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Abstract 

Still today, the fracture phenomenon in cementitious materi-

als is a research topic widely investigated by numerous research-

ers in materials and structural engineering, since it involves 

many theoretical and practical aspects concerning both strength 

and durability properties of common concrete structures. In-

deed, cracking is one of the main causes of the severe deteriora-

tion of concrete structures, usually leading to an unacceptable re-

duction of their serviceability time. The fracture processes, in-

cluding onset, propagation, and coalescence of multiple cracks, 

arise in the structural members because of the low tensile 

strength of concrete, which is ultimately related to the existence 

of voids or undetected defects in the material microstructure. 

Such cracking processes significantly affect the global mechani-

cal behavior of the concrete structures and may facilitate the in-

gress of corrosive media; therefore, in the scientific community 

there is a strong interest in reducing cracks width to a minimum 

or in preventing cracking altogether. In the technical literature, 

several simplified numerical models, based on either linear-elas-

tic or elastic-plastic fracture mechanics, are proposed to predict 

the fracture mechanisms during any stage of the lifetime of con-

crete structures. However, the application of these models is 
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somehow limited, due to their incapacity to capture the complex 

inelastic mechanical behavior of reinforced concrete members, 

involving multiple concrete cracking and steel yielding and their 

mutual interaction under the combined action of axial and bend-

ing loadings. 

This thesis aims to develop a sophisticated numerical frac-

ture model to predict the cracking processes in quasi-brittle ma-

terials like concrete, and the main failure mechanisms of the re-

inforced concrete structures in a comprehensive manner. The 

proposed methodology relies on a diffuse interface model (DIM), 

based on an inter-element cohesive fracture approach, where co-

hesive elements are inserted along all the internal mesh bounda-

ries to simulate multiple cracks initiation, propagation and coa-

lescence in concrete. Such a model, is used in combination with 

an embedded truss model (ETM) for steel reinforcing bars in the 

failure analysis of reinforced concrete structures. In particular, 

truss elements equipped with an elastoplastic constitutive be-

havior are suitably connected to the concrete mesh via a bond-

slip interface, in order to capture the interaction with the sur-

rounding concrete layers as well as with the neighboring propa-

gating cracks. 

The proposed fracture model takes advantage of a novel mi-

cromechanics-based calibration technique, developed and pro-

posed in this thesis, to control and/or reduce the well-known 

mesh dependency issues of the diffuse cohesive approach, re-

lated to the artificial compliance in the elastic regime. In this way, 
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the initial stiffness parameters of the cohesive element employed 

in the diffuse interface model are suitably calibrated by means of 

a rigorous micromechanical approach, based on the concept of 

representative volume element. In particular, by performing sev-

eral micromechanical analyses two charts have been constructed 

which provide the dimensionless normal and tangential stiffness 

parameters as functions of both the Poisson’s ratio of the bulk 

and the admitted reduction in the overall Young’s modulus after 

the insertion of the cohesive interfaces. 

The proposed fracture model has been firstly validated by 

performing numerical analysis in plain concrete elements, and 

secondly, employed to analyze the failure mechanisms in exter-

nally strengthened reinforced concrete beams. 

In particular, several numerical simulations, involving pre-

notched concrete beams subjected to mode-I loading conditions, 

have been performed to investigate the capability of the diffuse 

interface model to predict self-similar crack propagation and to 

assess the mesh-induced artificial toughening effects, also intro-

ducing two new fracture models for comparison purpose. More-

over, sensitivity analyses with respect to the mesh size and the 

mesh orientation have been performed to investigate the mesh 

dependency properties of the proposed fracture model. Further 

validation of the proposed diffuse interface model has been pro-

vided for plain concrete structures subjected to general mixed-

mode loading conditions. The role of the mode-II inelastic pa-
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rameters (i.e. critical tangential stress and mode-II fracture en-

ergy) on the nonlinear behavior of the embedded cohesive inter-

faces is investigated in a deeper manner. In particular, two sen-

sitivity analyses have been performed by independently varying 

the mode-II inelastic parameters required by the traction-separa-

tion law adopted in the proposed concrete fracture model, in or-

der to quantify the above-mentioned artificial toughening effects 

associated with mode-II crack propagation. Moreover, compari-

sons with numerical and experimental results, with reference to 

mode-I and mixed-mode fracture tests, have been reported, 

highlighting the effectiveness of the adopted diffuse interface 

model (DIM) in predicting the failure response in a reliable man-

ner. 

Subsequently, the integrated fracture approach is success-

fully employed to predict the nonlinear response of (eventually 

strengthened) reinforced concrete beams subjected to general 

loading conditions. Firstly, the failure analysis of reinforced con-

crete (RC) beams has been performed to assess the capability of 

the integrated fracture model to capture multiple crack initiation 

and propagation. Detailed stress analysis of the tensile reinforce-

ment bars has been also reported to verify the capability of the 

embedded truss model (ETM) of capturing the tension stiffening 

effect. Secondly, the well-known concrete cover separation phe-

nomenon has been predicted by performing complete failure 

simulations of FRP-strengthened RC elements. To this end, a sin-

gle interface model (SIM) has been incorporated in the proposed 
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fracture model to capture the mechanical interaction between the 

concrete element and the externally bonded reinforced system 

and to predict eventually debonding phenomena in con-

crete/FRP plate interface. Suitable comparisons with available 

experimental results have clearly shown the reliability and the 

effectiveness (in terms of numerical accuracy) of the adopted 

fracture approach, especially in the crack pattern prediction. Fi-

nally, the proposed integrated numerical model is used to pre-

dict the structural response of ultra high-performance fiber-rein-

forced concrete (UHPFRC) structures enhanced with embedded 

nanomaterials. In this case, the cohesive elements are equipped 

with a mixed-mode traction-separation law suitably calibrated to 

account for the toughening effect of the nano-reinforcement. The 

main numerical outcomes, presented in terms of both global 

structural response and final crack pattern, show the ability of 

the proposed approach to predict the load-carrying capacity of 

such structures, as well as to highlight the role of the embedded 

nano-reinforcement in the crack width control. 

 

 

 



 

Sommario 

Ancora oggi il fenomeno della frattura nei materiali cemen-

tizi è un argomento di ricerca ampiamente studiato da numerosi 

ricercatori nel campo dell’ingegneria strutturale e dei materiali, 

poiché tale fenomeno coinvolge diversi aspetti sia teorici che pra-

tici riguardanti la resistenza e la durabilità degli usuali manufatti 

in calcestruzzo. Infatti, la fessurazione è una delle cause più im-

portanti del deterioramento delle strutture in calcestruzzo, 

spesso comportando un’inaccettabile riduzione della loro vita 

utile. I processi di frattura, che includono l'innesco, la propaga-

zione e la coalescenza di fessure multiple, si verificano negli ele-

menti strutturali a causa della bassa resistenza a trazione del cal-

cestruzzo, la quale è strettamente connessa all'esistenza di vuoti 

o difetti non rilevati nella microstruttura del materiale. Questi 

processi di fessurazione influenzano fortemente il comporta-

mento meccanico globale delle strutture in calcestruzzo e pos-

sono facilitare l’ingresso di materiale corrosivo; pertanto nella 
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comunità scientifica c’è un forte interesse nel prevenire l’instau-

rarsi delle fessure, e/o ridurre al minimo la loro ampiezza. Nella 

letteratura tecnica vengono proposti diversi modelli numerici 

semplificati, basati sulla meccanica della frattura elastica lineare 

o elastico-plastica, al fine di prevedere i meccanismi di frattura 

durante ogni fase della vita utile delle strutture in calcestruzzo. 

Tuttavia, l'applicazione di questi modelli è in qualche modo li-

mitata a causa della loro incapacità di catturare il complesso 

comportamento meccanico anelastico degli elementi in cemento 

armato, che coinvolge fessurazioni multiple del calcestruzzo, lo 

snervamento dell'acciaio e la loro reciproca interazione sotto l'a-

zione combinata di carichi assiali e flessionali. 

Questa tesi ha l’obiettivo di sviluppare un modello numerico 

di frattura sofisticato per prevedere, in modo completo ed esau-

stivo, i processi di fessurazione nei materiali con comportamento 

meccanico quasi fragile come il calcestruzzo, oltre che i principali 

meccanismi di collasso delle strutture in calcestruzzo armato. La 

metodologia proposta si fonda su un modello ad interfaccia dif-

fusa (DIM), a sua volta basato su un approccio di frattura coesiva 

inter-elemento, in cui elementi coesivi sono inseriti lungo tutti i 

bordi della mesh computazionale per simulare l'innesco, la pro-

pagazione e la coalescenza di fessure multiple nel calcestruzzo. 

Tale modello viene utilizzato insieme ad un modello costituito 

da elementi di tipo “asta” incorporati (Embedded Truss Model, 

ETM) per tenere conto delle barre di rinforzo nelle analisi a col-
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lasso delle strutture in cemento armato. In particolare, gli ele-

menti asta, dotati di comportamento costitutivo elastoplastico, 

sono opportunamente collegati alla mesh del calcestruzzo tra-

mite un'interfaccia di tipo “bond-slip”, in grado di cogliere l'in-

terazione con gli strati di calcestruzzo circostanti e con le fessure 

vicine. 

Il modello di frattura proposto sfrutta i vantaggi di una 

nuova tecnica di calibrazione basata sulla micromeccanica, svi-

luppata e proposta in questa tesi, per controllare e/o ridurre i ben 

noti problemi di dipendenza dalla mesh dell'approccio coesivo 

diffuso, relativi all’effetto artificiale di cedevolezza nella fase ela-

stica. In questo modo, i parametri di rigidezza iniziali degli ele-

menti coesivi impiegati nel modello ad interfaccia diffusa ven-

gono correttamente calibrati mediante un rigoroso approccio mi-

cromeccanico, basato sul concetto di elemento volumetrico rap-

presentativo. In particolare, eseguendo diverse analisi micro-

meccaniche sono stati costruiti due abachi che forniscono i para-

metri adimensionali di rigidezza normale e tangenziale in fun-

zione sia del coefficiente di Poisson della fase solida che della ri-

duzione del modulo di Young ammessa dopo l'inserimento delle 

interfacce coesive. 

Il modello di frattura proposto è stato prima validato ese-

guendo analisi numeriche in elementi in calcestruzzo semplice e 

poi utilizzato per analizzare i meccanismi di collasso nelle travi 

in calcestruzzo armato, anche rinforzate esternamente con mate-

riali compositi. 
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In particolare, sono state eseguite diverse simulazioni nume-

riche, con riferimento a travi in calcestruzzo pre-intagliate sog-

gette a condizioni di carico di modo I, al fine studiare la capacità 

del modello ad interfaccia diffusa di prevedere la propagazione 

della fessura, oltre che di gli effetti artificiali di tenacità indotti 

dalla mesh, introducendo anche due nuovi modelli di frattura a 

scopo di confronto. Inoltre, sono state eseguite analisi di sensiti-

vità rispetto alla dimensione e all'orientamento della mesh al fine 

di indagare le proprietà di dipendenza della mesh del modello 

di frattura proposto.  

Un'ulteriore validazione del modello ad interfaccia diffusa è 

stata fornita per le strutture in calcestruzzo non armato sottospo-

ste a condizioni di carico di modo misto. Il ruolo dei parametri 

anelastici di modo II (cioè la tensione tangenziale critica e l’ener-

gia di frattura di modo II) nel comportamento non lineare delle 

interfacce coesive incorporate viene studiato in modo più appro-

fondito. In particolare, sono state eseguite due analisi di sensibi-

lità variando indipendentemente i parametri anelastici di modo 

II richiesti dalla legge di trazione-separazione adottata nel mo-

dello di frattura del calcestruzzo proposto, al fine di quantificare 

i sopra citati effetti artificiali di tenacità associati alla propaga-

zione della fessura in modo II.  

Inoltre, sono stati riportati dei confronti con risultati nume-

rici e sperimentali, con riferimento a prove di frattura in modo I 
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e in modo misto, evidenziando l'efficacia del modello ad inter-

faccia diffusa (DIM) nel prevedere in modo affidabile la risposta 

non lineare della risposta a collasso. 

Successivamente, l’approccio di frattura integrato è stato im-

piegato con successo per prevedere la risposta non lineare delle 

travi in calcestruzzo armato rinforzate soggetta a condizioni di 

carico generali. In primo luogo, è stata eseguita l'analisi al col-

lasso di travi in calcestruzzo armato per valutare la capacità del 

modello di frattura integrato di catturare l'innesco e la propaga-

zione di fessure multiple. È stata inoltre riportata un'analisi det-

tagliata delle tensioni nelle barre di rinforzo a trazione al fine di 

verificare la capacità del modello ad aste incorporate (ETM) nel 

cogliere l'effetto del “tension stiffening”. 

In secondo luogo, è stato simulato il ben noto fenomeno del 

distacco del copriferro nelle travi in calcestruzzo armato ese-

guendo simulazioni al collasso di elementi in calcestruzzo ar-

mato rinforzati con sistemi FRP. A tal fine, nel modello di frat-

tura proposto è stato incorporato un modello ad interfaccia sin-

gola (SIM) per descrivere l'interazione meccanica tra l'elemento 

in calcestruzzo e il sistema di rinforzo incollato esternamente e 

per prevedere eventuali fenomeni di delaminazione lungo l’in-

terfaccia tra il calcestruzzo di supporto e la piastra in FRP. I con-

fronti con alcuni risultati sperimentali disponibili in letteratura 

hanno mostrato chiaramente l'affidabilità e l'efficacia (in termini 

di accuratezza numerica) dell'approccio di frattura adottato, spe-

cialmente nella previsione del quadro fessurativo.  
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Infine, il modello numerico proposto è stato utilizzato per 

prevedere la risposta strutturale di elementi in calcestruzzo fi-

brorinforzato ad alte prestazioni (Ultra High-Performance Fiber-

Reinforced Concrete, UHPFRC) migliorati con nanomateriali di-

spersi nella matrice cementizia. In questo caso, gli elementi coe-

sivi sono dotati di una legge trazione-separazione di modo misto 

opportunamente calibrata per tenere conto dell'effetto tenaciz-

zante del nano-rinforzo. I principali risultati numerici, presentati 

sia in termini di risposta strutturale globale che di quadro fessu-

rativo finale, mostrano la capacità dell'approccio proposto nel 

prevedere la capacità portante di tali strutture, nonché nell’evi-

denziare il ruolo del nano-rinforzo nel controllo dell’ampiezza 

delle fessure. 



Notations 

C  Homogenized moduli tensor 

(UT) (G) (LD), ,C C C  

Homogenized moduli tensor for uniform traction 

(UT), general (G) and linear displacement (LD) 

boundary conditions 
iso

C  Isotropic moduli tensor closest to C  


C  Angularly averaged homogenized moduli tensor 

CDIM  Controlled diffuse interface model 

d  Scalar damage function 

DIM  Diffuse interface model 

E  Young’s modulus of the bulk 

Ee  Percentage variation of the overall Young’s modulus 

Ce  Percentage deviation of the homogenized moduli 

Pe  
Percentage deviation with respect to the mean peak 

load 

ETM  Embedded truss model 

cf  Concrete compressive strength 

G  Tangential modulus of the bulk 

G  Overall tangential modulus 

2DG  Homogenized planar shear modulus 

I II,G G  Modal components of the energy release rate 

I II,c cG G  Mode-I and mode-II fracture energies 



Notations  xiv 

ai  Anisotropy index 

ci  Compliance index 

K  Second-order secant interfacial constitutive tensor 

0K  Second-order elastic interfacial constitutive tensor 

,n sK K  
Normal and tangential interfacial cohesive stiffness 

parameters 

0 0,n sK K  
Normal and tangential interfacial elastic stiffness pa-

rameters 

2DK  Homogenized planar bulk modulus 
p
cl  Projected crack length 

t
cl  True crack length 

meshL  Mesh size 

RVEL  RVE size 
maxP  Peak load 

Q  Proper orthogonal transformation tensor 

ER  Reduction of the Young’s modulus 

GR  Reduction of the tangential modulus 

R  Reduction of the Poisson’s ratio 

RVE  Representative volume element 

s  Slip at the concrete/steel interface 

SIM  Single interface model 

coht  Cohesive traction vector 

coh coh,n st t  
Normal and tangential components of the cohesive 

traction vector 

u  Displacement jump between the crack faces 

  Dimensionless cohesive softening parameter 

  Tangential-to-normal displacement jump ratio 

  Mesh topology factor 
h
d  Internal mesh boundaries 

m  Mixed-mode displacement jump 
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0
m  Effective displacement jump at damage onset 

f
m  Effective displacement jump at total decohesion 

max
m  

Maximum effective displacement jump during defor-

mation history 

max,old
m  

Maximum effective displacement jump at the previ-

ous simulation step 

,n s   
Normal and tangential components of the displace-

ment jump 

0 0,n s   
Normal and tangential displacement jumps at dam-

age onset in pure mode-I and mode-II, respectively 

  Cohesive zone model parameter 

  Prescribed macro-strain tensor 

  Crack tortuosity ratio 

  Dimensionless interfacial normal stiffness 

  Poisson’s ratio of the bulk 

  Overall Poisson’s ratio 

  Tangential-to-normal stiffness ratio of the interface 

  Dimensionless RVE size 

  Normal stress component 

  Macro-stress tensor 

max  Normal critical interface stress 

  Shear stress component 

b  Steel/concrete bond stress 

,maxb  Maximum tangential stress of the bond-slip relation 

,b f  Friction strength of the bond-slip relation 

max  Tangential critical interface stress 

d  Dissipated fracture energy 
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Introduction 

 

 

 

Most construction materials subjected to mechanical loading and 

particular environmental conditions are often affected by the 

well-known fracture phenomenon (Issa, 1999; Ceroni and Pecce, 

2007; Arici, 2011). It is a typical damage process understood as 

the total or partial detachment of an originally intact part of body 

or structure, which occurs locally by means of elementary failure 

mechanisms on a microscopic level and strongly depends on 

physical and micro-structural properties of the considered mate-

rial. At the macroscopic scale, such a phenomenon consists in the 

formation and propagation of single or multiple cracks in the 

body, whereby complete mechanical failure is finally induced. In 

the civil engineering field, sudden fracture, technically named 
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“brittle fracture”, is the most dangerous type of damage which 

may induce premature and catastrophic collapse of civil con-

structions as bridge and civil building (Figure 1). In the most of 

cases, the reasons of these failures are undetected defects in ma-

terial or components, insufficient dimensioning of the construc-

tion compared to the actual load, or the application of materials 

with deficient strength. Engineering mistakes in this area can 

have undesirable consequences for the life of people and the en-

vironment, therefore, both theoretical and numerical investiga-

tions for the assessment and prevention of fracture and damage 

processes play a decisive role. Therefore, it is necessary to de-

velop accurate and reliable methods and models for the struc-

tural analysis of civil constructions, especially at the nonlinear 

regime, in order to assess their safety and serviceability under 

several loading conditions. In particular, especially for concrete 

 

Figure 1. Catastrophic failure of civil constructions: (a) Morandi bridge 

in Genova - Italy, and (b) civil building in Tainan - Taiwan.   
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structures, a suitable prediction of both deflection and crack pat-

terns under ultimate and service load is necessary to a correct 

design of the individual structural components. As a matter of 

fact, cracking phenomena, which arise at all stages in the life of 

concrete structures, may greatly affect the long-term durability 

and permeability properties (Wang et al., 1997; Bolander and Le, 

1999). An adequate control of cracking requires accurate models 

for predicting both crack width and crack spacing under general 

geometric configurations and loading conditions.  

Most of the existing models, based on either semi-empirical 

or analytical approaches, do not have a general applicability, be-

ing limited to concrete frame elements subjected to axial or bend-

ing loads (Frosch, 1999). Therefore, a comprehensive numerical 

model accounting for the effect of cracking, also including micro-

cracking, on the overall structural response of concrete elements 

under both ultimate and service loads appears to be still missing. 

This is attributable to the fact the most known and well-estab-

lished constitutive models for concrete are based on a continuum 

representation for this material, in which both kinematic and 

static variables (i.e. strains and stresses) possess regular spatial 

distributions. For a concrete crack analysis to be correct, this hy-

pothesis should be removed.  

To this end, the main focus of the present thesis is to develop 

an advanced computational fracture model able to investigate 
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the fracture phenomena in quasi-brittle materials and, as conse-

quence, to predict the main failure mechanisms in the concrete 

structures in a unified manner. 

Fracture phenomena and failure modes of concrete structures 

Concrete, although possessing a low tensile strength, is the most 

frequently used construction materials in the civil engineering 

field due to its distinctive characteristics such as notable com-

pressive strength and durability, high-temperature resistance, 

low-maintenance requirements, and cheapness compared to 

other materials (Biernacki et al., 2017). It is regarded as a compo-

site material being mainly made of aggregates, cement matrix, 

and voids containing air or water (Figure 2). However, such a 

heterogeneity makes concrete as a quasi-brittle material whose 

 

Figure 2. Detail of the concrete microstructure containing a crack.   
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fracture behavior under mechanical loading, is mainly non-lin-

ear and characterized, at common spatial scales (i.e. laboratory 

and building scales), by the development of a fracture process 

zone (FPZ) before the occurrence of strain localization (Cedolin 

et al., 1983; Otsuka and Date, 2000). In detail, the concrete frac-

ture behavior is characterized by a gradual transition from an in-

itial diffuse damaged state, in which several micro-cracks grow 

and interact with each other, to a complete localized damaged 

state, associated with nucleation and propagation of macro-

scopic cracks resulting from micro-crack coalescence phenomena 

(Wittmann and Hu, 1991). These processes play a major role in 

determining the damage behavior of concrete, influencing its ap-

parent stiffness properties even under relatively low levels of the 

applied external loads.  

To overcome the drawbacks of the concrete material, associ-

ated with low tensile strength and significant brittleness (associ-

ated with a low energy absorption capacity), it is usually em-

ployed in conjunction with steel bars, placed at those locations 

where the highest tensile stresses appear in the considered struc-

ture. Such a reinforcement greatly improves the structural per-

formance of the concrete members, in terms of load-carrying ca-

pacity, stiffness, and ductility, but promotes the multiple crack-

ing phenomena (Shardakov et al., 2016). Major cracks can then 

act as additional channels for penetration of aggressive agents, 

accelerating the development of deterioration due to chemical 
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reactions (such as leaching, delayed ettringite formation, and al-

kali-aggregate reactions), and reinforcement corrosion, as well as 

the amplification of the freeze/thaw damage effects. Moreover, 

the corrosion of the steel rebar decreases its effective cross-sec-

tional area and breaks the bond between the rebar and concrete, 

causing performance degradation of the entire structure (Fu and 

Chung, 1997; Wang et al., 1997; Zhang et al., 2020). 

In these structures, commonly named as reinforced concrete 

(RC) structures, different failure modes are observed in the ex-

perimental tests because of the presence of steel reinforcement, 

classifiable into two major types: flexural and shear failure.  

The former occurs when the acting loads exceed the flexural 

capacity of the beam mainly guaranteed by the steel rebars. In 

particular, such a failure usually initiates by the yielding of the 

 

Figure 3. Schematic representation of the failure modes in a reinforced 

concrete beam: (a) flexural and (b) shear failure mode.   
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steel reinforcement followed by the concrete crushing at com-

pression side of the structure (Zhan et al., 2015; Yang et al., 2017; 

Słowik, 2019). The signs of this failure mode are the development 

of multiple vertical cracks in the middle third of the concrete el-

ement, which starting from the tension face extend up to the 

compression side, leading to a considerable deflection of the 

structure (see Figure 3a). The flexural failure, being usually of 

ductile type, is a desired failure mode in the design process of 

concrete beams. However, when the beam is over-reinforced, the 

concrete crushing may occur before of the rebars yielding, lead-

ing to an undesired brittle failure. This premature failure mode 

can be prevented either by increasing the compression strength 

of the structure, introducing, for example, additional steel rein-

forcement at the compression side, or increasing the height of the 

concrete section.  

The latter failure mode is associated with the development of 

a diagonal fracture which starts in the proximity of the beam 

support and propagates towards the load application point (see 

Figure 3b) (Zararis and Papadakis, 2001). It is a brittle failure 

mode, which is strongly influenced by the effective span to depth 

ratio of the concrete element. As a matter of fact, for values less 

than one of this ratio, i.e. in the case of a deep beam, the loads are 

directly transferred to the supports, producing a diagonal frac-

ture plane (Wang et al., 2005; Yu and Tan, 2013). Usually, to pre-

vent such a failure mode, a shear reinforcement in form of stir-

rups is placed in the structure.   
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In the last two decades, to improve the flexural strength of 

existing concrete structures, reinforcement systems based on fi-

ber-reinforced polymer (FRP) have been widely employed, due 

to the superior mechanical properties of FRP systems over tradi-

tional ones (e.g. based on steel plates), such as minimum increase 

in structural size, excellent resistance to corrosion and fire, very 

high strength-to-weight ratios, as well as ease of handling and 

transportation. However, the structural system resulting from 

 

Figure 4. Schematic representation of the main failure modes of an 

FRP-plated RC beam (the horizontal arrows indicate the direction of 

crack propagation): a) plate-end interfacial debonding; b) intermediate 

crack-induced debonding; c) concrete cover separation.   
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the application of externally bonded FRP composites leads to 

modify some well-known failure modes of conventional RC 

structures, i.e. concrete crushing, shear and flexural failure, and 

to display a number of unique fracture mechanisms, as a result 

of the great amount of research undertaken in the past decades 

(see, for instance, (Toutanji et al., 2006) and references herein). 

These premature failure modes can be reduced to the three 

modes, i.e. the plate-end and intermediate crack-induced inter-

facial debonding failures (see Figure 4a and b) and the concrete 

cover separation failure (see Figure 4c). Such catastrophic fail-

ures are strongly associated with the effectiveness of the stress 

transfer at the FRP-to-concrete interface. As a matter of fact, the 

bond of this interface is not perfect, and its strength depends on 

both concrete strength and adhesive thickness. It has been shown 

that, in high-strength concrete members, failure typically occurs 

at the adhesive/concrete (AC) interface. In this case, the adhesive 

plays a notable role, meaning that greater thickness values lead 

to better stress redistributions and ultimately to greater ultimate 

load levels (López-González et al., 2012). On the other hand, in 

low-strength concrete elements, failure occurs in the concrete 

phase and does not depend on the adhesive thickness. In this 

case, concrete cover separation is often observed, as reported in 

many experimental investigations (Fanning and Kelly, 2001; Gao 

et al., 2004; Maalej and Bian, 2001; Quantrill et al., 1996; Rahimi 

and Hutchinson, 2001). Such a failure, which is promoted by the 

nucleation of an inclined crack at the plate end, consists in its 
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progressive propagation towards the horizontal direction up to 

the level of the tensile rebars (see Figure 4c). 

In the next Section, the previous attempts to investigate the 

fracture behavior and predict the main failure modes in concrete 

structures by means of simplified and/or sophisticated computa-

tional models are briefly enumerated in order to provide an over-

view of available methods. 

Overview on concrete fracture modeling 

With the aim of analyzing fracture in quasi-brittle materials and 

predicting the main failure modes of concrete structures, many 

numerical models have been developed and proposed in the 

technical literature, classifiable in two main groups: discrete and 

smeared crack models. Discrete crack models assume that dam-

age is lumped into main propagating cracks, whereas smeared 

crack models capture the damage processes through suitably de-

fined constitutive relations, thus smearing out all the discontinu-

ities over the continuum (Wittmann and Hu, 1991). 

In discrete fracture modeling, both linear elastic fracture me-

chanics (LEFM) and nonlinear fracture mechanics (NLFM) mod-

els have been used in the literature for crack analysis in concrete. 

Since LEFM models assume that the energy dissipation is con-

fined within a vanishing region located in front of a macroscopic 

crack tip, they have been successfully applied mainly in the case 

of large concrete structures like dams (Ingraffea, 1990), for which 
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the extension of the real FPZ can be neglected if compared to the 

structural size. Another well-known application of LEFM for 

concrete structures is the prediction of the pull-out test, as con-

firmed by some recent numerical works (Greco et al., 2015). In 

more general situations, NLFM models are mandatory to accu-

rately capture the typically experienced size-effects in concrete. 

As a matter of fact, the real FPZ extension cannot be neglected in 

small- and medium-sized structures, which are the most com-

mon ones in the engineering practice (Bažant, 1984). Among all 

the NLFM models, cohesive zone models (CZMs) are the most 

used for concrete and other quasi-brittle materials (Elices et al., 

2002). 

Within a finite element setting, two main different strategies 

can be found in the literature for the application of cohesive frac-

ture, i.e. inter-element and intra-element cohesive models. In the 

first approach, cohesive cracks are constrained to be extended 

between the finite elements, whereas in the latter, cohesive 

cracks can propagate across the finite elements. 

Inter-element crack propagation is allowed by using specific 

cohesive interface elements, equipped with a constitutive rela-

tion, written in terms of traction-separation law (TSL). Thus, co-

hesive models have been extensively used in the cases where 

(single or multiple) crack paths are known a priori, like in 

debonding problems usually experienced in composite materials 

(Greco et al., 2002; Greco and Lonetti, 2009). In this case, the in-

terface elements (of the so-called intrinsic type) are inserted prior 
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to the simulation along these predefined crack paths. On the con-

trary, in the case of unknown crack paths or patters, usually ex-

perienced in concrete structures subjected to general loading 

conditions, the interface elements (of the so-called extrinsic type) 

are inserted during the simulation (i.e. on-the-fly) in an adaptive 

manner, after introducing specific insertion criteria into the 

model. Several cohesive interface models on this kind have been 

proposed in the literature to analyze mixed-mode fracture in 

concrete structures (Bocca et al., 1991; Gerstle and Xie, 1992; 

Carol et al., 1997; Cendón et al., 2000; Prasad and Krishnamoor-

thy, 2002; Gálvez et al., 2002b; Yang and Chen, 2005). Inter-ele-

ment cohesive approaches usually require some remeshing op-

erations, which are associated with high computational costs, be-

ing reduced only in the case of local remeshing strategies (Kuutti 

and Kolari, 2012). Furthermore, due to remapping of the stress 

and strain states (and, eventually, of the internal variables), 

remeshing may cause thermodynamically inadmissible artificial 

healing of previously cracked regions, posing severe uniqueness 

problems in the case of crack branching. 

Intra-element cohesive fracture approaches have been 

widely used to simulate crack initiation and propagation along 

unknown crack paths and crack patters without requiring any 

remeshing. According to these approaches, the propagating dis-

continuities are embedded by introducing a kinematic enrich-

ment either at the element level, as in the strong discontinuity 

approach (SDA) (Sancho et al., 2007), or at the node level 
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(equipped with additional degrees of freedom), as in the parti-

tion of unity finite element method (PUFEM) (Gasser and Hol-

zapfel, 2005), the extended finite element method (XFEM) (Moës 

and Belytschko, 2002), the phantom node method (PNM) (Song 

et al., 2006), and the cohesive segment method (CSM) (Remmers 

et al., 2003). 

In contrast to discrete fracture models, in smeared crack ap-

proaches the fracture energy is distributed over the continuum 

(Rots, 1988; Oliver, 1989). These approaches, which can be in-

cluded within the more general framework of continuum dam-

age mechanics (CDM), consider an infinite number of parallel 

discrete cracks to be continuously distributed over equivalent 

continua with reduced stiffness and strength in the direction nor-

mal to the cracks after the peak strength has been reached. 

Smeared crack approaches preserve the continuity features 

of the displacement solution of the associated boundary value 

problem (BVP), but the strain softening injected in the constitu-

tive response locally leads to a change in the character of the gov-

erning partial differential equations. In particular, in the frame-

work of quasi-static fracture evolution, a loss of ellipticity of the 

underlying equation system is experienced. This change inevita-

bly leads to the ill-posedness of the BVP, thus rendering such ap-

proaches susceptible to localization instabilities (and spurious 

mesh sensitivities if these continua are approximated by finite 

element models) (Pijaudier-Cabot and Bažant, 1987). These theo-
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retical and numerical difficulties have been tackled in the litera-

ture by introducing into the material model some localization 

limiters, assuring the energy dissipation within a band (i.e. a re-

gion with finite width) across the ideal discontinuity line. Differ-

ent localization limiters have been proposed in the literature, 

such as crack band models (Červenka et al., 2018; Grassl et al., 

2018), fracture energy-based regularization techniques (Comi 

and Perego, 2001), and the more general and mathematically rig-

orous nonlocal continuum models, including integral models 

(Jirásek and Patzák, 2002), strain gradient models (Peerlings et 

al., 1998), and other enriched continuum models such as mi-

cropolar ones (de Borst, 1991; Fantuzzi et al., 2018). These models 

introduce a material characteristic length scale without a precise 

physical meaning, in order to restore the well-posedness of the 

resulting BVP, but may cause the localization bands to exhibit 

spurious damage diffusion around crack tips.  

It is recognized that regularized smeared crack models are 

reliable models in predicting the load-carrying capacity of quasi-

brittle materials in the strain softening regimes without sensible 

mesh-dependency issues, but they are not able to properly cap-

ture crack initiation, growth, coalescence and branching, because 

essential feature of these phenomena are inevitably lost in the 

smoothing process. Therefore, they are not suitable for crack 

analysis in concrete structures, unless special post-processing 

methods are introduced to extract crack geometries (Matallah et 

al., 2010). 
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An interesting numerical method able to overcome the main 

limitations of the above-discussed approaches is the cohesive fi-

nite element method, based on an inter-element discrete fracture 

representation, by which multiple cracking in quasi-brittle mate-

rials is handled in a natural manner. The advantages of this ap-

proach over both smeared and intra-element discrete models are 

twofold. Firstly, it is a very efficient and readily implementable 

approach for predicting crack initiation and propagation along 

non-prescribed paths within a standard displacement-type finite 

element setting, without injecting any enriched kinematics into 

the solid continuum elements, unlike intra-element fracture tech-

niques. Secondly, it preserves the discrete nature of fracture pro-

cesses, resulting in a very good capability of capturing the real 

crack patterns, unlike smeared fracture approaches. 

