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S O M M A R I O

Negli ultimi anni, la necessità sempre più emergente di eseguire ragionamenti continui sui
flussi di dati ha dato origine all’area di ricerca chiamata Stream Reasoning (SR). Questo
campo di ricerca si è rivelato di particolare importanza grazie alle sue numerose applicazioni
pratiche, che includono processi decisionali per gli agenti intelligenti, la robotica, il settore
automobilistico, le città intelligenti, l’automazione domestica e applicazioni su dispositivi
detti Internet of Things (IOT). Tutte le applicazioni menzionate condividono la necessità di
elaborare in modo efficiente flussi di eventi provenienti da ambienti altamente dinamici.

I metodi basati sulla rappresentazione della conoscenza, e in particolare l’Answer Set
Programming (ASP), possono svolgere un ruolo significativo in questi contesti e, in effetti,
alcuni di essi sono stati già applicati con successo nel contesto SR. Molte soluzioni basate
su ASP sono state riadattate o sono state progettate esplicitamente per lo SR. Queste
soluzioni, tuttavia, non sono in grado di risolvere definitivamente alcuni dei problemi noti
in questo ambito, quali, ad esempio, la perdita di semplicità e dichiaratività, e la mancanza
di prestazioni adeguate per applicazioni molto esigenti.

In questo lavoro di tesi, proponiamo una serie di nuovi metodi per soluzioni basate su ASP
in ambienti altamente dinamici, che mirano ad affrontare le problematiche menzionate
precedentemente. In particolare, proponiamo un approccio per il grounding incrementale
in ASP e mostriamo come affrontare alcuni problemi di integrazione che sorgono quando
queste soluzioni devono essere distribuite in contesti reali. Ci siamo concentrati, partico-
larmente, sulla possibilità di generare programmi ground incrementalmente sempre più
grandi (programmi overgrounded) equivalenti a un dato programma logico non-ground,
in modo che possano essere riutilizzati deliberatamente, con set di input diversi tra loro.
L’approccio proposto è progettato per funzionare in modo “trasparente”, sollevando, quindi,
ingegneri e progettisti di programmi logici dall’utilizzo di aspetti tecnici specifici intrinsechi
dei sistemi ASP. La natura incrementale di questa strategia consente di ridurre consid-
erevolmente il tempo necessario per eseguire l’istanziazione di programmi logici quando la
fase di grounding viene ripetuta su serie di basi di conoscenza (Knowledge Representation
(KR)) simili tra loro. Inoltre, presentiamo una versione ottimizzata di questa strategia, e
cioè l’overgrounding con tailoring. Più in dettaglio, i nostri Overgrounded Program with
Tailoring (OPT) introducono tecniche di semplificazione per i programmi ground che con-
sentono di (i) limitare il numero e (ii) ridurre la dimensione delle regole generate, al fine di
ottimizzare le performace complessive dei programmi overgrounded standard.

In questa tesi, introdurremo, inizialmente ed in maniera formale, le basi teoriche dei pro-
grammi overground classici e la loro versione migliorata, ossia i programmi overground con
tailoring. Successivamente, ne descriveremo le loro proprietà e illustreremo un algoritmo di
aggiornamento OPT. In seguito, mostreremo la nostra implementazione e le sue prestazioni.
Per mostrare l’efficacia di queste tecniche, abbiamo eseguito diversi esperimenti concen-
trandoci su alcuni domini applicativi classici e al contesto dei videogames. Riguardo questi
ultimi, abbiamo anche indagato sulle problematiche relative all’integrazione di soluzioni
basate sull’ASP nel vero lifecycle di un videogame.



A B S T R A C T

In the last years, the emergent need to perform continuous reasoning over streams has
given rise to the Stream Reasoning (SR) research area. This research field turned out to
be of particular importance thanks to its several practical applications, which include
decision making for agents, robotics, automotive, smart cities, home automation
and general Internet of Things (IOT) applications. All the above applications share
the necessity of efficiently processing fast-paced event flows coming from highly
dynamic environments.

Methods based on Knowledge Representation (KR), and especially Answer Set
Programming (ASP), can play a significant role in the above contexts, and indeed
have been already applied to the SR field with some degree of success. Many ASP-
based solutions can be adapted, or were explicitly designed having SR in mind.
Such solutions, however, leave open some issues that need to be tackled, such as
some loss of simplicity and declarativity, and a performance not yet sufficient for
highly-demanding applications.

In this thesis work, we propose a number of new methods for ASP-based solutions
in highly dynamic environments, which aim to face the above issues. In particular,
we propose an incremental grounding approach for the answer set semantics and
we study how to cope with some nonobvious integration problems arising when
reasoning-based solutions must be deployed in real contexts. We focused particularly
on the possibility of generating incrementally larger ground programs (overgrounded
programs) equivalent to a given non-ground logic program, so that they can be reused
in combination with deliberately many different sets of inputs. The proposed approach
is designed to work “transparently”, thus relieving knowledge engineers and designers
of logic programs from using specific technical aspects related to ASP solvers. The
incremental nature of this strategy permits to considerably reduce time performance
when grounding is repeated on a series of similar knowledge bases. Furthermore,
we also present an optimized version of this strategy, namely overgrounding with
tailoring. More in detail, our Overgrounded Program with Tailoring (OPT) introduce
simplification techniques for ground programs allowing to (i) limit the number and
(ii) reduce the size of the generated rules, in order to optimize the overall performance
of the basic overgrounded programs.

In this thesis, we first formally introduce the theoretical basis of classical over-
grounded programs and their enhanced version, overgrounded programs with tailor-
ing. Then, we describe their properties and we illustrate an OPT update algorithm. We
then report about our implementation and its performance. To show the effectiveness
of these techniques, we performed several experiments focusing in some applicative
domains and particularly in the videogames context. Concerning the latter, we also
investigate on the challenging issues of integrating ASP-based solution in the real
videogame development lifecycle.



1
I N T R O D U C T I O N

MOTIVATION AND OBJECTIVES

Recently, the availability of a number amount of data streams greatly stimulated
the research of suitable processing paradigms and tools. Consequently, the research
community looked with interest in advancing fast and “non-materializing” stream
processing techniques; such techniques are based on the idea of storing as little data
as possible (in contrast with static processing on stored databases), and on pushing
outputs to consumers on-the-fly as soon as they become available.

This growing need to perform continuous reasoning over streams has given rise
to Stream Reasoning (SR), a high impact research area, also plenty of unexplored
paths. A stream can be formally seen as an unbounded sequence of time-varying data
elements. This notion is general enough to encompass a large panorama of practical
applications [41], among which one can mention, e.g., decision making for agents,
robotics, automotive, Internet of Things (IOT), and real-time videogames [115, 29].

Among exemplary SR’s application fields, it is worth mentioning the IOT area.
Enabling advanced and complex reasoning capabilities in IOT applications, could
be largely beneficial, especially when massive groups of IOT devices need to be
leveraged. In the last ten years, this area has had a very fast growth and it is predicted to
expand even more in the future, thanks to the new technologies coming from domotics,
home automation, health-care and transportation fields. The IOT concept represents
the new frontier of the use of the Internet, through which objects (also called “things”),
become recognizable and share data with other objects. Objects acquire intelligence
thanks to this continuous interaction and communication: e.g., alarms may sound
earlier in case of traffic; smart-watches could keep track of usual fitness activity and
remind when it is required to perform some activity like walking, running or cycling;
smart TVs could automatically understand which are your favourite TV programs and
automatically show appropriate reminders. In general, in the IOT context, devices first
acquire information about the surrounding environment, then some decision-making
logic takes actions based on the input knowledge, which appears in the form of an
event stream. Clearly, since most of such information flows come at a relatively high
pace and high volume, the ability to reason on such data in real-time constitutes a
challenge that, if solved, could benefit many advanced applications.

Another interesting field in which event streams play a crucial role, is Artificial Intel-
ligence (AI) applied to videogames. Decision-making based on some AI technique
is a central component encoded in almost all videogames and it is often implemented

1



I N T RO D U C T I O N 2

with ad-hoc solutions for the specific game. Historically, very basic techniques have
been used to design and implement game AI. As in the videogame industry there is
growing demand for both high runtime performance and short development times,
more general and advanced approaches, possibly based on SR techniques, would be
welcome.

Requirements for stream reasoners are usually quite strict: for instance, an artificial
player, deployed in a real-time videogame, is subject to a very fast flow of input
events, yet it is allowed a very limited time for each decision, like in the General
Video Game AI (GVGAI) competition [104] where this limit is just 40 milliseconds.
At the same time the IOT devices collect huge amounts of “complex” data, i.e., data
organized in a hierarchical structure, and these need to be extracted, filtered and
analysed in a very restricted time limit. The current explored approaches still do not
close some strategic gaps, among which one can mention:

a) generalization gaps: although very powerful, Machine Learning (ML) techniques
require to build specific ad-hoc solutions which work just on a per application
basis. One might want to look at solutions in which general middleware tools are
available and allow to easy tune, refine and prototype “intelligent” processing
capabilities;

b) explainability and “tunability” gaps: a stream processing solution should be based
on intelligible, modifiable and explainable knowledge; this would let human
actors to better convey their desiderata to implemented solutions;

c) gaps due to limited and opaque efficiency: in many industrial applications, de-
velopers expect to deal with optimized stream processing techniques in which
fine-tuning and human intervention is reduced to the bare minimum or it is not
necessary at all.

Answer Set Programming (ASP) appears to be a good candidate in order to deal with
the above gaps. ASP is a declarative programming paradigm which has its roots in
Knowledge Representation and Reasoning (KRR) and Logic Programming (LP). As
a flexible language for declarative problem solving, ASP allows the user to refrain
from providing an algorithm for solving the problem at hand: it is sufficient to specify
the properties a desired solution must (or must preferably) have in the form of an
executable logic specification and run the resulting program to obtain the so called
answer sets, i.e., a set of possible solutions for the current instance of the problem.

Moreover, ASP is a very expressive language enable to model a large variety of
problems. ASP attributes a non-monotonic semantics to disjunctions in the head of
the rules, and to unstratified negation. The availability of non-monotonic reasoning
features facilitates modelling of common-sense knowledge, and real world problems
in general. In the latest years, ASP has been widely used in the field of AI as well
as in the industries in order to deploy many applications, also in scenarios where a
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high response reactivity was required [55, 28, 81, 99, 113, 127]. In the SR context,
it is implied that reasoning tasks could be triggered by events which come at a fast
pace, thus requiring to continuously repeat evaluations on very similar inputs. In this
respect, having fast, possibly incremental, processing techniques can make a clear
difference with regard to performance.

The typical workflow of ASP systems consists in an instantiation (or grounding)
phase and a subsequent solving (or answer sets search) phase. In the first step, a
grounder module produces an equivalent propositional program gr(P∪F) from an
input non-ground logic program P and a set of facts F; in the latter step, a solver
module applies dedicated search techniques on gr(P∪F) for computing the actual
semantics of P∪F in the form of answer sets [75]. Repeated executions, called shots
or iterations, can be conceptually abstracted to the task of finding the set of answer
sets AS(P∪Fi) for a sequence of input fact sets F1, . . . ,Fn.

The research effort towards the development of incremental reasoning techniques
in the ASP community has focused on different aspects. In the clingo system and
its earlier prototypes [63] a knowledge designer is allowed to procedurally control
how and which parts of the logic program at hand must be incremented, updated and
evaluated among consecutive shots. This enables a possibility of manually model
which and how ground subprograms and partial answer sets must be maintained.
Also, it is possible to control which parts of a program are subject to the incremental
evaluation with respect to an iteratively increasing integer parameter. This approach
introduces ample flexibility but requires a non-negligible knowledge of solver-specific
internal algorithms. Nevertheless, declarativity and fast-prototyping capabilities are a
priority in many development scenarios, such as the previously mentioned videogame
industry where designers, who do not have knowledge of backstage technical aspects
of declarative logic programming at all, look for easy and off-the-shelf scripting
solutions.

Another approach to incremental reasoning is the Ticker evaluation system [16].
Ticker implements LARS, a Logic-based framework for Analyzing Reasoning over
Streams using with ASP-like semantics, and makes use of incremental techniques
for a fragment of the LARS input language. LARS allows omni comprehensive, yet
demanding, temporal data management features which make implementation difficult
and complex.

THESIS OVERVIEW AND CONTRIBUTIONS

The main goal of this thesis is to propose and use new advanced incremental tech-
niques in order to promote efficient, easy to use declarative reasoning under the
answer set semantics in highly-dynamic applicative environments. The contributions
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of this thesis can be categorized in two groups: (a) incremental grounding techniques
for ASP solvers, and (b) applications of ASP and incremental techniques in real
domains, with particular focus on videogames.

Concerning group (a), we concentrated our research on the ASP grounding step,
particularly looking at the possibility of caching and re-using ground programs. We
first formalized two notions of ground programs respectively called embeddings
and tailored embeddings, which capture two different notions of optimized ground
program. The first notion is clean and simpler, whereas the second, more refined one,
captures smaller and better optimized ground programs at the price of simplicity.

By using the formal notions above, we implemented two incremental strategies
based respectively on maintaining an overgrounded program GP, or a Overgrounded
Program with Tailoring (OPT) TGP. Both types of programs are made “compatible”
with new input facts by monotonically and dynamically enlarging them from one
shot to another.

When updating overgrounded programs (possibly, with tailoring), the computational
effort is generally small as overgrounded programs are updated only with the addition
of new logical assertions, while the likelihood of generating new insertions fades
away with further iterations. Overgrounding is attractive, works transparently and
does not require programming burden, since no operational statements are required to
incrementally drive the computation. Moreover, an overgrounded program, after some
update iterations, converges to a propositional theory general enough to be reused
together with possible future inputs, with no further update required and virtually
eliminating grounding activities in later iterations, making possible a consistent
enhancement of the time performance1.

Additionally, OPTs overcome the limitations of overgrounded programs by intro-
ducing already known simplification techniques for ground programs which allow to
(i) limit the number and (ii) reduce the size of the generated rules [65, 51].

As a second category of contributions, we explored the possibilities of ASP and our
incremental techniques in some appropriate scenarios of choice, and particularly in
the context of videogames. More in detail,

1. we implemented a new grounder based on our proposed technique and we
conducted proper performance evaluation which we report about; the new
grounder, called I 2-DLV, implements both the overgrounding and/or tailored

1 Note that in some applications, it is possible to obtain such a propositional theory before the very first
shot, as in [48]. This pre-grounding approach can be used on the assumption that all the input constants
that can appear in a logic program are known apriori. Pre-grounding is not flexible enough in case new
invented constant values appear dynamically in later shots. Also, pre-grounding often requires to resort
to a large overestimate of the possible input constant symbols, thus negatively impacting on the size of
the “pre-grounded” program.
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overgrounding policy; in our experiments we show the pros and cons of both
along with a comparison with non-incremental grounders;

2. we investigated how reasoning modules behave when integrated in a real
videogame execution loop; in particular we report about our experiments on
some videogame domains;

3. eventually, we explored also the possibility of using declarative techniques in
other demanding areas of industrial videogame development, such as genera-
tion of game contents based on declarative content specifications.

ORGANIZATION OF THE THESIS

This thesis is organized into three parts:

- In the first part we present an overall introduction of the main concepts that will
be discussed in this work. More in detail, in Chapter 2 we will briefly introduce
declarative languages focusing on Answer Set Programming. We will formalize
its syntax and semantics and we will provide some example of known Knowledge
Representation and Reasoning (KRR) problems solved using ASP; Chapter 3 will
provide some preliminaries about the Stream Reasoning research area, motivate
its importance in the current research and report about the state of art of current
systems; finally, Chapter 4 will provide a brief introduction to the vast research area
of Artificial Intelligence (AI) in Games and show its relationship with the Stream
Reasoning (SR) world.

- The second part of this work focuses on the design techniques for an efficient
incremental instantiation via overgrounding. In Chapter 5, embeddings and the
basic overgrounding technique will be formalized and described; whereas, in
Chapter 6, tailored embeddings and overgrounded programs with tailoring will be
described. A detailed description of the algorithm able to manage overgrounded
programs with tailoring is given in Chapter 7.

- The third part of this thesis is devoted to the description of the implemented system
and to its application in real world contexts. More in detail, Chapter 8 will focus
on the architecture of I 2-DLV, i.e., the system that implements the overgrounding
techniques previously described, and on the experimental evaluation we conducted
to test its performance; Chapters 9 and 10 expands on some of the experimental
domains coming from the videogame world, and on other possible application
of declarative Artificial Intelligence (AI) in the videogame context, showing how
repeated evaluation techniques could be beneficial in such a category of real world
domain.

The thesis is closed with a conclusion chapter, where future and on-going work is
outlined.
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Part I

C O N T E X T A N D F O U N D AT I O N S



2
A N S W E R S E T P R O G R A M M I N G

The primary intent of Computer Science is problem solving by means of machines.
In this context, programming languages permit to obtain the solution(s) of a given
problem, enabling the “communication” between humans and machines. Such com-
munication might follow two radically different approaches: imperative or declara-
tive. Imperative languages are machine-oriented: they require to model in a formal,
machine-oriented wording how a problem should be solved. Determining efficient
algorithms to solve complex (yet, tractable) problems often, requires advanced knowl-
edge and quite good programming skills. In addition, since the conceptualization
of a problem and its solution(s) are implicitly wired in the code, the imperative
approach demonstrates, in general, a low elaboration tolerance, that is slight updates
to the problem specifications, often, require a significant effort to modify the code
accordingly.

An opposite approach is provided by declarative languages, which, instead, are more
human-oriented, as they permit programmers to concentrate on problem definitions.
Consequently, variations in specifications tend to have a much smaller impact on the
code, since it explicitly reflects problem specifications.

Around the 1950s, John McCarthy [77] discussed how logic is particularly suited to
be a full-fledged declarative programming paradigm, allowing to model problems
in a natural and human-oriented fashion, and effectively represent knowledge repre-
sentation and rational human reasoning. In the same years, a new computer science
field was born: AI, and logic-based languages gained more and more importance and
popularity. A breakthrough happens when Alain Colmerauer and its research group
introduced Prolog [38] (from the French, PROgramming en LOGic), the first logic
programming language. However, it emerged that the first-order logic on which Pro-
log is based is not capable of modelling the commonsense human reasoning, which
is non-monotonic: we as humans, starting from some premises, may rationally regret
them whenever new information become available, while in first-order logic, logical
consequences cannot be invalidated since the underlying reasoning is monotonic.
Subsequently, new logic formalisms devoted to represent non-monotonic reasoning
were introduced, such as Default Logic [109], Autoepistemic Logic [94] and Circum-
scription [90]. In the late ’80s and early ’90s, Michael Gelfond and Vladimir Lifschitz
presented the logic formalism Answer Set Programming (ASP) [70, 71] allowing to
express non-monotonic reasoning in purely declarative fashion [21, 44, 45, 71, 89, 98].
ASP became widely used in AI and recognized as a powerful tool for KRR.

8
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In this chapter we introduce Answer Set Programming (ASP). The core of the
language consists in Disjunctive Datalog with nonmonotonic negation under the
stable model semantics. Nevertheless, over the years a significant amount of work has
been carried out by the scientific community in order to enrich the basic language,
and several extensions have been studied and proposed. Recently, the community
agreed on a standard input language for ASP systems: ASP-Core-2 [26], the official
language of the ASP Competition series [28, 66, 67].

The chapter is structured as follows. Sections 2.1 and 2.2 present a formal definition
of the syntax and the semantics of ASP. Section 2.3 describes some syntactic shortcuts.
Section 2.4 introduces the concept of safety. Eventually, Sections 2.5 and 2.6 describe
the capability of ASP as a tool for KRR in real world domains.

The herein reported definitions are compliant with ASP-Core-2 v.2.03c (the latest
version at the time of writing).

2.1 SYNTAX

Let I be a set of identifiers. An identifier is a not empty string starting with some
lowercase letter and containing only alphanumeric symbols and the symbol “_”
(underscore).

Example 2.1.1. Examples of identifiers are: a, a1_B, a_ID, vertex

2.1.1 TERMS

A term is either a constant, a variable, an arithmetic term or a functional term.
In particular, constants and variables can be considered as “basic terms”, while
arithmetic and functional terms are defined inductively as combinations of terms.

Definition 2.1.1 (Constant Term). A constant is either a symbolic constant, if it is an
identifier, a string constant, if it is a quoted string, or an integer.

Definition 2.1.2 (Variable Term). A variable is a not empty string starting with
some uppercase letter and containing only alphanumeric symbols and the symbol “_”
(underscore).

Furthermore a special variable, namely anonymous variable, is represented by the
symbol “_” (underscore). This syntactic shortcut is intended to indicate a fresh
variable, that does not appear elsewhere in the context in which it is located.

Definition 2.1.3 (Arithmetic Term). An arithmetic term has form -(t) or (t13t2) for
terms t1 and t2 with 3 ∈ {+,−,∗,/}. Parentheses can optionally be omitted, and
standard operator precedences apply.

Definition 2.1.4 (Functional Term). A functional term has form f (t1, . . . , tn), where
f is an identifier, known as functor, t1, . . . , tn are terms and n > 0.
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Example 2.1.2. Examples of terms are:

– Constants: a, x, “http://google.com”, 0, 123

– Variables: X , X_134, X2, Color

– Arithmetic terms: -X , X +Y , 2∗ (-5), X + ab, X/3

– Functional terms: f (X), f ather(aristotle), g(2∗5,“abc”)

A term is ground (i.e., variable-free) if it does not contain any variable. For, instance
in Example 2.1.2 all the constants, the arithmetic term 2 ∗ (-5) and the functional
terms f ather(aristotle) and g(2∗5,“abc”) are ground.

2.1.2 ATOMS AND LITERALS

Definition 2.1.5 (Predicate). Given an identifier p and an integer n with n≥ 0, the
expression p/n represents a predicate. p is said predicate symbol and n represents
the associated arity.

Example 2.1.3. Examples of predicates are: a/2, p/3, predicate_3/1, true/0.

In the following, when no ambiguities arise we denote simply as p a predicate p/n.

Definition 2.1.6 (Predicate Atom). A predicate atom has form p(t1, . . . , tn), where
n≥ 0, p/n is a predicate with predicate name p and arity n and t1, . . . , tn are terms; if
n = 0, parenthesis are omitted and the notation p is used.

Definition 2.1.7 (Classical Atom). A classical atom is either -a or a where a is a
predicate atom and − denotes the strong negation symbol.

Definition 2.1.8 (Built-in Atom). A built-in atom has form t1 B t2 where t1, t2 are
terms and B∈ {<,≤,=,<>, 6=,>,≥}.

Definition 2.1.9 (Naf-Literal). A naf-literal can either be a built-in atom or have form
a or not a where a is a classical atom, and not is the negation as failure symbol.

Example 2.1.4. Some examples are shown below.

– Predicate Atoms: edge(X ,Y ), atom( f (a,b),c), true

– Classical Atoms: edge(X ,Y ), atom( f (a,b),c), true, -true

– Built-in Atoms: f ather(aristotle) = nicomachus, X 6= Y , X ∗2 = Y

– Naf-Literals: f ather(aristotle) = nicomachus, X 6= Y , X ∗2 = Y , edge(X ,Y ),
-atom( f (a,b),c), true, -true, not -true, not true

In addition to the type of atoms above illustrated, aggregate atoms have been intro-
duced to permit aggregation operations on multi-sets of terms by means of concise
expressions.
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Definition 2.1.10 (Aggregate Element). An aggregate element is composed as:
t1, . . . , tm : l1, . . . , ln, where t1, . . . , tm are terms l1, . . . , ln are naf-literals for n≥ 0, m≥ 0.

Definition 2.1.11 (Aggregate Atom). An aggregate atom has form:

a f{e1, . . . ,en}B t

where:

– a f ∈ {#count,#sum,#max,#min}

– e1, . . . ,en are aggregate elements for n≥ 0

– B∈ {<,≤,=,<>, 6=,>,≥}

– t is a term

Definition 2.1.12 (Aggregate Literal). An aggregate literal is either a or not a where
a is an aggregate atom.

Example 2.1.5. For instance, the following are aggregate literals: not #max{ X ,Y :
age(X ,Y )}< 20, #sum{X ,Y : age(X ,Y )}= s(S), #count{1 : a(1)}> 3. Moreover,
the latter two literals are also aggregate atoms.

An atom is ground if it does not contain any variable. A literal is ground if its
atom is ground. In Examples 2.1.4 and 2.1.5 f ather(aristotle) = nicomachus, -
atom( f (a,b),c), true, -true, not -true, not true, #count{1 : a(1)}> 3 are ground.

In the following we will refer to classical, built-in and aggregate atoms as atoms.
Similarly, we will indicate naf and aggregate literals as literals. A literal is negative if
the not symbol is present, otherwise it is positive.

2.1.3 RULES, CONSTRAINTS, QUERIES AND PROGRAMS

After defining the basic constructs, we now describe the main components of an ASP
logic program.

Definition 2.1.13 (Rule). A rule r has the following form:

a1 | . . . | an :− b1, . . . ,bm.

where:

– a1, . . . ,an are classical atoms

– b1, . . . ,bm are literals

– n≥ 0,m≥ 0
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The disjunction a1 | . . . | an is the head of r, while the conjunction b1, . . . ,bm is the
body of r. We denote by H(r) the set {a1, . . . ,an} of the head atoms, and by B(r)
the set {b1, . . . ,bm} of the body literals. B+(r) denotes the set of literals occurring
positively in B(r); while B−(r) is the set of negative literals in B(r). A rule having
precisely one head literal (i.e., n = 1) is said to be a normal rule; if n > 1 the rule is
disjunctive.

Example 2.1.6. Examples of rules are:

hasUmbrella(X) | doesNotHaveUmbrella(X) :− person(X).

isRaining | -isRaining :− cloudyWeather.

Definition 2.1.14 (Fact). A rule r is a fact with B(r) = /0, |H(r)|= 1 and H(r) = {a}
where a is a classical ground atom.

Example 2.1.7. Examples of facts are:

cloudyWeather. -isRaining. person(alice). person(bob).

the :− sign is usually omitted.

In the following, as it is common, we will adopt the notation reported next to rep-
resent in a compact way a set of facts: p(m11 ..m12 , . . . ,mn1 ..mn2). where p/n is a
predicate of arity n, and mi j with i ∈ {1, . . .n} and j ∈ {1,2} are terms. For instance,
a(1..2, f (3..4)). defines the facts: a(1, f (3)). a(2, f (3)). a(1, f (4)). a(2, f (4)).

A predicate p/n is referred to as an EDB predicate if, for each rule r in which p/n
appears in H(r), r is a fact; all others predicates are referred to as IDB predicates. The
set of facts in which EDB predicates occur, is called Extensional Database (EDB),
the set of all other rules is the Intensional Database (IDB).

Definition 2.1.15 (Strong (or Integrity) Constraint). A strong constraint s is a rule
with |H(s)|= /0.

Definition 2.1.16 (Weak Constraint). A weak constraint c is a special type of rule,
having form:

:∼ b1, . . . ,bm. [w@l, t1, . . . , tn]

where:

– n≥ 0, m≥ 0

– b1, . . . ,bm are literals

– w, l, t1, . . . , tn are terms; w and l are referred to, respectively, as weight and level
for c; if l = 0, the expression @0 can be omitted.
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Basically, a weak constraint is like a strong one, where the implication symbol :− is
replaced by :∼. The informal meaning of a weak constraint :∼ B. is “try to falsify B,”
or “B should preferably be false”.

For a weak constraint c we will indicate as weak specification, denoted W (c), the
part within the square brackets.

Example 2.1.8. Examples of constraints are:

:− isRaining, not isWetStreet.

:∼ isRaining, person(X), not hasUmbrella(X). [1]

A rule r is ground if all the atoms in H(r) are ground and all the literals in B(r) are
ground. A strong constraint s is ground if all the literals in B(s) are ground. A weak
constraint c is ground if all the literals in B(c) are ground, and all the terms in its
weak specification W (c) are ground.

In Example 2.1.6 the rule isRaining | -isRaining:− cloudyWeather. is ground, as well
as the two constraints in Example 2.1.8.

For a literal l, let var(l) be the set of variables appearing in l; if l is ground var(l) = /0.
For a conjunction of literals C, var(C) denotes the set of variables occurring in
the literals in C; similarly, for a disjunction of atoms D, var(D) denotes the set of
variables in the atoms in D. Inductively, for a rule r, var(r) = var(H(r))∪var(B(r));
for a strong constraint s, var(r) = var(B(s)); for a weak constraint c, var(c) =
var(B(c))∪ var(W (c)).

Given a rule or weak constraint r, a variable X is global if it appears outside of an
aggregate element in r; we denote as varg(r) the set of global variables in r. Given an
aggregate element e in a rule or weak constraint r, varl(e) = var(e)\ var(r) denotes
the set of local variables of e, i.e., the set of variables appearing only in e, while the set
of global variables of e contains variables appearing in both r and e, i.e., varg(e) =
var(r)∩ var(e). Suppose that r contains the aggregate elements E = {e1, . . . ,en},
then var(r) can be also defined as var(r) = varg(r)∪

⋃n
i=1{varl(ei)|ei ∈ E}; if n = 0

and thus E = /0, i.e., r does not contain any aggregate element, then var(r) = varg(r).

Example 2.1.9. As an example, given the following rule r:

a(X) :− b(X), not c(X),#sum{Y : d(X ,Y );Z : f (Z)}.

we can observe that var(r) = {X ,Y ,Z}, varg(r) = {X}, varl(Y : d(X ,Y )) = {Y},
varl(Z : f (Z)) = {Z}.

In the following, we will denote rules and constraints (weak or strong) simply as
rules.

Definition 2.1.17 (Query). A query has form: a? where a is a classical atom.
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Example 2.1.10. Examples of queries are: -isRaining?, hasUmbrella(X)?.

A query is ground if its atom is ground. In Example 2.1.10 -isRaining? is ground.

Definition 2.1.18 (Program). A program is a finite set of rules, possibly accompanied
by a single query.

A program is ground if all its rule, constraints, and the possible query are ground. A
program containing disjunctive rules is disjunctive, otherwise it is non disjunctive.

Example 2.1.11. The following constitutes a disjunctive program:

hasUmbrella(X) | doesNotHaveUmbrella(X) :− person(X).

isRaining | -isRaining :− cloudyWeather.

:− isRaining, not isWetStreet.

:∼ isRaining, person(X), not hasUmbrella(X). [1]

cloudyWeather. -isRaining.

person(alice). person(bob).

hasUmbrella(bob)?

Programs are also classified according to their structural properties, such as depen-
dencies among predicates [25].

Definition 2.1.19. (Dependency Graph) The Dependency Graph of P is a directed
graph GP = 〈N,E〉, where N is the set of IDB predicates of P, and E contains an edge
(p/n,q/m) if there is a rule r in P such that q/m occurs in the head of r and p/n
occurs in a classical atom of B(r) or in a classical atom within an aggregate literal of
B(r).

The graph GP induces a partition of P into subprograms (also called modules). For
each strongly connected component (SCC)1 C of GP (a set of predicates), the set of
rules defining the predicates in C is called module of C and is denoted by MC. A rule r
occurring in a module MC (i.e., containing in its head some predicate q/m∈C) is said
to be recursive if there is a predicate p/n ∈C in the positive body of r; otherwise, r is
said to be an exit rule. Moreover, we say that p/n and q/m are recursive predicates.
A program containing at least a recursive rule is said to be recursive.

Definition 2.1.20. (Component Graph) The Component Graph of a program P is a
directed labelled graph Gc

P = 〈N,E, lab〉, where N is the set of strongly connected
components of GP, and E contains:

– an edge (B,A) with lab((B,A)) =“+”, if there is a rule r in P such that a ∈ A
occurs in the head of r and b ∈ B occurs in a classical atom of B(r) or in a
classical atom within an aggregate literal of B(r);

1 We briefly recall that a strongly connected component of a directed graph is a maximal subset of the
vertices, such that every vertex is reachable from every other vertex.
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– an edge (B,A), with lab((B,A)) =“-”, if there is a rule r in P such that a ∈ A
occurs in the head of r and b ∈ B occurs in a negative naf-literal of B(r) or in a
negative naf-literal within an aggregate literal of B(r), and there is no edge e′

in E, with lab(e′) =“+”.

A predicate p/n is stratified [8] with respect to negation if it does not occur in cycles
in Gc

P involving negative dependencies (i.e., edges labelled with “-”), otherwise p/n
is said unstratified. Consequently, a program P is stratified with respect to negation if
every predicate appearing in it is stratified, or equivalently, if no cycles in Gc

P involve
negative dependencies, otherwise P is said unstratified. A predicate is solved if: (i)
p/n is defined solely by non-disjunctive rules (i.e., all rules with p/n in the head are
non-disjunctive), and (ii) q does not depend (even transitively) on any unstratified
predicate or disjunctive predicate (i.e., a predicate defined by a disjunctive rule).

The Component Graph induces a partial ordering among the SCCs of the Dependency
Graph as follows. For any pair of nodes A,B of Gc

P, A positively precedes B in Gc
P

(denoted A≺+ B) if there is a path in Gc
P from A to B in which all arcs are labeled

with “+”; A negatively precedes B (denoted A≺− B), if there is a path in Gc
P from A

to B in which at least one arc is labeled with “−”. This ordering induces admissible
component sequences C1, . . . ,Cn of SCCs of GP such that for each i < j

– C j ⊀+ Ci;

– if C j ←Ci then there is a cycle in Gc
P from Ci to C j (i.e., either Ci ≺+ C j or

Ci←C j).

Several sequences exist in general.

Example 2.1.12. As an example let us consider the following program P1:

r1 : a(X) :− b(X), not c(X).

r2 : b(Y ) :− a(Y ),Y = X + 1, f (X).

r3 : c(X) :− d(X), not a(X).

r4 : d(X) :− f (X), not g(X).

The dependency and component graphs are illustrated in Figure 2.1. In the dependency
graph GP1 , there are three components: (1) a first component C1 is formed by predicate
a/1 and b/1, (2) the predicate c/1 forms another component C2, and (3) a third
component C3 is composed by the predicate d/1. Hence, MC1 = {r1,r2}, MC2 = {r3},
MC3 = {r4}. Moreover, the rules r1 and r2 are recursive, thus P1 is recursive. Finally,
in the component graph Gc

P1
there is a cycle involving components {a/1,b/1} and

{c/1}, and so P1 is unstratified under negation.
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{a/1, b/1} {c/1}

{d/1}

-

- +

a/1 b/1

GP GP
c

c/1 d/1

11

Figure 2.1: Dependency and Component Graphs.

2.2 SEMANTICS

The semantics of an ASP program is given by the set of its answer sets. Each
answer set corresponds to a solution for the encoded problem. Notably, ASP is a
fully declarative paradigm: the order in which the program is composed by rules,
constraints and query, as well as the order of literals and atoms in the rules bodies
and heads, have no effect on the semantics.

Furthermore, answer sets are defined for ground programs only. However, for every
non-ground program, a semantically equivalent ground program can be defined.
The process of producing such a ground program is referred to as instantiation
or grounding. Essentially, for each rule of a non–ground program its variables are
considered universally quantified and ranging over the set of ground terms defined
by the program Herbrand Universe. Intuitively, variables are just an abstraction to
represent ground terms.

In the following, we formalize the semantics of ASP-Core-2, obtained by inheriting
the semantics proposed in [71] as a generalization of stable models semantics [70],
extended to aggregates according to [52, 53].

2.2.1 THEORETICAL INSTANTIATION

Let P be an ASP program.

Definition 2.2.1 (Herbrand Universe). The Universe of Herbrand of P, UP, is the set
of all integers and ground terms constructible from constants and functors appearing
in P. In case no constant appears in P an arbitrary constant c is added to UP.

Definition 2.2.2 (Herbrand Base). The Base of Herbrand of P, BP, is the set of all
ground classical atoms obtainable by combining predicate names appearing in P with
terms from UP as arguments.
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Example 2.2.1. As running example, let us consider the program P1:

b(1). b(2). c(1).

a(X) :− b(X), not c(X ∗1).

d(Y ) :− #count{X : a(X)} = Y .

then UP1 = {1,2} and BP1 = {a(1),a(2),b(1),b(2),c(1),c(2),d(1),d(2)}.

Definition 2.2.3 (Substitution). Given a Herbrand Universe UP of a program P and
a set of variables V , a substitution is total function σ : V 7→ UP that maps each
variable in V to an element in UP. For some object O occurring in P (term, atom,
aggregate atom, literal, rule, weak constraint, query, etc.), we denote by Oσ the object
obtained by replacing each occurrence of a variable v ∈ var(O) by σ(v) in O. σ

is well-formed if the arithmetic evaluation, performed in the standard way, of each
arithmetic sub-term t in Oσ is well-defined.

In the following, we will denote a substitution σ also as the set {X = c |σ(X) = c}.

Definition 2.2.4 (Global and Local Substitutions). Given a rule or weak constraint
r in P a substitution is global if it involves variables in varg(r); for an aggregate
element e in r, a substitution is local if it involves variables in varl(e).

We remark that for terms, classical atoms, naf-literals and queries a substitution is
implicitly global, due to the absence of aggregate elements. In the following for
the above mentioned constructs we will indicate substitutions for them as global
substitutions.

Example 2.2.2. Consider the rule r1 from P1 and the (global) substitution σ1 =

{X = 1}, then r1σ1 = a(1) :− b(1), not c(1∗1). Note that σ1 is well-formed, while
for instance, supposing that UP contained also the symbolic constant abc, then a
substitution σ2 = {X = abc} would not be well-formed.

