

Acknowledgments

First of all, I would like to thank my Supervisor Prof. Marco Maratea. I would like to

tank my tutor as well Prof. Fulvio Mastrogiovanni. They have been an inspired figure for

me during the whole course of this “adventure”. His advices and suggestions helped me

become the person I actually am. Their knowledge inspired me and I can just consider

myself lucky and honored for his consideration towards myself.

Among all of the people I’ve worked with, I would like to thank Alessio Capitanelli. His

patient guidance in all of our works has been of great inspiration for me. Also, I would like

to thank Prof. Mauro Vallati who embraced my research visiting period in Huddersfield.

Furthermore, I would also to thank Ch.mo Prof. Nicola Leone, Coordinator of the Ph.D.

programme in Mathematics and Computer Science.

˜
Quando queste parole abiteranno una città di carta, questa tesi sarà indelebilmente termi-

nata e degli occhi, adesso, staranno navigando queste parole. Qui, i miei ringraziamenti

informali. Per iniziare, ringrazio la mia famiglia, incommensurabile costante della mia vita,

matrice della mia esistenza. Ringrazio Nicolas, che conosco da sempre e che, essendo mio

coinquilino mi ha sempre sopportato. Ringrazio Sofia, Vyshack, Francesco, Scott, Mas-

similiano, Andrea e Fabiana i miei amici conosciuti durante il mio Erasmus in francia e

sempre pronti a sostenermi. Ringrazio Andrea, Alessio e Aleks cari amici sempre pronti ad

essere un ottima fonte di distrazione. Ringrazio, fra tutti, Aldo, Francesco, Cinzia, Alessio,

Pierangela, Roberta, Francesco e Jessica e tutte le altre persone che probabilmente, in que-

sta rocambolesca valanga di emozioni, ho dimenticato. Infine, senza fine alcuna, ringrazio

Lidia, per sostenuto e sopportato durante questi anni senza mai vacillare.

“Chi non dà nulla non ha nulla. La disgrazia più grande non è non essere amati, ma non amare.”

— Albert Camus, “Taccuini 1935–1959”

Abstract

The manipulation of flexible object is of primary importance in industry 4.0 and in home

environments scenarios. Traditionally, this problem has been tackled by developing ad-hoc

approaches, that lack of flexibility and portability. We propose an approach in which a

flexible object is modelled as an articulated object, or rather, a set of links connect via

joints.

In this thesis we present a framework based on Answer Set Programming (ASP) for

the automated manipulation of articulated objects in a robot architecture. In particular,

ASP is employed for representing the configuration of the articulated object, for checking

the consistency of the knowledge base, and for generating the sequence of manipulation

actions. The framework is exemplified and validated on the Baxter dual-arm manipulator

on a simple reference scenario in which we carried out different experiments analysing the

behaviours of different strategies for the action planning module. Our aim is to have an

understanding of the performances of these approaches with respect to planning time and

execution time as well.

Then, we extend such scenario for having a higher accuracy of the setup, and to in-

troduce a few constraints in robot actions execution to improve their feasibility. Given

the extended scenario entails a high number of possible actions that can be fruitfully com-

bined, we exploit macro actions from automated planning in the module that generates

the sequence of actions, in order to deal with this extended scenario in a more effective

way. Moreover, we analyse the possibilities of mixed encodings with both simple actions

and macro actions from automated planning in different ”concentrations”.

We finally validate the framework also on this extended scenario, confirming the applica-

bility of ASP also in this complex context, and showing the usefulness of macro actions in

this robotics application.

iii

iv

Contents

Abstract iii

Contents v

List of Figures ix

List of Tables xi

1 Introduction 13

2 Answer Set Programming 23

2.1 Introduction . 23

2.2 The Language . 25

2.2.1 Syntax . 25

2.2.2 Semantics . 26

2.3 Answer Set Programming in Planning . 30

2.3.1 Introduction . 30

2.3.2 Macros in Automated Planning . 34

3 Problem Statement and Reference Scenarios 39

3.1 Introduction . 39

3.1.1 Articulated Object . 40

v

3.2 Simple Model . 41

3.3 Extended Model . 42

4 Architecture 45

4.1 Software . 45

4.1.1 Robot Operating System . 45

4.1.2 Ar Track Alvarr . 46

4.1.3 MoveIt! . 48

4.1.4 Potassco . 49

4.2 Hardware . 50

4.2.1 Baxter robot . 50

4.2.2 The Microsoft Kinect . 51

4.3 Modules and Functioning of the ASP-based Architecture 54

4.4 Modules . 55

4.4.1 Knowledge Base . 55

4.4.2 Consistency Checking . 57

4.4.3 Goal Checker . 58

4.4.4 Action Planning . 58

4.4.5 Extended Scenario . 63

5 Validation of the Framework and Performances Analysis 71

5.1 Validation of the Framework . 71

5.1.1 Simple Scenario . 71

5.1.2 Extended Scenario . 73

5.2 Performances and Data Analysis . 76

5.2.1 Simple Scenario . 76

5.2.2 Extended Scenario . 78

vi

6 Automated Planning Encodings for the Manipulation of Articulated Ob-

jects in 3D with Gravity via PDDL+ 85

6.1 PDDL . 86

6.2 Problem Statement . 88

6.3 Formulation . 90

6.3.1 Modelling Gravity . 93

6.3.2 Alternative Formulations . 95

6.4 Experimental Analysis . 96

6.4.1 Comparison of PDDL+ Models . 101

7 Related and Future works 105

7.1 Related works . 105

7.2 Future Works . 110

8 Extendability of the framework and Conclusions 113

8.1 Extendability fo the framework . 113

8.2 Future Works . 114

8.3 Conclusion . 115

Bibliography 117

vii

viii

List of Figures

2-1 A planning problem in the blocks world . 32

2-2 Initial and Goal configurations - Blocks example 33

2-3 Example of a Macro action in ASP. 37

3-1 Two possible representations: absolute (top) and relative (bottom). 40

3-2 The experimental scenario. 41

4-1 Ar track alvar . 47

4-2 Baxter robot . 50

4-3 Kinect from Microsoft . 51

4-4 Kinect data sheet . 52

4-5 The robot’s architecture: in green the ASP-based modules, in orange the

ROSPlan-based module. 53

4-6 An example of an ASP knowledge base. 56

4-7 Base encoding: it allows for forward manipulations only. 60

4-8 Rule r5 with its preconditions updated. 61

4-9 Simple Action Extended Scenario (SAES) encoding. 64

4-10 Macros encoding. 67

ix

5-1 The planning and execution process on the sample scenario: an excerpt of

the answer set returned by Clingo (a1 . . . a4 are compact references for the

ground actions). 72

5-2 mple on the extended scenario. The knowledge base of the problem solved

with both SAES and MAES (top). Then, two excerpts of the answer set

returned by Clingo: when SAES is employed (middle), and when MAES is

employed (bottom). 73

5-3 The planning and execution process on the extended scenario: the robot

actions and (intermediate) states induced by the computed plan. 75

6-1 A 3D articulated object configuration. 89

6-2 Part of the proposed PDDL+ formulation. 93

6-3 The process used in the MCU formulation to model the effect of gravity on

angles between 180 and 359 degrees. 95

6-4 A simulated Baxter robot manipulating a four link articulated object. The

robot-centred reference frame is highlighted with different colours for the

three reference axes. 97

6-5 The planning and execution process on the extended scenario: the robot

actions and (intermediate) states induced by the computed plan. 102

6-6 Comparison of ENHSP performance, in terms of PAR10, when run on the

Original formulation and on the Modified models. 103

x

List of Tables

5.1 Results, in terms of PAR10 and coverage, achieved by the considered en-

codings on the testing instances. Instances are grouped according to the

number of links of the articulated object to be manipulated (rows) and the

granularity of the angular values, with 10 instances for each pair (number of

links, granularity). Cases not solved by any considered encoding are omitted. 79

5.2 Results, in terms of PAR10 and coverage, achieved by the considered en-

codings on the testing instances. Instances are grouped according to the

number of links of the articulated object to be manipulated (rows) and the

granularity of the angular values, with 10 instances for each pair (number of

links, granularity). Cases not solved by any considered encoding are omitted. 81

5.3 Results, in terms of PAR10 and coverage, achieved by the considered en-

codings on the testing instances. Instances are grouped according to the

number of links of the articulated object to be manipulated (rows) and the

granularity of the angular values, with 10 instances for each pair (number of

links, granularity). Cases not solved by any considered encoding are omitted. 83

xi

12

6.1 Results achieved by DiNo on the considered benchmarks. Sizes greater than

7 are omitted, as the planner did not solve any benchmark of these sizes. For

each dimension of the articulated object, results are presented in terms of

average runtime (percentage of solved instances). The average is calculated

by considering solved instances only. 98

6.2 Results achieved by ENHSP on the considered benchmarks. For each di-

mension of the articulated object, results are presented in terms of average

runtime (percentage of solved instances). The average is calculated by con-

sidering solved instances only. 99

6.3 Results achieved by UPMurphi on the considered benchmarks. Sizes greater

than 5 are omitted, as the planner did not solve any benchmark as well. For

each dimension of the articulated object, results are presented in terms of

average runtime (percentage of solved instances). Average is calculated by

considering solved instances only. 100

Chapter 1

Introduction

Contest and motivation. The manipulation of articulated objects is of primary im-

portance in robotics and is one of the most complex robotics tasks [54, 64]. Traditionally,

this problem has been tackled by developing ad-hoc approaches, that lack of flexibility

and portability. The development of new software, algorithm and strategies, together

with the improvements in the mechanical design for grippers and robotic hands, for au-

tonomous robots with robust manipulation skills, can lead to breakthroughs in various

applications, such as humanoid robots, horticulture harvesting grasping, human-robot in-

teraction, planetary exploration, flexible manufacturing and much more. This gives the

possibility of addressing some of the issues related to robotized work, such as mechanical

design issues, control issues, modelling achievements and issues, applications in the indus-

trial field and non-conventional applications (including, for example, service robotics and

agriculture)[55, 64]. We view autonomous manipulation as the purposeful and deliberate

change of the configuration of an object. In the past years, attention has been paid to

the development of approaches and algorithms for generating the sequence of movements a

robot has to perform in order to manipulate an articulated object but the issue is still not

being fully addressed. In the literature, the problem of determining the two-dimensional

(2D) configuration of articulated or flexible objects has received much attention in the past

14 CHAPTER 1. INTRODUCTION

few years [13, 79, 98] whereas the problem of obtaining a target configuration via manipu-

lation has been explored in motion planning [9, 95, 100]. A limitation of such manipulation

strategies is that they are often crafted specifically for the problem at hand, with the rele-

vant characteristics of the object and robot capabilities being either hardcoded or assumed;

thus, in these contexts generalisation property and scalability are somehow limited. In-

stead, the introduction of the Industry 4.0 paradigm is expected to redefine the nature of

shop-floor environments along with many directions, including the role played by robots

in the manufacturing process: one of the main tenets considered in Industry 4.0 is the in-

creased customer satisfaction via a high degree of product personalization and just-in-time

delivery. For this reason, a higher level of flexibility in manufacturing processes is needed

to cope with such diversified demands, especially in low-automation tasks. Our approach

automatizes the manipulation of articulated objects without any assumption neither on

the characteristic of the articulated object (such as length of the links or stiffness of the

joints) neither on the model of dual-arm robot used to manipulate the object.

State of the Art. The manipulation of articulated objects plays an important role in

real-world robot tasks, both in-home and industrial environments [55, 64]. Attention has

been paid to the development of approaches and algorithms for generating the sequence of

movements a robot has to perform to manipulate an articulated object. In the literature,

the problem of determining the two-dimensional configuration of articulated or flexible

objects has received much attention in the past few years: [13] in which they introduce

two PDDL formulations of the task, which rely on conceptually different representations

of the orientation of the objects. Moreover, they present experiments involving several

planners and increasing size objects demonstrate the effectiveness of the proposed models.

[14] in which they propose an action planning and execution framework based on PDDL

formulations and a knowledge representation module based on Web Ontology Language

(OWL). In [79] they present a learning-based system where a robot takes as input a se-

quence of images of a human manipulating a rope from an initial to goal configuration and

15

outputs a sequence of actions that can reproduce the human demonstration. The human

demonstration provides a high-level plan of what to do and the low-level inverse model

is used to execute the plan. They show that by combining the high and low-level plans,

the robot can successfully manipulate a rope into a variety of target shapes using only

a sequence of human-provided images for direction. [98] propose a planning method for

knotting/unknotting of deformable linear objects; their proposed method indicates that it

is theoretically possible for any knotting manipulation of a linear object placed on a table

to be realized by a one-handed robot with three translational degrees of freedom (DOF)

and one rotational DOF. Degrees of freedom, in a mechanics context, are specific, defined

modes in which a mechanical device or system can move. The number of degrees of free-

dom is equal to the total number of independent displacements or aspects of motion.

The problem of obtaining a target configuration via manipulation has been explored in

motion planning as well: [9] describes an adaptable system which can perform manipu-

lation operations, such as Peg-in-Hole or Laying-Down actions, with flexible objects that

integrate visual tracking and shape reconstruction with a physical modelling of the materi-

als and their deformations. [95], instead, in which they present a method, which they call

trajectory transfer, for adapting a demonstrated trajectory from the geometry at training

time to the geometry at test time. Trajectory transfer is based on non-rigid registration,

which computes a smooth transformation from the training scene onto the testing scene.

[100] based their strategy on manipulating the object at high-speed: by moving the robot

at high-speed, we can assume that the dynamic behaviour of the flexible rope can be ob-

tained by performing algebraic calculations of the high-speed robot motion.

A limitation of such manipulation strategies is that they are often crafted specifically for

the problem at hand, with the relevant characteristics of the object and robot capabilities

being either hardcoded or assumed; thus, in these contexts generalisation property and

scalability are somehow limited.

16 CHAPTER 1. INTRODUCTION

Personal Contribution. In this thesis we present a framework based exclusively on

Answer Set Programming (ASP) [3, 11, 82] for the automated manipulation of articu-

lated objects in a robot 2D workspace. ASP is a general, prominent knowledge repre-

sentation and reasoning language with roots in logic programming and non-monotonic

reasoning [41]. A system composed by a Microsoft Kinect camera, QR codes and the

ROS package Ar Track Alvar, an open-source AR tag tracking library, it is used to gather

information about the articulated object. With the pose and orientation fo each link of

the object we then employ ASP to represent the configuration of the articulated object.

With an unsynchronised process, using the proprieties of ROS nodes, we use another ASP

encoding to check the consistency of the knowledge base. Once the consistency has been

ensured, another ASP encoding is used to generate the optimal sequence of manipulation

actions that change the current object configuration to the desired one. Then, a low-level

planner, in our case MoveIt!, it is used to perform the actions on the links. The framework

is first exemplified and validated, on a Baxter dual-arm manipulator, on a simple reference

scenario, that involves the manipulation of the articulated object on a 2D workspace with

the possibility of performing simple operations, like rotating a joint. During this step we

investigate different possible strategies to give a small overview of the ASP possibilities.

Then, we extend the simple scenario to allow higher representation accuracy of the setup.

Moreover, we introduce some constraints to improve the robot reliability while executing

actions(i.e. the robot can now grasp an object link only if is placed in the centre of the

robot workspace). Indeed, in this scenario, we include more information in the knowledge

base representing better the robot and its workspace and we improve the pool of selectable

actions as well. Since this extended scenario entails a high number of possible actions to

be possibly executed, that can be fruitfully combined, we exploit macro actions [17, 18, 43]

from automated planning in the module that generates the sequence of actions, to deal

with this extended scenario more effectively. We aimed to reduce both planning and exe-

cution time removing idle robot time in between the actions. Roughly, macro actions are

17

sequences of ”elementary” actions that, on the application viewpoint, would be useful to

be performed in such a sequence and considered as a ”single” action. In general, in robotics

applications, this may be useful given that performing a sequence of multiple (low-level)

actions usually takes more time than executing the relative macro. In our application

scenario, in particular, we have defined macro actions considering sequences of actions

that are often performed in sequence by the robot, thus meeting such desirable property.

