hold.
We also use the predicates minAttacks(Id_sym, Value) and maxAttacks(Id_sym, Value)
to specify that the actual number of attacks of a patient’s symptom falls in a certain
range; for example minAttacks(s4, 5) (resp. maxAttacks(s4, 10)) indicates that the
patient reported at least “5” (resp. at most “10”) attacks associated with the symptom
identified by code s4. Similarly, we use the predicates minDuration(Id_sym, Value)
and maxDuration(Id_sym, Value) to specify the duration of the pain caused by a
certain symptom. As an example, minDuration(s4, 240) (resp. maxDuration(s4,
4320)) specify that the patient reported that the symptom s4 lasts at least 240 (resp. at
most 4320) minutes. In the same way, frequency of pain attacks that are associated to
a certain symptom is modeled by means of the predicates minDaysPerMonth(Id_sym,
Value) and maxDaysPerMonth(Id_sym, Value). It is important to underline that the
identifiers of type 2 predicates are those collected in type 1 predicates, therefore, the
values of type 2 depend on what has been specified in type 1. Finally, we use the
predicate reportedCriterion(Description) to model some portions of text for which it
was not possible and convenient to identify a decomposed modeling. Indeed, they
express peculiar assertions only of certain diagnoses, occurring infrequently within
the domain or, when reported, do not present syntactic or semantic variations. The
only term of this predicate is the textual description of the statement. For example,
reportedCriterion (“At least one first or second degree family member has had attacks
that meet the criteria of hemiplegic migraine”) expresses the presence of the specified
statement.

TYPE 3. Predicates in this group have the following signature: diagnosis(Id), crite-
rion(Id_diag, Letter), subCriterion(Id_diag, Letter_crit, Number). They model the
identifiers of diagnoses, criteria and subcriteria that can be derived for a specific pa-
tient. As an example, if the atom diagnosis(d.1.1) can be derived from P , this means

4.2 M E T H O D O L O G Y F O R D I AG N O S E S E N C O D I N G 34

that the ICHD-3 diagnosis “1.1. Migraine without aura” is compatible with patient
history. Likewise, the derivation of the atom criterion(d.1.1,“A”) means that criterion
“A” of “1.1. Migraine without aura” is compatible with patient history, namely, the
patient reported “at least five attacks fulfilling criteria B-D”. Finally, the derivation
of the atom subCriterion(d.1.1,“C”,1) means that subcriterion “1” of criterion “C” of
“1.1. Migraine without aura” is compatible with patient history, namely, the patient
reported that headache has the characteristic “unilateral location”.

4.2 METHODOLOGY FOR DIAGNOSES ENCODING

In what follows, we encode ICHD-3 diagnoses and criteria via an ASP program
P simply using (stratified) negation, aggregates and strong negation. As shown
in the previous subsection, the diagnoses are organized in a hierarchical structure
which expresses the specialization-generalization relations existing between them
(Figure 4.1). Intuitively, if a more specific diagnosis is compatible, then it is possible to
infer a more generic diagnosis (the former being a sub-type of the latter); conversely, if
a higher level diagnosis is not compatible, all its related specializations are invalidated.
The following rules, among the others, express the implications inferable from the
relations between diagnoses.

r1 : diagnosis(Id_sup)← diagnosis(Id), isA(Id, Id_sup).

r2 : −diagnosis(Id)←−diagnosis(Id_sup), isA(Id, Id_sup).

The two rules shown below define the conditions that must be met so that the diagnosis
“1.1. Migraine without aura” can be compatible or not compatible (Figure 1.1).
Intuitively, rule r3 derives the diagnosis as true (compatible) if all its criteria “(A-
D)” are true. Similarly, rule r4 expresses that the diagnosis is certainly false (not
compatible) if at least one of its criteria is certainly false. Note that to use the strong
negation is quite convenient to model such scenarios in which we need to distinguish
criteria and diagnoses that are definitely confirmed from those definitely disconfirmed
and from those still undefined, without any need in adding new predicates and further
constants. This is also reflected to the predicates encoding patient’s symptomatology.

r3 : diagnosis(Id)← ichdDiagnosis(Id,“migraine without aura”),

criterion(Id, “A”), criterion(Id, “B”), criterion(Id, “C”), criterion(Id, “D”).

r4 : −diagnosis(Id)← ichdDiagnosis(Id,“migraine without aura”),−criterion(Id,_).

Each criterion (resp. subcriterion) of ICHD-3 is encoded through rules whose head
is constituted by the predicate criterion (resp. subcriterion), while the body models
effectively the semantics of the statement of the criterion (resp. sub-criterion), on the
basis of its informal description in the international classification. As an example,
consider criterion “B" of diagnosis “1.1”: “Headache attacks lasting 4-72 hr”.
The following rules model such monothetic criterion. Declaratively, rule r5 states
that if the symptom “headache” is true and its duration respects the specified time

4.2 M E T H O D O L O G Y F O R D I AG N O S E S E N C O D I N G 35

interval, then criterion(d.1.1,“B”) will be derived as true. Rules r6, r7, r8 express the
conditions according to which the criterion is certainly false.

r5 : criterion(Id,“B”)← ichdDiagnosis(Id,“migraine without aura”),

ichdSymptom(Id_sym,“headache”), symptom(Id_sym),

minDuration(Id_sym,240), maxDuration(Id_sym,4320).

r6 : −criterion(Id,“B”)← ichdDiagnosis(Id,“migraine without aura”),

ichdSymptom(Id_sym,“headache”), symptom(Id_sym),

−minDuration(Id_sym,240).

r7 : −criterion(Id,“B”)← ichdDiagnosis(Id,“migraine without aura”),

ichdSymptom(Id_sym,“headache”), symptom(Id_sym),

−maxDuration(Id_sym,4320).

r8 : −criterion(Id,“B”)← ichdDiagnosis(Id,“migraine without aura”),

ichdSymptom(Id_sym,“headache”), −symptom(Id_sym).

