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Abstract

Computer vision systems that measure froth flow velocities and stability designed for flota-
tion froth image analysis are well established in industry, as they are used to control mate-
rial recovery. However flotation systems that has limited data has not been explored in the
same fashion bearing the fact that big data tools like deep convolutional neural networks
require huge amounts of data. This lead to the motivation of the research reported in the
first part of this thesis, which is to generate synthetic images from limited data in order to
create a froth image dataset. The image synthesis is possible through the use of generative
adversarial network. The performance of human experts in this domain in identifying the
original and synthesized froth images were then compared with the performance of the
models. The models exhibited better accuracy levels by average on the tests that were
performed. The trained classifier was also compared with some of the established neural
network models in the literature like the AlexNet, VGG16 ang ResNet34. Transfer learn-
ing was used as a method for this purpose. It also showed that these pretrained networks
that are readily available have better accuracy by average comapared to trained experts.

The second part of this thesis reports on a language designed for data validation in
the context of knowledge representation and reasoning. Specifically, the target language is
Answer Set Programming (ASP), a logic-based programming language widely adopted for
combinatorial search and optimization, which however lacks constructs for data validation.
The language presented in this thesis fulfills this gap by introducing specific constructs for
common validation criteria, and also supports the integration of consolidated validation
libraries written in Python. Moreover, the language is designed so to inject data valida-
tion in ordinary ASP programs, so to promote fail-fast techniques at coding time without
imposing any lag on the deployed system if data are pretended to be valid.
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Chapter 1

Introduction

The advent of the steam engine in the 18th century led to the first industrial revolution.
Since then, it spurred a highly urbanized society that is geared towards automation through
the use of computer technology to what is now the Fourth Industrial Revolution or Indus-
try 4.0. Computers indeed have forever changed the landscape in the banking, medical,
military, communications, engineering and business processes among the many.

According to the author of the Industry 4.0 and the chairman of the World Economic
Forum professor Klaus Schwab in a 2016 article, Schwab wrote that “Unprecedented and
simultaneous advances in Artificial Intelligence (AI), robotics, the internet of things, au-
tonomous vehicles, 3D printing, nanotechnology, biotechnology, materials science, en-
ergy storage, quantum computing and others are redefining industries, blurring traditional
boundaries, and creating new opportunities. We have dubbed this the Fourth Industrial
Revolution, and it is fundamentally changing the way we live, work and relate to one
another.”

Indeed, the promise of computers involved among the industries mentioned is potent.
Particularly the field of Mining and Mineral Processing automation has highly benefited
from the advancement of Machine Learning in recent years [77, 114]. Because new com-
putational technologies are making computers smarter, they can process vast amounts of
data faster than ever before. Unlike the traditional method, deep learning boasts its ability
to make meaning from data by discovering features and exploiting patterns that captures
highly complex behavior. Sensor based systems and production lines relying on computer
vision has paved the way for automation to propel, as huge amounts of data is an essential
requirement to any deep learning project.

While deep learning algorithms performs ideally well with huge amounts of data it can
also become its drawback. However, with the existence of transfer learning techniques this
problem can be partly alleviated. In their study [46, 20], pretrained networks performed
exceptionally well on data sets from new domains. In another study [44], they claimed
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that large amounts of data may not be required to be optimized. Convolutional Neural
Networks or CNN’s have significantly pushed the boundaries about image recognition
in a wide array of technical applications such as remote sensing, traffic and congestion,
cancer diagnosis, and even face recognition but less has been explored in the geosciences
particularly in the subset of mining and mineral processing.

Convolutional neural networks (CNNs), recurrent neural networks (RNNs) and deep
belief networks (DBNs) are used most commonly in the resource industries. CNNs are
primarily used in the computer-vision related tasks, such as image classification, object
detection, semantic segmentation and instance segmentation. RNNs, including long short
term memory networks (LSTMa) are sequence modelling.

Smart devices, appliances and gadgets are quite the popular ubiquitous in this digital
age. However, it is not quite obvious that the materials which they are made comes from
underneath the earth. The minerals hide inside deposits in the form of rocks which needs to
be liberated through a process. This process typically comprises drilling, blasting, hauling,
processing and transport of the liberated material of interest or metals. This research will
focus on the "processing phase", particularly on froth flotation. Basically froth flotation is
a method that is widely used to separate mineral and gangue species in aerated pulp. This
liberation process produces froth which is captured by cameras on the production line so
that laboratory technicians could analyze them using digital tools available.

The liberated materials retrieved from this process is then aggregated until it is trans-
formed into wafer silicon, chips and other semiconductor materials like transistors, capac-
itors and resistors which comprise your smartphones, tablets, TV’s and gadgets.

Statement of the Problem

Froth image datasets are not readily available for researchers in the field of Mineral Ex-
traction. To get a single image from the mineral mining process, one has to go through
drilling from above the ground, blasting the earth in regions of interest, hauling and chem-
ical processing. To add more, mineral extraction requires skilled laboratory technicians
in the field. These series of processes is laborious,time-consuming, costly, requires heavy
equipment and trained manual labor to complete. Even if collection of froth image data
could be readily accomplished on industrial plants, labelling of the data required for train-
ing may be more challenging [44]. To add more, even if datasets are available for a specific
mixture these are protected by nondisclosure clause specific to every mining company that
are difficult to navigate by the researchers in the field. This legal curb has restrained
industry-academe collaboration and as a result hampered the establishment of a central-
ized and publicly available froth image dataset. To no avail of the froth images,this led to
the motivation of this research to generate synthetic froth images from limited data. To be
more specific the researchers sought to answer these questions.

1. Is it possible to generate synthetic arsenic ore mixture froth images from limited
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training data?

2. From the eye of a trained expert, will the generated images be correct enough to be
considered a representative of a certain class? and will an expert be able to identify
which ones are original and which ones are fake?

3. Taking input from the generated synthetic froth image dataset, is it possible to create
a classifier with an acceptable accuracy score?

4. How will a trained expert perform when compared to a machine in terms of accuracy
in identifying the correct label of a froth image?

Objectives of the Study

In order to answer the questions mentioned above the researchers established the following
objectives.

1. Design and implementation of a synthetic Image generator for arsenic ore froth im-
ages using Generative Adversarial Networks.

2. Design and implementation of an arsenic ore mixture froth image classifier using
deep convolutional neural network.

3. Measure the trained expert accuracy score in identifying the original and fake im-
ages.

4. Measure the accuracy score of the designed arsenic ore mixture froth image classi-
fier.

5. Measure trained expert accuracy score in image classification.

6. Compare the accuracy scores of the machine versus the trained expert.

Significance of the Study

As mentioned in the previous subsection, the highly manual process of mineral extraction
is laborious, time-consuming and costly. Not to mention the involvement of trained experts
in the process. To generate a single image is quite an involved process resource wise. As
an alterative, generating fake images that are substantially correct and are distinctly identi-
fiable into the correct labels we can save time, money and energy as a result. Moreover, we
can then address the huge bump of having no training data to build deep learning model
tools. Although froth image synthesis is still at its infancy in the body of knowledge in
mineral extraction, the dataset that will be generated from this research can be utilized by
other researchers for future work. As of this writing there is no research in the literature
in the field of mineral extraction particularly in froth images that addresses the problem of
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having no training data and the problem of creating an accurate classifier from a generated
dataset.

Scope and Limitation

This research is limited only to arsenic ore mixture froth images that have been categorized
into four classes. The Deep Neural network models developed is not designed and has
not been tested to work with other froth mixtures of different chemistry. Also, the forth
images examined in this research was produced using flotation method and likewise the
deep neural network models developed is not designed and has not been tested to work
with other methods. Although it was emphasized earlier that image generation can be used
as an alternative for the lack of training data it does not mean this simulation completely
replaces the mineral extraction process. Hence, it should be seen as a viable alternative to
avoid the resource issues mentioned above.

Organization

The remainder of this thesis is structured as follows. Firstly some introductory concepts is
described in Chapter 1. In chapter 2, we will review some related work about this research
beginning with mineral processing and then move on to image synthesis and finally some
work regarding classifiers and established neural network models is reviewed. Chapter 3
will follow to explore the methodology that was used which is then strengthened by the
results and discussion on chapter 4. Chapter 5 is where the conclusions are discussed and
it is followed by the bibliography.

1.1 Convolutional Neural Network

Images are invariant to several transformations such as scaling, translation and rotation.
These challenges has plagued computer vision for years until a revolutionary way of de-
signing Neural Network Model has been discovered. First introduced by LeCun et. al in
his 1980 paper [79] , Convolutional Neural Networks (CNN’s) belong to a class of deep,
feed-forward artificial neural networks that have been applied to image analysis in many
different disciplines.

The architecture of CNN as depicted in figure 1.1 is akin to the connectivity pattern
of biological neurons and was inspired by the organization of the visual cortex. The ar-
chitecture includes several building blocks, such as convolution layers, pooling layers and
fully connected layers. In figure 1.1 the image of the car from the left will pass through
each of these layers. Each layer extracts a specific feature from each level until the correct
class of the image is achieved in the fully connected layer furthest to the right. Each layer
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produces a feature map and down-samples the image at a minimum for faster convergence.

Figure 1.1: Typical Architecture of a Convolutional Neural Network.
(Courtesy of towardatascience.com, accessed 26 January,

2021,https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53.)

The convolutional layer requires a few components, which are the vectorized input
data, a filter and a feature map. The kernel or filter moves across the receptive fields of the
image, checking if a feature is present. This process which is also known as convolution
is better visualized in figure 1.2.

Figure 1.2: Convolution of a 5x5 image with a 3x3 filter, resulting in a smaller set of 3x3
feature. Image taken from [123]

Dimensionality Reduction is introduced in the pooling layer, reducing the number of
parameters in the input. This is achieved by selecting the pixel with the maximum value to

7



to send to the output array across the input. This layer helps reduce complexity, improve
efficiency and in some ways limit the risk of overfitting. This process is illustrated in figure
1.3.

Figure 1.3: Max-pooling of a 4x4 input, reduced to a 2x2 set of max-pooled features

To introduce non-linearity to the previous linear activation layers, a nonlinear activa-
tion function such as rectified linear unit is employed. ReLU simply computes the func-
tion: f (x) = max(0,x). This is done before it passes through another set of pooling layers
until the matrix finally flattened to become a fully connected layer with the number of
output nodes corresponding to the number of classes. To give you a better perspective in
graphical form please see figure 1.4.

Training of CNN’s is accomplished by use of backpropagation and stochastic gradient
descent [109]. Like other deep neural networks, over the last few years CNN’s have shown
an amazing capacity to capture complex features. These networks have emerged as state-
of-the-art approcahes to image recognition, often outperforming traditional approaches by
a huge margin [115, 71].

1.2 Generative Adversarial Network

A generative model G paremeterized by θ takes as input a random noise z and output
a sample G(z;θ), so the output can be regarded as a sample drawn from a distribution:
G(z;θ)∼ pg. Meanwhile we have a lot of training data x drawn from pdata, and the train-
ing objective for the generative model G is to approximate pdata using pg.