During this step, we explored different strategies involving simple actions, macro actions

and various combination of the two. This gives an overview of ASP planning possibilities

on more complicated and diverse environments. We finally validate the framework also

on this extended scenario, confirming the applicability of the ASP methodology also in

the more complex context, at the same time showing the utility of macro actions in this

robotics application.

In Chapter 6, we exploit the language PDDL+ to operate on an articulated object in a

three-dimensional space. PDDL+ is an extension of PDDL2.1 and it provides a more flex-

ible model of continuous change through the use of autonomous processes and events. In

our application, we model the articulated object with 3 DOF joints and links with variable

length. We then exploited event and processes to model gravity with different formulations

considering different trade-offs between modelling accuracy, planning performances and be-

tween human-readability and parsability by planners. Finally, we validate our application

in simulation with a dual-arm Baxter robot on two sets of PDDL+ models for the task

of automated, robot-based manipulation of articulated objects in a 3D workspace. Then,

we give an overview analysis of the performances of several domain-independent PDDL+

planners on realistic articulated object manipulation tasks.

Related Works

Manipulation of Flexible/Articulated Objects The manipulation of articulated ob-

jects plays an important role in real-world robot tasks, both in-home and industrial envi-

18 CHAPTER 1. INTRODUCTION

ronments [55, 64]. Attention has been paid to the development of approaches and algo-

rithms for generating the sequence of movements a robot has to perform to manipulate

an articulated object. In the literature, the problem of determining the two-dimensional

(2D) configuration of articulated or flexible objects has received much attention in the past

few years. In [13, 14] a similar framework based on automated reasoning methodologies

have been presented. Such framework employs PDDL language and automated planning

engines for the planning module, and Description Logic (DL) solvers in the configuration

module, where data are explicitly stored in an ontology, while we use a uniform language

and approach (ASP-based) for the whole framework. Moreover, differently from most of

our approaches, encodings and solvers employed in [13, 14] are not currently able to re-

turn shortest plans, which is otherwise important, given that in this context executing

the actions can be expensive. In [61], instead, a custom-designed multi-robot platform

is presented, focused on HRI in indoor service robot for understanding natural language

requests. Planning is specified using the action language BC [65]. In [97] they propose a

planning method for knotting/unknotting of deformable linear objects. They propose a

topological description of the state of a linear object with four transitions operations. They

demonstrate that it is theoretically possible to knot a linear object placed on a table with

a one-handed robot with three translational DOF and one rotational DOF. Furthermore,

the approach described in [97] plans using hard encoded states of the linear object. This

means that it is no possible to get to configurations of the object that are not reachable

using the encoded states. Our architecture gives up on the flexibility of the object to

implement a more general approach that does not relay predetermined states. in [78] they

propose a learning-based approach to associate the behaviour of a deformable object with

a robot’s actions, using self-supervision from large amounts of data gathered autonomously

by the robot. Their method uses human-provided demonstrations as higher-level guidance:

the demonstrations tell the robot what to do, while the learned model tells it how to do

it. Differently from our architecture, there is no planning involved since it is a human

19

operator that gives instructions to the actions to perform and in which sequence. In [94] it

is present a method for adapting a demonstrated trajectory from the geometry at training

time to the geometry at test time. Trajectory transfer is based on non-rigid registration,

which computes a smooth transformation from the training scene onto the testing scene.

In this work the use a multi-step task by repeatedly looking up the nearest demonstration

and then applying for trajectory transfer. Furthermore, The strategy described in [100]

involves manipulating the object at high speed. By moving the robot at high-speed, they

assume that the dynamic behaviour of the flexible rope can be obtained by performing al-

gebraic calculations of the highspeed robot motion. Based on this assumption, a dynamic

deformation model of the flexible rope it is derived. [7] present a method to manipu-

late deformable objects that do not require modelling and simulating deformation. This

method is based on the concept of diminishing rigidity, which we use to quickly compute

an approximation to the Jacobian of the deformable object. This Jacobian is used to drive

the points within the deformable object towards a set of targets. In describing a technique

to models the bending of a sheet of paper and the paper crease lines which allows the

monitoring of the deformations. Moreover, they enabled an anthropomorphic robot to fold

paper using a set of tactile- and vision-based closed loop controllers. However, in all these

cases, manipulation actions are directly grounded on perceptual cues, such as the peculiar

geometry of the object to deal with, assumed to be easy to identify robustly, or based on

a priori known or learned information about the object to manipulate, e.g., its stiffness or

other physical features [31, 37]. As a result, every time either the element that has to be

manipulated or the manipulator changes, a new reasoner has to be developed from scratch.

In [59] they present a feature representation based on a histogram of oriented wrinkles, to

describe the shape variation of a highly deformable object like clothing. A precomputed

visual feedback dictionary using an offline training phase that stores a mapping between

these visual features and the velocity of the end-effector.

20 CHAPTER 1. INTRODUCTION

Manipulation in Motion Planning It is possible to find examples in which robots

exhibit the capability of manipulating and operating on mobile parts of the environment,

such as handles of different shapes [21], home furniture [62] or valves in search and rescue

settings [80]. In [21] they design a task descriptor which encapsulates important elements

of a task. They propose a method that enables a robot to decompose a demonstrated

task into sequential manipulation primitives and construct a task descriptor and then they

show how to transfer a task descriptor learned from one object to similar objects. [62] they

èresent an automated assembly system that directs the actions of a team of heterogeneous

robots in the completion of an assembly task. From an initial user-supplied geometric

specification, the system applies reasoning about the geometry of individual parts to de-

duce how they fit together. In [80] an integrated valve-turning skill is presented. It only

requires an operator to issue a supervisory command to launch valve identification, motion

planning, biped locomotion and valve manipulation. However, the employed manipulation

strategies are often crafted specifically for the problem at hand, with the relevant char-

acteristics of the object and robot capabilities being either hardcoded or assumed, thus

undermining generalisation and scalability. A structured approach to perception, repre-

sentation and reasoning, as well as execution, seems beneficial: on the one hand, we can

decouple perception and representation issues, thus not being tied to specific perception

approaches or ad hoc solutions; on the other hand, domain knowledge and reasoning logic

can be separated, with the advantages of an increased maintainability, and the possibility

to interchange reasoners and models in a modular way.

Reasoning About Actions Actions when executed often change the state of the world.

Reasoning about actions helps us to predict if a sequence of actions is indeed going to

achieve some goal that we may have; it allows us to plan or come up with a sequence of

actions that would achieve a particular goal and maintain particular trajectories; it allows

us to explain observations in terms of what actions may have taken place, and it allows us to

diagnose faults in a system in terms of finding what actions may have taken place to result in

21

the faults [5]. [72] points out that, in ontologies, semantic constraints abstract from the way

some fact about the case at hand may be represented properly. These semantic constraints

can be computed from stored data, in the process implementation. In [6, 48] ASP can be

used for verification of properties with Bounded Model Checking This is true if the actions

are expressed in an extension of Linear Temporal Logic, of an action domain modelled in

terms of fluents, action laws providing direct effects of actions, and causal laws. In [45] they

combine Answer Set Programming with Dynamic Linear Time Temporal Logic to define

a temporal logic programming language for reasoning about complex actions and infinite

computations. Moreover, in [46] they present a framework that can be used for reasoning

on business processes. In this work, they show that ASP can be used for verifying process

properties in temporal logic. In [47] it is showed that reasoning about actions performed

in ASP can rely on domain knowledge in a low-complexity Description Logic. In [44]

they describe an approach to process modelling and semantic analysis that can exploit

terminological knowledge in relying upon process activities to semantic constraints, via

the definition of effects and preconditions of activities, and domain knowledge that relates

such effects to the terms used in semantic constraints

Macro Operators An important line of research in AI planning focuses on increasing

efficiency of the planning process by reformulating the domain knowledge, to obtain mod-

els that are more amenable for automated reasoners. Significant work has been done in

the area of the reformulation for improving the performance of domain-independent plan-

ners. Macro-operators [16, 63, 76, 81] are one of the best-known types of reformulation in

classical planning; they encapsulate in a single planning operator a sequence of “original”

operators. Technically, an instance of a macro is applicable in a state if and only if a cor-

responding sequence of operators’ instances is applicable in that state and the result of the

application of the macro’s instance is the same as the result of the application in the corre-

sponding sequence of operators’ instances. Informally speaking, macros can be understood

as shortcuts in the search space allowing planning engines to generate plans in fewer steps.

22 CHAPTER 1. INTRODUCTION

In automated planning, macros have been proven to be effective in domains where some

actions are likely to be always executed in the same sequence, or in cases where critical

sections can be identified, i.e., where there are activities that need to use a limited resource

[17]. Notably, the notion of macros can also be exploited by specifically enhanced planning

reasoners. This is the case for MacroFF SOL-EP version [10] which can exploit offline

extracted and ranked macros, and Marvin [19] that generates macros online by combining

sequences of actions previously used for escaping plateaus. Such systems can efficiently

deal with drawbacks of specific planning engines, in this case, the FF planner [56]; however,

their adaptability for different planning engines might below. In this work, we aimed at

exploiting macros in ASP following the more traditional solver-independent approach, i.e.,

by modifying the encoding, replacing simple actions with macros.

Thesis structure. This document is structured as follows. First, Chapter 2 gives an

overview of the Answer Set Programming language and of its employment in automated

planning. Moreover, we explain in this Chapter the concept of macros both in general

and with respect to Answer Set Planning. After, Chapter 3 explain in detail the scenarios

models we have been working on, both the simple and the extended scenario, while Chapter

4 gives an insight of all the software tools we used to implement our architecture with all the

hardware that was necessary as well. Moreover, explains in deep each module composing

our robot-based architecture. In Chapter 5 we present and discuss the results of our

experiments. In this Chapter, inside Section 5.1, we also discuss the validation on both

the scenarios: the simple reference scenario and the extended reference scenario using a

Baxter dual-arm manipulator. Then, Chapter 6 introduced the implementation and results

of our PDDL+ implementation on the manipulation of articulated objects in a 3D space

and it explains how we modelled gravity. Finally, Chapter 8 summarize our conclusions

and discuss future works with a focus on the extendability of our strategy to other robots.

Chapter 2

Answer Set Programming

2.1 Introduction

Answer Set Programming (ASP),[4, 74] referred to also as Disjunctive Logic Programming

under the stable model semantics (DLP), is a powerful formalism for Knowledge Represen-

tation and Reasoning. Bloomed from the work of Gelfond, Lifschitz [29, 42] and Minker

[15, 35] in the 1980s, it has enjoyed a continuously increasing interest within the scientific

community. One of the main reasons for the success of ASP is the high expressive power of

its language: ASP programs, indeed, allow us to express, in a precise mathematical sense,

every property of finite structures over a function-free first-order structure that is decidable

in nondeterministic polynomial time with an oracle in NP [22, 30] (i.e., ASP captures the

complexity class ΣP 2 = NPNP). Thus, ASP allows us to encode also programs which

cannot be translated to SAT in polynomial time.

Moreover, ASP is fully declarative (the ordering of literals and rules is immaterial), and

the ASP encoding of a large variety of problems is very concise, simple, and elegant [29].

Example 1. Consider the 3-Colourability problem, a well-known NP-complete problem.

Given a graph, the problem is to decide whether there exists an assignment of one of

24 CHAPTER 2. ANSWER SET PROGRAMMING

three colours (say, red, green, or blue) to each node such that adjacent nodes always have

different colours. Suppose that the graph is represented by a set of facts z using a unary

predicate node(X) and a binary predicate arc(X, Y). Then, the following ASP program (in

combination with F) computes all 3-Colorings (as stable models) of that graph.

r1: color(X, red) ∨ color(X, green) ∨ color(X, blue) : −node(X).

r2: : −color(X1, C), color(X2, C), arc(X1, X2).
(2.1)

Rule r1 expresses that each node must either be coloured red, green, or blue; due to

minimality of the answer sets models, a node cannot be assigned more than one colour.

The subsequent integrity constraint checks that no pair of adjacent nodes (connected by an

arc) is assigned the same colour d the answer sets of z∪{r1, r2}. The graph is 3-colourable

if and only if z ∪ {r1, r2} has some answer set.

Unfortunately, the high expressiveness of ASP comes at the price of a high computational

cost in the worst case, which implements efficient systems a difficult task. Nevertheless,

starting from the second half of the 1990s, and even more in the latest years, several

efficient ASP systems have been released [28, 67], that encouraged a number of applications

in many real-world and industrial contexts [57, 68]. These applications have confirmed

the viability of the ASP exploitation for advanced knowledge-based tasks and stimulated

further research in this field. The Italian research community-produced, in the latest 30

years, a significant contribution in the area, addressing the whole spectrum of issues cited

above; this contribution ranged from theoretical results and characterizations [51, 69], to

practical applications [57, 68, 90], stepping through language extensions [20, 67], evaluation

algorithms and optimization techniques [73, 85]. Several of the achieved results are widely

recognized as milestones on the road to the current state of the art; this is, for instance,

the case of the DLV project [67], that produced one of the world-leading ASP systems.

2.2. THE LANGUAGE 25

2.2 The Language

2.2.1 Syntax

Following as standard convention the Prolog syntax, strings starting with uppercase letters

denote logical variables, while strings starting with lower case letters denote constants. A

term is either a variable or a constant. An atom is an expression p(t1, ..., tn), where p is a

predicate of arity n and t1, ..., tn are terms. A literal l is either an atom p (positive literal) or

its negation not p (negative literal). Two literals are said to be complementary if they are

of the form p and not p for some atom p. Given a literal l, not.l denotes its complementary

literal. Accordingly, given a set L of literals, not.L denotes the set {not.l|l ∈ L}. A set L

of literals is said to be consistent if, for every literal l ∈ L, its complementary literal is not

contained in L. A disjunctive rule (rule, for short) r is a construct:

a1 ∨ · · · ∨ an : −b1, . . . , bk, not bk+1, . . . , not bm. (2.2)

where a1, . . . , an and b1, . . . , bm are literals for n > 0, m > 0 and k > 0. The disjunction

a1 ∨ · · · ∨ an is called the head of r, while the conjunction b1 . . . bk, not bk+1 . . . not bm is

referred to as the body of r. A rule without head literals (i.e. n = 0) is usually referred to

as an integrity constraint. A rule having precisely one head literal (i.e. n = 1) is called a

normal rule. If the body is empty (i.e. k = m = 0), it is called a fact, and in this case the

“ :- ” sign is usually omitted. The following notation will be useful for further discussion.

If r is a rule of form (1), then H(r) = {a1, . . . , an} is the set of literals in the head and

B(r) = B+(r) ∪ B-(r) is the set of the body literals, where B+(r) (the positive body) is

{b1, . . . , bk} and B-(r) (the negative body) is {bk + 1, . . . , bm}. An ASP program (also

called Disjunctive Logic Program or DLP program) P is a finite set of rules.

A not-free program P (i.e., such that ∀r ∈ P : B−(r) = ∅) is called positive or Horn: in

positive programs negation as failure (not) does not occur. Instead a v-free program P

(i.e., such that ∀r ∈ P : |H(r)| 6 1) is called normal logic program.

26 CHAPTER 2. ANSWER SET PROGRAMMING

It is important to notice that in ASP rules in programs are usually required to be safe:

this safety request comes from the databases field (for a detailed discussion, we refer to

[77]). A rule r is safe if each variable in r also appears in at least one positive literal in

the body of r. An ASP program is safe if each of its rules is safe; in the following, we will

only consider safe programs.

A term, an atom, a rule or a program, is called ground if no variable appears in it.