Consider criterion “C" of diagnosis “1.1”: “Headache has at least two of the
following four characteristics: (i) unilateral location; (ii) pulsating quality; (iii)
moderate or severe pain intensity; (iv) aggravation by or causing avoidance of
routine physical activity (eg, walking or climbing stairs)”. The following portion
of the program corresponds to the encoding of such polythetic criterion.

r9 : criterion(Id,“C”)← ichdDiagnosis(Id,“migraine without aura”),

#count{X : subCriterion(Id,“C”, X)} >= 2.

r10 : −criterion(Id,“C”)← ichdDiagnosis(Id,“migraine without aura”),

#count{X : −subCriterion(Id,“C”, X)} >= 3.

r11 : subCriterion(Id,“C”,1)← ichdDiagnosis(Id,“migraine without aura”),

ichdSymptom(Id_sym,“headache”), symptom(Id_sym),

symAttribute(Id_sym, Id_attr), ichdAttribute(Id_attr,“unilateral location”).

r12 : −subCriterion(Id,“C”,1)← ichdDiagnosis(Id,“migraine without aura”),

ichdSymptom(Id_sym,“headache”), −symptom(Id_sym).

r13 : −subCriterion(Id,“C”,1)← ichdDiagnosis(Id,“migraine without aura”),

ichdSymptom(Id_sym,“headache”), symptom(Id_sym),

−symAttribute(Id_sym, Id_attr), ichdAttribute(Id_attr,“unilateral location”).

In this case, for a more natural modeling, it was convenient to use the aggregation
construct #count. In particular, the rule r9 aggregates the satisfied subcriteria and
counts them (#count) in order to check if the resulting value matches the number
required by the criterion itself.

4.3 E X A M P L E S O F E N C O D E D D I AG N O S E S 36

Figure 4.1: Some ICHD-3 diagnoses.

4.3 EXAMPLES OF ENCODED DIAGNOSES

The designing of the formal methodology to encode each single diagnostic criterion
into ASP logical rules, on the basis of the mentioned data model, can be observed in
Figure 4.2. It shows the inference rules of the diagnosis “migraine without aura”, in
which we can notice the different encoding methodology adopted in order to model
semantically different criteria. It can be noted that the rules that express the conditions
according to which the predicate in the head is certainly false can be automatically
generated by denying, one at a time, the predicates of type 2. Moreover, it is worth
noting that predicates in the head of the rules are of type 3.

Figure 4.2: An example of encoded diagnosis.

5
T H E L O G I C A L D E C I S I O N M O D U L E

As already mentioned, HEAD-ASP consists of two logical modules expressed through
the Answer Set Programming formalism; the first one, discussed in the Chapter 4,
is a deductive module which faithfully encodes all primary headache diagnoses and
criteria of ICHD-3, whereas the second one is a logical module which optimizes the
diagnostic process. This optimization has been achieved thanks to the development
of a system implementing a questionnaire that: (i) rigorously guides both clinicians
and patients during the medical history process; (ii) automatically adapts to patients;
and (iii) reaches, in a reasonable amount of time, a complete diagnostic picture by
inferring every diagnosis as either compatible or not compatible. The logic module
that implements the interactive questionnaire is discussed in detail in the following
sections. From a general point of view, the operating principle of the questionnaire is
based on an algorithmic process implemented in the system.

The algorithm takes as input the ASP encoding of ICHD-3, as described in the
previous sections, and the ASP encoding that implements the questionnaire logic, as
described in the next paragraphs. The output is composed of the set of compatible
diagnoses and the set of not compatible diagnoses according to the history of answers
provided by the patient. The history of answers is collected during the process.
Initially, the algorithm retrieves the set of all possible encoded diagnoses. At each
iteration, first the algorithm computes the current diagnostic status, i.e., the current
set of compatible diagnoses and the current set of not compatible diagnoses, by
running the ICHD-3 encoding together with the history of answers provided by the
patient. At this point, the algorithm checks whether there are still diagnoses that are
not determined: in the negative case it finishes, and in the positive case it computes
the next question to be posed to the patient. There are 2n answer sets, where n
is the number of questions selected at the current step (further details later in this
section): given a selected question, there is exactly one answer set where it is asked
and the answer is affirmative, and exactly one answer set where it is asked and the
answer is negative. Within the process, the algorithm computes, heuristically, the best
question to pose to the patient, according to the worst-case minimization strategy
discussed below. For each question, the algorithm finds the number of determined
diagnoses if answered affirmatively and the number of determined diagnoses if
answered negatively in the worst-case scenario, i.e., the selected question is the
question having the maximum score. As a result of this process, the selected best
question is posed to the patient and their answer is added to the history of answers.

In the next sections we analyze the portions of the ASP encoding used to implement
the questionnaire.

37

5.1 A S P E N C O D I N G 38

5.1 ASP ENCODING

In the following, we enumerate and give an informal semantics of the predicates
defined in the ASP program that implements the questionnaire.