Generative Adversarial Networks (GAN) [53] consists of two separate neural net-
works: a generator G that takes a random noise vector z, and outputs synthetic data G(z);
a discriminator D that takes an input x or G(z) and output a probability D(x) or D(G(z))
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Figure 1.4: ReLU

to indicate whether it is synthetic or from the true data distribution, as shown in Figure
1.5. Both if the generator and the discriminator can be arbitrary neural networks. The first
GAN [53] uses fully connected layer as its building block. Later, DCGAN [103] proposes
to use fully convolutional neural networks which achieves better performance, and since
then convolution and transposed convolution layers have become the core components in
many GAN models. For more details on (transposed) convolution arithmetic, please refer
to this report [40].

The original way to train the generator and discriminator is to form a two-player min-
max game where the generator G tries to generate realistic data to fool the discriminator
while discriminator D tries to distinguish between real and synthetic data [53]. The value
function to be optimized is shown in Equation 1.1 where pdata(x) denotes the true data
distribution and pz(z) denote the noise distribution.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (1.1)

However, when the discriminator is trained much better than the generator,D can reject
the samples from G with confidence close to 1, and thus the loss log(1−D(G(z))) saturates
and G can not learn anything from zero gradient. To prevent this, instead of training G to
minimize log(1−D(G(z))), we can train it to maximize logD(G(z)) [53]. Although the
new loss function for G gives a different scale of gradient than the original one, it still
provides the same direction of gradient and does not saturate.
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Figure 1.5: General structure of a GAN, where the generator G takes a noise vector z as
input and output synthetic sample G(z), and the discriminator takes both synthetic input
G(z) and true sample x as inputs and predict whether they are real or fake.

1.2.1 Conditional GAN

In the original GAN, we have no control of what to be generated, since the output is only
dependent on random noise. However, we can add a conditional input c to the random
noise z so that the generated image is defined by G(c;z) [88]. Typically, the conditional
input vector c is concatenated with the noise vector z, and the resulting vector is put into
the generator as it is in the original GAN. Besides, we can perform other data augmentation
on c and z, as in [127]. The meaning of conditional input c is arbitrary, for example, it can
be the class of image, attributes of object [88] or an embedding of text descriptions of the
image we want to generate [105] [106].

1.2.2 GAN with Auxillary Classifier

In order to feed more side-information and to allow for semi-supervised learning, one can
add an additional task-specific auxiliary classifier to the discriminator, so that the model is
optimized on the original tasks as well as the additional task [96] [111]. The architecture
of such method is illustrated in Figure 1.6, where C is the auxiliary classifier. Adding
auxiliary classifiers allows us to use pre-trained models (e.g. image classifiers trained
on ImageNet), and experiments in AC-GAN [96] demonstrate that such method can help
generating sharper images as well as alleviate the mode collapse problem. Using auxiliary
classifiers can also help in applications such as text-to-image synthesis [35] and image-to-
image translation [126].
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Figure 1.6: Architecture of GAN with auxiliary classifier, where y is the conditional input
label and C is the classifier that takes the synthetic image G(y;z) as input and predict its
label ŷ

1.2.3 GAN with Encoder

Although GAN can transform a noise vector z into a synthetic data sample G(z), it does
not allow inverse transformation. If we treat the noise distribution as a latent3 feature
space for data samples, GAN lacks the ability to map data sample x into latent feature z.
In order to allow such mapping, two concurrent works BiGAN [38] and ALI [39] propose
to add an encoder E in the original GAN framework, as shown in Figure 1.7 . Let Ωx be
the data space and Ωz be the latent feature space, the encoder E takes x ∈ Ωx as input and
produce a feature vector E(x)∈ Ωz as output. The discriminator D is modified to take both
a data sample and a feature vector as input to calculate P(Y |x,z), where Y = 1 indicates
the sample is real and Y = 0 means the data is generated by G.

Figure 1.7: Architecture of BiGAN/ALI
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The objective is thus defined as:

min
G,E

max
D

V (G,E,D) = Ex∼pdata(x)logD(x,E(x))+Ez∼pz(z)[log(1−D(G(z),z))] (1.2)

VAE-GAN [78] proposes to combine Variational AutoEncoder (VAE) [73] with GAN [53]
to exploit both of their benefits, as GAN can generate sharp images but often miss some
modes while images produced by VAE [73] are blurry but have large variety. The archi-
tecture of VAEGAN is shown in Figure 1.8. The VAE part regularize the encoder E by
imposing a prior of normal distribution (e.g. z ∼ N(0;1)), and the VAE loss term is defined
as:

LVAE =−Ez∼q(z|x)log[p(x|z)]+DKL(q(z|x)||p(x)), (1.3)

where z ∼ E(x) = q(z|x),x ∼ G(z) = p(x|z) and DKL is the Kullback-Leibler diver-
gence.

Also, VAE-GAN [78] proposes to represent the reconstruction loss of VAE in terms of
the discriminator D. Let Dl(x) denotes the representation of the l-th layer of the discrimi-
nator, and a Gaussian observation model can be defined as:

p(D(x|z) = N(D(x)|D(x̃), I), (1.4)

where x̃ ∼ G(z) is a sample from the generator, and I is the identity matrix. So the new
VAE loss is:

LVAE =−Ez∼q(z|x)log[p(D(x)|z)]+DKL(q(z|x)||p(x)), (1.5)

which is then combined with the GAN loss defined in Equation 1.2. Experiments
demonstrate that VAE-GAN can generate better images than VAE or GAN alone.

However, when the discriminator is trained much better than the generator, D can reject
the samples from G with confidence close to 1, and thus the loss log(1−D(G(z))) saturates
and G can not learn anything from zero gradient. To prevent this, instead of training G to
minimize log(1−D(G(z))), we can train it to maximize log D(G(z)) [53]. Although the
new loss function for G gives a different scale of gradient than the original one, it still
provides the same direction of gradient and does not saturate.

1.2.4 Handling Mode Collapse

Although GAN is very effective in image synthesis, its training process is very unstable
and requires a lot of tricks to get a good result, as pointed out in [53] [103]. Despite its
instability in training, GAN also suffers from the mode collapse problem, as discussed in
[53] [103] [36] .
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Figure 1.8: Architecture of VAE-GAN

In the original GAN formulation [53], the discriminator does not need to consider the
variety of synthetic samples, but only focuses on telling whether each sample is realistic or
not, which makes it possible for the generator to spend efforts in generating a few samples
that are good enough to fool the discriminator. For example, although the MNIST [80]
dataset contains images of digits from 0 to 9, in an extreme case, a generator only needs to
learn to generate one of the ten digits perfectly to completely fool the discriminator, and
then the generator stops trying to generate the other nine digits.

The absence of the other nine digits is an example of inter-class mode collapse. An
example of intra-class mode collapse is, there are many writing styles for each of the digits,
but the generator only learns to generate one perfect sample for each digit to successfully
fool the discriminator. Many methods have been proposed to address the model collapse
problem.

One technique is called minibatch features [6], whose idea is to make the discriminator
compare an example to a minibatch of true samples as well as a minibatch of generated
samples. In this way, the discriminator can learn to tell if a generated sample is too similar
to some other generated samples by measuring samples’ distances in latent space. Al-
though this method works well, as discussed in [52], the performance largely depends on
what features are used in distance calculation. MRGAN [29] proposes to add an encoder
which transforms a sample in data space back to latent space, as in BiGAN [38].

The combination of encoder and generator acts as an auto-encoder, whose reconstruc-
tion loss is added to the adversarial loss to act as a mode regularizer. Meanwhile, the
discriminator is also trained to discriminate reconstructed samples, which acts as another
mode regularizer. WGAN [11] proposes to use Wasserstein distance to measure the simi-
larity between true data distribution and the learned distribution, instead of using Jensen-
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Shannon divergence as in the original GAN [53].Although it theoretically avoids mode
collapse, it takes a longer time for the model to converge than previous GANs. To alleviate
this problem, WGAN-GP [56] proposes to use gradient penalty, instead of weight clipping
in WGAN. WGAN-GP generally produces good images and greatly avoid mode collapse,
and it is easy to apply this training framework to other GAN models.
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Chapter 2

Related Work

In this chapter we first introduce the involvement of deep learning in the mineral processing
industry. We then discuss the how image is synthesized using GAN’s. We cover the most
common methods in the literature. We then wrap the chapter with learned loss functions
and a few established neural network models that have paved the way to further research
on image classification

2.1 Mineral Processing

The application of deep learning in the areas of ore and rock characterization, milling
circuits and froth flotation have started to receive increasing attention in the recent studies
with the advancement of deep learning. The subject under study is the froth image of
arsenic mixture. However, before a froth image is produced it undergoes through a series
of steps.

Firstly, in the mineral processing phase the ores need to be sorted and characterized
for classification. It involves mineral content recognition and ore property estimation. Al-
though it is not going to be discussed in this research. It is important to note that the
distribution of particle sizes has a major impact on the remaining downstream processes.
Image segmentation using recent successful techniques can therefore be explored in this
area. Conventional methods such as watershed algorithms are usually contrast sensitive
which can perform poor in low contrast settings. When segmenting particles with pres-
ence of minerals with similar colours in images it therefore generally tends to fail [69].
Traditionally, watershed algorithms have been used in the mining industry to classify im-
ages, in fact a more advance version of it has been reported which is called deep watershed
algorithm [32, 14] to label frames.

It has been known that traditional approaches are generally time consuming and may
even require considerable effort in manual adjustment of parameters for contrast adjust-
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ment and noise reduction [61]. To address the difficulties met of these conventional
medods, SegNet [12] a convolutional autoencoder network was used to segment digital
rock images. A data augmentation technique, namely hybrid pattern and pixel-based sim-
ulation (HYPPS), was employed to generate sufficient images for training the network
[68]. In this approach, the CNN performs pixel-to-pixel labelling (segmentation), i.e. ev-
ery pixel in the original image is classified as either ‘particle’ or ‘background’.

However, the potential application of CNNs extends beyond binary classification tasks
[82], such as ore sorting [69], as some network architectures, such as SegNet [12] , UNet
[108] and LinkNet [28], are designed for semantic segmentation.

With this novel approach, the networks can segment images with multi-categorical
objects. For example, in the context of ore and rock characterization, an image may consist
of particles of different metal grades (e.g. waste and ore), as well as different mineral
grains. An effective way to identify and count these particles can be beneficial to many
aspects in mining operations [59] and civil industry [62].

Characterisation of the complex flow of granular solids from hoppers, bins and silos
is still an open research issue and [3] have recently made use of a convolutional neural
network to extract features from mass flow measurements to enable better identification of
avalanching phenomena in the flow.

After ore characterization grinding and comminution follows, this process produces
the desirable size of ore particles.Since deep learning is superior in capturing the highly
nonlinear relationship from complex data, several studies have appeared in the literature,
e.g., missing data imputation using variational autoencoders (VAEs) [87], and estimation
of mill load levels using soft sensor data modelling with CNN [121]. [13] have trained a
five-hidden layer perceptron model to predict ore production and crusher utilization.

The operating states of grinding circuits are monitored from multivariate time-series
signals [117] as they are or transformed to 2D images using distance matrices method [17],
followed by feature learning using CNNs.

Deep learning has focused mostly on the development of more reliable sensor systems
for online grade and reagent estimation in flotation, specifically based on froth image anal-
ysis. Traditionally, froth image analysis has focused on three related problems, namely the
(i) recognition of changes in operation conditions from the appearance of the froth, often
in combination with other variables, the (ii) estimation of bubble size distributions, as well
as (iii) online estimators of grade or other chemical species being floated. Any of a number
of methods can be used, often highly effectively to deal with (i), but (ii) and (iii) are more
challenging.