2.2.2 Semantics

We next describe the semantics of ASP programs, which is based on the answer set seman-

tics originally defined in [29]. However, different from [29] only consistent answer sets are

considered, as it is now standard practice. In ASP the availability of some pre-interpreted

predicates is assumed, such as =, <, >. However, it would also be possible to define them

explicitly as facts, so that they are not treated differently.

Herbrand Universe and Literal Base. For any program P , the Herbrand universe,

denoted by UP , is the set of all constants occurring in P . If no constant occurs in P , UP

consists of one arbitrary constant. The Herbrand literal base BP is the set of all ground

literals constructible from predicate symbols appearing in P and constants in UP .

Ground Instantiation. For any rule r, Ground(r) denotes the set of rules obtained

by replacing each variable in r by constants in UP in all possible ways. For any program

P , its ground instantiation is the set grnd(P) = dr∈PGround(r). It is important to notice

that for propositional programs, P = grnd(P) holds.

2.2. THE LANGUAGE 27

Answer Sets. For every program P , its answer sets are defined by using its ground

instantiation grnd(P) in two steps: first the answer sets of positive disjunctive programs

are defined, then the answer sets of general programs are defined by a reduction to positive

disjunctive programs and a stability condition. An interpretation I is a consistent set of

ground literals I ⊆ BP w.r.t. a program P .

Given a program P and a (consistent) interpretation I ⊆ Bp, a rule h1| . . . |hm : −b1, . . . , bn.

in grnd(P) is satisfied w.r.t. I if some h ∈ {h1, . . . , hm} is true w.r.t. I when b1, . . . , bn are

true w.r.t. I; I is a model of P if every rule in grnd(P) is satisfied w.r.t. I. The reduct

of P w.r.t. I, denoted by P I , consists of the rules h1| . . . |hm : −b1, . . . , bn. in grnd(P) such

that b1, . . . , bn are true w.r.t. I; I is an answer set of P if I is a ⊆ minimal model of P I .

In other words, an answer set I of P is a model of P such that no proper subset of I is a

model of P I .The semantics of P is given by the collection of its answer sets, denoted by

AS(P).

A consistent interpretation X ⊆ BP is called closed under P (where P is a positive dis-

junctive datalog program), if, for every r ∈ grnd(P), H(r) ∩X 6= ∅ whenever B(r) ⊆ X.

An interpretation which is closed under P is also called model of P . An interpretation

X ⊆ BP is an answer set for a positive disjunctive program P , if it is minimal (under set

inclusion) among all (consistent) interpretations that are closed under P .

Example 2. The positive program P1 = {a ∨ b ∨ c.} has the answer sets {a}, {b}, and

{c}; they are minimal and correspond to the multiple ways of satisfying the disjunction.

Its extension P2 = P1 ∪ {: −a.} has the answer sets {b} and {c}: comparing P2 with

P1, the additional constraint is not satisfied by interpretation {a}. Moreover, the positive

program P3 = P2∪{b : −c., c : −b.} has the single answer set {b, c} (indeed, the remaining

consistent closed interpretation {a, b, c} is not minimal). Finally, it is easy to see that,

P4 = P3 ∪ {: −c.} has no answer set.

28 CHAPTER 2. ANSWER SET PROGRAMMING

Example 3. For the negative ground program P5 = {a : −not b.}, A = {a} is the only

answer set, as PA5 = {a.}. For example for B = b, PB5 = ∅, and so B is not an answer set.

Choice rules, normal rules, and integrity constraint To ease the use of ASP in

practice, several extensions have been developed. First of all, rules with variables are

viewed as shorthands for the set of their ground instances. For a ∈ A, where A is the set

of all literals, a choice rule r is of the form {a} ← B(r) and stands for the pair of rules

a ← B(r), not a′ and a′ ← B(r), not a where a′ is a new symbol associated with a. We

define H(r) = {a} for a choice rule as r. Further language constructs include conditional

literals and cardinality constraints. The former are of the form a : b1, . . . , bm, the latter

can be written as s {d1; . . . ; dn} t, where a and bi are possibly negated (regular) literals

and each dj is a conditional literal; s and t provide optional lower and upper bounds

on the number of satisfied literals in the cardinality constraint. We refer to b1, . . . , bm

as a condition. The practical value of both constructs becomes apparent when used with

variables. For instance, a conditional literal like a(X) : b(X) in a rule’s antecedent expands

to the conjunction of all instances of a(X) for which the corresponding instance of b(X)

holds. Similarly, 2 {a(X) : b(X)} 4 is true whenever at least two and at most four instances

of a(X), subject to b(X), are true. Finally, assignments are of form t = d1; . . . ; dn. E.g.,

Y = a(X) : b(X) is true if Y equals the number of satisfied instances of a(X) : b(X). We

identify the choice rules, normal rules, and integrity constraint in a logic program P by

means of c(P), n(P), and i(P), respectively. We define a program P as normalized, if it

can be partitioned into c(P), n(P), and i(P), such that B(r) = ∅ for each r ∈ c(P) and

n(P) is stratified [87].

Heuristic In computer science, artificial intelligence, and mathematical optimization, a

heuristic is a technique designed for solving a problem more quickly when classic methods

are too slow, or for finding an approximate solution when classic methods fail to find any

2.2. THE LANGUAGE 29

exact solution. This is achieved by trading optimality, completeness, accuracy, or precision

for speed. In a way, it can be considered a shortcut. In our case, it is used to reduce

the size of the state search in order to find faster the answer set. A heuristic function,

also called simply a heuristic, is a function that ranks alternatives in search algorithms at

each branching step based on available information to decide which branch to follow. For

example, it may approximate the exact solution.

The objective of a heuristic is to produce a solution in a reasonable time frame that is

good enough for solving the problem at hand. This solution may not be the best of all

the solutions to this problem, or it may simply approximate the exact solution. But it

is still valuable because finding it does not require a prohibitively long time. Heuristics

may produce results by themselves, or they may be used in conjunction with optimization

algorithms to improve their efficiency. Results about NP-hardness in theoretical computer

science make heuristics the only viable option for a variety of complex optimization prob-

lems that need to be routinely solved in real-world applications. Heuristics underlie the

whole field of Artificial Intelligence and the computer simulation of thinking, as they may

be used in situations where there are no known algorithms.

Early static heuristics (e.g. Jeroslaw-Wang [58], Literal Count [75]) picked the next variable

based on the number of appearances (scores) of different variables in unsatisfied clauses.

A major drawback of such an approach is that score calculation requires visiting all the

clauses at each node of the search three built from the solver, which implies a very sig-

nificant overhead. Another disadvantage of static heuristics is that they do not consider

information that can be retrieved after a conflict during implication graph analysis. Heuris-

tics based upon such analyses were found to be several orders of magnitude faster [50, 77].

The first dynamic heuristic is called Variable State Independent Decaying Sum (VSIDS)

[77]. According to VSIDS, each literal is associated with a counter cl(p), whose value is

increased once a new clause containing p is added to the database. Counters are initialized

to 0. Every once in a while, all counters are halved. The next literal to be picked is the

30 CHAPTER 2. ANSWER SET PROGRAMMING

one with the largest counter. Ties are broken randomly. Two major advantages of VSIDS

over the previous heuristics are that: (1) VSIDS is characterized by a negligible compu-

tational cost; (2) VSIDS gives preference to literals that participate in recent conflicts,

i.e. it is dynamic. Another well-known decision heuristic, which proved to be even more

successful than VSIDS, is MiniSat SAT solver. It implements a variant of VSIDS that,

instead of infrequent halving of the scores, MiniSat multiplies the scores after each conflict

by 0.95 making the heuristic more dynamic. Based on MiniSat it exists nOPTSAT optsat

[24, 49]: it allows for constraints, expressed as preferences, to be partially ordered and

in many applications, the number of preferences is relatively low. It extends DPLL to

compute one optimal model of a set of clauses with respect to a qualitative preference on

literals. Therefore, it allows for inconsistent sets of preferences and a partial order on the

preferred literals.

2.3 Answer Set Programming in Planning

2.3.1 Introduction

The term planning is commonly referred to as the explicit deliberation process that chooses

and organizes actions by anticipating their outcomes and that aims at achieving some pre-

stated objectives. In particular, planning in artificial intelligence is the computational

study of this deliberation process and it is referred to as automated planning. Automated

planning is that branch of artificial intelligence that concerns the realization of strategies

or action sequences, typically for execution by intelligent agents, autonomous robots and

unmanned vehicles. Unlike classical control and classification problems, the solutions are

complex and must be discovered and optimized in multidimensional space. It is important

to underline that AI planning is also related to decision theory.

In known environments with available models, planning can be done offline and the solu-

tions can be found and evaluated prior to execution. In dynamically unknown environ-

2.3. ANSWER SET PROGRAMMING IN PLANNING 31

ments, the strategy often needs to be revised online, indeed, models and policies must be

adapted. Solutions usually resort to iterative trial and error processes commonly seen in

artificial intelligence. These include dynamic programming, reinforcement learning and

combinatorial optimization. Languages used to describe planning are often called action

languages. Given a description of the possible initial states of the world, a description of

the desired goals, and a description of a set of possible actions, the planning problem is to

synthesise a plan that is guaranteed (when applied to any of the initial states) to generate

a state which contains the desired goals (such a state is called a goal state). An action lan-

guage is a language for specifying state transition systems and is commonly used to create

formal models of the effects of actions on the world. Action languages are commonly used

in the artificial intelligence and robotics domains, where they describe how actions affect

the states of systems over time, and may be used for automated planning. Action languages

fall into two classes: action description languages and action query languages. Examples of

the former include STRIPS, PDDL, Language A (a generalization of STRIPS), Language

B (an extension of A) and Language C. There are also the Action Query Languages P,

Q and R and, finally, Answer Set Programming (ASP). Indeed, since modern answer-set

solvers make use of boolean SAT algorithms to very rapidly ascertain satisfiability, this

implies that action languages can also take advantage of the progress being made in the

domain of boolean SAT solving.

Answer Set Planning Answer Set Planning was one of the first challenging applica-

tions of Answer Set Programming (ASP). However, when putting plans into practice, their

execution and monitoring lead to an increased complexity. Foremost, this is due to the

inherent incompleteness of information faced in real-world scenarios. This fundamental

problem has already been addressed in various ways, as in conformant, assertional, and

assumption-based planning, and often combined with additional sensing actions.

32 CHAPTER 2. ANSWER SET PROGRAMMING

1 3 5

2 4 6

3 6

2 5

1 4

Figure 2-1: A planning problem in the blocks world

In a planning problem, one looks for a sequence of actions that leads from a given initial

state to a given goal state. Turning one configuration of blocks into another is, indeed, a

planning problem. We will use this example to illustrate some ideas of answer set planning.

To specify a planning problem completely, it is necessary to state which actions are allowed

in a plan. When a block is ”clear”, or rather there is nothing on top of it, it is assumed

that it can be placed on top of any tower of blocks or on the table. Thus moving a block

located in the middle of a tower, along with everything on top of it, is prohibited. To

make the blocks world more interesting, let us assume that the robot that will act on the

blocks has two grippers that can move blocks independently. For instance, in the initial

state shown in Figure 2.3.1, blocks 1 and 3 can be moved concurrently. Since a block can

be moved only when it is clear, moving blocks 1 and 2 concurrently is impossible. Besides,

we assume that the robot is unable to move b onto b′ if b′ is being moved also. Even with

these restrictions, the planning problem above can be solved in 3 steps:

1. Place blocks 1 and 3 on the table.

2. Place block 2 on block 1 and block 5 on block 4.

3. Place block 3 on block 2 and block 6 on block 5.

Research on planning has two components: representation (design of declarative languages

for specifying planning problems) and search (design of planning algorithms). An impor-

tant class of planning algorithms is based on the idea of reducing a planning problem to

the problem of computing a satisfying interpretation for a set of propositional formulas.

2.3. ANSWER SET PROGRAMMING IN PLANNING 33

This is known as satisfiability planning.

An important advantage of answer set planning is that the representation of properties

of actions is easier when logic programs are used instead of classical logic, given the non-

monotonic character of negation as failure. The idea of answer set planning is due to

Subrahmanian and Zaniolo [96], and the results of computational experiments that use

smodels to compute answer sets are reported in [26, 83].

The key element of answer set planning is the representation of a dynamic domain such as

the blocks world in the form of a ”history program” a program whose answer sets represent

possible ”histories”, or evolutions of the system, over a fixed time interval [70].

The answer sets for that program represent possible evolutions of the blocks world over

the time interval 0, . . . , T for a fixed positive integer T . A history of the blocks world is

characterized by the truth values of atoms of two kinds: on(b, l, t) (block b is on location

l at time t) and move(b, l, t) (block b is moved to location l between times t and t + 1).

Here b ranges over blocks and l ranges over locations; the time variable t ranges over the

time instants 0, . . . , T , except that the atoms move(b, l, t) are introduced only for t 6= T .

When such a program is available, we can compute a plan of length T that solves a given

planning problem, or establish that there is no such plan, in the following way. The history

program is extended by the constraints representing the initial state and the goal state of

the problem. In the example above, T = 3 and the constraints are:

← not on(1, 2, 0)

← not on(2, table, 0)

← not on(3, 4, 0)

. . .

← not on(1, table, 3)

← not on(2, 1, 3)

← not on(3, 2, 3)

. . .

Figure 2-2: Initial and Goal configurations

The answer sets for the extended program correspond to the plans of length T that lead

from the initial state to the goal state. A planner would invoke a system for computing

34 CHAPTER 2. ANSWER SET PROGRAMMING

answer sets to find an answer set X for the extended program, and then return the list of

all atoms in X that represent actions (in the case of the blocks world, the atoms beginning

with move). To find a plan consisting of the smallest possible number of steps, the planner

would invoke a system for computing answer sets several times, with different values of T ,

using binary search if desired. (A similar process is used in satisfiability planning.)

2.3.2 Macros in Automated Planning

A macro-action, or macro in short, is a group of actions selected for application at one time

like a single action. Macros could represent high-level tasks comprising low-level details.

From a broader perspective, macros are like subroutines or procedures in the programming

paradigm. However, macros are a promising means by which significant knowledge could

be conveyed. Combining several steps in the state space, macros provide extended visibility

of the search space to the planner. Carefully chosen macros could help find nodes that

are better than the current nodes especially when the goodness of the immediate search

neighbourhood cannot be measured appropriately.

Macros encapsulate sequences of (ordinary) planning operators. Advantageously, they

can be encoded in the same form as planning operators; macros can, therefore, be added

into a domain model and can be exploited in a solver-independent way (e.g. encoded in

PDDL). As we said, from a search perspective, macros can be seen as “short-cuts” in the

state space: they can reduce the number of steps needed to reach the goal, however, at the

cost of an increased branching factor.

Let us provide a more formal description of planning operators, and of macros in auto-

mated planning. The classical (STRIPS) representation considers static and fully observ-

able environment, and deterministic and instantaneous action effects. The environment

is described by first-order logic predicates defined as p = pred name(x1, . . . , xn), where

pred name is a unique predicate name and x1, . . . xn are variable symbols. States are de-

fined as sets of atoms (grounded predicates whose variable symbols are substituted with

2.3. ANSWER SET PROGRAMMING IN PLANNING 35

constants - problem-specific objects).

We say that an operator o = (name(o), pre(o), del(o), add(o)) is a planning operator, where

name(o) = op name(x1, . . . , xk) (op name is an unique operator name and x1, . . . xk are

variable symbols (arguments) appearing in the operator) and pre(o), del(o) and add(o) are

sets of (ungrounded) predicates with variables taken only from x1, . . . xk representing o’s

precondition, delete, and add effects, respectively. Actions are grounded instances of plan-

ning operators. An action a is applicable in a state s if and only if pre(a) ⊆ s. Application

of a in s (if possible) results in a state (s \ del(a)) ∪ add(a).