The cohesive finite element method takes inspiration from a 

series of seminal works about the simulation of intergranular 

fracture in polycrystalline materials (Maiti et al., 2005; Ortiz and 

Suresh, 1993; Tijssens et al., 2001; Zavattieri and Espinosa, 2001), 

in which cohesive interface elements of the intrinsic type were 

inserted at the grain boundaries prior to the simulation. In (Xu 

and Needleman, 1994), the cohesive methodology was further 

extended to model crack propagation along arbitrary paths in 

homogeneous brittle elastic materials, by inserting cohesive in-

terface elements along all the mesh boundaries. The latter ap-

proach, which represents the first application of the cohesive fi-
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nite element method in the literature, employed a crossed-trian-

gle quadrilateral mesh for the numerical simulations. The use of 

a structured triangulation highlighted the well-known mesh de-

pendency issues of inter-element fracture approaches, in terms 

of lack of spatial convergence for arbitrary crack paths or pat-

terns (Papoulia et al., 2006). Furthermore, it has been largely 

demonstrated that unstructured meshes with very good iso-

tropic properties (e.g. Delaunay meshes) can reduce such artifi-

cial mesh effects, especially in terms of sensitivity to the mesh 

orientations, even if the question of energy convergence still re-

mains an open issue. 

The mesh dependency of the cohesive finite element method 

is experienced even in the elastic range, mainly due to the artifi-

cial compliance increase associated with the insertion of springs 

with finite stiffness between all the bulk finite elements, accord-

ing to the adopted intrinsic cohesive formulation. Such a de-

pendency may be alleviated by suitably calibrating the initial co-

hesive stiffness parameters as functions of the average mesh size, 

as suggested by many authors (Blal et al., 2012; de Borst et al., 

2006; Espinosa and Zavattieri, 2003; Klein et al., 2001; Tomar et 

al., 2004; Turon et al., 2007). 

Concerning concrete structures strengthened with systems 

based on FRP, extensive research has been performed to predict 

the main failure mechanisms, i.e. the plate-end and intermediate 

crack-induced debonding and concrete cover separation failure. 
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Both empirical and (strength- or fracture mechanics-based) rig-

orous models have been reported in the literature. 

With reference to the most common plate-end debonding, 

the existing strength models can be classified into two categories: 

shear capacity models and interfacial stress models (Smith and 

Teng, 2002a, 2002b). According to the former group, the failure 

is related to the shear strength of the concrete with no or only 

partial contribution of the steel shear reinforcement, whereas ac-

cording to the latter one, the failure requires the evaluation of the 

normal and tangential interfacial stress at the end of the soffit 

plate. Besides these simplified models, a large number of sophis-

ticated analytical and numerical approaches have been proposed 

in the literature to quantitatively predict this type of failure 

(Buyukozturk et al., 2004; Turon et al., 2006; Obaidat et al., 2010; 

Pan et al., 2010; Zidani et al., 2015), including some multi-layer 

formulations in both static and dynamic settings proposed by 

some of the authors (Bruno et al., 2016). The intermediate crack-

induced debonding has received less attention than the plate-end 

debonding, and most of the existing research works usually 

adopt simple strength models for FRP/concrete systems, such as 

bond-slip models derived from direct shear bond tests (Teng et 

al., 2003). There exist also a few finite element investigations, by 

which intermediate debonding has been successfully predicted, 

starting from the stress concentration in the neighborhood of a 

main flexural crack (Lu et al., 2007; Perera and Bueso-Inchausti, 
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2010). Once initiated, this failure mechanism evolves as a pro-

gressive interfacial slip on both crack sides, leading to a propa-

gating decohesion toward the plate ends. 

By contrast, despite of the large number of experimental, an-

alytical and numerical investigations about concrete cover sepa-

ration failure in FRP-plated concrete structures (Aprile and Feo, 

2007; Gao et al., 2004; Radfar et al., 2012; Rahimi and Hutchinson, 

2001; Raoof et al., 2000; Yang et al., 2003; Zhang and Teng, 2014), 

a full understanding of this premature failure is somewhat lack-

ing. In (Gao et al., 2004) it is found that inclined cracks always 

appear in the concrete at the plate end before the failure load is 

reached. This means that the final collapse is not directly associ-

ated with elastic stress concentrations at the FRP-concrete inter-

face. Many analytical models for cover separation have been de-

veloped in the literature, mainly used to estimate the load-carry-

ing capacity of strengthened RC members, but they generally are 

too inaccurate, often leading to a non-optimal design of the 

adopted strengthening system. As a matter of fact, closed-form 

solutions for the analysis of cover separation usually rely on lin-

ear elastic models, and thus they cannot handle problems char-

acterized by remarkable material nonlinearities. Among these 

models, the concrete tooth models have been widely used to an-

alytically predict such a commonly observed failure mode 

(Raoof et al., 2000). They make use of the theoretical concept of 

concrete tooth comprised between two adjacent cracks, whose 

failure under the action of horizontal shear stresses occurs when 
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the tensile strength at the root of the tooth exceeds the tensile 

strength of the concrete.  

Scope and outline 

In the last century, the necessity to have safe civil construc-

tions has encouraged many engineers and researchers to develop 

simplified and/or sophisticated numerical models able to predict 

the load-carrying capacity of the considered structure and simu-

late the damage processes which may occur during the action of 

the loads. As a fruitful result hereof, a significant number of con-

stitutive models has been put forward in order to describe the 

mechanical behavior of concrete structures under general load-

ing conditions. Despite these efforts, a comprehensive numerical 

model, easily implementable in the commercial software, which 

provides an accurate global structural response, in terms of both 

loading capacity and crack patterns, with reference to different 

concrete structures ranging from plain to reinforced concrete, 

seems to be still missing.  

Within this framework, the present thesis aims to develop an 

integrated finite element fracture model, mainly based on an in-

ter-element cohesive fracture approach, to investigate in a com-

prehensive manner all the main failure mechanisms, in plain and 

reinforced concrete structural elements, due to multiple crack in-

itiation, propagation and coalescence.  
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In Chapter 1 of the present thesis, an extensive overview of 

the main theoretical and numerical approaches for concrete frac-

ture analysis, is presented after introducing the basic concepts of 

Fracture Mechanics. Both cohesive and smeared crack models 

are detailly explained providing numerical examples of their ap-

plication in the cracking analysis. 

In Chapter 2 a novel numerical approach for failure analysis 

of concrete structures, based on a diffuse cohesive interface frac-

ture approach able to simulate multiple crack onset, propagation 

and coalescence in quasi-brittle materials like concrete, is pre-

sented.  

In the first part of Chapter, the theoretical formulation of the 

diffuse cohesive volumetric finite element method is reported, 

with reference to the planar elasticity case. The basic concept of 

this formulation is a variational statement written for a given 

solid after being discretized in finite elements, whose kinematics 

is enriched by the presence of cohesive interface elements along 

its internal boundaries. Typical issues of the diffuse cohesive ap-

proach, related to mesh dependency, are investigated in a deep 

manner, and a new micromechanics-based calibration approach 

for the stiffness parameters of the cohesive interfaces, employed 

in the proposed fracture approach, is presented whose aim is to 

control and/or reduce the mesh-induced artificial compliance in 

the elastic regime. This approach takes advantage of a numerical 

homogenization scheme, which is able to extend the analytical 

results obtained in (Blal et al., 2012; Tomar et al., 2004) to more 
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general mesh configurations and loading conditions. It is worth 

noting that the main numerical outcomes of this calibration step 

are not limited to concrete, but they are directly applicable to any 

material.  

In the second part of the Chapter, the integrated numerical 

fracture model for failure analysis of concrete structures is 

widely illustrated, together with computational details. In par-

ticular, the proposed model incorporates three submodels in or-

der to investigate all the main damage processes in plain and re-

inforced structures in a comprehensive manner. As the first sub-

model, a diffuse interface model (DIM), relying on the cohesive 

finite element method, is employed to simulate the cracking in 

concrete. It is obtained by inserting interface elements along all 

the internal boundaries of the finite element mesh, equipped 

with a mixed-mode intrinsic traction-separation law. This ap-

proach allows the cohesive interfaces to permeate the whole dis-

cretized body as a part of the material characterization, and ulti-

mately leads to the prediction of crack paths or patterns in both 

plain and reinforced concrete without requiring additional crack 

initiation criteria which are external to the constitutive model of 

the material, neither adaptive meshing operations at the tip of 

advancing cracks. In order to obtain a correct prediction of the 

damage mechanisms in the reinforced concrete analysis, an em-

bedded truss model (ETM), equipped with a bond-slip relation, 

is developed as the second submodel. It able to adequately cap-

ture the effects of the interaction between the reinforcing bars 
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and the surrounding cracking concrete. Moreover, the integrated 

fracture model is able to predict eventually debonding phenom-

ena in strengthened concrete structures, by means of a thirdly 

introduced submodel, i.e. a single interface model (SIM), in 

which additional mixed-mode cohesive elements are inserted in 

the existing interface, i.e. between concrete and reinforcement 

system in the case of FRP-plated RC beams. 

Chapter 3 is devoted to numerical calibration and validation 

of the diffuse interface model, involving concrete specimens un-

der general loading conditions.  

In the first part of the Chapter, according to the adopted in-

trinsic cohesive formulation, the elastic stiffness parameters are 

numerically determined using the micromechanical approach 

described in Section 2.1.3, in order to obtain invisible cohesive 

interfaces. Specifically, two charts for the calibration of both the 

dimensionless cohesive stiffness and the tangential-to-normal 

stiffness ratio are provided. In order to assess the general validity 

of the proposed calibration approach, a further investigation of 

both compliance and anisotropy levels for the resulting overall 

homogenized moduli tensor is given.  

In the second part of the Chapter, numerical simulations are 

performed to validate the diffuse interface model, with reference 

to plain concrete elements subjected to mode I and mixed mode 

loading conditions. Two additional fracture approaches, are spe-

cifically introduced to highlight the mesh influence on the over-

all strength properties and related crack paths, as predicted by 
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the proposed DIM methodology. Moreover, to assess the degree 

of mesh dependency associated with the proposed model, two 

sensitivity analyses with respect to both mesh size and mesh ori-

entation are performed. Special attention has been devoted to the 

influence of mode-II cohesive parameters on the global structural 

response, especially in the predicted damage pattern. Addition-

ally, suitable comparisons with the experimental outcomes has 

been reported Section 3.2.4 and 3.3.3, thus confirming the relia-

bility of the proposed model for the numerical simulation of 

crack propagation in concrete and other quasi-brittle materials 

under general loading conditions. 

In Chapter 4, the proposed integrated fracture model is used 

to analyze failure in different reinforced concrete structures. In 

particular, numerical simulations are performed to predict the 

global structural response, in terms of loading capacity and crack 

patterns, of typical reinforced concrete beams. The simulations 

also provided a detailed stress analysis of the tensile reinforce-

ment bars validating the capability of the adopted bond-slip ap-

proach of capturing the tension stiffening effect.  

The integrated numerical model is also employed to simulate 

the concrete cover separation failure of FRP-plated reinforced 

concrete (RC) beams. Such application has been chosen to assess 

the predictive capabilities of proposed numerical approach in 

terms of both peak and residual load-carrying capacities of ret-

rofitted RC structures, usually involving combined failure 

modes.  
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The Chapter ends with a numerical application to nano-en-

hanced ultra high-performance fiber-reinforced concrete (UHP-

FRC) element. In this case, a trilinear softening model is chosen 

for the constitutive beahvior of embedded cohesive interface, in 

order to capture all the microscopic fracture mechanisms, includ-

ing cement paste micro-cracking, matrix/aggregate debonding 

and fiber pull-out. The numerical outcomes, obtained by the nu-

merical analysis of steel bar-reinforced nano-enhanced UHPFRC 

structures, have demonstrated the reliability and the accuracy of 

the proposed model in predicting both the strengthening and 

toughening effects of embedded nanomaterials, in terms of 

global load-deflection responses and associated crack patterns. 

Finally, some concluding remarks are given, together with 

some future perspectives of this work. 
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Theoretical and numerical approaches  

for concrete fracture analysis 

The fracture phenomena in concrete and other quasi-brittle 

materials has been the subject of intensive investigation for 

nearly a century. The complexities associated with the behavior 

of fractured bodies led the researchers in the past to rely on the-

oretical approaches, based on Linear-Elastic Fracture Mechanics 

(LEFM), to understand and simulate the fracture process in var-

ious materials. However, these approaches, although providing 

still basic concepts of recent fracture models today, are not able 
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to capture complex fracture phenomena affected by factors such 

as strain softening, ductility, micro-cracking, and bond-slip. 

With the discovery of the finite element method (FEM), several 

numerical fracture models, based on continuum and discrete 

damage mechanics, are elaborated to offer a better analysis of the 

complex fracture behavior of materials. These models, overcom-

ing the drawbacks of the above-mentioned simplify theoretical 

approaches and are potentially capable of providing an accurate 

solution of the stress and strain field during the fracture process, 

as well as different aspects of the fracture phenomena.   

In this Chapter, a background is provided with respect to the 

fracture mechanics and a few numerical fracture models. 

1.1 Basics of fracture mechanics  

Fracture mechanics is a discipline that investigates the me-

chanical behavior of cracked solids. Generally, the fracture pro-

cess is an irreversible process of rupture due to the nucleation 

and growth of cracks and strongly depends on a wide variety of 

factors, including the microstructure of crystalline or amorphous 

solid, macroscopic effects, as well as, the boundary conditions 

and the surrounding environment. To predict this phenomenon, 

in which a high stress concentration is localized near the crack 

tip, it is necessary to use the principles of fracture mechanics. In 

the literature, Linear-Elastic Fracture Mechanics (LEFM) and 

Elastic-Plastic Fracture Mechanics (EPFM) are the main theories 
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used to analyze the fracture behavior in cracked solids. The first 

theory investigates the cracking problem in brittle materials 

where the inelastic deformation and the nonlinear effects are lim-

ited to a small area, which can be neglected in comparison to the 

crack size or the component dimensions. However, in many con-

struction materials, when the stress exceeds the yield stress of 

material, a small plastic zone arises. It causes a redistribution of 

the strain and stress fields leading to a blunting of the crack tip. 

The latter theory, also called ductile fracture mechanics, over-

comes the drawbacks of LEFM and it is used to determine the 

crack problem solution in materials where the extent of inelastic 

deformation is quite pronounced. In this section, a thorough de-

scription of the above-mentioned fracture theories will be pre-

sented. 

1.1.1 Linear-Elastic Fracture Mechanics in cracked solids 

Linear-Elastic Fracture Mechanics is a theory dealing with 

the behavior of elastic solids with sharp cracks subjected to a cer-

tain loading condition. LEFM is applicable to any materials 

whose deformation behavior can be assumed to be linear-elastic 

and, as long as the extension of the inelastic region, that arises in 

the immediate neighborhood of the crack tip due to the high 

stress concentration, is rather small compared to the crack or 

body sizes. If these conditions are satisfied, LEFM is a very accu-

rate theory (Bažant and Planas, 1998a).  
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The study of cracked bodies began around 1913 with the 

stress analysis, performed by Inglis, of a uniformly stressed el-

liptical cavity (Inglis, 1913) and observed that, as the ellipse ap-

proaches a crack line, the stress at the vertex of the ellipse tends 

to infinity. But the study had a turning point with the pioneering 

works of Griffith (Griffith, 1921). In particular, Griffith analyzed 

the rupture phenomena in solids starting with an isolated crack 

in an elastic body subjected to an applied stress and proposed, 

considering the fundamental energy theorems of classical me-

chanics and thermodynamics, a criterion for crack propagation 

based on the principle of energy balance, i.e. the crack will prop-

agate if the energy available to extend the crack by a unit surface 

area is equal to the energy required to do so. The implications 

drawn from these works are still useful for the most analytical 

and numerical fracture models developed to date. Griffith’s the-

ory has been completed in its essential aspects by Irwin and Rice. 

Asymptotic expressions of the stress field to calculate the quan-

tity of energy available for fracture ahead of the crack tip in lin-

ear-elastic bodies, are proposed by Irwin (Irwin, 1957), while 

Rice in the mid-1960, considering a non-linear elastic behavior 

around the crack tip, proposed an alternative method to measure 

the amount of the required energy to fracture by means of a con-

tour or line integral that encloses the crack front (Rice, 1968a, 

1968b).  

In the following Sections, a schematic vision of the evolution 

of the fracture theories in isotropic elastic materials, considering 
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small displacements and infinitesimal deformations, is pre-

sented.   

1.1.1.1 Griffith’s crack theory 

The fundamental results of the Inglis stress analysis are here 

summarized. In order to analyze the modifying effect of a crack 

on the distribution of stress in a linear-elastic solid, we consider 

an infinity plate containing an elliptical cavity with semi-axes 2a 

and 2b subjected to a nominal stress n  uniformly applied along 

the Y-axis, as shown in Figure 1.1a. Considering stress-free 

boundary of the hole and tiny semi-axes size compared to the 

plate dimension, the solution of stress problem is relative to an 

exercise of linear elasticity theory. Starting with the equation of 

the ellipse, 
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Figure 1.1. Inglis stress analysis: a) crack configuration in an infinite 

plate subjected to uniform stress; b) crack tip stress field.   
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the minimum radius of curvature in terms of semi-axes is:  

 
2b

a
 = .   (2.2) 

By the solution of elastic stress distribution problem, derived by 

Inglis (Inglis, 1913), the resultant maximum axial stress, at the 

end of the ellipse, is: 

 max

2
1 1 2n n

a a

b
  



  
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,  (2.3) 

The ratio between the maximum axial stress and the driving 

stress n  is the elastic stress-concentration factor: 

 max
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2
2       n

n

a a
K K

b


 
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= = =  = . (2.4) 

It is worth noting that such factor depends on the hole shape 

rather than its size. Indeed, as illustrated in Figure 1.1b, over a 

very sharp hole, i.e. if 0 → , the max  shows a singularity (

max → ) and it is meaningless. Instead, in presence of a circular 

hole, i.e. equal semi-axes a b= , the stress-concentration factor is 

equal to 3K =  and the stress in point B is a well-defined value 

max 3 n = . Therefore, the stress-concentration factor is a funda-

mental parameter to analyze the stress at a point in proximity of 

a notch and if it is a sufficiently high value, such a discontinuity 

can be a source for a crack onset.  

The results of the Inglis elastic stress analysis have been a 

fundamental input to the Griffith crack theory. Griffith, around 
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1920, noted that the strength criterion is useless if the stress at the 

tip crack is an infinite value, regardless of how small the load, 

and therefore proposed an energy-based failure criterion to the 

crack advancement that overcome the limits of Inglis prediction 

but making use of his linear elastic solution.  

Griffith considered a conservative reversible thermodynamic 

system consisting of an elastic body, with unit width, containing 

a plane-crack surface of length a  and subjected to a tensile load 

in the direction of the y-axis, applied at point A and B of the outer 

boundaries of body, as depicted in Figure 1.2. The aim was to 

find the configuration that minimizes the potential energy of the 

system, in which the crack would be in a state of equilibrium and 

therefore on the brink of an advancement. The starting point was 

the expression of the total potential energy U , considering the 

terms that undergo a change by virtue of a crack virtual exten-

sion da  (Griffith, 1921): 

 E AU U U U= − + ,  (2.5) 

 

Figure 1.2. Cracked elastic body with an incremental crack extension. 
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where, the first two terms of the right member, EU  and AU ,rep-

resent mechanical energies, while the last term U  is a surface 

energy. Specifically, the EU  is the strain potential energy stored 

in the elastic body, AU  is the decrease in elastic energy due to the 

presence of the crack and the free energy necessary to create the 

new crack elastic-surface is denoted as U . The energy equilib-

rium condition is achieved by balancing the terms of the mechan-

ical and surface energy over the virtual crack advancement da . 

As the crack extends, an increase of the surface energy and, at the 

same time, a decrease of the mechanical energy contributions oc-

curs. In other words, the crack advancement is favorite by the 

mechanical energy terms and impeded by the surface energy 

term. The energy equilibrium condition of (2.5) is defined by the 

first-order derivative with respect to the virtual crack length, i.e.: 

 0
dU

da
= .  (2.6) 

Subsequently, in order to compute the strain energy release 

rate during the crack propagation, Griffith applied its energy-

balance theory to the case of a large plate containing an infinitely 

narrow elliptical cavity ( 0 → ), shown in Figure 1.1a, previous 

analyzed by Inglis, considering an elastic and isotropic material 

according with Hooke’s law. By making explicit the terms of the 

total potential energy expression (2.5) we obtain that: 
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 
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where V  and B  are the volume and width of the body, s  is the 

free surface energy per unit area, and 'E  is to the reduced 

Young’s modulus, equal to E  or 2/ (1 )E −  if a plane stress or 

plane strain conditions are assumed respectively, with   being 

the Poisson’s ratio. By means of the energy-balance condition, 

according to (2.6), the critical crack length and the energy release 

rate are equal to, respectively: 
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Rearranging the (2.9) a fundamental parameter IK  of Linear-

Elastic Fracture Mechanics (Irwin, 1957), called stress-intensity 

factor, is obtained: 

 2 '    n s I na E K a    =  = . (2.10) 

Such a parameter, different from the stress-concentration factor 

K , which represents only the ratio between the actual and nom-

inal stress at a geometric discontinuity, defines the amplitude of 

the crack-tip singularity and its critical value is a material prop-

erty known as fracture toughness (Barsom and Rolfe, 1999). This 

material property can be determined by means of standardized 

experimental test, involving specimens having an initial crack, 

according to the international documents as ASTM 1820 in USA, 

or ISO 12135 in Europe.  
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1.1.1.2 Strain-energy release rate 

The energy-balance concept proposed by Griffith has intro-

duced a new energy quantity, called strain-energy release rate G

, i.e. the potential energy amount  , provided by the loading 

system and internal energy elastically stored during crack prop-

agation da , available for infinitesimal crack extensions: 

 
( )E Ad U U d

G
da da

−
= − = − . (2.11)  

When such energy achieves the energy needed to the for-

mation of a new surface, that is the critical fracture energy of ma-

terial denotes as cG , the crack advancement occurs. As explain 

in the previous Section, Griffith evaluate the strain-energy re-

lease rate, for a plate subjected to a uniform tensile stress field 

and containing a crack, equal to 2 / ' 2n sG a E  = =  and, conse-

quently a fracture stress can be found:   

 
'

n

E G

a



= . (2.12) 

Combining the equations (2.10) and (2.12) an important relation-

ship between the global quantity G  and the stress-intensity fac-

tor IK  , which instead expresses the strength of the local elastic 

stress field around the crack tip, is obtained:  

 
'
IK

G
E

= . (2.13) 
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This equation shows that the Irwin’ theory based on stress ap-

proach and the Griffith’ theory based on an energy-balance ap-

proach are equivalent.  

The condition (2.12) implies that G R= , i.e. the strain-energy 

release rate is equal to the material crack resistance R  (assumed 

by Griffith equal to 2 s  only for brittle materials), before rela-

tively slow crack advancement occurs. Consequently, the frac-

ture parameter cG  establishes the crack propagation when 

cG G . In addition, the fracture stress c  can be predicted using 

the equation (2.12) when the crack is unstable, hence: 

 
' c

c

E G

a



= . (2.14) 

The Griffith energy-balance approach to crack growth is 

based on the conservation of energy in the entire body by means 

of the equation (2.5). The crack growth is considered unstable 

when the system energy at equilibrium is maximum and stable 

when it is minimum. A sufficient condition for crack stability is: 
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2
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0 :  stable fracture  

d U
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

=


. (2.15) 

1.1.1.3 The J-Integral 

The J-Integral, introduced by Rice (Rice, 1968a), is one of 

most important equations in the fracture mechanics to express 

the energy release rate G  and it could also be applied very suc-
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cessfully at inelastic material behavior. The basic concept pro-

posed by Rice is that the change of potential energy during infin-

itesimal crack propagation can be expressed with the help of a 

path-independent line integral.  

We consider an arbitrary domain A  in the neighborhood of 

crack tip enclosed by a contour  , which runs from the lower to 

the upper crack face in a mathematically positive sense, with the 

outward unit normal vector jn , as depicted in Figure 1.3. On the 

contour  acts a stress field i ij jt n=  keep constant during the 

crack advancement da , while no volume forces act onto the 

body. During the crack advancement, along its initial direction, 

the domain A  is displaced along with it and all variables field 

change with the crack length. Because of this, besides the fixed 

coordinates ( ,  X Y ), a new moving system ( ,   x X a y Y= − = ) at-

tached to the crack tip is introduced, so that the total derivate is 

read as: 

 

Figure 1.3. Definition of J-Integral around the crack tip. 
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Now, according to the equation (2.11), we differentiate the 

potential energy of system,  which is a function of the displace-

ment field iu , with respect to da  as follows: 
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Using the following relation concerning the elastic strain-en-

ergy potential derivative: 
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and converting, by the Gauss’s divergence theorem, the line in-

tegral into an area integral and involving the equilibrium equa-

tions , 0ij j =  the term in brackets of equation (2.17) vanishes. In 

addition, the first integral of equation (2.17), by means of the 

Gauss’ theorem, can also be converted using the arc length ds

along  as follows:  

 1
E

E E
A

U
dA U n ds U dy

x  


= =

   . (2.19) 

Therefore, for the case of a two dimensional plane elastic 

problem, the energy release rate G  can be calculated through a 

line integral along a curve  , which is denoted as J-Integral: 
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It is worth noting that, to calculate the elastic energy poten-

tial we would have to consider the entire system, instead the 

above-illustrated mathematical proof considers any domain, due 

to the fact that the J-Integral is independent of the choice of area 

  and integration path  . 

1.1.2 Elastic-plastic fracture mechanics in cracked bodies 

Many solid materials containing defects during a loading 

process exhibit some inelasticity in the form of plasticity, creep 

or phase change in the neighborhood of the crack tip. In this case, 

due to the stress concentration at the crack tip, the yield stress of 

material is exceeded at low external load level, developing a 

small plastic zone. As consequence, the sharp crack becomes in-

creasingly blunted with the increases load and crack opening. 

The size of plastic zone, that increases as the load increases, could 

extend, depending on the material and geometric properties, 

over a wide region or even over the entire solid, until a crack on-

set takes place.  In this zone, due to the fact that the local stresses 

are limited to the material yield strength, the linear-elastic frac-

ture theory, previously introduced, results to be inaccurate to 

predict the field equations and the fracture parameters, and, in 

particular, the stress-intensity factors, which are valid for mate-

rials with linear-elastic behavior, are meaningless. However, the 

dimension of the plastic zone could be a corrective parameter to 
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evaluate the effective stress-intensity factor, thus accounting for 

the plasticity effects around the crack tip. The determination of 

such a plastic zone size, which is small compared to the dimen-

sions of structure or crack length according to the assumption of 

small scale yielding, has been widely investigated by Irwin (Irwin, 

1958) and Dugdale (Dugdale, 1960). The purpose was to evaluate 

an approximation of the fracture zone extension directly ahead 

of the crack tip, and then, to modify the Griffith’s energy-balance 

equations. In addition, in the elastic-plastic fracture a new local 

measure of the plastic strains around the crack tip, called crack 

tip opening displacement (CTOD), is introduced by Wells and other 

authors (Wells, 1965; Burdekin and Stone, 1966) and respect with 

the well-known fracture parameters it is an experimentally mo-

tivated quantity. 

In the following Sections a recap of the elastic-plastic theo-

ries, including an approximate calculation of the plastic zone, is 

presented.  

1.1.2.1 Approximate size of the crack-tip plastic zone 

An approximated estimate of the plastic zone extension can 

be obtained by means of an elastic-plastic analysis. The aim of 

the analysis is find the locus of points in which the elastic stress 

field satisfies the yielding criterion, as long as, the radius of plas-

tic zone pr  stays considerably smaller than the validity radius Kr  

of the elastic field solution ( 0.02 0.10Kr a − ); in other words, the 

required assumption is a very small plastic zone. 
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Considering a simple case of a material with perfectly plastic 

behavior with a yielding stress y , the expressions of the singu-

lar principal stresses obtained by the Westergaard semi-inverse 

method (Westergaard, 1934, 1937) are: 
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where   is the angle between the x  axis and the crack direction. 

By inserting them into the well-known von Mises yield criterion 

(von Mises, 1913) the plastic zone radius, is obtained as: 
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  (2.22) 

Considering a crack advancement along the x  axis ( 0 = ) the 

plastic zone radius is: 

 

2

2

1 for plane stress1
( )    

(1 2 ) for plane strain2

I
p

y

K
r 

 

 
=  

−  
. (2.23) 



Theoretical and numerical approaches for concrete fracture analysis 41 

Figure 1.4 shows the shape of the plastic zone for plane stress 

and plane strain considering 1/ 3 = , and, it worth noting that, 

the plane stress zone is approximately 9 times much larger than 

plane strain zone due to the higher constraint for plane strain.  

1.1.2.2 Irwin’s elastic-plastic model 

A simplified model to determine the plastic zone size in the 

neighborhood of the crack tip under small-scale yielding, for an 

elastic-perfectly plastic material under plane stress condition, is 

proposed by Irwin (Irwin, 1960). The elastic stress distribution 

y , reported in Figure 1.5, indicates that y →  as 0r → , but 

the y  stress is limited to yielding stress of material, therefore 

the y →  occurs mathematically, not physically. Using the 

equation (2.23) for plane stress condition, pr  is determined by im-

posing the condition y ys = . It is clearly visible that, the stress 

 

Figure 1.4. Approximate estimation of the crack-tip plastic zones un-

der plane stress and plane strain condition and 1/ 3 = . 
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equilibrium condition along the y  axis is violated because the 

stress distribution inside the plastic zone is forced to be constant 

and equal to the yielding stress of material ys . Irwin proposed 

that, due to the re-distribution along the x  axis of the elastic 

stress inside the shaded area depicted in Figure 1.5, a plastic zone 

size larger than pr  is necessary to satisfy the stress equilibrium. 

Indeed, the shaded area under the y  curve up to the point B is:  
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and the area defined by the yielding stress of material is equal to 

ys pr , therefore in order to satisfy the stress equilibrium along y  

direction the length of plastic zone ahead of the crack tip must be 

equal to 2p pd r= , and it is given by: 

 

Figure 1.5. Correction of the stress distribution y  ahead of a crack tip 

according to the Irwin model. 
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For plane strain condition the stress required to achieve the 

yielding increases by a factor of 3 , leading to a plastic zone 

length equal to:  
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The yielding stress condition, according to the code ASTM 

Standard E399, is characterized as the plane stress when pd B=  

and as plane strain when / 25pd B , where B is the thickness of 

the element. 

1.1.2.3 Dugdale’s elastic-plastic model 

In order to avoid the complexities of an elastic-plastic analy-

sis, a simplified yielding model to determine the plastic behavior 

in front of the crack tip is proposed by Dugdale (Dugdale, 1960). 

An ideally plastic material behavior is assumed inside the plastic 

zone. The plane stress condition is valid so that the yielding be-

gins at y ys = , while for plane strain condition, due to the con-

straint deformation in multiaxial stress state, a correction factor 

cf  is used to achieve the yielding stress of material, so that 

y cf ys  = . In this model, also called yield strip model, the entire 

plastic deformation is concentrated on a line (strip) of length d  

along which, according to the Tresca’s yield criterion, the yield 

stress ys  prevails. Considering an infinite plate containing a 
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crack length 2a  and subjected to uniaxial uniform stress in y  di-

rection, the model can be imagined as superposition of the two 

following loading conditions, reported also in Figure 1.6: 

1) A crack length 2( )a d+  in an infinite plane under constant 

stress  ; 

2) A crack length 2( )a d+  in an infinite plane subjected to a 

uniform stress distribution equal to ys  along the plastic 

zone. 

The stress-intensity factor for the problem (1) is given by the lin-

ear-elastic solution described in the previous Section, modifying 

the crack length from the equation (2.10): 

 (1) ( )IK a d = + . (2.27) 

Instead, for the load case (2) the stress-intensity factor has been 

calculated by means of a semi-analytical method based on the 

crack weight functions (Chen, 1989) as follows: 

 

Figure 1.6. Schematic representation of the Dugdale model for a crack 

subjected to uniaxial tension. 



Theoretical and numerical approaches for concrete fracture analysis 45 

 (2) 2 arccosysI

a d a
K

a d




+  
= −  

+ 
. (2.28) 

The assumption of no stress singularities at the end of the ficti-

tious crack ( )a dx =  +  causes the stress-intensity factors of both 

subproblems to cancel each other out: 

 (1) (2) 0I I IK K K= + = . (2.29) 

From this equation the length of plastic zone d  can be deducted 

as follows:  
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It is worth noting that, no plastic zone appears without load 

0 = , while an infinite length of d  is obtained when the stress 

approaches the yield stress of material producing a plastic slid-

ing of the entire cross section. 

In the case of small yielding, i.e. ys  , the cosine function 

can be approximated by:   
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and using the relation Ia K  = , the plastic zone length is equal 

to: 
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The comparison between the plastic zone lengths estimated 

by Dugdale (equation (2.32)) and Irwin (equation (2.26)) shows 

that the both models provide similar relations, differing only in 

the pre-factors 1/ 0.318 =  and / 8 0.392 =  respectively. 

1.1.2.4 The Crack Tip Opening Displacement 

The above-mentioned simplified elastic-plastic models for 

brittle materials use the linear-elastic fracture criterion in which 

the localized plasticity in front of the crack tip is treated as a small 

deformed area at a small-scale yielding. Otherwise, such a crite-

rion invalidates the elastic solution applicability if a large-scale 

yielding is considered and the controlling fracture parameter IK  

is meaningless. In the latter case, a plastic criterion called crack 

tip opening displacement, based on a local measure of the plastic 

strains around the crack tip, is proposed by Well (Wells, 1965) 

and Burdekin and Stone (Burdekin and Stone, 1966). Such a new 

fracture parameter, denoted as CTOD , is the irreversible opening 

displacement of crack faces that exceeds by far the crack opening 

due to the purely elastic deformation, and it is observed, in phys-

ically sense, when the tip of originally sharp crack undergoes 

wide stretching and blunting due to the plastic deformation (Er-

rore. L'origine riferimento non è stata trovata.). The CTOD cri-

terion states that, in ductile materials, the onset crack starts when 

the CTOD, exceeds a critical value ,CTOD c .  
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Considering the Dugdale’s model, the crack opening dis-

placement is identified at the tip of the physical crack at ax =   

and can be expressed as: 

 2 2 22 ( )CTOD u u u a + −= − = , (2.33) 

where, 2u  is the orthogonal displacement to the plane crack 

while the 2u−  and 2u+  are the displacements related to the two 

crack faces. According to the crack configuration shown in Fi-

gure 1.6, the crack opening displacement can be defined by (Rice, 

1968c) as follows: 

   2 24
( )a d x
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 = + + , (2.34) 

and, if x a= , then CTOD = : 

 2 24 4
( ) 2CTOD a d a ad

E E

 
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Inserting the length of plastic zone estimated by Dugdale into 

(2.35) under plane stress condition yields the crack tip opening 

displacement as: 
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These equations provide similar results differing only in a factor 

of 2 / . Additionally, the CTOD  can be related to the strain-en-

ergy release rate G  considering the (2.13) as follows: 
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By an experimental point of view, the determination of CTOD

in a specimen or in a component is very complicated since meas-

urements directly in the crack tip region are difficult to handle. 