Now, consider the rule r2 from P1 and the global substitution σ3 = {Y = 1}, then
r2σ3 = d(1) :− #count{X : a(X)} = 1. If instead, we consider the local substitution
σ4 = {X = 1}, then r2σ4 = d(Y ) :− #count{1 : a(1)} = Y .

The instantiation of an aggregate element e is obtained by considering well-formed
local substitutions for e; formally, the instantiation of e consists in the following set
of ground aggregate elements:

inst(e) = {eσ |σ is a well-formed local substitution for e}

Inductively, the instantiation of a series of aggregate elements {e1, . . . ,en} is provided
by the set of aggregate elements reported below:

inst({e1, . . . ,en}) =
n⋃

i=1

{eiσ |σ is a well-formed local substitution for ei}
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A ground instance of a term, classical atom, naf-literal, a rule, weak constraint, or
query o is obtained in two steps: (i), a well-formed global substitution σ for o is
applied to o; (ii), for every aggregate atom a f{e1, . . . ,en} B t in rσ its aggregate
elements {e1, . . . ,en} are replaced by inst({e1, . . . ,en}).

Example 2.2.3. Consider the aggregate element e = {X : a(X)} of rule r2 from P1,
then the instantiation inst(e) of e consists in inst(e) = {1 : a(1);2 : a(2)}.

At this point, a ground instance of r2 is obtained by applying the substitution σ3 =

{Y = 1}, and replacing e with inst(e): d(1) :− #count{1 : a(1);2 : a(2)} = 1.

The arithmetic evaluation of a ground instance g of some term, classical atom, naf-
literal, rule, weak constraint or query is obtained by replacing any maximal arithmetic
subterm appearing in g by its integer value, which is calculated in the standard way.

The ground instantiation of a program P, denoted by grnd(P), is the set of arithmeti-
cally evaluated ground instances of rules, strong and weak constraints in P.

Example 2.2.4. Eventually, let us consider P1, grnd(P1) consists in:

b(1). b(2). c(1).

a(1) :− b(1), not c(1).

a(2) :− b(2), not c(2).

d(1) :− #count{1 : a(1);2 : a(2)} = 1.

d(2) :− #count{1 : a(1);2 : a(2)} = 2.

Note that the substitution {X = 1,X = 2} has been applied to r1, and the arithmetic
terms (1∗1) and (2∗1) have been evaluated respectively to 1 and 2.

Remark 2.2.1. The instantiation of a program is idempotent: for each program P,
ground(P) = ground(ground(P)).

2.2.2 INTERPRETATIONS

Once that a ground program is obtained, the truth values of atoms, literals, rules,
constraints etc. are properly defined according to interpretations.

Definition 2.2.5 (Herbrand Interpretation). A (Herbrand) interpretation I for P is
a consistent subset of BP; to this end, for each predicate atom a ∈ BP, {a,−a} * I
must hold.

Literals can be either true or false w.r.t. an interpretation. To illustrate how their truth
values are determined, as a preliminary step, we need to define a proper total order �
on terms in UP. Several orderings may be defined, in ASP-Core-2 has been adopted
the one reported next.

Let t and u be two arithmetically evaluated ground terms, then:
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– t � u for integers t and u if t ≤ u,

– t � u if t is an integer and u is a symbolic constant,

– t � u for symbolic constants t and u with t lexicographically smaller or equal
to u,

– t � u if t is a symbolic constant and u is a string constant,

– t � u for string constants t and u with t lexicographically smaller or equal to u,

– t � u if t is a string constant and u is a functional term,

– t � u for functional terms t = f (t1, . . . , tn) and u = g(u1, . . . ,un) if either:

– m < n or,

– m = n and g� f ( f is lexicographically smaller than g) or,

– m = n, f � g and, for any 1 ≤ j ≤ m such that t j � u j, there is some
1≤ i < j such that ti � ui (i.e., the tuple of terms of t is smaller than or
equal to the arguments of u).

At this point, we are ready to properly define literals satisfaction. Let I I ⊆ BP be a
consistent interpretation for P.

The satisfaction of built-in atoms can be easily defined according to the total order �,
in the intuitive way, as they represent comparisons among terms. A ground classical
atom a ∈ BP is true w.r.t. I if a ∈ I. A positive ground naf-literal a is true w.r.t. I if
a is a classical or built-in atom that is true w.r.t. I; otherwise, a is false w.r.t. I. A
negative ground naf-literal not a is true (or false) w.r.t. I if a is false (or true) w.r.t. I.

Given a ground aggregate atom a f{e1, . . . ,en}B t, in order to correctly evaluate its
semantics according to its aggregate function, the expression a f{e1, . . . , en} has to
be mapped to a term, say u. Indeed, aggregate functions can be seen as mappings
from set of terms to a term. Let T be the set of terms in {e1, . . . ,en}, then:

– if ag = #count, then u = |T |;

– if ag = #sum, then u = ∑ti∈T ti is an integer;

– if ag = #max, then u = max{ti|ti ∈ T}

– if ag = #min, then u = min{ti|ti ∈ T}

Essentially, #count depends on the cardinality of the set of terms T , #sum is evaluated
as the sum of the integers in T , while #max and #min functions strictly rely on the
total order � on terms in UP. In case T = /0, the following convention is adopted:
#max{ /0} � u and u� #min{ /0} for every term u ∈UP .

Fixed an interpretation some aggregate elements may not contribute to the semantics
of an aggregate atom. Intuitively, an interpretation can filter out some aggregate
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elements according to their truth values w.r.t. the interpretation itself. More formally,
the interpretation I maps a collection E of aggregate elements to the following set of
tuples of ground terms:

eval(E, I) ={(t1, . . . , tn)|{t1, . . . , tn : l1, . . . , lm} occurs in E and

{l1, . . . , lm} are true w.r.t. I}

Let a = a f{e1, . . . ,en} B t be an aggregate atom, a is true (or false) w.r.t. I if
a f{eval(e1, . . . ,en, I)} B t. A positive aggregate literal a is true (or false) w.r.t. I
if a is an aggregate atom that is true (or false) w.r.t. I. A negative aggregate literal
not a is true (or false) w.r.t. I if a is false (or true) w.r.t. I.

Let r be a ground rule in grnd(P). The head of r is true w.r.t. I if H(r)∩ I 6= /0. The
body of r is true w.r.t. I if all body literals of r are true w.r.t. I (i.e., B+(r) ⊆ I and
B−(r)∩ I = /0) and is false w.r.t. I otherwise. The rule r is satisfied (or true) w.r.t. I if
its head is true w.r.t. I or its body is false w.r.t. I.

Example 2.2.5. Let

I1 = {b(1),b(2),c(1),a(1),d(1),d(2)}

be an interpretation for grnd(P1), then:

b(1). b(2). c(1). are satisfied w.r.t. I1.

a(1) :− b(1), not c(1). is not satisfied because not c(1) is false
w.r.t. I1.

a(2) :− b(2), not c(2). is not satisfied because a(2) is false
w.r.t. I1.

d(1) :− #count{1 : a(1);2 : a(2)} = 1. is satisfied w.r.t. I1 since eval({1 :
a(1);2 : a(2)}, I1) = {1 : a(1)}, and
#count{1 : a(1)}= 1.

d(2) :− #count{1 : a(1);2 : a(2)} = 2 is not satisfied w.r.t. I1 because of the
evaluation reported above.

2.2.3 ANSWER SETS

Definition 2.2.6 (Model). A model for P is an interpretation M for P such that every
rule r ∈ grnd(P) is true w.r.t. M.

Definition 2.2.7 (Minimal Model). A model M for P is minimal if no model N for
P exists such that N is a proper subset of M. The set of all minimal models for P is
denoted by MM(P).
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Example 2.2.6. The interpretation I1 is not a model for P1, while the interpretation

I2 = {b(1),b(2),c(1),a(2),d(1)}

is a model for P1:

b(1). b(2). c(1). are satisfied w.r.t. I2.

a(1) :− b(1), not c(1). is satisfied w.r.t. I2 because both the
body and the head are false.

a(2) :− b(2), not c(2). is satisfied w.r.t. I2.

d(1) :− #count{1 : a(1);2 : a(2)} = 1. is satisfied w.r.t. I2 since eval({1 :
a(1);2 : a(2)}, I2) = {2 : a(2)}, and
#count{2 : a(2)}= 1.

d(2) :− #count{1 : a(1);2 : a(2)} = 2 is satisfied w.r.t. I2 because of the eval-
uation reported above, thus both the
body and the head are false.

Moreover, I2 is also a minimal model for P1.

Definition 2.2.8 (Reduct). Given a ground program P and an interpretation I, the
reduct of P w.r.t. I is the subset PI of P, which is obtained from P by deleting rules in
which a body literal is false w.r.t. I.

It is worthwhile noting that the above definition of reduct, proposed in [52], sim-
plifies the original definition of Gelfond-Lifschitz (GL) transform [71], but is fully
equivalent to the GL transform for the definition of answer sets [52].

Definition 2.2.9 (Answer Set). [108, 71] Let I be an interpretation for a program P.
I is an answer set for P if I ∈MM(PI) (i.e., I is a minimal model for the program
PI). The set of all answer sets for P is denoted by AS(P).

Example 2.2.7. Let us consider grnd(P1) and I2, then the reduct grnd(P)I2 is:

b(1). b(2). c(1).

a(2) :− b(2), not c(2).

d(1) :− #count{2 : a(2)} = 1.

I2 is a minimal model for grnd(P1)I2 since no proper subset of I2 exists such that is a
model for it, and thus I2 an answer set for P1.

In particular, since P1 is a not disjunctive and stratified program, I2 is the unique
answer set for P1, i.e., AS(P1) = {I2}. This type of program admits a unique answer
set, which corresponds to its perfect model [46].
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Furthermore, we distinguish coherent and incoherent programs: coherent programs
admit at least one answer set, while incoherent programs have no answer sets.

Equivalence of logic programs is a fundamental property also from a practical per-
spective. For instance, it is common that one looks for an equivalent version Π′ of a
logic program Π which can be possibly evaluated more efficiently.

Definition 2.2.10 (Equivalent Logic Programs). [70] A logic program Π1 is said to
be equivalent to a logic program Π2 in the sense of the answer set semantics if Π1

and Π2 have the same answer sets.

Definition 2.2.11 (Strongly Equivalent Logic Programs). [87] A program Π1 is said
to be strongly equivalent to a program Π2 if for every logic program Π, Π1∪Π has
the same answer sets as Π2∪Π.

In case of weak constraints, answer sets need to be further examined, and classified
as optimal or not. Intuitively, strong constraints represent conditions that must be
satisfied, while weak constraints, introduced originally in [80, 23], indicate conditions
that should be satisfied; their semantics involves minimizing the number of violations,
thus allowing to easily encode optimization problems.

Optimal answer sets of P are selected among AS(P), according to the following
schema. Let I be an interpretation, then:

weak(P, I) ={(w@l, t1, . . . , tm)

:∼ b1, . . . ,bn[w@l, t1, . . . , tm] occurs in grnd(P)

and b1, . . . ,bn are true w.r.t. I}

For any integer l, let

PI
l = ∑

(w@l,t1,...,tm)∈weak(P,I),w is an integer

w

denotes the sum of integers w over tuples with w@l in weak(P, I).

In other words, for each weak constraints satisfied by I in grnd(P) we sum the
weights per level: these numbers represent a sort of penalty paid by I: the lower they
are, the higher is the possibility for I, if it represents an answer set, to be optimal.

More formally, we define the notion of domination among answer sets as follows.
Given an answer set A ∈ AS(P), it is said dominated by another answer set A′ if there
is some integer l such that PA′

l < PA
l and PA′

l′ < PA
l′ for all integers l′ > l. An answer

set A ∈ AS(P) is optimal if there is no A′ ∈ AS(P) such that A is dominated by A′. In
general, a coherent program may have one or more optimal answer sets.
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Example 2.2.8. Let us consider the following ground program P2:

c(1). c(2).

a(1) | b(1) :− c(1).

a(2) | b(2) :− c(2).

:∼ a(1). [1@1]

:∼ b(1). [1@2]

:∼ a(2). [2@1]

:∼ b(2). [2@2]

The set AS(P2) consists in:

as1 : c(1). c(2). a(1). b(2)

as2 : c(1). c(2). a(1). a(2)

as3 : c(1). c(2). b(1). b(2)

as4 : c(1). c(2). b(1). a(2)

For an answer set a, we will represent as < {w1, l1}, . . . ,{wn, ln}> the sum of weights
w1, . . . ,wn for l1, . . . , ln, n ≥ 0. Now, for as1 we obtain < {1,1}, {2,2} >, for as2

< {3,1},{0,2} >, for as3 < {0,1},{3,2} > and finally for as4 < {2,1},{1,2} >.
Hence, P2 admit a unique optimal answer set, namely as2, since it is not dominated
by any other answer sets.

2.3 ADVANCED CONSTRUCTS

CHOICE RULES

ASP-Core-2 introduces another type of rule, namely choice rules; they represent
a syntactic shortcut that can be simulated by the rule types previously introduced.
However, choice rules, originally proposed in the system lparse [122], can greatly
ease the task of encoding a computational problem into ASP.

Definition 2.3.1 (Choice Element). A choice element has form: a : l1, . . . , lm, where a
is a classical atom and li for i ∈ {1, . . . ,m} is a naf-literal and m≥ 0.

Definition 2.3.2 (Choice Atom). A choice atom has form:

{e1; . . . ;en}B u

where,

– n≥ 0,

– ei for i ∈ {1, . . . ,n} is a choice element,
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– B∈= {<,≤,=,<>, 6=,>,≥},

– u is a term.

The operator B and the term u can be omitted whenever u = 0 and B corresponds to
≥.

Definition 2.3.3 (Choice Rule). A choice rule consists in a rule with a single choice
atom a in its head, and literals b1, . . . ,bn for n≥ 0 in its body:

a :− b1, . . . ,bn.

Example 2.3.1. An example of choice rule is {a;b;c} ≤ 3. Intuitively, fixed an
interpretation I if the body is satisfied w.r.t. I, as in this case since it is empty, it is
sufficient that a possibly empty subset of the choice elements is true w.r.t. I to satisfy
the choice atom. Hence, by selecting arbitrarily a, b, c as true or false to satisfy the
rule. Thus, the rule can be rewritten in the following rules:

a | -a.

b | -b.

c | -c.

Formally, a choice rule corresponds to the rules, for i ∈ {1, . . . ,n}:

ai|ai :− l1, . . . , lm,b1, . . . ,bk

and to the constraints:

:− b1, . . . ,bk,not #count{a1 : a1, l11, . . . , lm1; . . . ;αn : an, l11, . . . , lmn}B u

where, for each classical atom s = p(t1, . . . , tn), s = p′(1, t1, . . . , tn) and
-s = p′(0, t1, . . . , tn), with p′ an arbitrary predicate associated to p.

2.4 SAFETY RESTRICTIONS

In order to instantiate a (non-ground) rule r, all its variables are considered universally
quantified and ranging over the set of all ground terms of the program of which r is
part. However, to ensure the semantics not all ground terms need to be considered,
but we can restrict the actual domain for variable substitutions, and in turn to limit
the size of the produced instantiation. To this end, typically, ASP grounders imposed
some conditions on the accepted input, such as lparse ω-restrictedness [108, 122],
the λ -restrictedness [69] of the first gringo releases (up to version 3.0), and DLV
safety restriction. In the latest years, ASP-Core-2 established safety as the standard
restriction for modern ASP systems. Essentially, this is a restriction on variables
that guarantees that a rule is logically equivalent to the set of its Herbrand instances.
Originally, safety has been introduced in the field of databases, in order to ensure that
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queries over databases are independent from the set of constants considered; similarly,
in ASP, safety ensures that programs do not depend on the Universe considered.

Let L = {l1, . . . , ln} for n≥ 0 be a set of literals. For a term, literal, rule e we denote
as var′(e) ⊆ var(e) the set of variables in e occurring outside of arithmetic terms.
The set of safe variables, denoted Sa f e(L)⊆ var(L), initially corresponding to /0, is
computed inductively according to the following schema:

1. for each classical atom a ∈ L, Sa f e(L) = Sa f e(L)∪ var′(l);

2. for each built-in atom a ∈ L of form v = t or t = v, where t is a term with
var(t) ⊆ Sa f e(L) and v is a variable, Sa f e(L) = Sa f e(L)∪ v;

3. for each aggregate atom a∈ L of form a f{e1, . . . ,ek}= v, where v is a variable,
Sa f e(L) = Sa f e(L)∪ v.

We will denote aggregate and built-in atoms of types 2 and 3 as assignment atoms.
Moreover, let V be the set of variables that an atom a adds to Sa f e(L) we say that a
binds V in L, or equivalently that a is a binder for V in L.

A naf-literal l ∈ L is safe if var(l) ⊆ Sa f e(L). An aggregate element t1, . . . , tp :
b1, . . . ,bq appearing in the set E of aggregate elements of an aggregate literal l ∈
L of form a f{E} B t is safe if varg(b1, . . . ,bq) ⊆ Sa f e(L) and varl(b1, . . . ,bq) ⊆
Sa f e(b1, . . . ,bq); consequently, a f{E} B t is safe if all its aggregate elements are
safe, and var(t)⊆ Sa f e(L). For a literal l ∈ L, let VarToSa f e(l) = varg(l)\Sa f e(l).
If VarToSa f e 6= /0 we refers to a set of literals {l′1, . . . , l′m} ⊆ L (m≤ n) binding the
set of variables VarToSa f e(l, l′1, . . . , l′m) as saviours for l. In general, for the same
literal several set of saviours might exist.

A non-choice rule r is safe if every literal in its body is safe and var(H(r)) ⊆
Sa f e(B(r)). A choice rule r is safe if every literal in its body is safe and for every
choice element of form a : N, where a is a classical atom and N is a set of naf-literals,
var(a) ⊆ Sa f e(N)∪Sa f e(B(r)). A weak constraint w is safe if every literal in its
body is safe and var(W (w))⊆ Sa f e(B(w)). A query a? is safe if var(a)⊆ Sa f e(a).
A program P is safe if every rule and query composing P is safe.

Example 2.4.1. For instance, the following rules are safe:

a(X) :− b(X),c(X + 1).

a(Y ) :− b(X),Y = X + 1.

a(X ,Y ) :− b(X ,Y ), not c(X ,Y ).

a(Z) :− h(Y ),Z = #count{X : g(X), not f (X ,Y )}.
a(X ,Y ) :− Y = #sum{W : g(W )},X = #count{Z : g(Z),

not f (Z,Y )}, not b(X ,Y ).

:− #min{X ,S : b(T ,X),S = (2∗T )−X}= Y .

:∼ #max{X : b(X ,X + 1)}= Y . [1@1, f (Y ∗Y )]

{a(X ,Y ) : b(Y );b(X) : c(X ∗3)} :− d(X).
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These other rules are not safe:

a(X) :− c(X + 1).

a(Y ) :− Y = X + 1.

a(X ,Y ) :− not c(X ,Y ).

a(Z) :− Z = #count{X : g(X), not f (X ,Y )}.
a(X ,Y ) :− X = #count{Z : g(Z), not f (Z,Y )}, not b(X ,Y ).

:− #min{X ,S : b(T ,X),S+X = (2∗T )}= Y .

:∼ #max{X : b(X ,X + 1)}= Y . [1@1, f (Y ∗Z)]

{a(X ,Y ) : b(Y );b(X) : c(X ∗3)} :− not d(X).

Now, let us consider the following rule r1:

a(X ,Y ,Z) :− b(X ,Y ),c(Y ,Z),Z = Y + 1,d(Z + 1),#count{T : e(T ,X)}< Y .

It is easy to see that r1 is safe. In addition:

– b(X ,Y ) binds the variables X and Y ;

– c(Y ,Z) binds the variables Y and Z;

– Z = Y + 1 binds the variable Z;

– d(Z + 1) and #count{T : e(T ,X)}< Y do not bind any variable.

For the literals b(X ,Y ) and c(Y ,Z)VarToSa f e= /0, while for Z =Y +1 VarToSa f e=
Y , hence b(X ,Y ) is a saviour for it, as well as c(Y ,Z), because both atoms bind Y . For
d(Z +1), VarToSa f e = Z, and so there are three possible sets of saviours: {Z = Y +

1,b(X ,Y )}, {Z = Y + 1,c(Y ,Z)}, or simply {c(Y ,Z)}. Note that even if Z = Y + 1
binds Z the built-in alone is not a saviour, because it needs a saviour for Y . Finally,
for #count{T : e(T ,X)}< Y possible saviours are: {b(X ,Y )}, {b(X ,Y ),c(Y ,Z)}.
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2.5 MODELLING WITH ANSWER SET PROGRAMMING

Input Program

Instantiation

Propositional Program

Solving

Answer Set(s)

Figure 2.2: ASP simple cycle

ASP represents a given computational problem by
a logic program whose answer sets correspond to
solutions. In other words, the basic idea is to model
a given problem domain and contingent input data
with a Knowledge Base (KB) composed of logic as-
sertions, such that the logic models (Answer Sets) of
KB correspond to solutions of an input scenario. It
is worth noting that, an ASP Knowledge Base might
have none, one, or many Answer Sets, depending on
the problem and the instance at hand.

ASP rules are semantically interpreted according
to common sense principles and to the classical
closed-world assumption/semantics (CWA) of de-
ductive databases; the field of ASP is growing, and
several extensions of the basic language have been
proposed and used in applications such as ontology-
based query answering [24, 101] according to the
classical open-world semantics/assumption (OWA)
of first-order logic [5].

The typical computation combines two modules:
grounder and solver [75]. As shown in Figure 2.2,
the first module takes a program Π and instantiates
it by producing a propositional program Π′ seman-
tically equivalent to Π but containing no variables;
the second module computes answer sets of Π′ by
adapting and significantly extending SAT solving
techniques [84].

As with traditional computer programming, the soft-
ware engineering by means of ASP technology
amounts to a closed loop whose steps, as shown in Figure 2.3, can be roughly classi-
fied into: 1) Modelling; 2) Grounding and Solving; 3) Visualizing and 4) Software
Engineering.
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Requires technical skills 
about solvers & domains

1. Describe 

knowledge in ASP

(Modelling)

2. Run knowledge 

specification

(Grounding + 

Solving)

3. Visualize

Optimize

(Software 

Engineering)

Figure 2.3: ASP development loop

2.6 KNOWLEDGE REPRESENTATION AND REASONING VIA

ASP

Thanks to its high knowledge-modeling power and the availability of reliable, high-
performance implementations [28, 66], over time ASP has been increasingly used
for solving a wide range of complex problems in several scientific areas [32] such as
Artificial Intelligence [10, 112], Knowledge Management [11] and Databases [88,
20, 78, 17].

ASP is a fully declarative language. Moreover, the declarative semantics given to
unstratified negation and the closed world assumption make it particularly suitable for
representing incomplete knowledge and non-monotonic reasoning. The expressive
power is a further key property: theoretically, the introduction of disjunction in rule
heads yields to a more expressive language allowing to capture the complexity class
ΣP

2 (NPNP). More precisely, ASP programs may express, in a precise mathematical
sense, every property of finite structures over a function-free first-order structure that
is decidable in nondeterministic polynomial time with an oracle in NP [40].

In this section we will, first, introduce the GCO programming methodology by means
of proper examples, then, we will show the capabilities of ASP as a tool for KRR in
a real world domain.

2.6.1 GUESS, CHECK AND OPTIMIZE PARADIGM

One of the most important element that distinguishes ASP from other Logic Program-
ming languages is the implementation of the so called “Guess & Check” paradigm
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which is, sometimes, also called “Generate & Test” methodology [85, 47]. The idea
behind the Guess & Check paradigm is to proceed as follows:

– the guess part uses nondeterminism that comes with unstratified negation, or
equally well with disjunction in rule heads, to create candidate solutions to a
problem (program part G⊆ P), whereas

– the check part, with further rules and/or constraints, filters the solution candidate
in such a way that they are admissible for the current program instance (program
part C ⊆ P). This part may also involve auxiliary predicates, if needed.

More in details, the part G defines the search space, and the part C prunes illegal
branches.

inS(X) | outS(X) :− node(X).

}
Guess

:− edge(X ,Y ), not inS(X), not inS(Y ).

}
Check

An extension and refinement of the Guess & Check paradigm is the Guess/Check/Op-
timize (GCO) methodology, which adds one more step to the traditional ones (the
optimization part) which can be described as follows:

– the optimization part O ⊆ P of the program allows to express a quantitative
cost evaluation of solutions by using weak constraints.

It implicitly defines an objective function f : AS(G∪C∪FI)→N mapping the answer
sets of G∪C∪FI to natural numbers, where FI represents a set of facts that specify
an instance I of some problem P . The semantics of G∪C∪FI ∪O optimizes f by
filtering those answer sets having the minimum value; this way, the optimal (least
cost) solutions are computed [79].

:∼ outS(X). [1@1,X ]

}
Optimize

Sometimes, an additional define part is used to model auxiliary predicates and their
relationships with other parts of the logic programs. This part usually consists of
rules [86].

For further and deeper details about GCO methodology, the reader can refer to [85,
79, 47]

3-COLORABILITY The first ASP use case example showed is the well known 3-
colorabiliy problem.

The graph 3-colorability problem is a decision problem in graph theory which asks
if it is possible to assign a color to each vertex of a given graph using at most three
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colors, satisfying the condition that every two adjacent vertices have different colors.
It has been proved that the graph 3-colorability problem belongs to NP-complete
class of problems which no polynomial resources solution is found for them yet.

Firstly, we can start defining a problem instance via facts. In this case, we need to
model an undirected graph G = (V ,E):

– vertices can be encoded as facts of the form vertex(x);

– for edges, facts of type edge(x,y) can be used to express that there is an edge
between the vertices x and y.

Then, the following ASP encoding can be used to determine all the admissible sets
of solutions, i.e., all the possible ways to color the given graph. For this problem, we
do not need an optimize part, indeed, there are not preferences among solutions to be
expressed.

% Guessing Part (1 rule)

r1 : color(X ,red) | color(X ,green) | color(X ,blue) :− vertex(X).

% Checking Part (1 rule)

r2 : :− edge(X ,Y ), color(X ,C), color(Y ,C).

Rule r1 represents the guess stage and states that every node of the graph must be
colored of red, green or blue whereas rule r2 is the check stage that prunes the search
space forbidding the assignment of the same color to any couple of adjacent nodes.

Notably, thanks to the declarative capability of ASP, when designing the encoding
the focus is on how to model the problem at hand, rather than on how to actually
solve it.

By coupling P3col with a set of facts F for vertex and edge, if the program P3col ∪F
is coherent, than each answer set represents an admissible solution. For instance,
suppose that:

F = {vertex(1),vertex(2),vertex(3),edge(1,2),edge(1,3),edge(2,3)}

Then the input graph is complete (i.e., every pair of distinct vertices is connected by
an edge) and the resulting ground program will be:
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color(1,green) | color(1,blue) | color(1,red).

color(2,green) | color(2,blue) | color(2,red).

color(3,green) | color(3,blue) | color(3,red).

:− color(2,green),color(1,green).

:− color(2,blue),color(1,blue).

:− color(2,red),color(1,red).

:− color(3,green),color(1,green).

:− color(3,blue),color(1,blue).

:− color(3,red),color(1,red).

:− color(3,green),color(2,green).

:− color(3,blue),color(2,blue).

:− color(3,red),color(2,red).

edge(1,2). edge(1,3). edge(2,3).

vertex(1). vertex(2). vertex(3).

Finally, the answer sets of P3col ∪F are evaluated during the solving phase and they
are:

as1 : {color(1,blue). color(2,red). color(3,green).}
as2 : {color(1,blue). color(2,green). color(3,red).}
as3 : {color(1,red). color(2,blue). color(3,green).}
as4 : {color(1,red). color(2,green). color(3,blue).}
as5 : {color(1,green). color(2,red). color(3,blue).}
as6 : {color(1,green). color(2,blue). color(3,red).}

SUDOKU The classic Sudoku puzzle, or simply Sudoku, consists of a tableau fea-
turing 81 cells, or positions, arranged in a 9 by 9 grid. The grid is subdivided into
9 “mini-grids” of size 3×3 each containing the numbers 1,. . . ,9 so that no number is
repeated in any row, column or mini-grid. When solving a Sudoku, players typically
adopt deterministic inference strategies allowing, possibly, to obtain a solution. Sev-
eral deterministic and nondeterministic strategies are known [31] and can be encoded
in ASP.



2.6 K N O W L E D G E R E P R E S E N TAT I O N A N D R E A S O N I N G V I A A S P 32

% Guessing Part (1 rule)

r1 : cell(X ,Y ,N) | nocell(X ,Y ,N) :− pos(X), pos(Y ), symbol(N).

% Checking Part (6 rules)

r2 : :− cell(X ,Y ,N), cell(X ,Y ,N1), N1 6= N.

r3 : :− pos(X), pos(Y ), not assigned(X ,Y ).

r4 : :− cell(X ,Y 1,Z), cell(X ,Y 2,Z), Y 1 6= Y 2.

r5 : :− cell(X1,Y ,Z), cell(X2,Y ,Z), X1 6= X2.

r6 : :− cell(X1,Y 1,Z), cell(X2,Y 2,Z), Y 1 6= Y 2, samesquare(X1,Y 1,X2,Y 2).

r7 : :− cell(X1,Y 1,Z), cell(X2,Y 2,Z), X1 6= X2, samesquare(X1,Y 1,X2,Y 2).

% Auxiliary Rules (4 rules)

r8 : assigned(X ,Y ) :− cell(X ,Y ,N).

r9 : insquare(Z,X ,Y ) :− div(X ,N,R), div(Y ,N,S), Y 1 = S∗N, Z = R+Y 1,

pos(Z), pos(X), pos(Y ), sizeBlock(N).

r10 : samesquare(X1,Y 1,X2,Y 2) :− insquare(Z,X1,Y 1), insquare(Z,X2,Y 2).

r11 : div(X ,Y ,Z) :− XminusDelta = Y ∗Z, X = XminusDelta+Delta, Delta < Y ,

pos(X), pos(Y ), pos(Z), pos(XminusDelta), pos(Delta).

Rule r1 guesses a number (symbol) to assign to each cell of the matrix without taking
care of any of the game rules, e.g., r1 could assign to the same cell more than one
number. Rules r2 and r3 ensure that to each cell of the grid is filled with exactly one
number. Finally, rules r4− r7 check that a number does not occur more than once in
the same row, column and mini-grid (also defined as block). Note that rule r8− r11

are just auxiliary rules useful to better encode the program.

N-QUEENS The N-Queens is the problem of placing N chess queens on an N×N
chessboard so that no two queens attack each other, i.e., they are not on the same row,
column or diagonal. The N-Queens problem has been shown to be both NP-Complete
and #P-Complete [73].

% Guessing Part (1 rule)

r1 : {queen(I,J) : row(I), col(J)}= n.

% Checking Part (4 rules)

r2 : :− queen(I,J1), queen(I,J2), J1 6= J2.

r3 : :− queen(I1,J), queen(I2,J), I1 6= I2.

r4 : :− queen(I,J), queen(II,JJ), (I,J) 6= (II,JJ), I + J = II + JJ.

r5 : :− queen(I,J), queen(II,JJ), (I,J) 6= (II,JJ), I− J = II− JJ.

Rule r1 is a choice rule and guesses, for each of the n queens, a possible position on
the board. Rules r2− r5 prevent queens’ attacks by adding the necessary integrity
constraint. More in details, rule r2 forbids horizontal attacks (two queens in the same
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row); rule r3 forbids vertical attacks (two queens in the same column); rules r4 and r5

forbid diagonal attacks.

MAXIMAL CLIQUE So far, we considered problems without an optimizing part.
As example of complete GCO program let us consider a NP-hard problem, namely
Maximal Clique.

Given an undirected graph G = (V ,E), determine a clique C of maximal
size in G, i.e., for each other clique C′ in G, the number of vertices in C
must be larger than or equal to the number of nodes in C′.

We obtain the following encoding Pmax−clique:

% Guessing Part (2 rule)

r1 : clique(X) :− vertex(X), not nonClique(X).

r2 : nonClique(X) :− vertex(X), not clique(X).

% Checking Part (1 rules)

r3 : :− clique(X),clique(Y ),X 6= Y , not edge(X ,Y ), not edge(Y ,X).

% Optimizing Part (1 weak constraint)

r4 : :∼ nonClique(X). [1@X ]

2.6.2 A REAL WORLD DOMAIN: HYDRAULIC LEAKING

The Hydraulic Leaking [33] is a simplified version of the hydraulic system on a space
shuttle which consists of a directed graph, G, such that: (i) nodes of this graph are
labeled as tanks, jets, or junctions; (ii) every link between two nodes is labeled by a
valve; (iii) there are no paths in G between any two tanks; (iv) for every jet there is
always a path in G from a tank to this jet.

When modelling this problems, one has to take into account that Tanks can be full or
empty; Valves can be open or closed; some of the valves may be leaking. A state of
G is specified by the set of full tanks, the set of open valves, and the set of leaking
valves. A node of G is called pressurized in state S if it is a full tank or if there exists a
path from some full tank of G to this node such that all the valves on the edges of this
path are open. We assume that in a state S a shuttle controller can open a valve V 2
corresponding to a directed link 〈N1,N2〉 only if N1 is pressurized. (Note, a leaking
valve can be opened, and all valves are assumed to be all closed in their initial state.)

A possible encoding Phyd for this problem follows.
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% Graph nodes

r1 : node(N) :− jet(N).

r2 : node(N) :− junction(N).

r3 : node(N) :− tank(N).

% Lengths o f paths to goal bounded by the number o f valves, recording also the number

% o f leaking valves on the path

r4 : dist(J,0,0) :− goal(J).

r5 : dist(N,DN,LN) :− dist(K,DK,LK), link(N,K,V ), DN = DK + 1, LN = LK + 1,

numValves(NV ), DN ≤ NV , leaking(V ).

r6 : dist(N,DN,LK) :− dist(K,DK,LK), link(N,K,V ), DN = DK + 1,

numValves(NV ), DN ≤ NV , not leaking(V ).

% Minimum leaking distance o f a node to the goal node

r7 : nodemindist(N,DN,LDN) :− node(N), minLkDist(N,LDN),

minDist(N,DN,LDN).

r8 : minLkDist(N,LDN) :− dist(N,Fv1,LDN), not existLdnLessT han(N,LDN).

r9 : existLdnLessT han(N,LDN) :− dist(N,Fv1,LDN), dist(N,Fv2,LDN1),

LDN1 < LDN.

r10 : minDist(N,DN,LDN) :− dist(N,DN,LDN), not existDnLessT han(N,DN,LDN).

r11 : existDnLessT han(N,DN,LDN) :− dist(N,DN,LDN), dist(N,DN1,LDN),

DN1 < DN.

% Minimum leaking distance o f a f ull tank to the goal node

r12 : f ulltankmindist(T ,DT ,LDT ) :− tank(T ), f ull(T ), nodemindist(T ,DT ,LDT ).

% Fail i f no f ull tank can be reached f rom the goal

r13 : reachable f ulltankexists :− f ulltankmindist(T ,DT ,LDT ).

r14 : :− not reachable f ulltankexists.

% T he f ull tanks and their minimum leaking distances to the goal node, which have

% the minimum leaking distance over all f ull tanks

r15 : best f ulltankldist(T ,SD,SDL) :− f ulltankmindist(T ,SD,SDL),

not existFT LLessT han(SDL).

r16 : existFT LLessT han(SDL) :− f ulltankmindist(Fv1,Fv2,SDL),

f ulltankmindist(Fv3,Fv4,SDL1), SDL1 < SDL.
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% Among the f ull tanks with minimum leaking distance choose those with minimum

% distance f rom the goal

r17 : best f ulltankdist(T ,SD,SDL) :− best f ulltankldist(T ,SD,SDL),

not existFT LessT han(SD, SDL).

r18 : existFT LessT han(SD,SDL) :− f ulltankmindist(Fv1,SD,SDL),

f ulltankmindist(Fv2,SD1,SDL), SD1 < SD.

r19 : goodtank(T ) :− best f ulltankdist(T ,Fv1,Fv2).

% ”Choose” the lexicographically smallest good tank, as any will do

r20 : nbesttank(T ) :− goodtank(T ), goodtank(T 1), T 1 < T .

r21 : besttank(T ) :− goodtank(T ), not nbesttank(T ).

% Now go back to the goal, starting f rom the chosen tank

r22 : reached(T ,SD,SDL) :− best f ulltankdist(T ,SD,SDL).

% In any step, choose the smallest valve among those linking the reached node o f distance

% D to other nodes o f distance D−1, tracking also the leaking distance (stays equal f or

% non− leaking valves, decreases by one f or leaking valves)

r23 : cand(V 1,D1,LD1) :− reached(N,D,LD), LD1 = LD−1, D1 = D−1,

link(N,N1,V 1), nodemindist(N1,D1,LD1), leaking(V 1).

r24 : cand(V 1,D1,LD) :− reached(N,D,LD), D1 = D−1, link(N,N1,V 1),

nodemindist(N1,D1,LD), not leaking(V 1).

r25 : nsmallestvalve(V 2,D1,LD2) :− cand(V 1,D1,LD1), cand(V 2,D1,LD2), V 1 <V 2.

r26 : smallestvalve(V 1,D1,LD1) :− cand(V 1,D1,LD1),

not nsmallestvalve(V 1,D1,LD1).