A planning domain model D = (P,O) is specified by a set of predicates (P) and a

set of planning operators(O). A planning task Π = (D, I,G) is specified via a domain

model (D), initial state (I) and set of goal atoms (G). Given a planning problem, a plan

is a sequence of actions such that their consecutive application starting in the initial state

results in a state containing all the goal atoms.

Given a planning task Π, we say that a state s′ is reachable from a state s if and only

if there exists a sequence of actions such that their consecutive application starting in s

results in s′.

A Substitution is a set of mappings from variable symbols to terms that are used to

determine which arguments (variable symbols) operators share. Hereinafter, we will assume

that different operators have distinct parameters as arguments unless stated otherwise. In

the set operations over sets of ungrounded predicates we assume that only predicates having

the same name and the same arguments (i.e. the same parameter symbols ordered in the

same way) are equivalent.

Naturally, actions influence each other in plans. We say that an action ai is an achiever

for an action aj if an only if add(ai) ∩ pre(aj) 6= ∅. We also say that actions ai and aj are

independent if and only if del(ai)∩(pre(aj)∪add(aj)) = ∅ and del(aj)∩(pre(ai)∪add(ai)) =

∅.

Formally, a macro oi,j is constructed by assembling planning operators oi and oj (in

36 CHAPTER 2. ANSWER SET PROGRAMMING

that order) as follows. Let Φ and Ψ be mappings between variable symbols (we possibly

need to appropriately rename variable symbols of oi and oj to construct oi,j).

• pre(oi,j) = pre(Φ(oi)) ∪ (pre(Ψ(oj)) \ add(Φ(oi)))

• del(oi,j) = (del(Φ(oi)) \ add(Ψ(oj))) ∪ del(Ψ(oj))

• add(oi,j) = (add(Φ(oi)) \ del(Ψ(oj))) ∪ add(Ψ(oj))

Longer macros, i.e., those encapsulating longer sequences of original planning operators,

can be constructed iteratively by the above approach.

For a macro to be sound, no instance of Φ(oi) can delete an atom required by a corre-

sponding instance of Ψ(oj), otherwise they cannot be applied consecutively. Whereas it is

obvious that if a predicate deleted by Φ(oi) (and not added back) is the same (both name

and variable symbols) as a predicate in the precondition of Ψ(oj) then the macro oi,j is

unsound.

Representing Macros in ASP In ASP, a macro is encoded by a single choice rule,

which implicitly represents multiple actions, and by several normal rules needed to model

their effects. The head of the choice rule contains a single fresh atom, whose variables are

all the one appearing in the body of the choice rule, whereas the body of the choice rule is

built as described in the following. Given a rule ri representing an action, pre(ri) denotes

the body of the rule. Intuitively, it represents the conditions that must hold in order to

activate the action represented by the rule. Moreover, del(ri) (resp. add(ri)) represent all

the atoms that are set as false (resp. true) whenever the conditions denoted by pre(ri)

hold. Then, a macro ri,j is constructed by assembling the rules representing single actions

and by generating pre(ri,j), del(ri,j), and add(ri,j), as follows:

• pre(ri,j) = pre(ri) ∪ (pre(rj) \ add(ri))

• del(ri,j) = (del(ri) \ add(rj)) ∪ del(rj)

2.3. ANSWER SET PROGRAMMING IN PLANNING 37

• add(ri,j) = (add(ri) \ del(rj)) ∪ add(rj)

where ri and rj are two distinct rules. Then, for a macro ri,j , the body of the choice rule

is represented by pre(ri,j).

{linkToCentral take(L1,L2,J1,J2,G1,G2,T)} :- link(L1), link(L2),
joint(J1), joint(J2), gripper(G1), gripper(G2), time(T),
not in centre(J1,T), connected(J1,L1), connected(J1,L2),
free(G1,T), free(G2,T), L1<>L2, G1<>G2.

Figure 2-3: Example of a Macro action in ASP.

38 CHAPTER 2. ANSWER SET PROGRAMMING

Chapter 3

Problem Statement and Reference

Scenarios

3.1 Introduction

Our goal is to present (i) an efficient ASP-based planning and execution architecture for the

manipulation of articulated objects in terms of perceptual features, their representation and

the planning of manipulation actions, which maximises the likelihood of being successfully

executed by robots, and (ii) given a specific object’s goal configuration, determine a plan

to attain it, in which each step involves one or more manipulation actions to be executed

by a dual-arm robot. Our working assumptions are:

A1 flexible objects can be appropriately modelled as articulated objects with a high

number of links and joints, as it is customary [100];

A2 an object’s configuration is only affected by robot manipulation actions, or possibly

by humans, and the effects of external forces such as gravity are not considered;

A3 we do not consider possible issues related to grasping or dexterity during the manip-

ulation task;

40 CHAPTER 3. PROBLEM STATEMENT AND REFERENCE SCENARIOS

Figure 3-1: Two possible representations: absolute (top) and relative (bottom).

A4 sensing is affected by noise, but the symbol grounding problem, i.e., the association

between perceptual features and the corresponding symbols [52], is assumed to be

solved.

Based on assumption A1, we focus on articulated objects only.

In this section, we present, in two separate sub-sections, the simple scenario and the

extended scenario we have set up.

3.1.1 Articulated Object

We define an articulated object as a pair α = (L,J), where L is the ordered set of its

|L| links and J is the ordered set of its |J | joints. Each link l ∈ L is characterised by

two parameters, namely a length λl and an orientation θl. We allow only for a limited

number of possible orientations, which induces a finite set of allowed angle orientations. If

α is represented using absolute angles (Figure 3-1 on the top), then its configuration is a

|L|-ple:

Cα,a =
(
θa1 , . . . , θ

a
|L|

)
. (3.1)

3.2. SIMPLE MODEL 41

Figure 3-2: The experimental scenario.

Otherwise, if relative angles are used (Figure 3-1 on the bottom), then the configuration

must be augmented with an initial hidden link l0 in order to define a reference frame:

Cα,r =
(
θr1, θ

r
2, . . . , θ

r
|L|

)
. (3.2)

In fact, while in principle the relative approach could represent the configuration of an

articulated object with one joint less compared to the absolute one, the resulting repre-

sentation would not be unique, since the object maintains relative orientations among its

parts even when rotated as a whole.

3.2 Simple Model

In order to comply with assumption ”an object’s configuration is only affected by robot

manipulation actions, or possibly by humans, and the effects of external forces such as

gravity are not considered”, which allows us to focus on the manipulation process, we set

up a scenario in which a dual-arm Baxter robot manipulates an articulated object that

is conveniently located on a table in front of it. The table sustains the object while it is

being manipulated by the robot, and it is assumed to be large enough to accommodate

the whole object itself, see Figure 3-2. As a consequence, link rotations occur only around

42 CHAPTER 3. PROBLEM STATEMENT AND REFERENCE SCENARIOS

axes centred on specific object joints, but always perpendicular to the table surface. We

have crafted two wooden articulated objects of different size: the first, which is simpler,

has three 40 cm long links (which are connected by two in-between joints), whereas the

second is made up of five 20 cm long links (connected by four joints). For both objects,

links are 2 cm wide and 3 cm thick. The two objects have been designed to reduce the

likelihood of manipulation-specific issues when using Baxter’s standard grippers, to comply

with assumption A3. Baxter’s head is equipped with a camera pointing downward to the

table and able to acquire images of the relevant robot manipulation workspace. AR tags

are attached to each object link l, which reduces perception errors and is aimed at meeting

assumption A4. Each AR-tag provides an overall link pose, which directly maps to an

absolute link orientation θal . Finally, if relative orientations are chosen, we compute them

by performing an algebraic sum between the two absolute poses of two consequent links,

e.g., θr1 = θa2 − θa1 . After this general scenario introduction, in the next section, we detail

the architecture.

3.3 Extended Model

Observing the performance during the execution of our framework, we noticed that the

robot was not always able to perform the requested action due to the inappropriate posi-

tion of the links to manipulate; for example, links that moved outside the working space

and could not be reached by the robot. For these reasons we introduce an extended sce-

nario. This scenario does not modify any physical characteristics with respect to the setup

introduced in Section 3.2, but represents with higher accuracy the setup, and introduces a

few constraints in robot actions execution to improve their feasibility.

Herewith we briefly describe such modelling, and whenever relevant we highlight the

main modifications we introduced to the initial scenario.

• The robot grippers are now explicitly modelled. Each gripper should be considered

3.3. EXTENDED MODEL 43

as a resource that can be occupied (i.e., keeping a link firmly, or rotating a link) or

free. The new scenario takes this into account. In this case, it is possible to explicitly

represent which gripper can manipulate a given link.

• For several reasons related to the articulated object’s configuration while being ma-

nipulated, or the specific sequence of manipulation actions, or because of issues con-

cerning gripper-related motion planning and execution, in the simple scenario it may

happen that a link could not be reached or grasped, or it may be placed to a part

of the robot’s workspace where manipulation could be difficult. In the extended sce-

nario, each time a manipulation action is carried out on a given link, it is assured

that the link is centred in the robot workspace. If this is not the case, the link is moved

towards the central part of the table. This maximises the likelihood of a relevant link

to be well-centred in the robot workspace.

• Now grasping and release actions by the two grippers are explicitly modelled. In the

scenario described in Section 3.3, these two actions were not modelled. They were

assumed to be properly carried out during the execution phase, as part of each action

execution. With an explicit modelling, we can represent grippers’ occupancy, and

we better characterise the semantics associated with each action, since now grasping,

manipulation, and release are distinct.

It is noteworthy that the above-mentioned features allow for several improvements. We

can envisage two main advantages: on the one hand, the encoding is expected to be able

to better manage the explicitly modelled robot resources (i.e., the grippers); on the other

hand, manipulation actions are characterised by a more precise semantics, which does not

make any implicit assumption about actual robot behaviour.

44 CHAPTER 3. PROBLEM STATEMENT AND REFERENCE SCENARIOS

Chapter 4

Architecture

4.1 Software

4.1.1 Robot Operating System

The middleware on which this work has been devel-

oped is the Indigo version of the Robot Operating

System (ROS)Quigley et al. [88]1, which is a mod-

ular architecture used in many robotic applications.

Each ROS software module is called ”node”. Several

nodes can communicate via topics using the publish/subscribe protocol. Every node can

publish and/or subscribe to as many topics as needed. Every time something is published

to a topic, every node subscribing to it runs a callback function which takes as input the

incoming message. Such architecture is very convenient when many software modules have

to run independently.

The publish-subscribe model is a very flexible communication paradigm, but it implements

a many-to-many one-way transport that is not appropriate for RPC request-reply inter-

actions. Request-reply communication is done via a ”service”, which is defined by a pair

1http://www.ros.org/

http://www.ros.org/

46 CHAPTER 4. ARCHITECTURE

of messages: one for the request and one for the reply. A providing ROS node offers a

service under a string name, and a client calls the service by sending the request message

and awaiting the reply. Thanks to these components module replacement are easier and

the software can be easily extended. Additionally, it is easy to manage the frequency at

which messages are sent, which is of fundamental importance when working under limited

computational resources and real-time applications, such as ours.

Despite the name, ROS is not a full-fledged Operating System, but it is rather a frame-

work based on a collection of open-source libraries, some of which have a life of their own

and have a very lively community. Because of its nature, ROS can run on most operating

systems. The preferred development environment is Ubuntu Linux and it is also the one

adopted for this project (version 16.04 LTS).

At the time of writing, the last available version of the software is ROS Melodic, but the

work presented here is based on the previous version, ROS Kinetic. This comes from the

fact that Melodic not yet available at the beginning of this project while Kinetic was al-

ready mature and stable at that time. However, the tools used to communicate with the

robot we are using, a Baxter robot, are developed for ROS Indigo. That required us to

modify slightly the Baxter robot SDK in order to make them work with ROS Kinetic,

4.1.2 Ar Track Alvarr

This package is a ROS wrapper for Alvar, an open-source AR-tag tracking library. ALVAR

is “a library for virtual and augmented reality.” The ALVAR SDK allows you to create AR

applications with the most accurate, efficient and robust implementation for marker-, 2D

image-, and 3D point cloud-based tracking. ALVAR provides a low-level C++ API to its

tracking algorithms and includes several tools that assist in the creation of AR applications.

Its low-level interface makes it possible to develop custom solutions that can be integrated

with existing products and services. the ar track alvar node has three main functionalities:

• Generating AR tags of varying size, resolution, and data/ID encoding

4.1. SOFTWARE 47

• Identifying and tracking the pose of individual AR tags, optionally integrating Kinect

depth data (when a Kinect is available) for better pose estimates.

• Identifying and tracking the pose of ”bundles” consisting of multiple tags. This allows

for more stable pose estimates, robustness to occlusions, and tracking of multi-sided

objects.

Alvar is significantly newer and more advanced than the ARToolkit, which has been

the basis for several other ROS AR-tag packages. Alvar features adaptive thresholding to

handle a variety of lighting conditions, optical flow based tracking for more stable pose

estimation, and an improved tag identification method that does not significantly slow

down as the number of tags increases.

Here the presentation video

1

Figure 4-1: Ar track alvar algorithm tracking 3 markers

https://www.youtube.com/watch?v=nXxzS6DwK40

48 CHAPTER 4. ARCHITECTURE

4.1.3 MoveIt!

MoveIt! is a state of the art software aimed at

robotic manipulation that offers an accessible, all-

in-one solution, to most manipulation related tasks.

The list of features includes up-to-date planning al-

gorithms, 3D perception support, kinematic mod-

elling, control and navigation. The software natively relies on ROS and integrates itself in

ROS debugging and visualization tools. The aforementioned features make MoveIt! the

perfect tool to design and evaluate new robot designs and to build integrated robotics

products for industrial, commercial and R&D applications. In this case, MoveIt! has been

chosen to easily introduce an execution layer into this project, being the Baxter Robot one

of the supported machines. This allowed us to reach a tangible result (i.e. the robot acting

in the world and not just in a simulation) and also to stress some important theoretical

points, like the effective reliability of the sensing stage.

It is important to note though, that out-of-the-box MoveIt! integration in the Baxter SDK

is a little bit below the level what one would expect from an officially supported feature.

This required me to take some important design decision when integrating MoveIt! into

this framework. I report here two crucial points:

• Robot Model and Collision Avoidance. By default, the Baxter SDK and MoveIt!

Packages provide only one 3D model to be used for collision avoidance of the electric

gripper fingers. This model describes an electric gripper with a long finger in a

very light configuration. Due to that, we had to rewrite the URDF file describing

the joints bounding boxes to modify the grippers and adapt them to reality. This

allows me to have a proper grasping position but also introduced problems during

the grasping phase due to the obstacle avoidance feature provided by MoveIt!. For

this reason, this latter feature has been disabled.

4.1. SOFTWARE 49

• Determining allowed Grasping Pose. The Baxter Development Kit and MoveIt! do

not provide any utility to determine the allowed grasping poses for a defined object.

For that reason, I opted for an unofficial method available on-line. This method

allows us to compute the grasping poses just giving as input a centroid so without

any knowledge about the object. Due to the lack of information, this algorithm

computes all the grasping poses around the point.

4.1.4 Potassco

Potassco (Potsdam Answer Set Solving Collection) is

the bundle tools for Answer Set Programming devel-

oped at the University of Potsdam. This collection

is composed by: gringo, the grounder, clasp, the

solver and clingo that combines the two.