As far as (i) is concerned [81] have made use of a pretrained CNN to extract features
from an antimony froth that could then be used as inputs to a classifier to identify aberrant
froth conditions, but the specific advantages of this approach is not clear.

Little has been done as far as (ii) is concerned, although Stone Three in South Africa
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has patented an approach to estimate bubble sizes from froth images, based on the use of
CNNs. This is an area where there is considerable scope for improvement over traditional
methods and more work in this area is currently underway based on architectures and
variants thereof similar to U-net [108].

Regarding (iii), in comparatively analyses with other multivariate image methods, [60,
46, 45, 44] and [129] have shown remarkable advantages in accuracy to be gained from
using CNNs in froth image analysis. This is a major step forward towards the online
implementation of image sensors in advanced online control systems in flotation.

While a variety of deep learning architectures are currently being used in the mining
and metallurgical industries, convolutional neural networks have seen most use by a large
margin to date. This is related to the current focus on sensor data analytics, particularly
image-based sensors used in the characterisation of particulate feeds, drone inspection
systems, and also the processing of hyperspectral images and multivariate time series data

The availability of large amounts of data is key to the development and deployment
of deep learning systems in the industry. Although rapid development in sensor systems
have led to the collection and storage of such data, these raw data are not necessarily
useful for model development. For example, in flotation systems, while easy to collect
prodigious numbers of images, these images also need to be labelled, which could be a
major bottleneck in the development of the sensors.

While digitilisation of the mining industry is advancing in many ways, the industry
tends to adopt technology, rather than leading in its development. Insight into future de-
velopment can therefore be gained from recent developments in manufacturing. In this
area, some novel machine learning methodologies closely tied to deep learning are emerg-
ing. This includes deep reinforcement learning and adversarial learning.

Deep reinforcement learning facilitates complex decision making with obvious appli-
cations in advanced control, but also beyond this to potentially higher levels of intelligence
that could benefit haulage vehicle fleet management or plantwide control in mineral pro-
cessing [113] . A prerequisite for this is the collection of sufficient data in real-world
settings beyond simulated environments, which remains a significant challenge [2].

Unlike deep reinforcement learning, which can be seen as an extension of an existing
approach, adversarial learning [31] improves learning efficiency through construction of a
generator and a discriminator. By so doing, it is not necessary to specify a reward or loss
function of the system. This enables learning tasks that were not previously possible, and
has seen applications in image synthesis, monitoring and pattern recognition that would
directly impact mining and automation.
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2.2 Image Synthesis with GAN’s

In this section, we summarize the three main approaches used in generating images, i.e.
direct methods, iterative methods and hierarchical methods respectively, which form the
basis of all applications mentioned in this paper.

2.2.1 Direct Methods

All methods under this category follows the philosophy of using one generator and one
discriminator in their models, and the structures of the generator and the discriminator
are straight-forward without branches. Many of the earliest GAN models fall into this
category, like GAN [53], DCGAN [103], ImprovedGAN [111], InfoGAN [30], f-GAN
[95] and GANINT-CLS [105]. Among them, DCGAN is one of the most classic ones
whose structure is used by many later models such as [30] [105] [100] [130].

The general building blocks used in DCGAN are shown in Figure 2.1, where the gen-
erator uses transposed convolution, batch-normalization and ReLU activation, while the
discriminator uses convolution, batchnormalization and Leaky ReLU activation.This kind
of method is relatively more straight-forward to design and implement when compared
with hierarchical and iterative methods, and it usually achieves good results.

Figure 2.1: Building blocks of DCGAN, where the generator uses transposed convolution,
batch-normalization and ReLU activation, while the discriminator uses convolution, batch-
normalization and LeakyReLU activation

2.2.2 Hierarchical Methods

Contrary to the Direct Method, algorithms under the Hierarchical Method use two gen-
erators and two discriminators in their models, where different generators have different
purposes. The idea behind those methods is to separate an image into two parts, like “styles
and structure” and “foreground and background”. The relation between the two genera-
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tors may be either parallel or sequential. SS-GAN [120] proposes to use two GANs, a
StructureGAN for generating a surface normal map from random noise ẑ , and another
Style-GAN that takes both the generated surface normal map as well as a noise ẑ as in-
put and outputs an image. The Structure-GAN uses the same building blocks as DCGAN
[103], while the Style-GAN is slightly different. For Style-Generator, the generated sur-
face normal map and the noise vector go through several convolutional and transposed
convolutional layers respectively, and then the results are concatenated into a single tensor
which will go through the remaining layers in Style-Generator.

As for the Style-Discriminator, each surface normal map and its corresponding image
are concatenated at the channel dimension to form a single input to the discriminator.
Besides, SS-GAN assumes that, a good synthetic image should also be used to reconstruct
a good surface normal map. Under this assumption, SS-GAN designs a fully-connected
network that transforms an image back to its surface normal map, and uses a pixel-wise
loss that enforces the reconstructed surface normal to approximate the true one.

A main limitation of SS-GAN is that it requires to use Kinect to obtain groundtruth
for surface normal maps. As a special example, LR-GAN [124] chooses to generate the
foreground and background content using different generator, but only one discriminator
is used to judge the images while the recurrent image generation process is related to the
iterative method. Nonetheless, experiments of LR-GAN demonstrate that it is possible to
separate the generation of foreground and background content and produce sharper images

2.2.3 Iterative Methods

This method differentiates itself from Hierarchical Methods in two ways. First, instead of
using two different generators that perform different roles, the models in this category use
multiple generators that have similar or even the same structures, and they generate images
from coarse to fine, with each generator refining the details of the results from the previous
generator.

Second, when using the same structures in the generators, Iterative Methods can use
weight-sharing among the generators [124], while Hierarchical Methods usually can not.
LAPGAN [36] is the first GAN that uses an iterative method to generate images from
coarse to fine using Laplacian pyramid [24].

The multiple generators in LAPGAN perform the same task: takes an image from pre-
vious generator and a noise vector as input, and then outputs the details (a residual image)
that can make the image sharper when added to the input image. The only difference in
the structures of those generators is the size of input/output dimension, while an excep-
tion is that the generator at the lowest level only takes a noise vector as input and outputs
an image. LAPGAN outperforms the original GAN [53] and shows that iterative method
can generate sharper images than direct method. StackGAN [127], as an iterative method,
has only two layers of generators. First generator takes an input (z;c) and then outputs
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a blurry image that can show a rough shape and blurry details of the objects, while the
second generator takes (z;c) and the image generated by the previous generator and then
output a larger image with more photo-realistic details.

Another example of Iterative Methods is SGAN [21] which stacks generators that takes
lower level feature as input and outputs higher level features, while the bottom generator
takes a noise vector as input and the top generator outputs an image. The necessity of using
separate generators for different levels of features is that SGAN associates an encoder, a
discriminator and a Q-network [21] (which is used to predict the posterior probability
P(zi|hi) for entropy maximization, where hi is the output feature of the i-th layer) for each
generator, so as to constrain and improve the quality of those features. An example of
using weight-sharing is the GRAN [63] model, which is an extension to the DRAW [54]
model which is based on variational autoencoder [73]. As in DRAW, GRAN generates
an image in a recurrent way that feeds the output of the previous step into the model and
the output of the current step will be fed back as the input in the next step. All steps
use the same generator, so the weights are shared among them, just like classic Recurrent
NeuralNetwork (RNN).

2.2.4 Other Methods

PPGN [92] produces impressive images in several tasks, such as class-conditioned image
synthesis [88], text-to image synthesis [105] and image inpainting [125]. Different from
other methods mentioned earlier, PPGN uses activation maximization [93] to generate im-
ages, and it is based on sampling with a prior learned with denoising autoencoder (DAE)
[119]. To generate an image conditioned on a certain class label y, instead of using a
feed-forward way (e.g. recurrent methods can be seen as feed-forward if unfolded through
time), PPGN runs an optimization process that finds an input z to the generator that makes
the output image highly activate a certain neuron in another pretrained classifier (in this
case, the neuron in the output layer that corresponds to its class label y). In order to gen-
erate better higher resolution images, ProgressiveGAN [70] proposes to start with training
a generator and discriminator of 4×4 pixels, after which it incrementally adds extra layers
that doubles the output resolution up to 1024 × 1024. This approach allows the model to
learn coarse structure first and then focus on refining details later, instead of having to deal
with all details at different scale simultaneously.

2.3 Discriminators: Learned Loss Functions

Generative adversarial network (GAN) is powerful and effective in that the discriminator
acts as a learned loss function instead of a fixed one designed carefully for each specific
task. This is particularly important for image synthesis tasks whose loss functions are hard
to be explicitly defined in math. For example, in style transfer task, it is hard to write
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down a math equation that evaluates how well an image matches a certain painting style.
For image synthesis tasks, each input may have many legal outputs, but samples in train-
ing set cannot cover all situations. In this case, it is inappropriate to only minimize the
distance between synthetic and ground-truth images, since we want the generator to learn
the data distribution instead of remembering training samples. Although we can design
feature-based losses that try to preserve feature consistency instead of at raw pixel level, as
done in the perceptual loss [65] for image style, such losses are constrained by pre-trained
image classification models they use, and it remains a question of which layers to pick for
calculating feature loss when we switch to another pre-trained model. A discriminator,
on the other hand, does not require explicit definition of the loss, since it learns how to
evaluate a data sample as it trains against the generator. Thus the discriminator is able
to learn a better loss function given enough training data. The fact that the discriminator
acts as a learned loss function has significant meaning for general artificial intelligence.
Traditional pattern recognition and machine learning require us to define what features to
be used (e.g. SIFT [84] and HOG [34] descriptors), and we design specific loss functions
and decide what optimization methods to be applied. Deep learning free us from care-
fully designing features, by learning low-level and high-level feature representations by
itself during training (e.g. CNN kernels), but we still need to work hard at designing loss
functions that work well. GAN takes us one step forward on our path towards artificial
intelligence, in that it learns how to evaluate data samples instead of being told how to do
so, although we still need to design the adversarial loss and combine it with other auxiliary
losses. In other words, previously we design how to calculate how close an output is to the
corresponding ground-truth (L (x; x̂)), but the discriminator learns how to calculate how
well an output matches the true data distribution (L (x)). Such property allows models to
be more flexible and more likely to generalize well. Furthermore, with learn2learn [10]
which allows neural networks to learn to optimize themselves, there is a possibility that we
may no longer need to choose what optimizers (such as RMSprop [10], Adam [73] etc.) to
use and let models handle everything themselves.

2.4 CNN Classifiers

2.4.1 AlexNet

AlexNet [77] is essentially an eight-layer convolutional neural network consisting of five
convolutional layers and three fully connected layers. It was the winner of the ImageNet
competition in 2012, with an error rate of approximately 16.4%. It is possible to use this
network as a feature extractor, by replacing the original output layer with an appropriate
layer relevant to the classification problem at hand. Figure 2.2 shows the simplified neural
architecture.
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2.4.2 VGG16

VGG16 consists of five blocks of convolutional and pooling layers, i.e. the first two blocks
each has two convolutional layers, followed by a max pooling layer, while the next three
blocks each has three convolutional layers followed by a max pooling layer (the sizes of the
layers are indicated below and on top of layer blocks). This gives it 13 convolutional layers,
as opposed to AlexNet’s five. In addition, in VGG16 and VGG19, the large convolutional
filters found in AlexNet are replaced with multiple smaller 3 × 3 kernel-sized filters.The
stacks of smaller size filters increases the depth of the network, enabling it to learn more
complex features [115]. Figure 2.3 shows the graphical perspective of this Architecture.