% Reverse order f or switching on (moving f rom tank to jet, starting f rom 0)

r27 : switchon(V ,DN) :− smallestvalve(V ,D,Fv1), best f ulltankdist(Fv2,BD,Fv3),

DX = BD−D, DN = DX−1.

% Now choose the smallest node linked by the chosen valve as being reached

r28 : nsmallestnode f orvalve(N1,D1,LD1) :− reached(N,D,LD),

smallestvalve(V ,D1,LD1), nodemindist(N1,D1,LD1), N1 > N2, link(N,N1,V ),

link(N,N2,V ), nodemindist(N2,D1,LD1).

r29 : smallestnode f orvalve(N1,D1,LD1) :− smallestvalve(V ,D1,LD1),

reached(N,D,LD), D1 = D−1, link(N,N1,V ),

not nsmallestnode f orvalve(N1,D1,LD1).

r30 : reached(N,D,LD) :− smallestnode f orvalve(N,D,LD).

Consider the following set of facts Fhyd for the problem described above:
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tank(t111). tank(t112). tank(t113). jet( j1). jet( j2). jet( j3).

junction(p1). junction(p2). junction(p3). junction(p4). junction(p5). junction(p6).

valve(v1). valve(v2). valve(v3). valve(v4). valve(v5). valve(v6). valve(v7). valve(v8).

valve(v9). valve(v10). valve(v11). valve(v12). valve(v13).

numValves(13).

link(t111, p1,v1). link(p1, p2,v2). link(p2, j1,v3). link(t112, p3,v4). link(p4, p3,v5).

link(p4, j2,v6). link(t113, p5,v7). link(p5, p6,v8). link(p6, j3,v9). link(p1, p3,v10).

link(p3, p5,v11). link(p4, p2,v12). link(p6, p4,v13).

f ull(t111). leaking(v2). goal( j1).

Figure 2.4 shows the resulting graph generated by Phyd ∪Fhyd . Each tank, jet and
junction represent a node whereas each valve represents a conjunction between two
nodes. The initial configuration represents the state in which:

– tank t111 is the only full tank, i.e., it represents the starting point of the graph;

– jet j1 is the goal that must be reached;

– valve v2 is a leaking valve whereas all the others are closed (and non leaking)
valves.

Phyd ∪Fhyd produces in output a sequence of atoms of the form switchon(v, t). mean-
ing that at time step t, valve v must be open. The switches should occur at con-
secutive time steps beginning from 0. A possible solution to this problem when
combined with Fhyd is composed by the following ordered sequence of valves:
Sol = {v1, v10, v11, v8, v13, v12, v3} as showed in Figure 2.4.

Note that the Hydraulic Leaking problem does not strictly follows the GCO paradigm,
in that a solution can be constructed using rules instead of being “guessed”. In this
respect almost all the above program can be seen as a constructive define module [86];
only the constraint r14 is used to discard the solution constructed by definition in case
a full tank cannot be reached at all from the goal node.

OTHER POSSIBLE ASP APPLICATION CONTEXT Together with the evolution of the
new technologies, new issues that require ever faster and more efficient evaluations
have also raised as a "side effect". Consequently, a further effort was required from
the logic programming community, which has made huge steps forward in adapting
its systems and protocols in order to make them compatible with these new needs. In
such context, a fundamental role has been assumed by the ASP community.

Thanks to its fully declarative nature, ASP allows to encode a large variety of problems
by means of simple and elegant logic programs. Namely, its appealing combination of:
(i) a rich yet simple modelling language, (ii) a high-performance solving capacities;
(iii) efficient and solid ASP systems for computing answer sets [28, 68]; (iv) the
availability of a number of tools allowing to “embed” ASP into imperative code,
made this paradigm a popular approach to declarative problem solving in the field
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Figure 2.4: A Hydraulic Leaking example showed step by step.

of KRR and stimulated the development of a wide range of practical applications
relying on ASP both in academia and business. Such applications include, and are
not limited to, product configuration, decision support systems for space shuttle flight
controllers, large-scale biological network repairs, data-integration and scheduling
systems (cfr. [49, 81]).

The flexibility offered by ASP, which has been proven to be a promising programming
paradigm thanks to its robust and optimized modeling, reasoning capabilities and
inference systems, has led more and more researchers to use it to solve various
problems. In particular, given the importance that the so-called “data streams” are
acquiring in recent years, most of the efforts of the ASP community have been
directed towards the improvement of the already existing ASP techniques, in order to
make them able to solve stream reasoning issues.



3
T H E S T R E A M R E A S O N I N G W O R L D : A N
O V E R V I E W

A Data streams is an unbounded sequence of time-varying data elements, i.e., a
“continuous” flow of information. In this context, usually most recent values coming
from a stream are considered more relevant as they better describe the current state of
a dynamic environment.

Stream Reasoning (SR) is the task of continuously deriving conclusions over a data
stream coming in a real-time, highly dynamic environments in order to support a
specific decision process [15, 129]. The ultimate goal of SR is to design a new
generation of systems capable of addressing data variety and velocity simultaneously.

3.1 THE IMPORTANCE OF STREAM REASONING

Nowadays, we live in a streaming world in which data show a high variety and
are produced faster and faster every day. Internet of Things (IOT) devices, sensors
for smart cities, smart grid, autonomous automobile systems, medical monitoring,
industrial control systems, as well as robotics systems provide data continuously in
the form of data streams.

Data streams are very useful to infer new knowledge about the surrounding environ-
ment allowing us to answer to an incredible amount of questions, e.g., could we know
in advance if there will be a traffic jam on the highway? Can we reroute travelers on
the basis of the forecast? Can we understand shifts of interests of the person behind
the computer? Can we discover positive COVID-19 cases analysing data provided by
heart rate and spO2 sensors? Or also, can we detect and prevent potential terroristic
attacks analysing social media public messages? Although the information needed
to answer these questions is increasingly available on the Semantic Web, there is
currently no software system able to (i) compute the answers in a reasonable amount
of time; (ii) navigate in a constantly evolving environments at a semantic level and
(iii) address multiple new data problems at the same time, such as data volume and
data velocity.

Consequently, it becomes necessary to adapt the existing protocols in order to cor-
rectly analyse all the information provided by such system. To this end, different
real-time approaches have been studied to ensure that a query answer is pushed as
soon as it becomes available to the consumers, in order to improve the crucial time
requirements of many applications despite the increasing volume of data streams.

38
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Moreover, the increasing availability of mobile or light terminals, characterized
by good computational power and by the accessibility to sensors of various kind,
paves the way to distributed and widespread artificial intelligence applications. In
this respect, it is necessary to have special tools ensuring that these terminals can
autonomously perform intelligent tasks, and not only communicate with a centralized
“remote intelligence” [93, 92].

In this setting doing research in the field of SR looks extremely promising. Indeed,
stream reasoning aims not only at providing languages and tools for data that changes
at high rate, but also at introducing advanced reasoning capabilities under a well
understood and formalized framework [14, 16].

Moreover, since stream reasoning is a very recent and evolving research field, many
different issues still need to be solved. Indeed, currently there are no solutions that
allow complex decision-making at the top of data flows and, although existing data
stream management systems allow for high-performance Stream Processor (SP),
they lack dynamic capabilities.

One can argue that LP, with its unique reasoning peculiarities, can help not only to
provide a formal representation of the fundamental principles of this field, but can
also, in conjunction with other techniques, become a powerful reasoning tool for the
problems of this domain.

Several LP formalisms could be theoretically used in stream reasoning fields. How-
ever, in the following section, we will principally focus on ASP as the formalism
that we chose for our research work in this area thanks of its robust and optimized
modeling, reasoning capabilities and inference systems.

3.2 ASP AND SR: CURRENT STATE OF THE ART AND ITS

LIMITS

A recent survey [132], reveals that more sophisticated and expressive formalisms are
taken as one of the key recommendations for further studies in the field of SR. In this
respect, ASP has already proven to be a promising paradigm, with its rich modelling
and reasoning capabilities, as well as robust and optimized inference systems. Over
the last few years, several research lines, that targeted either extending the ASP
language for streams [58, 14], or combined ASP systems with stream processing
solutions [42, 91] have been pursued.

A move towards reasoning over complex data has been taken by time-decaying logic
programs [58], reactive ASP [59], and incremental logic programs [60] supported by
the reasoner clingo. Describing stream reasoning through logic languages as ASP is
an endeavour conducted within the LARS system [14]. From the practical point of
view, current reasoners have been coupled with SP solutions [42, 91] or dedicated
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SR engines have been suggested [16, 12], resulting in an impressive improvement
over the recent years, both on the theoretical and practical level.

Existing SR applications pose several challenges of scalability, including heterogene-
ity of data and intrinsic noise. A general architecture for an ASP-based SR engine
has been proposed in [42]. In this work, many functional parameters that affect the
execution of SR have been considered (such as frequency of streaming input data or
time taken by a reasoner to complete the inference task), but no ways to mitigate the
arising scalability problems have been suggested. The topic has been later discussed
in [74], where the issue of automatic window size adaptation was singled out. In [106],
the scalability challenge has been faced by a so-called Input Dependence Analysis
that consists in analysing the connections between the incoming stream data so that
it can be separated and interpreted in parallel by a group of reasoners. Additionally,
further algorithmic optimisations of current stream reasoning engines are required in
order to allow the development of efficient real world applications.

3.2.1 INCREMENTAL ASP

A remarkable contribution with respect incremental Answer Set Programming has
been introduced with the iclingo system [64, 63]. In iclingo, a designer can pro-
cedurally control how and which parts of a logic program must be incremented,
maintained and evaluated among consecutive shots with respect to an iteratively
increasing integer parameter t, thus allowing the caching of ground subprograms
and of partial answer sets. More in details, the iclingo framework is an incremental
computing system that extends the functionalities of clingo and incorporates both
grounding and solving steps in a stateful way, i.e., it has to maintain its previous state
for processing the current program slices. Thanks to this new approach, the system is
able to (i) reduce efforts by avoiding reproducing previous ground rules during the
instantiation step and (ii) reduce redundancy by avoiding the re-evaluation of ground
rules during the solving step. In addition to the classical ASP syntax, iclingo is able
to handle also statements of the following types:

– #base. meaning that the subsequent part of a logic program is declared
as static, i.e., it is processed only once at the beginning of an incremental
computation;

– #cumulative t_constant. meaning that in the subsequent part of a
logic program, the t_constant is replaced in each step with the current step
number, and the resulting rules, facts, and integrity constraints are accumulated
over a whole incremental computation;

– #volatile t_constant. meaning that the subsequent logic program
part is local to steps, i.e., all rules, facts, and integrity constraints computed in
one step are dismissed before the next incremental step.
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The iclingo system has been now generalized and integrated in the latest version of
the monolithic clingo system.

BLOCKSWORLD PROBLEM WITH iclingo Blocksworld is a very simple problem where
the incremental technique is easily exemplified. There are n blocks stacked on top of
each other and it is possible to move only one block at the same time. The goal is to
stack the blocks in the inverse order.

The problem needs to be subdivided into three different part, static, volatile and
cumulative, in order to be encoded using the iclingo statements. Under the #base
statement all the n blocks need to be declared. Also, the static rules of the problem
need to be specified, e.g., what is an admissible location, where each block can be
put on and which is the starting position of each block.

#base.

r1 : block(1..n).

r2 : location(X) :− block(X).

r3 : location(table).

r4 : on(X ,X + 1,0) :− block(X), X < n.

r5 : on(n, table,0).

After the declaration of the static part of the program, it is needed to describe which
are the valid moves for the blocks. This is done in the cumulative part, since moves
can be done in each step.

#cumulative k.

r6 : 1{move(X ,Y ,k) : block(X) : location(Y ) : X 6= Y}1.

r7 : on(X ,Y ,k) :− move(X ,Y ,k).

r8 : moved(X ,k) :− move(X ,Y ,k).

r9 : on(X ,Y ,k) :− on(X ,Y ,k−1), block(X), location(Y ),

not moved(X ,k).

r10 : blocked(Y ,k) :− block(Y ), on(X ,Y ,k−1).

r11 : :− move(X ,Y ,k), blocked(X ,k).

r12 : :− move(X ,Y ,k), blocked(Y ,k).

More in detail, a move is of the form move(X,Y,k) where X is the block that is moved,
Y is the new position of the block and k is the step when the moved is executed. Rule
r6 specify that exactly one move can be executed at each step whereas rules from r7

to r12 are used to update or to confirm the position of the blocks.
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Input Program

Instantiation

Propositional Program

Solving

Answer Set(s)

F1,…,Fn

Figure 3.1: Incremental ASP
loop

After the definition of the initial setting and of the
program’s constraints, a query must be formulated.

#volatile k.

r13 : :− not on(X + 1,X ,k), block(X),X < n.

Rule r13 expresses the condition for which the com-
putation has to stop, i.e., all blocks are on top of each
other in reversed order. For this reason, it must be
specified in the volatile part.

Nonetheless, declarativity and fast-prototyping capa-
bilities are a priority in many development scenarios,
such as IOT or videogame industry where designers,
who do not have any knowledge of declarative logic
programming, just look for easy and off-the-shelf
scripting solutions.

Consequently, it is necessary to develop a novel gen-
eration of stream reasoning systems in order to over-
come the limitations that users are currently expe-
riencing with state-of-the-art reasoners. Such sys-
tems should be made capable of supporting advanced
query technologies which involve, for instance, types
of temporal reasoning at different time granularity,
as well as methods for classifying the events that are
continually generated at the operational level.

One of the aspects that will be addressed in Chap-
ters 5 and 6 will concern the incremental evaluation

and maintaining of ASP logic programs. Our attention will be particularly focused
on the usage of the pure ASP semantics in a repeated evaluation setting, since, one of
the contributes of this work is precisely to provide a new and original technique for
the “incremental” instantiation of ASP logic programs known as “overgrounding”.
This technique has been implemented in the I 2-DLV system, which extends the
functionality of I -DLV, the DLV grounder for ASP and is focused on saving time
and memory from one computation to the next one and makes use of a new concept
of “ASP loop” as shown in Figure 3.1.

3.2.2 REACTIVE ASP

Most of the ASP systems are designed for offline usage only, lacking online capacities.
However, in the last years, researchers focused their attention on this open problem
and, nowadays, there are some new systems able to perform computation for real-
time complex applications. These systems are able to operate in online and changing
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environments adopting some reactive solutions. In this way ASP can be now applied
in many new challenging areas, dealing with sensors, agents, (ro)bots, etc.

In this new approach, reasoning is driven by series of data coming at different time
steps: the major technical challenge consists in the grounding and solving in view
of possible and unknown future events. In fact, in order to avoid redundancy, it is
necessary to continuously integrate the new program parts without re-evaluating more
than one time the previously treated programs. Moreover, simplifications related
to events must be postponed until they become decided. Once a general method is
defined, there is room for different application scenarios.

To this end, [36] proposed a new approach where incrementality is meant in a slightly
different way: one has a base program P, which is coupled with additional module
layers M1, . . . ,Mn. An answer set A of P∪M1 can be “incremented” with new atoms
so to build an answer set A′ of P∪M1∪M2. This approach has been implemented
firstly in the online answer set solver oClingo and then integrated in the version 5
of clingo answer set solver [63]. According to the oClingo philosophy, one has to
model her/his problem by thinking in terms of “layers” of modules. Therefore, the
incremental program constitutes the offline counterpart of an online progression and
it is meant to provide a general description of an underlying dynamic system whereas
its online counterpart deals with external knowledge acquired asynchronously.

Similarly to what happens with the iclingo programs, it is possible to split the input
program into three parts via the declarations of the #base., #cumulative t.
and #volatile t. statements, where t serves as the parameter. In addition on can
use the #external directive, in order to state which is the input to the cumulative
part provided by future online progressions.

The application-oriented features of oclingo also include declarations in the form
#forget t. in external knowledge to signal that yet undefined input atoms, de-
clared at a step smaller or equal to t are no longer exempted from simplifications, so
that they can be falsified irretrievably by the solver in order to compact its internal
representation of accumulated incremental program slices.

Furthermore, oclingo supports an asynchronous reception of input. If new input
arrives before solving is finished, the running solving process is aborted, and the
solver is relaunched with the new external knowledge.

BLOCKSWORLD PROBLEM WITH oclingo Just as the iclingo solution for the Blocks-
world puzzle presented in Section 3.2.1, this game can be easily reproduced in its
online version and solved making use of oclingo system1. There are three different
input programs file: (i) blocksworld.lp in which the main rules and constraints
of the problem are described, (ii) instance.lp which contains the initial input

1 The full working example has been taken from https://github.com/grote/oclingo/
tree/master/examples/oclingo/blocksworld

https://github.com/grote/oclingo/tree/master/examples/oclingo/blocksworld
https://github.com/grote/oclingo/tree/master/examples/oclingo/blocksworld
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and (iii) online.lp in which the steps, together with the new input data, are
specified.

%%%%%%%% blocksworld.l p %%%%%%%%

#base.

r1 : block(B) :− nblock(B).

r2 : block(B) :− rblock(B).

#hide block/1.

r3 : loc(L) :− nblock(L).

r4 : loc(table).

#hide loc/1.

#cumulative t.

#external rain/3.

r5 : 1{move(B,L, t) : block(B) : loc(L) : B 6= L}1:− not goal(t).

r5 : on(B,L, t) :− move(B,L, t−1),block(B), loc(L).

r6 : on(B,L, t) :− on(B,L, t−1),block(B), loc(L),

not move(B,L2, t−1) : loc(L2).

r7 : :− on(B,C, t),move(C,L, t),block(B;C), loc(L),B 6=C.

r8 : :− on(B,C, t),move(D,C, t),block(B;C;D),B 6=C,B 6= D.

r9 : :− on(B,L, t),move(B,L, t),block(B), loc(L).

r10 : :− move(B,L, t),not rained(B, t),rblock(B), loc(L).

r11 : on(B,L, t) :− rain(B,L, t−1),rblock(B), loc(L).

r12 : rained(B, t) :− rain(B,L, t),rblock(B), loc(L).

r13 : rained(B, t) :− rained(B, t−1),rblock(B).

#hide rained/2.

r14 : goal(t) :− on(B,L, t) : goal_on(B,L).

#volatile t.

r15 : :− not goal(t).
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%%%%%%%% instance.l p %%%%%%%%

#base.

r1 : nblock(0..4).

#hide nblock/1.

r2 : rblock(50..55).

#hide rblock/1.

r3 : on(B, table,0) :− nblock(B).

r4 : goal_on(0, table).

r5 : goal_on(1,0).

r6 : goal_on(2,1).

r7 : goal_on(3,2).

r8 : goal_on(4,3).

#hide goal_on/2.

%%%%%%%% online.l p %%%%%%%%

#step 2.

r1 : rain(50,3,2).

#endstep.

#stop.

With respect to the corresponding iclingo model, one can observe the possibility of
keeping the number of steps open (so to obtain a continuous computing regime), and
the possibility of declaring #external predicates. These allow to declare which
parts of cumulative sections are fed in input to other parts of the program.

The output of the program after receiving the input from step 2 is reported below.
As shown in Figure 3.2a, the initial configuration of the game is the following: all
the blocks are located on the table. The first move to perform (chosen at step 1 in
Figure 3.2b) is to move block 1 from table to block 0. Once the move has been
completed, the configuration of the current state of the game is the same as shown in
Figure 3.2c. At this timepoint, the next move chosen by the oClingo solver is to move
block number 2 on block number 1; moreover, at step 2, a block labeled with number
50 is added on the top of the block 3. Figure 3.2d shows the configuration of the game
blocks after the addition of the new block and after performing the last move. In the
next steps the algorithm decides to move (i) block 50 on the table; (ii) block 3 on
block 2; and, eventually (iii) block 4 on block 3 as shown in Figures 3.2d, 3.2e, 3.2f.
Figure 3.2g shows the final configuration when the goal is reached. Indeed, all the
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blocks from 0 to 4 are organized one upon the other in the right order (as specified in
the instance.lp file).

0 1 2 3 4
TABLE

0 1 2 3 4
TABLE

(a) Step 0: initial configuration.

0 1 2 3 4
TABLE

0 1 2 3 4
TABLE

(b) Step 1: move block 1 on 0.

1

0 2 3 4
TABLE

50

.

.

.
1

0 2 3 4
TABLE

50

.

.

.

(c) Step 2: move block 2 on 1; a raining block
50 is falling on block 3.

50

2

1

0 3 4
TABLE

50

2

1

0 3 4
TABLE

(d) Step 3: move block 50 on table.

50

2

1

0 3 4
TABLE

(e) Step 4: move block 3 on 2.

3

50

2

1

0 4
TABLE

3

50

2

1

0 4
TABLE

(f) Step 5: move block 4 on 3.

4

3

50

2

1

0
TABLE

4

3

50

2

1

0
TABLE

(g) Step 6: goal reached.

Figure 3.2: A blocksworld configuration example showed step by step using oClingo.
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Got input :

#step2.

rain(50,3,2).

#endstep.

Answer : 1

0. on(0, table,0) on(1, table,0) on(2, table,0) on(3, table,0) on(4, table,0)

1. move(1,0,1) on(0, table,1) on(1, table,1) on(2, table,1) on(3, table,1) on(4, table,1)

2. move(2,1,2) on(0, table,2) on(1,0,2) on(2, table,2) on(3, table,2) on(4, table,2) rain(50,3,2)

3. move(50, table,3) on(0, table,3) on(1,0,3) on(2,1,3) on(3, table,3) on(4, table,3) on(50,3,3)

4. move(3,2,4) on(0, table,4) on(1,0,4) on(2,1,4) on(3, table,4) on(4, table,4) on(50, table,4)

5. move(4,3,5) on(0, table,5) on(1,0,5) on(2,1,5) on(3,2,5) on(4, table,5) on(50, table,5)

6. goal(6) on(0, table,6) on(1,0,6) on(2,1,6) on(3,2,6) on(4,3,6) on(50, table,6)

3.3 INCREMENTAL AND ONLINE FEATURES OF CLINGO 5

Both the ideas of iclingo and oclingo are nowadays included in the clingo solver
version 5, in which volatile, cumulative and base directives have been generalized
and can be programmed using Python or Lua scripts [63]. The #program keyword
defines now modules in the generic sense (no matter whether they will play the role
of a cumulative, base, or volatile section), while the #external keyword can be used
to define rules that need special treatment with respect to incremental grounding.
Using the new directives, the definition of a n-Queens incremental encoding is as
shown in Figure 3.3 (from [63]):

#show queen/2.

#program board(n).

#external attack(n,1..n,h).

#external attack(1..n,n,v).

target(n,X ,X ,n,b,n) :− X = 1..n−1. % diagonal b

target(Y ,n−1,n,Y −1,b,n) :− Y = 2..n−1. % diagonal b

target(X ,n−1,X + 1,n, f ,n) :− X = 1..n−1. % diagonal f

target(n−1,Y ,n,Y + 1, f ,n) :− Y = 1..n−2. % diagonal f

target(X ,n,X−1,n,h,n) :− X = 2..n. % horizontal

target(n,Y ,n−1,Y ,h,n) :− Y = 1..n−1. % horizontal

target(Y ,X ,Y ,X−1,v,n) :− target(X ,Y ,X−1,Y ,h,n). % vertical
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{queen(1..n,n);queen(n,1..n−1)}.

attack(X ′,Y ′,D) :− target(X ,Y ,X ′,Y ′,D,n),queen(X ,Y ).

attack(X ′,Y ′,D) :− target(X ,Y ,X ′,Y ′,D,n),attack(X ,Y ,D).

:− target(X ,Y ,X ′,Y ′,D,n),attack(X ′,Y ′,D),queen(X ′,Y ′).

:− not queen(1,n), not attack(1,n,h).

:− not queen(n,1), not attack(n,1,v).

#script(python)
from clingo import Number

def main(prg):
n = 0
parts = []
for arg in prg.get_const(" c a l l s ").arguments:

lower = arg.arguments[0].number
upper = arg.arguments[1].number
while n < upper:

n += 1
parts.append((" boa rd ", [Number(n)]))
if n >= lower:

prg.ground(parts)
parts = []
print( ’ SIZE {0} ’.format(n))
prg.solve()

#end.

Figure 3.3: clingo program encoding and Python script for successive n-Queens solving

It must be noted that this approach introduces ample flexibility, in that the processing
of #program sections and #external directives can be customized at will: it however
requires a non-negligible knowledge of solver-specific internal algorithms and a
radically different modelling approach if compared with the standard one.

3.4 THE LARS FRAMEWORK

A conceptual structure for reasoning over streams has been formalized within a Logic-
based framework for Analyzing Reasoning over Streams (LARS) [14] which provides
a very expressive language based on ASP. Hence, it is an extension of ASP for stream
reasoning. Therefore, LARS’ importance lies in allowing the formal characterization
of various semantic concepts of different Stream Processing/Reasoning formalisms
and engines in a common language, making them, for the first time, analytically
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comparable. Furthermore, it provides a rule-based formalism with different means to
refer to or abstract from time. Between these, it is worth mentioning the introduction
of a window operator under the ASP semantics, representing a flexible method to
retrieve (finite) parts of a stream (substreams).

More in detail, the extensions provide controls for treating temporal modalities of
a formula (the traditional “sometimes”, “at”, and “always” modal operators) that
facilitate asking about the validity of the formula. Modal operators can be used in
combination with window operators, thus enabling the possibility to quantify over a
desired substream specified by a time interval, or by a given amount of data.

The proposed extensions do not yet include some typical query designer needs [132].
Currently, for example, some of the suggested challenges are usage of aggregation
and arithmetic operations.

On the other hand, in order to achieve these objectives it is imperative, first of all,
to fill the gaps between theoretical models and practice [132]. The expressivity and
complexity of LARS turned out to be intractable in general, thus focus has been
given on tractable fragments thereof, or in general, on linguistic fragments for which
known incremental techniques can be directly exploited or can be feasibly adapted.

Ticker [16] and Laser [12], implement respectively a fragment of the full LARS
language. In particular, Ticker represents a significant step towards implementation,
thanks to its incremental version that uses a truth-maintenance method. The imple-
mented fragment, called Plain LARS, allows to express knowledge bases in terms
of set of rules, allowing extended atoms in their bodies. On the other hand, Laser
restricts Plain LARS to positive and stratified programs. Thanks to this restriction
higher performance can be achieved.

3.4.1 PRELIMINARY DEFINITION

Throughout, we distinguish extensional atoms AE for input data and intensional atoms
AI for derived information. By A = AE ∪AI , we denote the set of atoms.

Definition 3.4.1 (Stream). A stream S = (T ,υ) consists of a timeline T , which is
a closed non-empty interval in N, and an evaluation function υ : N 7−→ 2A. The
elements t ∈ T are called time points.

Definition 3.4.2 (Window Function). Any (computable) function w that returns,
given a stream S = (T ,υ) and a time point t ∈N, a window S′ of S is called a window
function.

Time-based window functions, which select all atoms appearing in last n time points,
and tuple-based window functions, which select a fixed number of latest tuples are
widely used. To this end, we define the tuple size |S| of a stream S = (T ,υ) as
|{(a, t)|t ∈ T ,a ∈ υ(t)}|.
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Definition 3.4.3 (Window Operators �w). A window function w can be accessed in
rules by window operators. That is to say, an expression �wα has the effect that α is
evaluated on the “snapshot” of the data stream delivered by its associated window
function w. Within the selected snapshot, LARS allows for controlling the temporal
semantics with further modalities.

Definition 3.4.4 (Temporal Modalities). Let S = (T ,υ) be a stream, a ∈ A and B⊆ A
static background data. Then, at time point t ∈ T ,

– a holds if a ∈ υt or a ∈ B

– ♦a holds, if a holds at some time point t ′ ∈ T ;

– �a holds, if a holds at all time points t ′ ∈ T ; and

– @t ′a holds, where t ′ ∈N, if t ′ ∈ T and a holds at t ′.

Definition 3.4.5 (Extended Atoms). The set A+ of extended atoms e is given by the
grammar e ::= a|@ta|�w @ta|�w♦a|�w�a , where a ∈ A and t is any time point.
The expressions @ta are called @−atoms;�w ?a, where ?∈ {@t ,♦,�} are window
atoms.

3.5 TICKER

In this section we briefly report about Ticker [16], a stream reasoning engine written
in Scala which implements LARS. Ticker has two high-level processing methods for
a given time point: append is adding input signals, and evaluate returns the model.
Ticker is an approach for practical, fully incremental reasoning, i.e., for sliding time-
and tuple-based windows. Two implementations of this interface are provided: the
first one is defined as the “one-shot solving” and relies on the clingo solver; the
second one is, instead, based on an ad-hoc extension of the seminal Justification-
based Truth Maintenance System (JTMS) [43] for a LARS fragment later called
plain LARS. Plain LARS extends normal logic programs essentially by so-called
extended atoms for controlling the streaming aspects.

ONE-SHOT SOLVING USING CLINGO. The ASP solver clingo is a practical choice for
stratified programs, where no ambiguity arises which model to compute. At every
time point, resp., at the arrival of a new atom, the static LARS encoding is streamed
to the solver and results are parsed as soon as clingo reports a model. In case of
multiple models, the first one is taken under consideration. Apart from this so-called
push-based mode, where a model is prepared after every append call, Ticker also
provide a pull-based mode, where only evaluate triggers model computation.

INCREMENTAL EVALUATION BY JTMS. In this strategy, the model is maintained
continuously using an ad-hoc implementation of the TMS [43]. A TMS network
can be seen as logic program P and data structures that reflect a so-called admissible
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model M for P. Given a rule r, the network is updated such that it represents an
admissible model M′ for P∪{r}, thereby reconsidering the truth value of atoms in
M only if they may change due to the network. Ticker analogously allows for rule
removals, i.e., obtaining an admissible model M′ for P\{r}. More in detail, when
new data is streaming in, the system computes the incremental rules, adds them to the
TMS network and removes the expired ones, which results in an immediate model
update.

3.6 LASER

In this section we report about Laser [12], a novel stream reasoning system based
on LARS, which extends ASP for stream reasoning. Laser focuses on positive and
stratified programs, i.e., both stream-stratification and stratified negation. Existing
semi-naive evaluation techniques as in Datalog [4] have been extended to deal with
the temporal dimension of LARS. In particular, for time-based windows, substitutions
for non-ground formulas are annotated with two time markers that express the interval
during which the according ground formula is guaranteed to hold. As long as the
evaluation time is included in such an interval, the substitution can be retained.
Thus, when time progresses, parts of the model may be carried over instead of
being recomputed. Moreover, further annotations (i.e., guarantees) might be added
incrementally for existing substitutions. In this way, the update process may partially
reduce to updating annotations of existing derivations. On the other hand, substitutions
may expire and are then removed efficiently due to the lookup of the respective time
marker. The approach works similarly for tuple-based windows, under analogous
annotations that refer to the global tuple count.

In Laser, programs are sets of rules which are constructed on formulae that contain
window operators and temporal operators. Thereby, Laser has a fully declarative
semantics amenable for formal comparison. To address the trade-off between ex-
pressiveness and data throughput, Laser employs a tractable fragment of LARS that
ensures uniqueness of models. Thus, in addition to typical operators and window
functions, Laser also supports operators such as �, which enforces the validity over
intervals of time points, and @, which is useful to state or retrieve specific time
points at which atoms hold. Moreover, Laser provide a novel evaluation technique
which annotates formulae with two time markers. When a grounding of a formula
ϕ is derived, it is annotated with an interval [c,h] from a consideration time c to a
horizon time h, during which ϕ is guaranteed to hold. By efficiently propagating
and removing these annotations, Laser obtain an incremental model update that may
avoid many unnecessary re-computations.

The Laser incremental procedure consists in continuously grounding and then anno-
tating formulae with two time points that indicate when and for how long formulae
hold. Laser address two important sources of inefficiency: grounding (including time
variables) and model computation. Laser deliberately focuses on exploiting purely
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sliding windows. The longer a (potential) step size, the less incremental reasoning can
be applied. In the extreme case of a tumbling window (i.e., where the window size
equals the step size) there is nothing that can be evaluated incrementally. However, as
long as the two subsequent windows share some data, the incremental algorithm can
be beneficial. For further and deeper details about the system implementation and
algorithm, the reader can refer to [12].



4
G A M E P R O G R A M M I N G A N D A R T I F I C I A L
I N T E L L I G E N C E I N G A M E S

Videogames development is becoming a more and more interesting field for re-
searchers. The relation between videogames and artificial intelligence techniques is a
longstanding and still exciting story of reciprocal knowledge exchange. Although it
must be observed that the notion of “AI” is understood differently in the academic
world with respect to the videogame development industry, this relationship is mu-
tually beneficial. On the one hand, videogames offer unsolved challenges which are
as hard as challenges offered by what we can call “serious” applications, yet in a
controlled and reproducible setting. This characteristics makes videogames the ideal
playground in which to invent, experiment, and test new AI paradigms, method-
ologies, and techniques. The AI research community frequently uses videogames
as a research ground, by organizing ad-hoc competitions [37, 110] and proposing
general videogame testbeds for AI [107, 105]. This is not surprising since the imple-
mentation of videogames AI requires to include techniques of autonomous decision
making, mapping, path-finding, planning, fine-grained motion planning, spatial and
temporal reasoning, all of which under strict time constraints. Many disciplines share
these similar goals, among which, e.g., robotics [6] and, if one especially looks at
requirements on processing large and fast-paced data flows, stream reasoning [41].

On the other hand, the videogame industry, whose world market value is estimated at
200 billion USD as of 2020 [3], customarily looks very greedily at progresses in the
field of artificial intelligence, in order to gain practical advancements. One can cite the
historical example of the F.E.A.R. game [100], using STRIPS-based planning [133],
and many other games using some form of learning and/or hierarchical planning,
such as Halo [2] and Black & White [1].

In real time videogames, the artificial players (intelligent agents) and their opponents
(Non-Player Characters (NPCS)) need AI that is as credible and “real” as possible.
To do this, artificially intelligent agents must be able, first of all, to react quickly to
changes in the surrounding environment (reactive environment). To give an idea, let’s
consider that in many videogames the reaction time of NPCS should not exceed the
threshold of 40ms, in order to ensure fluidity and responsiveness of the game. It is
therefore clear that an intelligent agent is constantly overwhelmed with an immense
amount of data, which describe the current state of the surrounding environment and
which need to be continuously analysed in order to “act” and “react” intelligently
based on the context in which the agent is located.
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Therefore, the application of stream reasoning techniques in videogames could be
seen as a sort of “gym” where researchers can “train” techniques that could be
subsequently used for real-world data analysis.

In this chapter we will present an overview of the world of artificial intelligence
employed in the videogames development context with its current applications.

4.1 HISTORY OF AI AND GAMES

Games and Artificial Intelligence have a long history together. Much research on AI
for games is concerned with constructing agents for playing games, with or without a
learning component.

With the term game AI, we refer to a broad set of algorithms that also includes
techniques from control theory, robotics, computer graphics and computer science in
general. Most early research on game-playing AI was focused on classic board games,
such as Checkers and Chess. A milestone in AI research in games is the backgammon
software named TD-Gammon which was developed in 1992 [124, 125].

Later on, during the golden age of arcade videogames, the idea of AI opponents
was largely popularized in the form of graduated difficulty levels, distinct movement
patterns, and in-game events dependent on the player’s input. Modern games often
implement existing techniques such as pathfinding and decision trees to generate
responsive, adaptive or intelligent behaviors primarily in NPCS similar to human-
like intelligence and guide their actions depending of the context. Namely, game
AI for NPCS is centered on appearance of intelligence and good gameplay within
environment restrictions. Finally, AI is also often used in mechanisms which are
not immediately visible to the user, such as data mining and Procedural Content
Generation (PCG).

It must be noted, that beside a longstanding mutual knowledge exchange process, the
videogame industry is an emblematic representative of a real-world application field
where practical barriers prevent the wide adoption of AI methodologies, no matter
whether these are symbolic/deductive or non-symbolic/inductive. These barriers are,
first, of cultural kind: the separation between the videogame industry and academy
starts from the different conception of what AI is and means. Also, elevated standards
of effectiveness, efficiency and ease of use set a hard to reach cutoff threshold for
the introduction of promising paradigms such as ASP in the above contexts; game
developers indeed, often prefer mechanical solutions to sophisticate “academic” AI
solutions.

Nonetheless, Artificial Intelligence has been an integral part of videogames since
their inception in the 1950s and, as many industries and corporate voices claim. From
then on, the so called videogame AI has come a long way, revolutionizing the way



4.2 A RT I F I C I A L I N T E L L I G E N C E I N V I D E O G A M E S 55

humans interact with all forms of technology. Indeed, AI in videogames is a distinct
subfield and its purpose differs from academic AI. As a matter of facts, it serves
to improve the game-player experience rather than machine learning or decision
making.

4.2 ARTIFICIAL INTELLIGENCE IN VIDEOGAMES

Whether we know it or not, AI is already part of our everyday life. When we use
a smart speaker, when we see a self-driving car and also when we use our Google
Photos application to search for images of our cat, we are actually using AI. Also,
there is a good chance we have unknowingly used AI while playing a videogame,
like for example God of War or Red Dead Redemption 2, but also the simple Pac-Man
game.