Current answer set solvers work on variable-free programs. Hence, a grounder is needed

that, given an input program with first-order variables, computes an equivalent ground

(variable-free) program. gringo is such a grounder. Its output can be processed further

with clasp.

clasp is an answer set solver for extended normal and disjunctive logic programs. It com-

bines the high-level modelling capacities of ASP with state-of-the-art techniques from the

area of Boolean constraint solving. The primary clasp algorithm relies on conflict-driven

nogood learning, a technique that proved very successful for satisfiability checking (SAT).

clasp has been genuinely developed for answer set solving based on conflict-driven nogood

learning. Clasp can be applied as an ASP solver (on aspif or smodels format, as output by

gringo), as a SAT solver (on a simplified version of dimacs/CNF format), as a PB solver

(on OPB format), or as a C++ library in another program.

clingo combines both gringo and clasp into a monolithic system. This way it offers more

control over the grounding and solving process than gringo and clasp can offer individually

50 CHAPTER 4. ARCHITECTURE

- e.g., incremental grounding and solving.

4.2 Hardware

4.2.1 Baxter robot

1 2

Figure 4-2: Baxter Robot bust from Rethink Robotics

The Baxter Robot (Rethink Robotics, Last accessed 20/08/2015) is an industrial robot

developed by Rethink Robotics and presented in September 2012. An academic edition is

available on the market and is very popular among universities and research institution

because of the hardware and software specification of the robot. When mounted on its

base, the Baxter robot is between 1.78m and 1.92m tall, and weighs 139kg. It comes

equipped with two anthropomorphic 7 Degrees Of Freedom arms, an animated face screen

and three cameras, two hand-mounted and an head-mounted one, even though it can run

only two at time. The robot is also equipped with a large number of sensors, like proximity

sensors, accelerometers and more. These sensors are used to make the Baxter robot aware

of himself and the surrounding environment, thus enabling the robot to act reactively to

external stimuli. This leads to the main feature of this robot: safety. It is possible to work

in direct contact with Baxter without need for protection cages and other safety measures.

http://www.rethinkrobotics.com

4.2. HARDWARE 51

The robot constantly checks for self-collision and stops whenever it detects an unexpected

collision with a third object before causing any harm. This makes the Baxter robot a good

candidate for high-level robotic projects, since it is possible to work directly with the robot

and iterate quicker. On the other side, outstanding safety features and a low 22.000e price

tag are balanced by a below-average dynamical performance and scarce precision, which

limits the industrial use of the robot to simple light-duty operations such as sorting and

palletizing.

4.2.2 The Microsoft Kinect

1 2

Figure 4-3: Kinect from Microsoft

The Microsoft Kinect (Zhang, 2012) is a motion sensing input device mainly designed to

provide a natural interface for video games and video game consoles. It consists of an

infrared projector and a monochrome CMOS sensor able to provide 3D data under any

light condition, as opposed to more traditional Computer Vision Systems. The sensing

apparatus is paired with a special microchip to track gestures and objects in three dimen-

sions, a multi-array microphone, a RGB camera and an actuator to tilt the device head.

Despite its original use, the Microsoft Kinect has become increasingly popular in research

institutions as a cheap yet reliable sensor for 3D Imaging and Motion Analysis, being able

52 CHAPTER 4. ARCHITECTURE

to process 48 skeletal points at a frequency of 30Hz and to provide point clouds with much

higher point count than that supported by modern computers. A large part of Kinect

success among researchers and enthusiast is the large availability of development tools and

the strong community that gathered around it. Not only Microsoft provides its own soft-

ware development kit for Windows system, but an open-source library is also available for

all majors operating systems under the name of OpenKinect (Blake et al., 2011). In both

cases the programming language to work with the Kinect is C++.

Figure 4-4: Kinect data sheet

4.2. HARDWARE 53

The reasons for such sensor choice are:

• High reliability. Depth information is produced precisely within the sensor range,

that is up to 5 meters distance from it;

• Low computational time required to extract depth information of obstacles. Indeed

the Kinect output rate is up to 30Hz, which is enough for our needs;

• Perfectly suitable for indoor environment, where there is no need for long-range

obstacle detection and there is no sunlight which strongly disturbs, if not prevents,

the sensing;

• Not influenced by artificial light to contrarily to classical computer vision methods

based on 2D-images

Figure 4-5: The robot’s architecture: in green the ASP-based modules, in orange the
ROSPlan-based module.

54 CHAPTER 4. ARCHITECTURE

4.3 Modules and Functioning of the ASP-based Architec-

ture

The architecture of the Baxter from Rethink Robotics is shown in Figure 4-5. It is note-

worthy that, in principle, the architecture can be adapted to other robot platforms as well,

either in simulation or in real-world conditions, as long as appropriate perception, low-level

motion planning tools, and manipulation strategies are adopted.

In the current implementation, perception is managed using a camera sensor located

on top of the robot’s head and pointing downward, which provides 6D poses for each

link, which update corresponding ASP-based representation structures in the Knowledge

Base module. The Consistency Checking module performs a check for knowledge base

validation. In case the check succeeds, the Goal Checker module is notified and relevant

parts of the current ASP Knowledge Base are processed by the rules encoded in the Goal

Checker module, aimed at detecting whether the (already computed) plan can be success-

fully executed, also in response to a possible human intervention. Whenever checks that

influence the knowledge base status are performed, a problem instance may be generated,

which depends on the target articulated object configuration and the current configuration

maintained in the Knowledge Base module. The Action Planner module receives such

problem instance and generates a plan in the form of a suitable sequence of actions to be

performed. Once a plan is generated, its actions are processed sequentially to drive the

overall behaviour of the robot Motion Planner module, which is responsible for the execu-

tion. For the use case described in this paper, each action involves one rotation operation

on the target link. Rotations occur only around axes centred on the object’s joints. Any

action may be either successful or not, depending on several reasons related to noise and

errors in perception, grasping, and manipulation in a real-world environment. If an action

is successful, the Motion Planner module proceeds with the one that follows until the plan

ends and the Knowledge Base module is notified about successful execution. Otherwise,

4.4. MODULES 55

an issue is raised and re-planning occurs, thereby reiterating the whole work-flow described

above.

Note that all modules except Motion Planner (i.e., all green modules in Figure 4-5)

are based on ASP. The Motion Planner is the module that has to interact with the robot,

and has therefore to follow the constraints posed by the actual machine.

It is important to underline that each model must be modified accordingly to the

scenario and the approach that it will be used. In the following section, we will use as

reference the codes regarding the Simple Action Scenario with only forward propagation.

4.4 Modules

4.4.1 Knowledge Base

The knowledge base consists of facts over atoms of the form joint(J), angle(A),

isLinked(J1,J2), time(T), hasAngle(J,A,T), and goal(J,A), and the constants

granularity and timemax. Atoms over the predicate joint represent the joints of the

articulated object. Atoms over the predicate angle represent the possible angles reach-

able from the joints and they can range from 0 to 359. Actually, the atom angle(0)

must be always part of the knowledge base and admissible angles are the ones that can be

obtained by rotating a joint by the degrees specified by the constant granularity, e.g.,

if the granularity is 90 degrees, then the admissible angles are 0, 90, 180, and 270. Atoms

over the predicate isLinked represent links between joints J1 and J2. Atoms over the

predicate time represent the possible time steps, and they range from 0, which represents

the initial state, to timemax. Atoms over the predicate hasAngle represent the angle A

of the joint J at time T. Actually, knowledge base only contains the initial state of each

joint, i.e., its angle at time 0. Finally, atoms over the predicate goal represent the angle

A that must be reached by the joint J at the time step specified by timemax.

An example of the input is represented by the facts and constants reported in Figure 4-6.

56 CHAPTER 4. ARCHITECTURE

joint(1..5). angle(0). angle(90). angle(180). angle(270).
isLinked(1,2). isLinked(2,3). isLinked(3,4). isLinked(4,5).
hasAngle(1,90,0). hasAngle(2,180,0). hasAngle(3,180,0).
hasAngle(4,270,0). hasAngle(5,270,0). time(0..timemax).
goal(1,270). goal(2,270). goal(3,180). goal(4,270).
goal(5,270). #const granularity = 90.

Figure 4-6: An example of an ASP knowledge base.

4.4. MODULES 57

4.4.2 Consistency Checking

The module performs some consistency checking on the knowledge base by using some

ASP rules, for example:

c1a :- isLinked(J1,J2), not joint(J1).

c1b :- isLinked(J1,J2), not joint(J2).

c2 :- isLinked(J,J).

c3a :- hasAngle(J,A,T), not joint(J).

c3b :- hasAngle(J,A,T), not angle(A).

c3c :- hasAngle(J,A,T), not time(T).

c3d :- hasAngle(J,A,T), not possibleAngle(A).

c4a :- goal(J,A), not joint(J).

c4b :- goal(J,A), not angle(A).

c5 moreThanOneGoal(J) :- joint(J), #count{A:goal(J,A)}>1.

c6 :- joint(J), moreThanOneGoal(J).

c7 oneStartingAngle(J) :- joint(J), #count{A:hasAngle(J,A,0)}=1.

c8 :- joint(J), not oneStartingAngle(J).

c9 :- not time(0).

c10 :- not angle(0).

c11 possibleAngle(0).

c12 possibleAngle(X) :- possibleAngle(Y), X=Y+granularity, X<360.

c13 :- not angle(X), possibleAngle(X).

c14 :- angle(X), not possibleAngle(X).

In particular, rules c1a and c1b check whether atoms over the predicate isLinked represent

the links between two joints, while c2 checks whether there is no link between the same

joint. Rules c3a, c3b, and c3c check the correctness of the predicate hasAngle, whereas

58 CHAPTER 4. ARCHITECTURE

c4a and c4b check the correctness of the predicate goal. Rules c5 and c6 check whether at

most one goal is specified for each joint, whereas rules c7 and c8 verify if each joint is in

exactly one angle at time step 0. Rules c9 and c10 simply check the existence of the first

time step and angle 0, respectively. Finally, rules from c11 to c14 check whether atoms over

the predicate angle represent the possible angles.

4.4.3 Goal Checker

During the execution of a plan an external agent may interact with the articulated object,

e.g., a human may change the angle of some joints (see, e.g., [?]). In such a case, the

system must react to the changes if they are not compatible with the plan executed by

the robot. This is accomplished by asynchronously creating a new input configuration

according to the current status of the object so that the configuration is ready as soon as

it is needed. The role of Goal Checker module is to check when there is no need to create

a new configuration, that is when all goals have been reached. This is done by using rule

r15 from the encoding in Figure 4-7.

4.4.4 Action Planning

Simple Scenario

Inside the context of the simple scenario, see Section 3.2 we explored different strategies

in order to investigate the pros and drawbacks of each approach. Each strategy is tested

out firstly without backward propagation and then including it; the three strategies we

investigate are:

• Standard Strategy: the strategy is based on the number of maximum steps allowed: it

starts from 1 and it is increased by one unit iff the plan is not found. This guarantees

us that the found solution is optimal in terms of the number of action. This comes

with a sacrifice in terms of time performances.

4.4. MODULES 59

• Heuristic Strategy: a nOPTSAT based on optsat [24, 49] heuristic function it is

added to the encoding: it is requested that the maximum steps allowed to reach the

goal are as small as possible. This does ensure an optimal solution in term of number

of actions and allows us to remove the incremental process of the maximum number

of actions.

• Not Optimal Strategy: The maximum steps number is randomly selected and there-

fore it does not ensure an optimal solution.

Standard Strategy

ASP is not a planning-specific language, but it can be also used to specify encoding for

planning domains [71], like our target problem. We have defined several encodings variants,

for what concerns either the manipulation modes and the strategy for computing plans.

The encoding described in this section is embedded into a classical iterative deepening

approach in the spirit of SAT-based planning [60], where timemax is initially set to 1 and

then increased by 1 if a plan is not found, which guarantees to return the shortest possible

plans for a sequential encoding, i.e., when the robot performs only one action for each step

(see Section 7.1 for some details about the other strategies).

Figure 4-7 reports our base encoding. Note that it uses operations \ and |· · · |, which

are not defined in the ASP-Core-2 standard but supported by Clingo [39], and compute

the remainder of the division and the absolute value, respectively.

Since we employ an absolute representation, r1, r2 and r3 add to the knowledge base

the joint(0), its angle and link to joint 1. This joint will not be moved and it is

used only to have a fixed reference between the robot and articulated object frames.

Rule r4 enforces that bidirectionality of linked joints, i.e., if joint(1) is linked to

joint(2) then joint(2) is also linked to joint(1). Rule r5 selects an atom of the

form changeAngle(J1,J2,A,Ai,T), where J1 is the joint to move, J2 is the joint

to keep steady, A is the desired angle, Ai is the current angle of J1 and T is the cur-

60 CHAPTER 4. ARCHITECTURE

r1 joint(0).

r2 hasAngle(0,0,0).

r3 isLinked(0,1).

r4 isLinked(J1,J2) :- isLinked(J2,J1).

r5 {changeAngle(J1,J2,A,Ai,T) : joint(J1), joint(J2), J1>J2, angle(A),

hasAngle(J1,Ai,T), A<>Ai, isLinked(J1,J2)} <= 1

:- time(T), T < timemax, T > 0.
r6 ok(J1,J2,A,Ai,T) :- changeAngle(J1,J2,A,Ai,T),

F1=(A+granularity)\360, F2=(Ai\360), F1=F2, A < Ai.

r7 ok(J1,J2,A,Ai,T) :- changeAngle(J1,J2,A,Ai,T),

F1=(Ai+granularity)\360, F2=(A\360), F1=F2, A > Ai.

r8 ok(J1,J2,A,0,T) :- changeAngle(J1,J2,A,0,T), A=360-granularity.

r9 ok(J1,J2,0,A,T) :- changeAngle(J1,J2,0,A,T), A=360-granularity.

r10 :- changeAngle(J1,J2,A,Ai,T), not ok(J1,J2,A,Ai,T).

r11 affected(J1,An,Ac,T) :- changeAngle(J2, ,A,Ap,T), hasAngle(J1,Ac,T),

J1>J2, angle(An), An=|(Ac + (A-Ap)) + 360|\360, time(T).

r12 hasAngle(J1,A,T+1) :- changeAngle(J1, ,A, ,T).

r13 hasAngle(J1,A,T+1) :- affected(J1,A, ,T).

r14 hasAngle(J1,A,T+1) :- hasAngle(J1,A,T), not changeAngle(J1, , , ,T),

not affected(J1, , ,T), T <= timemax.

r15 :- goal(J,A), not hasAngle(J,A,timemax).

Figure 4-7: Base encoding: it allows for forward manipulations only.

rent step. Rule r10 ensures the validity of the configuration represented by the atom

changeAngle(J1,J2,A,Ai,T), that is when each action has a desired angle A that can

be reached in one step (rules r6, r7, r8, and r9). Rule r11 is used to identify which joints

are affected from the atom selected in r5. Rules r12 and r13 are used to update the joints

angles for the next step, while r14 states that if neither r12 nor r13 have affected a joint

then its angle remains unchanged. Finally, r15 states the the goal must be reached.

Moreover, we tested each encoding with also the possibility to perform the movement

in both directions, i.e., contrarily to the encoding in Figure 4-7, that from here on we call

SAS (Simple Action Scenario), it is possible to move the first joint holding the second

one. This is accomplished by slightly modifying the encoding to allow the propagation in

4.4. MODULES 61

r5′ changeAngle(L1,L2,J,A1,A2,G1,G2,T):- link(L1), link(L2), joint(J),
angles(A1), angles(A2), gripper(G1), gripper(G2), time(T),
in centre(J,T), grasped(G1,L1,T), grasped(G2,L2,T),
in hand(L1,T), in hand(L2,T), not free(G1,T),
not free(G2,T), connected(J,L1), connected(J,L2),
hasAngle(J,A2,T), L1<>L2, G1<>G2

Figure 4-8: Rule r5 with its preconditions updated.

both directions: forward and backward. In particular, we removed J1 > J2 in rule r5 and

we changed the preconditions of r5. This change of the preconditions was necessary to fit

the new model: two links must be grasped and those links must be in the center of the

workspace. For sake of readability we will, from now on, call the modified version of rule

r5, rule r5′ (shown in Figure 4-8).