2.4.3 ResNet34

[57] have presented a residual learning framework for training of convolutional neural
networks by explicit reformulation of the layers of the network as learning residual func-
tions with reference to the layer inputs, instead of learning unreferenced functions. These
residual networks are comparatively easy to optimise and allow construction of networks
with a markedly increased depth and accuracy. As an example, on the ImageNet dataset
[57] could apply residual networks with depths of up to 152 layers. With a 1st place in
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2015 classification
task (http://www.image-net.org/challenges/ LSVRC/), the network could achieve an error
of 3.57% on the ImageNet test set. This result won the 1st place on the ILSVRC 2015
classification task. Figure 2.4 exhibits the architecture in graphical form.
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Figure 2.2: Simplified representation of the architecture of the AlexNet convolutional neu-
ral network, with five convolutional layers (C1, C2, . . . C5), three pooling layers (P1, P2,
and P3) and three fully connected layers (FC1, FC2 and FC3).
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Figure 2.3: Simplified representation of the architecture of the VGG16 convolutional neu-
ral network, with 13 convolution layers (C11, C12, . . . C53), five pooling layers (P1 to
P5) and three fully connected layers (FC1, FC2 and FC3). The convolutional and pool-
ing layers are arranged in five blocks, as indicated by the indices of the convolutional and
pooling layers. 24



Figure 2.4: Simplified representation of the architecture of a 34-layer ResNet convolu-
tional neural network showing convolutional layers (C1,1, C2,1, . . . C5,3), pooling layers
(P1 and P2) and a fully connected layer (FC1).
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Chapter 3

Implementation

This chapter will discuss the methodology of the research in both hardware and software
aspect. Split into two major sections, the first section describes the image synthesizer of
the froth images which is the GAN and the second major section tackles the classifier
which verifies the correctness of the generated synthetic froth images with respect to the
corresponding class.

3.1 GAN: Image synthesis

3.1.1 Hardware and software

MATLABR2021b development environment was used to build both the GAN for the Im-
age synthesis and DCNN for the classifier. The software was installed on a 64-bit windows
PC, an Intel processor paired with a 16GB RAM, and an NVIDIA GeForce MX150 graph-
ics card. The motivation for using MATLABR2021b was based on the existing tools that
were already available for the lab technicians in Australia. But also for modelling Neu-
ral Networks, Mathworks inc. offers an Interoperability Framework for OpenSource Tools
such as Tensorflow, Caffe2 and Pytorch. Allowing users to automate network design, train-
ing and experiment management in a seamless and easy way. In line with that the applica-
tions that are being deployed to embedded and production systems through automatic code
generation in Matlab can benefit from the Automatic code generation. Automatic code
generation generates optimized native code for Intel and ARM CPU’s, FPGA’s and SoC’s
and NVIDIA GPU’s for Deep Networks along with pre-processing and post-processing,
eliminating errors of transcription or interpretation.
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3.1.2 Froth Images

The froth images that were used to train the neural networks were gathered from the mining
industries in Australia in partnership with the Commonwealth Scientific and Industrial
Research Organisation (CSIRO) through an internship program at Curtin University in
Perth, Western Australia. Four images with a resolution of 1280 x 720 were presented to
be synthesized, each image corresponds to a froth grade in an arsenic ore mixture using
flotation method. Shown below are four of the original images which belongs to four
different class.

Figure 3.1: Generator network architecture

3.1.3 Data augmentation

Embark studios developed a light rust API for Multi-resolution Stochastic Texture Synthe-
sis. This tool was used to help minimize the risk of overfitting which is a known problem
with Neural Network models with limited data. The augmented images were generated by
randomly rotating, shearing, shifting and flipping in the vertical and horizontal perspective.

3.1.4 Training the Image synthesizer

From the discussion earlier we already know that a GAN consists of two networks that are
trained together

Generator

In the generator network, given a vector of random values as input, this network generates
data with the same structure as the training data.To optimize the performance of the gen-
erator, the loss of the discriminator is maximized when given generated data. That is the
objective of the generator is to generate data the discriminator classifies as "real".

In the network design from the above figure. Random vectors of size 100 are initial-
ized at the beginning of the process these are converted to 7-by-7-by-128 arrays using a
fully connected layer followed by a reshape operation. These are then upscaled to arrays
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Figure 3.2: Generator network architecture

with 64-by-64-by-3 arrays using a series of transposed convolution layers with batch nor-
malization and ReLU layers. For the transposed convolution layers, we specified 5-by-5
filters with a decreasing number of filters for each layer, a stride of 2, and cropping of the
output on each edge.For the final transposed convolution layer, we specified three 5-by-5
filters corresponding to the three RGB channels of the generated images, and the output
size of the previous layer. At the end of the network, we included a tanh layer. To project
and reshape the noise input, we employed a fully connected layer followed by a reshape
operation specifed as a function layer with a feature-to-image function.

Discriminator

In the discriminator network, it is fed with batches of data containing observations from
both the training data, and generated data from the generator, this network attempts to
classify the observations as "real" or "fake". To optimize the performance of the dis-
criminator, the loss of the discriminator is minimized when given batches of both real and
generated data. That is the objective of the discriminator is to not be "fooled" by the gener-
ator.Ideally, these strategies result in a generator that generates convincingly realistic data
and a discriminator that has learned strong feature representations that are characteristic of
the training data.

To create the discriminator network. A 64-by-64-by-3 images is taken which returns a
scalar prediction score using a series of convolution layers with batch normalization and
leaky ReLU layers. We added noise to the input image using dropout. To be more specific
we specified the dropout layer with a dropout probability of 0.5. For the convolution layer
we specified 5-by-5 filters with an increasing number of filters for each layer. Also the
stride value is set to 2 with padding of the output across the layers.The leaky ReLU layers
are specified a scale of 0.2. Finally for the final layer we specified a convolutional layer
with one 4-by-4 filter. To output the probabilities in the range [0,1] we used the sigmoid
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Figure 3.3: Discriminator network architecture

function. Figure 3.2 shows the design of the discriminator network.

Loss Function and Scores

The objective of the generator is to generate data that the discriminator classifies as "real".
To maximize the probability that images from the generator are classified as real by the
discriminator, minimize the negative log likelihood function. Given the output Y of the
discriminator:

• Ŷ = σ(Y ) is the probability that the input image belongs to the class "real".

• 1− Ŷ is the probability that the input image belongs to the class "generated".

Note that the sigmoid operation σ happens in the modelGradients function. The loss
function for the generator is given by

lossGenerator =−mean(log(ŶGenerated)),

where ŶGenerated contains the discriminator output probabilities for the generated images.
The objective of the discriminator is to not be "fooled" by the generator. To maximize the
probability that the discriminator successfully discriminates between the real and gener-
ated images, minimize the sum of the corresponding negative log likelihood functions.
The loss function for the discriminator is given by

lossDiscriminator =−mean(log(ŶReal))−mean(log(1− ŶGenerated)),

where ŶReal contains the discriminator output probabilities for the real images.

To measure on a scale from 0 to 1 how well the generator and discriminator achieve
their respective goals, you can use the concept of score.

The generator score is the average of the probabilities corresponding to the discrimi-
nator output for the generated images:

scoreGenerator = mean(ŶGenerated).
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Parameter value

numEpochs 2000

miniBatchSize 128

learnRate 0.0002

gradientDecayFactor 0.5

squaredGradientDecayFactor 0.999

flipFactor 0.3

validationFrequency 100

Table 3.1: GAN Training Parameters

The discriminator score is the average of the probabilities corresponding to the dis-
criminator output for both the real and generated images:

scoreDiscriminator =
1
2

mean(ŶReal)+
1
2

mean(1− ŶGenerated).

The score is inversely proportional to the loss but effectively contains the same informa-
tion.

Training Parameters

The training parameters observed in this experiment are shown in Table 3.1. To avoid the
discriminator from learning to discriminate from real and generated images too quickly,
we added noise to the real data by randomly flipping the labels. This way there is a better
balance in the learning of the discriminator and the generator.

3.2 CNN: Classifier

3.2.1 Training of the classifier

At the end of the process of generating synthetic images, a convolutional neural network
is designed to verify the integrity of the newly created data. This neural network operates
as a classifier which will test each images label with the correct class that it belongs to.

The input image passes through a set of convolution and pooling layers until it is flat-
tened out and connected to a fully connected layer where the probability matrix will de-
termine the class that the image belongs to. With a learning rate of 0.001 the network is
trained for 500 epochs using Adam optimizer. For the purpose of easier name recall, we
will call this FrothCNN.
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Figure 3.4: Convolutional Neural network Architecture of FrothCNN

3.2.2 Benchmarking

As a measure of benchmarking. The performance of the classifier is compared with the
existing established Neural Network models. Discussed in their corresponding sections,
these models have been pretrained on the ImageNet data base consisting of approximately
1.2 million images of 1000 common objects [110, 89]. As a result, they can be used on
other image data bases without requiring retraining, except for modification of the final
layer of the network in accordance with the specific problem under consideration. This
technique is called transfer learning which is popular in the field of image classification.

Training of AlexNet

AlexNet was essentially used as a feature extractor, as described in [46] and further op-
timisation of the network was not attempted. That is, 4096 features were extracted from
layer FC2 shown in figure 2.2. The final layer in the network was adapted to have four
outputs – one for each of the classes in the froth image data base.

Training of VGG16

VGG16: As with AlexNet, VGG16 was used without modification, except for the final
layer connecting to 1000 classes that was replaced with a new layer that connected to the
four classes of froths in the database. As with AlexNet, this generated a 4096-dimensional
feature vector for each image, which was then used to train the new fully connected layer.
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Chapter 4

Results and Discussion

In this chapter we discuss the ouput of the neural network models we have designed in
the previous chapters. We start by examining the qualities of an image and move on to
the reason behind the design. We also present here the performance of the neural network
when compared to human experts. The synthesized images and the classifier benchmark-
ing results is also presented here.

4.1 Froth Image

Before we discuss the results of the trained neural networks. Let us investigate first the
characteristics of the froth images which has driven the design specifics of the architecture
of the neural networks.

When it pertains to images, a histogram is a graphical representation showing how fre-
quently various color values occur in the image. Histogram is one of the simple ways
to expose color changes between images and it is also quite handy as a preparatory step
before performing Threshold or Edge Detection. We can see in figure 4.1 that the only
noticeable mean comes from the red channel. The blue and green channels are almost the
same. This is already obvious because the froth images vary on the color orange intensity
which is highly affected by the red channel.

From the graph that we have shown in figure 4.1. We now have a clue on where to zone
in. What we are actually interested on is the intensity of the color (how orange is the color)
as opposed to the kind of color (e.g. blue , green or white) the froth image exhibits. By
transforming the images into grayscale we can focus on the color intensity of each channel
and by using the information we got from the histogram we should be able to expose which
color channel has the huge effect on color reproduction of the images. Figure 4.2 shows
that although there is a noticeable difference between the froth images as you go from top
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Figure 4.1: RGB Histogram

to bottom of the class in the red channel. The difference of the images from on the other
class in green and blue channel is also noticeable. This should tell us that color alone is not
a good unique feature which we can use to perfectly classify or synthesize these images.
This is an established fact in literature.