Based on the notions that appear in the diagnostic criteria classified in the previous
section and that will be the subject of the questions to be asked, we identified a set of
topics that allow us to split the set of potential questions into groups. In the encoding
that implements the questionnaire we listed such topics in the form of instances of the
predicate topic(T, D), where, the variable T is instantiated by the constants that identify
the topics, and D is either instantiated by the constant dependent or independent
to indicate that a topic is related to a symptom or not. An example of a ground
instance of the predicate topic is topic(duration, dependent), which represents that
duration is a dependent notion (e.g., the duration of headache or nausea makes sense,
while duration alone does not). On the other hand, a symptom is a notion that is not
dependent on another concept and we express it by the ground instance topic(symptom,
independent). The instances of the predicate criterionDependsOn(Id_diag, Letter, X, Y,
Topic) express the dependence of a diagnostic criterion Letter of a diagnosis Id_diag,
on the elements X and Y that characterize the topic Topic and that will constitute the
possible subject of a question. For example, we use criterionDependsOn (d.2.1, “D”,
s33, “nausea”, symptom) to denote that the criterion “D” of the diagnosis “d.2.1”
depends on the symptom “nausea”, whose identifier is s33. Each possible subject of
the question is collected in the ground instances of the predicate possible through the
following rule:

r14 : possible(X ,Y ,Topic)← criterionDependsOn(Id_diag,Letter,X ,Y ,Topic).

The predicate possible is then used to generate the predicate ask(X, Y, Topic) in the
portion of the disjunctive program in which we evaluate asking potential questions.
To the independent type topics correspond instances of the predicate possible in
which X and Y are the characterizing elements, identified and formalized in the
previous section. As an illustration, the characterizing elements of the topic exam are
its name and the relative report, so, an example of its instantiation is possible(“gene
CACNA1A”, “presence of mutation”, exam). In the case of independent type topic,
it is necessary to represent the name of the symptom the topic refers to. Therefore,
the variable X is instantiated by the name of the symptoms and the variable Y by the
elements that characterize the topic itself. An example for the topic duration is the
atom possible(“headache”, 5, duration) where, “5” is one of the values, belonging to
the considered domain, expressed in minutes.

5.1.1 PRUNING THE SEARCH SPACE

The initial portion of the ASP encoding that implements the questionnaire is based
on the pruning of the search space, i.e., from the set of all possible questions to be
asked to the patient, the “relevant” questions are selected. We define “relevant” an

5.1 A S P E N C O D I N G 39

element present in a criterion relating to at least one diagnosis not yet determined and
relating to a diagnosis “child” (according to predicate isA) whose diagnosis “father”
has been confirmed.

r15 : relevant(X , Y , Topic)← criterionDependsOn(Id_diag, Letter, X , Y , Topic),

not criterion(Id_diag, Letter), not −diagnosis(Id_diag),

isA(Id_diag, Id_sup_diag), diagnosis(Id_sup_diag).

5.1.2 SELECTING A CANDIDATE QUESTION

The logic module that implements the interactive questionnaire is structured by
following the “Guess and Check” programming paradigm of ASP. The “Guess” part
of the questionnaire program is composed of a set of disjunctive rules that allow to
consider the different possibilities for the choice of the next question. On the other
hand, the “Check” part consists of a set of constraints that discard the unwanted
models (e.g., models which ask more than one question simultaneously, models
in which the question has already been asked or models in which the question is
no more relevant). Beside disjunctive rules and constraints, ASP programs are also
composed of a set of normal rules (i.e., rules with a single atom in the head) that
are used to propagate knowledge in the program (e.g., propagate the consequences
of an answer). The program identifies a set of n questions that could be asked; it is
necessary to specify that each possible question is formulated as binary, i.e., patient’s
answers are simply “yes” or “no” (to overcome the typical fact that patients are not
always able to adequately describe their disorders). Therefore, in order to analyze
separately the consequences of the 2 possible answers from the patient, it generates
2n answer sets. In other words, for each of the n possible questions, the program
outputs an answer set that represents the outcome of the affirmative answer and an
answer set that represents the outcome of the negative answer. Overall, an answer
set represents a possible world in which the system can evolve once the patient
answers another question. The following disjunctive rules compose the “Guess” part.
In particular, for each topic T considered, we choose it or we don’t choose it (r16),
for an independent type topic T , we ask, or we don’t, a possible question regarding
T (r17), given a dependent type topic T and a possible question regarding it, after
verifying the presence of the symptom the topic refers to, we ask the question or we
don’t (r18), and we exclude the evaluation, in the same set, of more than one question
(r19):

r16 : chosenTopic(T)|− chosenTopic(T)← topic(T ,D).

r17 : ask(X ,Y ,T)|−ask(X ,Y ,T)← chosenTopic(T), possible(X ,Y ,T),

topic(T , independent).

r18 : ask(Name,Y ,T)|−ask(Name,Y ,T)← chosenTopic(T), possible(Name,Y ,T),

topic(T ,dependent), ichdSymptom(Id,Name), symptom(Id).

r19 :← not #count{X ,Y ,T : ask(X ,Y ,T)}= 1.

5.2 T H E N E X T Q U E S T I O N S T R AT E G Y 40

5.1.3 EVALUATING THE IMPACT OF A CANDIDATE QUESTION

The patient’s answers will be collected in the ground instances of the predicate
answer(X, Y, Topic, Answer, Type) where Answer is either the constant true or false
and the variable Type is instantiated by the constant real or simulated to distinguish
between the history of answers actually given by the patient and the answers simulated
during the evaluation phase for the choice of the next question (r20):

r20 : answer(X ,Y ,T , f alse,simulated)|answer(X ,Y ,T , true,simulated)← ask(X ,Y ,T).