Heuristic Strategy

In order to ensure an optimal solution in term of number of actions and can remove the

incremental process of the maximum number of actions, we developed an encoding by

employing a strategy based on the algorithm optsat [24, 49], where the heuristic of the

solver is modified in order to prefer plans with increasing length, and (ii) by using a choice

rule to select the time step and by letting the solver find a plan, of course possibly losing

optimality (see also [25]).

Only a few changes to the encoding shown in Figure 4-7 were necessary:

• two literals had to be added to the encoding:

rh1 1<=maxspan(X): time(X), X>0<=1.

rh2 #heuristic maxspan(X). [timemax-X@1,true]

where rh1 is a choice rule that ensure that the variable X, that represent the max-

62 CHAPTER 4. ARCHITECTURE

imum time (or rather the maximum number of steps), is > 0 and that it has only

one value, while rh2 ensure that the variable X is a small as possible using the above

mentioned heuristic function;

• every constant timemax had to be replaced with the variable X an, therefore, the

literal maxspan(X) had to be added in each one of these rules;

• the goal literals in the knowledge base (see Figure 4-6) had to be changed from

goal(A,B). to goal(A,B,X), maxspan(X). (4.1)

Not Optimal Strategy

With this encoding we wanted to investigate if dropping the certainty of a optimal solution

could lead us to better performances with respect to the execution time, Moreover we

wanted to investigate if such approach could solve complex problems with an higher number

of joints and possible angles.

The strategy we decided to test choose a random number of maximum steps. Similarly to

the heuristic case we had to slightly change the encoding:

• only one literal had to be added

rno1 maxspan(X) : X=1..timemax = 1.

where rno1 state that the variable X must be chosen between 1 and timemax;

• timemax had to be fixed to a value, in our case timemax = 50;

• as in the heuristic strategy case Every constant timemax had to be replaced with

the variable X an, therefore, the literal maxspan(X) had to be added in each one

of these rules and the goal literals in the knowledge base (see Figure 4-6) had to be

changed as showed in equation 4.1.

4.4. MODULES 63

4.4.5 Extended Scenario

Inside the context of the extended scenario, see Section 3.3, we explored two different

strategies in order to investigate the pros and drawbacks of each approach. Moreover,

in this scenario, we investigate the propriety of the macros (see sec 2.3.2) and both the

strategies are tested out directly including backward propagation. The two strategies are:

• Simple Actions Extended Scenario (SAES) (Figure 4-9): This encoding models the

same actions as the Standard Strategy in the simple scenario but it includes also the

robot resources that can be occupied at each time step (i.e. the robot gripper);

• Macro Actions Extended Scenario (MAES) (Figure 4-10): Here we have modelled

the same scenario as in the SAES. The difference consists of the modelled actions:

sets of simple actions are gathered inside just one atom.

In this sub-section, we focus on the action planning module in its first paragraph, which is

the module that undertakes the major changes and then comment in a second paragraph

about how the other modules have been updated to accommodate the changes.

Simple Action Extended Scenario

ASP Encoding for the Action Planning Module. It is important to notice that, in

order to achieve the bi-directionality of the propagation, as we said in the preceding section,

it is sufficient to remove the constraint J1 > J2 from the choice rule r5. It is important

to emphasize here that, aside from such changes, the idea behind the base encoding is

maintained: the general structure and the method the encoding deals with movements

that concern the articulated object configuration changes are the same as in Figure 4-7.

Figure 4-9 reports the further rules needed to deal with the extended scenario. Rule r16,

r18 and r23 are the selection of the possible actions in this model; r16 puts the joint that has

to be moved in the center, r18 selects an atom of the form take links to move(L1, L2, J,G1, G2, T)

where L1 and L2 are the links that have to be grasped, while r23 selects at atom of the

64 CHAPTER 4. ARCHITECTURE

r16 {move link to central(L1,J1,G2,T)} :- link(L1), joint(J1),
gripper(G2), time(T), connected(J1,L1), free(G2,T),
not in hand(L1,T), not in centre(J1,T).

r17 in centre(J,T+1) :- move link to central(,J ,T), T < timemax+1.
r18 {take links to move(L1,L2,J,G1,G2,T)} :- link(L1), link(L2),

joint(J), gripper(G1), gripper(G2), in centre(J,T)
free(G1,T), free(G2,T), not in hand(L1,T), not in hand(L2,T),
connected(J,L1), connected(J,L2), L1<>L2, G1<>G2.

r19 in hand(L,T+1) :- take links to move(L, , , , ,T), T < timemax+1.
r20 in hand(L,T+1) :- take links to move(,L, , , ,T), T < timemax+1.
r21 grasped(G,L,T+1) :- take links to move(L, , ,G, ,T), T < timemax+1.
r22 grasped(G,L,T+1) :- take links to move(,L, , ,G,T), T < timemax+1.
r23 {release links(L1,L2,J,G1,G2,T)} :- link(L1), link(L2), joint(J),

gripper(G1), gripper(G2), time(T), grasped(G2,L2,T),
grasped(G1,L1,T), in hand(L1,T), in hand(L2,T),
not free(G1,T), not free(G2,T), connected(J,L1),
connected(J,L2), L1<>L2,G1<>G2.

r24 free(G,T) :- release links(, , , ,G,T),T<timemax+1.
r25 free(G,T) :- release links(, , ,G, ,T),T<timemax+1.
r26 action(T,move link to central(L1,J1,G2,T)) :-

move link to central(L1,J1,G2,T).
r27 action(T,take links to move(L1,L2,J,G1,G2,T)) :-

take links to move(L1,L2,J,G1,G2,T).
r28 action(T,changeAngle(L1,L2,J,A1,A2,G1,G2,T)) :-

changeAngle(L1,L2,J,A1,A2,G1,G2,T).
r29 action(T,release links(L1,L2,J,G1,G2,T)) :-

release links(L1,L2,J,G1,G2,T).
r30 :- time(T), #count{Z : action(T,Z)} != 1.
r31 in hand(L,T+1) :- in hand(L,T), not release links(L, , , , ,T),

not release links(,L, , , ,T), T < timemax+1.
r32 free(G,T+1) :- free(G,T), not take links to move(, , , ,G,T),

not take links to move(, , ,G, ,T), T < timemax+1.
r33 grasped(G,L,T+1) :- grasped(G,L,T), T < timemax+1

not release links(L, , ,G, ,T), not release links(,L, , ,G,T).

Figure 4-9: Simple Action Extended Scenario (SAES) encoding.

4.4. MODULES 65

form release links(L1, L2, J,G1, G2, T) that signals to the robot to release the links it was

acting on, respectively. Rules r17 is used to signal which link is on the centre as effects of

the action move link to central(L1, J1, G2, T). Rules r19 and r20 are used to identify the

grasped joints, while r21 and r22 are used to identify which gripper is occupied and which

is free. Rules r24 and r25 are used to notify that the robot’s hands are free and they can be

used again to grasp. Furthermore, rules from r26 to r30 ensure that only one action (among

the ones represented by rules r16, r18, r23 and r5′) is selected for each time step. Instead,

the rules from r31 to r33 are used to propagate the information that has not been changed

in the current time step to the next one. Overall, the encoding of the Action Planning

module for the extended scenario, that we call Simple Action Extended Scenario (SEAS),

is composed of all the rules of SAS (from r1 to r15), with the necessary modification of r5

to r5′ , plus the rules shown in Figure 4-9 (from r16 to r33). Note that that rule involving

the goal is already present in the SAS encoding (i.e., r15).

ASP Encodings for the other ASP Modules. As it is clear from the description of

the Action Planning encoding above, to have a working architecture we had to update also

other modules to make them coherent with the encoding. With regard to the knowledge

base, we had to add some atoms: the two grippers gripper(1) and gripper(2), in

order to model the presence of the robot grippers, the atoms free(1,0) and free(2,0),

in order to signal that at time 0 the grippers are always free and ready to grasp and,

eventually, an atom of the form in center(J,0), in order to signal that the joint J

is at the center of the workspace at time step 0. Moreover, this last change led us to

the necessity to add, to the knowledge base, both links and joints: the robot must act

on the links but we want that a certain joint is in the middle of the workspace. For this

reason the atoms of the form isLinked(L1,L2), where L1 and L2 are two links, became

connected(J,L), where J is a joint and L a link.

With regards to the consistency checking module, it has to be updated in order to keep

consistency with the rest of the architecture. For this reason, a check on each new atom

66 CHAPTER 4. ARCHITECTURE

that we have added to the knowledge base and encoding must be added.

Macros in the extended scenario

The following macros have been considered:

• linkToCentral take: it is the composition of the action move link to central,

that moves the articulated object so that the joint in between the links that have

to be manipulated is in the centre of the workspace, and takes links to move, that

grasps the links to be manipulated. As links cannot be grasped by the robot if they

are not in the centre of the workspace, this macro aims at providing a single rule for

cases where links are not in the right position.

• changeAngle release: it is the composition of changeAngle, that changes the

angle of a link, and release links, that releases the links currently grasped. This

macro aims at providing a single rule for cases where it is necessary to act on a link

and then releasing it.

• take changeAngle release: represents the composition of takes links to move,

changeAngle, and release links. This macro aims at providing a single action for

cases where it is necessary to act on a link that was already in the centre of the

workspace.

Macros Encoding for the Extended Scenario. A macro action is a set of simpler

actions regrouped in one atom. A macro rule is valid only if a combination of the literals

composing the bodies of the simpler rules replaced by the macro are satisfied. Moreover,

its effects will be a set of the effects of the same replaced actions. The encoding presented

in the following is an improved version of the encoding SAES, and is based on similar

principles of the encodings SAS and SAES : the general structure and the method the

encoding deals with movements are the same shown in Figure 4-7. Figure 4-10 partially

4.4. MODULES 67

m1 {linkToCentral take(L1,L2,J1,J2,G1,G2,T)} :- link(L1), link(L2),
joint(J1), joint(J2), gripper(G1), gripper(G2), time(T),
not in centre(J1,T), connected(J1,L1), connected(J1,L2),
free(G1,T), free(G2,T), L1<>L2, G1<>G2.

m2 {changeAngle release(L1,L2,J,G1,G2,A1,A2,T)} :- link(L1),link(L2),
joint(J), gripper(G1), gripper(G2), angles(A1), angles(A2),
in centre(J,T), not free(G1,T), not free(G2,T), in hand(L1,T),
in hand(L2,T), connected(J,L1), connected(J,L2),
grasped(G1,L1,T), hasAngle(L1,A2,T), grasped(G2,L2,T),
L1<>L2, G1<>G2.

m3 {take changeAngle release(L1,L2,J,A1,A2,G1,G2,T)} :- link(L1),
link(L2), joint(J), angles(A1), angles(A2), gripper(G1),
gripper(G2), time(T), in centre(J,T), free(G1,T), free(G2,T),
connected(J,L1), connected(J,L2), in centre(J,T),
hasAngle(L1,A2,T), time(T), L1<>L2, G1<>G2.

Figure 4-10: Macros encoding.

reports how the three macros mentioned in the previous paragraph are encoded in ASP,

considering only preconditions and choice rules, and not showing the effects.

Macro m1 is the composition of the two simple action r16 and r19. It requires that only

the preconditions of r16 are satisfied, i.e., the body of r16 corresponds to the body of the

macro. The effects of m1 are represented by r17, r20, r21, r22 and r23. Indeed, r17 is the

effect of r16, whereas the other rules are the effects of r19. It is important to notice that in

the SAES, r17 is necessary to be true to have a r19 action. Macro m2 is the composition of

the two simple actions r5′ , as shown in Figure 4-8, and r24. Its body is composed only from

the preconditions of r5′ since the preconditions of r24 are a subset of them. Instead, its

effect are represented by r25 and r26 (as effects of r24), and by the rules from r6 to r14 (as

effects of the rule r5). Finally, m3 is the largest macro and it is the composition of the three

simple actions r19, r5′ and r24. Its body is composed by the literals of r19 only since its

68 CHAPTER 4. ARCHITECTURE

effects are preconditions to r5′ and r24. Its effects are equivalent to the m2 ones. Moreover,

each macro is supposed to last for only one time-step since the time steps are used only

to label the actions sequence. Indeed, the time step are not used as a reference to the

real execution time: different simple actions have different execution times and therefore

each macro has a different execution time. However, we use time steps in our encoding to

ensure that two simple actions are not performed at the same time and, since the action

composing the macros are performed in sequence, each macro can be supposed to last for

one time-step.

The MAES encoding is composed from these three macros and their effects plus (mod-

ified versions of) the rules from r27 to r31, necessary to ensure that only one action is

selected at each time step, the rules from r32 to r34, and eventually r15 that ensure that

the goal is reached. Rules from r27 to r34 were to be modified according to the rest of the

encoding, e.g., rules from r27 to r30 are reduced to just three rules, one for each macro.

Mixed encodigs for the extended scenario

We developed some mixed encodings, composed by both simple rules and macro rules, to

investigate if a combination of the two approaches could lead to better results, with respect

to both planning time and the number of action, than the already presented approaches.

Our aim is to include the advantages of both the approaches SAES, that allows working

on the same link without releasing it after each action. and MAES, which improves the

planning time performances. In order to do so and to exploit the potentiality of the mixed

encodings we developed a fourth macro:

grasp changeAngle: represents the composition of takes links to move and changeAngle.

This macro aims at providing a single action for cases where it is necessary to act on a link

that was already in the centre of the workspace. Moreover, it allows to not release the link

after each action and, therefore, to keep working in the same link.

4.4. MODULES 69

m4 {grasp changeAngle(L1,L2,J,A1,A2,G1,G2,T)} :- link(L1),
link(L2), joint(J), angles(A1), angles(A2), gripper(G1),
gripper(G2),time(T), in centre(J,T), free(G1,T), free(G2,T),
connected(J,L1), connected(J,L2), grasped(G1,L1,T),
grasped(G2,L2,T), hasAngle(L1,A2,T), L1<>L2, G1<>G2.

Since they are just a composition of the rules composing SAES (see figure 4-9)and MAES

(see Paragraph 4-10) plus the bove explained macro we will just list the rules that compose

the new encodings. We developed three mixed encoding:

• Macros Action Prevalent (MAP)- it is composed by: r5′ from SAES, m1, m2,

m3 and m4 from MAES;

• Simple action prevalent (SAP) - it is composed by: r5′, r19 and r24 from SAES,

m1 and m2 from MAES;

• Equally Distributed (ED) - it is composed by: all the simple actions from SAES

(r5′, r16, r19 and r24) plus all the macros from MAES (m1, m2, m3 and m4).

70 CHAPTER 4. ARCHITECTURE

Chapter 5

Validation of the Framework and

Performances Analysis

5.1 Validation of the Framework

5.1.1 Simple Scenario

A validation scenario where a robot has to manipulate a 5-link articulated object has

been set up both in simulation and in real-world using the Baxter dual-arm manipulator.

Objects composed by 5 links provide a very valuable ground for testing our approach, as

they are not so long to make the manipulation difficult for the robot, and at the same

time they are articulated enough to require to plan movements in order to reach a goal

configuration. The use of Baxter is justified by its widespread adoption as a research

platform and by the necessity to employ a robot with two arms to manipulate the object,

i.e., the robot should be able to keep a link of an object with one arm while it rotates an

adjacent one.

Simulations have some practical advantages in this scenario. Indeed, they allow running

a greater number of planning-execution cycles with minimal human supervision and shorter

72 CHAPTER 5. VALIDATION OF THE FRAMEWORK AND PERFORMANCES ANALYSIS

a1 : changeAngle(2,1,90,180,1) a2 : changeAngle(1,0,180,90,2)
a3 : changeAngle(3,2,90,180,3) a4 : changeAngle(1,0,270,180,4)

Figure 5-1: The planning and execution process on the sample scenario: an excerpt of the
answer set returned by Clingo (a1 . . . a4 are compact references for the ground actions).

execution times. Moreover, they are less susceptible to uncertainty and low-level motion

planning failures, which are outside of the scope of this work. Nevertheless, we also test

with the real robot to provide a more robust proof-of-concept of the proposed architecture.