Earlier, we investigated the color of the images using the RGB colorspace. In figure
4.3 we identified the colors of a froth image in l.a.b colorspace. Notice that instead of
only three colors we are able to disect the image in 6 different colors. In l.a.b colorspace
the colors are easier to distinguish from one another. The L*a*b color space is derived
from the CIE XYZ tristimulus values. The L*a*b space consists of a luminosity (’L’) or
brightness layer, chromaticity layer ’a’ indicating where color falls along the red-green
axis, and chromaticity layer ’b’ indicating where the color falls along the blue-yellow
axis.The approach is to choose a small sample region for each color and to calculate each
sample region’s average color in ’a*b’ space. The color markers are used to classify each
pixel.

It is noticeable in figure 4.3 that the segmentation is not perfect and consistent. Al-
though this is better than in the rgb colorspace we cannot use color alone as a feature to
classify and synthesize this image because of the static nature of the threshold values to
which this segmentation is highly dependent with.
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Figure 4.2: Grayscale image in R,G,B channels

Let us now look from a different perspective in understanding the unique features of
the images being investigated. We can try to look at the validity of using texture as a
unique feature to corretly classify or synthesize the image. By transforming the image into
grayscale and use the intensity values of the RGB average. We can warp the image over
the surface whose height is equal to the intensity of the image by specifying the number of
graylevels. Figure 4.4 exhibits this 3D interpretation in grayscale. The 3D graph reveals
the peaks and trenches of the texture plane. The peaks are the pixels nearing white and
therefore values close to the 255 on the 0-to-255 range while the trenches or the dark
regions are the complete opposite.

Although this information is helpful we don’t have a unique way to associate the unique
characteristics of each froth image belonging to a certain class. Features like: Physics of
the bubbles, color of the bubbles, density of the bubbles in a region of interest, color
consistency is not preserved and associated by techniques that are highly dependent on
user specific threshold values. In fact, it is lost and cannot be learned in a meaningful way
because it is a static implementation as opposed to a dynamic one. Which is one of the
criteria we are looking for if we are going to synthesize these images. We do not want to
synthesize the same image each time. So texture alone is also not a unique feature which
we can use to classify or synthesize the froth images.

This led to the motivation to use Convolutional Neural Networks as they are great
models in the literature known to preserve the unique characteristics of an image both
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Figure 4.3: Froth image in L.a.b colorspace

from the color, texture and structure perspective. The results from the design and output
of these networks are discussed in the next section.

4.2 GAN Results

4.2.1 Convergence

In the ideal case, both scores of the Discriminator and Generator would be 0.5. This is be-
cause the discriminator cannot tell the difference between real and fake images. However,
in practice this scenario is not the only case in which you can achieve a successful GAN.

To monitor the training progress we can visually inspect the images over time and
check if they are improving. If the images are not improving, then we can use a score plot
to help us diagnose some problems. In some cases, the score plot can tell us there is no
point continuing training, and we should stop, because a failure mode has occurred that
training cannot recover from. The following sections tell us what to look for in the score
plot and in the generated images to diagnose some common failure modes (convergence
failure and mode collapse), and suggests possible actions we can take to improve the train-
ing. Convergence failure happens when the generator and discriminator do not reach a
balance during training.
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Figure 4.4: x- and y- coordinates of the surface were not specified. Thus defaulted to the
image pixel indices.

Discriminator Dominates

This scenario happens when the generator score reaches zero or near zero and the discrim-
inator score reaches one or near one.

Figure 4.5 shows an example of the discriminator overpowering the generator. Notice
that the generator score approaches zero and does not recover. In this case, the discrim-
inator classifies most of the images correctly. In turn, the generator cannot produce any
images that fool the discriminator and thus fails to learn.

Figure 4.5: Discriminator Dominates

If the score does not recover from these values for many iterations, then it is better to
stop the training. If this happens, then we can try balancing the performance of generator

36



and the discriminator by:

• Impairing the discriminator by randomly giving false labels to real images (one-
sided label flipping).

• Impairing the discriminator by adding dropout layers.

• Improving the generator’s ability to create more features by increasing the number
of filters in its convolution layers.

• Impairing the discriminator by reducing its number of filters.

Generator Dominates

This scenario happens when the generator score reaches one or near one. Figure 4.6 shows
an example of the generator overpowering the discriminator. Notice that the generator
score goes to one for a many iterations. In this case, the generator learns how to fool the
discriminator almost always. When this happens very early in the training process, the
generator is likely to learn a very simple feature representation which fools the discrimi-
nator easily. This means that the generated images can be very poor, despite having high
scores. Note that in this example, the score of the discriminator does not go very close to
zero because it is still able to classify correctly some real images. If the score does not

Figure 4.6: Generator Dominates

recover from these values for many iterations, then it is better to stop the training. If this
happens, then try balancing the performance of generator and the discriminator by:

• Improving the discriminator’s ability to learn more features by increasing the num-
ber of filters

• Impairing the generator by adding dropout layers
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• Impairing the generator by reducing its number of filters

Balanced Convergence

Here, the discriminator has learned a strong feature representation that identifies real im-
ages among generated images. In turn, the generator has learned a similarly strong feature
representation that allows it to generate images similar to the training data. Figure 4.7
shows the scores of the generator and discriminator networks

Figure 4.7: Balanced Convergence

4.2.2 Synthetic Image results

It is a given fact that it is difficult to assess the quality of synthetic images. RMSE is not
a suitable metric since there is no absolute one-to-one correspondence between synthetic
and real images. By visual inspection a commonly used subjective metric is to outsource
Amazon Mechanical turk [9] that hires humans to score synthetic and real images accord-
ing to how realistic they think the images are. However, this domain is expert-specific
which requires a trained eye. To measure how good the synthetic images are, trained ex-
perts from the lab were given a set of images to evaluate. They were tasked to identify
whether a froth image under examination is real or fake without reference to the correct
answer. Tests show that by average the experts had difficulty in identifying the correct la-
bel of the images having an average accuracy of only 73%. This means that the generated
synthetic images are convincing enough to the naked eye of a trained expert it confused
them. We also wanted to know if given a set of images, can the experts correctly identify
the class to which each image belongs to. It showed that by average the accuracy level is
only at 67%.

We wanted to compare how our model would perform against a human expert using
the same tests. For this purpose a classifier was designed. The results are shown in the next
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section. For reference figures 4.8 and 4.9 show how close the original and the generated
images are with each other in terms of visual inspection. The GAN model was able to
generate a total of 4000 images, each class having 1000 samples. To build a classifier
these are divided into a 70-30 ratio for training and testing.

Figure 4.8: Original Froth Image

Figure 4.9: Generated Synthetic Froth Images

4.3 Classifier Results

The image features extracted by each network can be visualised by mapping them to a two-
dimensional score space by use of linear discriminant analysis. As mentioned previously,
these features were the outputs of the hidden nodes feeding into the final fully connected
(output) layers of the networks, i.e. FC2 in AlexNet Fig 2.2 and VGG16 Fig 2.3. As can
be seen in Fig 4.10, AlexNet and Fig 4.11,VGG16 perform similarly, with features that
separate the froth classes well, although there are some overlapping among Class 2, Class
3 and Class 4.

However in figure 4.12, here we see the clear distinction between the different classes
of our froth images. There is minimum overlapping among the data points and each chunk
is significantly separated a good distance from each other. Figure 4.13 gives us a quantita-
tive breakdown of the classification of the froth images in the test data set of FrothCNN.
The model was able to classify 99%.

In light of comparison, the performance of the deep learning architectures against pre-
viously proposed methods for feature extraction from froth images are summarised in
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Figure 4.14 as well. The two methods considered here are based on the use of a grey
level co-occurrence matrices (GLCM) and local binary patterns (LBP). GLCMs are well-
established in froth image analysis [18, 55, 128]. In contrast, have only more recently
been considered in the context of froth image analysis by [74, 122], although they are used
extensively in other domains in image recognition. The GLCM approach was based on the
use of 256 grey levels, as well as the extraction of features based on five pixel distances
(1, 2, 3, 4, 5) and four angles (0°, 45°, 90° and 135°). Six texture properties, namely con-
trast, dissimilarity, homogeneity, ASM, energy and correlation were computed from each
GLCM matrix, in total yielding 4 × 4 × 6 = 120 features for each image [112] With the
LBP approach, the rotation invariant uniform method was selected along with a radius of
1 and the number of neighbouring points equal to 8, to yield 20 features [98]. The GLCM
and LBP features were used as predictors with a random forest model([22] consisting of
300 trees. Like all the other models, the random forest models were trained and tested on
the same training and test data sets. The results obtained with the different classifiers are
summarised in figure 4.14.

4.4 Classifier Comparison

Three approaches have been explored to investigate the integrity of the generated synthetic
froth images. Both GLCM and LBP use engineered froth features as predictor variables
while pretrained networks AlexNet and VGG16 use learned features from a different do-
main and applied through transfer learning to the froth images. While the FrothCNN which
learned exclusively from the generated synthetic froth images. In line with this it is quite
obvious that learned features yielded better than engineered features. However this is not
to say that the designed FrothCNN is better for all applications when compared to the
mammoth-like AlexNet and VGG16. Learned features exclusively from the froth images
helped in associating the correct label to the correct class compared to features learned
from a different image dataset as applied to froth images. Even though FrothCNN has
higher accuracy score it does not imply that it will perform the same in a different problem
domain. The accuracy score is not the focus of the tests, rather it is a clear evidence that
even though the froth images are synthesized or fake. They are classifiable into different
class as evidenced by the results. This shows that the designed GAN is able to generate
images that have meaning. That it is not just a three-dimensional matrix with random
distribution.

The table below shows a summary of the performance of the synthetic image classifier
compared with the established models in the literature.
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Figure 4.10: Linear Discriminant scatter plot of the features extracted by AlexNet,
Class1(circle),Class2(diamond),Class3(triangle),Class4(square).

Figure 4.11: Linear Discriminant scatter plot of the features extracted by VGG16,
Class1(circle),Class2(diamond),Class3(triangle),Class4(square).

41



Figure 4.12: Linear Discriminant scatter plot of the features extracted by the FrothCNN,
Class1(circle),Class2(diamond),Class3(triangle),Class4(square).

Figure 4.13: Classification of the fake froth images having an overall accuracy of 99% on
the validation set.
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Figure 4.14: Summary of results.
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Chapter 5

Conclusion

Image synthesis from a limited set of data was considered in this research. The gener-
ated synthetic image were used to create a classifier. As a measure of benchmarking the
performance of the the classifier was compared with the established neural network in the
literature using transfer learning technique. The following conclusions are made from this
study:

• The synthesis of fake froth images of arsenic ore mixtures from a limited source of
data is possible using generative adversarial networks.

• The synthesized froth images were convincing enough to the eye of a trained expert,
it was able to fool them. This only means that the GAN that was developed had
above human expert accuracy level and was consistent in generating fake images.

• The methodology described in this research worked particularly well for this domain
since the images does not really have a defined proper structure placement like that
of a human face, a building or parts of an animal. Although this is just a hypothesis
and not conclusive.

• The development of a classifier from a set of synthetic froth images was indeed
successful in two ways:

– It showed that the generated synthetic images were not just random three di-
mensional distribution. As clearly evidenced, they exhibit distinct features to
their own class that they are classifiable. This better highlights the integrity of
the generated synthetic froth image dataset produced by GAN as meaningful.