To avoid such complication the crack mouth opening displace-

ment (CMOD) at the specimen surface is measured and then, by 

means of geometrical assumption the CTOD  is extrapolated. The 

interested reader is referred to the literature (Khor et al., 2016; 

Machida et al., 1990).  

1.2 Computational modeling approaches for cracking 

analysis 

The fracture theories mentioned in the previous Sections, 

based on the assumption that the fracture process is lumped all 

into the tip of a sharp crack, neglect a detailed description of the 

fracture behavior in the neighborhood of the crack tip, i.e. in the 

so-called fracture process zone (FPZ). However, the real FPZ ex-

tension is not negligible in small- and medium-sized structures, 

which are the most common ones in the engineering practice. 

Around 1960s, in some experimental tensile tests, a strain sof-

tening behavior with a decrease in the loading carry capacity, i.e. 

a negative slope in the stress-deformation curve is observed in 

concrete specimens (Rusch and Hilsdorf, 1963; Evans and 

Marathe, 1968), due to microcracking and localization of the de-

formation in a narrow band where energy dissipation occurs. 

From a computational point of view, especially in the continuum 
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analysis, the strain softening behavior could introduce some nu-

merical phenomena related to the loss of both stability and 

uniqueness of the solution, and bifurcation of the equilibrium 

path. The first to encounter such issues were Rashid (Rashid, 

1968) and Scanlon (Scanlon, 1971) during the some concrete 

cracking analysis in the framework of the finite element method 

(FEM). In particular, adopting the so-called damage models in 

which the cracking process is simulated through suitably defined 

constitutive relations, they discovered that the energy dissipated 

by the fracture decrease with the refinement of the mesh and con-

verges to zero, leading to results strongly dependent on the mesh 

size. To avoid this spurious mesh sensitivity, suitable regulariza-

tion approaches must be introduced in the model, thus leading 

to a correct capturing of damage-induced softening.  

In the literature, two models’ groups with different softening 

constitutive laws can be distinguished: cohesive crack models, 

and smeared crack models. The former models, assume a soften-

ing constitutive law, based on a stress-crack opening displace-

ment relation, to simulate the material behavior of the so-called 

fictitious crack, that is the extension of the real crack where the 

material keeps its ability to transfer the stress. The latter models, 

instead, introduce a softening stress-strain relation included in a 

band around the crack in order to describe the fracture process 

in a wide range of materials.   
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In the following Sections a description of both above-men-

tioned models is presented, together with some of the related 

computational details.  

1.2.1 Cohesive crack models 

The fundamental idea of the cohesive fracture approach, ini-

tially introduced by Barenblatt and Dugdale (Barenblatt, 1959, 

1962; Dugdale, 1960) to study brittle fracture, is that the nonlin-

ear fracture process is developed along the extension of the real 

crack and it is governed by a traction-separation law usually em-

ployed for the atomic lattice decohesion. In the literature, several 

researchers have used cohesive approaches, in the finite element 

framework, to investigate the fracture phenomena in various 

materials. For instance, Hillerborg et al. apply the cohesive 

method to simulate the crack propagation in concrete structures 

obtaining accurate results also with coarse meshes (Hillerborg et 

al., 1976). A cohesive finite element formulation based on a 

boundary integral method is proposed by Petersson to analyze 

the concrete behavior under mode-I loading condition (Peters-

son, 1981). The mixed-mode loading condition, instead, is simu-

lated by Ingraffea and Gerstle using a nonlinear algorithm based 

on stress intensity factors providing results inconsistent respect 

to the experimental data (Ingraffea and Gerstle, 1984). In addi-

tion, Ingraffea et al. show that the bond-slip behavior of reinforc-

ing bars embedded in concrete can be numerically well predicted 

by cohesive models, using tension-softening interface elements 
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to modelling the radial secondary cracks (Ingraffea et al., 1984). 

Several studies on the influence of the size of the tested specimen 

on the global structural response are carried out using the cohe-

sive approach (Carpinteri, 1989a, 1989b). In particular, using the 

modified Petersson’s cohesive model, a change of the fracture be-

havior, which range from ductile to brittle, is observed as the 

structural sizes increase. The large and/or slender structures, 

with high tensile strength and small fracture toughness, show 

extremely brittle behavior and a snapback in the equilibrium 

path, i.e. a positive slope in the softening branch of load-displace-

ment curve, occurs. In addition, in the most of cases, instability 

problems typical of the model based on LEFM are observed 

(Carpinteri, 1989c, 1990; Carpinteri and Colombo, 1989). In this 

context, Planas and Elices developed an asymptotic analysis that 

allowed an accurate treatment of the cohesive zone for the spec-

imen with very large dimensions (Planas and Elices, 1991). A 

particular intrinsic potential-based cohesive model is elaborated 

by Xu and Needleman, in which the cohesive elements are in-

serted along all boundaries of the discretized computational do-

main (Xu and Needleman, 1994). However, such an approach in-

evitably led to mesh dependency issues, in term of lack of spatial 

convergence for arbitrary crack paths (Papoulia et al., 2006). An 

alternative numerical procedure, instead, is proposed by 

Camacho and Ortiz, where bi-dimensional cohesive elements 

with stress-based extrinsic law are adaptively inserted by dupli-

cating nodes that were previously bonded (Camacho and Ortiz, 
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1996). A energy-based cohesive model is proposed by Xie and 

Gerstle for both linear and nonlinear elastic crack propagation 

problems obtaining an efficient convergence in the mode I and 

mixed-mode failure analysis (Xie and Gerstle, 1995). The cohe-

sive method is also used by Cendón and other authors, in con-

junction with a strong discontinuity approach, to formulate a 

simple and efficient numerical procedure useful to simulate the 

fracture behavior under a global mixed-mode loading condition. 

Their results show that the crack grows with a predominantly 

local mode I fracture.  Subsequent studies were carried out to ap-

ply the cohesive fracture modeling in several area, such as dy-

namic crack growth (Ruiz et al., 2001), viscoelasticity (Rahulku-

mar et al., 2000), nonhomogeneous materials, and plasticity 

(Paulino et al., 2017).  

The above-mentioned cohesive methods can be divided into 

two main model groups, i.e. inter-element and intra-element cohe-

sive models. In the first group, cohesive cracks are constrained 

to be extended between the finite elements, whereas in the latter, 

cohesive cracks can propagate across the finite elements.  In the 

subsequent Sections, after a brief introduction of the basic con-

cepts of the cohesive approach, the most important computa-

tional methods of type inter- and intra-element, will be illus-

trated.  
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1.2.1.1 Basic concepts of the cohesive approach 

The cohesive approach assumes that a fictitious crack, where 

the material albeit damaged is still able to transfer stresses, be-

gins to form when the principal tensile stress reaches the critical 

tensile strength of the material (Figure 1.7a). In this zone, called 

fracture process zone (FPZ), the stresses transferred by the material 

are governed by a traction-separation cohesive law and decrease 

as the displacement discontinuity increases (Figure 1.7c), while 

outside of this region, the material behavior is linear-elastic (Fig-

ure 1.7b). Such a cohesive function, that describes the interaction 

force between the two crack faces, represent a real local material 

 

Figure 1.7. Cohesive crack approach: physical and theoretical repre-

sentation (a), and constitutive laws for undamaged material (b) and 

fracture process zone (c). 
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property and relates the traction force and the opening displace-

ment of the crack. In the literature, several cohesive laws have 

been proposed, which differ to each other according to various 

materials and failure mechanisms (Park and Paulino, 2011). 

However, it does not exist a “natural” cohesive law given a pri-

ori, since the cohesive model is a phenomenological model 

which does not claim to model the real physical fracture process, 

so that the choice of a separation law is basically free. In Figure 

1.8 some typical shapes of traction-separation law are illustrated. 

They can be collected into two main groups: intrinsic cohesive laws 

(Figure 1.8a, and b), characterized by a linear-elastic branch be-

fore the softening branch and usually employed in fracture anal-

ysis for which the cohesive elements are inserted prior to the sim-

ulation along predefined crack paths, and extrinsic cohesive law 

(Figure 1.8c), without the initial linear-elastic branch, because the 

cohesive elements are inserted during the simulation (i.e. on the 

fly) in the area where the critical tensile strength of the material 

 

Figure 1.8. Typical shapes of the traction-separation law: fully expo-

nential (a), trapezoidal (b) and bi-linear (c) law. 
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has already been reached. In particular, the intrinsic cohesive re-

lation starts with a linear-elastic branch in which the stress in-

creases with growing crack opening displacement, up to a maxi-

mum value c , called cohesive strength, that is regarded as a 

material property. After which, a softening branch usually char-

acterized by a decrease in the load-carrying capacity occurs until 

a critical decohesion opening c  is reached, then the material is 

completely separated and no stress can be transmitted. Integrat-

ing the traction-separation law up to the critical opening c , i.e. 

computing the area under the separation curve, the dissipated 

fracture energy FG  during the crack propagation is obtained:   
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A fully exponential law, depicted in Figure 1.8a, based on an 

energy potential of atomic bonds (Rose et al., 1981), is proposed 

by Needleman (Needleman, 1990) in a modified form for cohe-

sive zone models in which the dependence of the traction forces 

on the opening displacement is given by:  
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After a quasi-linear branch up to the critical strength c  the 

curve decays exponentially. A characteristic feature of this model 

is that the traction does not approach zero at c = .  
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In the failure analysis of ductile materials, as metals, an alter-

native intrinsic cohesive law, illustrated in Figure 1.8b, with a re-

gion of constant maximum tension before the softening branch, 

is proposed by Tvergaard and Hutchinson (Tvergaard and 

Hutchinson, 1992). Such a trapezoidal law has been obtained by 

using an additional parameter 1 , which can be freely chosen, 

leading to the following formulation for the function ( )  : 

2

0

0 0

0 1

3 2

1 1
1

1 1

2 for  

( ) for <

2 3 1 for <

c

c

c c

c c

 
  

 

     

   
   

   

     
 −     
      


= 
   −   −  − +      − −     

.  (2.40) 

In the pioneer work of Petersson on crack propagation anal-

ysis in concrete structures, an extrinsic bi-linear traction-separa-

tion law, showed in Figure 1.8c, is used to simulate the behavior 

of cohesive elements inserted in an adaptive manner when a 

stress criterion was satisfied (Petersson, 1981). The softening 

stress can be written as:   
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where k  and k  are the kink point coordinates. In order to fit 

the experimental results, this describing the concrete fracture be-

havior in a more realistic manner, Petersson proposes / 3k c =  

and 2 / 9k c = . 

Finally, the essential parameters required by a traction-sepa-

ration law, needed to implement a cohesive crack model in its 

simplest form, are the tensile strength and the fracture toughness 

(or fracture energy) of the tested material, which can be easily 

obtained by simple experimental tests. 

 

Figure 1.9. 2D finite element realization of cohesive crack model: mode 

I and mode II loading condition (a) and cohesive law for fracture 

modes. 
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In a general loading condition, the nodes of the damaged in-

terfaces move in the perpendicular direction to the crack (mode 

I), but also, they can shift to each other in the tangential (mode 

II) and transversal (mode III) directions to the crack (Figure 1.9a).  

Thus, the opening displacement vector [   ]T
n t s   =   is defined 

in the local coordinate system ( , , )n t se e e . The cohesive stresses 

and the opening displacement, in a two-dimensional case, are re-

lated by:  
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In Figure 1.9b, a typical cohesive law for two-dimensional anal-

ysis, which describes both separation modes (I and II), is de-

picted. It worth noting that, the normal stress is confined by the 

constraint 0  , since otherwise a contact of crack faces occurs, 

producing additional reaction forces to avoid material interpen-

etration. In the mode-II relation, the tangential stresses change 

their sign if the direction of the sliding displacement t  changes. 

An alternative method for simulating the local mixed-mode con-

dition and avoiding to consider a cohesive law for each separa-

tion mode, is proposed by Ortiz and Pandolfi, based on the in-

troduction of an effective displacement  , relating both normal and 

tangential local displacements: 

 2 2( ) ( )n t  = + , (2.43) 

whereby, the factor   determines the ratio between shear and 

tensile stiffness in the cohesive law (Ortiz and Pandolfi, 1999). 
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The normal and tangential stress functions can be derived 

from an energy potential e . For instance, the exponential law 

(2.39) proposed by Needleman can be obtained by considering 

the following energy potential: 

 
0

0 0

( ) ( ) 1 1 exp
c

e d G
  

   
 

    
 = = − + −    

    
 . (2.44)  

By using the expression for the effective displacement  , the nor-

mal and tangential cohesive laws can be extracted as: 

 2,      e e
n t

n t

t t
    

   

 
= = = =
 

, (2.45) 

 from which an effective cohesive stress can be defined as: 

 

2

2( )t





 
= +  

 
. (2.46) 

The unloading during the irreversible fracture process, is 

taken into account by the traction-separation law in the numeri-

cal analysis. In particular, up to critical tensile strength of the ma-

terial, the unloading runs elastically on the same curve to the 

origin. In the softening branch, instead, the unloading and even-

tually re-loading occur along a different path. If a quasi-brittle 

material is simulated, the unloading path follows towards the 

origin, instead, for ductile material the unloading runs parallel 

to initial elastic slope and a plastic deformation occurs. In both 

cases, the maximum value of the effective displacement max  

over the entire loading history is necessary to be compute, so 

that: 
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. (2.47) 

The cohesive crack approach is generally used in conjunction 

with computational techniques to approximate the nonlinear 

fracture process. Within a finite element setting, two main strat-

egies to investigate failure can be found in the literature, i.e. in-

ter-element and intra-element models. They will be explained in 

detail in the next Sections.      

1.2.1.2 Inter-element cohesive models 

In inter-element cohesive models, cracks are constrained to 

be extended between the finite element of the mesh, and their 

propagation is allowed by using specific interface elements, 

equipped with a constitutive relation, written in terms of above-

mentioned traction separation law. Such cohesive interface ele-

ments can be a priori inserted in the case of known crack path, 

for example to simulate debonding problems in composite lami-

nates. Instead, in the case of unknown crack paths, these ele-

ments are inserted during the simulation, in an adaptive manner. 

Several cohesive interface models on this kind have been pro-

posed in the literature to analyze mixed-mode fracture in con-

crete and other quasi-brittle materials (Bocca et al., 1991; 

Camacho and Ortiz, 1996; Yang and Chen, 2005; Zhang et al., 

2007).  Here, two of the main inter-element cohesive models will 
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be explained, also highlighting their advantages and/or potential 

drawbacks in the failure analysis. 

 

Cohesive/volumetric finite element model proposed by Xu 

and Needleman.  A particular inter-element cohesive model is 

proposed by Xu and Needleman (Xu and Needleman, 1994) in 

order to investigate the dynamic crack growth and crack branch-

ing phenomena in isotropic elastic solids subjected to tensile 

loading conditions. The basic idea of the model is to disperse po-

tentially damaging cohesive surfaces over all the discretized 

body. Thus, a crossed-triangle quadrilateral mesh, in a finite ele-

ment framework, consisting of volumetric finite elements bor-

dered by cohesive surface elements is involved to perform dy-

namic crack analysis (Errore. L'origine riferimento non è stata 

trovata.). A constitutive law that relates stress and strain governs 

the elastic behavior of volumetric bulk elements, while a trac-

 

Figure 1.10. Representation of the cohesive/volumetric finite element 

method. 
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tion-displacement jump law is used to describe the nonlinear be-

havior of a specific set of cohesive surfaces, that are interspersed 

throughout the continuum.  

The equilibrium problem of the discretized body was formu-

lated as a nonlinear boundary value problem (BVP) expressed in 

the following weak form: 

     
int ext

2

2S S

u
:

V V
dV dS dS dV

t
    


−  =  − 

   s F T Δ t u u , (2.48) 

where s , F , t  and T  are the nonsymmetric nominal stress ten-

sor, the gradient of deformation, the external load vector and the 

cohesive traction vector, respectively. The displacement jump 

across the cohesive surface is denoted as Δ  , whilst, V , intS , and 

extS  are the volume, external surface, and internal cohesive sur-

face, respectively. The symbol   represents the density of the 

material. A constitutive law for isotropic hyper-elastic bulk ele-

ments is considered, so that the second Piola-Kirchhoff stress 

tensor is: 

 -1 W
=  =


S s F

F
, (2.49) 

where W  represents the strain energy density. The Lagrangian 

strain tensor F  is given by: 

 T1
( )

2
=  −F F F I , (2.50) 

where I  is the identity matrix.  
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Cohesive elements are equipped, instead, with a phenome-

nological mechanical constitutive relation between the traction 

and the displacement jump. Fully exponential intrinsic laws (Fig-

ure 1.11), used to describe the cohesive forces behavior for each 

fracture modes (mode I and II), are obtained by the energy po-

tential   illustrated in (Xu and Needleman, 1994), so that: 

 


=


T
Δ

. (2.51) 

The cohesive/volumetric FE model has been used to perform 

a dynamic analysis of the wave propagation in a block with and 

without an initial crack. The specimen is discretized by quadri-

lateral elements, enriched with diagonal elements at 45°, all sur-

rounded by cohesive surface elements. The effect of varying the 

impact velocity on the crack branching was investigated. Figure 

1.12 shows the crack pattern of the block subjected to symmetric 

 

Figure 1.11. Constitutive laws of normal (left) and shear (right) cohe-

sive traction used in (Xu and Needleman, 1994).  

 

Figure 1.12. Deformed mesh of a block subjected to dynamic loading 

condition obtained by the volumetric/cohesive finite element method.  

Pictures taken from (Xu and Needleman, 1994).  
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loading condition with wave speeds equal to 1 ms-1 (Figure 

1.12a), and 15 ms-1 (Figure 1.12b). The main result of the analysis 

is that the higher the impact velocity the less crack growth there 

is before branching. Focusing on the crack pattern, we can note 

that the model is able to capture the crack branching phenomena 

in an accurate manner, and although the crack can only propa-

gate in parallel and 45° direction respect to the axes, the overall 

branching angle is noticeably less than 45°, as demonstrated by 

experimental results. In addition, considering a pre-cracked 

block, a study of the orientation effect of the cohesive surface el-

ements on the crack path was carried out. Four mesh configura-

tions were built by varying the orientation angle of diagonal ele-

ments. The crack pattern of the different configurations with di-

agonal elements inclined by 15°, 30°, 45°, and 60° respect to the 

x-axis are depicted in Figure 1.13a, b, c, d, respectively. A zig-zag 

crack growth is predicted by the configurations with angles of 

15° and 30°, even though the meshes and boundary condition are 
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symmetric, while a crack propagation in horizontal direction is 

obtained by the other configurations. It is worth noting that, also 

the onset of the crack branching phenomena is strongly influ-

enced by the discretization.  

The above-discussed diffuse cohesive formulation, consist-

ing of cohesive surface elements inserted along all the mesh 

boundaries, is one of the first applications of the cohesive ap-

proach within the finite element method. In this model, the use 

of a structured triangulation highlighted the well-known mesh 

dependency issues of the inter-element fracture approaches, in 

terms of lack of spatial convergence for arbitrary crack paths or 

patterns, as showed in Figure 1.13. Furthermore, it has been 

largely demonstrated that unstructured meshes with very good 

 

Figure 1.13. Deformed mesh obtained by a mesh orientation sensitivity 

analysis in (Xu and Needleman, 1994). 
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isotropic properties, i.e. Delaunay mesh, can reduce such artifi-

cial mesh effects, especially in terms of sensitivity to the mesh 

orientation, even if the question of energy convergence still re-

mains an open issue. 

 

Adaptive cohesive volumetric finite element model pro-

posed by Camacho and Ortiz. In the inter-element discrete frac-

ture framework, an alternative cohesive volumetric FE model to 

predict the propagation of dynamic fracture and fragmentation 

in brittle materials subjected to impact load is developed by 

Camacho and Ortiz (Camacho and Ortiz, 1996). The proposed 

model, based on an extrinsic cohesive approach, adaptively cre-

ate new cohesive surfaces as a brittle fracture criterion is satis-

fied, duplicating nodes along boundaries of the coherent finite 

 

Figure 1.14. Crack phenomena simulated by the adaptive cohesive vol-

umetric finite element model of (Camacho and Ortiz, 1996).  
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elements. In this way, the nucleation and propagation of the sin-

gle or multiple cracks as well as the branching and fragmentation 

phenomena can be easily simulated (Figure 1.14). An advancing 

front algorithm to mesh generation is used to discretize the do-

mains of the analyzed body involving six-node triangular ele-

ments finite elements (Figure 1.15) and also useful to defining the 

contact surfaces. Such an algorithm modifies the computational 

information of boundaries and nodes during the creation of 

crack surfaces and adds new domains to the system if complete 

fragmentation occurs. In this model, that also employs a con-

tact/friction algorithm for the self-contact across crack faces, the 

dynamic equilibrium problem is written in weak form by the vir-

tual work principle at time 1nt + , as follows: 

 : ( ) 0
V V S

dV dV dS − +  −  =  P η f a η t η , (2.52) 

where P  and   are the first Piola-Kirchhoff stress and the ma-

terial deformation gradient, respectively. The body forces, accel-

 

Figure 1.15. Six-node triangular element with representation of the co-

hesive traction vector and its components.  
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erations and boundary traction are denoted as f , a , and t , re-

spectively. The symbol η  represents an admissible virtual dis-

placement field. The normal   and tangential   components of 

the cohesive traction t , calculated at each load step and at each 

node of the strain six-node triangular elements (Figure 1.15), are 

used to verify a mixed-mode fracture criteria proposed by sev-

eral authors (Margolin, 1984; Dienes, 1986): 

 
2 2 if  0

if  0

fr

fr

   

     

+  

−  
, (2.53) 

where  ,  , and fr  are the shear stress factor, friction coeffi-

cient and the critical fracture stress of the material, respectively. 

When one of the fracture conditions of (2.53) is satisfied, a new 

cohesive surface is introduced into the mesh by the interested 

 

Figure 1.16. Normal and shear cohesive law used in (Camacho and 

Ortiz, 1996).   
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nodes duplication. The new cohesive surface elements are 

equipped with an irreversible extrinsic-type linear softening law 

for each fracture mode, as depicted in Figure 1.16. The relations 

between the components of cohesive traction and the displace-

ment jump are the following: 

 

1

1 sgn( )

n
c

nc

s

c s

sc


 




  



 
= − 

 

 
= − 

 
 

, (2.54) 

where n  and s  are the normal opening and sliding displace-

ments, respectively. The subscript c denotes the critical value of 

the quantity. As soon as the cohesive stresses reach the corre-

sponding critical values of the material ( c  and c ), they are 

ramped down linearly as a function of the displacement jump. 

The critical opening displacement nc , can be obtained by the 

fracture energy, which represents the area under the tensile co-

hesive law and it can be measured in fracture tests. If unloading 

occurs, the crack begins to close, and the stresses follow an un-

loading path towards the origin. 

The authors apply the adaptive cohesive model to perform 

impact fracture analysis involving a hardened steel pellet and an 

alumina plate. The results of the simulations highlight the com-

putational capabilities of the model to capture complex crack 

patterns produced by the dynamic fracture progression and frag-
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mentation phenomena. In particular, the crack initiation at exte-

rior or interior surface, as well as their propagation through mid-

side and corner nodes, is well simulated by the model (see Figure 

1.17). The contact and/or frictional sliding of the crack faces, due 

to a possible crack closure, is also considered by the contact al-

gorithm implemented in the fracture model. Additionally, typi-

cal phenomena of the dynamic fracture, such as crack arrest and 

crack branching, are predicted in an accurate manner by the 

model, demonstrating the versatility of the cohesive approach to 

describe the complex nonlinear mechanical behavior of the ma-

terial during different fracture phenomena. Such an extrinsic-

type cohesive method avoids the mesh dependency issues re-

lated to the artificial compliance because the cohesive surface el-

ements are inserted only after that a particular stress criterion is 

 

Figure 1.17. Crack pattern obtained by an impact fracture analysis in 

(Camacho and Ortiz, 1996).   
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satisfied. However, the fracture model proposed by Camacho 

and Ortiz has some limitations. Since cracks can only propagate 

along the boundaries of the mesh, the predicted path, similar to 

that obtained by the fracture model proposed by Xu and Needle-

man, is often jagged and uncoherent with the experimental data. 

Additionally, the use of a fixed mesh, limits the number of avail-

able crack paths with possible distortions of the crack propaga-

tion direction and, in some cases, mesh sensitivity issues can oc-

cur. As suggested by the authors, these limitations can be over-

come by means of suitable remeshing procedures (Kuutti and 

Kolari, 2012) with a local refinement of the mesh at crack tips in 

order to increase the number of directions available for the crack 

propagation and help to prevent premature crack arrest. Further-

more, due to remapping of the stress and strain states, and even-

tually of the internal variables, such remeshing may cause ther-

modynamically inadmissible artificial healing of previously 

cracked regions, posing severe uniqueness problems in the case 

of the crack branching.  

1.2.1.3 Intra-element cohesive models 

To model crack initiation and propagation along unknown 

crack paths without involving any remeshing operations, intra-

element cohesive fracture approaches are widely used. Such ap-

proaches allow the propagation of the cracks within the finite el-

ements of a given mesh by introducing kinematic enrichment ei-

ther at the element level, as in the strong discontinuity approach 
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(SDA), or at the node level, as in the extended finite element 

method (XFEM). Here, two of the main intra-element fracture 

models will be explained, highlighting their advantages and/or 

potential drawbacks in the failure analysis.  

 

Intra-element cohesive model based on the extended finite 

element method (XFEM). 

Recently, the cohesive crack approaches have been imple-

mented in fracture models using alternative finite element 

frameworks, such as the well-known extended finite element 

method. The basic concept of the XFEM, is to enrich the approx-

imation space so that it becomes capable of reproducing discon-

tinuities such as cracks or interfaces. In contrast to PUFEM and 

other generalized FEMs, where the enrichments are usually em-

ployed on a global level and over the entire domain, the ex-

tended finite element method adopts the same procedure but at 

local level. Such a method uses the standard finite element mesh, 

but once the discontinuity takes place, a few degrees of freedom 

are added to the classic finite element model in selected nodes 

near to the discontinuity to provide a higher level of accuracy. In 

this way, the model is able to simulate arbitrary cracks, inde-

pendently by the mesh, and crack propagation without remesh-

ing procedure.  

Considering a discretized domain with a discontinuity, the 

approximation ( )hu x , used by the XFEM to calculate the dis-

placement field for a point x locating within the domain, can be 
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written as the sum of two terms: the classical displacement ap-

proximation term related to finite elements without the disconti-

nuity FEu , and the enriched approximation term for the cracked 

finite elements enru : 

 FE enr( ) ( ) ( ) ( )h
i i m m

i I m M

N N 
 

= + = + u x u u x u x x a , (2.55) 

where iu  is the vector of regular degrees of nodal freedom 

in the finite element method, and ma  is the set of degrees of free-

dom added to enrich the domain of interest. ( )iN x  are the clas-

sical iso-parametric finite element shape functions, and ( ) x  the 

enrichment functions defined for the set of nodes included in the 

influence domain of the discontinuity. I  and M  are the node-set 

related to finite elements without the discontinuity and with dis-

continuity, respectively.  In a work of Moës and Belytschko 

(Moës and Belytschko, 2002), the additional term of the displace-

ment approximation is further divided in two contributions, one 

related to the finite elements completely cut by the discontinuity 

and one that describe the approximation displacement field of 

the element containing the crack tip, thus obtaining the following 

enriched approximation: 

 ( ) ( ) ( ) ( ( )) ( )h
i i j j k k

i I j J k K

N N H f N F
  

= + +  u x x u x x b x c , (2.56) 

where the Heaviside jump function ( )H   is used to enrich the 

nodes of the elements cut into two parts by the crack. These 

nodes form the set J and are depicted with circles in Figure 1.18. 



Theoretical and numerical approaches for concrete fracture analysis 74 

The function ( )f x  is the signed distance function, that identifies 

the location of the point x with respect to the discontinuity, while 

( )F x  is the branch function used to model the displacement field 

in the elements containing the crack tip. jb and kc , similar to the 

ma  in (2.55), represent additional degrees of freedom to model 

the presence of the crack. The nodes around the tip of the discon-

tinuity, depicted with squares in Figure 1.18, form the set K, so 

that J K M = . The most conventional form of branch functions, 

recently used in a cohesive crack model (Planas and Elices, 1992, 

1993; Dolbow et al., 2000) and expressed in the local crack tip po-

lar coordinate system, are defined as: 

 3/2 2( , ) sin     or    sin     or    sin
2 2 2

F r r r r
  


     

      
     

. (2.57) 

Introducing the XFEM approximation (2.56) in the equilib-

rium equation, expressed by mans of a weak form, we obtain the 

 

Figure 1.18. Discontinuity within a structured mesh. 
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discrete variational principle weighted with a test function v : 

find h hu  (with h  the discrete displacement space) so that: 

int extS S
( ) : ( ) ( ) ( )     h h h

V
dV dS dS−  =     σ u ε v t u w v F v v , (2.58) 

where the integration over the volume V , involves the stress ten-

sor σ  and the function test of the deformation gradient ε , while 

the integration over internal intS  and external extS  surface in-

volve the traction cohesive t  and external load F  vectors, respec-

tively. The symbol w  represent the displacement jump vector 

along the crack faces.  

The fracture process in failure analysis, simulated by an in-

tra-element cohesive model based on XFEM, develops on a dis-

continuity located in any zone of the discretized domain. Such a 

discontinuity is introduced in an element when a certain failure 

criterion is satisfied. Usually, when an equivalent stress exceeds 

the tensile strength of the material, the crack discontinuity is in-

troduced as a straight line and it is enforced to be geometrically 

continuous. The actual orientation of this discontinuity is deter-

mined by LEFM-based methods such as the principle of local 

symmetry (Dolbow et al., 2000) and the maximum hoop stress 

criterion (Erdogan and Sih, 1963). The latter is the most used ori-

entation criterion in this type of analysis and defines the direc-

tion of propagation to be along a direction normal to the maxi-

mum hoop stress. The angle of crack growth   is expressed in 

terms of the external stress intensity factors (SIFs) at the current 

tip through the formula: 
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, (2.59) 

where the sign is chosen so that the hoop stress is positive.   

The XFEM combined with the cohesive crack model has been 

widely used in the literature to simulate crack propagation in 

several homogeneous and heterogeneous materials. Recently, 

Gee and coauthors (Gee et al., 2020) have used a valid cohesive-

zone XFEM model to predict the structural response, in terms of 

loading curve and crack path, of a thin rectangular PMMA spec-

imen with an angled initial crack subjected to compression, re-

sulting in a mixed-mode loading condition. The numerically 

predcited curved crack path is in an excellent agreement with 

that experimentally found throughout the entire loading history, 

thus showing the capability of the proposed model to capture, in 

a very realistic manner, all the main features of mixed-mode 

crack propagation (see Figure 1.19). The crack pattern has been 

well predicted by the intra-element fracture models also in con-

crete fracture analysis. Many numerical results, obtained by sev-

eral authors (Zi and Belytschko, 2003; de Borst et al., 2004; 
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Mergheim et al., 2005) further confirm the accuracy of these mod-

els, and demonstrate adequately the effectiveness of the combi-

nation of the XFEM and the cohesive crack model in the crack 

growth simulation in concrete structures. Unlike the above-illus-

trated inter-element cohesive model, in which the crack is forced 

to propagate along the boundaries of the finite element, the intra-

element approach, by virtue of the extended finite element 

scheme, is able to inject the discontinuity wherever this crack can 

be located with respect to the mesh. These models have been 

proved to provide more reliable numerical results, especially in 

 

Figure 1.19. Maximum principal stresses of deformed configurations 

at three different loading steps obtained by cohesive zone XFEM 

model. Pictures taken from (Gee et al., 2020).  
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the crack path predictions, but usually require a high implemen-

tation effort. As a matter of fact, the generalization of XFEM for 

arbitrary crack propagation problems also required implementa-

tion of tracking techniques, such as the level set method (LSM) 

and the fast marching method (FMM), to re-establish the geomet-

ric continuity of the crack line and for determining the location 

of crack tips (Belytschko et al., 2001; Stolarska et al., 2001). 

 

Embedded finite element method (EFEM) based on a 

strong discontinuity approach, proposed by Sancho et al. 

A simple and successful intra-element cohesive model for the 

failure analysis of concrete and other quasi-brittle materials, is 

the embedded cohesive crack model elaborated by Sancho et al. 

(Sancho et al., 2007). Based on the well-known strong disconti-

nuity approach (SDA) (Simo et al., 1993), in which the displace-

ment jump caused by the geometric discontinuity is embedded 

in the corresponding finite element displacement field, such a 

fracture model simulates the crack initiation and propagation 

processes by means of a simple cohesive crack approach. The 

typical crack locking problems of the SDA approach, usually 

caused by the kinematical incompatibility between the cracks in 

the adjacent elements, are here circumvent by introducing a local 

crack adaptability algorithm, without resort to the well-known 

tracking procedures to re-establish the geometric continuity of 

the crack line (Gasser and Holzapfel, 2006; Jäger et al., 2008).  
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The basic concept of the embedded finite element formula-

tion is that, once the principal stress reaches the tensile strength 

of the material, a straight crack, characterized by a displacement 

jump vector w ,  is inserted in the element in the direction normal 

n  to the maximum principal stress (Figure 1.20a). Thus, the 

crack modifies the kinematics of the element and the new dis-

placements field, can be written as follows: 

 ( ) ( ) ( ) ( )
A A A

N H N  

 − + +  

 
= + − 

 
 u x x u x x w , (2.60) 

where N  and u are the shape function and nodal displacement 

associated to the node  , respectively. The Heaviside jump 

function ( )H x  has a null value in the region A−  and a value of 1 

in the region A+ . In a similar manner, the strain field in the con-

tinuum, denoted as c , that determines the stress field of the el-

ement on both sides of the crack, is also modified, so that: 

 

Figure 1.20. Schematic representation of the embedded crack model:  

notations of a constant stress finite element containing a crack (a) and 

constitutive cohesive law (b). 
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where ( )b x  is the gradient of the shape function associated to 

node  . The first summation, according to the finite element 

method theory, represent the apparent strain a , i.e. the strain 

field without the discontinuity. The corresponding stress tensor 

in the element, which follows the hypothesis of elastic bulk ma-

terial behavior, results to be: 

 ( ) : ( ) ( )
S

a  +  = −    
x E x b x w , (2.62) 

where E  is the tensor of the elastic moduli and  

( ) ( )
A  +

+


=b x b x . However, along the geometric discontinu-

ity, the stresses are governed by a softening curve according to 

the adopted cohesive crack approach. This approach is based on 

a central forces model in which the traction vector t , transmitted 

across the crack faces, is parallel to the crack displacement jump 

vector w . The relation between the cohesive traction vector and 

displacement jump vector (Figure 1.20b) is: 

 ( )f=
w

t w
w

, (2.63) 

where the variable w  represent the maximum value attained by 

the effective displacement jump over the entire loading history. 
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Finally, by prescribing the equilibrium between the traction co-

hesive vector (2.63) and the stress tensor (2.62) projected in the 

normal direction n , we obtain: 

 ( ) : ( ) ( )
S

af  +   = −      

w
w E x b x w n

w
. (2.64) 

Once the stress reaches the strength of the material and a straight 

crack is introduced in the element perpendicular to the principal 

stress direction, n  is computed as a unit eigenvector of the stress 

equation. After this, the corresponding vector +b  is obtained so 

that the angle between +b  and n  is the smallest possible. In other 

words, the geometric discontinuity must be parallel to one of the 

sides of the triangular finite element.  