A video showing the Baxter in operation, via the introduced framework, can be found at

https://tinyurl.com/yd6kqgjn.

In our setting, we employed (i) ALVAR, an AR tag tracking library, to detect the

absolute pose of the object’s links using a head-mounted camera; and (ii) MoveIt!, as the

de facto standard for motion planning and execution in the robotic community. The system

was implemented in the Robot Operating System (ROS, Indigo release) framework, while

Gazebo 2 was used as a simulation environment for the relevant part. The system has been

tested on a machine with an Intel i7-4790 CPU and 16 GB of RAM. All the results of the

evaluation are available at https://tinyurl.com/ydzyefux.

The evaluation procedure unfolds as follows. First, the object is set up in a random

configuration coherent with the specified granularity and within an acceptable margin of

error. The initial and goal configurations are then represented in terms of the ASP atoms

reported in Section 4.4.1, and processed by the state-of-the-art ASP system Clingo [39]

together with the encoding in Section 4.4.4 in order to generate a (valid) plan. Actions of

the plan are then executed through the low-level motion planning layer, where an action

consists of rotations around the object’s joints perpendicular axes.

https://tinyurl.com/yd6kqgjn
https://tinyurl.com/ydzyefux

5.1. VALIDATION OF THE FRAMEWORK 73

link(1..5). joint(1..4).
#const granularity = 60. time(0..timemax).
angle(0). angle(60). angle(120).
angle(180). angle(240). angle(300).
connected(1,1). connected(1,2). connected(2,2). connected(2,3).
connected(3,3). connected(3,4). connected(4,5). connected(4,5).
hasAngle(1,0,0). hasAngle(2,90,0). hasAngle(3,0,0).
hasAngle(4,60,0). hasAngle(5,120,0).
goal(1,0). goal(2,90). goal(3,0). goal(4,300). goal(5,300).

as1 : take links to move(4,3,3,0,1,0)
as2 : changeAngle(4,3,3,0,60,0,1,1)
as3 : changeAngle(4,3,3,300,0,0,1,2)
as4 : release links(3,4,3,1,0,3)
as5 : move link to central(4,4,0,4)
as6 : take links to move(5,4,4,1,0,5)
as7 : changeAngle(5,4,4,300,0,1,0,6)

am1 : take changeAngle release(4,3,3,0,60,0,1,0)
am2 : take changeAngle release(4,3,3,300,0,0,1,1)
am3 : linkToCentral take(5,4,4,4,0,1,2)
am4 : changeAngle release(5,4,4,0,1,300,0,3)

Figure 5-2: mple on the extended scenario. The knowledge base of the problem solved with
both SAES and MAES (top). Then, two excerpts of the answer set returned by Clingo:
when SAES is employed (middle), and when MAES is employed (bottom).

5.1.2 Extended Scenario

We validated the extended scenario in real-world using the Baxter dual-arm manipulator,

employing the same experimental setting already described in Section 5.1. For both the

two new approaches our aim is to compare and underline advantages and drawbacks of

the two encodings; objects composed by 5 links provide a very valuable ground for this

purpose, as they are not so long to make the manipulation difficult for the robot, and at

the same time they are articulated enough to require to plan movements in order to reach

a goal configuration.

74 CHAPTER 5. VALIDATION OF THE FRAMEWORK AND PERFORMANCES ANALYSIS

Figure 5-2 shows the knowledge base related to the considered sample instance, as well

as two excerpts of the answer set produced by Clingo when using the SAES and MAES

encoding, respectively. It is possible to appreciate the differences in the knowledge base

with regards to the simple scenario, as explained in Section 4.4.5. Furthermore, we can

compare the solutions generated by the two extended encodings:

• SAES plan: as1 signals that the robot will take the links 3 and 4 with the left and

right gripper, respectively; as2 signals that the angle of link 4 will change from 60

degrees to 0; as3 signals that the angle of link 4 will change from 0 degrees to 300;

as4 signals that the two links will be released; as5 signal that joint 4 (between link 4

and 5) will be placed at the centre of the workspace; as6 signals that the robot will

take links 4 and 5 with the left and right gripper, respectively; and finally as7 signals

that the angle of the link 5 will change from 0 degrees to 300.

• MAES plan: am1 signals that the robot will take links 3 and 4 with the left and right

gripper, respectively, and that the angle of link 4 will change from 60 degrees to 0.

After, the robot will release the links; am2 signals that the robot will take links 3

and 4 with the left and right gripper, respectively, and that the angle of link 4 will

change from 0 degrees to 300. Then the robot will release the links; am3 signals that

the two links will be released; finally am4 signals that the angle of the link 5 will

change from 0 degrees to 300.

While the two solutions share several similarities, there are nonetheless a few remarkable

differences. It is possible to notice that with the macros it is not possible to act on a link

without releasing it just after: this leads to a small unnecessary idle time if the robot has

to move a link two times in a row since it has to release it and grasp it again just after.

We avoid that problem in SAES since the two actions changeAngle and releaseLinks are

not encapsulated in a macro. Nonetheless, it is evident, from the tables shown in Figure

5.3, that the macros improve considerably the planning performances and the success

5.1. VALIDATION OF THE FRAMEWORK 75

1 2 3 4

5 6 7 8

9 10

Figure 5-3: The planning and execution process on the extended scenario: the robot actions
and (intermediate) states induced by the computed plan.

rate. To summarize, introducing the macros leads to better runtime performance, but at

the cost of reintroducing some idle robot time in certain specific cases. This is aligned

with the results achieved in automated planning when exploiting macros: runtime and

coverage performance of planners tend to improve, but the quality of generated plans may

be negatively affected due to repetitions and suboptimalities [17].

Figure 5-3 illustrates the execution of the solution generated using the MAES encoding,

on the sample instance at the top of Figure 5-2, which produces the (partial) answer set

at the bottom of the same figure. Starting from the initial configuration of the articulated

object (Figure 5-3.1), Figures 5-3.2, 5-3.3 and 5-3.4 represent the three steps of the macro

action am1, i.e.,grasping, changing the angle and releasing the links, respectively (see Figure

5-2). Figures 5-3.5, 5-3.6 represent the action am2 that is almost equivalent to the action

am1. Figure 5-3.7 and Figure 5-3.8 represent two steps of the action am3 that bring the

fourth joint to the center of the workspace, while Figure 5-3.9 represent the changing angle

76 CHAPTER 5. VALIDATION OF THE FRAMEWORK AND PERFORMANCES ANALYSIS

step of the action am4. Finally, Figure 5-3.10 shows the final configuration that corresponds

to the required goal configuration of the 5-link articulated object. It is important to notice

that, for sake of brevity, we skipped some of the steps of the actions am2 and am3 since we

already showed the general behaviour of the actions of the form take changeAngle release

in Figure 5-3.2, 5-3.3 and 5-3.4. It is interesting to notice that, apart from the steps shown

in Figure 5-3 that would have been skipped by the SAES plan (see Figure 5-2) reducing

the robot idle time, the flow of the actions during the execution process of MAES and

SAES is almost equivalent even if the organization of the plan is different.

5.2 Performances and Data Analysis

We compared the planning performance of the considered encodings: execution time on a

real environment or in the simulation are not taken into account since we want to evaluate

the ASP language effectiveness on this planning task without independently from the

used robot or simulation tool. To give an overview using coverage (percentage of solved

instances) and PAR10. Penalised Average Runtime (PAR10) score is a metric usually

exploited in machine learning and algorithm configuration techniques. This metric trades

off coverage and runtime for solved problems: if an encoding e allows the solver to solve

an instance Π in time t ≤ T (T = 300s in our case), then PAR10(e,Π) = t, otherwise

PAR10(e,Π) = 10× T (i.e., 3000s in our case). This allows us to have an overview of the

performances of the strategies under exam.

5.2.1 Simple Scenario

In order to obtain an overview of the capabilities of the encodings presented in the previ-

ous chapter in Section 4.4.4, we needed to generate different instances for the simple sce-

nario. The two main factors changing from instance to instance are the maximum number

of angles that a link can be positioned to ("#na") and the number of

links composing the articulated object ("#nl"). For each couple #na, #nl

5.2. PERFORMANCES AND DATA ANALYSIS 77

we generated 10 instances, with different initial states and goal configurations, and we as-

sumed #na ∈ [2,14] and #nl ∈ [3,12]. This brought us to a total of 400 instances.

This allows us to have a comparison between two fairly enough similar architectures de-

veloped in different languages opening to us the possibility to analyse the advantaged and

drawbacks of our architecture.

Therefore, each result table contains different set-ups: Standard in which results obtained

with the ASP solver Clingo using the Standard strategy; Heuristic in which results ob-

tained with the ASP solver Clingo using the Heuristic strategy and Not Optimal in which

results obtained with the ASP solver Clingo using the Not Optimal strategy. Each table

will contain experiment for a fixed #na with one row for each #nl.

Experimental Data Analysis

Here we will show the results we obtained from the tests with the different encodings.

Moreover, we analyse the results with a small paragraph for each strategy.

Standard Strategy It ensures an optimal solution but at the cost of longer execution

time to compute the plan. This makes this strategy more suitable for offline planning,

or rather it is more suitable for problems that do not often need replanning in real-time.

However, for smaller or medium plans, we ensure always an optimal solution in term of

the number of action. It is important to notice that a robot, e.g. a dual-arm Baxter

robot, requires a not negligible time to perform an action, therefore, even if the planning

time is longer the execution time of the plan can be much shorter. Indeed, the trade-off

planning time - execution time it is not always trivial to compute: often it is

better to lose time during the planning stage in order to reduce the execution of the plan

itself. Moreover, the optimality of the solution brings another advantage: the less action

is in the plan the less is the probability that the low-level planner, Mooveit! in our case

(see Chapter 4), will fail.

78 CHAPTER 5. VALIDATION OF THE FRAMEWORK AND PERFORMANCES ANALYSIS

Heuristic Strategy It ensures an optimal solution as the standard strategy. With this

approach we avoid the need for external script and, as shown from the tables, it usually

performs worst to the standard strategy on a problem involving a small/medium amount

of links. However, on a problem with a higher number of links and possible orientations,

it is usually able to find more solutions than the standard strategy.

Not Optimal As we expected the computed solutions are way larger on the solutions

computed on a smaller problem by the two previous approaches. We expected a not optimal

solution but we also expected to have a much faster execution time on some problem due

to its randomicity. Indeed, as the tables show, this algorithm is able to find solutions for

some of the problems involving a high number of links with suitable planning time, i.e.,

this is the algorithm that performs best with 12 possible orientations. The main problem

of the found solutions is their length: since the number of allowed steps is random, often

the found plan is composed of a high number of actions. This leads to a short planning

time but a really long execution time for the robot making these solutions not exploitable

for a real environment.

5.2.2 Extended Scenario

In order to obtain an overview of the capabilities of the considered encodings, we used

as test problems the same problems, with the due adaptations, of the Simple Scenario.

Eventually, we had 320 instances with the number of links varying from 4 up to 12 and

with granularity values of 4, 6, 8 or 12 possible angles, 10 instances for each pair (number

of links, granularity). For each testing instance, time limit of 300 seconds and the memory

limit of 16 GB was applied. Clingo was used to solve the ASP-encoded instances. All the

experiments were conducted on Intel i7-4790 CPU and Linux OS.

We compared the performance of the considered encodings using coverage (percentage

of solved instances) and PAR10.

5.2. PERFORMANCES AND DATA ANALYSIS 79

Number Angles: 4

PAR10

Standard Heuristic Not Optimal

3 0.0 0.0 0.09
4 0.0 0.13 0.37
5 0.04 0.2 0.9
6 2.8 1.93 0.0
7 10.38 3.44 0.09
8 1235.98 327.74 0.12
10 1339.36 1547.04 1878.5
11 2105.99 1814.01 2412.34
12 2704.99 2420.69 3000.0
14 3000.0 2721.45 2704.5

Coverage

Standard Heuristic Not Optimal

3 100 100 120
4 100 100 100
5 100 100 100
6 100 100 100
7 100 100 100
8 60 90 100
10 50 50 40
11 30 40 20
12 10 20 0
14 0 10 10

Number Angles: 6

PAR10

Standard Heuristic Not Optimal

3 0.0 0.13 0.22
4 0.08 0.73 1.38
5 1.52 2.05 6.75
6 636.69 326.72 5.24
7 3000.0 2139.18 11.74
8 2403.78 1822.12 39.71
10 2697.74 3000.0 2719.62
11 2719.29 3000.0 3000.0
12 3000.0 3000.0 3000.0
14 3000.0 3000.0 3000.0

Coverage

Standard Heuristic Not Optimal

3 100 100 100
4 100 100 100
5 100 100 100
6 80 90 100
7 0 30 100
8 20 40 100
10 10 0 10
11 10 0 0
12 0 0 0
14 0 0 0

Number Angles: 8

PAR10

Standard Heuristic Not Optimal

3 0.0 0.31 1.11
4 1.93 10.03 6.17
5 331.61 54.22 42.46
6 1545.12 1837.03 42.77
7 2723.41 2720.7 1003.58
8 3000.0 2712.66 2707.24

Coverage

Standard Heuristic Not Optimal

3 100 100 100
4 100 100 100
5 90 100 100
6 50 40 100
7 10 10 70
8 0 10 10

Number Angles: 12

PAR10

Standard Heuristic Not Optimal

3 0.29 2.83 2.92
4 335.42 1237.28 26.8
5 1553.26 2136.08 2.95
6 3000.0 3000.0 1261.75
7 3000.0 3000.0 2418.21
8 2429.32 3000.0 3000.0

Coverage

Standard Heuristic Not Optimal

3 100 100 100
4 90 60 100
5 50 30 100
6 0 0 60
7 0 0 20
8 20 0 0

Table 5.1: Results, in terms of PAR10 and coverage, achieved by the considered encodings
on the testing instances. Instances are grouped according to the number of links of the
articulated object to be manipulated (rows) and the granularity of the angular values,
with 10 instances for each pair (number of links, granularity). Cases not solved by any
considered encoding are omitted.

80 CHAPTER 5. VALIDATION OF THE FRAMEWORK AND PERFORMANCES ANALYSIS

Experimental Data Analysis

Here we will show the results we obtained from tests with the different encodings. Moreover,

we make a comparative analysis between each strategy.

The above tables summarises the results achieved by Clingo for solving instances en-

coded in the Standard Strategy, SAES, and MAES. It is worth reminding that the Standard

Strategy, showed in Section 4.4.4, encoding is much more simplistic than the others, as it

ignores the position of the links to be manipulated, and considers only one action that has

to be broken down into a large number of low-level primitives from the low-level planner,

MoveIt! in our case. Therefore, the planning result to be superficial and it leads to fail-

ures during the execution. On the contrary, SAES and MAES encodings provide a more

detailed and rich description of the problem, that allows to generate plans that are easier

to be put in place by the manipulator. So, a direct comparison between the Standard

Strategy and SAES/MAES is not possible, but it is nonetheless interesting to have also

the results obtained by the Standard Strategy. Unsurprisingly, the Standard Strategy en-

coding allows to solve a larger number of instances and is generally the fastest among the

considered encodings. Due to the above-mentioned issues, the excellent planning perfor-

mance of Standard Strategy comes at the cost of a potentially large number of failures in

execution, since the encoding does not take into consideration the boundaries of the robot

workspace: during the execution of the computed solutions the planner may ask the robot

to perform actions on joints that are at the limit of the robot workspace, leading the arms

to singularity positions and consecutively stopping the execution. It is trivial to notice

that the more joints the articulated object has, the easier it is to have these failures.