After selecting a question to be asked, the program outputs an answer set that
represents the outcome of the affirmative answer and an answer set that represents
the outcome of the negative answer. By simulating the patient’s answer, we evaluate
the effect that such answer would have in the process of determining the diagnoses.
The information that would be acquired through each simulated answer is used to
activate the predicates which, once propagated in the ICHD encoding, contribute,
together with the previously collected data, to infer the eventual compatible and
not compatible diagnoses. The patient’s affirmative answer concerning a symptom
activates the predicate which models its presence.

r21 : symptom(Id)← answer(Id,_,symptom, true,_).

On the other hand, the patient’s negative answer concerning a symptom allows us to
infer the absence (modeled with strong negation) of the predicate which models its
presence.

r22 : −symptom(Id)← answer(Id,_,symptom, f alse,_).

Finally, we compute the number of diagnoses that would be determined. To do so,
we use the aggregation construct #count: we count the diagnoses that would be
compatible and those ones that would be not compatible.

r23 : compatibleDiag(N)← #count{Id : diagnosis(Id)}= N.

r24 : notCompatibleDiag(N)← #count{Id : −diagnosis(Id)}= N.

The number of potential determined diagnoses is then inferred by the following rule:

r25 : determinedDiag(D)← compatibleDiag(N), notCompatibleDiag(M),

D = N +M.

5.2 THE NEXT QUESTION STRATEGY

Such a logic module allows, at each step of the questionnaire, to identify the conve-
nient next question described in the following. We discard from the set of candidate
next questions those that are inappropriate or irrelevant (an example of an inappro-
priate question is a question related to the presence of the symptom “diplopia” if

5.2 T H E N E X T Q U E S T I O N S T R AT E G Y 41

the patient already reported not to have the symptom “visual disorder”; an example
of an irrelevant question is a question concerning a diagnosis that has already been
inferred as not compatible.) The resizing of the admissible questions set, in order to
let them conform to the history of answers, is made possible via the usage of some
constraints. In particular, not relevant questions cannot be asked (r26), a question
that has been previously answered cannot be asked (r27), and it is not possible to
consider, in a question, a numerical value for the duration of a symptom that is not in
the previously identified range (r28):

r26 : ← ask(X ,Y ,T), not relevant(X ,Y ,T).

r27 : ← ask(X ,Y ,T), answer(X ,Y ,T ,_,real).

r28 : ← ask(Name,V ,duration), ichdSymptom(Id,Name), symptom(Id),

minDuration(Id,Y), V < Y .

At this point, we implement a greedy strategy that consists in computing, for each
candidate next question, the minimum number of determined diagnoses resulting
from the double choice of affirmative and negative answer, and then, the next question
is the one corresponding to the maximum value.

6
S Y S T E M I M P L E M E N TAT I O N A N D
T E S T I N G

In this chapter we will show the architecture of the system from a technological
point of view. The decision support system has been implemented into two Web
applications: a REST Web service, and a Web graphical interface as will be detailed
in Section 6.1. Furthermore, in Section 6.2 we will report about the results obtained
on 3000 questionnaires that led to at least one headache disorder, and so, which are
representative of realistic headache anamneses.

6.1 THE SYSTEM ARCHITECTURE

The decision support system has been implemented into two Web applications: a
REST Web service, and a Web graphical interface. Web applications are one of
the most common types of distributed applications. In general, they are accessible
without requiring any installation process and are cross-platform by design.

User Answers History
- Got headache? -> yes
- Headache lasts more than 30 minutes? -> yes
- Headache lasts more than 2 hours? -> no

…

WEB Service

WEB Graphical Interface

Diagnosis
- Migrain -> compatible
- Migrain with aura -> incompatible
- Migraine without aura -> compatible
- Tension-type headache -> unknown

…

Questionnaire
- Next question -> Got nausea?
- Status -> IN_PROGRESS

Π History

Π ICHD

Π Questionnaire

ASP solver

Find best quest.Answer Sets

Response

Diagnosis
Answer Set Build response

Request

ASP solver

Figure 6.1: System architecture

42

6.2 V E R I F I C AT I O N A N D VA L I DAT I O N O F T H E A P P RO AC H 43

Figure 6.1 presents, with an example, the architecture of Head-ASP. The user (a
physician) interacts directly with the Web Graphical Interface which communicates
under the form of HTTP requests and responses with the Web Service, i.e., it sends
the patient’s answer history to the web service, making use of an http request. At
this point, the HEAD-ASP web service (i) builds an ASP program as the union of
the encoding of ICHD, of the encoding that implements the questionnaire and of
the history of answers provided by the patient, and (ii) runs it on an ASP system
which outputs the candidate answer sets. Finally, the web service selects the next
question, updates the diagnostic picture and communicates the output via HTTP
response to the Graphical Interface, which will dynamically update. In this project
DLV2 has been used as the ASP solver of the application. It is worth noting that the
Web Service is not intended to be used directly by humans, but it is, instead, intended
to be invoked by other programs. It has been implemented in JAVA using Spring,
which is a well-known framework for Web development.