In the literature, many fracture models based on SDA use 

crack tracking algorithms to re-establish the geometric continu-

ity of the crack line across the elements. In this model, instead, in 

order to avoid such types of numerical inconvenience during the 

simulations and possible crack locking, a simple method, based 

on a crack adaptability procedure within the element, is intro-

duced. In particular, the model allows the geometric discontinu-
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ity to adapt itself to subsequent variations of the maximum prin-

cipal stress direction until the effective displacement reached a 

threshold value (see Figure 1.21). In this way the crack direction 

is recomputed at each step as if the crack were freshly created. 

The embedded crack model is used by the authors for the 

failure analysis of plain concrete specimens subjected to mode-I 

and mixed-mode loading conditions (Sancho et al., 2006). The 

comparisons with experimental results have demonstrated the 

capability and versatility of the model to predict the global struc-

tural response and the crack pattern in an accurate manner with-

out any additional complicated remeshing procedure (see Figure 

1.22). In particular, the above-discussed model is able to predict 

a smoother crack path compared to that jagged obtained by inter-

element cohesive models, consequently obtaining a loading 

curve more consistent with the experimental data. Additionally, 

 

Figure 1.21. Sketch of numerical crack locking phenomena taken from 

(Sancho et al., 2007).   
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from a computational point of view, the embedded strong dis-

continuity model proposed by Sancho et al. does not require a 

great implementation effort, unlike the X-FEM technique and 

other sophisticated intra-element approaches. 

However, the model would to be tested in more complicated 

fracture cases, where multiple cracking, crack branching phe-

nomena, and/or coalescence between cracks occur.    

1.2.2 Smeared crack models 

In contrast to discrete fracture models, in which cracks are 

modeled as geometric discontinuities, smeared crack models, 

used almost exclusively in the design practice and that have ob-

tained wide popularity in the finite element analysis, simulate 

damage processes as a progressive loss of the material integrity 

due to the propagation and coalescence of micro-cracks and mi-

cro-voids (Kachanov, 1986). The smeared crack models (Simo 

and Ju, 1987a, 1987b; Lemaitre et al., 2002) consider constitutive 

 

Figure 1.22. Numerical results obtained by the embedded crack model 

in (Sancho et al., 2006): loading curve (a) and deformed mesh (b).   
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relations in which the mechanical effect of the cracking and void 

growth is introduced with internal state variables which act on 

the degradation of the elastic stiffness of the material and involve 

strain softening in order to describes the post-peak gradual de-

cline of stress at increasing strain. Such models can be relatively 

simple, as the isotropic damage models (Geers et al., 1998; Peer-

lings et al., 1998; Jirásek, 2004) or more complex as the aniso-

tropic ones (Krajcinovic and Fonseka, 1981; Kuhl and Ramm, 

1999; Zhou et al., 2002).  However, these models usually adopt 

different regularization techniques able to prevent the well-

known ill-posedness of the associated BVPs, such as those based 

on strain gradient and micropolar [39] formulations (Peerlings et 

al., 1998; Leonetti et al., 2019).  

In the following Sections the concepts of the continuum dam-

age mechanics, as well as the smeared crack approaches are de-

picted. In addition, the so-called localization limiters in aid of the 

continuum damage model, such as crack band models and non-

local models, are presented.   
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1.2.2.1 Basic concepts of continuum damage mechanics 

To introduce the basic concepts of the continuum damage 

mechanics, we analyze the mechanical behavior of a material ide-

alized as set of perfectly brittle strips parallel to the loading di-

rection, as depicted in Figure 1.23a. Initially, all the strips re-

spond elastically, and the entire section maintain the applied 

load (Figure 1.23b). As the load increases some strips start break-

ing (Figure 1.23c), and the effective area eA , that is the area of the 

unbroke strips that can still carry stress, gradually decrease. 

Now, it is possible to distinguish a nominal stress  , defined as 

the force of unit initial area of the cross section, and an effective 

stress e  related to the unit effective area. By the equivalence con-

dition e eA A =  we obtain:  

 e
e

A

A
 = , (2.65) 

 

Figure 1.23. Schematic representation of a uniaxial damage model as a 

bundle of parallel perfectly brittle strips breaking at different strain 

levels. 
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in which the ratio /eA A  is a scalar that characterize the integrity 

of material used in the damage mechanics to define the so-called 

damage variable as follows: 

 1 e e dA A A A
D

A A A

−
= − = = , (2.66) 

with dA  the damaged area. Therefore, for an intact material, i.e. 

eA A= , the damage variable is equal to 0D = , contrariwise dur-

ing the degradation process due to the micro-defects propaga-

tion, the damage variable asymptotically approaches to the limit 

value 1D= . 

Consequently, the nominal stress, governed by Hooke’s law, 

can be expressed as: 

 (1 )D E = − , (2.67) 

and the damage process is characterized by the dependence of 

the D  on the applied strain as: 

 ( )D g = , (2.68) 

with g  a function that describe the stress-strain curve and can be 

directly identified from a uniaxial tensile test. In the case repre-

sented in Figure 1.23d, when the material is first stretched up to 

a strain level 2 , inducing a damage 2 2( )D g =  and then a strain 

decrease occurs until 3 , the damage area remain constant but 

the material respond elastically with a reduction of Young’s 

modulus 2 2(1 )E D E= − . In this case, during the unloading and 

reloading condition, the damage variable must be evaluated 

from the largest previously reached strain: 
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 max( )
History

 = , (2.69) 

and the damage evolution law is then replaced by equation: 

 ( )D g = . (2.70) 

Now, we can introduce a new function ( , )f    = −  and the 

loading-unloading conditions can be expressed in the Kuhn-

Tucker form as follows: 

 0,     0,     0f f   = , (2.71) 

in which it is imposed that   can never be smaller than  ,   

cannot decrease and can increase only if the current values of   

and   are equal. Therefore, 0f =  and 0   during damage 

growth, 0f   and 0 =  during unloading condition. 

The above-explained uniaxial damage test can be extended 

to general multiaxial stress states by means of an isotropic dam-

age model with a single scalar variable. The fundamental as-

sumptions of the isotropic model are: (i) stiffness degradation is 

isotropic, i.e. the stiffness moduli, corresponding to different di-

rections, decrease proportionally independently of the loading 

direction; (ii) the Poisson’s ratio is not affected by the damage, 

i.e., the relative reduction of all stiffness coefficients is the same. 

Consequently, the damage stiffness tensor is expressed as: 

 (1 )s D= −E E , (2.72) 

where E  is the elastic stiffness tensor of the intact material and 

sE  is the secant stiffness that relates the total strain to the total 

stress, according to the formula: 
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 (1 )s D = = −E E . (2.73) 

Finally, the effective stress tensor is defined as: 

 e = E , (2.74) 

and the total multidimensional stress (generalization of (2.65)) 

can alternatively be written as: 

 (1 ) eD= −  . (2.75) 

As in the uniaxial stress test, we there introduce a loading 

function f  depending on the strain tensor  , and on a variable 

  that controls the evolution of the elastic domains. A state for 

which ( , ) 0f     is supposed to be below of the critical damage 

level. Then, a generalization of Kuhn-Tucker form for the un-

loading condition can be written as: 

 ( , ) ( )f     = − , (2.76) 

where the   is a scalar measure of the strain level called equiva-

lent strain. This damage loading function, similar to the yield 

function in plasticity, does not depend on e  and describe the 

shape of elastic domains. For instance, a customary definition of 

equivalent strain for materials as metals is the Euclidean norm of 

the strain tensor: 
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 :   = = , (2.77) 

that corresponds to a certain shape of the elastic domains in the 

stress space, as illustrated in Figure 1.24a (dotted line) consider-

ing a Poisson’s ratio of 0.2 = . The domains, elliptical and sym-

metric respect to the origin, shows an equal response under ten-

sile and compressive loading and is suitable for metals only, 

which possess a symmetric tensile/compressive behavior. In-

stead, to better describe the mechanical behavior of quasi-brittle 

materials like concrete, rock and ceramics in which the fracture 

 

Figure 1.24. Biaxial strength envelopes considering various equivalent 

strain definitions: comparison between Euclidean norm, Mazars, and 

Rankine definitions (a); comparison between the predictions of iso-

tropic damage model with modified Mises equivalent strain definition 

and experimental envelope (Kupfer et al., 1969) (b).  
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process grows mainly if the material is stretched, Mazars consid-

ers only the positive part of the normal strain, neglecting the neg-

ative one. The equivalent strain definition of Mazars is (Mazars, 

1986): 

 ( )
3 2

1

: i

i

    
=

= = =  , (2.78) 

the symbol .  denoting the positive part operator of McAuley 

and the corresponding elastic domains is reported in Figure 

1.24a (dashed line). In the literature many other equivalent strain 

definitions are reported such as that according to the maximum 

principal stress criterion of Rankine (continuous line of Figure 

1.24a): 

 
1,2,3

1
max i
iE

 
=

= , (2.79) 

where i  are the positive parts of principal values of effective 

stress tensor; or the modified von Mises definition (de Vree et al., 

1995) obtained by adding the first invariant of the strain tensor: 

 
2

1 22
12 2

( 1) 1 ( 1) 12

2 (1 2 ) 2 (1 2 ) (1 2 )

k I k kJ
I

k k
 


  

− −
= + +

− − −
, (2.80) 

where the 1I   and 2J   are the first invariant of the strain tensor 

and the second invariant of the deviatoric strain tensor, while the 

k  parameter governs the sensitivity to compression relative to 

that in tension, usually set equal to the ratio between the com-

pressive and tensile  uniaxial strength. The corresponding elastic 
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domains (Figure 1.24b) have ellipsoidal shapes but their centers 

are shifted from origin along the hydrostatic axis except for the 

case of the standard von Mises definition with 1k = , for which it 

follows 2J  . 

As illustrated in Figure 1.24, the shape of the above-men-

tioned elastic domains does not completely correspond to the bi-

axial strength envelope obtained by experiments (Kupfer et al., 

1969), showing an underestimate of the material strength when 

a Mazars equivalent strain definition is considered and an over-

estimate of the material strength, especially in the biaxial com-

pression region, when the Rankine and modified von Mises 

damage model are used. 

1.2.2.2 Mazars damage model 

In the framework of the damage mechanics, a popular and 

relatively simple concrete damage model, which is also easy to 

implement and computationally efficient, was proposed by 

Mazars (Mazars, 1984, 1986). The constitutive equation of model 

(2.73) is characterized by a damage variable D , with values be-

tween 0 and 1, defined as a combination of two damaging modes 

tD , and cD  used independently under tensile and compressive 

condition, respectively, and computed from the same equivalent 

strain definition (2.78). In the case of general stress states the 

damage parameter is obtained as a linear combination: 

 t t c cD D D = + , (2.81) 
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where the coefficients t  and c  provide the character of the 

stress state and are evaluated as: 

 
3 3

2 2
1 1

,       1
ti i ti i

t c

i i

 

   
 

 = =

   
= = −   
   
   
  , (2.82) 

where ti  is the principal strains due to the positive stresses and 

the exponent   is introduced to improve the damage evolution 

during the shear loading and in the recent implementation of 

Mazars model it was set equal to 1.06 = . With 1t =  and 

0c =  we have a purely tensile stress state, conversely, with 

0t =  and 1c =  a purely compressive stress state occurs. The 

equations of damage evolution are expressed, starting from the 

equivalent strain at the onset of nonlinearity 0 , as follows: 

 

0
0

0
0

1 (1 ) exp( ( ))

1 (1 ) exp( ( ))

t t t t

c c c c

D A A B

D A A B


 




 



= − − − − −

= − − − − −

, (2.83) 

with tA , tB , cA , and cB  material parameters related to the sof-

tening shape of uniaxial stress-strain curve. They are obtained by 

tensile and compressive experimental test. The damage equa-

tions (2.83) do not have a good accuracy when large strain are 

applied since the stress level approaches its limit value, and in 

the case of prevalent compression the compressive stress change 

sign from negative to positive (see the dotted curve of Figure 

1.25). To avoid this complication, the damage variables are set 
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1cD =  and 1tD =  when cD  exceed 1 and tD  exceed a certain 

limit, respectively.  

As already reported in Figure 1.24, the elastic domains in the 

region of biaxial compression not completely correspond to the 

experimental data of failure envelope in the stress space. To im-

prove the shape of the elastic domains, Mazars revised his dam-

age model considering a multiplicative factor   in the expression 

of the equivalent strain: 

 ( )
3 2

1

i

i

  
=

=  , (2.84) 

with 

 

3 2

1

3 2

1

i

i

i

i







−

=

−

=

=




, (2.85) 

 

Figure 1.25. Stress strain curves of Mazars damage model for uniaxial 

tension (a) and uniaxial compression (b).   
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where i i − −= − −  are the negative parts of the principal 

stresses. This factor, limited between 0 and 1, is activated only if 

at least two principal stresses are negative, i.e. only in a biaxial 

compression condition and it makes the biaxial compressive 

strength equal to the uniaxial one. With this numerical consider-

ation, the failure envelope becomes more realistic as showed in 

Figure 1.26. 

However, some numerical issues, typical of isotropic damage 

models, are observed also in the Mazars model. In particular, the 

model is unable to capture the volumetric dilatancy, observed in 

the experimental test, in the case of proportional loading path in 

uniaxial compression and shear test, due to the fact that the ratio 

 

Figure 1.26. Comparison between biaxial failure envelopes predicted 

by original and modified Mazars damage model, and experimental 

data of (Kupfer et al., 1969).  
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between individual strain components remains constant. In ad-

dition, during the unloading phase the permanent strain is not 

generated and for large strain values in one direction the model 

completely loses stiffness also in the transverse directions. Nev-

ertheless, the Mazars damage model is a very popular model in 

the failure analysis of concrete structures, by virtue of its ease of 

implementation in commercial softwares and its computational 

efficiency. 

1.2.2.3 Strain localization limiters 

In concrete structures the material properties cannot be per-

fectly uniform. If we consider two adjacent sections of a struc-

ture, with a certain dimension, their strengths are not identical 

but one of them must have a critical strength slightly smaller 

than the other one. Consequently, during a loading phase, as 

soon as one section reaches the peak strength, further straining 

yields to softening of this section and to unloading of the other, 

i.e. the strain localizes into one element due to the softening. This 

leads to the conclusion that the size of the softening zone is dic-

tated by the size of the zone with minimum strength, which can 

be arbitrarily small. 
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Now, we consider a homogeneous bar of length L  with a lin-

ear-elastic mechanical behavior up to its critical strength fol-

lowed by strain-softening, as depicted in Figure 1.27. The strain 

in the softening branch can be written as: 

 f
s

E


 = + , (2.86) 

where E  is the Young’s modulus, and f  is the fracturing strain, 

graphically represented as illustrated in Figure 1.27. A mono-

tonic increase of strain and an unloading to the origin is further 

predicted. The area under the stress-strain curve, i.e. the work F  

required to fully break a unit volume of material is: 

 
0

F d  


=  . (2.87) 

As explained above, a region of bar, of length h , reaches its 

critical strength so that it continues to stretch, while the remain-

ing part of the bar elastically unloads. The total elongation of the 

bar is thus: 

 

Figure 1.27. Elastic-softening behavior of homogeneous bar.  
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 ( ) f fL L h h L h
E E E

  
 

 
 = − + + = + 

 
. (2.88) 

In which we can distinguish the elastic elongation and a frac-

turing elongation write as follows: 

 f fL h = . (2.89) 

Consequently, the required work to break the entire speci-

men is only that to break the region with strain softening, so that: 

 
0

f
F FW Ah d Ah  



= = , (2.90) 

where A  is the cross section of the bar. To evaluate the h  value, 

we apply the condition of the second-order complementary 

work 2W  which must be maximum, and we find that the ther-

momechanical solution is 0h = . It follows that, a solution physi-

cally unacceptable and contrary to experiment with both inelas-

tic strain and fracture work equal to zero is obtained. From the 

numerical point of view, this solution implies mathematical 

problem related to the loss of ellipticity of the governing differ-

ential equation and the boundary value problem becomes ill-

posed, i.e., it does not have a unique solution with continuous 

dependence on the given data, thus manifesting a pathological 

sensitivity of results to the size of finite elements.   

Therefore, damage models, based on a continuum formula-

tion with strain softening, must include some conditions that 

prevent the strain from localizing into a region of measure zero 
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(Bažant and Belytschko, 1985). The damage models which in-

clude these conditions, such as the well-known crack band model 

and the nonlocal damage models, will be briefly explained.  

 

Crack band model. The model, originally proposed by 

Bažant (Bažant, 1976) and developed in full detail for sudden 

cracking in (Bažant and Cedolin, 1979, 1983), is based on an ad-

justment of the stress-strain diagram depending on the finite el-

ement size. The constitutive law with strain softening must be 

associated with a width ch  of the crack band, which represents a 

reference width and it is treated as a material property. The basic 

concept of this model is to consider a traction-separation law, 

typical in the discrete fracture models, as the basic constitutive 

description. At each material point, the stress-strain relation is 

obtained by the transformation of the traction-separation law 

considering the width of the numerically simulated process zone 

which depends on the size of the corresponding finite element. 

The equation of a softening curve for the cohesive crack model, 

which involves the displacement jump of the crack opening   

and the stress   can be written in the general form as: 

 ( )f = . (2.91) 

If the crack opening is smeared over a distance ch , the result-

ing fracture strain is: 

 
f

ch


 = . (2.92) 
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As reported in Figure 1.28, there is a correspondence between the 

softening of the crack band model and the cohesive crack model, 

in particular the strain in the stress-strain curve can be obtained 

dividing the crack opening by the width of the crack band. The 

correspondence is also maintained for the specific fracture en-

ergy G , so that: 

 F
c F

W
G h

A
= = . (2.93) 

In a similar manner we can easily obtain the characteristic 

length in terms of crack band model properties as: 

 
2ch c F

t

E
l h

f
= . (2.94) 

Some difference in the results obtained by both discrete and 

smeared models, is observed in terms of strain distribution. Ob-

 

Figure 1.28. Correspondence between the stress-displacement jump 

softening curve of the cohesive crack model (a) and the stress-strain 

constitutive curve of the crack band model (b).  
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viously, in correspondence of a crack, the fracture strain calcu-

lated by the crack band model is smeared over a length of ch , 

instead, considering a discrete approach, in which the crack is 

modeled as a discontinuity, the strain is concentrated in a zone 

with nil width. However, if ch  is very small respect to the speci-

men dimensions this difference in the results is negligible.  

Therefore, a widely analyzed problem in the literature is to 

determine the value of ch  in order to obtain acceptable numeri-

cal results. In many works about damage mechanics, the value 

of ch  is taken equal to the size of the finite element. Rots, based 

on numerical experiments, proposed certain rules for the choice 

of the equivalent element size for a number of typical situations 

(Rots, 1988). Červenka, considers reasonable to compute ch  as 

the size of element projected onto the crack normal and proposed 

a correction factor of this size (Wittmann et al., 1995).  

 

Nonlocal damage models. As seen above, a local strain sof-

tening continuum exhibits spurious damage localization insta-

bilities, in which all damage is localized into a zone of measure 

zero, leading to spurious mesh sensitivity. To avoid such issues, 

one must adopt the more general concept of nonlocal continuum, 

defined as a continuum in which the stress at a point depends on 

the strains in the neighborhood of that point. The nonlocal mod-

els assume that the stresses at a certain point depends not only 

on the state variables at that point but, in general on the distribu-

tion of state variables in a finite region in the proximity of the 
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point under consideration. The first models date back around 

1960s, when Erigen developed the theory of nonlocal elasticity 

and nonlocal elastoplasticity (Erigen, 1983). Such nonlocal for-

mulations were used, then, as efficient localization limiters by Pi-

jaudier-Cabot and Bažant (Pijaudier-Cabot and Bažant, 1987) 

with a regularizing effect on problems with strain localization. In 

the scientific literature, many nonlocal approaches, elaborated 

for several damage models including smeared crack (Bažant and 

Lin, 1988; Jirásek and Zimmermann, 1998) or microplane models 

(Bažant and Ožbolt, 1990; Bažant and Di Luzio, 2004), are pre-

sent. 

From a mathematical point of view, the nonlocal approach 

consists in replacing a certain variable by its nonlocal counter-

part, obtained by a weighted averaging over a region in the 

neighborhood of each point under consideration. Considering a 

local field ( )f x  in a domain V , the corresponding nonlocal field 

can be written as: 

 ( ) ( , ) ( ) (
V

f f dV= x x s s s)  (2.95)  

where ( , ) x s  is a given nonlocal scalar weight function of the 

distance r = −x s  between the “source” point s , at which the av-

erage is taken, and the “receiver” point x , contributing to that 

average. In region with uniform strain, such as in the vicinity of 

boundary, the weight function is usually rescaled: 

 
( )

( )
0

0

( , )
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dV s



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−
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s
, (2.96) 
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where 0( )r  is a monotonically decreasing nonnegative function 

of the distance r = −x s . The weight function is often taken as 

the Gauss distribution function: 

 
2

0 2
( ) exp

2

r
r

l


 
= − 

 

,  (2.97) 

or, according to Bažant and Planas (Bažant and Planas, 1998b), 

an acceptable function is: 
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( ) 1
r
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l




 
= − 
 

, (2.98) 

where l  is a parameter reflecting the internal length of the non-

local continuum, while 0  is a coefficient equal to 0 0.8178 = . 

A suitable nonlocal damage formulation that restores well-

posedness of the BVP is obtained if the damage variable is com-

puted from the nonlocal equivalent strain. The local equivalent 

value . . must be replaced by its weighted spatial average: 

 ( ) ( , ) ( ) (
V

dV  = x x s s s) . (2.99) 

It is worth noting that the nonlocal equivalent strain is used only 

to compute the damage variable, instead, to evaluate the effec-

tive stress tensor, the strain used in (2.74) is considered as local.  



 

2 
 

A diffuse cohesive model  

for failure analysis of concrete structures 

In this chapter a detailed description of the proposed cohe-

sive fracture model together with computational details is pre-

sented. In particular, the first part of chapter is devoted to the 

theoretical background of the adopted cohesive finite element 

formulation, and a calibration methodology, based on a numeri-

cal micromechanical approach, is proposed for alleviation of the 

mesh-induced compliance effect typical of the intrinsic cohesive 
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formulation. The second part of the chapter deal with the de-

scription of the proposed ad-hoc numerical model, composed by 

three different models, useful for investigate in a comprehensive 

manner all of the main failure mechanisms in the failure analysis 

of plain and reinforced concrete structures. 

2.1 Theoretical background of the diffuse cohesive finite 

element method 

In this Section, the theoretical formulation of the adopted co-

hesive finite element method is briefly presented, with reference 

to the planar elasticity case. The extension to the more general 

three-dimensional case is straightforward but is out of the scopes 

of the present thesis. The basic concept of this formulation is a 

variational statement written for a given solid after being discre-

tized in finite elements, whose kinematics is enriched by the 

presence of cohesive interface elements along its internal bound-

aries, as shown in Section 2.1.1. Since the resulting BVP is no 

longer defined at the continuum level, the associated solution 

turns to be dependent on the adopted finite element mesh. This 

mesh dependency issues, as already discussed in the Section 

1.2.1, cannot be avoided but can be only controlled and/or re-

duced. To this end, several ad-hoc calibration criteria for the co-

hesive parameters have been proposed in the literature, as 

shown in Section 2.1.2, but the achievement of the desired perfect 

mesh independency still remains an open problem. In this thesis, 

a novel calibration criterion for the initial stiffness parameters of 
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the cohesive elements is proposed, based on a rigorous numeri-

cal micromechanical approach, explained in Section 2.1.3. 

2.1.1 Variational formulation 

The theoretical formulation of the adopted cohesive finite el-

ement approach is described by considering two different steps. 

In the first one, the variational formulation for a continuum frac-

tured by a priori known crack is reported. In the second one, the 

variational formulation is extended to the case of unknown crack 

locations, involving a discretized computational domain. In the 

following, both theoretical formulations are presented assuming, 

without loss of generality, small displacements and negligible in-

ertial forces. The description of the first variational formulation, 

referred to a general two-dimensional fractured body (Figure 

2.1a), starts by considering a domain 2R   bounded by the 

 

Figure 2.1. Schematic representation of the BVP for a cracked contin-

uum body: (a) schematic representation of the body; (b) crack repre-

sentation and related notations 
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piecewise continuous boundary   and containing a single dis-

continuity line d . The boundary  , supposed to be Lipschitz 

continuous, is subdivided into two subsets D  and N , where 

Dirichlet and Neumann boundary conditions are imposed, re-

spectively, with the constraints D N  =  and D N  = . 

The prescribed displacement on D  and the surface forces on N  

are denoted by u  and t , respectively. Additionally, the body 

forces f  act on the entire volume  . The embedded single dis-

continuity line . d . represents an existing crack lying on a path 

known a priori, and it is the union of the two, positive and neg-

ative, crack faces d
+  and d

−  (see Figure 2.1b). The adopted cohe-

sive concept implies that the cohesive tractions coht+  and coh
−t , as-

sumed to act, respectively, on the positive and negative sides of 

the given discontinuity, are self-balanced, i.e. coh coh
− += −t t , in or-

der to guarantee the interface equilibrium. 

The material response of the bulk phase, assumed to be line-

arly elastic and isotropic, is described by the following constitu-

tive law: 

 =C  ,  (2.1) 

where s= u  is the symmetric part of the displacement gradi-

ent (in the linearized kinematics), and (4 )2 s =  +C I I I  de-

notes the elasticity tensor,   and   being the planar Lamè pa-

rameters, I  the second-order identity tensor, and (4 )sI  the sym-

metric fourth-order identity tensor. It follows that the only non-

linearity source is the constitutive behavior of the cohesive crack, 
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which can be written by a general mixed-mode traction-separa-

tion law (TSL) of the type ( )coh coh=t t u . The notation 

( ) ( )
+ −

 =  −   representing the difference between correspond-

ing values calculated along the crack faces. In the absence of di-

rect cross coupling between normal and tangential modes, the 

discontinuity, modeled as numerical interface, behave as a bed 

of nonlinear spring (see Figure 2.2a) acting on the normal and 

tangential components of the displacement jump, n = u n  and 

s = u s  (see Figure 2.2b), where n  and .s . are respectively the 

unit normal and the tangential to d
− . Such an interface is charac-

terized by the following constitutive law: 

 
( )

( ) ( ) ( )( )

coh

with     n sK K

=

=  + − 

t K u u

K u u n n u I n n
, (2.2) 

where ( ) 0nK u  and ( ) 0sK u  are the normal and tangen-

tial stiffnesses of the interface.  

 

Figure 2.2. Schematic representation of the mixed-mode cohesive in-

terface: (a) normal and tangential distributed nonlinear springs; (b) 

normal and tangential components of the displacement jump along the 

interface.   
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The quasi-static equilibrium problem of such cracked body 

can be formulated as a nonlinear BVP expressed in the following 

weak form: Find Uu  such that: 

 
( ) ( )

\

\

 :  d  d

 d  d      

d d

d N

s s

V

  

  

  +  

=  +    

 

 

C u v K u u v

f v t v v
, (2.3)  

the double-dot symbol denotes the scalar product between sec-

ond-order tensor, whereas, u  and v  are the (unknown) approx-

imated displacement field and the corresponding arbitrary vir-

tual displacement field, respectively, belonging to the following 

sets: 

 
( ) 
( ) 

1

1

such that \  and 

such that \  and 

D

D

d

d

U H

V H





=    =

=    = 0

u u u u

v v v
, (2.4) 

in which ( )1 \ dH    is the Sobolev space of degree one defined 

on the bulk phase, and the backslash symbol standing for the set 

difference. It is worth noting that the second contribution ap-

pearing on the left-hand side of the Equation (2.3) represents the 

virtual work of the cohesive traction over the discontinuity line 

d . 

The second step of the theoretical description of the adopted 

cohesive approach is the derivation of a variational formulation 

written for a spatially discretized domain. To this purpose, a pla-

nar tessellation of   is considered, 2h R  , which is not con-

strained by the presence of the existing discontinuity lines d , 
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but the exact crack path is approximated as a set of cohesive seg-

ments h
d , forced to lie along the internal boundaries of the given 

tessellation, as depicted in Figure 2.3a. If the real crack path is 

not known a priori, all of the internal mesh boundaries are re-

garded as discontinuity lines, and replaced by zero-thickness in-

terfaces h
d . Such interfaces must be inserted a priori between all 

the adjacent bulk elements of h  (see Figure 2.3b). The associ-

ated boundary value problem expressed in weak form reads as: 

Find Uh h
u  such that: 

 

Figure 2.3. Equilibrium problem for a 2D fractured discretized body: 

(a) cohesive interfaces approximating the exact crack path; (b) cohesive 

interfaces approximating all the potential crack paths.   
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( ) ( )

\

\

 :  d  d

 d  d      

h h h
d d

h h h
Nd

h h h h h
s s

h h h hV

  

  

  +  

=  +    

 

 

C u v K u u v

f v t v v
, (2.5) 

where the superscript h  refers to the discretized counterparts of 

the quantities appearing in Equation (2.3). Moreover, if a generic 

finite element h
e  with boundary h

e , h  and h
d  have the follow-

ing definitions: 

 
1 1

;      \
e en n

h h h h h
e d e

e e= =

 
 =   =   

 
, (2.6) 

where h h h
e e e =  , with the union operator that acts over all 

the en  finite elements of the given tessellation. In this case, h
d  , 

which is no longer coincident with the real cracks, represents the 

set of all potential lines for crack propagation. It is denoted as 
h h
c d    and characterized by a nonlinear behavior. On the other 

hand, the perfect, i.e. uncracked, interfaces simply behave as lin-

ear elastic springs, whose initial stiffness components 

( )0 h
n nK K= = 0u  and ( )0 h

s sK K= = 0u , do not have a precise 

physical meaning, but play the role of penalty parameters to en-

force the inter-element kinematic compatibility constraint. It is 

worth noting that the cohesive finite element formulation does 

not guarantee the spatial convergence to an arbitrary crack path 

by means of mesh refinements (Xu and Needleman, 1994). In-

deed, the total crack length turns to be systematically overesti-

mated regardless of the mesh size, since the (unknown) crack tra-

jectory is forced to be represented as a set of cohesive segments 
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coinciding with the internal mesh boundaries, whose orientation 

is restricted to a limited number of predefined angles. However, 

the use of isotropic tessellations leads to alleviate such mesh de-

pendencies, since no preferential path directions for crack initia-

tion and propagation are introduced into the approximate nu-

merical model. 

2.1.2 Investigation of mesh-induced compliance effects 

In the cohesive approach described in the previous only a 

small percentage of cohesive interfaces can be regarded as active 

when materials with quasi-brittle fracture behavior, where the 

damage is typically lumped around an existing macro-crack, are 

considered. In this case, the remaining inactive interfaces are use-

less and, due to the adoption of an intrinsic cohesive model, neg-

atively affect the mechanical response of the solid by seriously 

reducing its overall material stiffness. Thus, the insertion along 

all the internal mesh boundaries of interface elements with finite 

initial stiffness, inevitably leads to an artificial stiffness reduction 

also at the elastic range. In the literature, some authors, by using 

an inter-element fracture approach have observed mesh depend-

ency issues, in terms of lack of spatial convergence for arbitrary 

crack paths or patterns, when a structured tessellation was used 

to discretize the computational domain (Papoulia et al., 2006). 

Such a mesh dependency of the cohesive finite element method 

is experienced even in the elastic stage and due to the artificial 

compliance increase associated with the insertion of springs with 
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finite stiffness between all the bulk finite elements. In several 

works, suitable calibrations of the initial cohesive stiffness pa-

rameters are proposed to alleviate the mesh dependency consid-

ering the average mesh size (Klein et al., 2001; Espinosa and 

Zavattieri, 2003; Tomar et al., 2004; de Borst et al., 2006; Turon et 

al., 2007; Blal et al., 2012).  

As already discussed in (Klein et al., 2001), the  longitudinal 

stiffness reduction induced by the presence of diffuse cohesive 

interfaces can be qualitatively analyzed by using a simple rectan-

gular specimen length L , subjected to a uniaxial tensile stress   

, as depicted in Figure 2.4. This specimen is discretized into N  

quadrilateral elements, having the same size equal to 

mesh /L L N=  and linearly elastic behavior, and N  zero-thickness 

interfaces elements. The total elongations of the bulk elements 

and the cohesive interfaces are bL L E =  and 
0

c n
L N K = , re-

spectively, where E  and 0
nK  are the Young’s modulus of the bulk 

 

Figure 2.4. Mesh-induced artificial compliance in a 1D example: over-

all elastic behavior in the normal direction. 
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material and the initial stiffness of the cohesive interfaces, re-

spectively. It follows that the total uniaxial strain   of the plate 

can be computed as ( ) ( )0
b c nL L L L E N K L  + = + , leading 

to the following expression for the overall (or apparent) elastic 

modulus of the plate: 

 

0

1

1

n

E
N

E LK




= =

+

. (2.7) 

Thus, the material stiffness reduction, due to the presence of 

undamaged cohesive interfaces, is equal to the ratio between the 

overall and bulk longitudinal moduli, written as follows: 

 

0 0

1 1

1
1

n mesh n

E

NE EE

E LK L K

= =

+ +

. (2.8) 

By analyzing Equation (2.8), it can be observed that the stiff-

ness reduction can be decreased either by increasing the mesh 

size meshL , or increasing the initial normal cohesive stiffness 0
nK . 