– It has a better accuracy rate compared to a human expert in the domain by
average.

– It also has better overall accuracy when compared to the established models
in the literature for this specific problem domain. Although some authors may
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claim that an accuracy above 95% is considered borderline overfitting. How-
ever the parameters of the model can actually be tweaked to have better score
on images not encountered during the training phase.

• Although the accuracy level is high, the classifier has not been tested on froth images
acquired from other production lines. This is set as a recommendation for further
research.

• Pre-trained networks that is available in the literature are actually not a bad choice in
creating a classifier for a specific problem domain. In fact, it reported better accuracy
compared to a trained expert.

Although the results are quite promising, further work is required to validate these re-
sults on different flotation systems which is currently hampered by a lack of suitable data
sets. As ‘big data’ tools, deep convolutional neural networks require massive amounts
of data. While the collection of froth image data could be readily accomplished on in-
dustrial plants, labelling of the data required for training may be more challenging . The
researchers recommend synthesis of froth image on these systems to generate more data
and to examine where it will take this area of research.

45



Part II

A Language for Declarative Data
Validation in Answer Set

Programming
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Chapter 6

Introduction

A popular Latin saying starts with errare humanum est (translated, to err is human), and
clarifies how making mistakes is part of human nature. Computer programmers, being
humans, are inclined and not indifferent to errors [75, 76]. Whether a typo in notation, a
misspelled word, or a wrong or fragile representation of data, errors in source code files
may result in substantial delays in developing an application. Even worse, errors may stay
unknown for a long time, until something happen that stimulates the error to cause a crash
of the system or some other unwanted and unexpected behavior. In the worst scenario,
unknown errors may lead to wrong results that are used to take some business decision,
which in turn may ruin a company. (Refer to [91] for examples of typical errors in software
systems.)

Fail-fast systems are designed to break as soon as an unexpected condition is detected
(refer to [99] for an example of fail-fast type checking in Java). As often it is the case,
the idea is not limited to computer programming, and definitely not originated in software
design. For example, many electrical devices have fail-fast mechanisms to provide over-
current protection — it is better to melt an inexpensive fuse, than to burn a control board.
Even if technically an electrical devise operating with a fuse replaced by a wire works
as expected in more cases, no professional electrician would suggest to tamper with the
system in this way. In fact, in case the replaced fuses melt again and again, it is usually
evidence that the system has some malfunction that must be detected and fixed.

Computer programming should follow a similar fail-fast approach. Errors must be
detected as soon as possible, and reported to the programmer in a non-skippable way, so
that the malfunction can be quickly detected and fixed. Data validation is the process of
ensuring that data conform to some specification, so that any process in which they are
involved can safely work under all of the assumptions guaranteed by the specification. In
particular, immutable objects are usually expected to be validated on creation, so that their
consistency can be safely assumed anywhere in the system — this way, in fact, an invalid
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immutable object simply cannot exist because its construction would fail. Guaranteeing
validity of mutable objects is usually more difficult and tedious, and almost impossible
if there is no invariant on the validity of immutable objects. (Refer to [66] and [118] for
details on how to tackle the complexity of a business domain in terms of domain primitives
and entities.)

Answer Set Programming (ASP; [51, 94, 86]) should not be an exception when it
comes at errors. However, the language offers very little in terms of protection mecha-
nisms. No static or dynamic type checking are available, and programmers can rely on a
very limited set of primitive types, namely integers, strings and alphanumeric constants,
with no idiomatic way to enforce that the values of an argument must be of one of these
types only — refer to [26] for details of the ASP-Core-2 format. More structured data
types are usually represented by uninterpreted function symbols [83, 42, 19, 25], but again
there is no idiomatic way to really validate such structures. Even integrity constraints may
be insufficient to achieve a reliable data validation, as they are cheerfully satisfied if at least
one of their literals is false; in fact, this is a very convenient property to discard unwanted
solutions, but not very effective in guaranteeing data integrity — invalid data in this case
may lead to discard some wanted solution among thousands or more equally acceptable
solutions, a very hard to spot unexpected outcome.

The lack of data validation in ASP is likely due to the quest for better and better perfor-
mance. After a significant effort to optimize the search algorithms that are one of the main
reasons of the success of ASP systems, to sacrifice a few machine instructions just to val-
idate data that are almost always valid sounds like a blasphemy. Someone may argument
that ASP is not intended to be a general purpose programming language, and therefore in-
put and output are eventually validated by external tools. However, this is a very simplistic
assumption, and invalid data may appear in other portions of the program, causing the lost
of otherwise acceptable solutions. Everyone is free to follow their own path, but at some
point in their life, perhaps after spending hours looking for a typo in the name of a func-
tion, any programmer will regret not having had an idiomatic way to specify the format of
their data. Quoting the Latins, errare humanum est, perseverare autem diabolicum — to
err is human, but to persist (in error) is diabolical.

This thesis aims at rescuing ASP programmers from some problems due to data val-
idation by proposing a framework called VALASP, written in Python and available at
https://github.com/alviano/valasp. The proposed approach is to specify the for-
mat of some data of interest, leaving open the possibility to work with unspecified data
types (Section 8). Moreover, the specification can be separated from the ASP program,
and the fail-fast approach is achieved by injecting constraints that are guaranteed to be im-
mediately satisfied when grounded, unless data are found to be invalid and some exception
is raised. Such a behavior is obtained thanks to interpreted functions, briefly recalled in
Section 7, where their use for data validation is also hinted. The specification itself can
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be given in terms of annotations for Python classes, in the style of the recent Python dat-
aclasses (https://docs.python.org/3/library/dataclasses.html); in this case,
exceptions for invalid data can be raised manually, or by taking advantage of any off-
the-shelf validation library (Section 8.1). An additional level of abstraction is given by
a YAML-based format, which can be conveniently used for many common use cases, but
also leaves the possibility to write arbitrary checks in Python methods that are called before
or after the grounding procedure (Section 8.2). A few use cases are discussed in Section 9,
and related work from the literature is discussed in Section 10 — in particular, differences
with sort typed systems like IDP [27] and SPARC [85].
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Chapter 7

Background

ASP programs are usually evaluated by a two-steps procedure: first, object variables are
eliminated by means of intelligent grounding techniques, and after that stable models of the
resulting propositional program are searched by means of sophisticated non-chronological
backtracking algorithms. Details of this procedure, as well as on the syntax and semantics
of ASP, are out of the scope of this work. Therefore, this section only recall the minimal
background required to introduce the concepts presented in the next sections.

ASP is not particularly rich in terms of primitive types, and essentially allows for using
integers and (double-quoted) strings. (We will use the syntax of CLINGO; [48].) More
complex types, as for example dates or decimal numbers, can be represented by means
of (non-interpreted) functions, or by the so called @-terms; in the latter case, the @-term
must be associated with a Python function mapping different objects to different symbols
in a repeatable way — for example, by populating a table of symbols or by using a natural
enumeration.

Example 7.0.1 (Primitive types and @-terms). Dates can be represented by strings, func-
tions (tuples as a special case) or @-terms, among other possibilities. Hence, "1983/09/12",
(1983,9,12) and @date(1983,9,12) can all represent the date 12th September 1983, where
the @-term is associated with the following Python function:

def date(year, month, day):

res = datetime.datetime(year.number, month.number, day.number)

return int(res.timestamp())

Each representation comes with its pros and cons, discussed later in Section 8. ■

Intelligent grounding may process rules in several order, and literals within a rule can
also be processed according to different ordering. A safe assumption made in this thesis is
that all object variables of an @-term must be already bound to some ground term before
the grounder can call the associated Python function.
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Example 7.0.2 (@-term invocation in the grounding process). Consider the following
program:

birthday(sofia, (2019,6,25)).

birthday(bigel, (1982,123)). % Oops! I missed a comma, but where?!?

:- birthday(Person,Date), @is_triple_of_integer(Date) != 1.

The Python function associated with the @-term is called two times (at most, unless the
system fails), with arguments (2019,6,25) and (1982,123), so that some invariant can be
enforced on the second argument of every instance of birthday/2. ■

Data validation is the process of ensuring that data conform to some specification, so
that any process in which they are involved can safely work under all of the assumptions
guaranteed by the specification. Data can be found invalid because of an expected error-
prone source (for example, user input from a terminal), or due to an unexpected misuse
of some functionality of a system (this is usually the case with bugs). While in the first
case it is natural to ask again for the data, in the second case failing fast may be the only
reasonable choice, so that the problem can be noticed, traced, and eventually fixed. The
fail-fast approach is particularly helpful at coding time, to avoid bug hunting at a later time,
but it may also pay off after deploy if properly coupled with a recovery mechanism (for
example, restart the process).

Example 7.0.3 (Data validation). The @-term from Example 7.0.2 can be associated with
the following Python code:

def is_triple_of_integer(value):

if value.type != Function:

raise ValueError('wrong type')

if value.name:

raise ValueError('not a tuple')

if len(value.arguments) != 3:

raise ValueError('not a triple')

if any(arg for arg in value.arguments if arg.type != Number):

raise ValueError('not a tuple of integers')

return 1

Indeed, the presence of birthday(bigel, (1982,123)) will be noticed because of abrupt
termination of the grounding procedure. Adopting a fail-fast approach is the correct choice
in this case, and any attempt of sanification is just a dangerous speculation on the invalid
data — should it be (1982,1,23), or (1982,12,3)? ■
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Chapter 8

A data validation framework for
ASP

Data validation can be used in ASP programs thanks to @-terms. However, the resulting
code is likely to be less readable due to aspects that are not really the focus of the problem
aimed to be addressed. We will illustrate our proposal to accomplish data validation with-
out cluttering your ASP encoding in this section, but let us first stress why we believe that
data validation may save the day of ASP programmers.

In Example 7.0.1, all three representations of dates can be used with built-in compara-
tors, but within this respect the string representation is very fragile: "1983/09/12" ==

"1983/9/12" is (mistakenly) false because even if both terms represent the same date, they
use different forms; "1983/9/12" > "1983/10/12" is (mistakenly) true because again one
of the two dates is not in canonical form — if you opt for this representation, you better
validate those strings. The tuple representation preserves more structure, which is very
convenient if elements of the date have to be extracted, as in this case object variables or
constants can be used as usual — if you opt for this representation, you better validate
those tuples to check the number of arguments and their values. Extracting the year from
the @-term representation instead requires further @-terms:

def year(timestamp): return

datetime.date.fromtimestamp(timestamp.number).year

Hence, @year(@date(1983,9,12)) == 1983 is (correctly) true. On the other hand, @-
terms are likely the only easy way for computing the difference (in days) between two
dates:

def days_between(a, b):

a = datetime.date.fromtimestamp(a.number)

b = datetime.date.fromtimestamp(b.number)
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return (b - a).days

For example, @days_between(@date(2019,6,25), @date(2018,2,1)) returns 509. An
important point here, which may not be noticed at first, is that (at least in this case) the
additional effort required by the @-term representation gives also some implicit data vali-
dation. In fact, while the use of strings and tuples do not prevent the creation of an invalid
date like 29th February 2019, an exception is raised by @date(2019,2,29) to inhibit the
uncontrolled release of an invalid object.