The implemented service follows the REST architectural style [RR08]. As per the
REST architecture, a RESTful Web Service is stateless, i.e., it has no concept of
state or session, and thus it can scale well horizontally [MMSW07]: more instances
can be deployed simultaneously and it is not important which instance is handling a
request. The Web Service also exposes a documentation that shows its communication
protocol, i.e., how to invoke it and how to interpret its output. In our implementation,
the Web Service exposes a method that accepts a patient history of answers and
returns the current diagnosis and the next question. The response contains special
tokens in the cases where the questionnaire is completed (i.e., every diagnosis is
either compatible or not compatible) or the questionnaire can not be continued (i.e.,
there is no relevant question to ask).

The HEAD-ASP Web Graphical Interface demonstrates the functionalities of the
DSS and, contrary to the Web Service, it is intended to be used by humans. Currently,
it is used as the primary interface of HEAD-ASP until the future integration of
the DSS in the Alcmeone project platform. To develop the Web Interface we used
Angular 8, which is a popular JavaScript framework for the development of Web
graphical interfaces. The Web interface and the Web service (and its documentation)
are available at https://head-asp.github.io/ichd-dss/.

6.2 VERIFICATION AND VALIDATION OF THE APPROACH

To minimize the number of defects in the implementation and investigate the per-
formance of the approach, we implemented a testing framework where questions
are answered randomly. In this section, we report the results obtained by the current
release of HEAD-ASP on approximately 7400 questionnaires. Among these, we fo-
cused on those –3000 in total– that led to at least one headache disorder, which are
representative of real cases of headache. Figures 6.2 and 6.3 show two histograms
summarizing the results of our tests.

https://head-asp.github.io/ichd-dss/

6.2 V E R I F I C AT I O N A N D VA L I DAT I O N O F T H E A P P RO AC H 44

0

20

40

60

80

100

120

140

160

180

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 49 51 53

Figure 6.2: Reaching the complete diagnostic picture.

0

100

200

300

400

500

600

700

6 7 8 9 1011121314151617181920212223242526272829303133343536373841

Figure 6.3: Reaching the first compatible diagnosis.

In both histograms, each bar on top of a value x represents how many questionnaires
had a length x. In Figure 6.2, we plot the distribution of the number of questionnaires
by overall length (i.e., the length necessary to reach a complete diagnostic picture); in
Figure 6.3, we consider the distribution of the number of questionnaires by the length
at which the first compatible diagnosis has been reached. The average length is of
21.44 questions in the first case and of 12.99 in the second one. It is worth noting that
these results are in line with the neurologists’ experience and expectations. Finally,
considering the fact that there are more than 150 candidate questions encoded in the

6.2 V E R I F I C AT I O N A N D VA L I DAT I O N O F T H E A P P RO AC H 45

system, the results of our experiment reveal how HEAD-ASP is able to effectively
discard unnecessary questions when needed, pruning the search space and producing
short questionnaires.

Part III

R E L AT E D W O R K A N D C O N C L U S I O N

7
R E L AT E D W O R K

In this section we present several works concerning decision support systems for the
diagnosis of headaches that can be found in the literature. In the field concerning
decision support systems for headache diagnosis a large amount of works can be
found. Among the most recent ones, it is possible to cite a work presented in 2014
by researchers from the University of Zhejiang [DYH+14]. The authors developed a
headache computerized clinical decision support systems (CDSS) based on ICHD-3
beta and validated it in a study that involved 543 patients, affected by headache, from
the International Headache Center at the Chinese PLA General hospital, Beijing,
China. This work is based on a 3-steps translation of ICHD-3: first in terms of flow-
charts, then in terms of an ontological model and, finally, in terms of rules. More in
details, the paper proposes a method of constructing a computerized clinical guideline
model and medical knowledge-base achieved by exploiting the joint efforts of clinical
specialists and knowledge engineers, according to a translation process that allowed
to express ICHD-3 in the form of a flowchart. In order to be directly run by computer,
the computerized guidelines were translated into rules that could be executed in the
inference engine of the CDSS. On the basis of clinical information for headache
disorders fed as input to the CDSS by inexperienced doctors, the system made a
computerized diagnosis. Qualified and experienced specialists in headache neurology
reviewed this information and made the final diagnosis. The system is described
mostly from an architectural point-of-view and in-depth details of the translation and
of the diagnosis process are not provided.

An efficient technique for knowledge-based decision support even in domains
involving medicine is the rule-based fuzzy logic (RBFL). In this scenario, we can cite
a system implemented at the Clinical Centre Vojvodina, Institute of Neurology in
Novi Sad [SSSSI08] and developed as a tool for diagnosing some types of primary
headaches in workers using the rule-based fuzzy logic. The system does not include
all diagnoses but is limited to some specific types of primary headache (migraine
without aura, migraine with aura, tension-type headache and other primary headaches).
The researchers show the workflow of the basic model of rule-based fuzzy logic
systems, in which the rules are expressed as a collection of IF-THEN statements. In
particular, the information can be extracted by the patients in the form of IF-THEN
statements; finally, these rules can be modeled using fuzzy logic system. The rules
are provided according to the International Headache Disorder Criteria (IHDC) and,
once established, the system can be viewed as an input-to-output mapping. Questions
based on the IHDC represent the input of the model while the output represents the
specific type of headache (migraine without aura, migraine with aura, tension type
headache and other primary headaches).