In reality, over the years AI is getting better and better at playing certain games. For
example, beating your computer at chess, when the AI is set at the hardest difficulty
level, is pretty much impossible, and the DeepMind software can now defeat you even
if you are a pro StarCraft player. Indeed, DeepMind-based AI use neural network
techniques that learn how to play videogames in a fashion similar to that of humans.
Some examples are the AlphaStar [114, 9] AI and AlphaGo [120], two DeepMind-
based systems able to efficiently play StarCraft and the Go game, respectively. Both
of them were initially trained using imitation learning to mimic human play, and then
improved through a combination of reinforcement learning and self-play.

Through the deep learning and DeepMind revolution, researchers at universities and
tech companies have made astounding progresses at giving a machine the means to
improve themselves over time. However, this kind of AI is not desirable in commercial
games. Indeed, the “canonical” AI employed in digital systems and autonomous
vehicles is self-learning and really fast, but it is also really unpredictable. In contrast,
when a game programmer designs AI-based NPCS, typically he wants to know what
the player will experience and, of course, he wants to ensure a configurable good
game experience to the player. For this reason, this kind of AI has to be predictable.
By the way, this is not possible, since there is always a very good chance that
something unexpected might happen, and it could break the game. Of course, this is
a problem for a designer that should create a world able to be completely predictable
(no randomicity at all). Also one has to consider that neural-network based AI cannot
be easily modified without a re-training step.

What is remarkable is that the AI inside of a videogame has been basically built
with the same core set of principles for decades. Namely, the AI you encounter in
games today has not really changed that much over the years. Take, for instance, a
classic game like Pac-Man. At each time step, the ghosts evaluate where the Pac-Man
player is in the map and where he might be going, and then they either chase the
player, or they run away from him. Even though it is not exactly ground-breaking
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AI, this is still considered a videogame AI, if seen from the videogame community
perspective. Indeed, two of the main core components of commercial game AI
are usually (i) pathfinding and (ii) finite state machines. The first one is how to
get from point A to point B in a simple way and respecting some constraint (i.e.
avoiding obstacle, collecting useful objects, etc.), and it is used in all games all the
time. Whereas, the second one is a construct where NPCS can be in different states
depending on the game scene, and can transition between them. Of course, real AI
in commercial games is more complex than that, but those are some of the founding
principles. Using these basics, developers have created ever-more realistic game
worlds and characters, but such software are not exactly “intelligent” if seen from a
philosophical perspective.

Another advancement in the field of game AI has been reached through the use of a
new technique known as Procedural Content Generation (PCG) allowing to generate
game worlds entirely from scratch.

4.3 AI IN GAMES: FRAMEWORKS AND COMPETITIONS

In this section, we present some frameworks and competitions related to videogames
and AI conducted in order to better define the current status of the works in this field.

4.3.1 GENERAL VIDEO GAME AI COMPETITION

One of the most famous frameworks in this field is the well known General Video
Game AI (GVGAI) [102, 103] framework. GVGAI is a Java framework used for
different purposes, such as an AI benchmark to test intelligent agents and for general
level generation for any game. This framework, currently used for hosting the General
Video Game Player (GVGP) competition. can be easily employed to play any game
described using the standard Video Game Description Language (VGDL) [97]. In
fact, all games in GVGAI are expressed via VGDL, a text based description language
initially developed by Tom Schaul [116]. In particular, VGDL was built to design
2-dimensional arcade-type games around objects (sprites), one of which represents
the player (avatar). The strength point of this language is that it separates the logic
into two different components: the game and the level description, both defined in
plain text files, allowing the engine to be independent from them. Thanks to this, it is
possible to design a language fit for purpose, which can be concise and expressive
enough to be employed for the development of many different games. Moreover, the
versatility of VGDL eases the organisation of competitions, especially in the field
of game AI community, where it is enough to implement only the reasoning module
without the need to focus on the game graphics, which is already provided by the
framework itself.
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Figure 4.1: A screenshot of some of the test games of the GVGAI competition

One of the most famous AI competitions is the GVGAI competition. It is associ-
ated to the GVGAI framework and its purpose is to propose a challenge in which
researchers can test their favourite AI methods, with a potentially infinite number of
games created using the Video Game Description Language. In the GVGAI Compe-
tition1 the participants must submit a Java controller that plays in whatever game that
can be supported by the VGDL framework. Each participant must download and use
the starter kit provided by the organizers, which contains the VGDL Framework code,
some sample controllers that will help the participants to get used to the GVGAI
Framework and 30 games, each one of them with 5 levels, to train the controller. The
code has to be submitted before the deadline by the participants on an online server,
which will be able to compile and execute the submitted controller in any of the
three Training sets or in the Validation game set. The results of this submission phase
evaluation will not influence the final results of the competition and will be shown
on the competition webpage. Finally, all controllers will be executed in the final
Test game set, and the results of these evaluations will produce the final competition
results.

1 All the information about the competition steps has been taken from the official competition webpage at
the following link http://www.gvgai.net/bot_competition.php

http://www.gvgai.net/bot_competition.php
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4.3.2 ANGRY BIRDS AI COMPETITION

Angry Birds is one of the most famous multi-platform games. It has a very simple
graphics, gameplay and tasks. The series focuses on multi-colored birds that try to
save their eggs from their enemies, which are green-colored pigs. So, the aim of
the game is to kill all the green pigs in each level by throwing some different birds
at them. By the way, pigs can be protected by various structures. Such structures
are usually rectangular, but, in general, they could have several shapes and being of
different color, material (wood, ice, stone, etc.), and physical properties like mass,
density and friction. Consequently, the player needs to find a good strategy in order
to destroy all the structures that protects the pigs and killing, at the same time, all
of them. Note that, depending on the mass and density of a structure, pigs could die
when it fall down on them.

A player can perform two different actions: (a) selecting the trajectory of the birds
which will be threw and (b) tapping on the screen at a specific time t after release
in order to activate the birds’ optional special power, indeed, different birds have
different behaviours and special powers. A game level is solved if, after executing
a selected sequence a and b of actions, it leads to a game state that satisfies certain
victory conditions (no alive pigs remaining in the game level and minimum point
score reached).

Figure 4.2: A screenshot of the output of the computer vision module of the Angry Birds AI
Competition Framework. Screenshot taken from http://aibirds.org/

.

Namely, the score of the player increases every time an object or a pig is destroyed,
and spared birds let the player to obtain additional bonuses. Interestingly, after each
player’s shot, the scenario evolves complying with laws of physics, like for example
the crash of object structures and a generally complex interaction of subsequent falls.

In this competition, the main goal is to develop an agent that can successfully play
Angry Birds even better than the best human players. To do so, the agent has to
successfully solve several problems, such as: (i) predict the outcome of all the
possible future physical actions without having complete knowledge of the world;
(ii) detect and classify known and unknown objects of the scene; (iii) learn properties
of the new discovered objects; (iv) select a good action out of infinitely many possible

http://aibirds.org/
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ones; (v) plan a successful action sequence. while, at the same time, keeping in mind
that the game environment behaves according to the laws of physics. This is an
essential capability of future AI systems that interact with the physical world.

The Angry Birds AI competition (AIBIRDS) provides a simplified and controlled
environment for developing and testing these capabilities. The framework is composed
of a basic game playing software that includes a computer vision module, a trajectory
planning module, and the game interface that works with the Chrome version of
Angry Birds. Figure 4.2 shows a typical output of the computer vision module able to
detect and categorise the relevant objects of the game scene. Furthermore, it places
a bounding box around them in order to simplify the step of the object detection. It
is also possible to create and substitute the current computer vision module with a
new one implemented by the participant itself or download a freely available module
coming from the participants of the previous competition. Indeed, the organizers
highly suggest the developers to make their source code freely available online.
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5
O V E R G R O U N D E D P R O G R A M S A N D
E M B E D D I N G S

As mentioned in Chapter 3, a wide range of applications require to perform continu-
ous reasoning over event streams. In turn, this requires the repeated execution of a
reasoning task over the same fixed logic program, but with changing inputs via multi-
ple “shots” [16, 63]. Recall that the typical workflow of Answer Set Programming
(ASP) systems consists in an instantiation (or grounding) phase and a subsequent
solving (or answer sets search) phase. In the first step, a grounder module produces an
equivalent propositional program gr(P∪F) from an input non-ground logic program
P and a set of facts F; in the latter step, a solver module applies dedicated search
techniques on gr(P∪F) for computing the actual semantics of P∪F in the form of
answer sets [75]. We will conceptually model the notion of repeated execution as
the task of finding the set of answer sets AS(P∪Fi) for a sequence of input fact sets
F1, . . . ,Fn. The computation of a particular value AS(P∪Fi) for a given Fi, will be
called shot or iteration.

Both the grounding and solving performance is critical when highly paced repeated
executions are required. Indeed, only short time windows are allowed between subse-
quent shots. Therefore, instantiation of such applications could be a significant time
bottleneck. We focused on the usage of the pure ASP semantics in a repeated evalua-
tion setting, by proposing methods for maintaining two types of ground programs:
(i) “overgrounded programs” and (ii) “overgrounded programs with tailoring”. As
we will report next, both families of ground programs share useful properties: they
can be incrementally updated, and can be reused in combination with deliberately
many different sets of inputs. Also the knowledge designer is relieved from the burden
of manually controlling the computational procedure.

In this chapter we will focus on the description of the overgrounded programs,
whereas overgrounded programs with tailoring will be discussed in detail in Chapter 6.
In Section 5.1 we will briefly introduce an overview of the idea behind overgrounding
by means, also, of a simple example; then, a detailed roadmap illustrating how we
addressed formal and practical issues concerning overgrounding is reported in 5.2.
In Section 5.3 we will introduce some notions and theorems used throughout the
rest of the chapter. Finally, in Sections 5.4 and 5.5 we will introduce the notion of
embedding and we will devise the an incremental grounding strategy relying on the
theoretical results illustrated before.
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5.1 OVERGROUNDING: AN OVERVIEW

A canonical ASP system works by first instantiating a non-ground logic program
P over input facts F , obtaining a propositional logic program which we will call
gr(P,F) and then computing the corresponding intended models, i.e., the answer
sets AS(gr(P,F)). Importantly, systems build gr(P,F) as a significantly smaller
and refined version of the theoretical instantiation grnd(P∪ F), defined via the
Herbrand base (see,e.g., [25]), but preserve semantics, i.e., AS(gr(P,F)) = AS(P∪
F). The choice of the instantiation function gr impacts both computing time and
the size of the obtained instantiated program. gr usually maintains a set PT of
“possibly true” atoms, initialized as PT = F ; then, PT is iteratively incremented and
used for instantiating only “potentially useful” rules, up to a fixpoint. Strategies for
decomposing programs and for rewriting, simplifying and eliminating redundant
rules can be of great help in controlling the size of the final instantiation. For an
overview of grounding optimization techniques the reader can refer to [64, 27, 35].

Example 5.1.1. We show the overgrounding approach with a simple example. Let us
consider the program P0:

r(X ,Y ) :− e(X ,Y ), not ab(X). r(X ,Z) | s(X ,Z) :− e(X ,Y ), r(Y ,Z).

When taking the set of facts F1 = {e(c,a), e(a,b)} into account, there are several
ways for building a tailored instantiation of P0 ∪F1. For instance, one can simply
assume F1 as the initial set of “possibly true” facts, then generate new rules and new
possibly true facts by iterating through positive head-body dependencies, obtaining
the ground program G1:

r1 : r(a,b) :− e(a,b), not ab(a). r2 : r(c,b) | s(c,b) :− e(c,a), r(a,b).

r3 : r(c,a) :− e(c,a), not ab(c).

Let us assume that, at some point, a subsequent run requires P0 to be evaluated over a
different set of input facts F2 = {e(c,a), e(a,d), ab(c)}. Note that, with respect to
F1, F2 features the additions F+ = {e(a,d),ab(c)} and the deletions F− = {e(a,b)}.
Nonetheless, differently from G′1, G1 can be easily incrementally updated by adding
F+ to the set of possibly true facts, yet preserving semantics. More precisely, one
can ground P0 with respect to the new set of possibly true facts F1∪F2; then, this new
information can be propagated and only some additional rules ∆G1 = {r4,r5}, must
be added, thus obtaining G2:

r1 : r(a,b) :− e(a,b), not ab(a). r2 : r(c,b) | s(c,b) :− e(c,a), r(a,b).

r3 : r(c,a) :− e(c,a), not ab(c). r4 : r(c,d) | s(c,d) :− e(c,a), r(a,d).
r5 : r(a,d) :− e(a,d), not ab(a).

We now have that G2 is equivalent to P0, both when evaluated over F1 and when
evaluated over F2 as input facts, although only different portions of the whole set
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of rules in G2 can be considered as relevant when considering F1 or F2 as inputs,
respectively. On the other hand, G′1 cannot be easily incremented with new rules so
to be “compatible” with F2, because the rule r(c,a) :− e(c,a) would cause wrong
inferences. Even more interestingly, if a third shot of reasoning is requested over
input facts F3 = {e(a,d), e(c,a), e(a,b)}, we notice that G2 does not require any
further incremental update, as possibly true facts remain unchanged (i.e., F1∪F2 =
F1∪F2∪F3), i.e. the set ∆G2 containing new incremental additions to G2 would be
empty.

5.2 TOWARDS OVERGROUNDED PROGRAMS: ROADMAP AND

CONTRIBUTIONS

It turns out that an instantiation strategy like the one producing G1 and then G2 should
comply with specific properties that should allow to safely define a sound incremental
grounding strategy.

More in detail, we aimed to characterizing a class of ground logic programs equivalent
to the theoretical instantiation, called embedding programs or, simply, embeddings
(Section 5.4); they allowed us to introduce a model-theoretic-like notion of ground
programs with some desirable properties, and make dealing with formal properties of
ground programs cleaner.

Overgrounded programs are built on the notion of embedding. Overgrounded pro-
grams (Section 5.5) are treated in terms of series of embedding programs growing
monotonically. These have both theoretical and practical impact: for instance, over-
grounded programs can be easily generalized to other semantics for logic program-
ming, such as the well-founded semantics; moreover, their incremental growth allows
for easily implementing caching policies in many practical scenarios.

We, also, proposed an incremental grounding strategy, allowing to reuse previously
grounded programs in consecutive evaluation shots. In particular, while dealing with
a specific reasoning task, we maintain a stored ground logic program which grows
monotonically from one shot to another; such an overgrounded program becomes
more and more general while moving from a shot to the next, increasingly adding
potentially useful rules. Importantly, intermediate subsequent updates to the ground
program are considerably less time-consuming: our technique allows, in a sense, to
trade memory for time.

The above framework allows to relieve designers of logic programs from two specific
burdens. First, there is no need for procedural control over the incremental evalua-
tion process, as features of the herein proposed incremental framework are almost
transparent to designers. Second, there is no need to worry about which parts of
logic programs might be more grounding-intensive; also highly general code, even
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non-optimized, can benefit from overgrounding. This allows to focus on represent-
ing knowledge in a single-encoding/multiple-inputs setting, thus preserving some
desirable properties of knowledge representation and reasoning via ASP, namely
declarativity and ease of modelling.

5.3 PRELIMINARIES

It is possible to compute a ground program equivalent to grnd(P)∪F by means of
the operator defined next. In this section we will follow [25]: note, however, that
the instantiation operator defined here is slightly differently formalized, in that we
purposely keep facts explicitly separated from rules.

Definition 5.3.1. [cf. [25]]. Given a program P and a set of ground atoms S, we
define the operator Inst(P,S) as Inst(P,S) = {r ∈ grnd(P) s.t. B+(r) ⊆ S}. With
a slight abuse of notation, for a set R of ground rules we define Inst(P,R) as
Inst(P,Heads(R)). Instk(P,F) is defined as the k-th element of the sequence
Inst0(P,F) = Inst(P, /0∪F), . . . , Instk(P,F) = Inst(P, Instk−1(P,F)∪F).

Intuitively, the notion above formalizes the idea of selecting, among all ground
instances of rules in P, those supported by a given set S or by the heads of a given set
of ground rules R. Given that the sequence above is defined by a monotonic operator
it converges to its least fixpoint.

Proposition 5.3.1. [cf. [25]]. Given a program P and a set of facts F, the sequence
Instk(P,F), k ≥ 0 converges to its least fixpoint Inst∞(P,F).

Interestingly, given a program P and a set of facts F , the fixpoint above can be useful
for computing a ground program that is equivalent to grnd(P)∪F .

Theorem 5.3.1. [cf. [25]] For a program P and a set of facts F, AS(P∪ F) =

AS(Inst∞(P,F)∪F).

Definition 5.3.2. (Adapted from [54]) For a non-disjunctive program P and set of
facts F , an Herbrand interpretation I for P∪F is said to be well-supported iff there
exists a strict well-founded partial order ≺ on I such that for any atom a ∈ I there
exists a rule R ∈ grnd(P∪F) for which H(r) = a, I |= B(R) and for any b ∈ B+(r),
b≺ a.

Theorem 5.3.2. [cf. Th.3.1 of [54]] For a non-disjunctive logic program P and set
of facts F, the well-supported models of P∪F are exactly the answer sets of P∪F.

Definition 5.3.3. (Adapted from [82]) It is given a program P and set of facts F . For
a given k, a computation is a sequence of ground atoms {Vn}n≤k for which it holds:
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– V0 = F , and for i > 0,

– Vi = Vi−1∪X , where X ⊆ {a ∈ H(r)|r ∈ grnd(P∪F) and B+(r) ⊆Vi−1}.

Theorem 5.3.3 (Adapted from Theorem 6.23 of [82]). For a program P, set of facts
P∪F, let A ∈ AS(P∪F). Then A = Vk, for some finite k and some computation
{Vn}n≤k

The following theorem extends Theorem 3.1 of [54] to the case of logic programs
allowing disjunction in the heads; the proof descends as a corollary from the notion
of computation and Theorem 6.23 as given in [82].

Proposition 5.3.2. For a given program P, a set of facts F and an answer set A for P,
we can assign to each atom a∈ A an integer value stage(a) = i so that stage encodes
a strict well-founded partial order over all atoms in A, in such a way that there exists
a rule r ∈ grnd(P)∪F with (i): a ∈ H(r), (ii): A |= B(r) and (iii): for any atom
b ∈ B+(r), stage(b) < stage(a).

Proof. The stage assignment can be built from a computation {Vn} = A, whose
existence is guaranteed by Theorem 5.3.3.

5.4 EMBEDDING PROGRAMS

We introduce a declarative characterization of a class of equivalent ground programs,
called embeddings. This notion is useful for proving, given a program P and a set
of facts F , whether a ground program G having certain features is equivalent to
P∪F , i.e., G is a “correct grounding” that “embeds” P∪F . In a sense, embeddings
relate to partial instantiations generated by the Inst operator, like Herbrand models
relate to supported interpretations generated by the immediate consequence operator.
An illustrative comparison between models and embedding programs is reported in
Table 5.1.

Definition 5.4.1. [Embedding.] For a program P, a set of facts F , a set of ground
rules R⊆ (grnd(P)∪F), and a rule r ∈ (grnd(P)∪F), we say that:

– R embeds the body of r, denoted R `b r, if ∀a ∈ B+(r) ∃r′ ∈ R s.t. a ∈ H(r′);
– R embeds the head of r, denoted R `h r, if r ∈ R.
– R embeds r, denoted R ` r, if either: (i) R 0b r, or (ii) R `h r.

Given a logic program P and a set of input facts F , a set of ground rules R ⊆
grnd(P)∪F is an embedding program for P∪F , if ∀r ∈ grnd(P)∪F , R ` r.
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Let P be a program, F a set of facts, and r ∈ grnd(P)∪F

Model-Theoretic Semantics Embedding Programs Semantics

I : Set of atoms S : Set of rules

I |= B(r), if B+(r) ⊆ I and S `b r, if ∀a ∈ B+(r) ∃r′ ∈ S s.t. a ∈ H(r′)

B−(r)∩{not a | a ∈ I}= /0

I |= H(r), if H(r) ∈ I S `h r, if r ∈ S

I |= r, if either: (i) I 2 B(r), or (ii) I |= H(r) S ` r, if either: (i) S 0b r, or (ii) S `h r

Table 5.1: Comparison of the classic model-theoretic semantics for logic programs and the
embedding program semantics.

Example 5.4.1. Let us consider the program P0 of Example 5.1.1 along with the set
of facts F = {e(a,b),e(b,b)}. The ground program below represents F ∪grnd(P0).

r1 : r(a,a) :− e(a,a), not ab(a).

r2 : r(a,b) :− e(a,b), not ab(a).

r3 : r(b,a) :− e(b,a), not ab(b).

r4 : r(b,b) :− e(b,b), not ab(b).

r5 : r(a,a) | s(a,a) :− e(a,a), r(a,a).

r6 : r(a,a) | s(a,a) :− e(a,b), r(b,a).

r7 : r(a,b) | s(a,b) :− e(a,a), r(a,b).

r8 : r(a,b) | s(a,b) :− e(a,b), r(b,b).

r9 : r(b,a) | s(b,a) :− e(b,a), r(a,a).

r10 : r(b,a) | s(b,a) :− e(b,b), r(b,a).

r11 : r(b,b) | s(b,b) :− e(b,a), r(a,b).

r12 : r(b,b) | s(b,b) :− e(b,b), r(b,b).

r13 : e(a,b).

r14 : e(b,b).

By definition, grnd(P0)∪F is clearly an embedding of P0∪F . The set E1 = {r2,r4,r8,
r11,r12, r13,r14} is also an embedding of grnd(P0)∪F . Indeed, for every rule r ∈ E1,
E1 `h r, and for every rule r ∈ (grnd(P0)∪F) \E1 it holds that E1 0b r. The set
E2 = {r4,r8,r12,r13,r14} is not an embedding of grnd(P0)∪F ; indeed, E2 0 r2 since
E2 `b r2 and E2 0h r2.

Embedding programs enjoy a number of interesting properties, some of which are
reported next. First, an embedding program is equivalent to P∪F (Theorem 5.4.1);
also, an intersection of embedding programs is an embedding program, similarly to
the intersection of models (Proposition 5.4.1).
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Definition 5.4.2 (Reduction). [71] For any set I of ground atoms, the reduct of P
relative to I is the set of rules without negation obtained from P by first dropping
every rule such that at least one of the atoms Ci in its body belongs to I, and then
dropping the parts not C1, . . . ,not Cn from the bodies of all remaining rules.

Definition 5.4.3 (Reduction). [52] Given a ground DLPA program P and an interpre-
tation I, let PI denote the transformed program obtained from P by deleting rules in
which a body literal is false w.r.t. I:

PI = {r|r ∈ P, ∀b ∈ B(r) : I |= b}.

Lemma 5.4.1. Let P be a program, F a set of facts, E of P∪ F an embedding
program, and A ∈ AS(P∪F) an answer set. Then, for each a ∈ A there exists a rule
ra ∈ (grnd(P)∪F) s.t. a ∈ H(ra) and ra ∈ E; thus, A⊆ Heads(E).

Proof. By Proposition 5.3.2, each a∈ A is associated to an integer value stage(a) and
there exists a rule ra ∈ grnd(P)∪F , with a ∈ H(ra). Note that ra ∈ (grnd(P)∪F)A

since A |= B(r). We now show that ra ∈ E by induction on the stage associated to
a ∈ A. If stage(a) = 1, ra is such that B(ra) = /0. Hence, since E is an embedding
program for P∪F , and E `b ra, it must hold that ra ∈ E. Now, (inductive hypothesis)
assume that for stage(a) < j, ra ∈ E. We show that for stage(a) = j, ra ∈ E. Indeed
ra is such that for each b ∈ B+(ra), stage(b)< j, and hence there exists a rule rb ∈ E

with b ∈ H(rb). Hence E `b ra and thus, since E is an embedding program for P∪F ,
E `h ra, and ra ∈ E.

Theorem 5.4.1. (Embedding equivalence). For a program P, a set of facts F and an
embedding program E for P∪F, AS(grnd(P)∪F) = AS(E).

Proof. [AS(grnd(P) ∪ F) ⊆ AS(E)]. Let A ∈ AS(grnd(P) ∪ F). We will show
that (grnd(P)∪F)A = E A, thus the statement trivially follows. Indeed, since E ⊆
grnd(P)∪F , it holds that E A⊆ (grnd(P)∪F)A. So, if (grnd(P)∪F)A and E A differ,
there must exists a rule r ∈ grnd(P) \E, and, obviously, such that r ∈ (grnd(P)∪
F)A. But since E is an embedding program for P∪F , this means that E 0 B(r).
However, A |= B(r), and hence ∀b ∈ B+(r) we know that b ∈ A. By Lemma 6.2.2,
A ⊆ Heads(E), and then ∀b ∈ B+(r) there exists a rule r′ ∈ E such that b ∈ H(r′),
thus leading to a contradiction with E 0 B(r).
[AS(E)⊆ AS(grnd(P)∪F)]. Let A∈ AS(E). We again show that E A = (grnd(P)∪
F)A. Similarly to the case above, since E A ⊆ (grnd(P)∪F)A, there must exists a rule
r ∈ (grnd(P)∪F)\E, s.t. E 0 B(r). Moreover, A |= B(r), and thus ∀b ∈ B+(r) we
know that b∈A. However, A is an answer set for E; this clearly means that ∀b∈B+(r)
there exists r′ ∈ E such that b∈H(r′), which in turn means that E `B(r), thus leading
to a contradiction.

Proposition 5.4.1. (Intersection of embedding programs). Given a logic program
P, a set of facts F, E1 and E2 embedding programs for P∪F, E = E1 ∩ E2 is an
embedding program for P∪F.
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Proof. By contradiction, assume that E is not an embedding program for P∪F . Then,
∃r ∈ (grnd(P)∪F) such that E 0 r, that is, E 0h r and E `b r. Since E 0h r, we have
that r /∈ E, and hence at least one of the following statements hold: (i) r /∈ E1, (ii)
r /∈ E2. Without loss of generality, assume r /∈ E1. By hypothesis, E1 is an embedding
program for P∪F , thus it must hold that E1 0b r. Then, by definition, there exists
b ∈ B+(r) s.t. @r′ ∈ E1 with b ∈ H(r′); this implies that such r′ cannot exist in E,
thus contradicting the fact that E `b r.

Example 5.4.2. Consider again the program P0, the embedding E1 of the example
above and the set of facts F = {e(a,b), e(b,b)}. It is easy to see that the set of
rules E3 = {r2,r4,r7,r8,r12,r13,r14} is also an embedding of F ∪grnd(P0), and that
E4 = E1∩E3 = {r2,r4,r8,r12,r13,r14} is an embedding for F ∪grnd(P0) as well.

Finally, the next theoretical results show that P∪F has a minimal embedding program,
corresponding to the intersection of all embedding programs. Also, the minimal
embedding program can be computed as the fixpoint of Inst, thus establishing a
correspondence between embedding programs and the operational semantics of
grounders.

Theorem 5.4.2. Given a program P and a set of facts F, E ⊆ grnd(P)∪F is an
embedding program for P∪F iff E ⊇ Inst(P,E)∪F.

Proof. (⇒) Assume that E is an embedding program for P∪F . By contradiction,
assume there is a rule r ∈ Inst(P,E)∪F such that r /∈ E. Clearly, B+(r)⊆Heads(E)
(by definition of Inst). This means that E `b r, and, since E ` r, this implies E `h r,
i.e., r ∈ E, thus contradicting our assumption.
(⇐) Assume that for a set of rules E, E ⊇ Inst(P,E)∪F and, by contradiction, that E

is not an embedding program for P∪F . Then, there must be a rule r ∈ grnd(P)∪F
such that E 0 r. Clearly, r /∈ E (otherwise, we would have E `h r ), and E `b r. This
means that B+(r)⊆Heads(E) and thus Inst(P,E)⊆ E must contain r, contradicting
our assumption.

Theorem 5.4.3 (Lattice-Theoretical Fixpoint Theorem). [123]Let (i) υ = 〈A,≤〉 be
a complete lattice, (ii) f be an increasing function on A to A (iii) P be the set of all
fixpoints of f . Then the set P is not empty and the system 〈,≤〉 is a complete lattice;
in particular we have:

⋃
P =

⋃
Ex[ f (x) ≥ x] ∈ P

and ⋂
P =

⋂
Ex[ f (x) ≤ x] ∈ P.

Theorem 5.4.4. Let ES be the set of embeddings of P∪F; then,

Inst∞(P,F)∪F =
⋂

E∈ES
E.
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Proof. Let define the monotone operator Inst(P,F) = Inst(P,F)∪F , and consider
the complete lattice of subsets of grnd(P)∪F under set containment.

The proof then follows by Theorem 5.4.2 and by Knaster-Tarski theorem [123] by
observing that

Inst∞(P,F)∪F = l fp(Inst) = inf{E ⊆ grnd(P)∪F | Inst(P,F)⊆ E}=
⋂

E∈ES
E

and that Inst∞(P,F)∪F is the least fixpoint for Inst(P,F).

Example 5.4.3. Note that Inst∞(P0,F)∪F for the program P0 of example 5.4.2
coincides with E4. It can be verified that E4 corresponds to the intersection of all
embedding programs for F ∪grnd(P0). In order to grasp the intuition, one could note
that rules r13 and r14 belong to all embeddings as they are facts; moreover, rule r2, r4,
r8 and r12 must belong to all embeddings as well, as their bodies are embedded by
any set of rules containing F .

Theorem 5.4.5. Given a logic program P and a set of facts F, let ES be the set of

embeddings of P∪F. Then

AS(P∪F) = AS
(⋂

E∈ES E
)
.

Proof. The proof follows from Theorem 5.4.1 and Proposition 5.4.1.

Note that Theorem 5.4.4 combined with Theorem 5.4.1 constitutes an alternative,
cleaner proof of Theorem 5.3.1.

5.5 THE OVERGROUNDING TECHNIQUE

In the following we assume we are given a program P and a sequence of sets of facts
F1, ..., Fn; then, let us assume that we need to perform a series of distinct evaluations
over a different Fi at each shot. In other words we aim at computing all the sets
AS(P∪F1), ..., AS(P∪Fn).

Definition 5.5.1. For an integer k, s.t. 1≤ k ≤ n, we define AFk =
⋃

1≤i≤k Fi as the
sets accumulated facts at shot k. Moreover, we define Gk = Inst∞(P,AFk) as the
overgrounded program at shot k.

Each overgrounded program Gk is equivalent to P∪Fi for 1≤ i≤ k.

Theorem 5.5.1. The following two statements hold:
(1): Inst∞(P,AFk−1) ⊆ Inst∞(P,AFk); (2): AS(Inst∞(P,AFk)∪Fi) = AS(P∪Fi).

Proof. Let IU = Inst∞(P,AFk)∪Fi, and for each i, i ≤ k, IFi = Inst∞(P,Fi)∪Fi.
Recall that each IFi is an embedding for P∪Fi.
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By monotonicity of Inst, we have point (1) above and that IU ⊇ IFi for each i≤ k.
Each IFi is clearly an embedding program for P∪Fi by Theorem 5.4.4. We show that
point 2 follows by showing that IU is an embedding program for P∪Fi and from
Theorem 5.4.1.
For a given i≤ k, consider a rule r ∈ (grnd(P)∪Fi); If r ∈ IU then IU ` r. Let us
consider the case in which r ∈ (grnd(P)∪Fi)\ IU . Note that IFi ` r and thus IFi 0b r.
Now, either IU 0b r or IU `b r. In the former case, clearly IU ` r. In the latter case,
we have that ∀a ∈ B+(r) a ∈ Heads(IU), and this means that r ∈ IU by definition
of IU , thus contradicting the assumption that r 6∈ IU . Thus IU is an embedding for
P∪Fi for all i≤ k.

We can now devise an incremental grounding strategy relying on the theoretical
results illustrated so far. For the sake of simplicity, we illustrate the core of the idea
and omit all technical implementation details.

At each shot k, we keep the set of accumulated facts AFk and the overgrounded
program Gk by incrementally updating AFk−1 and Gk−1. In this setting, AS(P∪Fk)

can be obtained by computing AS(Gk∪Fk). More in detail, overgrounded programs
are managed as follows:

– At shot 1, we set AF1 = F1, and G1 = Inst∞(P,AF1)

– At generic shot k:
1. we set AFk = AFk−1∪Fk,
2. we compute a set of additional ground rules ∆Gk, and
3. we set Gk = Gk−i∪∆Gk.

The computation of ∆Gk can be efficiently performed by using an optimized incre-
mental algorithm that takes in input the newly added facts Fk \AFk−1 and produces
the new rules appearing in Gk \Gk−1. In our case, we developed a variant of the
typical incremental iteration of the semi-naive algorithm [131]. More details on our
implementation are given in Chapter 8.
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I N C R E M E N TA L M A I N T E N A N C E O F
O V E R G R O U N D E D P R O G R A M S W I T H
TA I L O R E D S I M P L I F I C AT I O N S

In Chapter 5 we presented an approach to incremental reasoning under the answer set
semantics consisting in the use of overgrounding techniques where the grounding step
is incrementally performed by maintaining an overgrounded program GP, which is
made “compatible” with new input facts by monotonically enlarging it from one shot
to another. This approach is attractive since no operational statements are required
to incrementally drive the computation and, moreover, the time performance of
this technique is promising. Indeed, an overgrounded program, after some update
iterations, converges to a propositional theory general enough to be reused together
with possible future inputs, with no further update required. This virtually eliminates
grounding activities in later iterations. However, despite the advantages described so
far, the performance of solvers could decrease because of larger input programs.

For this reason, one can think at overcoming the limitations of overgrounding ap-
proaches by introducing techniques limiting the number of generated rules and
reducing their size by applying known simplification methods for ground logic pro-
grams [65, 51]. However, nonobvious technical obstacles prevent a straightforward
extension of overgrounding techniques in the above direction: in general, indeed,
simplification criteria are applied based on specific inputs. Consider, e.g., if one
simplifies a ground program by properly removing atoms which are known to be
true in all answer sets at a fixed shot. This, and more sophisticated simplification
techniques can however be invalidated in later shots, as, for instance, if a logical
assertion is no longer supported by the current input. Thus, diverse general questions
arise. One could wonder which properties a ground program should have in order to
be “reusable” with a family F of different inputs; also, it remains open whether a
ground program can be modified in a way such that F can be enlarged with small
computational cost, and how.

To this end, we proposed an optimized version of the incremental grounding strat-
egy described in Chapter 5 able to overcome the limitations of the overgrounding
approaches previously mentioned.

More in detail, we characterized a class of ground programs equivalent to the theoret-
ical instantiation, called tailored embeddings. Tailored embeddings make it simpler
to deal with equivalence properties of simplified programs. Overgrounded programs
with tailoring (OPTs in the following) are series of tailored embeddings that keep a
monotonic growth approach, yet permitting simplification techniques.

71
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We proposed a new incremental grounding strategy, allowing to seamlessly adapt
and reuse a ground program in consecutive evaluation shots. In particular, OPTs are
generated by alternating desimplification steps, taking care of restoring previously
deleted and reduced rules and incremental grounding steps, which add and simplify
new rules. The maintained program becomes more and more general (i.e., the family
of “compatible” input facts becomes increasingly larger) while moving from a shot
to the next, and the update activity becomes progressively lighter. Indeed, both
desimplification and incremental operations are monotonic, in that, respectively,
one restores formerly deleted rules and formerly deleted literal, whereas the other
produces new rules to be added to existing ones.

We implemented the above strategy in the I -DLV grounder. We report about the
experimental activities we conducted, comparing with other state-of-the-art systems.
Results confirm that grounding times blend over iterations in the incremental setting,
and that the performance of solvers takes advantage from the reduced size of OPTs
with respect to plain overgrounded programs. This different approach is especially
beneficial for grounding-intensive logic programs.

The tailored overgrounding approach has a very important theorical advantage: tai-
lored embeddings overcome many limits of the previous notion of embedding. Fur-
thermore, it can be easily generalized to other semantics for logic programming, such
as the well-founded semantics.

In this chapter, after overviewing our approach and briefly presenting preliminary
notions, we will introduce the notion of tailored embedding and its properties. More
in detail, in Section 6.3, we will present OPTs and a maintenance algorithm thereof;
then, in Section 8.1 we will show the architecture of the system and, finally, in
Section 8.2, we will report about our system and its experimental evaluation.

6.1 OVERGROUNDING WITH TAILORED SIMPLIFICATIONS:
AN OVERVIEW

As mentioned, canonical ASP systems work by first instantiating a non-ground logic
program P over input facts F , obtaining a propositional logic program gr(P∪F), and
then computing the corresponding models, i.e., the set of answer sets AS(gr(P∪F)).
Notably, systems build gr(P∪F) as a significantly smaller and refined version of the
theoretical instantiation but preserve semantics, i.e., AS(gr(P∪F)) = AS(P∪F).

In this section, we will demonstrate how our approach can be applied to the Exam-
ple 5.1.1 showed in Chapter 5, allowing to reduce the size and the number of the
generated ground rules. Let us consider, again, the program P0 consisting of rules:

r(X ,Y ) :− e(X ,Y ), not ab(X). r(X ,Z) | s(X ,Z) :− e(X ,Y ), r(Y ,Z).

and the set of input facts F1 = {e(c,a), e(a,b), ab(c)}.



6.1 OV E R G RO U N D I N G W I T H TA I L O R E D S I M P L I F I C AT I O N S : A N OV E RV I E W 73

Our more “aggressive” grounding strategy could also cut or simplify rules: literals
identified as definitely true can be eliminated and rules that cannot fire can be deleted.
In the case above, it is easy to see that ab(a) and ab(c) have no chance of being true;
hence, removing not ab(a) and not ab(c) from the rule bodies leads to the generation
of G′1: We can remove facts e(a,b), and e(c,a) from bodies of r1 and r2, respectively,
and rule r3 entirely, obtaining TG1, composed of rules r′1 and r′2:

r′1 : r(a,b) :− e(a,b), not ab(a). r′2 : r(c,b) | s(c,b) :− e(c,a), r(a,b).

r3 : r(c,a) :− e(c,a), not ab(c).