The proposed framework is made of several layers, and use Python at its core to inject
constraints like the one in Example 7.0.3 to implement validation concerns (Section 8.1).
As a level of abstract, the framework can automatically produce the Python code according
to a YAML-based format designed to express validation criteria that are common for ASP
programs (Section 8.2).

8.1 The Python layer

The framework relies on two main concepts, namely the context object and the valasp

decorator. The context object has methods to register classes and @-terms, and to blacklist
unwanted predicates; it is designed to be coupled with an ASP system, but also provides
methods to simplify the binding at coding time. The decorator can be applied to a Python
class to be interpreted as a specification of valid data; it is designed to inject in the context
object all required code to validate ASP elements. The framework reserves the prefix
valasp for internal usage at all levels.

Context object. Registered classes can be used by the code compiled by the context
object, while the registration of an @-term requires to specify the signature of the func-
tion and its code as a list of strings. Generalizing the idea hinted in Example 7.0.2, we
distinguish three types of constraint validators, referred to as forward, implicit, and tuple

constraint validators, depending on how terms are grouped and passed to @-terms: im-
plicit constraint validators use functions (with the same name of the validated predicate);
tuple constraint validators use tuples (or unnamed functions); forward constraint validators
are applicable only to unary predicates and use their unique terms. For a predicate pred of
arity n ≥ 1, the constraint validators are

:- pred(X1), @valasp_validate_pred(X1) != 1. % FORWARD n = 1

:- pred(X1,...,Xn),

@valasp_validate_pred(pred(X1,...,Xn)) != 1. % IMPLICIT

:- pred(X1,...,Xn),

@valasp_validate_pred((X1,...,Xn,)) != 1. % TUPLE

to be associated with the Python function
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def valasp_validate_pred(value):

Pred(value)

return 1

where Pred is a class whose name is obtained by capitalizing the first lowercase letter of
pred, and whose constructor raises an exception if the provided data are invalid. Such a
class have to be previously registered in the context (usually with the help of the deco-
rator). Blacklisting a predicate name pred with a given arity n ≥ 1 amounts to inject the
constraint

:- pred(X1,...,Xn),

@valasp_error("pred/n is blacklisted", (X1,...,Xn)) != 1.

where the @-term rises an exception with the provided message. In the following, a context
object is assumed to be stored in the Python variable ctx.

Decorator. The format of predicates, values, functions, and tuples can be specified by
applying the following decorator to Python classes:

@ctx.valasp(validate_predicate, with_fun, auto_blacklist)

Parameter validate_predicate, true by default, can be set to false to inhibit the creation
of validator constraints, which is useful to decompose and reuse validation rules (see Ex-
ample 8.1.1). The type of validator constraint is determined by parameter with_fun, and
by default the framework uses forward validator constraints for unary predicates, and im-
plicit validator constraints otherwise. Predicates with the same name but different arities
are automatically blacklisted, but such a default mechanism can be disabled by setting pa-
rameter auto_blacklist to false. (Note that the framework does not forbid to use multiple
arities for the same predicate name, but it does not allow to specify validation rules for two
predicates with the same name but different arities.)

The decorator can be applied to a class with annotated fields, that is, a class specifying
a list of pairs of the form field: Type — primitive types are named Integer, String and
Alpha. Such annotations are used to enrich the decorated class with a constructor that
assigns and validates the type of all fields from a symbol provided by the grounder (via the
validator constraint); if the class has a __post_init__ method, it is called before leaving
the constructor. Other common magic methods are also added (if not already defined in
the class) to provide a string representation and comparison operators.

Example 8.1.1 (That’s not a birthday!). A predicate bday whose arguments represent a
person and a date can be validated by

@ctx.valasp(validate_predicate=False, with_fun=Fun.TUPLE)

class Date:

year: Integer

month: Integer
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day: Integer

def __post_init__(self):

datetime.datetime(self.year, self.month, self.day)

@ctx.valasp()

class Bday:

name: Alpha

date: Date

Given the above specification, and the program

bday(sofia, (2019,6,25)).

bday(leonardo, (2018,2,1)).

bday(bigel, (1982,123)).

the framework raises an exception because of the third fact. ■

The framework automatically detects overflows for Integer instances, and can perform
bulk calls to all methods with a given prefix for all registered classes in the context. It is a
convenient way to initialize class level variables before starting the grounding procedure,
and to check their values after the input program is grounded — a common use case is
overflow detection on sums.

Example 8.1.2 (Overflow detection on sum of integers). Let income be a predicate rep-
resenting incomes of companies, which are summed up in an ASP program comprising
the facts income("Acme ASP",1500000000) and income("Yoyodyne YAML",1500000000).
Better to validate the sum than to go ahead with a meaningless -1294967296.

@ctx.valasp()

class Income:

company: String

amount: Integer

def __post_init__(self):

if not(self.amount > 0):

raise ValueError("amount must be positive")

self.__class__.amount_sum += self.amount

@classmethod

def before_grounding_init_amount_sum(cls):

cls.amount_sum = 0

@classmethod

def after_grounding_init_amount_sum(cls):

if cls.amount_sum > Integer.max():
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raise OverflowError()

Note that the class variable amount_sum is initialized in a before_grounding* class method,
and updated after every new instance of Income (here we are taking advantage by the fact
that Python implements arbitrary precision integers). Eventually, an after_grounding*

class method detects the overflow — note that the overflow could be detected earlier in
__post_init__. ■

8.2 The YAML layer

YAML is a human friendly data serialization standard, whose syntax is well-suited for
hiding many details of the Python layer. The YAML files processed by our framework are
essentially dictionaries of blocks defining types. The key of such a block is the name of a
user-defined type, and the value is a dictionary of field declarations.

A field declaration must specify the type (either primitive or user-defined), and may
specify one or more facets. The facets of Integer are enum to specify a list of acceptable
values, min (by default −231) and max (by default 231 − 1) to specify (inclusive) bounds,
and finally count, sum+ and sum- to specify bounds on the number of values, the sum of
positive values and negative values. The facets of String and Alpha are enum and count as
before, min and max to bound the length, and pattern to specify a regular expression. For
a user-defined type, and for the wildcard Any, the only facets is count. When no facets are
needed, it is sufficient to specify the type immediately after the name of the field.

User-defined types may also use the reserved valasp key to specify parameters for the
decorator, and Python code to be executed (i) at the end of the __post_init__ method
(after_init key), and (ii) before and after the grounding process (before_grounding and
after_grounding keys). Python imports and any additional global code can be specified
at the root level using the reserved valasp key.

Example 8.2.1 (Yet another time, not a birthday!). Below is a YAML file to validate
predicate bday from Example 8.1.1.

valasp:

python: |+

import datetime

asp: |+

#include "sofia_leonardo_bigel_bdays.asp".

date:

year: Integer

month: Integer

day: Integer
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valasp:

validate_predicate: False

with_fun: TUPLE

after_init: |+

datetime.datetime(self.year, self.month, self.day)

bday:

name: Alpha

date: date

Note that Python and ASP code is specified with literal style, by using the |+ marker, to
preserve extra block indentations (not really needed for a single line, but important for
multiple lines). In this case, if the included file contains bday(bigel, (1982,123)), an
exception is raised. ■

Example 8.2.2 (Overflow detection with the YAML format). Below is a YAML represen-
tation of Example 8.1.2.

income:

company: String

amount:

type: Integer

min: 0

sum+: Integer

Here, sum+: Integer is syntactic sugar for specifying that the sum of positive values must
fit into a 32-bits integer — nicer than writing max: 2147483647 inside sum+. ■

The valasp section of a symbol declaration can also include an having list of triples,
where the first and third elements are field names, and the second element is an operator
among ==, !=, <, <=, >=, and >. The value associated with any of these keys must be a list
of pairs of field names. All these comparison will be part of the __post_init__ method.
For example,

ordered_triple:

first: Integer

second: Integer

third: Integer

valasp:

having:

- first < second

- second < third

specifies that first < second < third must hold. Note that YAML lists can be written
as multiple lines starting with a dash, or in square brackets.
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Chapter 9

Use cases and assessment

This section reports a few use cases on three encodings from ASP competitions. Each
use case focuses on the validation of parts of an encoding, showing how the proposed
framework can identify invalid data. (Tuning of the encoding is out of the scope of this
work.) Moreover, the overhead introduced by data validation is empirically assessed.

9.1 Video streaming — 7th ASP competition (Gebser et
al. 2020)

Video streaming amounts to selecting an optimal set of video representations, in terms of
resolution and bitrate, to satisfy user requirements. User requirements and solution are
respectively encoded by user(USERID, VIDEOTYPE, RESOLUTION, BANDWIDTH, MAXSAT,

MAXBITRATE) and assign(USER_ID, VIDEO_TYPE, RESOLUTION, BITRATE, SAT). The over-
all satisfaction of users is maximized by the following weak constraint:

:∼ assign(USER_ID,_,_,BITRATE,SAT_VALUE), user(USER_ID,_,_,_,BEST_SAT,_).

[BEST_SAT-SAT_VALUE@1, USER_ID, assign]

According to the official description, available online at http://aspcomp2015.dibris.
unige.it/Video_Streaming.pdf, instances of user/6 can be validated with the follow-
ing YAML specification:

user:

userid:

type: Integer

min: 0

videotype:

type: String

enum: [Documentary, Video, Cartoon, Sport]

resolution:
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type: Integer

enum: [224, 360, 720, 1080]

bandwidth:

type: Integer

min: 0

maxsat:

type: Integer

min: 0

maxbitrate:

type: Integer

min: 150

max: 8650

valasp:

after_init: |+

if self.value % 50 != 0:

raise ValueError("unexpected bitrate")

According to the above specification, the arguments userid, bandwidth and maxsat are
non-negative integers; videotype is a string among Documentary, Video, Cartoon, and
Sport; argument resolution is an integer among 224, 360, 720, and 1080; and maxbitrate

is an integer between 150 and 8650, and it is divisible by 50.

The official encoding and instances do not have errors, as expected. However, the
encoding is quite fragile and relies on several assumptions on the input data and on ASP
internals — ASP systems use 32-bits integers for everything but the cost of a solution. To
show how dangerous are such assumptions, consider a decision problem where a partial
solution and a target satisfaction are given. Accordingly, the weak constraint is replaced
by the following constraint:

:- target(T), #sum{BEST_SAT-SAT_VALUE, USER_ID :

assign(USER_ID,_,_,BITRATE,SAT_VALUE), user(USER_ID,_,_,_,BEST_SAT,_)}

> T.

In this case, the execution of CLINGO on the instances of the competition may lead to the
error message "Value too large to be stored in data type: Integer overflow!", pro-
duced while simplifying the sum. However, whether the message is shown or not depends
on the partial solution provided in input. In fact, if the overflow is only due to the assign/5

instances in input, the subsequent simplification step cannot notice the problem and a
wrong answer is produced. The following YAML specification can help to detect these
overflows:

target:

value:

type: Integer

min: 0
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sum_element:

value:

type: Integer

min: 0

sum+: Integer

userid: Integer

valasp:

asp: |+

sum_element(BEST_SAT-SAT_VALUE,UID) :-

assign(UID,_,_,BITRATE,SAT_VALUE), user(UID,_,_,_,BEST_SAT,_).