47

R E L AT E D W O R K 48

A CDSS based on a hybrid intelligent reasoning method for primary headache
disorder [YMLD] involves the conventional Rule-Based Reasoning(RBR) and the
Case-Based Reasoning(CBR) techniques. It has been developed in order to help
general practitioners to improve diagnostic accuracy of primary headache disorders.
The decision process able to decide the headache disorder can be divided into two
steps. RBR is the first one and concerns rules coming from clinical guidelines for
headaches International Classification of Headache Disorders - 3rd Edition which
can be executed by the inference engine of CDSS. However, in cases regarding the
differentiation of the headaches with atypical symptoms, the system is not able to get
an accurate diagnostic result. For this reason, a second step including CBR techniques
is necessary to improve the accuracy of the entire diagnostic process. CBR is an
artificial intelligent technology considered to be one of the most effective ways when
dealing with implicit knowledge whose core idea is solving new problems based
on the solutions of similar past problems. The authors show the architecture of the
hybrid intelligent system which consists of the two aforementioned modules (RBR
and CBR), emphasizing the importance of the CBR module as a supplementary
technique to RBR module.

Our work has also connections with AIDA Cefalee, a system presented in 2004 from
the researchers of University Federico II of Naples [DSCR+07, DSMB04]. AIDA
Cefalee [DSMB04], is a database for the storage of symptoms and diagnosis data of
patients with headache disorders, and includes a diagnostic module that can suggest
possible diagnosis (only if all symptoms have been acquired). The core of AIDA
Cefalee is an expert diagnostic system, based on the International Classification of
Headache Disorders - 2nd edition (ICHD-II), able to suggest the correct diagnosis
once all the clinical features of a patient’s headache have been collected. The system
contains a sophisticated database that can be synchronized over the network allowing
a continuous sharing of the patients’ information and a cooperation between different
research groups. The development of the system was part of a validation study
which involved five Italian headache centres that have selected clinical data stored
on previously diagnosed primary headache cases. The data were, then, entered into
the AIDA diagnostic tool in order to compare the tool diagnostic accuracy with the
diagnosis reached by the standard clinical method (SCM). The diagnostic tool has
been validated experimentally [DSCR+07], but no details of the classification method
are provided.

Our system is also related to a computerized program designed to diagnose pri-
mary headache based on ICHD-II criteria [EREHN+13]. The latter implements a
questionnaire divided into five main parts. Within the two most important steps, the
system provides questions related to headache disorders and, eventually, shows the
final decision with a detailed explanation of it. This system uses simple human-like
algorithmic logic to derive the most appropriate type of headache. However, the
accuracy of the diagnosis depends also on the accuracy of the patient’s response. The
article does not provide further details on the classification method and the system is
not publicly available.

R E L AT E D W O R K 49

In [VDBL+18] the authors present a DSS for the diagnosis of headaches that con-
sists of three modules: (i) a mobile application that captures symptomatic data from
patients, (ii) an automated diagnosis support module that generates an interpretable
decision tree, based on data semantically annotated with expert knowledge and (iii)
a web application that helps the physician to efficiently interpret captured data and
learned insights by means of visualizations. Here, the diagnosis process is based
on supervised machine learning models. One of the most important modules of the
proposed decision support system is an automated diagnosis support module. In this
module, an interpretable predictive model is generated from the data collected by
the mobile application, using supervised classification. Supervised classification is
a sub-domain of machine learning. Additionally, a knowledge base is constructed
using expert knowledge, the ICHD document and ontologies such as SNOMED. Both
the collected data and the prior knowledge is used to generate feature vectors which
are fed to the machine learning technique. Before feeding them, the class distribution
in the training dataset is balanced in order to make it more uniform.

8
C O N C L U S I O N

In this work, we have presented HEAD-ASP: a novel decision support system for the
diagnosis of headache disorders (one of the most common and disabling conditions
of the nervous system throughout the world). The system is currently tested by a
group of neurologists that are profitably using it within Alcmeone and are leaving
very positive feedback.

Although design and implementation of the DSS was quite challenging, we found
very natural to use logic programming both to encode the ICHD classification and to
model the heuristics for determining the next question. In particular, the advantages
can be summarized as follows:

– simple and complex diagnoses can be encoded in a natural and precise way;

– ICHD updates can be easily and locally transferred to the encoding;

– medical knowledge can be represented and integrated in a declarative way;

– identifying candidate questions and simulating their effects are tasks that can
be carried out in the same framework.

Concerning our future plans, the ultimate objective is to promote the system inside
the Italian Society for the Study of Headache (SISC) so that it can become a valid
support to clinicians and specialists. To this end, we are still refining and improving
it according to the feedback we are currently receiving. In particular, the next steps
include:

– completing the ICHD-3 encoding;

– analyzing the next-question problem from a theoretical perspective;

– further reducing the average number of questions needed to reach a complete
diagnosis.

Furthermore, we would like to generalize our methodology to be easily applicable in
similar contexts.

50

B I B L I O G R A P H Y

[ABW88] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards
a theory of declarative knowledge. In Jack Minker, editor, Founda-
tions of Deductive Databases and Logic Programming, pages 89–148.
Morgan Kaufmann, 1988.

[BET11] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer
set programming at a glance. Commun. ACM, 54(12):92–103, 2011.

[BLR00] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Enhancing
disjunctive datalog by constraints. IEEE Trans. Knowl. Data Eng.,
12(5):845–860, 2000.

[CCIL08] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola
Leone. Computable functions in ASP: theory and implementation.
In Maria Garcia de la Banda and Enrico Pontelli, editors, Logic Pro-
gramming, 24th International Conference, ICLP 2008, Udine, Italy,
December 9-13 2008, Proceedings, volume 5366 of Lecture Notes in
Computer Science, pages 407–424. Springer, 2008.