However, both 0
nK  and meshL  must be chosen such that the di-

mensionless quantity appearing on the right-hand side of Equa-

tion (2.8) is not excessively high, to avoid spurious traction oscil-

lations, due to the ill-conditioning of the resulting numerical 

problem. Such oscillations could eventually lead to an incorrect 

crack pattern, as already reported in (de Borst et al., 2006). 
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The resulting induced additional compliance is proportional 

to the density of cohesive interfaces, i.e. the total length of cohe-

sive edges per unit area in the 2D case, which in turn depends on 

the adopted finite element size meshL  for a given computational 

mesh. It follows that, such an increase in the overall compliance 

causes a divergence of the solution as the mesh is refined due to 

the varying overall elastic properties. This effect should be made 

negligible by controlling the initial normal stiffness via a suitably 

calibration of its value as a function of the adopted mesh size. To 

this end, rather than fixing directly the value for 0
nK , it is prefer-

able to calibrate the dimensionless normal stiffness 
0

meshnK L E =  , which incorporates the mesh size effects, in terms 

of the imposed reduction for the longitudinal modulus 

1ER E E=  . By using Equation (2.8), it follows: 

 
1

E

E

R

R
 =

−
. (2.9) 

Once the parameter   is computed by using Equation (2.9) for a 

chosen ER , the initial normal stiffness 0
nK  of the cohesive inter-

face can be found as a function of the adopted mesh size meshL . 
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Following the above described procedure, the artificial re-

duction in the overall tangential stiffness, considering the previ-

ously introduced rectangular specimen subjected to a pure shear 

stress   (see Figure 2.5), can be easily expressed by the ratio be-

tween the overall and bulk tangential moduli as follows: 

 

mesh mesh
0 0 0 0

1 1 1 1

1
1 1 1 1

s s n n

G

NG G G GG

ELK L K L K K 

= = = =

+ + + +

, (2.10) 

where 0 0
s nK K =  is a new dimensionless parameter, i.e. the ratio 

between the tangential and normal initial stiffness coefficients of 

the cohesive interface. By imposing a prescribed reduction for 

the overall tangential modulus 1GR G G=  , which in general 

can be different from ER , we can obtain such parameter from 

Equation (2.10), which in general can be different from ER : 

 
( )

1

1-2 1
G

G

R

R


 
=

+
, (2.11) 

 

Figure 2.5. Mesh-induced artificial compliance in a 1D example: over-

all elastic behavior in the tangential direction.   
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where   is the Poisson’s ratio of the bulk phase. It is useful to high-

light that, prescribing the same reduction for both longitudinal 

and tangential overall moduli, i.e. imposing the restriction 

E GR R= , the following result for the parameter   is obtained: 

 
( )

1

2 1

G

E



= =

+
, (2.12) 

implying that the ratio 0 0
s nK K =  is uniquely depends on the 

Poisson’s ratio of the bulk phase. Additionally, it is worth noting 

that the Equations (2.8) and (2.10) can be regarded as inverse 

rules of mixtures for the overall moduli E and G , respectively, 

thus providing lower-bounds for these moduli, according to the 

well-known Reuss approximation applied to a two-phase lami-

nated composite made of bulk and cohesive layers. Obviously, 

Equations (2.9) and (2.12) can be rigorously applied for calibrat-

ing the initial stiffness of the cohesive interfaces only in the un-

realistic case in which they are aligned.  

In the literature, different semi-empirical lower bounds for 

the cohesive stiffness ratio  have been proposed in the literature 

by several authors in order to obtain “invisible” cohesive inter-

faces in more general situations. Values of  larger than 50 are 

recommended by (Turon et al., 2007) to ensure an apparent loss 

of stiffness less than 2% in numerical analyses of delamination in 

composite materials. Furthermore, in (Espinosa and Zavattieri, 

2003) is observed that, the speed of the elastic wave propagation 
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in isotropic materials is not affected by the presence of an inter-

nal cohesive interface when the   parameter is kept 10  . In-

stead, a rigorous calibration criterion, based on energy equiva-

lence condition between a discrete system made of bulk and in-

terface elements arranged in a cross-triangle quadrilateral mesh 

and its equivalent homogeneous system, under three different 

(uniaxial, biaxial and pure shear) uniform loading conditions, is 

firstly introduced by (Tomar et al., 2004). Considering plane 

stress conditions and assuming 0 0 1s nK K = = , the following cri-

terion for   values is obtained:  

 ( )1 2
1

E

E

R

R
 = +

−
, (2.13) 

which is similar to the Equation (2.9) but predicts greater values 

for the initial elastic stiffness at fixed ER , due to the different spa-

tial distribution of cohesive interfaces. 

A generalization of the previous criterion (2.13) to the more gen-

eral 3D case with any type of external loading conditions and 

mesh topologies, is proposed in (Blal et al., 2012). Such a criterion 

is based on an analytical micromechanical approach which uses 

a Hashin-Shtrikman estimate to compute the overall elastic stiff-

ness of a solid with embedded cohesive interfaces. The authors, 

consider the cohesive interfaces as a collection of uniformly dis-

tributed penny-shaped inclusion embedded in a continuous ma-

trix and the overall properties of the resulting composite material 

are obtained as a closed-form function of bulk properties and 
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mesh parameters. The two unknown dimensionless stiffness pa-

rameters   and   of this composite with isotropic overall consti-

tutive behavior can be evaluated, enforcing the same reduction 

for both the overall moduli E  and G , by means of the following 

relations: 

 
( )

1 2
,      2

1 1 33 1 2
E

E

R

R

 
 



−
= =

− +−
, (2.14) 

such a restriction implies no reduction of the overall Poisson’s 

ratio   and guarantees the positive definiteness of the overall 

strain energy, also for hydrostatic loading conditions, as already 

discussed by some authors (Li et al., 2004). 

The dimensionless parameter   appearing in the first of Equa-

tions (2.14) depends on the topology of the given mesh. These 

relations have been also applied to the case of planar meshes 

(Blal et al., 2012). In particular, for cross-triangle quadrilateral 

mesh, with size meshL  coinciding with the side length of the 

square cell,   has been found to be equal to ( )2 1 2+ , while for 

isotropic Delaunay tessellation, it has been calculated by the fol-

lowing formula: 

 
4

32 2

3 3



= , (2.15) 

obtaining a value of about 3.6485  . The Equation (2.15) is ob-

tained considering the meshL  as the edge length of an equivalent 

regular tessellation made of equilateral triangles (Blal et al., 

2012).  
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Unfortunately, such an approach is only able to estimates the 

effective properties, and the adopted simplifying hypotheses are 

usually associated with unacceptable accuracy levels for real sit-

uations of practical interest. Therefore, a novel numerical ho-

mogenization scheme, described in Section 2.1.3, is proposed in 

the present thesis, with the aim of increase the accuracy of the 

prediction obtained from Equation (2.14). 

2.1.3 A numerical micromechanical approach for the 

alleviation of mesh-induced compliance 

In order to enhancing the predictions of the existing semi-

empirical and analytical methods discussed in Section 2.1.2, here 

a novel numerical micromechanical approach for the calibration 

of the initial (elastic) cohesive stiffness parameters is presented. 

Inspired by the works of some authors (Blal et al., 2012), the pro-

posed approach considers the material as a composite consisting 

of two phases, i.e. the bulk material and the cohesive interfaces 

(embedded between the bulk elements), with either random or 

regular microstructure, depending on the topology of the em-

ployed finite element mesh. As a consequence, the overall elastic 

properties of such an assembly can be obtained by applying a 

rigorous micromechanical approach, based on the concept of 

representative volume element (RVE). Without loss of general-

ity, the proposed homogenization framework will be presented 

in the case of planar elasticity. 
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In the presence of an unstructured mesh the RVE is chosen 

as a volume containing a very large (mathematically infinite) set 

of bulk elements and embedded inter-element cohesive inter-

faces equipped with statistically homogeneous and ergodic 

properties (see Figure 2.6a), whereas if a periodically structured 

mesh, a repeating cell (RC) can be adopted as a clearly defined 

RVE (see Figure 2.6b). In the former case, the condition 

mesh RVEL L  must hold, whereas in the latter case, the RVE size 

meshL  turns to be coincident with the mesh size. 

According to the well-established principle of scale separa-

tion, being the main assumption of classical homogenization the-

ory, the overall constitutive response of such a heterogeneous 

microstructure is based on an equilibrium state which neglects 

 

Figure 2.6. Representative volume element (RVE) of a cohesive finite 

element assembly: (a) RVE with statistically homogeneous and ergodic 

properties for unstructured meshes; (b) repeating cell (RC) for period-

ically structured meshes. 
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body forces, so that the microscopic stress field   is divergence-

free in the bulk. 

According to the average field theory, the macroscopic stress and 

strain fields, denoted as   and   respectively, can be expressed 

for a given RVE, denoted by  , in terms of microscopic tractions 

=t n  and displacements u  at the RVE boundary   as: 

 
1 1

 ,       sd d
 

=   =  
  t x u n  , (2.16) 

where n  is the outer normal at x ,   and s  are the tensor 

product and its symmetric part, respectively, and   denotes the 

Lebesgue measure, defining the conventional area in the two-di-

mensional Euclidean space 2R . By applying the divergence the-

orem to Equations (2.16), the alternative following expressions 

can be derived for the macroscopic stress and strain fields: 

       ( )\ \

1 1
 ,        

d d d
sd d d

    
=  = +  
    u n    . (2.17) 

From the last of Equations (2.17), it follows that the average 

equivalence for the macroscopic strain field is valid only in the 

absence of discontinuities. The microscopic displacement field 

can be additively split in a linear part x , representing a homo-

geneous deformation, coinciding with the prescribed macro-

strain   in the adopted strain-driven homogenization scheme, 

and of a correction part ( )w x  associated with a nonhomogene-

ous deformation, also referred to as fluctuation field. The integral 
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kinematic constraint represented by the last of Equations (2.16) 

can be reformulated in terms of this fluctuation field: 

  s d


  = 0w n . (2.18)  

As is well known, Equation (2.18) can be satisfied by three alter-

native boundary conditions (BCs) on  , i.e. linear displacement 

(LD), periodic fluctuation (PF), and uniform traction (UT) BCs. 

In the former case, the boundary fluctuation field is assumed 

zero in a pointwise sense, whereas in the latter case, the bound-

ary tractions are expressed in terms of a uniform (i.e. constant) 

macro-stress tensor  . As the constitutive responses of both 

bulk and interface components are assumed linearly hyperelastic 

with convex microscopic strain energy densities, denoted respec-

tively by bW  (in 2D, energy per unit area) for the bulk and cW  (in 

2D, energy per unit length) for the cohesive interfaces, the ho-

mogenization condition can be obtained by solving the following 

minimization problem: 

     ( )
( )

( )( ) ( )( )( )\

1
inf

d d
b c

A
W W d W d

  
= + 

  w
w u w


  , (2.19) 

where ( )W   is the macro-stress potential, assumed to be de-

pending only on  , and ( )A   denotes the set of admissible fluc-

tuation fields satisfying the above considered three alternative 

BCs. Hence, the macro-stress   and the macroscopic moduli ten-

sor C  are defined respectively as the first and second derivatives 

of ( )W   with respect to the macro-strain. Since the minimiza-

tion problem (2.19) is linear, it follows that: 
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where C  is the microscopic moduli tensor of the bulk, and ij
u  is 

the solution of the problem (2.19) for a unit prescribed macro-

strain ij
i s j= e e , ie  being the unit vectors parallel to the coor-

dinate axes ix . In the special case of uniform traction (UT) 

boundary conditions, the macro-stress tensor   is unknown a 

priori, being understood to be computed for a prescribed macro-

strain  , and therefore the integral condition (2.18) can be ex-

pressed in a generalized sense by introducing the following 

weak form: 

 ( ):  0s d


  = w n , (2.21) 

where   is a (constant) second-order tensorial Lagrange multi-

plier field having the physical meaning of the unknown macro-

stress tensor   (see (Bruno et al., 2008) for additional details). 

The generalized constraint (2.21) can be incorporated in a new 

formulation of the minimization problem (2.19), taking the form 

of a saddle point problem: 
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, (2.22) 
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where Sym  is the set of all symmetric tensors. It should be noted 

that the variational formulation (2.22) gives the solution for u  

except for rigid body motions, which can be suppressed by in-

troducing suitable additional constraints. Considering an RVE 

with of convex elastic constituents, the following general ine-

qualities involving the homogenized moduli tensor C  hold: 

 (UT) (G) (LD): : : C C C      , (2.23)  

for the same prescribed macrostrain  , meaning that the homog-

enized moduli tensor (G)
C  obtained for general boundary condi-

tions is always comprised between the lower and upper limit 

tensors, corresponding to uniform traction (UT) and linear dis-

placement (LD) boundary conditions, respectively. For elastic 

stiffness calibration purposes, we are interested in the lower 

bound  (UT)
C , being associated with the greatest predicted value 

of moduli reduction among all of the alternative boundary con-

ditions. In this thesis, the numerically derived homogenized 

moduli will refer to this type of BCs. In a two-dimensional plane 

stress or strain setting, the linearly elastic constitutive law can be 

expressed in the following matrix form: 

 

11 1111 1122 1112 11

22 2211 2222 2212 22

12 1211 1222 1212 122

C C C

C C C

C C C

 

 

 

    
    

=    
    
    

. (2.24) 

Due to the assumed major symmetry of the effective elastic ten-

sor C , to solve for all the six independent components, three 
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BVPs must be specified, by considering two uniaxial and a shear 

macro-strain paths in the 1 2x x  plane.  

Once the homogenized moduli tensor C  is derived, repre-

senting the overall elastic properties of the discretized contin-

uum with embedded interfaces prior to damage onset, the artifi-

cial compliance effect induced by the presence of intrinsic cohe-

sive elements along all the mesh boundaries can be investigated 

by using a suitable compliance index, defined as follows: 

 ci
−

=
C C

C
, (2.25) 

where C  is the elastic tensor of the bulk phase, and the symbol 

 denoting the conventional Euclidean norm of the enclosed 

tensor. Such a compliance index represents a measure of the dis-

tance between the homogenized moduli tensor and the elasticity 

tensor of the bulk phase, and therefore the condition 1ci  rep-

resents a necessary requirement for the cohesive/bulk aggregate 

to approximate the original continuum. It is useful to highlight 

that, the 2D homogenized moduli tensor C  is anisotropic in gen-

eral, and the anisotropy level is expected to be dependent on the 

topology of the adopted computational tessellation as well as on 

the adopted values for the initial cohesive stiffness parameters 
0
nK   and 0

sK , or their dimensionless counterparts   and  , al-

ready defined in Section 2.1.2. In order to measure the anisotropy 

induced by the presence of embedded cohesive interfaces, the 

following anisotropy index is introduced: 
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iso

isoai
−

=
C C

C
, (2.26) 

iso
C  being the closest isotropic moduli tensor to the numerically 

computed homogenized moduli tensor C . In order to obtain the 

invisibility of embedded cohesive interfaces, is also required that 

the condition 1ai  remains valid for the considered values of 
0
nK  and 0

sK . Both the requirements for the indexes (2.25) and 

(2.26) will be verified a posteriori in the following numerical 

computations, illustrated in Section 3.1.2. 

The isotropic moduli tensor iso
C can be determined by solv-

ing a particular version of the more general problem of finding 

the closest approximation of an elasticity tensor with arbitrary 

material symmetry to an elasticity tensor with given symmetry, 

which has been largely investigated. Various metrics have been 

proposed in the literature to determine the distance between two 

arbitrary elasticity tensors, as reported in (Bruno et al., 2008), but 

the most widely used is the Euclidean metric, denoted as 

( )1 2 1 2,Ed = −C C C C . Accordingly, a good candidate for such an 

equivalent isotropic elasticity tensor is the projection of the ho-

mogenized moduli tensor C  onto the class isoC  of isotropic elas-

ticity tensors, computed by using the distance Ed , such that: 

 ( )
* iso

*Arg min ,iso
E

C

d


=
C

C C C . (2.27) 
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Similarly, the closest isotropic homogenized 2D moduli, i.e. the 

planar bulk modulus 2DK  and shear modulus 2DG  can be ob-

tained by the following double minimization problem: 

 ( ) ( )( )
* *
2D 2D

* * *
2D 2D 2D 2D

,

, Arg min , ,E

K

K d K


 = C C , (2.28) 

with respect to the unknowns *
2DK  and *

2DG , leading to the fol-

lowing expressions: 

 
( ) ( )

( ) ( )

iso iso
2D 1111 1122 1111 2222 1122

iso iso
2D 1111 1122 1111 2222 1122 1212

1 1
2

2 4
1 1

2 4
2 8

K C C C C C

G C C C C C C

= + = + +

= − = + − +

, (2.29) 

which shows as such isotropized moduli do not depend on the 

moduli 1112C  and 2212C , and represent the 2D counterpart of the 

relations for 3D elasticity reported in (Bruno et al., 2008). 

Thus, the planar bulk modulus 2DK  can be expressed as a func-

tion of the homogenized Young’s modulus E  and Poisson’s ratio  

 , in this way: 

 
2

2D

      plane stress

'
   plane strain

' 1    with     
2(1 ')       plane stress

'
   plane strain

1

E

E E

E
K 

 

 






= 


−
=

− 


= 


−

.  (2.30) 

Instead, the planar shear modulus 2DG  is equal to the typical 

shear modulus G , considering either in plane-strain or plane-

stress elasticity: 
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 2D
2(1 )

E
G G


= =

+
. (2.31) 

An angular averaging technique is employed to calculate the 

isotropized overall moduli tensor iso
ijklC , leading to perfectly 

equivalent results as the minimization problem (2.27). Consider-

ing the case of planar elasticity, the homogenized (anisotropic) 

moduli tensor ijklC  can be analytically averaged over the single 

polar angle  , by means of a proper orthogonal transformation   

with the following matrix representation: 

 
cos sin

sin cos

 

 

 
  =    − 
Q , (2.32) 

with reference to the 2D setting, the angularly averaged overall 

moduli tensor C  is then: 

( )
2

0

1
     , , , 1,2

2
ijkl mnpq mi nj pk ql

mnpq

C C Q Q Q Q d m n p q






= =  . (2.33) 

It can be easily shown that C  turns to be isotropic and coin-

cides with the closest isotropic homogenized moduli tensor iso
C  

, whose matrix representation in Voigt notation is: 

 

( )

iso iso
1111 1122

iso iso iso
1122 1111

iso iso1
1111 11222

0

0

0 0

C C

C C

C C

 
 

  =   
 

−  

C .  (2.34) 

Assuming 1ai , i.e. isotropy condition of the homogenized me-

dium, the artificial compliance associated with the embedded co-

hesive interfaces can be measured by considering iso
C  rather 
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than C . Therefore, instead of the compliance index (2.25), the 

overall moduli reductions ER E E=  and R  =  have been 

used to calibrate the stiffness parameters of the embedded cohe-

sive interfaces. Chosen the reduction values of the overall mod-

uli, the resulting system of nonlinear equations to be solved in 

the two unknowns  and   takes the following form: 

 
( )
( )

,

,

E ER R

R R 

 

 

 =


=

. (2.35) 

Noteworthy results concerning the calibration of the cohesive 

stiffness parameters with reference to the random mesh configu-

rations will be reported in Section 3.1.1. 

2.2 Description of the proposed numerical fracture model for 

failure analysis of internally and/or externally reinforced 

concrete structures  

Based on the cohesive finite element formulation described 

in Section 2.1, a novel numerical failure model for concrete struc-

tures has been developed, with the aim of analyzing in a unified 

manner all the nonlinear failures due to both diffuse and local-

ized damage phenomena. Such a model, is able to predict the 

commonly experienced damage mechanisms (Figure 2.7) in con-

crete members reinforced with longitudinally and transversely 

internal steel bars (with reference to the usual reinforced con-

crete (RC) beams), and/or external strengthening system (with 
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reference to the latest FRP-plate RC beams). To this end, the pro-

posed model incorporates the three following different models: 

(i) a diffuse interface model (DIM) for modeling multiple crack 

initiation and propagation in concrete; (ii) an embedded truss 

model (ETM) equipped with a bond-slip relation, able to simu-

late the behavior of steel rebars as well as their interaction with 

the neighboring concrete layer; and (iii) a single interface model 

(SIM) for modeling potential crack initiation and propagation 

along all the existing material interfaces, e.g. adhesive/concrete 

(A/C) and adhesive/plate (A/P) interfaces. These three models 

have been implemented within COMSOL Multiphysics®, cho-

sen for all the numerical computations by virtue of its advanced 

scripting capabilities. In particular, the implementation of the 

diffuse interface model has been performed by taking advantage 

of the integrated Physics Builder functionality, which offers a 

user-friendly graphical interface to extend the built-in finite ele-

ment library (Comsol AB, 2018). 

 

Figure 2.7. Principal failure mechanisms in internally and/or exter-

nally reinforced concrete structures.   
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2.2.1 Diffuse interface model for concrete cracking 

The diffuse interface model (DIM) allows multiple crack ini-

tiation and propagation in concrete to be accounted for, based on 

the cohesive finite element formulation described in Section 2.1. 

The main advantage of this approach is that no mesh updates are 

required, unlike in many classical discrete crack approaches, the 

diffuse damage phenomena being modeled as potential multiple 

cracking along all the internal mesh boundaries. As a matter of 

fact, if applied to the strengthened reinforced concrete (RC) 

structures, remeshing is inevitably tedious and time-consuming, 

due to the presence of a large number of embedded material dis-

continuities. The potential crack patterns which can be easily 

predicted by the present diffuse interface model are depicted in 

 

Figure 2.8. Potential crack patterns predicted by the diffuse interface 

mod-el: (a) flexural cracks; (b) shear cracks; (c) compressive crushing.   
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Figure 2.8. A fundamental preprocessing operation for the 

adopted inter-element fracture approach is the construction of 

the cohesive/volumetric finite element mesh. Such an operation, 

performed in an automatic manner by exploiting the advanced 

scripting capabilities of the adopted finite element environment, 

consists of three steps: 

1. Generation of the initial 2D bulk mesh: three-node triangu-

lar elements are arranged according to an unstructured iso-

tropic, i.e. Delaunay, spatial tessellation to alleviate the 

 

Figure 2.9. Construction of the cohesive/volumetric finite element 

mesh: (a) generation of a standard isotropic unstructured (i.e. Delau-

nay) triangulation; (b) separation of the bulk finite elements; (c) inser-

tion of the cohesive interface elements; (d) detail of zero-thickness in-

terface element between two bulk elements.   
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mesh-induced effects (see Figure 2.9). Such a mesh is auto-

matically created, by imposing the maximum element size 

within the region where cohesive elements must be inserted. 

2. Separation of the bulk finite elements: duplication of every 

common node shared by each pair of bulk elements (see Fi-

gure 2.9b). It follows that a separated node is created at the 

same location for every pair of adjacent elements. Subse-

quently, the nodal connectivity is updated by using these du-

plicated nodes, resulting in a new decoupled mesh configu-

ration, in which each element is no longer connected with its 

neighboring elements. This step is automatically performed 

by prescribing an explicit slit condition on the displacement 

field along the interior mesh boundaries. 

3. Insertion of the cohesive interface elements (Figure 2.9c). 

This step consists in the automatic generation of four-node 

zero-thickness elements between the opposite faces of all the 

neighboring elements, as depicted, in more detail, in Figure 

2.9d, allowing them to be interconnected. 

The mechanical behavior of the embedded cohesive interfaces is 

governed by an uncoupled mixed-mode traction-separation law 

(TSL), written in the matrix form as follows: 

 ( )
0

0

0
1

0

n nn

s ss

t K
d

t K





    
= −    

    
, (2.36) 

the subscripts n  and s  referring to the normal and tangential di-

rections, respectively. It is worth noting that the off-diagonal 
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stiffness terms are zero in the assumed constitutive law, meaning 

that the dilatancy effects are totally neglected in the present the-

sis. The following (effective) mixed-mode separation m  is de-

fined to account for mixed-mode initiation and evolution: 

 
2 2

m n s  = + , (2.37) 

where the symbol  denotes the Macaulay operator, enforcing 

the condition that the effective separation is insensitive to a com-

pressive displacement jump. The behavior of cohesive interfaces 

is governed by the following linear-exponential isotropic dam-

age evolution law, investigated in (Park et al., 2016), involving a 

single scalar damage variable d : 
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, 

  (2.38) 

where 0
m  and f

m  denote the effective displacement jumps at 

damage initiation and complete decohesion, respectively, and 
max
m  is a state variable defined as the maximum effective dis-

placement jump over the entire deformation history. The non-

dimensional parameter  , ranging in the open interval ( )0, , 
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directly influences the rate of damage evolution. For 0 →  a lin-

ear softening is attained, whereas for  →  a fully exponential 

softening is found. This parameter is calibrated for the specific 

material under examination (set as 5 for concrete in the present 

thesis). 

The mixed-mode crack initiation is governed by the following 

stress-based quadratic interaction criterion: 

 

2 2

max max

1
n s

t t

 

   
+ =       

, (2.39) 

where max  and max  denote the normal and tangential critical 

interface stresses. According to this criterion, a purely compres-

sive stress state does not induce any crack initiation, leading to 

the following definition for the effective separation 0
m , valid 

only for 0n  , after which the material stiffness of the interface 

initiates to decrease due to the appearance of damage: 

 

( ) ( )

2
0 0 0

2 2
0 0

1
m n s

s n


  

 

+
=

+
, (2.40) 

where 0 0
maxn nK = , 0 0

maxs sK = , and s n  =  is the ratio be-

tween the tangential and normal displacement jumps. 

The mixed-mode crack propagation is governed by the fol-

lowing linear power law criterion (also valid only for 0n  ), in-

volving the two in-plane modal components IG  and IIG  of the 

energy release rate: 
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 I II

I II

1
c c

G G

G G
+ = , (2.41) 

IcG  and IIcG  being the mode-I and mode-II fracture energies, re-

spectively. The energy release rates corresponding to total deco-

hesion are (see [63] for additional details about their derivation): 
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 (2.42) 

By inserting Equation (2.42) into Equation (2.41), and solving the 

equation with respect to f
m , the mixed-mode displacement jump 

corresponding to total decohesion is obtained as: 

( )
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( ) ( )
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  = + − − 
  + − −    

  (2.43) 

When 0n  , a pure mode-II fracture occurs (i.e. I 0G = ), and the 

related crack advancement criterion reads as II IIcG G= . The 

mode-II energy release rate corresponding to total decohesion is: 

 ( )
( )
( )
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0 0 0
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2 1
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s f
s s s s
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e
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
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. (2.44) 

Imposing the expression (2.44) equal to IIcG , and solving with 

respect to f
s , the mode-II displacement jump corresponding to 

total decohesion is found as: 
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. (2.45) 

The present interface formulation cannot predict damage under 

pure compression and does not incorporate any friction model. 

The proposed cohesive law is accompanied by an additional uni-

lateral contact constraint enforced by a penalty approach, con-

sisting in re-applying the initial normal stiffness 0
nK  when inter-

penetration is detected. In summary, such a mixed-mode trac-

tion-separation law, whose graphic representation is illustrated 

in Figure 2.10, depends on seven parameters, i.e. 0
nK  and 0

sK , 

max  and max , IcG  and IIcG , and  . 

 

Figure 2.10. Schematic representation of the linear-exponential mixed-

mode cohesive traction-separation law.   
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2.2.2 Embedded truss model for steel/concrete interaction 

In order to obtain a correct prediction of the damage mecha-

nisms in the reinforced concrete analysis, the effect of the inter-

action between the reinforcing bars and the surrounding crack-

ing concrete should be adequately captured by the adopted mod-

eling approach. Such an effect, commonly referred to as tension 

stiffening effect, is related to the capacity of undamaged concrete 

to carry tensile forces between adjacent primary cracks, resulting 

in a higher overall stiffness compared to that associated with the 

only steel bars. Tension stiffening is usually included in numeri-

cal models by modifying the tensile constitutive behavior of the 

concrete phase. In reality, tension stiffening is related to the bond 

stress transferred by the steel/concrete interface between the pri-

mary cracks. Additionally, the related crack patterns can be cor-

rectly captured (in both 2D and 3D cases) only if the slip between 

the bars and the surrounding concrete is taken into account. Such 

a slip behavior plays a notable role in determining the structural 

response of reinforced elements in the cracked stage, also influ-

encing the distribution of bond stresses along the reinforcement 

bars, and ultimately, the extent of crack widths and deflections. 

In the adopted numerical model for damaging RC structures, 

the reinforcing bars are modeled as embedded truss model 

(ETM) elements connected to concrete by means of specific inter-

faces equipped with a bond stress-slip relation, in order to cap-

ture the interaction effect of the re-bars and concrete. 
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The adopted embedded truss model allows the steel/concrete 

bond behavior to be realistically simulated with significantly 

lower effort than more sophisticated models, based on a detailed 

representation of the geometry of both rebars and surrounding 

concrete (see Figure 2.11a). Such a detailed representation should 

include the ribs of the reinforcement and the concrete lugs, inev-

itably leading to a high computational cost and to modelling dif-

ficulties, associated with the need of very refined computational 

meshes. The bond between concrete and steel reinforcement is 

here taken into account by using a simplified model, based on a 

discrete representation of the bond layer (see Figure 2.11b). The 

link between rebar and concrete is defined by introducing dedi-

 

Figure 2.11. Schematic representation of the steel/concrete interaction: 

(a) detailed representation of the steel/concrete bond zone; (b) bond-

layer model.   
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cated zero-thickness nonlinear interface elements, acting as non-

linear tangential spring between truss elements, referred to the 

reinforcement, and bulk elements for the concrete, defining the 

bond strength and stiffness as functions of the relative tangential 

displacement (slip), s , between the two different materials. 

The bond behavior for different geometries and boundary 

conditions is realistically simulated by this approach by a reliable 

and accurate constitutive model for the surrounding concrete. As 

the intrinsic cohesive approach, this bond model is of phenome-

nological type, since it cannot predict the mechanical behavior of 

the given bimaterial system starting from its adhesion and fric-

tion properties, and a calibration based on the rebar type as well 

as on the mechanical properties of the surrounding concrete is 

necessary. 

The bond-slip relation adopted in the present thesis is the 

popular relation valid for ribbed bars and good bond conditions, 

contained in the CEB-FIP Model Code (Fib, 2013), shown in Fi-

gure 2.12. Up to the slip 1 1 mms = , at which the peak bond 

strength max  is achieved, the tangential stress is defined by the 

relation ( )
0.4

max 1s s = , where max 2.5 cf =  with cf  compres-

sive strength in MPa. After exceeding the slip 1s , the response 

curve remains constant before decreasing linearly from slip 

2 2 mms =  to slip 3s  (coinciding with the clear distance between 
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ribs), as the concrete corbels between the ribs are sheared off, af-

ter which a constant residual frictional strength res max0.4 =  is 

reached. The adopted local bond-slip behavior is able to capture 

the experimental evidence that the load transfer between rein-

forcement and concrete is mainly accomplished through bearing 

of the reinforcing bar lugs on the surrounding concrete at small 

slip values and through friction at large slip values. 

The steel/concrete connection perpendicularly to the rebar 

direction is assumed to be perfect, meaning that only the dis-

placement jump in the bar direction (i.e. the slip) is considered as 

an active degree of freedom of the zero-thickness steel/concrete 

interface element. With reference to a two-dimensional model re-

duction, ad-hoc two-node truss elements, in which all the distrib-

uted steel rebars at a given depth are concentrated, are embed-

ded between planar three-node bulk elements such that the 

nodes of concrete and steel meshes are superposed to each other. 

Moreover, the embedded truss elements are equipped with an 

 

Figure 2.12. Bond-slip relation (taken from the CEB-FIP Model Code) 

for bond behavior at the concrete/steel interface. 
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elastoplastic model with linear hardening to describe the yield-

ing behavior of the steel reinforcement, using a tangent plastic 

modulus one hundred times smaller than the elastic one. 

A fundamental feature of the proposed embedded truss 

model is that it allows any crack to propagate across the rein-

forcement steel layer, as shown in Figure 2.13. It follows that, for 

any truss node, two different slips can be defined for the 

steel/concrete element pairs across a potential crack path passing 

through that node. Accordingly, the related crack width can be 

computed as the sum of such slips (taken as absolute values), de-

noted as s−  and s+  , as illustrated in Figure 2.13. 

2.2.3 Single interface model for debonding phenomena  

In the case of reinforced concrete structures externally 

strengthened with FRP systems, is very important take into ac-

count the possible damage phenomena which can occur along 

 

Figure 2.13. Representation of crack propagation across the reinforcing 

bars.   
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the material interfaces, i.e. between adhesive and concrete and/or 

between adhesive and FRP plate. 

To this end, in the proposed numerical model such material 

interfaces are not perfect but are susceptible to be damaged un-

der general loading conditions. Additional mixed-mode cohe-

sive elements are inserted in those locations, able to simulate 

multiple interfacial debonding initiation and propagation. Cohe-

sive fracture models are chosen as the most straightforward for 

this type of problems, where predefined weak physical interfaces 

exist. Coherently with the adopted intrinsic approach, the cohe-

sive interface elements, placed along the prescribed crack paths, 

are kept active from the beginning of the numerical simulation. 

The formulation of the adopted cohesive approach has been al-

ready described in the Section 2.1, considering in this case an a 

priori known crack path. The proposed single interface model 

(SIM) is able to represent both adhesive/concrete (AC) and adhe-

sive/plate (A/P) interfacial debonding, as depicted in Figure 2.14.

 

Figure 2.14. Potential crack patterns predicted by the single interface 

model (cracks are highlighted in red): (a) adhesive/concrete (A/C) in-

terfacial debonding; (b) adhesive/plate (A/P) interfacial debonding.   





 

3 
 

Numerical calibration and validation of the 

diffuse interface model in plain concrete 

In this chapter both the calibration and validation of the diffuse 

interface model, described in Section 2.2, are presented, involv-

ing plain concrete specimens. In particular, the numerical cali-

bration of the elastic stiffness parameters of the interface ele-

ments, using the micromechanical approach described in Section 

2.1.3, is reported in Section 3.1. Thereafter, the proposed fracture 

model has been validated under mode I and mixed-mode load-

ing conditions, whose results are illustrated in Section 3.2 and 3.3 
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respectively, also providing some comparisons with those ob-

tained by numerical and experimental tests.      