Nevertheless, TG1 can be seen as less re-usable than G1, as it cannot be easily
extended to a program which is equivalent to P0 with respect to different input facts.

To this end, our proposed technique allows to adapt a simplified ground program
TGx to a new input Fx+1 by iterating a desimplification step and an incremental
step on TGx. The desimplified version of TGx is enriched with new simplified rules
added in the incremental step. When F2 = {e(c,a), e(a,d)} is provided as input, the
desimplification step restores r3 and reverts r′1 to r1:

r1 : r(a,b) :− e(a,b), not ab(a). r′2 : r(c,b) | s(c,b) :− e(c,a), r(a,b).

r3 : r(c,a) :− e(c,a), not ab(c).

Moreover, in the incremental step two new rules r4 and r5 are added depending on
the new fact e(a,d):

r4 : r(c,d) | s(c,d) :− e(c,a), r(a,d). r5 : r(a,d) :− e(a,d), not ab(a).

Then, r4 can be simplified by removing e(c,a), whereas e(a,d) can be deleted from
r5, obtaining:

r′4 : r(c,d) | s(c,d) :− e(c,a), r(a,d). r′5 : r(a,d) :− e(a,d), not ab(a).

Thus, TG2 = {r1,r′2,r3,r′4,r′5}, whereas r′4 and r′5 were not formerly present in TG1.
We have now that TG2 is equivalent to P0 when evaluated over F2 as input facts,
whereas TG2 with input facts F1 would cause wrong inferences. Indeed, r′5 is simpli-
fied according to new facts belonging to F2 but not to F1. Nevertheless, if F3 = F1

is submitted as input, the desimplification step would generate TG3 from TG2 by
reverting the rule r′5 to r5.

One might notice that TG3 is built assuming F1∪F2∪F3 as possibly true facts, and
assuming F1∩F2∩F3 as certainly true facts. Intuitively, the last element of the series
{TGi} is the one embracing the larger family of inputs for which “compatibility”
is guaranteed, and requiring lesser update work in later iterations: in case a fourth
shot is requested over input facts F4 = {e(a,d), e(c,a), e(a,b)}, the desimplification
step will leave TG3 unaltered and the incremental step will not generate new rules;
this happens since possibly true facts and persistent facts are left unchanged. Thus,
TG4 = TG3. We illustrate next how programs like TG1, TG2 and TG3 are related
to each other, and which formal requirements are necessary to develop a correct
incremental grounding strategy.
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6.2 TAILORED EMBEDDINGS

We are given a logic program P and a set of input facts F . We will now work
with possibly simplified versions of rules of grnd(P). For a rule r ∈ grnd(P)∪
F , a simplified rule (or simplified version) s of r is a rule annotated with the set
B∗(s), where B∗(s) = B(r) \B(s). The rule r is denoted as hom(s), i.e., r is the
homologous rule of s belonging to the theoretical grounding whose body is obtainable
as B(hom(s)) = B(s)∪B∗(s). For a set of simplified rules S we define hom(S) =
{r ∈ grnd(P)∪F | ∃s ∈ S and hom(s) = r}. A rule q ∈ grnd(P)∪F is regarded as
a simplified rule with B∗(q) = /0 and hom(q) = q. Similarly, a set Q⊆ grnd(P)∪F
is regarded as a set of simplified rules with hom(Q) = Q.

Note that sets of simplified rules are not comparable under set inclusion, although
one can consider, e.g., the set of rules a:−b and c:−d as a “somewhat smaller” subset
of the set composed by rules a:−b,c and c:−d. We thus appropriately generalize set
inclusion and set intersection to sets of simplified rules. Given two sets of simplified
rules S and R, we say that S is a simplified subset of R (Sv R) if for each s ∈ S there
is a rule r ∈ R s.t. B(s) ⊆ B(r) and hom(s) = hom(r). The simplified intersection
RuQ of two set of simplified rules R and Q is:

RuQ = {t | r ∈ R,q ∈ Q,B(t) = B(r)∩B(q),

B∗(t) = B∗(r)∪B∗(q),

hom(t) = hom(r) = hom(q)}.

Example 6.2.1. Let us consider rules r1, . . . ,r5 and their primed versions as mentioned
in Section 6.1. We assume that for each i = 1 . . .5, hom(r′i) = ri. Given TG3 =

{r1,r′2,r3,r′4,r5} and TG1 = {r′1,r′2}, we have that TG1 v TG3. For T0 = {r1,r′2}, the
intersection T0uTG1 is instead the set {r′1,r′2}.

Definition 6.2.1. Given two sets of simplified rules R and Q, we define Simpl(R,Q)

as an operator working on each simplified rule r ∈ R according to the following
simplification types.

1. r is removed from R, if there is a literal not a ∈ B−(hom(r)) s.t. a ∈ Facts(Q);

2. r is removed from R if there is a atom a ∈ B+(hom(r)) and a /∈ Heads(Q);

3. we move from B(r) to B∗(r) each atom a ∈ B+(hom(r)) s.t. a ∈ Facts(Q).

Intuitively, the types 1 and 3 depend on atoms which are assumed to be certainly
true in any answer set; and the type 2 depends on atoms that are assumed to be
certainly false in any answer set. With slight abuse of notation, we define Simpl(R)
as Simpl(R,R). A number k of repeated applications of Simpl to the same set R is
denoted as Simplk(R). Note that, for k ≥ 1, Simplk+1(R) v Simplk(R): we denote
the fixed point reached in finitely many steps by the sequence of values Simplk(R)
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as Simpl∞(R). We trivially extend the operators `, `h and `b (as given in Defini-
tion 5.4.1) for a set of simplified rules on the left-hand side and for simplified rules
on the right-hand side. As given next, a tailored embedding is a set of simplified
rules which extends the notion of embedding by including the possibility of using
simplification operations in order to obtain smaller, yet correct, ground programs.

Definition 6.2.2. [Tailored embedding] Given a set of simplified rules R and a rule
r ∈ grnd(P)∪F , we say that R tailors r (R  r) if at least one of the following holds:

1. R ` r;

2. there exists a simplified rule s ∈ R such that hom(s) = r, R `h s and R `h a for
each atom a ∈ (B+(r) \B+(s));

3. there is a literal not a ∈ B−(r) and R ` a.

A set of simplified rules E is a tailored embedding for P∪F , if ∀r ∈ grnd(P)∪F ,
E  r.

Intuitively, a ground rule r is tailored according to the new operator “” either if
it is embedded by R or, otherwise, there are in R the conditions for applying one
of the possible simplification types to r. Note that R ` b is meant as a shortcut for
R ` {b:− /0}.

Informally speaking, the notion of tailored embedding overcomes the one of embed-
ding: although remarkably simple and useful, the latter notion lacks the fact that there
are many other classes of optimized ground programs which are of interest, both
theoretically and practically. In other words, embeddings do not properly formalize
smaller, yet equivalence-preserving, ground programs produced by actual grounders.
The new conditions describe equivalence-preserving ground programs in which a
ground rule can be shortened or deleted at all, provided it is “tailored”. This narrows
the gap between the formalization [30] and real applications.

Example 6.2.2. Let us consider the ground program TG3 = {r1,r′2,r3,r′4,r5} as
shown in Section 6.1, and the set of facts F1. T = TG3∪F1 is a tailored embedding
since: (a) T tailors r1,r3, r5 and all the facts in F1, since T embeds all such rules; (b)
T  r2 since r′2 is a simplified version of r2 for which T `h r′2 and T ` e(c,a); (c)
similarly, T  r4 since T `h r′4 and T ` e(c,a). Any other rule r ∈ grnd(P0)∪F1 is
trivially tailored since it holds that T 0b r thus implying T ` r.

Tailored embeddings enjoy a number of interesting properties: an embedding is a
tailored embedding (Proposition 6.2.4); a tailored embedding is equivalent to P∪F
(Theorem 6.2.1); also, a simplified intersection of tailored embeddings is a tailored
embedding (Proposition 6.2.5); and, importantly, the intersection of all tailored
embeddings represents the least tailored embedding under simplified set inclusion
and corresponds to an iterative, operational construction made using the Simpl and
Inst operators (Theorem 6.2.2 and Corollary 1).
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Proposition 6.2.1. For a ground logic program G and A ∈ AS(G), A⊆ Heads(G).

Proposition 6.2.2. For a ground logic program G and A ∈ AS(G), Facts(G) ⊆ A.

The following Proposition re-adapts Theorem 6.22, as given in [82].

Proposition 6.2.3. For a given tailored embedding E for P∪F , let us consider the
superset Facts(E) of F . We can assign to each atom a ∈ Facts(E) an integer value
stage′(a) = i so that stage′ represents a strict well-founded partial order over all atoms
in Facts(E), in such a way that hom(a) is structured as follows: {a}= H(hom(a)),
∀b ∈ B+(hom(a)),b ∈ Facts(E) and stage′(a) < stage′(b).

Lemma 6.2.1. For a tailored embedding E of P∪F and an answer set A∈ AS(P∪F),
Facts(E) ⊆ A.

Proof. The proof is given by induction on the function stage′ applied to Facts(E)
as given by Proposition 6.2.3. W.l.o.g. we assign stage′(a) = 1 to each atom a ∈
Facts(E)∩Facts(P∪F). These atoms clearly belong to A. We assume then that for
each a ∈ Facts(E) with stage′(a)< j we know that a ∈ A, and show that this implies
that for all a ∈ Facts(E) for which stage′(a) = j, a ∈ A as well. By Proposition 6.2.3
and the inductive hypothesis, we have that hom(a) is such that each b ∈ B+(hom(a))
belongs to A, and thus A |= B+(hom(a)). Finally, the Lemma is proven by observing
that B−(hom(a)) = /0.

Lemma 6.2.2. Given a tailored embedding E of P∪F and an answer set A ∈ AS(P∪
F). Then, for each a ∈ A there exists a rule ra ∈ E s.t. hom(ra) ∈ (grnd(P)∪F);
thus, A⊆ Heads(E).

Proof. By Proposition 5.3.2, each a∈ A is associated to an integer value stage(a) and
there exists a rule ra ∈ grnd(P)∪F , with a ∈ H(ra). Note that ra ∈ (grnd(P)∪F)A

since A |= B(r). We now show that ra ∈ hom(E) by induction on the stage associated
to a ∈ A. W.l.o.g. we can assign stage(a) = 1, whenever ra is such that H(ra) = {a},
B+(r) = /0 and for all b s.t. not b ∈ B−(r) we have that b /∈ A. When stage(a) = 1,
since E is a tailored embedding for P∪F , it is easy to check that E `b ra, and thus
ra ∈ E.

Now, (inductive hypothesis) assume that for stage(a) < j, ra ∈ hom(E). We show
that for stage(a) = j, ra ∈ hom(E). Given the above, ra is such that for each b ∈
B+(ra), stage(b) < j, and hence there exists a rule rb ∈ E with b ∈ H(rb). Hence
E `b ra. Since E is a tailored embedding for P∪F , and thus E  ra, we have that at
least one of cases in Definition 6.2.2 apply. In particular:

– If the case 1 applies, E `b ra implies ra ∈ E;

– If the case 2 applies, there is clearly a rule r′a ∈ E for which hom(r′a) =
hom(ra);

– If the case 3 applies, it must be that for some not b ∈ B−(ra), b ∈ Facts(E).
But on the other hand A |= B(r) and thus b /∈ A. However, by Lemma 6.2.1,
b ∈ A, which leads to a contradiction.
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We conclude that either the case 1 or the case 2, i.e., a ∈ Heads(E).

Proposition 6.2.4. An embedding E for P∪F is a tailored embedding for P∪F.

Proof. We observe that given an embedding E for P∪F , for each r ∈ grnd(P)∪F ,
we have that E ` r. Then E  r by the case 1 of Definition 6.2.2.

Example 6.2.3. Let us consider again the example of Section 6.1 and in particular, the
ground program G1 = {r1,r2,r3}∪F1. G1 is an embedding for P0∪F1 as each rule r ∈
grnd(P0)∪F1 is embedded by G1: if r ∈G1, G1 `h r, whereas if r ∈ {grnd(P0)∪F1 \
G1}, G1 0b r. Also, G1 is a tailored embedding for P0∪F1 because for each rule r ∈
grnd(P0)∪F1 we have that G1 ` r, since we can apply the case 1 of Definition 6.2.2.
Note that for P0∪F1, the ground program TG1 = {r′1,r′2}∪F1 is a tailored embedding
but it cannot be an embedding. Indeed, TG3 0 r3 since TG3 `b r3 and TG3 0h r3 and
according to Definition 5.4.1, TG3 had to embed all rules in grnd(P0)∪F1 to be an
embedding.

Theorem 6.2.1. [Equivalence]. Given a tailored embedding E for P∪ F, then
AS(grnd(P)∪F) = AS(E).

Proof. We show that a given set of atoms A is in AS(grnd(P)∪F) iff A is in AS(E).
We split the proof in two parts.

[AS(grnd(P)∪F) ⊆ AS(E)]. Let A ∈ AS(grnd(P)∪F). We show that A is a mini-
mal model of EA. First we show that A is model for EA. Indeed, let us assume that
there is a simplified rule r ∈ EA such that A 6|= r. This can happen only if A |= B(r)
but A 6|= H(r). However, A |= hom(r), which implies that either:

– A 6|= B(hom(r)). This implies that ∃l ∈ B(hom(r)) such that A 6|= l. We have
an immediate contradiction if l ∈ B(r). Contradiction arises also if l 6∈ B(r):
indeed, since E is a tailored embedding, l does not appear in B(r) only if the
case 2 of Definition 6.2.2 has been applied, which means that a simplification
of type 3 has been applied. By Lemma 6.2.1, we have a contradiction, since
Facts(E) ⊆ A implies that l must appear in A.

– A |= B(hom(r)) and thus A |= H(hom(r)). Note that A |= H(hom(r)) implies
that A |= H(r) since H(r) = H(hom(r)).

We then show that there is no smaller model for EA. Let us assume that there exist
a set A′, A′ ⊂ A, which is a model for EA and thus A is not a minimal model of
EA. Note that A is a minimal model of (grnd(P)∪F)A and thus there must exist
r ∈ (grnd(P)∪F)A for which A′ 6|= r. Such a rule can be either such that:

(a) There is no s ∈ E s.t. r = hom(s);

(b) There is s ∈ E s.t. r = hom(s) and s 6∈ EA;

(c) There exists s ∈ EA s.t. r = hom(s).
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We show that r cannot fall in the cases (a) and (b), while the case (c) implies that A′

cannot be a model for EA.

Case (a). Since r ∈ (grnd(P)∪F)A it is the case that A |= H(r) and A |= B(r).
However, by Lemma 6.2.2, we know that A⊆ Heads(E). Also, we know that E  r,
but there is no s ∈ E for which r = hom(s). This means that r should be tailored
either by the case 1 or 3 of Definition 6.2.2.

If the case 1 applies, then it must be that E 0b r or E `h r. On the one hand,
Lemma 6.2.2 forces us to conclude that E `b r; thus it should be the case that
E `h r, which contradicts the assumption that r has no s ∈ E for which r = hom(s). If
the case 3 applies, there exists not a ∈ B−(r) s.t. a ∈ Facts(E). But by Lemma 6.2.1,
Facts(E) ⊆ A, which contradicts A |= B(r).

Case (b). In this case, there is s ∈ E s.t. r = hom(s) and s 6∈ EA; Again, note that
A |= H(r) and A |= B(r), which in turn implies that A |= B(s) and A |= H(s). Thus
this case cannot apply, since it turns out that s ∈ EA.

Case (c). Since the two cases above cannot apply, r must fall in this latter case. Since
A′ 6|= r, it must be the case that A′ 6|= H(r) and A′ |= B(r). Note that B(s)⊆ B(r) and
H(s) = H(r). Thus, A′ 6|= H(s) and A′ |= B(s), which implies A′ 6|= s. We conclude
that A′ cannot be a model for EA.

[AS(E) ⊆ AS(grnd(P)∪F)]. Let A ∈ AS(E). We first show that A |= (grnd(P)∪
F). We split all the rules of (grnd(P)∪ F)A in two disjoint sets: hom(EA) and
(grnd(P)∪F) \hom(EA).

For a rule r ∈ hom(EA), let s be such that r = hom(s). We have that A |= B(s) and
A |= H(s). Since H(r) = H(s), this latter implies that A |= H(r). Let us examine
each literal l ∈ B∗(s), which has been eliminated by the case 2 of Definition 6.2.2. We
have that l ∈ Facts(E) , and thus A |= l by Proposition 6.2.2. We can thus conclude
that A |= B(r) and, consequently A |= r.

Let us now consider a rule r ∈ (grnd(P)∪F) \hom(EA). We show that A |= r. Let
us assume, by contradiction that A 6|= r, i.e., A |= B(r) but A 6|= H(r). We distinguish
two subcases: either r ∈ hom(E), or r 6∈ hom(E).

If r ∈ hom(E), we let s be such that r = hom(s). Since r /∈ hom(EA), we have that
s /∈ EA, i.e., A 6|= B(s) which implies A 6|= B(r), which contradicts the assumption
that A 6|= r. If r /∈ hom(E), we however know that E  r. This can be either because
of the case 1 or the case 3 of Definition 6.2.2.

If r falls in the case 1, we have that hom(r) = r and either E 0b r or E `h r. Since
r /∈ hom(E), it must then be that E 0b r, i.e., there exists at least one a ∈ B+(r) s.t. it
does not exist a rule r′ ∈ E for which E `h r′. Then, a /∈ A by proposition 6.2.1 and
thus A 6|= B(r).
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If r falls in the case 3, we have that there exist a literal not a ∈ B−(r) for which
a ∈ Facts(E). Clearly, by proposition 6.2.2, a ∈ A, and thus A 6|= B(r).

Thus A |= (grnd(P)∪F)A. We know show that A is a minimal model for (grnd(P)∪
F)A. Let us consider a set A′ ⊂ A and assume that A′ |= (grnd(P)∪F)A. However,
we know that A is a minimal model of EA and thus A′ 6|= EA. We can show that this
implies that A′ 6|= (grnd(P)∪F)A. Indeed if A′ 6|= EA, then there exists a rule r ∈ EA

for which A′ 6|= r. This, as we will show implies that A′ 6|= hom(r) (note that it can be
easily shown that hom(r) belongs to (grnd(P)∪F)A).

Indeed, we know that A′ |= B(r) and A′ 6|= H(r). Also it is the case that A′ |=
B(r),B∗(r). In fact if we assume, by contradiction, that A′ 6|= B(r),B∗(r) there should
exist a literal l ∈ B∗(r) for which A′ 6|= l. l cannot be negative since A |= l and
A′ ⊂ A. If l is positive, the case 2 of Definition 6.2.2 tells us that l ∈ Facts(E), i.e.,
Facts(E) 6⊂ A′, which in turn implies that A′ cannot be a model for (grnd(P)∪F)A.
This concludes the proof.

Proposition 6.2.5. [Intersection]. Given two tailored embeddings E1 and E2 for
P∪F, E1uE2 is a tailored embedding for P∪F.

Proof. Let E = E1uE2, and let us consider a rule r ∈ (grnd(P)∪F). We show that
E  r. Preliminarily, we observe two facts which hold by definition of simplified
intersection and by the fact that both E1 and E2 are tailored embeddings. We are given
a literal a and one of E1 or E2 (w.l.o.g., we choose E1):

(a) a ∈ Facts(E1) implies that a ∈ Facts(E).

(b) a /∈ Heads(E1) implies that a /∈ Heads(E);

By contradiction, let us assume that E 6 r, and we split the proof in two parts,
depending on whether r ∈ hom(E) or whether r /∈ hom(E).

(r ∈ hom(E)). This implies that there are rules s ∈ E1, q ∈ E2 and t ∈ E such that
r = hom(s) = hom(q) = hom(t). Note that, for each (positive) literal l ∈ B∗(t), the
case 2 of Definition 6.2.2 can be applied i.e., l ∈ Facts(E1) or l ∈ Facts(E2) which
implies l ∈ Facts(E) (Fact (a) above);

(r /∈ hom(E)). In this case we have that either r /∈ hom(E1) or r /∈ hom(E2). W.l.o.g.
we assume r /∈ hom(E1). By Definition 6.2.2, this can be the case if either

1. E1 0h r because there exists a ∈ B+(r) and a /∈ Heads(E1). Note that Fact (b)
implies that a /∈ Heads(E), hence E  r.

2. E1 0b r; this implies that E 0b r hence E  r;

3. E1 0h r because there exists not a ∈ B−(r), and a ∈ Facts(E1). Note that
Fact (a) implies that a ∈ Facts(E), hence E  r.



6.3 OV E R G RO U N D I N G W I T H TA I L O R I N G 80

Theorem 6.2.2. Let TE be the set of tailored embeddings of P∪F and E = Inst∞(P,F)
∪F. Then,

Simpl∞(E ) =
l

T∈TE

T.

Proof. Let T =
d

T∈TE T. By Proposition 2 we notice that E =
d

E∈ES E. The single
argument operator Simpl is both deflationary and monotone when restricted over the
complete lattice (L,v), where L = {T ∈ TE|T v E }: thus, the iterative sequence
E0 = supv(L) = E , E i+1 = Simpl(E i) converges to the least fixpoint in fv({T ∈
L|Simpl(T) v T}) = T = Simpl(T ).

Corollary 1. By combining Th. 6.2.1, Pr. 6.2.5 and Th. 6.2.2, we have that:

AS(P∪F) = AS
( l

T∈TE

T
)
= AS(Simpl∞(Inst∞(P,F)∪F)).

Example 6.2.4. For program P0 and facts F1 of Section 6.1, the least tailored embed-
ding of P0∪F1 under simplified set inclusion is the set {r′1,r′2}∪F1.

6.3 OVERGROUNDING WITH TAILORING

We illustrate in this section our technique for maintaining appropriate series of tailored
embeddings which we call overgrounded programs with tailoring (OPTs).

In the following, the logic program P will be coupled with a sequence of sets of input
facts F1, . . . ,Fn. We aim to incrementally compute the sets AS(P∪F1), . . . ,AS(P∪Fn)

by reducing the burden of the grounding step at the bare minimum, especially in
later iterations. We update and maintain one element of the series of OPTs G1, . . . ,Gn

via the repeated execution of an incremental instantiation function called INCRINST,
and taking as arguments the program P, a ground program G and a set of input
facts F . At iteration 1, we initialize the global sets of ground atoms D = AF =

PF = /0, and we let G1 = INCRINST(P, /0,F1). For an iteration i > 1, we will set
Gi = INCRINST(P,Gi−1,Fi).

The series G1, . . . ,Gn has three useful properties: (i) for each i, Gi∪Fi is a tailored
embedding for P∪Fi and thus AS(P∪Fi) = AS(Gi∪Fi); (ii) for the shot i+ 1, the
INCRINST function obtains Gi+1 from Gi by means of an iterative process, which
repeatedly undoes now invalid simplifications in Gi (the desimplification step) and
then computes additional new rules ∆Gi+1 (the incremental grounding step); (iii)
Gi+1 extends Gi, as all the rules of Gi appear in Gi+1 possibly in their desimplified
version, i.e., Gi v Gi+1. The global set D collects the rules that were deleted at some
iteration and could be restored later on, whereas AF and PF keep record of so called
accumulated facts and persistently true facts, respectively. After computing Gi for a
shot i, we will have that AF =

⋃
1≤k≤i Fk and PF =

⋂
1≤k≤i Fk. Intuitively, Heads(Gi)

will represent possibly true atoms built by applying the Inst operator starting from
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AF as initial set of possible atoms. An atom outside Heads(Gi)∪AF is assumed to
be certainly false and might trigger simplifications of type 2. Similarly, Facts(Gi)

will be taken as the set of certainly true atoms which allow to apply simplifications
of types 1 and 3.

OUTLINE OF THE INCRINST FUNCTION. An abstract version of the INCRINST func-
tion is given in the next page. Let us assume to be at iteration i+ 1 for i > 1. The
INCRINST function is composed of a DESIMPL step and a ∆INST step. On the one
hand, in the DESIMPL step the rules in Gi are possibly desimplified whereas previ-
ously deleted rules are possibly restored. On the other hand, undeleted rules and new
facts NF = Fi+1 \AF can trigger the generation of new rules, which are incrementally
processed in the ∆INST step. These new rules are simplified and added to Gi+1.

The set NR keeps track of rules restored from D and of new rules added in the ∆INST

step. Atoms in Heads(NR)∪NF can invalidate simplifications of type 2 as they
represent no longer certainly false atoms. The set OF is instead used to keep track of
atoms that are no longer assumed to be certainly true at the current shot; the atoms
in OF can invalidate former simplifications of types 1 and 3. The iterative process
internal to INCRINST continues until no new rules are added and no new derived
facts need to be retracted, i.e., when both NR and OF do not change anymore.

DESIMPLIFICATION STEP. The DESIMPL step makes an update the current ground
program G (for the sake of readability, modifications on G are done on a copy DG
initially set to G) in which simplifications of types 1 through type 3 are undone. Note
that the desimplification might trigger new additions to OF and NR, which in turn can
cascade new desimplifications and/or new incremental additions. We purposely allow
redundant desimplifications: an atom f ∈ Facts(G) might be added to OF as soon as
a rule r where f is the only atom in H(r) (i.e., H(r) = { f}) is desimplified (line 22).
However, although there can be some other rule r f in G such that H(r f ) = { f} and
B(r f ) = /0, the restore operation on r does not affect the correctness of DG.

INCREMENTAL GROUNDING STEP. In this step we instantiate and simplify each rule
r ∈ P that can be constructed using the new ground atoms available in Heads(NR)∪
NF up to a fixpoint. The getInstances function processes a non-ground rule r, the
ground program DG and the set NR∪NF . All possible new matches for the in-
put rule r are differentially obtained and simplified. The getInstances function can
be implemented by carefully adapting semi-naive evaluation techniques. This can
avoid the generation of duplicated rules, thus saving computation time and memory
consumption.

SIMPLIFICATIONS. Our algorithm applies simplifications over new rules NR only
and in two separate moments: (i) as soon as a new rule is generated (line 34) and (ii) at
the end of the main cycle (line 40). In the latter case, we apply all simplification types.
In the former case, the Simpl[1,3] operator is meant to apply only simplifications
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Input: Non-ground program P, ground program G, input facts F
Output: A desimplified and enlarged ground program
Updates: the set of deleted rules D, collection of sets AF and PF

1: function INCRINST(P,G,F)
2: DG = G, /* D = Deleted Rules */
3: NR = /0, /* NR = New Rules and rules restored from D */
4: NF = F \AF , /* NF = New Facts */
5: OF = PF \F , /* OF = Old Facts (no longer true) */
6: AF = AF ∪F , /* AF = Accumulated Facts */
7: PF = PF ∩F /* PF = Persistently True Facts */
8: while NR or NF or OF have new additions do
9: // DESIMPL step

10: for all r ∈ D do /* undo simpl. types 1 and 2 */
11: L1 = {not a ∈ B−(r) s.t. a ∈ OF}
12: L2 = {a ∈ B+(r) s.t. a ∈ Heads(NR)∪NF}
13: if L1∪L2 6= /0 then
14: D = D\{r}
15: NR = NR∪{r}
16: end if
17: end for
18: for all r ∈ DG do
19: L3 = {a ∈ B+(r) s.t. a ∈ OF}
20: for all l ∈ L3 do /* undo simpl. type 3 */
21: if B(r) = /0∧‖H(r)‖= 1 then
22: OF = OF ∪H(r)
23: end if
24: B(r) = B(r)∪{l}
25: end for
26: end for
27: // ∆INST step
28: do
29: for all r ∈ P do
30: for all g ∈ getInstances(r,DG,NR∪NF) do
31: if Simpl[1,3]({g},NR∪F) = /0 then /* g is deleted */
32: D = D∪{g}
33: else
34: NR = NR∪Simpl[1,3]({g},NR∪F)
35: end if
36: end for
37: end for
38: while there are additions to NR
39: end while
40: S = Simpl∞(NR,DG∪NR∪F), D = D∪hom(NR) \hom(S)
41: return DG∪S
42: end function

of types 1 and 3. These two simplification types can be applied earlier and can
prevent the generation of rules that will be nonetheless deleted later. We observe
that we simplify only newly added rules appearing in NR, but with respect to the
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current value of F . This will make Gi+1 not “compatible” with inputs Fk, 1≤ k ≤ i.
Nevertheless, if some Fk appears again as input in a later iteration, the correctness of
Gi+1 can be achieved with a further desimplification step. It is worth noting that a
more conservative strategy could consider only simplifications depending on PF .

Example 6.3.1. Let us recall again the example given in Section 6.1 and consider
program P0, the intermediate program TG1 = {r′1,r′2} and the set of input facts
F1 = {e(c,a), e(a,b), ab(c)}. TG1∪F1 is a tailored embedding for P0∪F1. Assume
also that at this stage D = {r3}. Given a new set of input facts F2 = {e(c,a), e(a,d)},
we have that INCRINST(P,TG1,F2) works as follows: NF is initially set to {e(a,d)},
OF = {e(a,b), ab(c)}, and DG is initially set to T G1. The DESIMPL step will
produce the updated set DG = {r1,r′2,r3} by modifying r′1 in r1, while the rule r3

is undeleted and moved from D to NR. The ∆INST step generates the new rules r′5
and r′4 and adds them to NR. r′5 is a simplified version of r5 constructed using the
new atom e(a,d), while r′4 is a reduced version of r4 built using the new atom r(a,d).
No further desimplifications and changes to DG, NR and OF happen in the next
DESIMPL and ∆INST steps nor in the final simplification. The set {r1,r′2,r3,r′4,r′5} is
eventually returned.

Example 6.3.2. Suppose to enrich P′0 with the following rule:

ab(X) :− e(X ,X).

The resulting program P0 is as follows

r(X ,Y ) :− e(X ,Y ), not ab(X). r(X ,Z) | s(X ,Z) :− e(X ,Y ), r(Y ,Z).

ab(X) :− e(X ,X).

Let us consider the following set of input facts F ′1 = {e(c,a),e(a,b),e(c,c).}. Our
algorithm will produce in output a simplified program T G′1 as follows:

r1 : r(c,a) | s(c,a) :− e(c,a),r(c,a). r2 : r(c,c) | s(c,c) :− e(c,a),r(c,c).

r3 : r(a,b) | s(a,b) :− e(a,b),r(a,b). r4 : r(c,a) | s(c,a) :− e(c,c),r(c,a).

r5 : r(c,c) | s(c,c) :− e(c,c),r(c,c). r6 : ab(c) :− e(c,c).

r7 : r(a,b) :− e(a,b), not ab(a). r8 : r(c,c) :− e(c,c), not ab(c).

r9 : r(c,a) :− e(c,a), not ab(c).

Thus, T G′1 = {r′1,r′2,r′3,r′4,r′5,r′6,r′7} where r′x is a simplified version of the corre-
sponding rule rx, whereas the set of deleted rules D is composed by rules r8 and
r9. Given a new set of input facts F ′2 = {e(c,a),e(a,d)} our grounding strategy will
work as follows: NF is initially set to {e(a,d)}, OF = {e(a,b),e(c,c)} and DG is
initially set to T G′1. The DESIMPL step will restore rules r8 and r9 from the set of
deleted rules D adding them in NR and will apply desimplifications of type 3 on rules
r′3,r′4,r′5,r′6 restoring them to their original form; furthermore, the ∆INST step will
instantiate some new rules (r10,r11 and r12) which will be added to the NR.
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r1 : r(c,a) | s(c,a) :− e(c,a),r(c,a). r2 : r(c,c) | s(c,c) :− e(c,a),r(c,c).

r3 : r(a,b) | s(a,b) :− e(a,b),r(a,b). r4 : r(c,a) | s(c,a) :− e(c,c),r(c,a).

r5 : r(c,c) | s(c,c) :− e(c,c),r(c,c). r6 : ab(c) :− e(c,c).

r7 : r(a,b) :− e(a,b), not ab(a). r8 : r(c,c) :− e(c,c), not ab(c).

r9 : r(c,a) :− e(c,a), not ab(c). r10 : r(a,d) :− e(a,d), not ab(a).
r11 : r(a,d) | s(a,d) :− e(a,d),r(a,d). r12 : r(a,d) | s(a,d) :− e(a,b),r(a,d).

Since no further desimplifications and changes to DG, NR and OF happen in the next
DESIMPL and ∆INST steps nor in the final simplification, the set {r′1, r′2, r3, r4, r5, r6,
r7, r8, r9, r′10, r′11, r12} is returned.

Proposition 6.3.1. Let P be a non-ground program. Let CP be the trivial component
including all the predicate names in P. Then G = INCRINST(P, /0,F1) coincides
with Π as modified by the invocation of the instantiation procedure Instantiate(P∪
F1,CP,Π) described in [51].

Theorem 6.3.1. Let G1 = INCRINST(P, /0,F1). For each i s.t. 1 < i ≤ n, let Gi =

INCRINST(P,Gi−1,Fi). Then for each i s.t. 1≤ i≤ n, AS(Gi∪Fi) = AS(P∪Fi).

Proof. The proof goes along the lines of showing how to enlarge, under simplified
set inclusion, a tailored embedding Gi−1∪Fi−1 for P∪Fi−1 to a tailored embedding
Gi∪Fi for P∪Fi. It is given by induction on the shot indices. Let ASi = AS(P∪Fi). In
the base case (i= 1), AS(G1∪F1) =AS1 since the DESIMPL step has no effect and the
first iteration of the ∆INST step coincides with the typical grounding procedure of [51]
(Proposition 6.3.1). In the inductive case (i > 1), we assume that Gi∪Fi is a tailored
embedding for P∪Fi, and we show that Gi+1 ∪Fi+1 is a tailored embedding for
P∪Fi+1. Let Gi+1 = INCRINST(P,Gi,Fi+1, i). At the final iteration of the INCRINST

algorithm, we have that Gi+1 = DG∪ Simpl∞(NR,DG∪NR∪Fi+1), where DG is
a desimplified version of Gi and NR is an additional set of rules both obtained by
repeated application of DESIMPL and INCRINST steps.

Observe that DG∪Fi is such that Gi ∪Fi v DGi ∪Fi and is a tailored embedding
for P∪Fi; then, let AGi+1 = Inst∞(P,DG∪Fi+1). DG∪AGi+1 ∪Fi+1 is a tailored
embedding for P∪Fi+1; it then follows that DG∪Simpl∞(AGi+1)∪Fi+1 is a tailored
embedding for P∪Fi+1. Let CGi+1 = {s ∈ AGi+1 | @r ∈ DG s.t. hom(r) = hom(s)}.
DGi∪CGi+1∪Fi+1 is a tailored embedding for P∪Fi+1. Then we show that CGi+1 v
NR. It follows that DG∪NR∪Fi+1 =Gi+1∪Fi+1 is a tailored embedding for P∪Fi+1,
and that thus DG∪Simpl∞(NR,DG∪NR∪Fi+1) is a tailored embedding for P∪Fi+1,
which concludes the proof.
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6.4 TAILORED EMBEDDINGS AND RELATED WORK

One of the differentiating ideas of our approach is that OPTs can be “patched” and
adapted to new inputs only by adding new information. In other words, OPTs grow
monotonically, although an effort has been done to slow down their growth. A second
characteristic of our approach is that we do not include modelling directives for
controlling incrementality and multi-shot programs. This choice comes with many
advantages (like easier usage and modelling) at the price of the loss of control. In the
above respects, our proposal has connections with several lines of research.

It is worth mentioning the early and recent work surveying and proposing incremental
update of pool of views [95]. The aforesaid approaches focus on query answering
over stratified Datalog programs and aim to just materialize query answers; our
focus is on a generalized setting, where disjunction and unstratified negation are
allowed and propositional logic programs are materialized and maintained, for the
purpose of computing answer sets. In contrast with typical delete/rederive techniques,
which require an additional effort to avoid overdeletions and ensure correctness, we
purposely allow to perform more desimplifications than necessary. Also, the absence
of rederivation activities allows us to keep incremental grounding times low.

In the clingo approach [63] the notion of incrementality is conceived in a different way:
problems are modelled by thinking in terms of “layers” of modules, for which users
specify the grounding and solving sequence thereof. In the context of overgrounded
programs, modelling can be focused on a single declarative program. The incremental
evaluation over the sequence of input facts is implicit and does not require the user’s
attention. Moreover, the clingo system is able to incrementally generate/update an
answer set shot by shot, but the truth value of atoms associated to a given layer is
decided at each shot and cannot be changed in subsequent iterations, whereas the
overgrounding works on a fixed logic program P which can potentially generate
completely different answer sets when moving from one shot to the next one.