[CR96] Alain Colmerauer and Philippe Roussel. The birth of prolog. In
History of programming languages—II, pages 331–367. 1996.

[Don76] John J. Donovan. Database system approach to management descision
support. ACM Trans. Database Syst., 1(4):344–369, 1976.

[DSCR+07] R De Simone, G Coppola, A Ranieri, G Bussone, P Cortelli,
D D’Amico, F d’Onofrio, GC Manzoni, E Marano, F Perini, et al.
Validation of aida cefalee, a computer-assisted diagnosis database
for the management of headache patients. Neurological Sciences,
28(2):S213–S216, 2007.

[DSMB04] R De Simone, E Marano, and V Bonavita. Towards the computeri-
sation of ANIRCEF Headache Centres. Presentation of AIDA CE-
FALEE, a computer assisted diagnosis database for the management
of headache patients. Neurological Sciences, 25(3):s218–s222, 2004.

[DYH+14] Zhao Dong, Ziming Yin, Mianwang He, Xiaoyan Chen, Xudong Lv,
and Shengyuan Yu. Validation of a guideline-based decision support
system for the diagnosis of primary headache disorders based on
ICHD-3 beta. The journal of headache and pain, 15(1):40, 2014.

51

B I B L I O G R A P H Y 52

[EFLP00] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer.
Declarative problem-solving using the dlv system. In Logic-based
artificial intelligence, pages 79–103. Springer, 2000.

[EIK09a] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. An-
swer set programming: A primer. In Sergio Tessaris, Enrico Fran-
coni, Thomas Eiter, Claudio Gutiérrez, Siegfried Handschuh, Marie-
Christine Rousset, and Renate A. Schmidt, editors, Reasoning Web.
Semantic Technologies for Information Systems, 5th International
Summer School 2009, Brixen-Bressanone, Italy, August 30 - Septem-
ber 4, 2009, Tutorial Lectures, volume 5689 of Lecture Notes in
Computer Science, pages 40–110. Springer, 2009.

[EIK09b] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. An-
swer Set Programming: A Primer, pages 40–110. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[EIK09c] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. An-
swer set programming: A primer. In Sergio Tessaris, Enrico Fran-
coni, Thomas Eiter, Claudio Gutiérrez, Siegfried Handschuh, Marie-
Christine Rousset, and Renate A. Schmidt, editors, Reasoning Web.
Semantic Technologies for Information Systems, 5th International
Summer School 2009, Brixen-Bressanone, Italy, August 30 - Septem-
ber 4, 2009, Tutorial Lectures, volume 5689 of Lecture Notes in
Computer Science, pages 40–110. Springer, 2009.

[EREHN+13] Vahid Eslami, Sadreddin Rouhani-Esfahani, Nima Hafezi-Nejad,
Farshid Refaeian, Siamak Abdi, and Mansoureh Togha. A computer-
ized expert system for diagnosing primary headache based on Interna-
tional Classification of Headache Disorder (ICHD-II). Springerplus,
2(199):1–4, 2013.

[Eva17] Randolph W. Evans. Incidental findings and normal anatomical vari-
ants on MRI of the brain in adults for primary headaches. Headache:
The Journal of Head and Face Pain, 57(5):780–791, 2017.

[FLP04] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recursive aggre-
gates in disjunctive logic programs: Semantics and complexity. In
JELIA, volume 3229 of LNCS, pages 200–212. Springer, 2004.

[FPL11] Wolfgang Faber, Gerald Pfeifer, and Nicola Leone. Semantics and
complexity of recursive aggregates in answer set programming. Artif.
Intell., 175(1):278–298, 2011.

[GL88] Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics
for Logic Programming. In Logic Programming, Proceedings of the

B I B L I O G R A P H Y 53

Fifth International Conference and Symposium, Seattle, WA, Aug 15-
19, 1988 (2 Volumes), pages 1070–1080, Cambridge, Mass., 1988.
MIT Press.

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic
programs and disjunctive databases. New Generation Computing,
9(3/4):365–386, 1991.

[IHS18] International-Headache-Society. Headache classification committee
of the international headache society (IHS) the international classifi-
cation of headache disorders, 3rd edition. Cephalalgia, 38(1):1–211,
2018.

[KB83] Robert A Kowalski and Kenneth A Bowen. Logic programming. In
IFIP Congress, pages 133–145. Citeseer, 1983.

[Kow88] Robert A Kowalski. The early years of logic programming. Commu-
nications of the ACM, 31(1):38–43, 1988.

[LGP+90] Douglas B. Lenat, Ramanathan V. Guha, Karen Pittman, Dexter Pratt,
and Mary Shepherd. CYC: toward programs with common sense.
Commun. ACM, 33(8):30–49, 1990.

[Lif99] Vladimir Lifschitz. Answer set planning. In International Conference
on Logic Programming and Nonmonotonic Reasoning, pages 373–
374. Springer, 1999.

[Lif02] Vladimir Lifschitz. Answer set programming and plan generation.
Artif. Intell., 138(1-2):39–54, 2002.

[Lif08] Vladimir Lifschitz. What is answer set programming? In Dieter Fox
and Carla P. Gomes, editors, Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois,
USA, July 13-17, 2008, pages 1594–1597. AAAI Press, 2008.

[Llo12] John W Lloyd. Foundations of logic programming. Springer Science
& Business Media, 2012.