3.1 Numerical calibration of the diffuse interface model 

In this Section, the elastic stiffness parameters for obtaining 

invisible cohesive interfaces are numerically determined, using 

the micromechanical approach described in Section 2.1.3. In de-

tail, two charts for the calibration of both the dimensionless co-

hesive stiffness 0
meshnK L E =  and the tangential-to-normal stiff-

ness ratio 0 0
s nK K =  are provided in Section 3.1.1. A further in-

vestigation of both compliance and anisotropy levels for the re-

sulting overall homogenized moduli tensor is given in Section 

3.1.2. 

3.1.1 General results on planar random mesh configurations 

Concerning the elastic calibration of the diffuse interface 

model (DIM), described in Section 2.1, here general numerical re-

sults obtained by the linear homogenization technique, pre-

sented in Section 2.1.3, have been reported, with reference to iso-

tropic unstructured mesh configurations, under uniform traction 

(UT) boundary conditions and plane stress assumption. Such a 

type of boundary conditions provides the smallest homogenized 

moduli among those that satisfy the Hill-Mandel’s macro-homo-

geneity condition, associated with the greatest estimated value 

for the artificial compliance. Thus, under general boundary con-

ditions, the resulting loss of stiffness induced by the presence of 
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the interface elements is assured to be always smaller than the 

prescribed one. 

In the following analysis, a circular RVE with diameter 

RVED L=  has been considered. Such a type of RVE, despite has 

not the space-filling property of more commonly used tetragonal 

and hexagonal RVEs, has been chosen here in order to avoid the 

introduction of preferential directions for the mesh generation, 

by virtue of the absence of corners in the original geometry. A 

Delaunay tessellation, composed by en  three-node finite ele-

ments and embedded four-node elastic interface elements placed 

along the internal mesh boundaries, according to the insertion 

procedure described in Section 2.2.1, is employed to discretize 

the RVE. 

The average mesh size meshL , which represent the edge length 

of an equivalent equilateral triangulation, can be obtained by the 

following formula: 

 int
mesh

4

3e

A
L

n
= , (2.46) 

where intA  is area containing the interface element, in this case is 

equal to the area of RVE, i.e. 2
int / 4A D= .  To obtain corrected 

homogenized moduli, the meshL  should be much smaller than 

RVEL  for the homogenized moduli. In order to determine the 

mesh size meshL  to be used for homogenization purposes, differ-

ent mesh configurations have been considered, by varying the 

associated number en  of finite elements from 110 to 8364. These 
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preliminary numerical computations have been addressed to a 

concrete-like material with bulk elastic constants 30 GPaE =  

and 0.2 = , whose cohesive interfaces have been calibrated by 

preliminarily assigning 1 = .  

The results of the mesh sensitivity analysis in terms of conver-

gence of the overall Young’s modulus E , for different values of 

  belonging to a wide range, as a function of the dimensionless 

parameter RVE meshL L = , which is a suitable measure of the dis-

tance between the macro-scale (i.e. the RVE scale) and the micro-

scale (i.e. the finite element scale) are reported in Figure 3.1a. The 

dimensionless parameter 36.5 =  provides the coarsest mesh 

 

Figure 3.1. Mesh convergence analysis for homogenization purposes: 

(a) percentage variation of the overall Young’s modulus vs dimension-

less RVE size; (b) adopted mesh configuration for the calibration of the 

cohesive interface model (having RVE mesh 36.5L L = = ).   
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assuring a percentage variation of the overall Young’s modulus 

E , defined as ( )% ref ref/ 100e E E E= −  , smaller than 1% com-

pared to the finest mesh resolution (corresponding to the refer-

ence value ref 67.9 = ), for any considered value of  . The mesh 

associated with 36.5 = , depicted in Figure 3.1b, has been cho-

sen to perform the next numerical homogenization analysis. It 

has been also verified that this mesh density is sufficient to 

achieve a numerical accuracy of about 1% on the statistical fluc-

tuations of the results associated with many RVE realizations. 

Obtained the RVE size as a function of the adopted mesh size, 

the calibration of the elastic stiffness parameters of the embed-

ded cohesive interfaces has been performed after solving the sys-

tem (2.35), for fixed values of ER  and R , in an iterative manner, 

i.e. by testing different values for the couple ( ),  .  

From the numerical analysis has been found that no reduc-

tion of the overall Poisson’s ratio, i.e. 1R = , allows the depend-

ence of R  on the normal stiffness parameter   to be practically 

neglected, coherently with what predicted by Equation (2.12). It 

follows that the ratio   between the dimensionless tangential 

and normal stiffness can be regarded as a function of only the 

Poisson’s ratio of the bulk phase, whose numerically derived be-

havior is shown in Figure 3.2. Moreover, the following closed-
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form solution has been found, also depicted in Figure 3.2, having 

the best fit of the numerically derived points: 

 
1

1 3






−
=

+
, (2.47) 

which can be regarded as the 2D counterpart (under plane stress 

conditions) of the latter of Equations (2.14), which was derived 

in (Blal et al., 2012) for the 3D case (although also applied to pla-

nar elasticity problems). In contrast to what predicted by the lat-

ter of Equations (2.14), also reported in Figure 3.2 for comparison 

purposes, the tangential-to-normal stiffness ratio to be assigned 

 

Figure 3.2. Tangential-to-normal stiffness ratio for different values of 

the Poisson’s ratio: comparisons between the present results, in terms 

of both numerical and closed-form according to Equation (2.47), and 

those obtained in (Blal et al., 2012).   
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according the proposed numerical calibration methodology is al-

ways smaller than one (this limit value is reached for 0 = ). Ad-

ditionally, in contrast with the latter of Equations (2.14), in the 

case of incompressible materials (i.e. 0.5 = ), the present result 

predicts no vanishing behavior for  . By introducing Equation 

(2.47) in the first of Equations (2.35), it follows that normal stiff-

ness parameters   can be found as a function of the given Pois-

son’s ratio and the desired reduction ER , expressed in percent.  

A significant chart (Figure 3.3), valid for any isotropic and 

linearly elastic material with 0 0.5   subjected to a plane 

stress state, has been obtained performing several numerical 

analyses. In detail, the chart numerically confirms the qualitative 

behavior of the first of Equations (2.14), characterized by the lim-

its 0lim 1ER→ =  and lim 0ER→ = , but provides more reliable 

results in the case of greater Poisson’s ratios.  Indeed, the first of 

Equations (2.14) predict an infinite cohesive stiffness for any re-

duction of the overall moduli, when perfectly incompressible 

materials are consider. It is worth noting that the most useful part 

of this chart is the top one, here extracted and reported in the 

same Figure 3.3, which refers to values of RE  greater than 0.95, 

i.e. a stiffness reduction of 5%, usually admissible for engineer-

ing purposes. The value of   assuring a reduction ER  of the over-

all Young’s modulus smaller than a given threshold, is the ab-

scissa of the intersection point between the horizontal line pass-

ing through this threshold value and the curve associated with 

the given Poisson’s ratio. 
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For the particular case of a typical concrete with Poisson’s ra-

tio equal to 0.2 and assuming a Young’s modulus reduction of 

2%, the calibration of the diffuse interface model, performed by 

using the numerical results reported in Figure 3.2 and Figure 3.3 

leads to the following values for the dimensionless parameters 

governing the elastic response of the cohesive elements: 

0.500 =  and 107.6 = . 

3.1.2 Numerical investigation of compliance and anisotropy 

levels 

Here, a numerical investigation of both the compliance and 

anisotropy levels induced by the computational mesh has been 

performed, in order to assess the general validity of the proposed 

calibration approach. To this end, the two corresponding indices 

(2.25) and (2.26), introduced in Section 2.1.3, have been evaluated 

for different values of both   and   within the ranges of varia-

tion considered in Section 3.1.1. 

As expected, the results of the numerical analysis highlighted 

that the compliance index ci  is strongly affected by the elastic 

stiffness of the cohesive interface, providing unacceptable com-

pliance increments (greater than 5%) for values of   smaller than 

20, regardless of the adopted Poisson’s ratio (see Table 3.1). Con-

trarily, the variation of the Poisson’s ratio has a limited influence 

on the ci , which tends to slightly increase for increasing values 

of   at fixed  . The variation of the anisotropy index ai  within 

the same ranges of independent variables is reported in Table 3.2.  
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As expected, for any value of  , a decrease of the stiffness 

parameter   leads to an increase of the mesh-induced anisotropy 

level, which, however, does not exceed 1%. This value confirms 

the effectiveness of the proposed micromechanical calibration 

with respect to the desired isotropy requirement. 

The numerical results obtained by this preliminary analysis, 

reported in Figure 3.2, Figure 3.3, Table 1, and Table 2 are valid 

for any isotropic material with Poisson’s ratio ranging from 0 to 

0.5. In the particular case 0.2 = , which is typical for concrete, 

further numerical results are presented, aimed at better investi-

gating the mesh-induced effects on the homogenized moduli. 

 

Figure 3.4. Behavior of the (plane stress) homogenized moduli for a 

cohesive finite element assembly (with 0.2 = ) as a function of the 

normal stiffness parameter of the embedded interfaces (dashed lines 

refer to the corresponding bulk moduli).   
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The behavior of the homogenized moduli, normalized with 

respect to the Young’s modulus of the bulk, for the considered 

cohesive finite element assembly as a function of the normal stiff-

ness parameter of the embedded interfaces, is depicted in Figure 

3.4. It can be noted that for any value of  , the cohesive finite 

element assembly preserves its isotropy, thus assuring the same 

loss of stiffness in each direction. This effect is essentially due to 

the adopted (isotropic) mesh topology, for which the embedded 

cohesive interfaces are randomly placed without introducing 

any preferential orientation into the model.  

A more detailed investigation of the mesh-induced anisot-

ropy associated with the diffuse interface model is provided by 

evaluating the effective moduli for several mesh orientations in 

the 1 2x x  plane. The rotated moduli *
C  are computed using the 

Equation (2.32). The percentage deviation of the homogenized 

moduli with respect to their angularly averaged counterpart, 

considering each orientation and for different values of the nor-

mal stiffness parameter, has been computed by the following for-

mula: 

 

*

% 100
ijkl ijkl

ijkl

C C
e

C





−
=   (2.48) 

with ijklC

the angularly averaged overall moduli tensor calcu-

lated by means of Equation (2.33). The numerical computed de-

viations for the principal moduli, reported in Figure 3.5, are al-

ways very small (in the worst case less than 0.5%), thus further 
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confirming the effectiveness of the proposed calibration method-

ology with respect to the desired isotropy property. As expected, 

this deviation tends to decrease for increasing values of the stiff-

ness parameter. Interestingly, it can be noted also that the devia-

tion for the macroscopic moduli 1122 2211C C=  and 1212C are always 

 

Figure 3.5. Percentage deviation of the homogenized moduli with re-

spect to their angularly averaged counterpart vs mesh orientation for 

different values of the normal stiffness parameter  .  



Numerical calibration and validation of the diffuse interface model 159 

negligible for any value of  , meaning that, even in the presence 

of soft embedded elastic interfaces, the shear constitutive re-

sponse preserves its perfect isotropy. It is worth noting that the 

present numerical outcomes refer to the (isotropic) Delaunay 

mesh depicted in Figure 3.1b. However, the adoption of different 

meshes, without isotropic properties, would probably introduce 

a more evident dependency of the homogenized moduli on the 

mesh orientation, but this investigation is outside of the scopes 

of the present thesis. 

3.2 Numerical validation of the diffuse interface model in 

plain concrete under mode-I loading 

The numerical simulations here reported are conducted to 

validate the diffuse interface model (DIM), described in Chapter 

2 and calibrated by using the homogenization technique pre-

sented in Section 2.1.3, with reference to plain concrete structures 

subjected to mode-I loading conditions. In detail, as shown in 

Section 3.2.1, two additional fracture approaches, named SIM 

and CDIM, are specifically introduced to highlight the mesh in-

fluence on the overall strength properties and related crack 

paths, as predicted by the proposed DIM methodology. Finally, 

in Section 3.2.2, two sensitivity analyses with respect to both 

mesh size and mesh orientation are performed to assess the de-

gree of mesh dependency associated with the proposed model. 
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3.2.1 Geometric and material properties 

The simply supported pre-notched beam subjected to a 

three-point bending test analyzed in (Petersson, 1981) is consid-

ered, whose geometry and boundary conditions, sketched in Fi-

gure 3.6, are expressed in terms of the beam height 0.2 mH = . A 

plane stress state is assumed. The bulk material is linearly elastic 

and isotropic with Young’s modulus 30 GPaE =  and Poisson’s 

ratio 0.18 = , whereas the inter-element interfaces behave non-

linearly according to the mixed-mode traction-separation law 

(2.36), adopting the following cohesive parameters, listed in Ta-

ble 3.3: the initial normal and tangential stiffness parameters, 0
nK  

and 0
sK , the tensile and shear critical stresses, max  and max , the 

mode-I and mode-II fracture energies, IcG  and IIcG , and the non-

Table 3.3. Material parameters for the cohesive interfaces. 
0
nK   

[N/mm3] 

0
sK  

[N/mm3] 

max  

[MPa] 

max  

[MPa] 

IcG  

[N/m] 

IIcG  

[N/m] 
  

1.185e6 6.306e5 3.33 3.33 124 124 5 

 

 

Figure 3.6. Geometric configuration and boundary conditions for the 

three-point bending test.   
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dimensional parameter   appearing in (2.38). In particular, the 

initial normal and shear stiffness parameters 0
nK  and 0

sK  have 

been set to assure, for the given mesh size, no reduction of the 

overall Poisson’s ratio, according to the condition (2.47), and a 

reduction of the overall Young’s modulus of 2%, according to the 

chart reported in Figure 3.3. The corresponding dimensionless 

stiffness parameters, obtained by graphical linear interpolation, 

are 0.532 =  and 104.0 = . For this numerical example, the nor-

mal and shear critical stresses, max  and max , are set equal to each 

other, as well as the mode-I and mode-II fracture energies in or-

der to avoid artificial strengthening and/or toughening effects as-

sociated with the activation of local mixed-mode induced by the 

mesh in the diffuse interface model. In order to reduce the com-

putational cost of the simulations using the proposed diffuse in-

 

Figure 3.7. Cohesive element distribution in the diffuse interface mo-

del (DIM) (a), single interface model (SIM) (b) and controlled diffuse 

interface model (CDM) (c).   
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terface model, here simply referred to as DIM simulation, the co-

hesive elements are inserted only within a predetermined critical 

region, which is susceptible to be damaged (see Figure 3.7a). 

Such a region, which is placed ahead of the preexisting notch, 

has a circular shape with radius 0.24r H= , chosen to avoid pref-

erential directions during the generation of the random Delau-

nay tessellation. A suitable isotropic mesh refinement has been 

performed within this critical region, by prescribing a maximum 

element size of 4 mm, which corresponds to an average mesh size 

of about 2.632 mm. 

 

3.2.2 Assessment of mesh-induced artificial toughening 

effects 

A deeper investigation of the toughening effects induced by 

the mesh has been performed by comparing the proposed DIM 

approach, depicted in Figure 3.7a with two comparison models. 

The first comparison model, termed single interface model 

(SIM), is characterized by the presence of cohesive elements ar-

ranged along the vertical direction, assuring a collinear propaga-

tion of the existing notch (see Figure 3.7b). The second compari-

son model is a controlled diffuse interface model (CDIM). Such 

a model, used in combination with the SIM configuration, is con-

ceived to gain a deeper insight into the reasons for the mesh-in-

duced artificial toughening effects experienced by the DIM ap-
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proach. In the CDIM approach, a given subset of cohesive inter-

face elements is constrained to lie along the symmetry line of the 

considered circular region (see Figure 3.7c). Such a model is ob-

tained starting from an isotropic Delaunay mesh generated using 

 

Figure 3.8. Delaunay meshes used for the three-point bending test: (a) 

DIM; (b) SIM; (c) CDIM.   
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an additional control edge aligned with the vertical direction, co-

inciding with the self-similar growth direction for the preexisting 

notch. 

The unstructured mesh used of both SIM and CDIM are char-

acterized by the same average size of the embedded cohesive el-

ements as in the DIM configuration. The resulting Delaunay 

meshes for the three above-described models, depicted in Figure 

3.8, are composed of three-node plane stress triangular elements 

for the bulk and four-node zero-thickness for the interface ele-

ments placed accordingly with what described in Section 2.2.1. 

A suitable transition zone has been introduced for all models, to 

assure a graded mesh coarsening outside the critical region. 
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Figure 3.9 shows the comparison between these three mod-

els, in terms of both load versus mid-span deflection and dissi-

pated fracture energy versus crack mouth opening displacement 

(CMOD) curves, considering the SIM configuration as the refer-

ence. The dissipated fracture energy d  has been computed as 

the difference between the work of the applied load P  and the 

stored elastic strain energy, both computed at the current dis-

placement  , according to the following relation: 

 ( ) ( ) ( )
0

1
' d '

2
d P P



     = −  (2.49) 

The first term of the Equation (2.49) being the total energy, 

graphically represented as the area under the load-displacement 

 

Figure 3.9. Global structural response predicted by DIM, SIM and 

CDIM approaches: (a) load versus mid-span deflection curve; (b) dis-

sipated fracture energy versus crack mouth opening displacement 

(CMOD) curve.   
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curve ( )P P =  of Figure 3.9a, and second term being the strain 

elastic energy stored at the current displacement  . 

The comparison between the three models clearly shows that 

the DIM predicts a slightly stronger structural response at both 

peak and post-peak stages with respect to the reference model, 

due to the artificial toughening effect induced by the mesh (see 

Figure 3.9a). In particular, the DIM approach leads to a system-

atic overestimation of the load-carrying capacity predicted by 

the SIM, at both peak and post-peak regimes, as confirmed by 

the divergent behaviors of the associated dissipated fracture en-

ergy, shown in Figure 3.9b. However, the relative error on the 

peak load numerically predicted by the diffuse interface model, 

of about 0.79 kN, with respect to that obtained by the reference 

one is of only 3.8%, which is acceptable for engineering purposes, 

thus validating the numerical accuracy of the proposed fracture 

methodology. Additionally, Figure 3.10 shows that the main 

crack path predicted by the diffuse interface model, although 

forced to develop along the inter-element boundaries, is globally 

in good accordance with that assumed by the reference model, 

considering self-similar crack propagation. It is worth specifying 

that, the main crack path is defined as the union of cohesive seg-

ments which do not experience any elastic unloading during the 

entire simulation, i.e. for which max
m m =  until the final load step, 

always considering monotonic loading conditions. Moreover, 

the presence of secondary cracks branching off of the main crack 

is highlighted. 
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To understand if the above-mentioned toughening effect is 

due to the occurrence of secondary cracking or to the jagged path 

of the main propagating crack, a comparison with the controlled 

diffuse interface model (CDIM), is carried out. It is worth noting 

that, by analyzing again Figure 3.9, the global structural response 

obtained by means of the CDIM approach is practically coinci-

dent with that obtained using the reference SIM configuration, in 

terms of both load versus mid-span deflection and dissipated 

fracture energy versus CMOD curves. Furthermore, as can be 

easily observed in Figure 3.10b, the main crack path predicted by 

the CDIM configuration is perfectly aligned with that prescribed 

by the SIM approach owing to the presence of vertical control 

 

Figure 3.10. Damage variable map and main crack path as predicted 

by: (a) DIM; (b) CDIM.   
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edges. However, the appearance of secondary cracks is still ex-

perienced, even if localized within a narrower band with respect 

to the DIM case.  

It follows that the nucleation of small secondary cracks in the 

neighborhood of the main crack tip, as predicted by the present 

diffuse interface model, has only a negligible influence on the 

numerically predicted structural behavior, and specifically on 

the estimated fracture properties. Thus, the toughness increase 

associated with the DIM configuration is not due to the appear-

ance of such secondary cracks, but rather to the tortuosity of the 

main crack induced by the randomly placed internal boundaries 

of the adopted unstructured mesh. More generally, it can be con-

cluded that crack localization phenomena in plain concrete, be-

ing accompanied by elastic unloading in the surrounding mate-

rial, are not sensibly altered by the presence of cohesive elements 

scattered outside the localization zone. Such a result, rigorously 

verified for the CDIM configuration (see Figure 3.10b), can be 

likely extended to the DIM approach, provided that the real 

crack path is well approximated by the mesh boundaries. 

3.2.3 Sensitivity analyses with respect to the mesh size and 

the mesh orientation 

Here, two sensitivity analyses have been performed for the 

previously mentioned mode-I fracture test in order to investigate 

the mesh dependency properties of the adopted diffuse interface 
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model, and the related numerical results are reported in terms of 

both global structural response and crack path predictions. 

The first sensitivity analysis is devoted to the analysis of the 

mesh size influence on the numerically predicted fracture prop-

erties. It can be noted that the mesh size in the direction of crack 

propagation cannot be freely chosen, but an upper bound for it 

is needed to ensure that both stress and displacement fields 

within the fracture process zone (FPZ) are accurately described. 

However, no theoretical values for the minimum number of ele-

ments needed in the FPZ, whose size is denoted as FPZL , are 

available in the literature. Only empirical results have been re-

ported about the suggested ratio FPZ meshminN L L=  to be adopted 

in the simulations, which typically ranges between 2 and 10 (see, 

for instance, (Moës and Belytschko, 2002; Turon et al., 2007)). The 

FPZ size, which is an inherent length scale determined by the 

material properties, can be expressed in the following form valid 

for mode-I fracture propagation: 

 FPZ 2

'c

c

G E
L 


=  (2.50) 

where 'E  is the 2D effective Young modulus, cG  denotes the 

mode-I fracture energy, c  is the normal interfacial strength, and 

  is a parameter  which depends on the adopted cohesive zone 

model. If Rice’s model is used (Falk et al., 2001),   is equal to 

9 32 0.88   and the resulting FPZ size is of about 0.30 m for the 

considered concrete. Such a value is greater than the considered 
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beam’s height 0.2 mH = , so that no additional restrictions are 

imposed on the admissible mesh size other than the usual ones, 

classically related to the control of discretization errors in the re-

gions with high stress gradients. 

For the beam analyzed in Section 3.2.1, four different meshes 

have been considered, by progressively dividing in half the max-

imum element size prescribed within the above-defined circular 

critical region from 16 to 2 mm. The resulting average element 

sizes associated with these meshes, indicated respectively as 

Mesh 1, 2, 3 and 4 in Figure 3.11, are reported in Table 3.4. It is 

worth noting that Mesh 3 has been already considered for deriv-

ing the numerical outcomes presented in Section 3.2.2.  

Table 3.4 also shows the cohesive initial stiffness coefficients 

for the considered meshes, computed according to the calibra-
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tion procedure described in Section 3.1.2. As expected, the in-

creasing of the mesh density leads to greater values of the stiff-

Table 3.4. Average element length and elastic stiffness coefficients of 

the interface elements for different mesh sizes. 

Mesh meshL  [mm] 
0
nK  [N/mm3] 

0
sK  [N/mm3] 

1 12.2 2.559e5 1.361e5 

2 5.38 5.796e5 3.084e5 

3 2.63 1.185e6 6.306e5 

4 1.42 2.193e6 1.166e6 

 

 

Figure 3.11. Mesh configurations within the critical region for the sen-

sitivity analysis with respect to the mesh size.   
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ness coefficients, in order to assure the same loss of the apparent 

stiffness.  

The results of the sensitivity analysis clearly show that the 

global response is almost independent of the adopted mesh size, 

in terms of both load versus mid-span deflection (Figure 3.12a) 

and dissipated energy versus CMOD (Figure 3.12b) curves. In 

particular, the maximum value of the percentage relative devia-

tion with respect to the mean peak load maxP , computed for each 

mesh as: 

 

max max

max
100     1, ,4

i

i

P P
e i

P

−
=  =  (2.51) 

 

Figure 3.12. Global structural response for different mesh sizes within 

the cohesive region: (a) load versus mid-span deflection curve; (b) dis-

sipated fracture energy versus crack mouth opening displacement 

curve.   
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is only of about 0.61%, thus confirming the efficacy of the above 

calibration in the reduction of mesh dependency issues also in 

the nonlinear cohesive stage. It is worth noting that the coarsest 

mesh (i.e. Mesh 1) is associated with some slight oscillations in 

the numerically predicted structural response, especially in the 

post-peak region. This fact represents an indication that the 

adopted spatial discretization is not sufficiently to capture the 

stress gradients within the ligament ahead the main propagating 

crack. 

Figure 3.13 shows the crack path for the different mesh con-

figuration. A lack of convergence for the predicted crack path is 

observed, due to the tortuosity induced by the irregularly dis-

 

Figure 3.13. Numerically predicted main crack path for different mesh 

sizes within the cohesive region.   
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tributed mesh elements. As the mesh is refined, the crack propa-

gation path becomes more jagged, being forced to pass through 

a greater number of randomly placed mesh nodes. However, the 

apparent crack trajectories, obtained by suitably filtering the re-

ported random oscillations, do not deviate too much from the 

vertical straight line, predicted under self-similar propagation 

conditions. The artificial crack roughness induced by the mesh 

can be estimated by the ratio between the true length t
cl  of the 

irregular crack path and the projected length p
cl  on the vertical 

direction (i.e. the crack propagation direction in the absence of 

mesh bias), here referred to as crack tortuosity ratio 1  . The 

values of this ratio obtained for the different meshes, reported in 

Table 3.5, fall within a restricted range (characterized by a maxi-

mum percentage relative deviation of about 1.26%), thus reveal-

ing the fractal nature of the approximate discrete crack propaga-

tion path. The resulting average crack tortuosity ratio, equal to 

1.049, is strictly related to the estimated fractal dimension of 

crack trajectories for a Delaunay mesh. From a mechanical point 

Table 3.5. Crack tortuosity ratio for different mesh sizes within  

the cohesive region. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 

t
cl  [m] 0.0748 0.0818 0.0843 0.0804 

p
cl  [m] 0.0721 0.0770 0.0799 0.0771 

  1.037 1.062 1.054 1.042 
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of view, such a value represents a measure of the artificial tough-

ening effect induced by the mesh. Being close to unity, this value 

further confirms the reliability of the adopted cohesive approach 

to predict the overall fracture properties in concrete structures. 

The second sensitivity analysis deal with the mesh orienta-

tion influence on the predicted fracture properties at fixed mesh 

size. To this end, several mesh configurations have been consid-

ered, by rotating in the counterclockwise sense the discretized 

circular critical region considered in Section 3.1 around its center 

through an angle   ranging between 0° and 360° (see Figure 

3.14). A constant angular increment is chosen, such that the po-

sition of boundary nodes, which are equally spaced along the cir-

cle, is kept unchanged after each rotation. It follows that the par-

ametric analysis does not involve the generation of a new mesh 

outside the critical region for each considered direction. 

 

Figure 3.14. Rotating mesh within the critical region for the sensitivity 

analysis with respect to the mesh orientation.   
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In Figure 3.15, the numerical results of the sensitivity analy-

sis, are reported. By analyzing Figure 3.15a, showing the enve-

lope of the load versus mid-span deflection curves, it can be 

noted that the predicted structural response is almost insensitive 

to the mesh orientation. In particular, the percentage relative de-

viations of the peak load, computed according to Equation (2.51) 

for different mesh orientations, is smaller than 2% (in the worst 

case), as shown in Table 3.6. A greater dependence on the mesh 

orientation is experienced by the predicted crack path, as shown 

in Figure 3.15b. All the numerical crack trajectories are found to 

lie within a sharp wedge with opening angle of about 14°, sym-

metrically placed with respect to the self-similar crack propaga-

tion (i.e. vertical) direction. The influence of the mesh orientation 

 

Figure 3.15. Enveloped structural responses for different mesh orien-

tations within the cohesive region: (a) load versus mid-span deflection 

curves; (b) numerically predicted main crack paths.   
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on the artificial toughening effect is further assessed by compu-

ting the crack tortuosity ratio for the different rotation angles, as 

reported in Table 3.7. Also in this case, all the values fall within 

a little range, characterized by a maximum percentage relative 

deviation of about 1.25% with respect the orientation averaged 

value, found equal to 1.051. It follows that the use of Delaunay 

triangulations within a cohesive finite element approach leads to 

achieve almost isotropic fracture behaviors, assuring the absence 

of preferential crack path directions induced by the mesh. 

Table 3.7. Crack tortuosity ratio for different mesh orientations within the 

cohesive region. 

θ [°] 0 30 60 90 120 150 180 210 240 270 300 330 

t
cl   

[m] 
0.0843 0.0884 0.0852 0.0850 0.0862 0.0843 0.0832 0.0821 0.0843 0.0824 0.0844 0.0841 

p
cl   

[m] 
0.0799 0.0835 0.0816 0.0803 0.0825 0.0803 0.0794 0.0772 0.0802 0.0794 0.0807 0.0798 

  1.0542 1.0581 1.0436 1.585 1.0454 1.0502 1.0489 1.0632 1.0505 1.0377 1.0463 1.0539 

 

Table 3.6. Peak load relative deviation for different mesh orientations 

within the cohesive region. 

θ [°] 0 30 60 90 120 150 180 210 240 270 300 330 

maxP  

[kN] 
0.789 0.790 0.788 0.788 0.780 0.794 0.801 0.793 0.790 0.780 0.789 0.785 

e  

[%] 
0.01 0.09 0.13 0.14 1.11 0.61 1.54 0.55 0.17 1.09 0.01 0.48 
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3.2.4 Comparison with existing experimental and numerical 

results 

In order to assess the effectiveness of the adopted diffuse in-

terface model (DIM) in predicting the failure response in a relia-

ble manner, the numerical results reported in Section 3.2.2 have 

been compared with both experimental and numerical results 

obtained in (Petersson, 1981), as shown in Figure 3.16. The nu-

merical model adopted in (Petersson, 1981) is based on a ficti-

tious crack concept incorporated in a finite element framework. 

There, an extrinsic bilinear cohesive law is employed to describe 

 

Figure 3.16. Load versus mid-span deflection curve predicted by the 

proposed model and comparison with experimental and numerical re-

sults obtained by (Petersson, 1981).   
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the softening behavior, in combination with an additional stress-

based crack insertion criterion. 

The present linear-exponential intrinsic cohesive model, 

used within the proposed DIM approach, predicts a slightly 

stronger structural response with respect to the above-men-

tioned extrinsic bilinear cohesive model, here taken as the refer-

ence (with a percentage relative error on the peak load of only 

about 2.9%), due to the previously discussed mesh-induced arti-

ficial toughening effect. Moreover, the present model is judged 

as able to predict a global structural response which is also in 

good agreement with the experimental outcomes, the numeri-

cally predicted load versus mid-span deflection curve being very 

close to the upper limit curve of the experimental envelope. 

3.3 Numerical validation of the diffuse interface model in 

plain concrete under mixed-mode loading 

The proposed diffuse interface model is here employed to 

perform further numerical analysis by considering the more gen-

eral case of mixed-mode fracture conditions, usually associated 

with crack paths unknown a priori. The famous mixed-mode test 

introduced in (Gálvez et al., 2002a) has been considered, involv-

ing a small-sized pre-notched concrete beam subjected to unsym-

metrical three-point bending. In particular, in Section 3.3.2 has 

been performed an investigation of the influence of mode-II co-

hesive parameters, i.e. the tangential critical stress max  and 

mode-II fracture energy IIcG , on the global structural response, 
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with special attention to the numerically predicted damage pat-

tern. Additionally, a suitable comparison with the experimental 

outcomes has been reported Section 3.3.3, thus confirming the 

reliability of the proposed model for the numerical simulation of 

mixed-mode crack propagation in concrete and other quasi-brit-

tle materials. 

3.3.1 Geometric and material properties 

The geometry and boundary conditions of the tested pre-

notched concrete specimen, expressed in terms of its height 

75 mmD = , are sketched in Figure 3.17a. The bulk material is 

assumed to be linearly elastic, with Young’s modulus 

38 GPaE =  and Poisson’s ratio 0.2 = . The cohesive elements, 

according with the insertion procedure described in Section 

2.2.1, have been randomly inserted only within a critical zone 

susceptible to be damaged, in order to reduce the computational 

effort of the simulations performed using the proposed DIM ap-

proach. In this rectangular zone, a mesh refinement has been per-

formed, by imposing a maximum mesh size of 1 mm, which cor-

responds to an average length of the interface elements of about 

0.744 mm. The resulting enriched Delaunay mesh, reported in 

Figure 3.17b is composed of three-node triangular elements and 

four-node zero-thickness interface elements. The simulations by 

means of the proposed (DIM) and reference (SIM) models have 

been performed under plane stress and displacement-controlled 
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quasi-static loading conditions, adopting a displacement incre-

ment of 5e−3 mm. 

 

Figure 3.17. Tested small-sized pre-notched concrete beam: (a) geo-

metric configuration and boundary conditions of the tested concrete 

beam and (b) computational mesh with homogeneous refinement for 

mixed-mode crack propagation.   
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The cohesive parameters required by the adopted mixed-

mode traction-separation law, presented in Section 2.2.1, are 

listed in Table 3.8, where the mode-II inelastic parameters are in-

tended as reference values for the sensitivity analysis reported in 

next Section 3.3.2. Moreover, the parameters 0
nK  and 0

sK  have 

been chosen to assure, for the adopted mesh size, no reduction 

of the overall Poisson’s ratio, and a reduction of the overall 

Young’s modulus of 2%. The related dimensionless stiffness pa-

rameters are 0.5 =  and 107.6 = , providing the following ini-

tial cohesive stiffness values: 0 5.492e6nK =  and 0 2.746e6sK = . 

3.3.2 Sensitivity analyses with respect to the mode-II 

inelastic cohesive parameters 

Several investigations on the influence of the shear fracture 

parameters on mixed-mode fracture in concrete have demon-

strated that when a crack propagates in stable manner under 

mixed loading, a local mode I crack propagation is usually pre-

dominant over mode II (see, for instance, (Gálvez et al., 2002a) 

and references therein). As a matter of fact, large variations in the 

mode-II inelastic parameters, i.e. shear strength and fracture en-

ergy in mode II, are known to produce very little effects on the 

Table 3.8. Material parameters for the cohesive interfaces. 
0
nK   

[N/mm3] 

0
sK  

[N/mm3] 
max  

[MPa] 
max  

[MPa] 
IcG  

[N/m] 
IIcG  

[N/m] 
  

5.492e6 2.746e6 3.0 3.0 69 69 5 
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numerical predictions obtained by means of common cohesive 

approaches. 