Full incremental reasoning, the widest general setting in which a logic program is
subject to arbitrary changes and one aims to implicitly maintain answer sets, is to date
an almost unexplored topic. The Ticker system [16] can be seen as a significant effort
in this direction, as it implements the LARS stream reasoning formal framework
by using back-end incremental truth maintenance techniques under ASP semantics,
but is limited to a language fragment with no recursion. We believe a tighter level
of integration between grounders and solvers is necessary in order to achieve full
incremental reasoning. Among tightly integrated approaches, it is worth mentioning
lazy grounding [39, 76, 18]. Note that overgrounding is essentially orthogonal to lazy
grounding techniques, since these latter essentially aim at blending grounding tasks
within the solving step for reducing memory consumption; rather, our focus is on
making grounding times negligible on repeated evaluations by explicitly allowing
the usage of more memory, while still keeping the two evaluation steps separated.
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Finally, it is worth highlighting that overgrounded programs with tailoring can be
seen as an application of relativized hyperequivalent logic programs [130]. A member
G of a sequence of OPTs is a logic program which is equivalent to P relative to (part
of) a finite set of inputs F1, . . . ,Fn. Investigation on the hyperequivalence properties
of OPTs, possibly under semantics other than the answer set one, deserves further
research.

i2dlv-noisd/
i2dlv-isd

iClingo/oClingo Clingo5 Lars + Ticker Alpha

Syntax Plain ASP
ASP +
control

directives

ASP +
control

directives +
external
scripts

Plain ASP +
Window
operators

Plain ASP

Modelling
paradigm

Fixed ASP
program P,

changing input
facts

Based on
identifying

and combining
cumulative,

volatile and base
submodules

Customizable

Fixed Lars
program,
changing

input stream

Single shot

Control
of evaluation
sequence

In charge of
system

designer

In charge of
knowledge
designer

In charge of
knowledge
designer

In charge of
system

designer

In charge of
system

designer

Table 6.1: Comparison between systems

A comparison of the main features of the systems discussed above can be found in
Table 6.1; all systems make use the ASP semantic, however, some of them extend
the language using special directives or new operators. Also the modelling paradigm
can be different, and whether the burden to control the shot sequence is left on
knowledge designers or it is builtin in the system. Knowledge designers, when using
iClingo/Clingo systems, have to identify which part of the program need to be marked
as base, cumulative and volatile; Clingo5 users can customize their program using
external directives; when using Ticker, the designer has to use a fixed LARS program
with a changing input stream (similar to the I 2-DLV system); finally, Alpha is a
solver based on lazy grounding, working in the traditional “single shot” setting.
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S T R U C T U R E S A N D A L G O R I T H M S

In this chapter we provide a more detailed description of the strategy we used in our
incremental system, in order to make it available to those who want to integrate it
within their grounder.

An existing, canonical grounder can be extended with incremental techniques by
introducing some specific changes. In particular, these are: (i) disabling some of
the known techniques currently available for simplifying ground logic programs;
(ii) adding a desimplification method in order to make the program compatible with
a series of subsequent different input facts; (iii) modifying the structure of the Semi-
Naïve algorithm, which is at the core of a typical grounder, in order to eliminate the
generation of duplicates during the incremental instantiation.

In this chapter, in Section 7.1, we will illustrate a way of adapting data structures in
order to make them compatible with our strategy; then, an outline of our modified
incremental Semi-Naïve algorithm will be shown in Section 7.2.2.

7.1 DATA STRUCTURES

In the data structures shown in this section, for each predicate p, its current extension
will be categorized in the three sets pOLD, pNEW and pALL. Namely, let us assume to
be at iteration i for i > 1. pOLD represents all the input and derived atoms for p from
iteration 1 to iteration i−1, i.e., all the atoms that are certainly or possibly true from
the first to the previous iteration; pNEW contains all the input and derived atoms for p
in the current iteration. The union between the set of atoms pOLD and pNEW will be
called pALL. Predicates are stored in a table called Predicate Extension Table (PET),
where each predicate points to a separate table storing its respective extension.

Example 7.1.1. In the following we show how the PET is initialized and then updated
after each iteration with a simple example. Let us consider the program P0 consisting
of the following rule r1:

a(X ,Y ,Z) :− b(X), c(Y ), d(Z).

Suppose to receive the set F1 = {b(1..2), c(1..2), d(1..2)} as input fact at the first
iteration. Rule r1 represents a cartesian product, consequently it will derive all the
instances a(1..2,1..2,1..2). The data structure appears as shown in Figure 7.1.

87
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1
2b

c

d

NEW

Predicate

Exta

1
2

NEW

Ext

1
2

NEW

Ext

1,1,1
1,1,2
1,2,1
1,2,2

2,1,1
2,1,2
2,2,1
2,2,2

Ext

NEW

Figure 7.1: Predicate extension map overview - First iteration.

Let us assume that a subsequent run requires P0 to be evaluated over a different set of
input facts F2 = F1∪{b(3), c(3)}. At this point, the PET needs to be updated. All
the atoms that will be added as input or derived in the current iteration will be marked
as NEW , whereas all the others will be tagged as OLD as shown in Figure 7.2.

1
2b

c

d

OLD

Predicate

Exta

1
2

OLD

Ext

1
2

OLD

Ext

1,1,1
1,2,1
2,1,1
2,2,1

1,1,2
1,2,2
2,1,2
2,2,2

Ext

OLD

3

3

NEW

NEW

3,1,1
3,2,1
3,3,1
1,3,1

3,1,2
3,2,2
3,3,2
1,3,2

2,3,1 2,3,2

NEW

Figure 7.2: Predicate extension map - Second iteration.
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7.2 INCREMENTAL SEMI-NAÏVE ALGORITHM

In this section, after introducing some preliminaries about the foundation of the basic
grounding methods, we will show our modified version of the Semi-Naïve algorithm,
which is now able to perform an incremental evaluation without generating duplicate
instances during the grounding step.

7.2.1 PRELIMINARIES

The instantiation task could be computationally expensive and its efficiency is im-
portant for the performance of the entire system. Indeed, the grounding frequently
forms a bottleneck and is crucial in real-world applications involving large input data.
For such reasons, different strategies have been studied in order to reduce the time
required during the grounding step thus reducing its computational effort.

A possible strategy, which has proved to be one of the most efficient, consists in
the subdivision of the program into modules. Subsequently, these modules will be
ordered to induce an admissible component sequence which will be followed during
the instantiation phase.

These steps can be performed through the generation of dependency and component
graphs which have been defined in Definition 2.1.19 and 2.1.20 of Section 2.1.3.

7.2.2 ALGORITHM

The presented algorithm optimizes and better details the operations performed from
line 29 to 38 of our INCRINST algorithm. In particular, we optimized the selection
order of rules to be grounded (line 29 of INCRINST) and the general management of
data structures. More in detail:

1. in line 29 of our INCRINST algorithm we pick an arbitrary r ∈ P. Our refined
algorithm follows a precise rule selection order strategy, which improves
its efficiency (see line 3 of SEMINAIVEINSTANTIATION). This selection is
implemented with the function ORDEREDNODES which takes into account
component ordering and the difference between exit and recursive rules (see
lines 5 and 12 of SEMINAIVEINSTANTIATION);

2. it is better detailed how a single non-ground rule r is incrementally grounded
(see Figure 7.4).

In the following, we will firstly describe, more in detail, all the utility functions which
will be used in the main algorithm to perform all its steps; then, a description of the
main SEMINAIVEINSTANTIATION procedure will be reported.
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ORDEREDNODES The ORDEREDNODES function takes as input the Component
Graph Gc

P and returns in output an admissible component sequence (C1, . . . ,Cn).

EXITRULES AND RECURSIVERULES The EXITRULES procedure takes as input a
component c and the program P to be instantiated. It outputs the set of all the exit
rules of the program P for the current component c. Similarly, the RECURSIVERULES

method outputs the set of all the recursive rules for c.

UPDATEDPREDICATES AND RECURSIVEPREDICATES The UPDATEDPREDICATES

function takes as input a rule r and returns as output the set of updated predicates
UP contained in B(r). More in detail, the procedure iterates over the body of r and
if a predicate is marked as updated, it will be added to the set UP. Similarly, the
RECURSIVEPREDICATES method, returns the set of recursive predicate RP contained
in B(r).

INSTANTIATERULE The INSTANTIATERULE procedure is in charge of generating
a set of ground instances for the input rule r on the basis of the set of atoms match.
In our implementation this procedure is based on a backjumping strategy [51].

GETPREDICATESINBODY The GETPREDICATESINBODY function receives as in-
put a rule r and returns a set of tuples ST . Each of these tuple contains a predicate (p)
and its current update state (isUpdated). The predicate and its current update state are
used to determine which extension of the predicate must be taken in consideration
for the current instantiation.

GETPREDICATEEXTENSION The GETPREDICATEEXTENSION function takes as in-
put a predicate p and the type of predicate extension required (OLD,NEW or ALL)
and it returns as output a set S containing the requested part of the predicate extension
of p.

SEMINAIVEINSTANTIATION AND NEXTINCREMENTALMATCH Our procedure shown
in Figure 7.3 represents the core of the incremental instantiation. It takes as input
both a program P to be instantiated and the Component Graph Gc

P, and outputs a set
Π of ground rules containing only atoms which can possibly be derived from P. The
input program P is divided into modules which are evaluated one at a time following
an admissible component sequence as described in Subsection 7.2.1. This step is
performed at line 3 of the SEMINAIVEINSTANTIATION procedure through a call
to the function ORDEREDNODES. The algorithm starts the grounding process from
the evaluation of the exit rules (line 5). For each of these rules, the algorithm finds
all the predicates which result to be updated in the rule body, i.e., atoms which are
given in input by the user or that have been derived at the current iteration. This step
is performed by making use of the utility function UPDATEDPREDICATES (line 6).
Then, the procedure iterates over all the updated predicates (token) and, at each
iteration step, it firstly invokes the method NEXTINCREMENTALMATCH in order to
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find a possible set of atoms which can be used to derive new instances (line 7) and,
then, it execute the INSTANTIATERULE function to produces the ground instances
for the rule r with the current set of predicate extensions (line 8).

The most important step of the algorithm is performed by the function showed in
Figure 7.4, i.e., NEXTINCREMENTALMATCH. The procedure takes as input a rule r
and the current updated predicate (token) and returns a set of predicate extensions
(OLD,NEW or ALL) that can be used to instantiate the rule r avoiding the generation
of duplicates during the incremental instantiation. If no match are available, it returns
an empty set. This procedure makes use of a precedence operator (≺) that compares
the current token with all the predicates that have been updated in the rule body.
Depending on the result of this comparison, the procedure determines which extension
of the predicate must be taken in consideration during the grounding step, i.e., OLD,
NEW or ALL making use of the function GETPREDICATEEXTENSION (lines 6, 8
and 10).

Similarly to the exit rules, the same steps apply for the recursive rules with the
addition of some extra iterations until no further heads have been derived (from
line 12 to line 30).
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Input: Non-ground program P, component graph Gc
P

Output: Ground program Π
1: function SEMINAIVEINSTANTIATION(P,Gc

P,F)
2: Π = /0
3: for all c ∈ ORDEREDNODES(Gc

P) do /* Admissible component sequence */
4: /* Incremental instantiation of exit rules */
5: for all r ∈ EXITRULES(c,P) do
6: for all token ∈ UPDATEDPREDICATES(r) do
7: match = NEXTINCREMENTALMATCH(r, token)
8: Π = Π∪ INSTANTIATERULE(r,match)
9: end for

10: end for
11: /* First iteration for recursive rules */
12: Π′ = /0
13: for all r ∈ RECURSIVERULES(c,P) do
14: for all token ∈ UPDATEDPREDICATES(r) do
15: match = NEXTINCREMENTALMATCH(r, token)
16: Π′ = Π′∪ INSTANTIATERULE(r,match)
17: Π = Π∪Π′

18: end for
19: end for
20: /* Further iterations for recursive rules */
21: while Π′ 6= /0 do
22: Π′ = /0
23: for all r ∈ RECURSIVERULES(c,P) do
24: for all token ∈ RECURSIVEPREDICATES(r) do
25: match = NEXTINCREMENTALMATCH(r, token)
26: Π′ = Π′∪ INSTANTIATERULE(r,match)
27: Π = Π∪Π′

28: end for
29: end for
30: end while
31: end for
32: return Π
33: end function

Figure 7.3: Incremental Semi-Naïve Algorithm
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Input: Non-ground rule r, a predicate token
Output: Set of atoms S

1: function NEXTINCREMENTALMATCH(r, token)
2: S = /0
3: (〈p1, isUpdated1〉 , ...,〈pn, isUpdatedn〉) = GETPREDICATESINBODY(r)
4: for all i ∈ 1, ...,n do
5: if isUpdatedi∧ pi ≺ token then
6: S = S∪GETPREDICATEEXTENSION(pi, OLD)
7: else if isUpdatedi∧ pi = token then
8: S = S∪GETPREDICATEEXTENSION(pi, NEW )
9: else

10: S = S∪GETPREDICATEEXTENSION(pi, ALL)
11: end if
12: end for
13: return S
14: end function

Figure 7.4

With the following simple example, we will show how the modified version of the
Semi-Naïve algorithm works.

Example 7.2.1. Let us consider the program P0 consisting of the following rule r1:

a(X ,Y ,Z) :− b(X), c(Y ), d(Z).

When taking the set of facts F1 = {b(1..2), c(1..2), d(1..2)} into account, the algo-
rithm, at the first iteration, will combine all the predicate with each other and the
resulting (non simplified) ground program will be:

a(1,1,1) :− b(1), c(1), d(1). a(1,1,2) :− b(1), c(1), d(2).

a(1,2,1) :− b(1), c(2), d(1). a(1,2,2) :− b(1), c(2), d(2).

a(2,1,1) :− b(2), c(1), d(1). a(2,1,2) :− b(2), c(1), d(2).

a(2,2,1) :− b(2), c(2), d(1). a(2,2,2) :− b(2), c(2), d(2).

Let us assume that a subsequent run requires P0 to be evaluated over a different set
of input facts F2 = F1 ∪{b(3), c(3)}. At this point, it is not possible to combine
again all the instances of the predicates with each other, indeed, this process will
cause some duplicates during the instantiation of the rule. In order to avoid this issue,
our Semi-Naïve algorithm has been modified in order to automatically determine
which predicate extensions need to be taken into account during the incremental
instantiation step. More in detail, during the instantiation of the program P0 over the
set of facts F2, the algorithm will select exactly which parts of predicate extensions
must be combined with each other, i.e.,

b c d
step_1 b(3) c(1..3) d(1..2)

step_2 b(1..2) c(3) d(1..2)
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Thus, the instantiation step will generate the following new rules:

% Step 1

a(3,1,1) :− b(3), c(1), d(1). a(3,1,2) :− b(3), c(1), d(2).

a(3,2,1) :− b(3), c(2), d(1). a(3,2,2) :− b(3), c(2), d(2).

a(3,3,1) :− b(3), c(3), d(1). a(3,3,2) :− b(3), c(3), d(2).

% Step 2

a(1,3,1) :− b(1), c(3), d(1). a(1,3,2) :− b(1), c(3), d(2).

a(2,3,1) :− b(2), c(3), d(1). a(2,3,2) :− b(2), c(3), d(2).

Therefore, in this specific case, the algorithm will combine the predicates b,c and d
as summarized in Table 7.1.

b c d
step_1 NEW ALL ALL

step_2 OLD NEW ALL

Table 7.1: Instantiation step for a single rule with our Semi-Naïve algorithm
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I 2 - D LV : A D E C L A R AT I V E
O V E R G R O U N D I N G - B A S E D S Y S T E M

In this chapter, we will discuss the system implementing our overgrounding main-
tenance algorithms as described in the previous chapters. Moreover, the results of
the benchmark tests performed by using both these strategies will be reported and
discussed.

8.1 SYSTEM ARCHITECTURE

The overgrounding strategies described in Chapter 5 and 6 have been implemented
by extending the I -DLV grounder [27, 35] to a version called I 2-DLV. The resulting
architecture of the system is depicted in Figure 8.1. The new system allows to preload
a non-ground logic program P, to iteratively submit input facts Fi, and to obtain
AS(P∪Fi). During the process, a simplified subset TG of grnd(P) is kept in memory.
Whenever new input Fi+1 is submitted, TG is updated according to the tailored
overgrounding strategy; a filtering stage then pipes relevant rules to the solver of
choice. Homologous, simplified and deleted rules are kept track of by adding mark-up
to a single copy of each rule.

More in detail, the system behaves as a process staying alive and providing a service-
oriented behaviour, waiting for requests. An external application EA can open a
working session and specify tasks to be carried out; working sessions are handled
by a SESSION MANAGER component. After submitting a load request for a logic
program P along with an initial set of facts F1, EA can ask to compute the answer
sets of P over F1: the GROUNDER component is in charge of producing and storing
the overgrounded program Inst∞(P,F1); an external SOLVER system is adopted to
compute the answer sets of Inst∞(P,F1)∪F1. This process can be repeated/iterated:
EA can provide additional sets of facts Fk for 2≤ k ≤ n so that Inst∞(P,AFk) with
AFk =

⋃
1≤i≤k Fi is incrementally produced and stored.
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Figure 8.1: A general infrastructure of an ASP overgrounding-based reasoner relying on
I 2-DLV .

At each step k, the system is in charge of internally managing incremental grounding
steps and automatically optimizing the computation by avoiding the re-instantiation
of ground rules generated in a step i < k. Again, the solver can be invoked to compute
the answer sets of Inst∞(P,AFk)∪Fk.

On the practical side, the tailored overgrounding approach has several advantages:
the monotonic growth of the tailored overgrounded programs allows for easily im-
plementing caching policies; if a grounding task must be interrupted, restarts on a
new shot are almost straightforward to be implemented, since almost no rollback is
required; the proposed framework is transparent to knowledge designers; highly gen-
eral, non-optimized code can benefit from tailored overgrounding as there is no need
to worry about which parts of logic programs might be more grounding-intensive.
In the following, we show the results of an experimental evaluation on the system,
which demonstrate how this approach allows to reduce both the time and the memory
consumption. We expect this setting to be particularly favourable when non-ground
input programs may contain grounding-intensive rules, as for instance, in the case of
declaratively programmed robots or videogame agents.

8.2 EXPERIMENTAL EVALUATION

In this section, we report about the experimental activities we conducted, aimed
at assessing the practical impact of our approach; results show that it pays off in
terms of performance, by reducing grounding times and keeping solving times within
more than reasonable bounds. In particular, the evaluation was conducted in order to
assess (a) the size of inputs fed to solvers and (b) the evolution of the performance of
the combination of grounder and solver, given also the changing instantiation size.
Since sources of choice points are left substantially unchanged by simplification
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activities, we expected good improvements in performance due to faster solving
times for deterministic parts of ground programs. We considered three benchmarks
taken from three real world settings with different specific features: Sudoku game,
Pac-Man [29] and Content Caching [13, 48]. The three benchmarks constitute good
and generalizable real cases of incremental scenarios: the Sudoku domain allows
to perform a stress-test of the approach on grounding-intensive tasks, the Pac-Man
game allows to assess effectiveness of overgrounding for continuous reasoning in
the context of videogames without the need for manual and involved customizations,
whereas Content Caching is a typical example of decision making over fast-paced
event streams. Experiments have been performed on a NUMA machine equipped
with two 2.8GHz AMD Opteron 6320 CPUs, with 16 cores and 128GB of RAM.
The measurements have been performed using WASP version 3.0.0, clasp integrated
in clingo version 5.4.0 and Ticker version 1.0. We used two grounder versions:
I 2-DLV-isd stands for our new grounder featuring the new incremental simplification
and desimplification techniques (isd in the following) as presented in Chapter 6,
whereas I 2-DLV-no-isd is a new improved implementation of plain overgrounded
programs [30], in which isd techniques are disabled as reported in Chapter 5.

8.2.1 MULTI-SHOT SUDOKU

The classic Sudoku puzzle, or simply “Sudoku”, consists of a tableau featuring
81 cells, or positions, arranged in a 9 by 9 grid. When solving a Sudoku, players
typically adopt deterministic inference strategies allowing, possibly, to obtain a
solution. Several deterministic strategies are known [31] and can be encoded in
ASP; herein, we took into account two simple strategies, namely, “naked single” and
“hidden single”.

Figure 8.2: Experiments on Sudoku benchmarks
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The encoding of Sudoku deterministic inference rules is generally grounding-intensive,
like in the following code fragment, encoding the naked single strategy:

candidatesAreMoreT han2(X ,Y ) :− candidate(X ,Y ,N),candidate(X ,Y ,N1),N 6= N1.

newValue(X ,Y ,N) :− candidate(X ,Y ,N), not candidatesAreMoreT han2(X ,Y ),nogiven(X ,Y ).

where an atom candidate(X,Y,N) specifies that number N can be possibly assigned to
the cell (X ,Y ), and nogiven(X,Y) tells that the value of the cell (X ,Y ) has not been
inferred yet.

Figure 8.3: Grounding times for all iterations of a 81×81 Sudoku instance.

In the experiments we considered generalized Sudoku tables of size from 9×9 to
81×81, and tested logic programs under answer set semantics encoding deterministic
inference rules. We compared three different evaluation strategies: (i) I 2-DLV-isd
implementing the incremental approach with simplification and desimplification
steps enabled, (ii) I 2-DLV-no-isd implementing the incremental approach without
simplification and desimplification steps enabled, and (iii) I -DLV-no-incr in which
no incremental evaluation policy is applied. All the strategies have been executed in
an online setting, in which consecutive series of input facts are submitted. For a given
Sudoku table, the two inference rules above were modelled via ASP logic programs
(see [31]). The resulting answer set encodes a new Sudoku grid, possibly deriving
new numbers to be associated to initially empty cells, and reflecting the application
of inference rules; the new partially completed grid is then given as input to the
system and, again, by means of the same inferences, new cell values are possibly
entailed. The process is iterated until no further association is found. In general, given
a Sudoku, it cannot be assumed that the deterministic approach leads to a complete
solution; however, for each considered Sudoku size, we selected only instances which
are completely solvable with the two inference rules described above.
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Grounding times of I 2-DLV-isd, I 2-DLV-no-isd and I -DLV-no-incr are plotted
in Figure 8.2: for each instance, the total grounding time (in seconds) computed
over all iterations (or shots) is reported. I 2-DLV-isd and I 2-DLV-no-isd required
similar times to iteratively solve each instance, and performed clearly better than
I -DLV-no-incr. Figure 8.3 shows a closer look on the performance obtained on
size 81× 81 which is the one requiring the highest amount of time to be solved
and the highest number of iterations: for each shot, the grounding time (in seconds)
is reported. At the first shot, both I 2-DLV-isd and I 2-DLV-no-isd required a huge
amount of time if compared with I -DLV-no-incr. This is due to the higher number of
rules which will be generated, using the deterministic ASP encoding; for each further
iteration, however, I 2-DLV-isd required an average time of 0.67 seconds: a time
reduction of 96% w.r.t. I -DLV-no-incr, that showed an average time of about 17.23
seconds. On the overall, this confirms the potential of our incremental grounding
approach in scenarios involving updates in the underlying input facts.

Deterministic strategy Non-deterministic strategy

i2dlv-isd wasp i2dlv-isd+wasp clingo5 dlv2

Size 9x9 0.10 0.89 0.99 0.03 0.03

Size 16x16 0.71 8.15 8.87 0.27 0.27

Size 25x25 4.75 227.62 232.40 1.72 1.88

Size 36x36 14.70 249.093 263.79 7.29 6.85

Size 49x49 49.31 1781.34 1831.65 27.50 23.08

Size 64x64 138.53 5387.53 5526.06 81.48 66.64

Size 81x81 479.14 112376.64 112855.78 killed (144h) killed (144h)

Table 8.1: Sudoku times

Furthermore, we also run clingo5 and dlv2 over an ASP encoding implementing
a non-deterministic strategy for solving the Sudoku Puzzle; then we compared the
results. Table 8.1 shows the times obtained for each Sudoku instance. Both clingo5
and dlv2 performs much better than the incremental grounder when run on smaller
sizes of the puzzle with a non-deterministic encoding, however, they do not scale
well on larger sizes as, for example, on size 81×81. In this setting, both clingo5 and
dlv2 ran more than 144 hours without producing any admissible solution.

8.2.2 MULTI-SHOT PAC-MAN

In our work [29] we show how to integrate an ASP-based reasoning module in the
Unity game development framework, and showcase an artificial player for the classic
real-time game Pac-Man. The Pac-Man moves in a board containing a number of
pellets and four ghosts chasing him: the goal is to eat all pellets while avoiding the
four ghosts. The Pac-Man must continuously decide the way to take, depending on
“dynamic” (i.e., changing at each reasoning shot) facts representing the current status
of the board (empty/pellet tiles, positions of the four ghosts). The new direction of the
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Pac-Man depends on which logical assertion among next(up), next(down), next(left),
next(right) is in the “best” guessed answer set. The intelligence of the Pac-Man is
encoded via a logic program Ppac, that must be repeatedly executed; this requires
multiple grounding+solving jobs over slightly different and unforeseen inputs.

Next, we will particularly focus only on parts of Ppac requiring a significant effort at
the grounding stage. Instances of the tile predicate encode the game board divided
into tiles; the fact pacman(x,y) represents the current position of the Pac-Man, while
ghost(x,y,g) represents the position of ghost g; atoms of the form nextTile(X,Y) encode
the possible next positions of the Pac-Man. The strategy adopted by Ppac is quite
simple: priority is to get away from ghosts. To this end, distances between the next
position candidates and all ghosts are computed: the next position chosen is among
the ones increasing the distance to the nearest ghost. This behaviour is achieved via
an ASP code fragment similar to the following1:

r1 : nextTile(X ,Y ) :− pacman(Px,Y ), next(right), X = Px+ 1,

tile(X ,Y ).

r2 : nextTile(X ,Y ) :− pacman(Px,Y ), next(le f t),

X = Px−1, tile(X ,Y ).

r3 : nextTile(X ,Y ) :− pacman(X ,Py), next(up), Y = Py+ 1, tile(X ,Y ).

r4 : nextTile(X ,Y ) :− pacman(X ,Py), next(down), Y = Py−1,

tile(X ,Y ).

r5 : adjacent(X1,Y 1,X2,Y 2) :− tile(X1,Y 1), tile(X2,Y 2),

step(DX ,DY ), X2 = X1+DX , Y 2 = Y 1+DY .

r6 : adjacent(X1,Y 1,X2,Y 2) :− tile(X1,Y 1), tile(X2,Y 2),

step(DX ,DY ), X2 = X1−DX , Y 2 = Y 1−DY .

r7 : distance(X1,Y 1,X2,Y 2,1) :− tile(X1,Y 1), adjacent(X1,Y 1,X2,Y 2).

r8 : distance(X1,Y 1,X3,Y 3,D) :− number(D),

distance(X1,Y 1,X2,Y 2,D−1), adjacent(X2,Y 2,X3,Y 3).

r9 : distPacmanGhost(D,G) :− nextTile(Xp,Yp),

ghost(Xg,Yg,G), minDistance(Xp,Yp,Xg,Yg,D).

r10 : noMinDistPacmanGhost(X) :− distance(X),

distPacmanGhost(X ,_), distPacmanGhost(Y ,_), X > Y .

r11 : minDistancePacmanNextGhost(MD) :− distPacmanGhost(MD,_),

not noMinDistPacmanGhost(MD).

1 The full ASP code used to encode the Pac-Man AI makes also use of weak con-
straints to optimize the choose of the next move. A full encoding can be found at the
following link https://github.com/DeMaCS-UNICAL/ThinkEngine-Games-Pacman/
tree/main/Pac-Man-Unity-EmbASP-master/encodings

https://github.com/DeMaCS-UNICAL/ThinkEngine-Games-Pacman/tree/main/Pac-Man-Unity-EmbASP-master/encodings
https://github.com/DeMaCS-UNICAL/ThinkEngine-Games-Pacman/tree/main/Pac-Man-Unity-EmbASP-master/encodings
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The above code contains parts which will likely have the same instantiation regardless
of input facts (e.g., the adjacent and distance predicates), and parts whose instantiation
will slightly differ depending on input facts (i.e., nextTile and distPacmanGhost, which
depend on current positions of Pac-Man and ghosts). Such two categories of code
fragments would roughly correspond to parts respectively marked with the former
#base and #cumulative directives of iclingo [63, 64], and later generalized
with the #program keyword of clingo; however, it is not necessary to introduce
specific grounding directives within ASP code while using I 2-DLV-isd. In [29],
in the absence of an overgrounding engine, we manually tabled the instantiation
of the logic program above, we resorted to procedural code for many aspects of
the reasoning process, and we limited the maximum visibility horizon of the Pac-
Man to 10 tiles. By adopting the overgrounding approach, we were able to avoid
manual optimizations and achieved a fully automatic incremental approach: the
grounded program is internally stored right after the first computation, thus bypassing
re-computations of heavy grounding tasks.

It is worth noting that the adjacent and distance predicates are defined in a general
but inefficient way; this can likely be the case if such a predicate was taken from a
predicate module library. Alternative definitions, improving grounding times, would
be in principle possible: for instance, the distance between tiles is encoded with the
predicate distance(X1,Y1,X2,Y2,D), where D is computed for all couple of points
(X1,Y1)× (X2,Y2); this is what one can expect from a modeller not knowing, and
probably not wishing to know how to optimize this code. Pushing nextTile atoms
within rule bodies would allow to reduce the grounding size by limiting grounding
only to actually necessary distance values. Nonetheless, besides making code less
readable and less declarative, this modification would disrupt modularity, and it
requires some expertise on operational details of grounders.

Figure 8.4: Results of Pac-Man benchmark. Comparison of instantiation sizes for both
grounders.
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Figure 8.5: Results of Pac-Man benchmark. Comparison of grounding time for both
grounders.

Figure 8.6: Results of Pac-Man benchmark. Comparison of solving time.
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Figure 8.7: Results of Pac-Man benchmark. Reports about cumulative execution time for four
possible combinations of grounders and solvers.

Experiments in the Pac-Man domain were conducted by logging a series of 459
consecutive steps taken during an actual game; each step encodes a different status of
the game board in terms of logical assertions. Such inputs were, in turn, run along
with a program Ppac in a controlled environment outside the game engine, averaging
times over five separate runs. Ppac is repeatedly executed together with different inputs
describing the current status of the game map, like e.g., the current position of enemy
ghosts, the position of pellets, etc. Several parts of Ppac can be considered “grounding-
intensive”, like the ones describing the predicate distance(X1,Y1,X2,Y2,D), where
D is computed for all pairs of points (X1,Y1)× (X2,Y2), taking care of the shortest
path between (X1,Y1) and (X2,Y2), given the shape of the labyrinth in the game map.
Grounding was performed by our new engine called I 2-DLV-isd and by an improved
implementation of plain overgrounded programs called I 2-DLV-no-isd. The latter
does not feature simplification techniques.

The solving task was instead performed using WASP [7] and clasp [61]. In order to
assess performance in the worst case scenario, we allowed the Pac-Man to have a
visibility horizon of 30 tiles in each direction.

Figure 8.4 compares instantiation sizes for both grounders; Figure 8.5 reports about
cumulative grounding time for both I 2-DLV-isd and I 2-DLV-no-isd. I 2-DLV-isd
require a little bit more time if compared to I 2-DLV-no-isd due to the time spent
during the simplification and desimplification steps. Figure 8.6 shows cumulative
solving times for all the possible combination of solver and ground instances. Finally,
Figure 8.7 reports about cumulative execution times for the four possible combina-
tions of grounders and solvers. The X axis diagrams data in shot execution order.
Results show that both solvers benefit of the smaller inputs produced by tailored
overgroundings, with wasp showing a remarkable improvement. For all the four
combinations, the slope of the cumulative time curve reflects an almost constant
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execution time, with the exception of the first shot measuring around 70 seconds.
In this shot, grounding times account for almost all the computation time. A slight
progressive worsening in the execution time per shot can be seen especially for
combinations involving the old grounder I 2-DLV-no-isd. This is due to the larger
program input fed to solvers. For both grounders, we noticed that instantiation times
become immediately negligible in later iterations, with I 2-DLV-isd being around 7%
less performant than I 2-DLV-no-isd because of simplification and desimplification
activity.

8.2.3 CONTENT CACHING

In this benchmark, the caching policy of a given video content is controlled using
a logic program Pcc. The caching policy of choice is encoded in the answer sets
of Pcc∪E where E encodes a continuous stream of events describing the evolving
popularity level of the content at hand. This application has been originally designed
in the LARS framework using time window operators in order to quantify over past
events [14]. We adapted the conversion method specified in the work presenting
Ticker [16] to obtain Pcc as a plain logic program under answer set semantics, while
events were converted to corresponding sets of input facts. These kinds of stream
reasoning applications can be fairly challenging, depending on the pace of events
and the size of the time window at hand. Our experiments were run in a worst-case
scenario in which the caching policy could be decided based on events happening
in the last 100 seconds, were the event pace was assumed to be 0.1 seconds. In
this setting, a stream reasoning system must be able to deal with a total of 100×
10 different timestamp symbols, and with proportionally large ground programs.
Again, we compared the four combinations of grounders and solvers, and the Ticker
system in its two implementations: the Ticker ad-hoc truth maintenance based version
(ticker-incr), and the clingo-based one (Ticker-asp) as described in Subsection 3.5 of
Chapter 3.
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Figure 8.8: Results of Content Caching benchmark. Comparison of instantiation sizes for
both grounders.

Figure 8.9: Results of Content Caching benchmark. Comparison of grounding time for both
grounders.
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Figure 8.10: Results of Content Caching benchmark. Comparison of solving time.

Figure 8.11: Results of Content Caching benchmark. Reports about cumulative execution
time for four possible combinations of grounders and solvers and the Ticker
system in its two implementation.

Figure 8.8 shows that both I 2-DLV-isd and I 2-DLV-no-isd grounders add new rules
to their respective overgrounded program up to around shot 1000, which corresponds
to the number of time points allowed in the chosen 100 seconds window. After this
threshold, instantiated programs stay constant, with I 2-DLV-isd generally producing
a smaller input. Figures 8.9 and 8.10 show, the grounding time for both I 2-DLV-isd
and I 2-DLV-no-isd, and the solving time of all the possible combination of solvers
and ground instances, respectively. In Figure 8.11, the slope of cumulative times
shows that Ticker-incr has some initial computational cost due to its pre-grounding
phase, then performs better in terms of later per-shot times. The four combinations
using our grounders have less initial computational cost, while their per-shot times
increase slightly in later iterations, with I 2-DLV-no-isd paired with clasp having the
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best performance, which is quite close to Ticker-incr. Ticker-asp does not feature
incremental optimization strategies, thus it is not comparable with other solutions.
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A R E A L A P P L I C AT I O N S C E N A R I O :
I N T E G R AT I N G D E C L A R AT I V E T O O L S I N
T H E V I D E O G A M E D E V E L O P M E N T
L I F E C Y C L E

One might wonder whether declarative tools, possibly improved by means of incre-
mental reasoning techniques, fit in a real applicative scenario with strict requirements
on repeated evaluation of reasoning tasks. The answer to this question is not straight-
forward, as several obstacles arise, especially about how to integrate declarative
modules in existing software applications. In this chapter we investigate on these ob-
stacles, particularly focusing on the demanding domain of videogame development.

When comparing declarative, rule-based, formalisms with imperative languages, one
can notice how it can be much easier to solve a problem using the first approach rather
than the second one in a variety of settings. On the one hand, rule-based declarative
formalisms can be of great help for the definition of AI. Indeed, the declarative
nature of rule-based knowledge bases allow to focus on specifying desiderata, thus
getting rid of the burden of defining how to meet them (declarative specifications do
not need algorithm design/encoding). Furthermore, knowledge is typically explicitly
represented. Specifications written using declarative rules are definitely easier to be
modified than implicit imperative solutions and, so, easier to be maintained: one can
start by quickly defining a first version and then iteratively rearrange it in increasingly
sophisticated ways. On the other hand, when used in these contexts, declarative-based
AI modules need to interact with other “non-declarative” components; i.e., one or
more logic-based reasoning modules, handled by suitable declarative systems, must
be integrated into larger, hybrid, architectures. Moreover, imperative languages enjoy
a better efficiency, a much wider user base, easier interoperability and better handling
of arbitrary data structures.

Combining these two radically different paradigms, so to achieve the benefits of both
worlds, is therefore desirable and several ways for combining declarative paradigms,
such as ASP, with traditional ones have been significantly studied in the recent years.
However, until now this road has been unexplored in several relevant contexts like, for
example, the videogame world, which is one of the applications based on imperative
languages with strict real-time requirements.

The integration of declarative paradigms in the videogame development workflow
is a challenging topic in the Knowledge Representation (KR) area. In general, AI
techniques could play a role in numerous task applications in the game industry,
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ranging from programming the behavior of non-player characters to automated game
content generation. The particular context of real-time videogames is challenging
for researchers since it means to work within a highly reactive environment: this
environment usually produces a fast-paced stream of input events, thus requiring
really fast responses from a reasoning system. For a reasoning module deployed
within a videogame logic, it is, also, crucial to have the possibility of stopping and/or
quickly restarting reasoning tasks, especially if the KR system at hand is not able to
guarantee the required reactivity.

Besides the performance issues, a second technical obstacle concerns the practical
integration of an external KR module in an object-oriented environment. The two
paradigms offer a world representation on different abstraction levels: the level of
abstraction is usually higher for the KR module and lower and more operational
for the object oriented one. Indeed, reasoning in terms of a low-level abstraction
is not feasible, and an adaptment layer from this to the high-level is needed. For
instance, game maps typically require a discretization in grid cells, so to avoid to
work at the pixel level; floating point-based physical simulations need simplification
and abstraction; and so on.

Multiple strategies can be used to achieve such an integration [50], each one with its
advantages and disadvantages depending on the context in which one has to work.
Specifically, in a game development engine it is important to clearly distinguish the
run-time context from the design-time context. Also it must be noted that, at run-time,
a main module that we will call the procedural side, takes care of updating the game
world: embedding one or more reasoning modules, which will belong to what we will
call the reasoning side, requires the introduction of multiple concurrent execution
flows, in order to prevent lagging in the screen update, and the resolution of a number
of integration issues between the two sides.