[LPF+06a] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg
Gottlob, Simona Perri, and Francesco Scarcello. The dlv system
for knowledge representation and reasoning. ACM Transactions on
Computational Logic, 7(3):499–562, Jul 2006.

[LPF+06b] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg
Gottlob, Simona Perri, and Francesco Scarcello. The DLV System for
Knowledge Representation and Reasoning. 7(3):499–562, July 2006.

B I B L I O G R A P H Y 54

[LPV01] Vladimir Lifschitz, David Pearce, and Agustín Valverde. Strongly
equivalent logic programs. ACM Trans. Comput. Log., 2(4):526–541,
2001.

[McC80] John McCarthy. Circumscription—a form of non-monotonic reason-
ing. Artificial intelligence, 13(1-2):27–39, 1980.

[MMSW07] Maged Michael, Jose E Moreira, Doron Shiloach, and Robert W
Wisniewski. Scale-up x scale-out: A case study using nutch/lucene.
In Proc. of IPDPS’07, pages 1–8, 2007.

[Moo85] Robert C. Moore. Semantical considerations on nonmonotonic logic.
Artif. Intell., 25(1):75–94, 1985.

[MT99] Victor W. Marek and Miroslaw Truszczynski. Stable models and an
alternative logic programming paradigm. In Krzysztof R. Apt, Vic-
tor W. Marek, Mirek Truszczynski, and David Scott Warren, editors,
The Logic Programming Paradigm - A 25-Year Perspective, Artificial
Intelligence, pages 375–398. Springer, 1999.

[Nie99] Ilkka Niemelä. Logic programs with stable model semantics as a
constraint programming paradigm. Ann. Math. Artif. Intell., 25(3-
4):241–273, 1999.

[Prz91] Teodor C. Przymusinski. Stable semantics for disjunctive programs.
New Gener. Comput., 9(3/4):401–424, 1991.

[Rei80] Raymond Reiter. A logic for default reasoning. Artificial intelligence,
13(1-2):81–132, 1980.

[RR08] Leonard Richardson and Sam Ruby. RESTful web services. O’Reilly
Media, Inc., 2008.

[SHJ+07] LJ Stovner, K Hagen, R Jensen, Z Katsarava, RB Lipton, AI Scher,
TJ Steiner, and J-A Zwart. The global burden of headache: A docu-
mentation of headache prevalence and disability worldwide. Cepha-
lalgia, 27(3):193–210, 2007.

[SPB+20] Reed T. Sutton, David Pincock, Daniel C. Baumgart, Daniel C. Sad-
owski, Richard N. Fedorak, and Karen I. Kroeker. An overview of
clinical decision support systems: benefits, risks, and strategies for
success. npj Digit. Med, 3(1), 2020.

[SSSSI08] Svetlana Simić, Dragan Simić, Petar Slankamenac, and Milana Simić-
Ivkov. Computer-assisted diagnosis of primary headaches. In Proc.
of HAIS’08, pages 314–321, 2008.

B I B L I O G R A P H Y 55

[VDBL+18] Gilles Vandewiele, Femke De Backere, Kiani Lannoye, Maarten Van-
den Berghe, Olivier Janssens, Sofie Van Hoecke, Vincent Keereman,
Koen Paemeleire, Femke Ongenae, and Filip De Turck. A decision
support system to follow up and diagnose primary headache patients
using semantically enriched data. BMC Med Inform Decis Mak,
18(1):98, 2018.

[VEK76] Maarten H Van Emden and Robert A Kowalski. The semantics of
predicate logic as a programming language. Journal of the ACM
(JACM), 23(4):733–742, 1976.

[YMLD] Ziming Yin, Lingtong Min, Xudong Lu, and Huilong Duan. A clinical
decision support system for primary headache disorder based on
hybrid intelligent reasoning. In Proc. of BMEI 2014, pages 683–687.

	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Abstract
	1 Introduction
	1.1 Context and State-of-the-Art
	1.2 Motivation and Objectives
	1.3 Challenges and Contribution
	1.4 Structure of the Thesis

	 Preliminary Notions and Notations
	2 The ICHD Classification
	2.1 History and Objectives
	2.2 Structure and Content Organization

	3 Answer Set Programming
	3.1 Syntax
	3.1.1 Terms
	3.1.2 Atoms and Literals
	3.1.3 Rules, Constraints, Queries and Programs

	3.2 Semantics
	3.2.1 Theoretical Instantiation
	3.2.2 Interpretations
	3.2.3 Answer Sets

	3.3 The Guess-Check-Optimize Technique
	3.4 Applications and Examples
	3.4.1 Three-colorability
	3.4.2 Hamiltonian Path
	3.4.3 k-Clique
	3.4.4 Maximal Clique

	 The HEAD-ASP System
	4 Knowledge Base of the System
	4.1 Relational Schema and Assertions
	4.2 Methodology for Diagnoses Encoding
	4.3 Examples of Encoded Diagnoses

	5 The Logical Decision Module
	5.1 ASP Encoding
	5.1.1 Pruning the Search Space
	5.1.2 Selecting a Candidate Question
	5.1.3 Evaluating the Impact of a Candidate Question

	5.2 The Next Question Strategy

	6 System Implementation and Testing
	6.1 The System Architecture
	6.2 Verification and Validation of the Approach

	 Related Work and Conclusion
	7 Related Work
	8 Conclusion

		2022-03-29T17:49:56+0100
	Marco Manna

		2022-04-13T11:05:39+0200
	Gianluigi Greco