Nevertheless, the sensitivity of cohesive shear parameters on 

mixed-mode fracture using a cohesive finite element approach 

has not been sufficiently investigated. Indeed, the artificial tortu-

osity of the predicted crack paths caused by the mesh induces 

unavoidable nonphysical local mixed-mode crack propagation 

conditions with non-negligible mode-II dissipated energy. 

In this Section, two sensitivity analyses have been performed 

by independently varying the mode-II inelastic parameters re-

quired by the traction-separation law adopted in the proposed 

concrete fracture model, in order to quantify the above-men-

tioned artificial effects associated with mode-II crack propaga-

tion. The first sensitivity analysis has been conducted by as-

sessing the influence of the mode-II fracture energy on the pre-

dicted global structural response, by varying it in a wide range. 

In particular, the following values have been considered, 

II 0.2cG = , 0.5, 1, 2, 5, 10, 20 and 50 times larger than IcG , keeping 

fixed the other material parameters reported in Table 3.8. 

Figure 3.18 shows the associated numerically predicted 

structural response in terms of applied load versus displacement 

at point B. A slightly increase of the overall strength as the mode-

II fracture energy increases is predicted at both peak load and 

post-peak stages by the proposed model (see Figure 3.18a). This 

trend is more visible for mode-II toughness values up to 

II I5 c cG G= . As a matter of fact, starting from the value 
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II I10c cG G= , the global structural response is almost insensitive to 

the magnitude of the mode-II fracture energy. By virtue of this 

independence property, being also consistent with the value sug-

gested in (Gálvez et al., 2002a), such a value has been considered 

for the numerical simulations reported in Section 3.3.3 and Sec-

tion 4. 

The second sensitivity analysis has been concerned with the 

influence of the tangential critical stress, while keeping fixed the 

mode-II fracture energy II Ic cG G= . In particular, the following 

values have been considered, max 0.2 = , 0.5 , 1, 2 , 5 , 10

, 20  and 50  times larger than max . It is worth noting that a 

more limited range of relative variations is used, being scaled by 

fixing for the ratio max max   the square roots of the values con-

sidered for II Ic cG G  in the first sensitivity analysis. 

 

Figure 3.18. Global structural response by varying mode II fracture en-

ergy (a) and critical tangential strength (b).   
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Figure 3.18b shows the related numerical results, in term of 

load versus point B displacement curves. The predicted global 

structural response seems to be almost independent of the tan-

gential strength of the cohesive interfaces, except for the value 

max max0.2 = , associated with a peak load lower than the other 

values. 

By analyzing the numerically predicted damage patterns, a 

stronger restriction for the admissible values of max  has been 

found. The damage variable maps corresponding to the point B 

vertical displacement value of 0.2 mm for the different tangential 

critical strengths considered in the present sensitivity analysis 

 

Figure 3.19. Damage variable maps at the point B vertical displace-

ment of 0.2 mm for different values of the ratio max max  : (a) 0.2 ; 

(b) 0.5 ; (c) max ; (d) 2 ; (e) 5 ; (f) 10 ; (g) 20 ; (h) 50 ..   
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are reported in Figure 3.19. The results confirm that for values of 

max max   up to 1 (see Figure 3.19a to Figure 3.19c), an artificial 

anticipation of local concrete crushing occurs at the upper zone, 

dominated by a compressive stress state, strictly due to the fact 

that the adopted cohesive interface model does not incorporate 

any friction model. On the other hand, for max max   greater than 

or equal to 5  (see Figure 3.19e to Figure 3.19h), a pathological 

bandwidth enlargement of the region characterized by damage 

localization is experienced. Indeed, if a too much high value is 

chosen for max , only the cohesive interfaces almost orthogonal 

to the tensile principal stress direction are allowed to be dam-

aged, as crack initiation is forced to occur in almost pure mode-

I. Such a phenomenon has the negative effect of spreading the 

damage out, ultimately leading to erroneously predicted dam-

age patterns. The most reliable results seem to be found in the 

case max max 2 1.4  =  . This value is consistent with the as-

sumption that max  possesses a more precise physical meaning 

than IIcG , representing the cohesion of the material. 

3.3.3 Comparison with the experimental results 

An additional numerical simulation has been performed by 

using the following values for the mode-II parameters, i.e. 

max max1.4 =  and II I10c cG G= , as suggested in Section 3.3.2, and 

the related numerical results have been compared with the ex-

perimental results obtained in (Gálvez et al., 1998), as shown in 

Figure 3.20. 



Numerical calibration and validation of the diffuse interface model 187 

In particular, the predicted loading curve, reported in Figure 

3.20a, is in good agreement with the ones obtained by the exper-

imental tests, especially at the peak load. However, small dis-

crepancies are observed in the softening branch, for which the 

diffuse interface model (DIM) predict an initial slightly stronger 

structural response probably due to the above-mentioned tough-

ening effect induced by the mesh. In addition, the numerically 

predicted residual strength is underestimated with respect to the 

experimental tests, because friction, which has a role in provid-

ing the ultimate load-carrying capacity, has not been incorpo-

rated into the adopted cohesive traction-separation law. Never-

theless, the proposed fracture model is able to capture a realistic 

 

Figure 3.20. Comparisons between numerical and experimental results 

for the unsymmetrical three-point bending test: (a) load versus point B 

displacement curve; (b) crack path.   
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macro-crack evolution, as can be observed in the deformed crack 

configurations at points A, B and C reported in Figure 3.20a. 

Finally, Figure 3.20b shows the comparison, in terms of crack 

path, between the present numerical simulation and the experi-

mental tests. It is clearly visible that the crack trajectory predicted 

by the DIM approach completely lies within the envelope of ex-

perimentally measured cracks. 

 



 

4 
 

Failure analysis of strengthened reinforced 

concrete (RC) structures 

This chapter is devoted to the application of the proposed nu-

merical fracture model, presented in Section 2.2, to the failure 

analysis of internally and/or externally reinforced concrete struc-

tures. In particular, in Section 4.1 the proposed numerical frame-

work, including the DIM and ETM, described respectively in Sec-

tions 2.2.1 and 2.2.2, is successfully used to predict the nonlinear 

response of a reinforced concrete (RC) beam subjected to multi-

ple crack initiation and propagation. Subsequently, the proposed 
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failure model, integrated with the Single Interface Model (SIM), 

described in Section 2.2.3, is employed to predict the load-carry-

ing capacity and the related damage patterns of a real-scale RC 

beams retrofitted with FRP system, involving concrete cover sep-

aration failure. Finally, several applications involving plain and 

steel bar-reinforced nano-enhanced UHPFRC beam are reported 

in Section 4.3, further demonstrating the effectiveness and versa-

tility of the proposed failure model to investigate the complex 

fracture process in the different types of concrete structures. 

4.1 Numerical application to reinforced concrete elements  

The proposed integrated fracture model has been here used 

to failure analysis of a reinforced concrete beam with reference 

to the four-point bending test analyzed in (Gao et al., 2004). A 

useful comparison with the existing experimental results, re-

ported in Section 4.1.2, is carried out in terms of loading curve 

and crack pattern, showing a good numerical prediction of the 

global structural response. In order to validate the capability of 

the adopted bond-slip approach of capturing the tension stiffen-

ing effect, a detailed stress analysis of the tensile reinforcement 

bars has been also reported. Finally, Section 4.1.3 presents a sen-

sitivity analysis with respect to the mesh size, aimed at assessing 

the reliability of the DIM approach, in terms of the desired mesh-

independence property. 
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4.1.1 Geometric and material properties 

The geometric configuration as well as loading and bound-

ary conditions of the RC element under consideration are de-

picted in Figure 4.1, whilst in Table 4.1 are reported the mechan-

ical properties of concrete and steel reinforcing bars. In order to 

reduce the simulation efforts, only a half beam has been mod-

eled, owing to the symmetry of both geometry and boundary 

conditions, thus imposing a suitable symmetry condition as re-

ported in Figure 4.2. The computational domain has been 

meshed by using a Delaunay triangulation, made of three-node 

elements with prescribed maximum size of 10 mm (and average 

size of about 7.26 mm). As reported in (Gao et al., 2004) no con-

Table 4.1. Main elastic and strength properties of materials. 

Material Young’s 

modulus 

(GPa) 

Poisson’s 

ratio 

Yield 

strength 

(MPa) 

Tensile 

strength 

(MPa) 

Compressive 

strength 

(MPa) 

Concrete 31.0 0.20 - 2.1 35.7 

Steel 200.0 0.30 460.0 - - 

 

 

Figure 4.1. Geometric configuration and boundary conditions of the 

tested RC beam (all dimensions are expressed in mm).   



Failure analysis of strengthened reinforced concrete (RC) structures 192 

crete crushing is observed in the experimental tests, thus the co-

hesive interfaces have been inserted only in the region domi-

nated by combined tension-shear stresses as shown in Figure 4.2. 

Furthermore, the cohesive interfaces are not inserted along the 

existing truss elements, to avoid the occurrence of preferential 

crack propagation along straight lines, especially at the stirrup 

level, due to the lack of accuracy by the present 2D model in cap-

turing the actual 3D interactions at the steel/concrete interfaces. 

In Table 4.2 are listed the cohesive parameters, useful to cal-

ibrate the interface elements. Such parameters are chosen to 

match the material properties of the considered concrete, except 

Table 4.2. Material parameters for the cohesive interfaces. 

0
nK   

[N/mm3] 

0
sK  

[N/mm3] 

max  

[MPa] 

max  

[MPa] 

IcG  

[N/m] 

IIcG  

[N/m] 
  

4.574e5 2.287e5 2.1 2.94 125 1250 5 

 

 

Figure 4.2. Mesh configuration with identification of cohesive interface 

elements (highlight in blue) for the tested RC beams.   
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for the tangential critical stress max  and the mode-II fracture en-

ergy IIcG , not given in (Gao et al., 2004). As already discussed in 

Section 3.3, these parameters only slightly affect mixed-mode 

crack growth, whenever they fit into a large range with physical 

meaning. Coherently with what suggested in Section 3.3.2, the 

parameter max  has been set equal to about 1.4 times larger than 

max , this value being consistent with typical cohesion values for 

concrete material, whilst IIcG has been chosen ten times bigger 

than IcG . 

All the subsequent simulations have been conducted under 

plane stress conditions and adopting a displacement control 

scheme with constant increments of 2e-2 mm for the mixed-span 

deflection. 

4.1.2 Numerical results and comparison with experimental 

data 

The global structural response, in terms of loading curve and 

failure pattern, of the beam under consideration predicted by the 

proposed fracture model, is reported in Figure 4.3 and Figure 4.4, 

respectively. 

The loading curve shows a typical trilinear behavior (see Fi-

gure 4.3), in which two changes of slope are clearly detected, co-

inciding with the nucleation of main cracks in concrete (point A) 

and the yielding of steel reinforcing bars (point C). It is worth 

noting that after all the primary cracks have been developed by 

coalescence of several micro-cracks, a crack stabilization phase 
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begins, coinciding with the linear branch (i.e. at constant reduced 

stiffness) up to point C. The comparison with the results obtained 

in (Gao et al., 2004) are also reported in Figure 4.3, showing that 

the present numerical predictions are in a perfect agreement with 

the experimental outcomes.  

The deformed configurations with representation of the 

main crack (in black) and damage variable map for the simula-

tion steps A, B, C, and D highlighted in the global structural re-

sponse of Figure 4.3, are reported in Figure 4.4. It can be easily 

observed that the main cracks gradually nucleate at the tension 

face of the beam within the constant bending moment span and, 

subsequently, they spread to the shear span (see Figure 4.4a). As 

the controlled mid-span deflection increases, the main cracks 

 

Figure 4.3. Global structural response in terms of the load versus mid-

span deflection curve.   
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gradually propagate in a stable manner (see Figure 4.4b, corre-

sponding to point B of Figure 4.3), associated with the elastic un-

loading (i.e. reclosing) of adjacent secondary cracks. The distance 

 

Figure 4.4. Deformed configuration (magnified by a scale factor of 15), 

damage variable map and main crack pattern for the RC beam at the 

different simulation steps highlighted in Figure 4.3: a) point A; b) point 

B; c) point C; d) point D.   
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between adjacent cracks (also referred to as crack spacing) is al-

most uniform within the constant bending moment span, show-

ing a clear tendency to increase towards the supports. The de-

formed shapes of the control beam at first yield point and subse-

quent hardening of tensile bars, are depicted in Figure 4.4c and 

Figure 4.4d, respectively. 

It is worth noting the importance of the embedded truss 

model (ETM), described in Section 2.2.2, in capturing the correct 

tensile cracking behavior. Indeed, the adopted formulation, 

based on a bond-slip relation between steel and concrete, is able 

to allow the main cracks to pass across the tensile steel reinforce-

ments, thus avoiding artificial propagation constraints or, even 

worse, crack arrests. Similarly to the existing smeared crack ap-

proaches, the proposed model is able to capture the diffuse dam-

age, as highlighted in the damage maps of the cohesive interface 

elements in Figure 4.4. 

Additionally, the distribution of the longitudinal stress along 

the tensile steel bars at the simulation steps reported in Figure 

4.3, together with the corresponding final crack pattern, are de-

picted in Figure 4.5. The reported behavior appears to be oscil-

lating, with local peaks in correspondence with the main cracks. 

A gradual decrease of this stress is reported with increasing dis-

tances from the nearest cracks, associated with the development 

of bond forces at the steel/concrete interface, so that local minima 

are attained mid-way between adjacent cracks. These results con-

firm the ability of the adopted bond-slip model is capturing the 
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well-known tension stiffening effects. Coherently with the pre-

dictions of most common tension stiffening models, the first steel 

yielding is reached in the neighborhood of the primary cracks 

within the constant moment span (point C). 

4.1.3 Sensitivity analysis with respect to the mesh size 

Here, a sensitivity analysis has been performed by varying 

the mesh size, in order to assess the reliability of the previously 

obtained numerical results. Three distinct mesh configurations 

have been considered, depicted in Figure 4.6, Mesh 2 being al-

ready used to perform the failure analysis in Section 4.1.2. The 

related average element length and elastic stiffness coefficients 

 

Figure 4.5. Longitudinal stress along the tensile reinforcement bars at 

the different simulation steps highlighted in Figure 4.3.   
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of the embedded interface elements are reported in Table 4.3. The 

global response of the RC beam, in terms of the load versus mid-

span deflection curve, predicted by the proposed model, is al-

most independent of the adopted mesh size, as shown in Figure 

4.7a. As a measure of the mesh dependency, the percentage error 

on the first yielding loading level is considered, computed with 

respect to the finest mesh (Mesh 3), taken as the reference one. 

The maximum value for this error, corresponding to the coarsest 

Table 4.3. Average element length and elastic stiffness coefficients of the in-

terface elements for different mesh sizes. 

Mesh meshL  [mm] 
0
nK  [N/mm3] 

0
sK  [N/mm3] 

1 14.9 2.237e5 1.118e5 

2 7.26 4.574e5 2.287e5 

3 3.67 9.041e5 4.520e5 

 

 

Figure 4.6. Mesh configurations adopted for the sensitivity analysis: 

(a) Mesh 1; (b) Mesh 2; (c) Mesh 3.   
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mesh (Mesh 1), is of about 2%, thus confirming the desired mesh-

independence property of the proposed numerical fracture 

model. Incidentally, it is useful to note that some convergence 

troubles have been experienced by the numerical simulation per-

formed with the finest mesh (Mesh 3), prematurely stopped at a 

mid-span deflection of about 9 mm. This is due to the occurrence 

of local snap-back instabilities, whose increased probability is re-

lated to the higher number of potential failure locations with re-

spect to the other meshes. 

However, a lack of convergence for the crack pattern is ob-

served in Figure 4.7b being an unavoidable feature of the cohe-

sive finite element method. Indeed, the exact location of the main 

cracks is strongly affected by the randomness of the adopted 

computational meshes. Interestingly, we note that for Mesh 3, 

due the presence of a higher number of potential cracks, directly 

 

Figure 4.7. Global structural response of the RC beam for the three con-

sidered meshes: (a) load versus mid-span deflection curve; (b) Main 

crack pattern at the displacement 9 mm = .   
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associated with the greater mesh density, a more uniform spac-

ing between adjacent cracks within the constant moment span is 

predicted, whose averaged value is found to be of about 125 mm. 

4.2 Numerical application to FRP-plated RC elements 

The proposed integrated numerical model is here employed 

to perform numerical failure analysis of FRP-plated reinforced 

concrete (RC) elements. In particular, the simulation of the well-

kwon concrete cover separation is reported in Section 4.2.2, with 

reference to the four-point bending test reported in (Gao et al., 

2004). Such an application has been chosen to assess the predic-

tive capabilities of our numerical approach in terms of both peak 

and residual load-carrying capacities of retrofitted RC structures, 

usually involving combined failure modes. 

4.2.1 Geometric and material properties 

The geometric configuration as well as the loading and 

boundary conditions of the tested FRP-plated RC beam are de-

picted in Figure 4.8, whereas in Table 4.4 are listed the principal 

mechanical properties of the involved material constituents, i.e. 

concrete, steel, adhesive and FRP plate. The given strengthening 

system adopts a carbon FRP (CFRP) strip made of four composite 

layers with overall thickness equal to 0.44 mm, externally 

bonded to the soffit surface of the beam by using a 2 mm thick 

epoxy adhesive. 
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Due to the symmetric geometric and boundary conditions, 

and in order to reduce the associated computational effort, only 

a half beam has been modeled for the subsequent numerical 

computations. To this end, appropriate boundary conditions 

have been prescribed to the symmetry line of the specimen. The 

considered beam has been discretized by using a Delaunay mesh 

made of three-node triangular elements with prescribed maxi-

mum size of 10 mm for the concrete solid phase (resulting in an 

average size of 7.31 mm), enriched by embedded four-node co-

hesive interface elements coinciding with the bulk inter-element 

Table 4.4. Main elastic and strength properties of materials. 

Material Young’s 

modulus 

(GPa) 

Poisson’s 

ratio 

Yield 

strength 

(MPa) 

Compressive 

strength 

(MPa) 

Tensile 

strength 

(MPa) 

Concrete 31.0 0.20 - 35.7 2.1 

Steel 200.0 0.30 460 - - 

CFRP plate 235.0 0.35 - - 4200 

Epoxy resin 1.0 0.35 - - - 

 

 

Figure 4.8. Geometric configuration, loading and boundary conditions 

of the tested FRP-plated RC beam (all dimensions are expressed in 

mm).   
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boundaries (see Figure 4.9). It is worth noting that, since concrete 

crushing is not observed in the experimental results reported in 

(Gao et al., 2004) and due to the fact that the adopted cohesive 

traction-separation law is not able to describe in a satisfactory 

manner the compressive behavior of the concrete, as already 

done in the analysis of RC beam, the cohesive interface elements 

have been inserted prior to the numerical simulations over a suit-

ably chosen critical region, dominated by a combined tension-

shear stress state. Moreover, no cohesive elements have been in-

serted at the inter-element boundaries superposed to the existing 

truss elements, in order to avoid possible preferential crack paths 

induced by the 2D representation of the actual 3D failure mech-

anism occurring in the neighborhood of the steel/concrete inter-

face. All the embedded interface elements are characterized by 

the cohesive parameters listed in Table 4.5, suitably calibrated to 

 

Figure 4.9. Mesh configurations for the plated RC beam (the embed-

ded cohesive interface elements are highlighted in blue).   
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match the failure properties of the given concrete material. In 

particular, the mode-II cohesive parameters, i.e. the maximum 

shear stress max  and the mode-II fracture energy IIcG  of concrete, 

are additional parameters, not reported in (Gao et al., 2004) but 

required to correctly analyze mixed-mode failure. Coherently 

with what suggested in Section 3.3, the parameter whilst IIcG has 

been chosen ten times bigger than IcG , whilst max  has been set 

equal to about 1.4 times larger than max , this value being con-

sistent with typical cohesion values for concrete material. 

 Furthermore, both the CFRP-plate and the adhesive layer 

have been discretized by using four-node quadrilateral elements 

arranged in a mapped (i.e. structured) mesh, as shown at the bot-

tom side of Figure 4.9. Additional cohesive elements have been 

inserted all along the physical adhesive/concrete (A/C) interface, 

to take into account also potential debonding mechanisms in the 

numerical model. As cohesive parameters, the values reported in 

Table 4.5 have been chosen, implicitly assuming that the failure 

occurs at the concrete side of the material interface. 

The subsequent numerical computations are conducted by 

using a novel hybrid path-following scheme, obtained from the 

synergistic combination of a classical displacement control and a 

Table 4.5. Material parameters for the cohesive interfaces. 

0
nK   

[N/mm3] 

0
sK  

[N/mm3] 

max  

[MPa] 

max  

[MPa] 

IcG  

[N/m] 

IIcG  

[N/m] 
  

4.214e5 3.161e5 2.1 4.2 125 1250 5 
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newly proposed continuation strategy for capturing the unstable 

branches of the equilibrium path. Such a strategy adopts as a con-

tinuation parameter the average value of the normal displace-

ment jump over all the cohesive interfaces, i.e.: 

 
1

 
d

n

d

d



   (2.52) 

strictly related to the dissipated cohesive energy, assumed to 

be a monotonically increasing quantity during the propagation 

of cover separation. The switching criterion between the two 

adopted path-following schemes is based on the number of New-

ton-Raphson iterations. 

4.2.2 Results and discussion of the concrete cover separation 

analysis 

In Figure 4.10, the numerically predicted structural response 

for the plated beam, in terms of load versus mid-span deflection 

curve, together with the reference experimental results obtained 

in (Gao et al., 2004), is reported. The numerical loading curve ap-

pears to be very close to that obtained in the experiments. In par-

ticular, the notable points of this curve, coinciding with the nu-

cleation of main cracks in concrete (point A) and the yielding of 

steel reinforcing bars (point B) are well predicted by the present 

numerical simulations, even if a slightly stronger response is 

found for the equilibrium branch comprised between points A 

and B, governed by stabilized flexural/shear crack propagation. 
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This is probably due to artificial strengthening/toughening ef-

fects induced by the mesh, as already discussed in Section 4.1. 

Nevertheless, the predicted ultimate load, associated with the 

concrete cover separation failure (point C), is of about 85.2 kN, 

very close to that measured experimentally (86.4 kN), with a per-

centage relative error of only 1.43%. The predicted mid-span de-

flection at failure, 9.44 mm, is also in perfect accordance with the 

measured value, 9.50 mm (with a percentage relative error of 

only 0.63%). It is worth noting that, until the peak load (point C) 

is reached, the numerical results have been obtained by means of 

a classical displacement control, being the structural response 

stable. At point C (coinciding with the onset of cover separation), 

once the number of Newton-Raphson iterations has reached a 

 

Figure 4.10. Comparison between experimental and numerical results 

in terms of the load versus mid-span deflection curve for the FRP-

plated RC beam.   
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critical threshold, the proposed hybrid path-following scheme 

switches from the displacement control to the previously men-

tioned average displacement jump control. In this way, it is pos-

sible to follow the snap-back branch of the equilibrium path, 

characterized by a severe reduction of both the load-carrying ca-

pacity and the beam deflection (up to the limit point E). After 

this, a strength recovery is experienced up to the achievement of 

its final residual value, coinciding with the ultimate strength of 

the beam without the FRP system (in good agreement with that 

obtained in (Gao et al., 2004)).  

The deformed configurations, the damage variable maps and 

the main crack patterns of the plated beam for the simulation 

steps A, B, C and E of Figure 4.10 are reported in Figure 4.11. As 

can be deduced from the numerically predicted crack pattern, 

crack initiation occurs at the adhesive/concrete (A/C) interface. 

After that, a diffuse cracking is experienced in the tensile region 

of the beam, characterized by a rather uniform distribution of the 

main propagating cracks, up to the FRP cut-off section (see Fi-

gure 4.11a). 
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As the load is further increased, the shear crack initiated at 

 

Figure 4.11. Deformed configuration (magnified by a scale factor of 

10), damage variable map and main crack pattern for the FRP-plated 

RC beam at the different simulation steps highlighted in Figure 4.10: 

a) point A; b) point B; c) point C; d) point E.   
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the plate end tends progressively to become a major crack with 

the greatest width among all the existing cracks (see Figure 

4.11b). At the intersection between this crack and the tensile re-

inforcing bars, a new horizontal crack is predicted to initiate as 

concrete cover separation when the peak load is reached (see Fi-

gure 4.11c). Finally, it is found that the numerically predicted 

failure pattern shown in Figure 4.11d, in which the evolution of 

concrete cover separation is accompanied by the FRP/concrete 

interfacial delamination, is fully consistent with the experimental 

observations made in (Gao et al., 2004). 

The adopted formulation to simulate the interaction between 

concrete and rebars, based on a bond-slip relation, allow the 

main cracks to pass across the tensile steel reinforcements, thus 

avoiding artificial propagation constraints or, even worse, crack 

arrests, thus highlighting the importance of the embedded truss 

model (ETM) in these types of numerical simulations. In order to 

better clarify all the local failure mechanisms associated with 

cover separation, the stress distribution along the tensile rein-

forcement bars at different load levels is plotted in Figure 4.12, 

together with the corresponding crack pattern at the peak load. 

The reported oscillations, showing a decrease of the stress within 

each concrete tooth comprised between two adjacent main 

cracks, are due to the tension stiffening phenomena, which are 

well captured by the adopted local bond-slip model. The steel 

tensile stress gradually decreases as the distance from the nearest 

crack increases, due to development of bond stress at the 
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steel/concrete interface, reaching a minimum mid-way between 

the two adjacent cracks. After the load level of 68 kN is reached, 

the first yielding in the constant moment span is experienced, co-

herently with what observed at point B of Figure 4.10. It is worth 

noting that a well predicted tension stiffening is able to correctly 

simulate steel yielding in the neighborhood of the primary 

cracks.  

Moreover, from a deeper analysis of Figure 4.12, it can be ob-

served that concrete cover separation has a direct effect of the 

stress levels at the reinforcing bars. Indeed, at small load levels 

 

Figure 4.12. Longitudinal stresses along the tensile reinforcement bars 

for different loading levels (the first yielding stress level for steel rebars 

is indicated by y ).   
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(see 20 kN and 50 kN curves), such longitudinal stresses globally 

exhibit a linear trend within the shear span, followed by a con-

stant distribution within the constant moment span, meaning 

that the associated damage does not have a significant influence 

in the stress redistribution along the longitudinal direction, 

whereas at larger load levels (see 68 kN, 76 kN and peak load 

curves), the nucleation and subsequent propagation of the con-

crete cover separation (accompanied by shear cracking) at the 

FRP cut-off section causes a high stress concentration in the 

neighboring steel bars, leading to a sudden increase of stress 

above the separating concrete layer. Finally, after the concrete 

cover separation failure is occurred (see after peak curve), the 

longitudinal stress decreases in the shear span and the local peak 

in the neighborhood of the plate end becomes less evident, due 

to the sudden energy releases associated with the cover failure. 

Even if the FRP rupture is not reported in (Gao et al., 2004), 

the longitudinal stresses on the lower surface of the FRP plate for 

different loading levels have been probed during the numerical 

simulation to estimate the safety level of the tested beam in re-

gards to the plate failure (see Figure 4.13). At small load levels 

(see 20 kN and 50 kN curves), such longitudinal stresses increase 

rapidly from zero at the plate end and assume an approximately 

constant value in the constant bending moment zone. At larger 

load levels (see 68 kN, 76 kN and peak load curves), the global 

trend is similar to the previous one, but greater oscillations 

appear, reflecting the stress redistribution in the beam due to 
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rapid crack development. The existing peak stresses in the FRP 

are associated with the stress concentration experienced at the 

location of major cracks. After the peak load, the concrete cover 

is subjected to an abrupt failure, such that the FRP plate 

experiences an elastic unloading, as confirmed by the extended 

vanishing behavior of the longitudinal stress distribution (see 

after peak curve). A maximum residual tensile stress of about 100 

MPa in the FRP plate is recorded at the beam mid-span location, 

remaning the central part of the plate attached to the beam, 

allowing the interfacial shear stresses to be still transferred. 

 

Figure 4.13. Longitudinal stresses on the lower surface of the FRP plate 

for different loading levels.   
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Finally, it can be noted that the maximum stress monitored in the 

FRP plate during the entire loading history, occurring at 

incipient cover separation failure, is of about 1500 MPa. This 

value is much below the FRP tensile strength, equal to 4200 MPa, 

resulting in a safety factor prediction, computed as the ratio 

between these values, of about 2.8. 

4.3 Numerical application to steel bar-reinforced nano-

enhanced UHPFRC elements 

In this Section, the proposed integrated fracture model has 

been employed to perform failure analysis of ultra high-perfor-

mance fiber-reinforced concrete (UHPFRC) structures. 

In order to capture all the microscopic fracture mechanisms, 

including cement paste micro-cracking, matrix/aggregate 

debonding and fiber pull-out, the intrinsic exponential cohesive 

law, reported in Section 2.2.1 and used in the previous simula-

tions, has been replaced by a suitable trilinear traction-separation 

law and described in Section 4.3.1.  

Subsequently, the main applications of the proposed fracture 

approach to plain nano-enhanced UHPFRC are presented for 

both validation and parameter calibration of the trilinear cohe-

sive models. Suitable comparisons with the available experi-

mental results, reported in Section 4.3.2, are provided to show 

the accuracy of the proposed diffuse interface approach involv-

ing a four-point bending test on small-sized UHPFRC beams 
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with different volume fractions of graphite nanoplatelets 

(GNPs). 

The proposed integrated numerical framework is also em-

ployed to simulate the mechanical behavior of steel bar-rein-

forced nano-enhanced UHPFRC structures. The main numerical 

outcomes, presented in Section 4.3.3 in terms of both global struc-

tural response and final crack pattern, show the ability of the pro-

posed approach to predict the load-carrying capacity of such 

structures and assess the role of the embedded nano-reinforce-

ment in the crack width control. 

4.3.1 Traction–Separation Law for Nano-Enhanced UHPFRC 

Structures 

The traction-separation law (TSL) implemented in the pro-

posed diffuse interface model to describe the nonlinear fracture 

process in (eventually nano-enhanced) UHPFRC is here pre-

sented. This is a trilinear softening model able to capture the ten-

sile failure of fiber-reinforced concretes, initially proposed in 

(Park et al., 2010) for functionally graded FRC and here adapted 

to the specific case of UHPFRC. In particular, all the microscopic 

fracture mechanisms of FRCs are taken into account, including 

cement paste micro-cracking, matrix/aggregate debonding and 

fiber pull-out. 

The adopted model considers, in addition to the fracture re-

sistance offered by the aggregate interlocking, also the additional 
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toughening effect of embedded discrete fibers, which is associ-

ated with a sensible enlargement of the fracture process zone size 

in UHPFRC with respect to UHPC without reinforcement. The 

first two linear descending branches of the adopted trilinear sof-

tening model for UHPFRC are associated with the initial and to-

tal fracture energies of UHPC, respectively, whereas the last de-

scending slope is related to the additional energy required to 

debond and pull-out the fibers from the cement paste, corre-

sponding to the difference between the total fracture energy of 

 

Figure 4.14. Traction-separation law for UHPFRC with a trilinear sof-

tening model, and microscopic fracture mechanisms corresponding to 

each linear descending branch.   
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UHPFRC and the total fracture energy of UHPC, as shown in Fi-

gure 4.14. 

The numerical calibration of this softening model requires 

the determination of the following six fracture parameters: ten-

sile strength tf , initial fracture energy UHPC
fG  and total fracture 

energy UHPC
FG  of the plain UHPC, critical crack tip opening dis-

placement CTODc, total fracture energy UHPFRC
FG  of UHPFRC, and 

final crack opening width fw . The first four parameters refer to 

the bilinear softening model of the plain UHPC, whereas the two 

latter ones define the last descending branch of UHPFRC. 

The horizontal axis intercepts of the first and second soften-

ing slopes are expressed as: 

 UHPC
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respectively, where the expression for 2w  is derived assum-

ing that the kink point between the first and second descending 

branches of the TSL is characterized by a crack opening width w  

(i.e. its abscissa in Figure 4.14) coinciding with the CTODc, sup-

posed to be a known material property (for additional detail 

about the derivation of Equation (5), please see (Park et al., 2008) 



Failure analysis of strengthened reinforced concrete (RC) structures 216 

and references cited therein). Finally, fw  is estimated as / 4fL , 

fL  being the fiber length. Such a value corresponds to the esti-

mated pull-out length for randomly distributed short fibers (see 

(Park et al., 2010) for additional details). 

The associated complete mixed-mode intrinsic-type interface 

constitutive behavior, including the damage irreversibility and 

the frictionless unilateral contact conditions, reads as: 
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where nw  and sw  denote the normal and tangential components 

of the displacement jump vector, the initial stiffness 0K  is used 

to enforce in an approximated manner the non-interpenetration 

condition in compression (i.e. for 0nw  ), and the function 

max( )t w  represents the TSL shown in Figure 4.14, t  being the ef-

fective traction and maxw  the maximum value of the effective dis-

placement jump w  attained over the entire deformation history. 

This traction-separation law has been applied to both normal 

and nano-enhanced UHPFRC (with special reference to UHP-

FRC with embedded graphite nanoplatelets). The effect of dif-

fuse nano-reinforcement on the nonlinear softening response of 

the conglomerate consists in sensible increase of both tensile 

strength tf  and fracture energies UHPC
fG , UHPC

FG  and UHPFRC
FG , due 

to the improved bond within the cement paste as well as at the 

cement paste/aggregate and cement paste/fiber interfaces. As a 
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consequence, the resulting softening curve of nano-enhanced 

UHPFRC is entirely above that of UHPFRC without nano-en-

hancement, as depicted in the same Figure 4.14. Moreover, the 

final crack opening width fw  is assumed to be insensitive to the 

incorporation of nanoplatelets within the concrete matrix, the fi-

ber/matrix bond-slip behavior occurring at higher spatial scales, 

which are not interacting with the nanoscale level. 

Finally, it is worth noting that the above-described interface 

model is not suitable for hooked fibers and/or high fiber volume 

fractions, which are usually associated with a strain hardening 

behavior in the post-cracking stage, even accompanied with a 

secondary peak in the global traction-separation response (Fan-

tilli et al., 2009; Suárez et al., 2019; Zhan and Meschke, 2016). 