General ways for easing the embedding of declarative paradigms into imperative,
and in particular object-oriented, programming approaches, have been significantly
explored in the recent years, especially for Answer Set Programming [21, 72, 28],
for which a number of solutions have been proposed [111, 56, 62, 117, 126, 57].

Nonetheless, given the general impedance between the two different paradigm cate-
gories, the game development context still lack tools for the integration of rule-based
formalisms.

In order to overcome such limits, we developed an integration of AI declarative
modules within applications in the known Unity engine: the ThinkEngine module.

More in detail, the ThinkEngine features a tight data sharing model between the
procedural side and the declarative side of a developed game, based on the notion of
sensors and actuators; an appropriate asynchronous execution model and a suitable
information passing strategy allows to handle time-consuming reasoning tasks with
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no interferences with the game main thread. Reasoning tasks can be attached to
trigger conditions or can be executed at scheduled times allowing a good degree of
flexibility.

In Section 9.1 we will introduce the Unity Engine and the classical Unity videogame
workflow. The, in Section 9.2 we will discuss how automated reasoning modules
can be integrated in a real-time execution loop, such as the typical game execution
loop used when running actual videogames. This integration is particularly strategic
when developing NPCS players acting in the game world. In Section 9.3 we will
provide a detailed description of our ThinkEngine framework; then in Section 9.4
and 9.5 we will provide some definitions about Sensors, Actuators and the declarative
semantic used to implement the framework. In Section 9.6 we will describe the
internal implementation and mappings done by the system. Finally, practical examples
of how this approach can be applied to the videogame context will be given in
Section 9.7. In particular, we will illustrate two simple showcases: the Frogger game
in Subsection 9.7.1 and the Tetris puzzle in Subsection 9.7.2.

9.1 UNITY GAME ENGINE

Thanks to the advent of online distribution systems, as well as the mobile market
for Android and iOS devices, the videogame industry has grown rapidly since the
early 2000s. In fact, these systems are making it easier to publish indie games, i.e.,
videogames published without the funding of a publisher. Around this gaming market
several platforms are springing up, known as Game Engines. These are object-oriented
software development environments designed for people to build videogames [134].
They offer the possibility to easily integrate in a software different things, for example:

– physics,

– rendering, and

– AI.

There are more than 100 solutions on the market, making it more difficult to choose
which one to use when developing a game. Among these solutions, one of the most
used is the Unity game development engine.1

Unity is a cross-platform game engine first announced and released in 2005. Nowa-
days, the engine has been extended to support over 25 platforms (Windows, Android,
iOS and so on). Unity offers facilities for developing both 2D and 3D videogames.
One can use this framework to assemble assets (audio, special effects and so on) and
art into environments and scenes, and concomitantly play, test and edit the game
if necessary. Developers can use a primary scripting API in C# (for both the Unity
editor in the form of plugins, and games themselves) but also visual editing facilities

1 https://unity3d.com/unity

https://unity3d.com/unity
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like drag and drop, property editing etc.. Unity makes available an asset store2 on
which developers can put their solutions (editor plugins, models, SDKs, templates...)
for selling (some assets are also proposed for free). Assets are divided in macro and
micro categories offering a rich collection of solutions for different purposes such
as, for instance, characters, textures and AI. Within this engine, Game Objects are
the fundamental data structures that represent characters, props and scenery. Game
objects do not accomplish much in themselves but they act as containers for Compo-
nents, which implement the real functionalities. The Game world, or environment, is
the set of all the objects used in a game project. At run-time stage, the game world
is highly dynamically changing, requiring that all the processes executed inside the
game logic (i.e., all the procedures needed to the game execution) must be fast and
reactive.

One of the main disadvantages of this game engine is that the adoption of multi-
threading in videogame development is a controversial topic. The usage of threads
with this engine, indeed, is not trivial since Unity is not strictly designed to be thread
safe [19]. In order to keep thread safety, the Unity APIs are accessible only by the
main thread. However, there could be heavy tasks that could slow down the main
thread and thus the whole game. These tasks include the execution of AI algorithms,
which are of special interest for our thesis. When dealing with the execution of such
type of CPU-bound code, Unity offers the possibility of using Coroutines3 or the Job
System4. This can avoid dramatic decreases of performance.

Figure 9.1, describes the main run-time execution workflow for a Unity videogame.
This workflow is mostly single-threaded, with the expectation of some parallel code in
the physics engine. Game designers can customize the game behavior by implement-
ing specific user callback functions, which are executed within the main thread. For
instance, the game designer can provide her/his own code for the FixedUpdate block,
or provide her/his own coroutine. Coroutines constitute a way for implementing
asynchronous cooperative multitasking within a single thread.

The collection of Game Objects (GOS) constituting the game world, are subject to
continuous updates depending on user input; on the physics simulation of the game
world, and on the game logic enforced by the game designer. GOS contain a recursive
hierarchy of basic properties, such as numeric, string and boolean fields, and complex
properties, such as matrices, collections, nested objects, etc.

At design-time, it is possible to work on GOS using the above property-based philos-
ophy, while the game logic can be edited by attaching scripted code to specific game
events.

2 https://www.assetstore.unity3d.com/
3 https://docs.unity3d.com/Manual/Coroutines.html
4 https://docs.unity3d.com/Manual//JobSystem.html

https://www.assetstore.unity3d.com/
https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/Manual//JobSystem.html
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Figure 9.1: Unity run-time execution workflow
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9.2 INTEGRATING REASONING MODULES IN GAME

ENGINES

When proposing a new tool, like a declarative reasoning engine, for a particular game
development environment, one has to deal with the game engine of choice and its
runtime execution architecture; the new tool must be reactive and easy to use. Making
a declarative language module suitable for game development, indeed, is not so trivial.
Even if declarative paradigms are expected to be easy to use, game developers usually
are specialized only in object-oriented programming. That is why, in addition to the
issues exposed in the previous chapter, new obstacles arise in the integration, like

– providing to the declarative side a good representation of the game state,
and this means passing from an object-oriented representation to a logical
representation;

– returning to the game main program (the procedural side) the results computed
on the reasoning side, thus passing from logical assertions to object-oriented
data structures;

– keeping high performance of the game while reasoning.

Providing a tool where the above problems have been solved, allows developers
to focus on their main goal, i.e., create a high quality AI, instead of dealing with
integration aspects. Since reasoning tasks are time-consuming and can easily slow
down the game work ow if executed within the main thread of the game, we decided
to keep a loose CPU coupling, thus letting the reasoning module run in a thread
that is not the main one. Unfortunately, a common feature of almost all the game
engines is that the main game execution ow is basically thread unsafe. A common
consequence of this fact is that game engines allow the access to (parts of) the game
logic APIs only to the main thread (like in Unreal Engine, Unity, Godot). This feature
has an heavy impact on the data coupling level. Indeed, in the ideal configuration for
a multi-thread scenario, shown in Figure 9.2, the main thread delegates the execution
of a declarative specification to an external thread. Before starting the execution, the
external thread gets the current state of the world. Once that the needed information is
encoded in logical assertions, the specific solver (i.e., an engine capable of executing
declarative specifications) is run. When the solver completes its execution, the main
thread is provided with the results found. The main program can now update the
objects of the game according with the solution provided by the reasoning side. One
can then believe that only a form of loose data coupling is possible.
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Figure 9.2: Ideal architecture for threads interaction.

However, the game logic data structures can be accessed from the declarative side by
introducing a transparent information passing layer that allows to achieve a virtual
tight data coupling. To this end, we aim to achieve the coupling configuration shown
in Table 9.1, i.e., we aim to develop a tool in which we have loose computational
coupling, but tight data coupling is obtained nonetheless.

CPU
Data Loose Tight

Loose 7

Tight

Table 9.1: Coupling goal for the ThinkEngine framework.

9.3 THE THINKENGINE FRAMEWORK ARCHITECTURE

Under the previous assumptions, the architecture in Figure 9.2 should be reviewed
such that an external thread can be aware about what is happening in the game logic.
We thus delegated reasoning tasks to auxiliary threads and introduced an information
passing layer allowing the reasoning side to access and act on a representation of the
game world. This representation is independent from the game engine APIs and can
be accessed separately. The whole run-time ThinkEngine architecture is shown in
Figure 9.3.

In particular the ThinkEngine consists of:

1. A reasoning layer, in which the game world is accessible and encoded in terms
of logical assertions. A reasoning engine can elaborate the current state of the
game and produces decisions encoded in its own format;
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2. An information passing layer which allows to mediate between the reasoning
layer and the actual game logic. In this layer, sensors store data originated from
the upper layers. Sensors correspond to parts of the game world data structures
which are visible from the reasoning layer. On the other hand, actuators collect
decisions taken by the reasoning layer and are used to modify the game state.

3. A reflection layer, in which a Sensors Manager and an Actuators Manager
keep the mapping between the game world data structures and the lower layers.
On the one hand, the sensors manager reads selected game world data which,
this way, is made accessible from the reasoning layer. On the other hand, the
actuators manager updates selected parts of the game world, based on input
coming from the reasoning layer.

4. One or more brains that can control the three layers. Each brain can access
his own view of the world (i.e., a selected collection of sensors and actuators),
and can be used for programming a separate reasoning activity, like a separate
artificial player logic, etc.
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Figure 9.3: General run-time architecture of the ThinkEngine framework
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A brain interacts with both the sensors manager and the Solver Executor. The former
is activated periodically or when a trigger condition is met. The sensors manager is
responsible of updating all the sensors data mapped to the current brain. Once that a
sensors update is completed or a trigger condition is met, the brain starts the solver
executor. It will generate a representation W of the world expressed in terms of logical
assertions and it will invoke the solver. The solver is fed in input with W and with
a logical knowledge base KB encoding the AI of the current brain. As soon as the
solver provides decisions, the solver executor populates the actuators associated with
the corresponding brain. The actuators manager monitors the actuators values and
updates accordingly the properties of the game object associated with each actuator.

In order to better understand how sensors and actuators work, in the following we
will introduce some formal definitions for the main elements of the framework. For
the procedural side we will use a pseudo-object-oriented language whereas for the
declarative one we will stick with the ASP notation which formal definitions and
examples are given in Chapter 2.

9.4 THE INFORMATION PASSING LAYER OF THE

THINKENGINE FRAMEWORK

In the following we give some fundamental definitions; then we will formally define
both sensors and actuators semantics on the procedural and declarative side.

Definition 9.4.1 (Object Type). An object type T is a data structure that can include
multiple direct sub-properties. Each sub-property has a name PT , and an associated
data type DPT . Property types can be either: a basic type such as string, integer and
boolean; an object type itself; or a homogeneous collection. A property P of a sub-
property object type ST of T is said to be an indirect property of T and is also denoted,
using a dotted notation, by T .S.P.

Definition 9.4.2 (Element Type). A collection property models either an array, a
list or a vector. The element type T (C) of a collection of objects C is the type of the
objects contained in the collection itself. A sub-property P of the i-th element of C is
said to be an implicit sub-property of T and denoted as T .C[i].T (C).P.

Definition 9.4.3 (Object Instance). An object instance O of an object type T is a
value assignment to all the sub-properties of T . For a basic type property P, a value
assignment is a value of the given data type; a value assignment for an object property
P′ of data type T ′ is an object instance of type T ′; a value assignment for a collection
property C is a possibly empty sequence O1 . . .On of object instances each of type
T (C).

Definition 9.4.4 (Frame). A frame of a videogame is a snapshot of the game state
taken at (almost) regular intervals. The frame rate represents the frequency at which
consecutive frames are taken (for instance 60 frames per second).
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9.4.1 SENSORS: DEFINITIONS AND EXAMPLE CONFIGURATIONS

PROCEDURAL SIDE CONFIGURATION AND IMPLEMENTATION

Definition 9.4.5 (Sensor Configuration). It is given an object type T and its properties
P = Pt

1, . . . ,Pt
i,T .S.P1, . . . ,T .S.P j,T .C.T (C).P1, . . . ,T (C).Pk, i, j,k‘0. A Sensor

Configuration SCT is a subset of P .

Definition 9.4.6 (Sensor Reading). It is given a sensor configuration SCT and an
object instance O of type T ; a sensor reading v(P) of a direct or indirect basic
property P such that P ∈ SCT is the value assignment of P for the object O at a
specific frame of the game.

Definition 9.4.7 (Simple Sensor). It is given a sensor configuration SCT and an
object instance O of type T ; a Simple Sensor SS(SCT ) is a set of sequences of
sensor readings V = {〈v(P1)1, . . . ,v(P1)n〉, . . . ,〈v(Pm)1, . . . ,v(Pm)n〉} for each direct
and indirect basic property Pi such that Pi ∈ SCT . Each sensor is associated with a
unique name.

Definition 9.4.8 (Advanced Sensor). It is given a sensor configuration SCT and an
object instance O of type T ; an Advanced Sensor AS(SCT ) is a simple sensor enriched
with a set of n collections of simple sensors {C1, . . . ,Cn}where each Ci corresponds to
either a bidimensional array or a list property Pi such that Pi ∈ SCT . Each Ci contains
a number of simple sensors equal to the number of object instances contained in the
value assignment of Pi for the object instance O. We denote by Ci

j each simple sensor
storing a single sensor reading for each implicit property T .Pi[ j].T (Pi).P.

Example 9.4.1. Suppose it is given a game object player with the following proper-
ties:

– name whose type is a string,

– dead whose type is boolean,

– position which is an object with three integer properties x,y,z, and

– neighbors which is a list of player instances.

The four properties name, dead, position and neighbors are direct properties of player
whereas x, y, z are indirect properties of player by means of the object referred by
the property position. The direct properties of the objects of type player contained in
neighbors are implicit properties of player by means of the property neighbors. We
can create a sensor configuration as

SCplayer = {name, position.x, position.y, position.z, neighbors.player.dead}.

A sensor AS(SCplayer), besides a name sensorName, will include the following
data structures
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Map〈String, List〈String〉〉 stringProperties

Map〈String, List〈Integer〉〉 integerProperties

Map〈String, List〈SimpleSensor〉〉 listsProperties

The map stringProperties will contain only one entry

〈name, {playerName1, . . . , playerNamen}〉

whereas the integerProperties map will contain three different entries

〈position.x,{x1, . . . ,xn}〉
〈position.y,{y1, . . . ,yn}〉
〈position.z,{z1, . . . ,zn}〉

where playerNamei, xi, yi, zi are the sensor readings, respectively, of the properties
name, x, y and z at the i-th frame. The map listsProperties will contain a
number of entries equal to the number of objects in the list neighbors5.

DECLARATIVE SIDE MAPPING The ThinkEngine framework offers an ASP rep-
resentation for each sensor that has been configured. The translations from object
data structures to logical assertion is preceded by an aggregation phase in which the
collection of sensor readings is replaced by the results of some aggregation function.

Definition 9.4.9 (Window). A window is a function w#n(l1) = l2 that takes in input a
sequence of values l1 = 〈e1, . . . ,em〉 and returns a new collection l2 where

l2 =

〈em−n+1, . . . ,em〉 if m < n

l1 if m≤ n

Definition 9.4.10 (Aggregate Function). An aggregate function f (w#n(l1)) = l̄ takes
as argument a collection of at most n values w#n(l1) and returns a single summary
value l̄.

Examples of aggregate functions are maximum, minimum, average, mode, median,
first and last.

Definition 9.4.11. It is given a simple sensor SS(SCT ), an aggregate function fi for
each property Pi such that Pi ∈ SCT and a window function w#n; the value of Pi with
respect to SS(SCT ) is defined as V̄i = fi(w#n(Vi)).

With this approach, each property tracked by an advanced sensor AS(SCT ) will
correspond to exactly one ASP atom a. The syntax of a can be described in an
extended Backus-Naur form as follows:

5 Note that, currently the ThinkEngine implementation does not store historical readings for implicit
properties: only one sensor reading at the time is materialized. At each update the previous reading will
be overwritten.
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atom = sensorName, (,gameOb jectName, (, property, )).

sensorName = lowCaseString

gameOb jectName = lowCaseString

property = directBasicProperty|directArrayRank2Property|
directListProperty|indirectProperty

lowCaseString = lowLetter,{letter|digit|punctuation}
directBasicProperty = lowCaseString, (, propertyValue, )

directArrayRank2Property = lowCaseString, (,digit,

{digit},arrayType, (,directBasicProperty, ))

directListProperty = lowCaseString, (,digit,

listType, (,directBasicProperty, ))

indirectProperty = lowCaseString, (, property, )

propertyValue = ”, lowCaseString, ”|lowCaseString|
digit, [”,”,{digit}]

letter = lowLetter|upLetter

lowLetter = a− z

upLetter = A−Z

digit = 0−9

punctuation = ”,”|.|!|?

Definition 9.4.12 (Sensor Mapper). It is given an advanced sensor AS = AS(SCT ),
with name µ , and an object instance O of type T , with name γ; a sensor mapper
MS(AS,Pi) = si is a function that takes as arguments AS and a property Pi such that
Pi ∈ SCT and returns a string si representing a logical assertion encoding Pi. MS
behaves differently based on the property type

– if Pi is a direct property denoted by PT then si = µ(γ(PT (v(Pi)))). where v(Pi)

is the value of PT with respect to AS;

– if Pi is a indirect property denoted by T .S.P then si = µ(γ(T (S(P(v(Pi)))))).
where v(Pi) is the value of T .S.P with respect to AS;

– if Pi is a bidimensional array implicit property denoted by T .C[ j][k].T (C).P
then si = µ(γ(T (C( j,k,T (C)(P(v(Pi))))))). where v(Pi) is the value of
T .C[ j][k].T (C).P with respect to AS;

– if Pi is a list implicit property denoted by T .C[ j].T (C).P then
si = µ(γ(T (C( j,T (C)(P(v(Pi))))))). where v(Pi) is the value of
T .C[ j].T (C).P with respect to AS.
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Remark. In our current implementation, the size of the window function used by
sensors is set to be equal to 200 in order to avoid memory and performance issues.
For matrix and list properties it is not needed to apply aggregation functions as a
default window of size 1 is taken.

9.4.2 ACTUATORS: DEFINITIONS AND EXAMPLE CONFIGURATIONS

PROCEDURAL SIDE CONFIGURATION AND IMPLEMENTATION

Definition 9.4.13 (Actuators Configuration). It is given an object type T and its
properties

P = {P1
T , . . . ,Pi

T ,T .S.P1, . . . ,T .S.P j}, i, j ≥ 0

an Actuator Configuration ACT for T is a subset of P .

Definition 9.4.14 (Actuator). It is given an actuator configuration ACT and an object
instance O of type T ; an Actuator A(ACT ) consists of a single value for each property
P such that P ∈ ACT . These values are used to update the corresponding property of
the object instance O. Each actuator is associated with a unique name.

Example 9.4.2. Recalling the game object player of the Example 9.4.1, we can create
an actuator configuration as

ACplayer = {dead, position.x position.y, position.z}

An actuator A(ACplayer), besides a name actuatorName, will have the following
data structures

Map〈String, Boolean〉 boolProperties

Map〈String, Integer〉 integerProperties

The map boolProperties will contain only one entry

〈dead, isDead〉

whereas the integerProperties map will contain three different entries

〈position.x, nextX〉〈position.y, nextY 〉〈position.z, nextZ〉

where isDead, nextX, nextY, nextZ are the value computed by the reasoning module
and that should be set to the properties dead, x, y and z.



9.5 D E C L A R AT I V E S I D E S E M A N T I C 122

DECLARATIVE SIDE MAPPING Values for the properties of each actuator are re-
trieved from an answer set resulting from an ASP program execution. The syntax of
the atoms mapped to an actuator A(ACT ) can be described in an extended Backus-
Naur form as follows:

atom = ”setOnActuator(”,actuatorName, (,gameOb jectName,

(, property, ))).

actuatorName = lowCaseString

gameOb jectName = lowCaseString

property = directBasicProperty|indirectProperty

lowCaseString = lowLetter,{letter|digit|punctuation}
directBasicProperty = lowCaseString, (, propertyValue, )

indirectProperty = lowCaseString, (, property, )

propertyValue = lowCaseString|digit, [”,”,{digit}]
letter = lowLetter|upLetter

lowLetter = a− z

upLetter = A−Z

digit = 0−9

punctuation = ”,”|.|!|?

Definition 9.4.15 (Actuator Mapper). It is given an actuator A = A(ACT ), with
name µ , and an object instance O of type T , with name γ; an actuator mapper
MA(A,si) = Pi is a function that takes as arguments A and a string si representing
a logical assertion encoding a property Pi such that Pi ∈ ACT and returns a value
assignment for Pi. MA behaves differently based on the property type:

– if Pi is a direct property denoted by PT then si = µ(γ(PT (v(Pi)))). where v(Pi)
is the value to assign to Pi for the property A;

– if Pi is a indirect property denoted by T .S.P then si = µ(γ(T (S(P(v(Pi)))))).
where v(Pi) is the value to assign to Pi for the property A.

9.5 DECLARATIVE SIDE SEMANTIC

Definition 9.5.1 (Brain). We define a brain B as a triple 〈SC,AC,Π〉, where:

– SC = 〈SCT1 , . . . ,SCTi〉= 〈SC1, . . . ,SCi〉 is a set of sensor configurations;

– AC = 〈ACTi+1 , . . . ,ACTn〉= 〈ACi+1, . . . ,ACn〉 is a set of actuator configurations;

– Π is an ASP program.

Definition 9.5.2. It is given a brain B and
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– a set of advanced sensors AS = 〈AS(SC1), . . . ,AS(SCTi)〉= 〈AS1, . . . ,ASi〉;

– a set of actuators A = 〈A(ACi+1), . . . ,A(ACn)〉= 〈Ai+1, . . . ,An〉;

– a set of sensor mappings
S = {MS(AS1,PSC1

1 ), . . . ,MS(AS1,PSC1
j ), . . . ,MS(ASi,P

SCi
1 ), . . . ,MS(ASi,P

SCi
k )};

– a set of actuator mappings
A = {MA(Ai+1,PACi+1

1 ), . . . ,MA(Ai+1,PACi+1

l ), . . . ,MA(An,PACn
1 )), . . . ,MA(An,PACn

m )};

Let

– F (Π) be the set of the input facts of Π;

– Ans(Π
⋃

F (Π)) be the ordered set of the answer sets of Π
⋃

F (Π);

– Ans(Π
⋃

F (Π))[0] be the first answer set in Ans(Π
⋃

F (Π))

– Ans = Ans(Π
⋃

F (Π))[0] \S

then A is a valid decision for B if A ⊂ Ans

9.6 THE THINKENGINE IMPLEMENTATION: UNITY AND ASP

We provided an actual implementation of the ThinkEngine framework deployed in
the Unity 3D game engine and featuring an answer set solver at the core of the
declarative side. The ThinkEngine has been developed as an Unity asset using the C#
programming language. Every element discussed in this chapter, except for the ASP
solver, has been implemented as a C# class whereas the object instances introduced
in Definitions 9.4.1, 9.4.2 and 9.4.3 are Unity’s game objects. Figure 9.4 shows the
framework asset class diagram.

Game developers interact with the ThinkEngine by means of some graphical editor
views at design time. Sensor and actuator configurations have been implemented
as classes containing the names of the properties (either direct, indirect or implicit)
of some GameObject. At run-time an instance of the class Brain instantiates an
AdvancedSensor for each SensorConfiguration attached to it. In the same
way, it instantiates a SimpleActuator for each ActuatorConfiguration.
The SensorsManager keeps a map in which each Brain instance of the game exe-
cution is associated with its own sensors. In the same way, the ActuatorsManager
keeps a map in which each Brain instance is associated with its own actuators. The
Brain instance demands a sensors update to the SensorManager on a trigger
event, or periodically. These trigger events are implemented by polling within a
Unity co-routine some trigger boolean function. In the same way, another co-routine
checks for others boolean functions in order to demand to a SolverExecutor
instance an execution of the ASP solver. Each SolverExecutor runs in a sep-
arated thread that waits to be noti fied by a brain to start its computation. As



9.6 T H E T H I N K E N G I N E I M P L E M E N TAT I O N : U N I T Y A N D A S P 124

soon as the SolverExecutor is notified to start the execution, it demands to
an ASPAdvancedSensorMapper for the logical assertion representation of all
the sensors attached to the Brain instance. The result is written in a file and the ASP
solver is invoked with both the ASP program and the input facts. Once that the solver
terminates its own execution, the SolverExecutor sends the provided answer set
to each actuator of the Brain. In this way, each SimpleActuator populates its
own data structures. The ASPAdvancedSensorMapper translate the data struc-
tures of an AdvancedSensor by means of other mappers (ASPBoolMapper,
ASPIntegerMapper and etc.). Each of these latter take care of translating prop-
erties of a specific type. Finally, the ActuatorsManager periodically checks if
there are action (SimpleActuator) to apply to the game world. These updates
are performed only if some precondition boolean function is satisfied.

Figure 9.4: The ThinkEngine asset class diagram
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9.7 RULE-BASED REASONING MODULES INTO UNITY AT

WORK

In order to give an idea of how AI declarative modules can be integrated within Unity
applications via the ThinkEngine, we developed two showcase games: Frogger and
Tetris. In the following sections, for each of these classic videogames, we will briefly
describe how our framework has been set up and configured in order to cooperate
with the Unity game scene, how we configured the sensors and actuators modules and
how the brain component were set up. Finally, we will describe our ASP encoding.

9.7.1 THE FROGGER SHOWCASE

We herein report about an extended version of the classic game Frogger, in which we
added a sample automated player whose artificial intelligence is managed by an ASP
program. In the historical Frogger game, a man-controlled frog, starting from the
bottom of the screen, must cross a highway plenty of running cars (the street zone,
bottom of the screen), and then jump over some logs flowing in a river (the river zone,
top of the screen), in order to reach some goal cells put at the top of the screen. A safe
zone (middle horizontal line) delimits the two main zones above. The frog character
moves from lower coordinates (Y = 0) up to goal cells (Y = 12). We considered the
basic setting of the game with logs and cars as moving characters, and not its full
implementation (which included snakes, turtles, and other fancy obstacles). The game
includes a time limit of 30 seconds for completing each screen. This has not been
considered as a variable since our artificial player was far quicker than the time limit.

SENSORS AND ACTUATORS CONFIGURATION. When the developer wants to attach a
sensor (resp. actuator) to a given GO g, it is enough to add a script component, c, to
g choosing the SensorConfigurator (respectively, the ActuatorConfigurator) script.
As shown in Figure 9.5, the configurator lists the configuration already available
for g. One can choose to configure a new sensor or to modify or delete an existing
configuration.

Figure 9.5: Sensors Configurator Component
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Figure 9.6: Configuring a new sensor

When configuring a new sensor, it is possible to browse g’s objects and select
which properties are mapped on the reasoning side, as it can be seen in Figure 9.6.

The important entities in the game are:

P L AY E R : the player represents an active game character. In this case the current
frog is the unique artificial player, whose goal is to reach a safe place in the
game’s grid;

C A R S : it is a list of all the cars that can be found in the street zone of the game’s
grid;

L O G S : it is a list of all the logs that can be found in the river zone of the game’s
grid;

H O M E B AY S : it is a list of safe places that a frog has to reach to win a game and
that can contain at most one frog; in order to win the match, five distinct frogs
have to reach five different home bays.
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We bounded to the reasoning side, as sensors, the player, the logs, the cars and the
home bays and, in a similar way, we configured the only actuator needed. The single
selected actuator contains the property move whose value can be one among: still;
up; left; right; down. An example of what would look like a set of input facts for the
Frogger game is given in the following:

cars(brain(collidersCollector(cars(0,car(moveRight( f alse)))))).

cars(brain(collidersCollector(cars(0,car(xpos(2)))))).

cars(brain(collidersCollector(cars(0,car(ypos(1)))))).

playerSensor(brain(player(xpos(8)))).

playerSensor(brain(player(ypos(0)))).

logs(brain(collidersCollector(logs(0,collidableOb ject(le f tMargin(0)))))).

logs(brain(collidersCollector(logs(0,collidableOb ject(rightMargin(2)))))).

logs(brain(collidersCollector(logs(0,collidableOb ject(y(7)))))).

logs(brain(collidersCollector(logs(0,collidableOb ject(right(true)))))).

home(brain(collidersCollector(bay(0,collidableOb ject(isOccupied( f alse)))))).

home(brain(collidersCollector(bay(0,collidableOb ject(le f tMargin(10)))))).

home(brain(collidersCollector(bay(0,collidableOb ject(rightMargin(12)))))).

home(brain(collidersCollector(bay(0,collidableOb ject(y(12)))))).

BRAIN COMPONENT. In addition to configuring the sensors (playerSensor, cars,
logs and homebays) and the actuator called player, we added to the GO hierarchy a
new GO with an attached component of type brain. The brain consists in a standard
script belonging to the ThinkEngine asset that will coordinate sensors, the actuator
and the solver executor.

Figure 9.7: Configuration of the brain.

The brain component can be configured via the inspector tab as in Figure 9.7. Sensors,
actuators and some other additional features can be attached to a brain via the visual
interface. In our example, we set up the values that a) specify the update pace of the
sensors; b) tell when it is triggered the ASP solver execution; and c) tell when it is
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triggered the application of the actuators actions. The trigger conditions are boolean
functions that can be customized by the developer.

During the game run-time, whenever proper conditions are met, sensors values are fed
to the ASP solver, together with a knowledge base describing the desired AI. The ASP
solver runs in a separate thread, and produces answer sets (i.e. a set of output logical
assertions), which will be mapped to actuators by means of the actuators manager,
thus influencing the game world. In the setting of the Frogger game, the solver’s
output encodes the next direction in which the frog should move or alternatively if it
has to stay still.

ASP-ENCODED AI. The decisions taken by the AI player impersonating the frog
are driven by an ASP declarative specification KBT based on the Guess/Check/Op-
timize paradigm [22]. It is worth remarking that the goal of this work was not the
development of a state-of-the-art artificial Frogger player, but rather showing the
viability of our approach using a declaratively specified player strategy. The idea is to
guess, at each time step, the next player’s move. Considering each step independently
from another, it can happen that a movement leading to a future unsafe position for
the frog is chosen. The moves that lead the frog in a not admissible future position
are excluded, and the optimal combination among the remaining candidates is chosen.
For the sake of simplicity the optimality criterion looks only for positions that are
considered safe in the current and future step and, with lesser priority, it is preferable
to move the frog forward instead of backward. In this way, we ensure that the frog
will be closer to an home bay at each time step. In this simple showcase AI, no
planning on multiple moves is taken in consideration, although this is in principle
possible.

The guess phase is expressed by means of the following choice rule

possibleMoves(still).

possibleMoves(up).

possibleMoves(le f t).

possibleMoves(right).

possibleMoves(down).

{moveTo(X) : possibleMoves(X)} = 1.

where the possibleMoves predicate describes all the admissible moves that the
player could perform. Thanks to the implicit constraint included in the choice rule,
we also assure that each model produced by the solver will contain exactly just one
possible instance of the moveTo predicate.

The next positions that will result occupied or safe in the game’s grid after each shot
are evaluated as follows. The strategy used for the river zone is purposely simpler
than the one adopted for the street zone. Therefore the movement direction of logs is
not considered.
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% Future car positions

r1 : carNextPos(1,X1,Y , true) :− car(X ,Y , true),X1 = X + 1.

r2 : carNextPos(1,X1,Y , f alse) :− car(X ,Y , f alse),X1 = X−1.

r3 : carNextPos(T 1,X1,Y , true) :− carNextPos(T ,X ,Y , true),

T 1 = T + 1, X1 = X + 1, T 1 < MT , lookAhead(MT ).

r4 : carNextPos(T 1,X1,Y , f alse) :− carNextPos(T ,X ,Y , f alse),

T 1 = T + 1, X1 = X−1, T 1 < MT , lookAhead(MT ).

% Position occupied by cars and logs

r5 : occupiedByCar(X ,Y ) :− xCoord(X), yCoord(Y ), carNextPos(T ,X ,Y ,_).

r6 : occupiedByCar(X ,Y ) :− xCoord(X), yCoord(Y ), car(X ,Y ,_).

r7 : occupiedByLog(X ,Y ) :− xCoord(X), log(X1,X2,Y ,_), X ≥ X1,

X ≤ X2.

% Sa fe positions

r8 : sa f e(X ,Y ) :− occupiedByLog(X ,Y ).

r9 : sa f e(X ,Y ) :− notoccupiedByCar(X ,Y ), xCoord(X), yCoord(Y ),

Y < 6.

r10 : sa f e(X ,Y ) :− xCoord(X), Y = 0.

r11 : sa f e(X ,Y ) :− xCoord(X), Y = 6.

% Final positions are also sa fe (home positions)

r12 : sa f e(X ,Y ) :− xCoord(X), home(X1,X2,Y , f alse), X ≥ X1,

X ≤ X2.

More in detail, an atom in the form carNextPos(T,X,Y,IsRight) is used
to describe the next position in which a car will be in. The space occupied by a
car is encoded by an assertion in the form occupiedByCar(X,Y); similarly, the
positions occupied by a log are encoded by means of the predicate occupiedByLog.
Finally, the safe predicate encodes all the positions X, Y that are considered to be
safe at the next step while the home predicate encodes the (goal) position that the
frog has to reach in order to complete the level.

Rules from r1 to r4 describe which are the positions in which the cars will move in
the future step. Thanks to rules r5 and r6, these positions are considered occupied
and no longer available for the frog. Similarly, rule r7 derives the portion of space
occupied by the logs.

Finally, rules from r8 to r12 describe which positions are safe for the frog. A position
is considered to be safe if it is not occupied by a car or if it is occupied by a log (rules
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r8 and r9). Moreover, also the starting position of the frog and the goal’s positions are
considered to be safe (rules from r10 to r12).

The next set of rules are used to derive the X and Y coordinates of the next player
position (rules from r13 to r17). Then, we assure that the player will not move
accordingly with the car in the upper line (rules r18 and r19) otherwise the frog will
never be able to cross the street. Finally, we check that the frog will not move in an
unsafe position (rule r20).

% Evaluating the f uture player position

r13 : nextPlayerPos(X ,Y ) :− playerPos(X ,Y ),

moveTo(still).

r14 : nextPlayerPos(X ,Y 1) :− playerPos(X ,Y ), moveTo(up),

Y 1 = Y + 1.

r15 : nextPlayerPos(X ,Y 1) :− playerPos(X ,Y ), moveTo(down),

Y 1 = Y −1.

r16 : nextPlayerPos(X1,Y ) :− playerPos(X ,Y ), moveTo(le f t),

X1 = X−1.

r17 : nextPlayerPos(X1,Y ) :− playerPos(X ,Y ), moveTo(right),

X1 = X + 1.

% Do not move accordingly with the car in the upperline

r18 : :− moveTo(right), playerPos(_,Y ), car(_,Y 1, true), Y 1 = Y + 1.

r19 : :− moveTo(le f t), playerPos(_,Y ), car(_,Y 1, f alse), Y 1 = Y + 1.

% No suicide (move is admissible only i f the position is considered ”saf e”)

r20 : :− nextPlayerPos(X ,Y ), notsa f e(X ,Y ).

% Do not move outside the game board

r21 : :− moveTo(le f t), playerPos(0,Y ).

The last fragment of declarative code represent optimization criteria, which are
expressed in terms of weak constraints. Roughly speaking, a weak constraint is a
condition that, if met, increases the cost of a possible frog’s move. Higher cost moves
are less preferred.
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% Make a move preferring up.

% Go back only i f it ′s the unique possible move.

r22 : :∼ moveTo(le f t). [1@1,2]

r23 : :∼ moveTo(right). [2@1,3]

r24 : :∼ moveTo(still). [3@1,0]

r25 : :∼ moveTo(down). [4@1,4]

Weak constraints from r22 to r25 are used to ensure that a unique best answer set is
chosen. The preferred move is “up”, while the “down” one is the least desiderable.
It is worth noting that the left and right moves respectively have different priorities.
However, when both moves lead to an optimum model, they are completely equivalent.
In order to obtain a unique answer set, in this case, we arbitrarily prefer the left move
over the right one.

Note that this artificial player, although not optimal, can be easily modified by either
changing: (i) the heuristic associated to the weak constraints, or (ii) introducing new
weak constraints expressing other desiderata, or (iii) changing the priority level of the
constraints and so on. The above artificial player, including its declarative code, is
available within the ThinkEngine repository reachable at https://github.com/
DeMaCS-UNICAL/ThinkEngine-Public.

9.7.2 THE TETRIS SHOWCASE

We herein report about our version of the classic game Tetris. We started from a
public available open-source project6, inspired from the original game and, just like
in Frogger showcase discussed in the previous Subsection, we modified this project
to obtain an automated player whose artificial intelligence is managed by an ASP
program. Note that we are not proposing a state-of-the-art Tetris player, rather a
demonstration of how an AI can be easily developed by means of logical rules and
then deployed in Unity.