9.2 Solitaire — 4th ASP Competition (Alviano et al. 2013)

Solitaire represents a single-player game played on a 7x7 board where the 2x2 corners are
omitted. We focus on the following rules defining the board:

range(1).

range(X+1) :- range(X), X < 7.

location(1,X) :- range(X), 3 <= X, X <= 5.

location(2,X) :- range(X), 3 <= X, X <= 5.

location(Y,X) :- range(Y), 3 <= Y, Y <= 5, range(X).

location(6,X) :- range(X), 3 <= X, X <= 5.

location(7,X) :- range(X), 3 <= X, X <= 5.

Those rules are interesting since an error in this point might be propagated all over the
encoding. The YAML specification of range and location is the following:

range:

value:

type: Integer

enum: [1, 2, 3, 4, 5, 6, 7]

location:

x: range

y: range

valasp:

after_grounding: |+

pos = [1,2,6,7]

if self.x.value in pos and self.y.value in pos:

raise ValueError("Invalid position")
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9.3 Qualitative spatial reasoning — 4th ASP Competition
(Alviano et al. 2013)

Qualitative spatial reasoning consists of deciding whether a set of spatial and temporal
constraints is consistent with respect to a composition table. Membership in qualitative
relations is encoded by 169 rules, similar to the following:

label(X,Z,rp) :- label(X,Y,rp), label(Y,Z,rp).

label(X,Z,req) | label(X,Z,rp) | label(X,Z,rpi) | label(X,Z,rd) |

label(X,Z,rdi)

| label(X,Z,rs) | label(X,Z,rsi) | label(X,Z,rf) | label(X,Z,rfi)

| label(X,Z,rm) | label(X,Z,rmi) | label(X,Z,ro) | label(X,Z,roi)

:- label(X,Y,rp), label(Y,Z,rpi).

The third argument of label/3 is a qualitative relation. The following YAML specification
can be used to validate such rules:

rel:

value:

type: Alpha

enum: [req, rp, rpi, rd, rdi, ro, roi, rm, rmi, rs, rsi, rf, rfi]

node:

value:

type: Integer

min: 0

max: 49

valasp:

validate_predicate: False

label:

x: node

y: node

l: rel

valasp:

having: [x < y]

9.4 Empirical assessment

The overhead introduced by VALASP to validate instances of the discussed problems was
measured by running CLINGO with and without validation. The experiment was run on
a 2.4 GHz Quad-Core Intel Core i5 with 16 GB of memory. VALASP was executed with
the command-line option --valid-only, and CLINGO was executed with the command-
line option --mode=gringo (and redirecting output to /dev/null); both options disable the
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computation of stable models since VALASP has no impact on the solving procedure. We
remark here that the running time of VALASP includes grounding time. For each bench-
mark, we considered all available instances.

Concerning video streaming, the average running time of CLINGO is 0.08 seconds, and
the average running time of VALASP is 0.18 seconds. As for solitaire, the average running
time of CLINGO and VALASP is respectively 0.10 and 0.13 seconds. Finally, on qualitative
spatial reasoning, the average running time of CLINGO and VALASP is respectively 4.13
and 3.42 seconds; in this case VALASP is even faster than CLINGO because VALASP does
not print the ground program. We can conclude that no overhead is eventually introduced
by VALASP on these testcases.
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Chapter 10

Related work

The use of types in programming languages eases the representation of complex knowl-
edge, favors the early detection of errors and provides an implicit documentation of source
codes [101]. For example, by stating that the arguments of predicate bday are of types
person_name and date, there is no need to document the way these elements are repre-
sented, and any attempt to instantiate this predicate with different types is blocked. ASP-
Core-2 [26], on the other hand, is untyped: there is no way to state that arguments of a
predicate must be of a specific type, the language offers a very limited set of primitive
types, and there is no idiomatic way to declare user-defined types. This work targets ASP-
Core-2, and its extensions implemented by CLINGO [48] and DLV2 [1], aiming at providing
the missing idioms to specify types and to validate data.

Types are not new in logic-based languages, and in particular order-sorted logic has
been formalized as first-order logic with sorted terms, where sorts are ordered to build a
hierarchy [67]. IDP3 [23, 27] and SPARC [15, 107, 85] are two systems with languages
close to ASP-Core-2 and supporting sorted terms. There are many differences between
these systems and the framework proposed in this work. First of all, VALASP is designed
to be smoothly integrated with ASP-Core-2 projects: the programmer is free to choose
what to validate and what to leave unchecked, and the original encoding can still be used
as it is in case validation is not required in the deployed software. Sorted terms are also
used to bound object variables in rules, while this is not possible with VALASP because it
only deals with the aspect of data validation.

The framework uses @-terms to perform data validation by means of Python functions
that are called during the grounding process. In the literature, @-terms and non-Herbrand
functions [16] were used to enrich ASP with functionality that are otherwise not viable
(if not in the Turing tarpit). External atoms in HEX [41] extend the notion of externally
interpreted function to externally interpreted relations, and can be also used to achieve
some form of data validation [104]. Hence, external atoms can be used as an alternative to
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@-terms for implementing the validation constraints defined in Section 8.1.
Finally, there are works in the literature that introduce data validation in Prolog systems

[72] and that implement data validation for Constraint Logic Programming by means of
Prolog systems [58, 102]. The goal of those works is clearly related to this part of the
thesis, but they differ on the way data validation is specified, on the target language and on
the underlying implementation. Similarly, debugging techniques for ASP [43, 50, 97, 37]
share the goal to identify errors, but with a different approach. VALASP aims at blocking
data validation errors in a very early stage, at coding time and by implementing fail-fast
techniques to point to the source of the problem. Debugging techniques instead are useful
to localize the origin of unattended behavior, and usually requires interaction with the
programmer. If VALASP is properly used, a debugger is still a useful software in the tool
belt of an ASP programmer, but on the other hand it is likely that the number of debugging
sessions will be reduced.
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Chapter 11

Conclusion

ASP programmers do mistakes, there is no shame in this. VALASP aims at early detection
of data validity errors, and promotes a fail-fast approach so that the origin of the prob-
lem can be quickly identified and fixed. The proposed approach follows the separation
of concerns design principle: validation rules are specified in Python or YAML, and are
separated from the business logic represented in ASP encodings. Such a design is useful to
smoothly introduce data validation in ASP, as validation rules can be specified externally
without the need to deeply change the way programs are written. If after deploy data can
be safely assumed valid, VALASP can be easily discharged because the original encoding
stays unchanged. The framework is open source, and can be used to validate data for both
CLINGO and DLV2.
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Appendix A

Publications

A.1 Knowledge Representation

Data Validation Meets Answer Set Programming

Presented at PADL 2021: 23rd International Symposium on Practical Aspects of Declara-

tive Languages, Copenhagen, Denmark [6].

Data validation may save the day of computer programmers, whatever programming
language they use. In fact, processing invalid data is a waste of resources at best, and a
drama at worst if the problem remains unnoticed and wrong results are used for business.
Answer Set Programming is not an exception, but the quest for better and better perfor-
mance resulted in systems that essentially do not validate data in any way. Even under
the simplistic assumption that input and output data are eventually validated by external
tools, invalid data may appear in other portions of the program, and go undetected until
some other module of the designed software suddenly breaks. This paper formalizes the
problem of data validation for ASP programs, introduces a declarative language to specify
data validation, and presents a tool to inject data validation in ordinary programs. The pro-
posed approach promotes fail-fast techniques at coding time without imposing any lag on
the deployed system if data are pretended to be valid. Additionally, the proposed approach
opens the possibility to take advantage of ASP declarativity for validating complex data of
imperative programming languages.

A speech about Generative Datalog and Non-measurable Sets

Presented at ASPOCP 2021: 14th Workshop on Answer Set Programming and Other Com-

puting Paradigms, Porto, Portugal [8].

Generative Datalog is the first component of PPDL (short for Probabilistic-Programming
Datalog), a recently proposed probabilistic programming language. Specifically, genera-
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tive Datalog provides constructs to refer to parameterized probability distribution, and is
used for the specification of stochastic processes. Possible outcomes of such a stochastic
process are possibly filtered according to logical constraints, which constitute the second
component of PPDL. This paper is about generative Datalog, and hints on the possibility to
represent non-measurable sets by combining generative Datalog constructs with addition
over real numbers and a single, atomic, ground constraint.

ValAsp: a tool for data validation in Answer Set
Programming

Accepted for publication in Theory and Practice of Logic Programming [7].

The development of complex software requires tools promoting fail-fast approaches,
so that bugs and unex- pected behavior can be quickly identified and fixed. Tools for data
validation may save the day of computer programmers. In fact, processing invalid data is
a waste of resources at best, and a drama at worst if the problem remains unnoticed and
wrong results are used for business. Answer Set Programming (ASP) is not an exception,
but the quest for better and better performance resulted in systems that essentially do not
validate data. Even under the simplistic assumption that input/output data are eventually
validated by external tools, invalid data may appear in other portions of the program, and
go undetected until some other module of the designed software suddenly breaks. This pa-
per formalizes the problem of data validation for ASP programs, introduces a declarative
language to specify data validation, and presents VALASP , a tool to inject data validation
in ordinary programs. The proposed approach promotes fail-fast techniques at coding time
without imposing any lag on the deployed system if data are pretended to be valid. Valida-
tion can be specified in terms of statements using YAML, ASP and Python. Additionally,
the proposed approach opens the possibility to use ASP for validating data of imperative
programming languages.

A.2 Neural Networks

Over the last decade, autonomous haulage vehicles used in mining operations have been
developed by several manufacturers [47]. Fortunately, vehicles that move inside the mining
area operate in a controlled environment compared to private vehicles in public highways.
In effect, the operation of self-driving haulage trucks, loaders, dozers and excavators [61]
has been well established over the last few years. However, there is a strong need for
a robust localization and navigation, vision-based sensing, proximity detection and colli-
sion avoidance as highlighted by [33] who also reported the potential use of reinforcement
learning for intelligent automatic control. A work done by [4] about robotic systems can be
tweaked to fit the requirements needed to design autonomous vehicles in the mining area.
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Particularly in the path planning and decision-making mechanism. Although the accuracy
rate is not that high from the reported test bed. This is because soccer is a complicated
game when compared to a network of vehicles travelling to accomplish a much simpler
task of hauling from point A to point B in the mining area. The researchers recognize
the latency introduced with the use of Bluetooth suffering from lost or delayed data trans-
mission and the poor computing power with the meager budget when the research was
performed. The researcher would like to explore the feasibility of implementing an even
more advanced algorithm with the advent of deep learning. A major bottleneck would be
the system described was dependent on a camera setup on a birds eye view for vision.
However, in the Pilbara region in Western Australia, large fleets of autonomous haulage
vehicles are steadily replacing manually driven vehicles. Likewise, the use of unmanned
arial vehicles (UAV) or drones have also become a routine, alleviating this problem. But
in underground environment this will not do so even the most-popular vision-based local-
ization method SLAM [90] as reported by [64] due to the dust and varying light conditions
introducing high to low contrast condition which affects color perception and accuracy. A
major issue for the research works done mentioned in this section is that human presence
is still required in many applications hence not being fully autonomous [20]. The CNN
based [20] system, detects light vehicles and personnel in an active open-pit mine site
which reduced the false positive rate. Imagine inanimate objects triggering false alarms
for autonomous trucks leading them to stop which ultimately trigger high risk and expen-
sive sever collisions. [116] furthered the purpose of collision avoidance by proposing a
similar network architecture for object recognition and terrain recognition in an open pit
mining environment.
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