However, such a behavior is not considered here, being outside 

of the scopes of the present work, but could be object of future 

investigations involving a wider class of UHPFRCs. 

4.3.2 Numerical calibration and validation of the trilinear 

cohesive model 

Here, the main numerical results obtained via the adopted 

diffuse cohesive interface model for plain UHPFRC are pre-

sented, with reference to a simulated flexural test which involves 

structural elements containing different volume fractions of 

graphite nanoplatelets (GNPs). The proposed numerical applica-

tions have the twofold role of calibrating the inelastic parameters 

of embedded interfaces and of assessing the numerical accuracy 
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of the adopted fracture model, via suitable comparisons with 

available experimental results. 

The present numerical simulations involve small-sized UHP-

FRC beam specimens subjected to a four-point bending test, an-

alyzed in (Meng and Khayat, 2016) from an experimental point 

of view, whose geometry and boundary conditions are depicted 

in Figure 4.15. The geometric parameters of the cross section are 

76 b mm=  and 76 h mm= , whereas the total length and the span 

length of the beam are equal to 305 L mm=  mm and 203 l mm=

, respectively. Three mixtures of UHPFRC, containing 0.5% by 

volume of steel fibers with length 13 fL mm= , have been used 

for the specimens considered in the next simulations: one mix-

ture without nano-enhancement, which is taken as the control 

one and named as UHPFRC, and two mixtures containing 0.05% 

and 0.1% of GNP reinforcements, referred to as UHPFRC GNP 

0.05% and UHPFRC GNP 0.1%, respectively. 

 

Figure 4.15. UHPFRC beam geometry and boundary conditions of the 

four-point bending test.   
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The elastic bulk material parameters have been set equal for 

all the three concrete mixtures, being assumed to be almost inde-

pendent of GNP embedding at lower volume fractions. In partic-

ular, the adopted Young’s modulus is 40 E GPa= , taken from the 

uniaxial tensile test results reported in (Meng and Khayat, 2016), 

whereas the Poisson’s ratio is 0.2 = , as usually assumed for 

uncracked normal concretes. 

The adopted values of the inelastic constitutive parameters 

introduced in Section 4.3.1 are shown in Table 4.6 for all the con-

sidered mixtures. The tensile strength values tf  are directly 

taken from the uniaxial tensile test responses reported in (Meng 

and Khayat, 2016), whereas the fracture energies UHPC
fG , UHPC

FG  

and UHPFRC
FG  as well as the CTODc values are obtained by means 

of a fitting procedure of the experimental load-displacement 

curves obtained for the four-point bending test analyzed in 

(Meng and Khayat, 2016) and reported in Figure 4.16 for com-

parison purposes. As constraints introduced to simplify the cali-

bration procedure, the CTODc is assumed to be constant for all 

Table 4.6. Inelastic parameters of embedded cohesive interfaces for the 

three UHPFRC mixtures. 

 
tf  

(MPa) 

UHPC
fG  

(N/m) 

UHPC
FG  

(N/m) 
UHPFRC
FG  

(N/m) 

cCTOD  

(mm) 

fw  

(mm) 

UHPFRC 5.71 40 350 1800 0.005 3.25 

UHPFRC  

GNP 0.05% 
6.14 50 375 2800 0.005 3.25 

UHPFRC  

GNP 0.1% 
6.81 60 400 3800 0.005 3.25 
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the mixtures, and the fracture energy values are adjusted to en-

force a linear variation with the nanoplatelet content. As ex-

pected, the estimated fracture energies UHPC
fG , UHPC

FG  and UHPFRC
FG  

increase for increasing values of the nanoplatelet volume fraction 

(at least within the considered range of variations). It is worth 

noting that these fracture energy values are intended not to be 

valid in general, but rather as reasonable estimates, providing 

enough accurate predictions for the investigated cases. 

To reduce the computational effort of the numerical analyses, 

the cohesive interface elements have been inserted only within 

the rectangular area, which is dominated by a combined tension-

shear stress state. Here, a suitably refined triangular tessellation 

has been generated by using an isotropic Delaunay algorithm 

and imposing a maximum element size of 4 mm, which corre-

sponds to an average length of interface elements of about 2.93 

mm. The resulting mesh is composed of 3890 three-node bulk el-

ements and 5903 four-node zero-thickness interface elements. 

The subsequent numerical computations have been conducted 

under quasi-static loading conditions via a displacement-con-

trolled path-following scheme, by adopting a constant vertical 

displacement increment of 5×10-3 mm for the extrados point of 

the mid-span section. Moreover, all the numerical simulations 

have been performed under a plane stress assumption. 

The structural responses numerically derived for the differ-

ent UHPFRC mixtures, depicted in (Biernacki et al., 2017) Figure 
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4.16a, have been compared with the experimental results re-

ported in (Biernacki et al., 2017). The load versus mid-span de-

flection curves, can be schematized with three clearly detectable 

branches for each concrete mixture: the first one corresponds to 

the elastic regime in which the load level increases almost line-

arly up to the nucleation of the main crack, occurring at the mid-

span section due to the symmetric geometry and boundary con-

ditions. After the peak load, which is associated with the early 

stage of crack propagation, a fast crack growth characterizes the 

second branch of the numerically derived curve, along which the 

 

Figure 4.16. Global structural response for the three considered UHP-

FRC mixtures: (a) comparison between numerical and experimental 

results in terms of load versus mid-span deflection curves; (b) de-

formed configurations (magnified by a scale factor of 25), horizontal 

stress maps and main crack paths at a beam deflection of 0.2 mm.   



Failure analysis of strengthened reinforced concrete (RC) structures 222 

load level decrease until the main crack arrest occurs, due to the 

steel fiber bridging effect. Then, in the final part of the softening 

branch, owing to the activation of the fiber pull-put forces, the 

load level does not drop to zero but remains at (slowly decreas-

ing) residual values. 

It is worth noting that the adopted diffuse cohesive method-

ology allows both nucleation and propagation of the main crack 

to be naturally predicted, as shown in Figure 4.16b, without as-

suming the preexistence of weak zones nor requiring the intro-

duction of an initial stress-free crack. 

The good agreement between the experimental and numeri-

cal loading curves for each investigated UHPFRC mixture un-

derlines that the adopted traction-separation law, if suitably cal-

ibrated in terms of inelastic cohesive parameters, is reliable for 

determining the structural behavior of both normal and nano-

enhanced UHPFRC elements with lower nanoparticle contents 

(up to 0.1% by volume). The percentage errors on the predicted 

load peak with respect to the experimental values are fully ac-

ceptable from an engineering point of view, being of 3.62%, 

3.58% and 4.51%, for the three mixtures UHPFRC, UHPFRC 

GNP 0.05% and UHPFRC GNP 0.1%, respectively. Moreover, a 

slight local divergence between numerical and experimental re-

sults can be observed in the softening branch of the curves refer-

ring to the case of UHPFRC without nano-reinforcement, proba-

bly due to the occurrence of an unstable structural response in 

the experimental test, being associated with the appearance of 
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dynamic effects (totally neglected in the numerical simulations), 

characterized by very high speeds of the main crack propagation. 

The numerical outcomes clearly demonstrate the ability of 

the proposed diffuse cohesive model for UHPFRC in capturing 

the effectiveness of the embedded reinforcement in the form of 

graphite nanoplatelets on the mechanical performances of small-

scale structural elements, in terms of cracking resistance and 

fracture toughness. As a matter of fact, as known from the exper-

iments and confirmed by numerical results, an increase in the 

GNP fraction leads to an increase of both the peak load and the 

energy absorption capacity, due to the increase in the bond 

strength between cement paste and steel fibers and between ce-

ment paste and fine aggregates, guaranteed by the additional 

work-of-fracture provided by embedded nanoplatelets. On the 

other hand, as illustrated in Figure 4.16b, in the presence of nano-

enhancements, significant beneficial effects can be observed in 

terms of more controlled crack patterns, associated with an in-

creased apparent ductility in the post-peak stage. Indeed, the in-

clusion of graphite nanoplatelets in the concrete matrix inhibits 

the nucleation of micro-cracks, reducing at the same time the 

(macroscopic) crack width. In particular, percentage reductions 

in the main crack width of about 4% and 8% are obtained for 

UHPFRC GNP 0.05% and 0.1% cases, respectively, both com-

pared to the control UHPFRC mixture (without nano-reinforce-

ment). 
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4.3.3 Failure analysis of steel bar-reinforced nano-enhanced 

UHPFRC beams  

Here, the load-carrying capacity of steel bar-reinforced UHP-

FRC elements enhanced with graphite nanoplatelets (GNPs) has 

been investigated by means of the diffuse interface model en-

riched by the trilinear softening model described in Section 4.3.1, 

and by the embedded truss model (ETM), describe in Section 

2.2.2, able to capture the diffuse damage processes which are typ-

ical of UHPFRC structures, and to simulate the steel/concrete in-

teractions, respectively. 

4.3.3.1 Geometric and material properties 

The numerical application of the proposed integrated frame-

work for steel bar-reinforced UHPFRC consists in the simulation 

of four-point bending tests performed on different medium-

sized steel bar-reinforced beams made with the UHPFRC mix-

tures already adopted in Section 4.3.2, characterized by the same 

steel fiber content and geometry, and three different GNP con-

tents (0%, 0.05% and 0.1%). The related geometric configuration, 

loading conditions and constraints, are taken from the experi-

mental tests performed on normal RC beams found in (Gao et al., 

2004), and already considered as reference data for the numerical 

simulations in Sections 4.2 and 4.3, (see Figure 4.1).  The main 

mechanical parameters of both UHPFRC and steel materials are 

listed in Table 4.7. In particular, the UHPFRC elastic properties 

are the same as those considered in Section 4.3.2, whereas the 
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UHPFRC compressive strength, required for the computation of 

the maximum concrete/steel shear stress according to the bond-

slip model described in Section 2.2.2, is directly taken from 

(Meng and Khayat, 2016).  

The bond stress-slip relation, adopted to capture the interac-

tion between steel and surrounding nano-enhanced concrete, is 

a modification of that proposed by CEB-FIP Model Code 2010 

(Fib, 2013), obtained by assuming, for UHPFRC, ,max 3.9b cf =  

(fc being its mean compressive strength), 1 0.1 s mm=  and 

2 0.6 s mm= . The remaining parameters are taken from the origi-

nal Model Code formula, thus , ,max0.4b f b =  and 3 10 s mm= , co-

inciding with the distance between ribs. The interface behavior 

is completed by assuming a perfect steel/concrete bond in the 

normal direction, so that only the interfacial slip is regarded as 

an active degree of freedom. 

The computational mesh, consisting of 17346 triangular ele-

ments with a maximum element size of 10 mm, has been gener-

ated by using a Delaunay triangulation algorithm to avoid any 

Table 4.7. Main elastic and strength properties of materials. 

Material Young’s 

modulus 

(GPa) 

Poisson’s 

ratio 

Yield 

strength 

(MPa) 

Tangent 

modulus 

(GPa) 

Compressive 

strength 

(MPa) 

Steel 200 0.3 460 2.0 - 

UHPRFC 40 0.2 - - 174 

UHPRFC 

GNP 0.05% 
40 0.2 - - 176 

UHPRFC 

GNP 0.1% 
40 0.2 - - 178 
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preferential crack path direction. In order to preserve a signifi-

cant computational efficiency, the extension of the cohesive in-

sertion zone has been limited to the region comprised between 

the supports (see Figure 4.1), being the only susceptible to be 

cracked due to the presence of completely free boundary condi-

tions outside of this region. Moreover, the embedded cohesive 

elements lying along the steel reinforcements are excluded from 

the numerical model. The inelastic cohesive parameters required 

by the adopted interface constitutive law are the same as those 

used in the previous numerical application and listed in Table 

4.6, being already calibrated in Section 4.3.2 for the considered 

UHPFRC mixtures. 

Finally, all the steel reinforcements (i.e. both longitudinal 

bars and stirrups) are modeled as one-dimensional two-node 

elastic-plastic truss elements connected to concrete elements via 

special zero-thickness four-node bond elements, according to the 

embedded truss model described in Section 2.2.2. The following 

numerical simulations have been performed under plane stress 

and quasi-static assumptions, adopting a displacement-control 

solution scheme with constant increments of the mid-span de-

flection equal to 5×10-2 mm. 

4.3.3.2 Numerical results and discussion 

The presentation and subsequent discussion of the numeri-

cally predicted structural response of the considered steel bar-

reinforced GNP-enhanced UHPFRC beams are here reported. 
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Such a response in terms of total load versus mid-span deflection 

curves is reported Figure 4.17 in for all the three concrete mix-

tures. The total load is measured as the sum of applied concen-

trated forces on the upper side of the beams. 

For comparison purposes, this figure also shows the experi-

mental results reported in (Gao et al., 2004) and in Section 4.1 

represented as scattered points, together with the related numer-

ical results obtained for a normal concrete (i.e. without steel fi-

bers), represented by a dotted line. The latter results have been 

derived by performing an additional simulation introduced only 

for verification purposes. To this end, the trilinear softening 

 

Figure 4.17. Numerically predicted load versus mid-span deflection 

curves of steel bar-reinforced UHPFRC beams enhanced with different 

content of GNPs (0%, 0.05% and 0.1%).   
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model discussed in Section 4.3.1 has been adapted to normal con-

crete, neglecting the third descending branch of Figure 4.14 and 

assuming the following concrete properties, coherent with the 

well-known softening model proposed by Petersson (Petersson, 

1981): Young’s modulus E = 31 GPa, Poisson’s ratio ν = 0.2, tensile 

strength ft = 2.1 MPa, initial fracture energy Gf = 75 N/m, total 

fracture energy GF = 125 N/m, and critical crack tip opening dis-

placement CTODc = 0.048 mm. The excellent agreement between 

the experimental and numerical results further confirms the reli-

ability of the proposed numerical framework for the failure pre-

diction of both RC and FRC structural elements. 

As expected, the loading curves referring to steel bar-rein-

forced UHPFRC beams (with and without GNP enhancement) 

show greater load-carrying capacities with respect to the conven-

tional RC beam, with increasing strength values for increasing 

contents of embedded graphite nanoplatelets (from 0% to 0.1%). 

In particular, the typical trilinear behavior of steel bar-rein-

forced structural elements has been observed for all the analyzed 

cases. The first slope change coincides with the occurrence of 

early nonlinear phenomena, consisting in coalescence of concrete 

microcracks and subsequent macrocrack nucleation. After this, 

the second linear branch with reduced stiffness initiates after the 

crack saturation state is reached, being associated with multiple 

macrocrack propagation toward the upper side of the RC beam. 

Finally, the second slope change corresponds to the initiation of 

the yielding phase for lower steel rebars, after which a slight 
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hardening is kept without the occurrence of any collapse until 

the end of simulation, stopped as the deflection reaches a pre-

scribed value of 15 mm. 

The numerical results clearly show that the combination of 

micro- and nano-reinforcements (in the form of steel fibers and 

graphite platelets, respectively) significantly improves the flex-

ural behavior of UHPFRC beams, in terms of ultimate load and 

energy absorption. In particular, increments of 11% and 20% in 

the absorbed energy (computed as the area under each load-dis-

placement curve reported in Figure 4.16), as well as increments 

of 4.8% and 11% in the first yielding load level, with respect the 

UHPFRC case, are reached with contents of nano-reinforcement 

equal to 0.05% and 0.1%, respectively. Such an increased strength 

at both peak and post-peak stages is essentially due to the con-

currence of two phenomena. The first one consists in a stronger 

crack bridging effect of steel microfibers promoted by the high 

reactivity of embedded interacting nanomaterials, which allows 

macrocrack propagation to be retarded, thus leading ultimately 

to a stronger bond between steel reinforcing bars and surround-

ing concrete (see, for instance, (Qasem et al., 2020) and references 

cited therein). The second one is the additional crack bridging 

effect at the nanoscopic scale within the cement paste, responsi-

ble for an increase in the tensile strength of UHPFRC material. 

Both phenomena, considered individually and/or in synergy, 

contribute to amplify the significance of the well-known tension 
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stiffening effect characterizing the interaction between steel rein-

forcing bars and surrounding concrete layers. 

The role of GNPs on the tension stiffening effect can be better 

highlighted by analyzing the numerically predicted cracking 

patterns clearly visible in the deformed configurations reported 

in Figure 4.18, as obtained for the three investigated concrete 

mixtures at the same load level of 65 kN (corresponding to the 

first yielding of tensile reinforcing bars of the UHPFRC beam 

without GNPs). It can be noted that a decrease in both average 

crack depth and crack spacing has been observed as the value of 

the GNP content increases. Indeed, it is worth noting that, owing 

 

Figure 4.18. Deformed configurations (magnified by a multiplicative 

factor equal to 20) and stress maps for the three simulated steel bar-

reinforced GNP-enhanced UHFRC beams at a load level of 65 kN.   
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to the higher fracture toughening effect provided by the embed-

ded nano-reinforcement, a significant reduction in the crack pat-

tern development for the concrete mixture with the highest GNP 

volume fraction is experienced, compared to the other cases. 

Specifically, by restricting the cracking analysis within the 

constant bending moment region, the average crack width val-

ues of 0.079 mm and 0.063 mm can be measured for the cases 

with GNP addition of 0.05% and 0.1%, respectively, correspond-

ing to crack width reductions of 14% and 31%, respectively, com-

pared to the case of UHPFRC without nano-enhancement (exhib-

iting an average crack width of 0.093 mm). In addition, the crack 

spacing for the three different mixtures has been measured at the 

same fixed load level of 65 kN, obtaining a mean value of 91 mm 

for the case without nano-enhancement and of 84 mm for both 

the nano-enhanced mixtures. A crack spacing reduction of 7.32% 

has been achieved with the introduction of nano-enhancement, 

while a non-relevant crack spacing reduction is observed for a 

GNP volume fraction equal to 0.1%, due to the fact that, for the 

analyzed configuration, such content of nano-reinforcement is 

associated with a diffuse micro-cracking within the concrete 

teeth between existing macro-cracks, without leading to the on-

set of new macro-cracks. Moreover, compared to the case with-

out nano-enhancement, a beam deflection reduction equal to 

13.2% and 27.7% has been achieved for the cases with GNP ad-

dition of 0.05% and 0.1%, respectively, highlighting an improve-



Failure analysis of strengthened reinforced concrete (RC) structures 232 

ment of the overall mechanical performances in terms of increas-

ing bending stiffness as the nano-reinforcement content in-

creases. With the aim to investigate the cracking phenomenon 

under service conditions, in Figure 4.19, the deformed beam con-

figurations for the three investigated concrete mixtures have 

been reported at a load level of 45 kN, corresponding to the early 

stage of crack propagation at the bottom of the beams. Moreover, 

the average crack width, crack spacing and beam deflection at 

the same load level have been reported in Table 4.8. In Figure 

4.19, it can be seen that the cracking patterns are not completely 

developed, compared to those obtained at a load level of 65 kN, 

the further cracks being visible in Figure 4.18 in an incipient 

 

Figure 4.19. Deformed configurations (magnified by a multiplicative 

factor equal to 15) and stress maps for the three simulated steel bar-

reinforced GNP-enhanced UHFRC beams at a load level of 45 kN.   
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propagation stage at service conditions. More specifically, the 

crack spacing at service conditions, as reported in Table 4.8, is 

not influenced by the presence of nano-reinforcements, resulting 

in being equal to 100 mm for all the investigated mixtures. Con-

trary to what happens for the crack spacing, the average crack 

width is strongly influenced by the nano-reinforcement, which 

results in being equal to 0.019 mm and 0.012 mm for the cases 

with GNP addition of 0.05% and 0.1%, respectively, correspond-

ing to a crack width reduction, compared to the case without 

nano-reinforcement, equal to 30.1% and 55.7%, respectively. The 

obtained crack width reduction at service condition reached by 

the addition of GNP results in being almost doubled compared 

to the one reached at a load level equal to 65 kN, highlighting a 

better fracture toughening effect provided by nano-reinforce-

ments at service conditions. In addition, in Table 4.8, the beam 

deflection at service conditions has been also reported for the 

three investigated mixtures, highlighting a beam deflection re-

Table 4.8. Average crack width, crack spacing, and beam deflection 

of the simulated beams at a load level of 65 kN. 

Material Average 

Crack Width 

(mm) 

Crack  

Spacing 

(mm) 

Beam  

Deflection 

(mm) 

UHPFRC 0.093 91 3.80 

UHPFRC GNP 0.05 % 0.080 84 3.30 

UHPFRC GNP 0.1% 0.064 84 2.75 
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duction equal to 16.7% and 29.2% for the cases with GNP addi-

tion of 0.05% and 0.1%, respectively, compared to the case with-

out nano-enhancement. As a consequence, not relevant changes 

in the beam deflection reduction have been observed compared 

to those evaluated at a load level equal to 65 kN, and, generally 

speaking, also at service conditions, the bending stiffness in-

creases as the nano-reinforcement content increases. The numer-

ically predicted crack width and crack spacing reductions for 

GNP-enhanced concrete highlights the reliability of the pro-

posed numerical framework for UHPFRCs in capturing the ad-

ditional crack bridging effect provided by nanoparticles inserted 

into the concrete mixture, and, ultimately, its beneficial influence 

 

Figure 4.20. Axial stress distribution along the tensile longitudinal re-

inforcement bars of the three considered UHFRC beams with different 

contents of GNPs, for a load level of 65 kN.   



Failure analysis of strengthened reinforced concrete (RC) structures 235 

on the ductility properties of structural elements, being inti-

mately related to their macro-cracking behavior. Furthermore, in 

Figure 4.20, the axial stress distribution along the tensile rein-

forcement bars of the three simulated UHPFRC beams has been 

reported for the same load level (65 kN). The reported trends, 

characterized by lower values of the average rebar stress (and 

strain) for higher values of the GNP content, confirm the increase 

in the tension stiffening effect for increasing fractions of nano-

reinforcement (at least within the considered range of variation). 

In particular, the reductions in the (global) maximum stress as-

sociated with 0.05% and 0.1% of GNPs with respect to the UHP-

FRC without nano-enhancement are of about 11% and 23%, re-

spectively.  

Finally, the reported oscillating behavior of such stresses, 

with local maxima in proximity of fully developed cracks and 

local minima between two contiguous cracks, demonstrates the 

capability of the adopted embedded truss model as well as of the 

proposed steel/UHPFRC bond-slip model to correctly capture 

the stress transfer between steel and concrete phases, which is of 

fundamental importance for the accurate numerical simulation 

of tension stiffening phenomena. 

 

 

 

 

 





 

Conclusions 

In this thesis the fracture phenomena in quasi-brittle materi-

als like concrete have been widely investigated from a numerical 

point of view, by means of newly proposed discrete modeling 

techniques based on a cohesive fracture approach. Such ad-

vanced fracture methods constitute an efficient numerical frame-

work for the simulation of the complex fracture behavior of con-

crete structures under general loading conditions, including 

multiple crack initiation, propagation and coalescence. The basic 

concepts of fracture mechanics have been critically discussed, to-

gether with a complete overview of the principal fracture models 

proposed in the past literature. In particular, the main goal of the 

present thesis is to propose a novel inter-element fracture model, 
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here called Diffuse Interface Model (DIM), based on a cohe-

sive/volumetric finite element formulation, for the nonlinear 

analysis of both plain and reinforced concrete structures sub-

jected to diffuse cracking. Such a formulation, based on the in-

sertion of cohesive interface elements along all the internal mesh 

boundaries within a standard displacement-based finite element 

setting, is capable to simulate multiple crack nucleation and 

propagation under mixed-mode loading in a very accurate and 

computationally efficient manner. In detail, the adoption of a dif-

fuse interface model dramatically simplifies the prediction of 

complex fracture phenomena in reinforced concrete elements, in-

cluding crack branching and coalescence, allowing single crack 

paths and/or patterns to be obtained in an automatic manner, 

without any additional insertion criterion and/or complicated 

remeshing. The adopted inter-element cohesive approach pos-

sesses some advantages over most of the existing fracture ap-

proaches, since it preserves the discrete nature of cracking phe-

nomena, unlike smeared crack and damage models, and, at the 

same time, does not require a great implementation effort, unlike 

the X-FEM technique and other sophisticated intra-element ap-

proaches.  

The proposed fracture model exploits a novel calibration 

methodology for the elastic constitutive response of embedded 

cohesive interfaces, relying on a numerical micromechanical 

model, able to extend some previous results found in the litera-
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ture, based on analytical or semi-empirical approaches. The pro-

posed calibration approach leads to obtain invisible cohesive in-

terfaces in the elastic range, with the final aim of reducing the 

well-known artificial compliance issues, while keeping the well-

conditioning of the resulting numerical problem. 

The adopted fracture model has been used in combination 

with an Embedded Truss Nodel (ETM), developed to taking into 

account the bond-slip effect between the steel reinforcing bars 

and the surrounding concrete, as well as its interaction with the 

neighboring propagating cracks, during the cracking analysis of 

reinforced concrete elements. Such a model, equipped with an 

elastoplastic constitutive behavior, and suitably connected via a 

bond-slip interface, is conceived to allow the reinforcing bars to 

be crossed by the neighboring propagating cracks, so that no ar-

tificial crack arrest is experienced during the associated numeri-

cal simulations.  

Moreover, to take into account the possible damage phenom-

ena which may occur along the existing interfaces during the nu-

merical analysis of reinforced concrete structures externally 

strengthened with FRP systems, a Single cohesive Interface 

Model (SIM), is incorporated into the proposed numerical frame-

work. This model consists in the insertion of mixed-mode cohe-

sive elements along the material interfaces, i.e. adhesive/concrete 

(AC) and adhesive/plate (AP) interfaces, able to simulate multi-

ple interfacial debonding initiation and propagation. 
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The proposed integrated fracture model, composed by DIM, 

ETM, and SIM approaches, has been developed in a 2D finite el-

ement setting and implemented within a commercial software, 

allowing to automatically simulate multiple discrete crack onset 

and propagation in concrete structures during the whole loading 

process until the final collapse, in a very accurate and efficient 

manner. 

In the first part of the results, with reference to Chapter 3, the 

calibration and validation of the proposed fracture model is re-

ported. The micromechanics-based calibration approach has 

provided some interesting general results. In particular, two 

charts are obtained for calibrating the normal and tangential 

elastic stiffness coefficients of the embedded cohesive interfaces, 

as functions of both the Poisson’s ratio of the bulk and the admit-

ted reduction in the overall Young’s modulus after the insertion 

of such interfaces. These charts have been constructed by per-

forming several analyses on a suitably defined representative 

volume element (RVE), consisting in a 2D cohesive finite element 

assemblies arranged according to an isotropic and homogeneous 

Delaunay tessellation, and subjected to the three in-plane pure 

loading modes assuming uniform traction BCs. The above-men-

tioned results are valid for any kind of isotropic material with 

positive Poisson’s ratio and quasi-brittle behavior, whose non-

linear response can be effectively modeled with any cohesive ap-

proach. This represents an important aspect of the proposed frac-

ture model, confirming its versatility and direct applicability to 
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a very large class of real-life materials, including those encoun-

tered in usual engineering applications.  

A preliminary numerical validation for the proposed diffuse 

interface model (DIM) in plain concrete has been performed by 

investigating its capability to predict self-similar crack propaga-

tion under pure mode-I loading conditions. To this end, a novel 

comparison model has been introduced, named controlled dif-

fuse interface model (CDIM), obtained by imposing an addi-

tional constraint during the mesh generation, which guarantees 

the insertion of cohesive elements along a straight-line coincid-

ing with the a priori known propagation direction. The numeri-

cal results have demonstrated that, although the well-known 

lack of crack path convergence is experienced, only a little over-

estimation of the predicted crack length is found, of about 5%, 

strictly related to the fractal dimension of the distances measured 

along the edges of an isotropic and homogeneous Delaunay 

mesh. Such an overestimation still leads to acceptable values 

(from the engineering point of view) for both the numerically ob-

tained peak load and dissipated energy, thus confirming the re-

liability of the proposed methodology. 

A further validation of the DIM approach has been provided 

for plain concrete structures subjected to general mixed-mode 

loading conditions. The attention has been devoted to the cali-

bration of mode-II inelastic parameters (i.e. tangential critical 

stress and mode-II fracture energy) for the embedded cohesive 

interfaces. In particular, with the aim of investigating the role of 
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such parameters, two sensitivity analyses have been performed 

by alternately varying one parameter while keeping fixed the 

other. The related numerical simulations have shown that relia-

ble results can be obtained by choosing for the mode-II fracture 

energy values greater than the mode-I counterpart, without the 

need of calibrating it from ad-hoc experimental tests. On the con-

trary, a stronger restriction has been found for calibrating the 

tangential critical stress, which possesses a more precise physical 

meaning, being strictly related to the cohesion of the material. 

Indeed, the nonlinear response obtained by mans of the present 

diffuse interface approach has been shown to be insensitive to 

this parameter only in a limited range, outside of which errone-

ous damage patterns are numerically predicted. 

In the second part of the results, with reference to Chapter 4, 

the integrated fracture model is used to perform complete failure 

analyses in different reinforced concrete structures, i.e.: normal-

strength reinforced concrete (RC) elements, FRP-plated RC 

beams and steel bar-reinforced nano-enhanced ultra-high-per-

formance fiber-reinforced concrete (UHPFRC) members. How-

ever, common failures in these structural elements are usually 

associated with complex mechanical phenomena, including not 

only tensile and shear concrete cracking (and eventually concrete 

crushing in compression), but also debonding at steel/concrete 

interfaces, yielding of reinforcing bars, debonding phenomena, 

and concrete cover separation. 
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Different simulations performed on real-scale RC beams by 

using the above-described model have provided numerical re-

sults which are fully consistent with the experiments, in terms of 

both load-carrying capacity and associated failure pattern, thus 

confirming the reliability of the adopted discrete fracture ap-

proach, as a rigorous and powerful numerical tool for both de-

sign and assessment of real-life concrete structures.   

The proposed integrated fracture approach has been applied 

to the analysis of concrete cover separation failure in externally 

strengthened RC structures. Such a failure is usually associated 

with complex mechanical phenomena, including tensile cracking 

and compressive crushing of concrete, debonding at both 

FRP/concrete and steel/concrete interfaces, and yielding of rein-

forcing bars, thus leading to a highly nonlinear problem to be 

solved. The proposed model has been shown capable to accu-

rately predict all these failure mechanisms, by performing suita-

ble comparisons with experimental outcomes, with reference to 

real-scale RC beams retrofitted with an externally bonded CFRP 

plate. Both the numerically obtained load-carrying capacity and 

the associated failure pattern are fully consistent with the exper-

iments, showing the superiority of the present approach over 

most of existing simplified stress- or fracture-based approaches 

for the cover separation analysis. 

Finally, the proposed fracture model has been employed for 

tracing the structural response of steel bar-reinforced UHPFRC 

structures enhanced with nanomaterials.  



Conclusions 244 

Various numerical simulations have been performed to in-

vestigate the role of the content of embedded graphite nanoplate-

lets (GNPs) on its load-carrying capacity at both peak and post-

peak stages, with reference to simply supported beams subjected 

to a four-point bending test. All the numerical outcomes have 

been validated by performing suitable comparisons with the 

available experimental results. A good accordance between nu-

merical and experimental loading curves has been found, with a 

mean absolute percentage error on the peak load of only about 

4%, by virtue of a proper calibration of the inelastic parameters 

of the embedded cohesive interfaces. Moreover, additional com-

putations have been performed to investigate the mesh depend-

ency effects on the global structural response and crack pattern. 

The related results have shown that, despite the (local) mesh-de-

pendency of the numerically predicted crack paths, that is re-

lated to the unavoidable randomness in the mesh generation pro-

cedures, the (global) load-displacement curves are substantially 

independent of the adopted discretization. 

Further numerical simulations have been performed to in-

vestigate the effect of nano-enhancement in steel bar-reinforced 

UHPFRC structures. A simulated four-point bending test on 

three medium-sized beams with different volume fractions of 

GNPs has been considered. The numerical outcomes have 

demonstrated the reliability and the accuracy of the proposed 

model in predicting both the strengthening and toughening ef-
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fects of embedded nanomaterials, in terms of global load-deflec-

tion responses and associated crack patterns. In particular, in-

creases in the first yielding load level and absorbed energy up to 

11% and 20%, respectively, are numerically predicted for hybrid 

micro/nano-reinforcements with the highest considered GNP 

content (i.e. 0.1% by volume). Furthermore, the role of nano-

materials on the tension stiffening effect have been demon-

strated, by analyzing both final crack patterns and associated 

stress distribution maps. From the numerical analyses, the addi-

tion of 0.05% and 0.1% of GNPs has led to crack width reductions 

of 14% and 31%, respectively, as well as to maximum axial stress 

reductions along steel rebars of about 11% and 23%, respectively, 

thus confirming the increased ductility of the enhanced UHP-

FRC, at least for small volume contents of nano-reinforcement. 

In conclusion, the fundamental strengths of the proposed in-

ter-element fracture model can be summarized in the two follow-

ing points: (i) comprehensiveness, here standing for the fully 

possibility of investigating all the main damage mechanisms in 

plain and reinforced concrete in a unified manner, either at the 

ultimate state (i.e. at complete failure) or under in-service load-

ing conditions (e.g. for crack width control); and (ii) ease of im-

plementation, essentially related to the capability of the principal 

modern commercial finite element environments to embed the 

well-established cohesive interface elements within a standard 

displacement-type finite element mesh, without any in-depth 

programming skills. 
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As future perspectives of this work, the following research 

directions could be explored: 

- Extension of the proposed fracture approach, implicitly as-

suming only through-width surface cracks, to the more ap-

pealing 3D case, being needed in the presence of complex tri-

axial stress states, as in structural problems involving tor-

sional loads. This point could be addressed in a straightfor-

ward manner with simple modifications of the adopted cohe-

sive traction-separation law, while keeping the present varia-

tional framework by virtue of its general validity. 

- Development of new strategies, alternative to the present dif-

fuse interface model, for the adaptive insertion or activation 

of cohesive elements placed at the inter-element boundaries of 

a given bulk mesh, so that the inactive cohesive interfaces 

have no influence on the overall elastic properties. 

- Incorporation of the proposed numerical model for RC struc-

tures within a general adaptive concurrent multiscale ap-

proach, to improve the related overall computational perfor-

mances, similarly to what recently suggested for the failure 

analysis of lightweight aggregate concrete (Feo et al., 2015) 

and masonry structures (Greco et al., 2017; Leonetti et al., 

2018).
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