SENSORS AND ACTUATORS CONFIGURATION. Developers can access to a list of the
GOs used in the game scene via a custom Unity window editor 7 as in Figure 9.8.
It is possible to browse objects and select which properties are mapped on the
reasoning side. We will use next some of the typical terminology used to describe our
infrastructure and the Tetris game, as recalled here:

A R E N A : as shown in Figure 9.8, the arena is a GO that contains all the proper-
ties relative to the playable game scene (i.e. a matrix of tiles, the properties
maxTileX, maxTileY etc.);

6 https://github.com/MaciejKitowski/Tetris
7 I.e. a window similar to the Unity inspector. The inspector displays detailed information about the

currently selected Game Object, including all attached components.

https://github.com/DeMaCS-UNICAL/ThinkEngine-Public
https://github.com/DeMaCS-UNICAL/ThinkEngine-Public
https://github.com/MaciejKitowski/Tetris
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Figure 9.8: Editor window for the sensor configuration

_ T I L E S : a matrix of GOs of type ArenaTile. This matrix can be expanded by the
user in order to configure some extra properties;

T E T RO M I N O : a geometric shape composed of four squares;

C U R R E N T T E T RO M I N O : in the Tetris game it represents the tetromino that is
currently dropping in the Arena;

S PAW N E R : a GO that manages the generation of a new Tetromino when the previ-
ously created one can not drop further down in the Arena.

We bound to the reasoning side, as sensors, the Arena, the currentTetromino and the
Spawner, and, in a similar way, we configured the actuators. By means of the Actuator
Configuration Window one can select the AI script that is needed to be mapped within
the ASP module. The single selected actuator, called player, contains the properties:
nMove, nLatMove, nRot, typeLatMove. The meaning of these properties will be
explained in the next paragraph.

BRAIN COMPONENT. After configuring the sensors (arenaGrid, tetromino and
spawner) and the actuator (player), we added to the GO hierarchy a new GO with an
attached component of type brain. The brain consists in a standard script belonging
to the ThinkEngine asset that will coordinate sensors, the actuator and the solver
executor. The brain component can be configured via the inspector tab. Sensors,
actuators and some other additional features can be attached to a brain via the visual
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Figure 9.9: Configuration of the brain.

interface. In our example, we setup the conditions8 to meet in order to a) update the
sensors and run the ASP Solver; b) let the Actuators Manager apply the actuators
actions.

When the game starts, thus at run-time, the brain will start updating sensors and
will also run an external thread that will execute the ASP solver if sensors have
data to share and the solver is not already running. Every time that it is necessary
to invoke the solver, the Sensor Mapper produces a representation, in the form of
logical assertions, of the filtered sensors values attached to the brain. Then, the ASP
solver is invoked by passing it this sensor representation and a knowledge base KBT

expressing the desired brain AI. After the ASP solver ends its execution, its answer
sets (i.e. a set of output logical assertions), will be mapped to actuators by means of
the actuators manager, thus influencing the game world.

In the setting of the Tetris game, the solver’s output encodes the position and orien-
tation in which the current tetromino should be dropped. This is then translated to
the corresponding number of rotations and lateral moves of the tetromino. In turn, a
corresponding number of simulated swipes is commanded via Unity procedural code
and the tetromino is eventually dropped.

ASP-ENCODED AI. The ASP declarative specification KBT driving the brain deci-
sion is based on the Guess/Check/Optimize paradigm [22]. The idea is to range in the
search space of columns of the Tetris grid and of rotations of the tetromino; to exclude
combinations of columns and rotations such that the piece cannot be geometrically
placed; choose the optimal combination among the remaining candidates. For the
sake of simplicity the optimality criterion looks for positions not leaving holes in the
grid, and with lesser priority, lower dropping positions in the grid are preferred. The

8 Conditions are selected from a set of boolean functions customized by the developer.
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reader can refer to [46] for a detailed illustration of syntax and semantics of answer
set programming.

The guess phase is expressed in the rule

bestSol(X ,Y ,C) | notBestSol(X ,Y ,C) :− col(C), availableCon f ig(X ,Y ).

where the availableConfig(X,Y) predicate keeps track of all the possible ro-
tations for the current tetromino. This assertion, combined with the strong constraints

:− #count{Y ,C : bestSol(X ,Y ,C)} > 1.

:− #count{Y ,C : bestSol(X ,Y ,C)} = 0.

assures that each model produced by the solver will contain exactly one bestSol.

The lowest row that the tetromino can reach when positioned with a given rotation in
a chosen column is described as follows.

r1 : f ree(R,C,C1) :− tile(R,C, true), C1 =C+ 1.

r2 : f ree(R,C,C2) :− f ree(R,C,C1), tile(R,C1, true),C2 =C1+ 1.

r3 : f irstEmpty(R) :− nCol(C), #max{R1 : f ree(R1,0,C)}= R.

r4 : canPut(R) :− bestSol(X ,Y ,C), f ree(R,C,C1), f irstEmpty(R),

con f MaxW (X ,Y ,W ), C1 =C+W .

r5 : canPut(R) :− bestSol(X ,Y ,C), canPut(R1), f ree(R,C,C1),

con f MaxW (X ,Y ,W ), C1 =C+W , R = R1+ 1.

r6 : f reeU pTo(R) :− canPut(R), not canPut(R1), R1 = R+ 1.

r7 : oneMore(R1) :− bestSol(X ,Y ,C), botSpace(X ,Y , I,J), f reeU pTo(R),

R1 = R+ 1, f ree(R1,C1,C2), C1 =C+ I, C2 =C+ J.

r8 : twoMore(R1) :− bestSol(X ,Y ,C), oneMore(R), extraRow(X ,Y ),

botSpace(X ,Y , I,J), f ree(R1,C1,C2), R1 = R+ 1, C1 =C+ I,

C2 =C+ J.

r9 : bestRow(R) :− f reeU pTo(R), not oneMore(R2), botSpace(X ,Y ,0,0),

R2 = R+ 1, bestSol(X ,Y ,_).

r10 : bestRow(R1) :− f reeU pTo(R), not oneMore(R2),

not extraRow(X ,Y ), bestSol(X ,Y ,_), not botSpace(X ,Y ,0,0),

R1 = R−1, R2 = R+ 1.

r11 : bestRow(R1) : −bestSol(X ,Y ,_), not oneMore(R2), f reeU pTo(R),

extraRow(X ,Y ), not botSpace(X ,Y ,0,0), R1 = R−2, R2 = R+ 1.

r12 : bestRow(R) :− oneMore(R), not twoMore(R1), bestSol(X ,Y ,_),

R1 = R+ 1, not extraRow(X ,Y ).

r13 : bestRow(R) :− twoMore(R).

r14 : :− #count{R : bestRow(R)}= 0.
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The tile predicate is used to derive in which rows the tetromino can be placed.

The space occupied by a tetromino is encoded by a number of assertions, like e.g.,
confMaxW(x,y,w) which expresses that the maximum horizontal amount of
cells occupied by the tetromino x on which it has been applied the rotation y is
w; other similar assertions are botSpace(x,y,c,c1), topSpace(x,y,h),
leftSpaceWrtSpawn(x,y,l), extraRow(x,y).

Rules r1 and r2 describe, for each row of the arena, all the sequences of free slots
of the matrix (0− 2,0− 3...0− 10,1− 2, ...,1− 10..., note that the second index is
exclusive). Rule r3 derives the highest row in the arena completely empty, thus the
first row in which the tetromino can be placed in whatever column. Starting from this
row, rules from r4 to r8 describe in which row the tetromino, in the chosen rotation
configuration, is allowed to be placed, according also with the current tetromino
shape. Finally, rules from r9 to r13, describe the lowest line that the tetromino will
drop to.

The next set of rules describe which row the tetromino will reach (in height) once it
is placed (rule r15) and how many holes will remain in the row immediately below
(rules from r16 to r20).

r15 : reach(R) :− bestSol(X ,Y ,_), bestRow(R1), topSpace(X ,Y ,W ),

R = R1−W .

r16 : hole(R,C1) : −bestSol(X ,Y ,C), bestRow(R1), tile(R,C1, true),

con f MaxW (X ,Y ,W ), R = R1+ 1, C1≥C, C <W1,

W1 =C+W .

r17 : hole(R,C1) :− bestSol(X ,Y ,C), botSpace(X ,Y , I,J),

tile(R,C1, true), L = I + J, L > 0, C1≥C, C1 <C2,

C2 =C+ I, oneMore(R).

r18 : hole(R,C1) :− bestSol(X ,Y ,C), botSpace(X ,Y , I,J),

tile(R,C1, true), L = I + J, L > 0, C1≥C2, C2 =C+ J,

C1 <C3, C3 =C+W , oneMore(R), con f MaxW (X ,Y ,W ).

r19 : hole(R,C1) :− bestSol(X ,Y ,C), botSpace(X ,Y , I,J),

tile(R,C1, true), L = I + J, L > 0, C1≥C, C1 <C2,

C2 =C+ I, twoMore(R).

r20 : hole(R,C1) :− bestSol(X ,Y ,C), botSpace(X ,Y , I,J),

tile(R,C1, true), L = I + J, L > 0, C1≥C2, C2 =C+ J,

C1 <C3, C3 =C+W , twoMore(R), con f MaxW (X ,Y ,W ).

The last fragment of declarative code represent optimization criteria, which are
expressed in terms of weak constraints. Roughly speaking, a weak constraint is a
condition that, if met, increases the cost of a possible tetromino drop configuration.
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r21 : :∼ #count{R,C : hole(R,C)}= N, #int(N1), #int(N),

N1 = 3∗N. [N1 : 4]

r22 : :∼ bestRow(R),numO f Rows(N),D = N−R. [D : 4]

r23 : :∼ reach(R),numO f Rows(N),D = N−R. [D : 3]

r24 : :∼ bestSol(X ,Y ,C). [C : 2]

r25 : :∼ bestSol(X ,Y ,C). [Y : 1]

Weak constraints r21 and r22 have been assigned to the same priority (4) since we
want, at the same time, to minimize the number of holes and to maximize the lowest
line that the tetromino will drop to. However, since we want to give a bit more
importance to the holes, we decided to assign a triple weight with respect to the
lowest row optimization criterion. At a lower priority level, we find the minimization
of the row reached in height by the tetromino (r23). The last two constraints, r24 and
r25, are used to assure that no more than one answer set is produced. Indeed, when
having two answer sets with the same costs for respectively the number of holes
criterion, for the lowest line criterion and for the top most row criterion, we will
choose the solution occupying the leftmost column and requiring the lowest number
of rotations.

Note that this artificial player, although not optimal, can be easily modified by
changing the heuristic associated to the weight of constraint in 21.; introducing
new weak constraints expressing other desiderata; changing the priority level of
the constraints and so on. The above artificial player, including both the declarative
code and all the procedural code, can be downloaded at https://github.com/
DeMaCS-UNICAL/Tetris-AI4Unity.

9.8 BENCHMARK

One of the most common measuring indicators used for assessing the performance
of a videogame is the framerate, i.e., the number of frames that can be displayed
in a second. Furthermore, it appears to be a good measure even for the evaluation
of the ThinkEngine impact on the game performance, measured as the number of
screen updates per second that can be achieved given the computational burden of
the game implementation at hand. In both Frogger and Tetris showcases described in
Subsections 9.7.1 and 9.7.2, we compared the framerate of the game when played by
a human agent and the one obtained using the ThinkEngine asset. Recalling that we
are using these games as a mere proof of concept of the viability of the ThinkEngine
approach, we were instead not interested in comparing the score of the AI with respect
to human players. However, when a human agent controls the game, the performance
is expected to be higher, since the thinking phase is absent and substituted by a quick
keyboard reading. On the other hand, if the game is controlled by ThinkEngine, some
impact on performance is expected.

https://github.com/DeMaCS-UNICAL/Tetris-AI4Unity
https://github.com/DeMaCS-UNICAL/Tetris-AI4Unity
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Videogames work customarily on fixed target framerate settings, where the typical
default ones are 30 or 60fps. In the case of Unity games, this means that the update
cycle shown in Figure 9.1 is run at a pace of 30 or 60 times per second respectively.
The target rate will not be respected if an update cycle takes more than the allotted
frame time.

Figure 9.10: Framerate evaluation on Frogger game.

Figure 9.11: Frame rate evaluation on Tetris game.

In this section, we illustrate qualitatively the performance of our Frogger in Fig-
ure 9.10 and Tetris engines in Figure 9.11, which reports a snippet of a single run,
where we set the target framerate to 60fps.

The overall framerate was almost identical in the two settings (56.03 fps in “normal”
mode or also “human player” mode and 55.08 fps in ThinkEngine mode). Tests were
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performed on a Intel CPU i7-4700MQ with 16GB of RAM and equipped with a
Nvidia GeForce GPU GT740M with 1.5GB of RAM.

We show how, for our settings, the framerate is not constant, but it can vary on
each frame. The two curves represent, respectively, the instantaneous framerate
measured when a human is playing (blue curves) and when the game is controlled
by the ThinkEngine (red curves). The two curves generally keep the target framerate,
although they share some periodical negative spikes.

In particular, in Figure 9.10, which shows the Frogger framerate evaluation, the
circles and crosses represent respectively sensor reading and actuator update events.
Although the sensors track down a number of average sized list data structures, the
frame rate seems to be not affected by the sensors update phase. In the same way, the
actuators update phase does not influence the frame rate. The sensor reading events,
which in turn trigger reasoning tasks, were purposely set to a pace of 200ms (i.e.
about each 12 frames) in order to tick the decisions of the AI player at a human-like,
visible speed. Concerning the generation of the logical assertions encoding the sensor
values, in the Frogger setting we have a really low timing: 1ms in average. In the
same way the ASP solver generates an answer set in 80ms in average. Note that, since
solving tasks run in a separate thread, the impact of reasoning tasks on framerate is
supposedly almost negligible.

The ThinkEngine framerate evaluation on Tetris game in Figure 9.11 has specific
negative spikes that are caused by the overhead introduced by the sensors update
phase (red crosses in the figure). These spikes do not have a visible impact on the
graphical update as they are sufficiently isolated and the moving average (light green
curve in figure 9.11) over 25 frames is almost constant. This analysis can be used as
an indication for how often one should update the sensors: the game would stall if this
is done too often. The actuators update step, instead, has no appreciable impact on
the performance of the game (green diamonds in the figure). Obviously, the sensors
update needs more time with respect to actuators since they have to track down an
entire matrix of values on the game board.

In both cases, our expectations are met. Indeed, these spikes do not have a visible
impact on the graphical update as they are sufficiently isolated and the moving average
is almost constant.

Another aspect that is interesting to look at, is the time that the ThinkEngine needs to
auto-generate the input facts for the ASP solver and how fast is this latter in producing
a solution. These two measures cannot be tracked in the framerate analysis since
the two operations are performed in a separate thread and the main one which is in
charge of updating the graphics. However, an intuition of the amount of time elapsed
between a sensors update and a solution generation can be spotted in the figure 9.11.
Indeed, the number of frames between a sensors update and an actuators update is
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really low. Table 9.2 shows the time needed on average on a single Tetris match for
both facts and answer set generation: the last row is the overall average.

Run Facts (ms) AnswerSets (ms)
1 537.17 628.60

2 548.86 623.00

3 609.00 785.86

4 310.60 444.20

5 228.00 421.00

6 426.20 607.80

7 342.25 544.75

8 493.60 596.25

9 435.80 522.00

AVG 436.83 574.83

Table 9.2: Generation time
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Declarative tools are useful also for other typical necessities of the game develop-
ment world, such as content generation. Indeed, Procedural Content Generation
(PCG) [119] is an important tool for modern videogame development, and com-
monly used in both triple-A (i.e., high-budget games) and indie games. A good PCG
framework allows the creation of new game content without the specific need to
create it by hand: instead, a program is run and the produced output is used into the
game itself in the form of landscapes, playable levels, open worlds, i.e., of what we
will in general call game artifacts.

The game production workflow usually involves a number of professional profiles,
whose jobs can partially overlap. In particular, the game designer is in charge of
manually designing and combining game artifacts, while the programmer writes
general purpose code, Artificial Intelligence (AI) code, and, in our context, content
generation code. Designers and programmers usually have a strict collaboration, and
interact in order to produce the right content generation code. There can be cases
in which the designer has little inspiration and cannot converge to a concrete game
world or to suitable new levels, nor explore novel ideas, etc. In this setting PCG might
be very beneficial. However, finding a good content generation scheme might be a
big burden on programmers’ shoulders. In other development contexts, designers
extensively collaborate with a programmer in order to modify the content creation
algorithm, so that the generated game artifacts fit to the original ideas and description.

In both settings above, input ideas about the game world come from designers in terms
of high-level rules and constraints, and such information is then used by programmers
to encode algorithms which should generate the content specified. This, however,
means that the programmer must devise not only what is supposed to be generated,
but also the procedural algorithms in charge of the generation task.

It turns then out that a general technique, reusable and decoupled from the specific
game domain and visual appearance, and results accessible to non-programmers
and suitable for rapidly prototyping game content, can be significantly of help. In
this respect, logic-based declarative tools, such as Answer Set Programming, can be
a game changer, as they limit, if not eliminate, the need for imperative code, thus
achieving the above benefits in several respects. On the one hand, a skilled game
designer can declaratively express quantitative and qualitative desiderata in terms of
ASP code; on the other hand, programmers themselves can define content generation

140
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strategies without the burden of programming detailed algorithms via imperative
languages.

In other words, ASP can be used for evolving traditional PCG techniques to the
notion of what might be better defined as Declarative Content Specification (DCS);
in this respect, declarative specifications can be easily modified and incremented with
new knowledge at will.

The first application of ASP in the vast literature concerning procedural content
generation1 can be found in [121, 96], with particular focus on the maze generation
problem, where promising results have been achieved. In particular, the work in [121]
adopts a tile-by-tile generation model, and encouraging performance results are
reported over 6×6 mazes.

In this scenario, we investigated over the usage of a partition-based generation tech-
nique [118] in ASP.Approaches relying on partition-based generation are generally
efficient in terms of processing time and, if mixed with ASP, can benefit from its
declarative properties.

For these reason, we propose a multiple step-generation approach, set in the context
of the 2-D caves generation domain and where each step is declaratively controlled
by an ASP specification, as described in Section 10.2.

With respect to existing literature [121, 96], our approach promises to be better
scalable to real contexts with higher size mazes. Experiments aimed at confirming
that are currently ongoing.

Furthermore, in Section 10.3 we will report about the two plugins we developed based
on our generation technique, which were respectively deployed as an asset available
in the Unity development2 and in the GVGAI [102] frameworks, respectively;

Finally, some experiments will be shown in Section 10.4 and some possible improve-
ments will be, also, analyzed.

10.1 PROCEDURAL CONTENT GENERATION: AN OVERVIEW

Procedural Content Generation (PCG) can be defined as the algorithmic creation
of game content with limited/indirect user input [128]: roughly, one can think of a
software that automatically generates game contents, that might be possibly refined
by a designer afterwards. There are several reasons for the use of PCG techniques
in actual game development, such as fast content prototyping and improved design
tasks: indeed, a software can be much faster than a designer [119], and, in general, it

1 The reader can refer to the last edition of [119] for a comprehensive survey of generation techniques
and related research.

2 https://unity3d.com/unity

https://unity3d.com/unity
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(a) (b) (c)

Figure 10.1: Steps of Space Partitioning. (a) First step: the level is divided by a vertical line
and two sub zones are defined, A and B. (b) Further steps divide each zone into
smaller areas. Here A has been divided by a horizontal line, while B has been
split by a vertical line. (c) After n steps, a given criterion is met, and the level
will be subdivided into sectors.

might lead to comparatively better results in less time. Furthermore, the procedural
generation of game content allows to tailor the gaming experience to several extents:
different challenges can be proposed according to the game session, or even depending
on the player profile that is currently playing the game. In general, PCG helps to
obtain a game that can be played an arbitrary number of times with always new
original content, while also improving the development phases.

Game content that can be automatically created ranges from game levels to music,
textures, entire worlds. We focus here on the generation of 2-D levels and caves; in
particular, we focus on a PCG technique called space partitioning, as we found it
particularly suitable when combined with the ASP approach. Space partitioning is
typically used in PCG to create dungeons, both 2-D and 3-D. It works by recursively
dividing the level area into smaller zones, until all meet a certain criterion, such as
a specific size. Once the partitioning is done, monsters and other game objects can
be placed into each “room”; eventually, rooms can be connected. One of the most
popular space partitioning algorithm is the Binary Space Partitioning (BSP), which
recursively divides a given “space” into two subspaces. By splitting the space into
two sub-zones, the algorithm creates a binary tree. Figure 10.1 illustrates the principle
of this technique. As shown in Figure 10.2, the binary space partitioning algorithm
guarantees that no areas will be overlapping, and the result is very structured and
uniform. Once the space has been partitioned, proper policies are adopted to create
the areas and directly affect the structure of the dungeon; for instance, one can decide
to randomly assign each final zone either the “room” or the “empty” property, thus
creating a very symmetric dungeon. Room connections and additional level content
can hence be created and placed either purely randomly, or using other techniques
that don’t rely on the space partitioning itself. A pseudo-code for an implementation
of the binary space partitioning technique can be found in [119].
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Figure 10.2: Each obtained sector is filled with a room, which will be connected afterwards
using the BSP tree.

10.2 DECLARATIVE CONTENT GENERATION WITH SPACE

PARTITIONING IN ASP

We will use next some typical map generation terminology, as recalled here:

M A P : a rectangular grid composed of square tiles;

PA RT I T I O N : the outcome of sectioning the map at hand obtained by dividing the
map itself into non-overlapping parts;

A R E A : a component of a partition, usually a rectangle-shaped area made of tiles;

S T RU C T U R E : how areas composing partitions are connected to each other, for
instance by means of a door object;

T Y P E : the actual kind of an area, which can be either a room, a corridor or a filled
zone, i.e., an area filled with walls;

T I L E : a tile can be either a wall, i.e., a cell which is not accessible by a game
character, a floor cell, i.e., a cell that can be walked on by a game character. A
floor cell can be possibly occupied by a game object;

O B J E C T : a game object (such as keys, treasures, enemies, etc.); game objects fit in
general in one or more tiles; we will assume to deal with single tile objects;

In this setting, given an empty map M of given size, the goal of a game content
generation framework is to assign each tile of M an appropriate value and to properly
put game objects in “floor” tiles. One could explore the search space of all the possible
tile assignments: however, as soon as the required map size grows to common values
for commercial
videogames, such an exhaustive search approach is not viable anymore. This is the
main reason for the choice of a space partitioning approach, as it should scale better
on larger maps, in principle.
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Figure 10.3: Declarative Content Generation: work-flow of the proposed approach.

Our approach is conceived on a multiple step basis: each step is implemented using a
different declarative specification, written in ASP; the output of each step is processed
and glued to next stages using the EmbAPS library. This tight, step-by-step, mix of
imperative and declarative programming allows to overcome the limitations of both
paradigms, and to cut the search space of each computation, achieving better results
in terms of performance and a higher scalability, as shown in Section 10.4.
Our content generation strategy is illustrated in Figure 10.3. The behaviour of each
step is summarized next:

I N I T I A L I Z E : Initial step to create the basic structure of the map, i.e., a “base”
Partition;

PA RT I T I O N C R E AT I O N : Partitions are recursively created according to require-
ments, such as minimum size of areas, so that a raw structure is obtained similar
to the one of Figure 10.4. In this step we also place the doors connecting the
areas according to specified desiderata, such as minimum allowed distance
from corner walls, etc.;

S T RU C T U R E I D E N T I F I C AT I O N : A graph model of the raw map is built, where
nodes represent areas and arcs represent connections between areas; note that
placed doors induce connections between areas;

A R E A T Y P E A S S I G N M E N T : Each area is assigned a type according to specified
qualitative requirements, i.e., the desired density of rooms with respect to
corridors, etc.;

A R E A F I L L I N G : According to the assigned area type, each tile of an area is as-
signed a floor type or a wall type. Three different specifications, each given by
means of a logic program, are defined for rooms, corridors, and filled partitions,
respectively; the three logic programs can be modified, thus allowing to tune
rooms and corridor shapes according to design wishes. For instance, one can
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Figure 10.4: A semi-finished map obtained after the Partition Creation step, shown in the
Unity plugin.

build square rooms instead of rounded caves by changing the corresponding
specification;

O B J E C T A S S I G N M E N T : Eventually, game objects are assigned to selected rooms,
and put in selected tiles. Note that this task is not trivial, in principle, given that
some objects, such as keys, might be needed in order to enter some rooms and
therefore they cannot be simply placed randomly.

We outline next some of the ASP logical specifications we used to develop the
strategy described above. The Partition Creation step is repeatedly invoked; at each
step, given a rectangular area, a partition is chosen consisting of two new rectangular
areas, which share a wall having a door. The following rules, expressed in ASP, are
used to achieve this result:

1 = {new_door(X ,Y ,Dtype) : f ree_cells(X ,Y )}= 1← door_type(Dtype).

cell(X ,Y ,Dtype) ← new_door(X ,Y ,_),door_type(Dtype).

f ree_cells(X ,Y ) ← row(X),col(Y ),notunavailable_cells(X ,Y ).

cell(X ,Y2, “wall′′) ← new_door(X ,Y1,_),col(Y2),Y1 6= Y2,

orientation(horizontal),

Y2>Min, Y2<Max,

min_col(Min),max_col(Max).

cell(X2,Y , “wall′′) ← new_door(X1,Y ,_),row(X2),X1 6= X2,

orientation(vertical),

X2 > Min,X2 < Max,

min_row(Min),max_row(Max).
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Figure 10.5: The full Unity interface. A complete map where areas are transformed in rooms
and corridors is shown. On the right, it is highlighted our Unity asset.

These rules specify how the input area at hand must be sectioned by expressing
where it is possible to place a door with a surrounding wall. Intuitively, the first two
rules express the requirement that a new door of type Dtype must be positioned at some
point (X ,Y ) in the range of free_cells; free_cells are the cells that are not considered
as unavailable_cells (there is no wall, door or a general object in position X ,Y ); the
following rules enforce that an horizontal or a vertical (depending on the orientation
variable) line of “walls” should start from both sides of the newly placed door. Note
that the value assigned to the orientation variable change from one execution to
another depending on the parameter same orientation percentage previously set.
When run along with proper input data, the above specification produces a set of
logical assertions in the form cell(x,y, t), each telling that the tile at position (x,y)
must be assigned type t (for t either a wall, a vertical_door, etc.)

10.3 IMPLEMENTATION: AN OVERVIEW

In this section we report about our prototype. It applies the techniques described
above in order to generate dungeons by means of declarative languages. We deployed
our application both in the Unity, as a Unity Asset, and in the GVGAI-framework,
as an extension of the GVGAI-framework.

10.3.1 UNITY ASSET

As described in Section 9.1, Unity is a cross-platform game engine primarily used
to develop videogames or simulations for more than 25 different platforms, such as
mobile, computers and consoles. Its community offer a wide range of asset in the
store; among them, a lot of general level generator (both for 2-D and 3-D games)
exist; nevertheless, none of them give the developers the possibility to generate the
game content describing it in terms of rules and constraints.

It is worth observing that the common approach to content generation is usually
built on a per-game, per-level basis, with little or no opportunity of reusing the same
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Figure 10.6: GVGAI integration.

content generation module across different games. This is reflected by the Unity Asset
Store, in which almost any level generator is very tailored to specific game domains,
specific graphic game elements, etc. Our framework, instead, is capable of producing
general purpose content, which has very few features depending from a specific game
context. As shown in Figure 10.5 our tool provides an easy-to-use graphical interface:
the developer is free to set some specific parameters using the menu integrated into
the Unity Editor. Among the parameters that can be set we have map size, number
and minimum size of rooms, and also location of the ASP encodings; the developer
can hence change the default style of the generated map. On the left side little 2-D
preview of the generated map is presented, while in the middle of the Unity Editor
the 3-D scene view is showed, ready to be integrated in the whole game code.

10.3.2 GVGAI PLUG-IN

GVGAI [102] is a Java framework that can be easily used to play any game described
using the standard Video Game Description Language (VGDL) [97]. It is used for
different purposes, such as an AI benchmark to test intelligent agents and as a
framework for general level generation for any game. The framework is currently
used for hosting the General Video Game Player (GVGP) competition. We deployed
our application on top of the GVGAI-framework, in order to gain the possibility
to reuse both games and controllers created by other participants of the GVGP
competition [83]. Figure 10.6 shows Zelda game built using the GVGAI-framework
and our level generator. When the application starts, the user is free to fill some fields
(as in the Unity asset) and then specify the encoding folder he wants to use for the
map generation. Eventually, the program generates a new example map and runs the
previously selected game on the top of the generated level.
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Figure 10.7: Benchmark test on scalability over Setting 1 (left side) and Setting 2 (right side).
Times are reported in milliseconds.

10.4 PERFORMANCE CONSIDERATIONS AND CONCLUSIONS

We performed a set of experiments with a two-fold aim: on the one hand, to have a
first qualitative idea of the order of magnitude of execution times, in order to prove the
practical viability of the approach; on the other hand, to assess scalability with respect
to maze sizes. We report here about two different cases: in the first one (Setting 1) we
required the generation of mazes featuring few rooms of big size, while in the second
(Setting 2) we gave input specifications for having more rooms of smaller size. We
considered sizes of 10×10, 20×20, 30×30, 40×40 and 50×50; for each size we
performed 3 runs for both settings 1 and 2. This led to a total of 15 executions for each
setting, that produced 30 random mazes. Results are reported in Figure 10.7, where
times have been averaged over the maze size. The green line shows the execution
time taken by the imperative code to connect the different declarative specification
written in ASP. The blue one shows the execution time of the declarative specification
while the red one shows the total execution time given by the sum of imperative
time and declarative time. First of all, we notice that executions take a few seconds,
even for significantly large mazes. Furthermore, performance in the two settings are
almost the same, even though number and shape of generated rooms are significantly
different; such difference and quality of the result can be appreciated in Figure 10.8.
Results confirm the effectiveness of the approach, and its capability of scaling when
dealing with generation tasks of significant size.

Compared to imperative generators, the performance of our ASP-based generator
can be considered good; indeed, it is sufficient enough for runtime content generation
during game, and it is especially well suited for generation and manual refinement at
design time. It is worth noting that, in this latter case, ASP can be of great help in
the design phase, by shortening the distance between designers and programmers,
especially when fast prototyping is needed.

Both versions of our prototypes, together with logic program specifications and
source code are fully available online at
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https://github.com/DeMaCS-UNICAL/DCS-Maze_Generator-GVGAI and
https://github.com/DeMaCS-UNICAL/DCS-Maze_Generator-Unity.

Figure 10.8: Two sample maps obtained with Setting 1 (left-hand side) and with Setting 2
(right-hand side).

https://github.com/DeMaCS-UNICAL/DCS-Maze_Generator-GVGAI
https://github.com/DeMaCS-UNICAL/DCS-Maze_Generator-Unity
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In this thesis, we focused on ASP-based solutions for highly dynamic environments.
In particular, we addressed the realization of a novel incremental ASP grounder, able
to operate over fast-paced event flows, i.e., in contexts where a high reactivity of
response is required. The initial questions that inspired is are: Which of the problems
of the Stream Reasoning field can be represented using the current systems? Is it
possible to use a pure ASP semantic to represent them? In order to answer these
questions, we investigated the current state of the art. In particular, the currently
available systems were: (i) clingo which introduces ample flexibility but requires a
non-negligible knowledge of solver-specific internal algorithms due to its extended
ASP semantic; (ii) Ticker which extends the LARS framework trying to restore
tractability but thus featuring a language which is still not quite expressive and
(iii) Laser, another extension of the LARS framework whose implementation targets
high performance, but in turn limits the LARS language to positive and stratified
programs.

In order to overcome these limits, we introduced a new advanced incremental tech-
nique to promote efficient and easy to use declarative reasoning under the answer
set semantic in the Stream Reasoning context, called overgrounding. Overgrounding
is attractive since it fully preserves declarativity as the control of the incremental
process is purposely hidden from the final user who does not need detailed knowl-
edge of the system. Another advantage of our overgrounded programs is that, after
some update iterations, they converge to a propositional theory general enough to
be reused together with possible future inputs, with no further update required and
virtually eliminating grounding activities in later iterations. In other words, such an
overgrounded program becomes more and more general while moving from a shot to
the next, increasingly adding potentially useful rules, enabling an enhancement of the
time performance.

Although this technique is promising in terms of time performance, the efficiency
of solvers can decrease because of larger input programs. To this end, we optimized
our incremental grounding strategy to make it able to overcome the limitations of
the classical overgrounding approach. This technique, called overgrounding with
tailoring, limits the number of generated rules and reduces their size by applying
known simplification methods for ground logic programs.

However, extending the overgrounding technique in such direction has not been a
trivial matter. Namely, simplification criteria are, generally, applied based on specific
inputs. Consequently, there is the possibility that the simplifications previously applied
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could be subsequently invalidated in later shots, e.g., , consider the case in which one
simplifies a ground program by properly removing a rule containing an atom which
are known to be false in all answer sets at a fixed shot. In the case in which the atom
that caused the deletion of the previous rule will become true in a future shot, this
simplification must be invalidated in order to make the program compatible with the
new set of input facts. In order to overcome these nonobvious technical obstacles, our
tailored overgrounding strategy, not only makes a ground program P “reusable” with
a family F of different inputs, but also shows how to modify P in a way such that F

can be enlarged with small computational cost. More in detail, this techniques lets
the generation of OPTs by alternating desimplification steps, taking care of restoring
previously deleted and reduced rules and incremental grounding steps, which add and
simplifies new generated rules. The maintained program becomes more and more
general (i.e., the family of “compatible” input facts becomes increasingly larger)
while moving from a shot to the next, and the update activity becomes progressively
lighter.

Finally, our system was tested in order to assess the practical impact of our approach.
In particular, we decided to apply our strategy in videogames since this field let the
developers to “test” their techniques in a controlled, yet reproducible, environment.
The results of our experiments showed that it pays off in terms of performance, by
reducing grounding times and keeping solving times within more than reasonable
bounds.

Despite the many advantages offered by our system, there is still a broad room for
improvement. In particular, we discuss some of the possible extensions of the system
in order to improve its overall performance.

(i) Introducing some constraints and optimization techniques to reduce the
memory consumption during the grounding step. This can be fulfilled
implementing some different approaches depending on the user’s needs. A
very simple approach could consist in setting an upper bound to memory
consumption. When an overgrounded program size exceeds the memory limit
one can use a custom memory trimming policy which aims to remove the less
triggered rules or simply the oldest ones. Alternatively, a more complex strategy
which requires the implementation of a particular heuristic, could include the
possibility of marking some rules as core rules and the others as non-core rules.
The core rules are kept in memory, whereas the others can be removed at any
time and, if necessary, regenerated at the next iteration. A possible heuristic for
labeling a rules as core or non-core could be based on the following parameters:
(a) rule instantiation time and (b) its recent instantiation frequency.

Consider the case in which we have two rules r1 and r2 requiring, respectively,
tr1 = 1 second and tr2 = 0.02 seconds to be instantiated from scratch. Rule r1

recently fired on average every fr1 = 5 shots, whereas rule r2 fired recently
almost at every shot ( fr2 = 1). r1 could be given better priority, and thus be
tagged as a core rule, in that it features a ratio tr1 / fr1 higher than tr2 / fr2 .
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Moreover, a similar strategy could also offer the possibility of forgetting the
extension of a selected predicate instead of rules, i.e., a heuristics could also
choose to completely forgot all the extension relative to a specific predicate p.
By applying this strategy, also all the rules which contain p in the head or in
the body must be deleted. This operation affects (positively), also on the size
of the ground program in terms of simplifications. Indeed, when a previously
forgot predicate p f comes back, all the new rules generated can be simplified
also on the base of p f .

(ii) Implementing a memory caching strategy. This technique could use also
mass memory, allowing to efficiently cache and swap to disk those data com-
puted by our grounding algorithm. It could be particularly useful in situations
when the quantity of memory used by stored rules exceed a certain limit. An ex-
ternal agent working in background, could intelligently determine, on the basis
of particular heuristics similar to the ones described above, which rules must
be saved on the disk and which ones need to be kept on the main memory. This
strategy could reduce not only the main memory footprint and the grounding
time, but also the loading time from disk between one shot to another.

(iii) Developing an incremental solver considering also the model generation
phase. The solving times over overgrounded programs are obviously greater
than solving times over simplified input instances. This time could be reduced
if a solver could be fed at each shot with only the newly computed ground rules.
In this case it is not necessary to read at each iteration the entire ground program
but only the new incremental rules. This optimization can be improved even
further: in order to allow reactive reasoning tasks lasting in the order of tenths of
milliseconds, and to also make repeated non-reactive tasks considerably more
performant, our overgrounding techniques could be broadened by extending
the overgrounding approach to the solving step. A solver can update its internal
state incrementally depending on modified inputs. This result can be achieved
exploiting existing benefits of our incremental evaluation strategy, i.e., the
absence of the manual development effort necessary for controlling differential
computations.

(iv) Introducing the possibility to stop and restart the computation of partial
answer set. This extension could be reached formalizing the notion of interme-
diate solver state: based on this formalization, we aim to devise and implement
an appropriate stop and restart scheme for reasoning tasks. It is important to
point out that, the strategy we are proposing here differs from the canonical
solving process on a single fixed input. Namely, in our approach, we aim for
adding the possibility to stop and restart the computation of the answer sets
when the system understands that the current knowledge base has been changed
by adding or removing assertions, so the set of candidate solutions is no more
the same and it is needed to restart the computation over the new set of facts.
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It is important to note that the properties of overgrounded programs could
facilitate the use of stops and restarts techniques.

The I 2-DLV binaries can be downloaded from the official repository, where a detailed
documentation about the system usage and the reproducibility of the experiments
presented in this thesis work is also available [34].
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