The comparison of the performance achieved by Clingo when using the SAES and

MAES encodings can shed some light on the usefulness of the macros. It is easy to

notice that the use of macros allows Clingo to solve a larger number of instances and

that macros are generally helpful in improving the runtime. This is true regardless of the

granularity considered for the manipulation of the angles, and the number of considered

5.2. PERFORMANCES AND DATA ANALYSIS 81

Number Angles: 4

PAR10

Standard SAES MAES

4 0.0 3.82 0.66
5 0.04 929.23 9.9
6 2.8 2104.76 665.19
7 10.38 3000.0 1265.75
8 1235.98 3000.0 2448.22
10 1339.36 3000.0 3000.0
11 2105.99 3000.0 3000.0
12 2704.99 3000.0 3000.0

Coverage

Standard SAES MAES

4 100 100 100
5 100 70 100
6 100 30 80
7 100 0 60
8 60 0 20
10 50 0 0
11 30 0 0
12 10 0 0

Number Angles: 6

PAR10

Standard SAES MAES

4 0.08 16.36 4.43
5 1.52 2402.65 427.06
6 636.69 3000.0 2701.3
7 3000.0 3000.0 2439.51
8 2403.78 3000.0 3000.0
10 2697.74 3000.0 3000.0
11 2719.29 3000.0 3000.0
12 3000.0 3000.0 3000.0

Coverage

Standard SAES MAES

4 100 100 100
5 100 20 90
6 80 0 10
7 0 0 20
8 20 0 0
10 10 0 0
11 10 0 0
12 0 0 0

Number Angles: 8

PAR10

Standard SAES MAES

4 1.93 940.82 64.16
5 331.61 2726.58 2423.15
6 1545.12 3000.0 3000.0
7 2723.41 3000.0 3000.0
8 3000.0 3000.0 3000.0

Coverage

Standard SAES MAES

4 100 70 100
5 90 10 20
6 50 0 0
7 10 0 0
8 0 0 0

Number Angles: 12

PAR10

Standard SAES MAES

4 335.42 1824.43 1252.49
5 1553.26 3000.0 3000.0
6 3000.0 3000.0 3000.0
7 3000.0 3000.0 3000.0
8 2429.32 3000.0 3000.0

Coverage

Standard SAES MAES

4 90 40 60
5 50 0 0
6 0 0 0
7 0 0 0
8 20 0 0

Table 5.2: Results, in terms of PAR10 and coverage, achieved by the considered encodings
on the testing instances. Instances are grouped according to the number of links of the
articulated object to be manipulated (rows) and the granularity of the angular values,
with 10 instances for each pair (number of links, granularity). Cases not solved by any
considered encoding are omitted.

82 CHAPTER 5. VALIDATION OF THE FRAMEWORK AND PERFORMANCES ANALYSIS

links. Remarkably, with a granularity value of 12 (i.e., joints’ angle can be modified by 30

degrees per movement), the use of macros allows Clingo to solve 60% of instances of size

4; 40% of instances can be solved using SAES, instead.

Mixed Encodings In order to obtain an overview of the capabilities of the considered

encodings we used as test problems the same problems as we did for the two encodings

SAES and MAES. For each testing instance, time limit of 300 seconds and the memory

limit of 16 GB was applied. Clingo was used to solve the ASP-encoded instances. All the

experiments were conducted on Intel i7-4790 CPU and Linux OS.

As for the other strategies we compared the performance of the considered encodings

using coverage (percentage of solved instances) and PAR10.

The two encodings SAP and MAP do not show any improvement, on the contrary, they

show a deterioration of the performances with respect to the MAES encoding solving fewer

instances and with worst planning times. However, the ED encoding shows unexpected

improvement in both the number of solved instances and planning time performances. It

is possible to notice from the tables that for a problem with a medium/high number of

links and possible orientation the ED encoding has not only a higher solving capability

but also better performances. However, this is not true with a low number of possible

orientations: under this condition the MAES encoding still perform better. From these

results we can deduce that giving to the solver high degree of freedom of choice does not

lead to worst performances but, on the contrary, it gives the possibility to the planner to

find solutions faster. These results, therefore, suggest that the encoding composed by both

simple and macro actions can improve the performances of the planner but this is not the

only advantage: a plan composed by both the action typology may be able to avoid idle

robot time in a more efficient way than a plan composed by only one of the two. Indeed,

this could lead to better execution performances as well.

5.2. PERFORMANCES AND DATA ANALYSIS 83

Number Angles: 4

PAR10

SAP MAP ED

4 1.76 3.03 2.37
5 24.36 34.61 16.04
6 940.29 1537.17 616.56
7 2714.4 3000.0 1215.37
8 3000.0 3000.0 1864.42
10 3000.0 3000.0 2705.43
11 3000.0 3000.0 2716.35

Coverage

SAP MAP ED

4 100 100 100
5 100 100 100
6 70 50 80
7 10 0 60
8 0 0 40
10 0 0 10
11 0 0 10

Number Angles: 6

PAR10

SAP MAP ED

4 8.18 11.73 11.66
5 2400.76 2400.97 26.11
6 2706.21 2707.48 2701.66
7 3000.0 3000.0 2122.22

Coverage

SAP MAP ED

4 100 100 100
5 20 20 100
6 10 10 10
7 0 0 30

Number Angles: 8

PAR10

SAP MAP ED

4 949.48 1236.45 67.27
5 2717.16 2426.75 1530.97
6 3000.0 3000.0 2418.39

Coverage

SAP MAP ED

4 70 60 100
5 10 20 50
6 0 0 20

Number Angles: 12

PAR10

SAP MAP ED

4 1833.73 2115.91 936.48
5 2726.73 3000.0 2712.49

Coverage

SAP MAP ED

4 40 30 70
5 10 0 10

Table 5.3: Results, in terms of PAR10 and coverage, achieved by the considered encodings
on the testing instances. Instances are grouped according to the number of links of the
articulated object to be manipulated (rows) and the granularity of the angular values,
with 10 instances for each pair (number of links, granularity). Cases not solved by any
considered encoding are omitted.

84 CHAPTER 5. VALIDATION OF THE FRAMEWORK AND PERFORMANCES ANALYSIS

Chapter 6

Automated Planning Encodings

for the Manipulation of

Articulated Objects in 3D with

Gravity via PDDL+

In this chapter, we introduce the languages PDDL and PDDL+ with a set of formula-

tions for performing automated manipulation of articulated objects in a three-dimensional

workspace by a dual-arm robot. We present some formulations that differ in terms of

how gravity is modelled, considering different trade-offs between modelling accuracy and

planning performance, and between human-readability and parsability by planners. Our

experimental analysis compares the formulations on a range of domain-independent plan-

ners, that aim at generating plans for allowing a dual-arm robot to manipulate articulated

objects of different sizes. Validation is performed in simulation on a Baxter robot. As

we previously underline, the manipulation of articulated objects plays an important role

in real-world robot tasks, both in-home and industrial environments [54, 64]. In liter-

86
CHAPTER 6. AUTOMATED PLANNING ENCODINGS FOR THE MANIPULATION OF

ARTICULATED OBJECTS IN 3D WITH GRAVITY VIA PDDL+

ature, the problem of determining the two- or three-dimensional (2D or 3D) configura-

tion of articulated or flexible objects has received much attention in the past few years

[8, 13, 14, 78, 97], whereas the problem of obtaining a target configuration via manipula-

tion has been explored in motion planning [9, 94]. However, the employed manipulation

strategies are often crafted specifically for the problem at hand, with the relevant char-

acteristics of the object and robot capabilities being either hardcoded or assumed, thus

undermining generalisation and scalability. More general solutions [1, 14] are limited to

2D configuration, with a partial exception for the work in [1], where the notion of overlap

between different parts of a cable is explicitly considered.

To sum up, in this section we present:

• Two sets of PDDL+ models for the task of automated, robot-based manipulation of

articulated objects in a 3D workspace. Each set of models considers three different

levels of complexity for representing the effect of gravity.

• We analyse the performances of a number of domain-independent PDDL+ planners

on realistic articulated object manipulation tasks.

We also validate generated plans using a robot control architecture for a dual-arm robot

manipulator in simulation. As a side effect of our work, we provide a challenging domain,

and its PDDL+ models, to the planning community.

6.1 PDDL

PDDL (Planning Domain Description Language) is a standard encoding language for “clas-

sical” planning. The components of PDDL files are:

• Requirements: defining levels of abstraction in the language, e.g., ”STRIPS”, tem-

poral, probabilistic effects etc.

• Types: sets of the things of interest in the world,

6.1. PDDL 87

• Objects: instances of types,

• Predicates: Facts about objects that can be true or false,

• Initial state of the world: before starting the planning process,

• Goal: properties of the world true in goal states and achieved after the planning

process,

• Actions/Operators: ways of changing states of the world and going from the initial

state to goal states.

A planning task in PDDL is specified in two text files:

• A domain file for requirements, types, predicates and actions,

• A problem file for objects, initial state and goal specification.

Domain Files. Domain files are as follows:

(define (domain < domain name >)

< PDDL code for requirements >

< PDDL code for types >

< PDDL code for predicates >

< PDDL code for first action >

. . .

< PDDL code for last action >

)

Where ¡domain name¿ is a string that identifies the planning domain. Examples are

available in these repositories: Logistics, Depots, Gripper, Blocksworld [84].

https://github.com/pellierd/pddl4j/blob/master/pddl/logistics/domain.pddl
https://github.com/pellierd/pddl4j/blob/master/pddl/depots/domain.pddl
https://github.com/pellierd/pddl4j/blob/master/pddl/gripper/domain.pddl
https://github.com/pellierd/pddl4j/blob/master/pddl/blocksworld/domain.pddl

88
CHAPTER 6. AUTOMATED PLANNING ENCODINGS FOR THE MANIPULATION OF

ARTICULATED OBJECTS IN 3D WITH GRAVITY VIA PDDL+

Problem Files. Problem files are as follows:

(define (problem < problem name >)

(: domain < domain name >)

< PDDL code for objects >

< PDDL codefor initial state >

< PDDL code for goal specification >

)

Where ¡problem name¿ is the string that identifies the planning task, e.g. gripper with 4

balls to move. ‘ is the planning domain name corresponding to problem file. Examples are

available in these repositories:Logistics, Depots , Gripper, Blocksworld 4[84].

6.2 Problem Statement

Among the tasks typically carried out in shop-floor environments, the manipulation of

flexible objects, e.g., cables [53, 91], is particularly challenging. On the one hand, it

is beneficial to plan the target cable configuration in advance; on the other hand, it is

often necessary to keep a cable firmly using one grasping point to be able to manipulate

other parts. A robot capable of manipulating flexible objects in its 3D workspace must

be able to: (i) represent object configurations adopting suitable modelling assumptions,

and then segment the whole manipulation problem in simpler actions to be sequenced and

performed, each action operating in-between two intermediate 3D object configurations;

and (ii) represent the actions to carry out using a formalism which allows for robust plan

execution and modelling inaccuracies.

These requirements lead to a robot perception and control architecture characterized

by the following features: (a) similarly to the approach described in [1], the robot plans an

appropriate sequence of actions to determine relevant 3D intermediate configurations for

articulated objects (i.e., a suitable simplified model for a flexible object like a cable) in order

https://github.com/pellierd/pddl4j/blob/master/pddl/logistics/p01.pddl
https://github.com/pellierd/pddl4j/blob/master/pddl/depots/p01.pddl
https://github.com/pellierd/pddl4j/blob/master/pddl/gripper/p01.pddl
https://github.com/pellierd/pddl4j/blob/master/pddl/blocksword/p01.pddl

6.2. PROBLEM STATEMENT 89

Figure 6-1: A 3D articulated object configuration.

to determine a target 3D configuration; and (b) during plan execution, the robot monitors

the outcome of each action, and compares it with the intermediate target configuration

to achieve. The problem we consider in this paper can be defined as follows: given a

target object configuration in 3D space, determining a plan P to obtain it as an ordered

set of actions P = {a1, . . . , ai, . . . , aN ;≺}, where each action ai involves one or more

3D manipulation operations to be executed by a dual-arm robot. We pose a number of

assumptions described as follows:

1. the effects of gravity on all articulated object’s 3D configurations are explicitly con-

sidered;

2. we do not assume any specific grasping or manipulation strategy to obtain a target

3D object configuration starting from another configuration;

3. the perception of articulated objects, although affected by noise, is considered perfect,

i.e., data association is given.

We define an articulated object in 3D as a 2-ple α = 〈L,J 〉, where L is the ordered set

of its L links, i.e.,

L = {l1, . . . , lj , . . . , lL;≺}, (6.1)

90
CHAPTER 6. AUTOMATED PLANNING ENCODINGS FOR THE MANIPULATION OF

ARTICULATED OBJECTS IN 3D WITH GRAVITY VIA PDDL+

and J is the ordered set of its J = L− 1 joints, i.e.,

J = {j1, . . . , jk, . . . , jJ ;≺}. (6.2)

Each link l is characterised by three parameters, namely a length, and two orientations

θl and γl, expressed with respect to a robot-centred reference frame (Figure 6-1). We

allow only for a limited number of discrete orientation values, i.e., θl and γl can take

values from a pre-determined set of possible values. Given a link lj , upstream links are

those from l1 to lj−1, whereas downstream links range from lj+1 to lL. Such absolute

representation leads to the direct perception of links and their orientations. When a

sequence of manipulation actions is planned, changing one absolute orientation requires,

in principle, the propagation of such change upstream or downstream the object via joint

connections. Given an articulated object α, its configuration is a L-ple:

Cα = {(θ, γ)1, . . . , (θ, γ)l, . . . , (θ, γ)L}, (6.3)

where it is intended that the orientations θ and γ are expressed with respect to an absolute,

robot-centred, reference frame.

6.3 Formulation

In order to address the problem introduced above, we exploited PDDL+ to formulate three

different domain models, corresponding to three different levels of abstraction of the impact

of gravity on the articulated object.

PDDL+ [36] is an extension of the standard planning domain modelling language,

PDDL, to model mixed discrete-continuous domains. In addition to instantaneous and

durative actions, PDDL+ introduces continuous processes and exogenous events, that are

triggered by changes in the environment. Processes are used to model continuous change,

6.3. FORMULATION 91

and therefore are well suited in this context to model the impact of gravity on articulated

objects.

The absolute representation of angles we employ, on the one hand, reduces the burden

on the robotic framework, because the orientations of links are directly observable by the

robot perception system and do not require any additional calculation. On the other hand,

the complexity of the planning process is increased, due to the fact that any manipulation

action has to be propagated to all the upstream or downstream link orientations. The

interested reader is referred to [14] for an extensive comparison of different joint angles

representation techniques in a 2D setting.

In the proposed PDDL+ models, a connected predicate is used to describe the fact

that two links are jointed. Joints are not explicitly modelled: the connected predicate

indicates the presence of a joint between the two involved links, and the orientation is

given via the angle function, which indicates the absolute orientation of the link li with

regards to a plane j. The value of angles ranges between 0 and 359 degrees. The effect of

the manipulation of two connected links are propagated via a corresponding affects

predicate. In order to reduce the computational complexity, we fixed the way in which the

robot can manipulate two connected links so that propagation can only happen upstream.

In other words, given two consecutive links, we allow the robot to move only the upstream

link, while the other one is kept fixed. It should be noted that, if needed, the model

can be easily extended to deal with both up and downstream manipulation by adding the

appropriate predicates. The number of planes that can be represented is not fixed and

can be easily modified: in our evaluation, we considered 2 planes, vertical and horizontal,

corresponding to a 3D space.

The planner can modify the orientation of links using the following constructs:

• An operator start-increase(l1,l2,plane) is used by the planner to manip-

ulate the orientation of the link l2 on the plane plane, by using a gripper for keeping

l1 still, and another gripper for moving l2.

92
CHAPTER 6. AUTOMATED PLANNING ENCODINGS FOR THE MANIPULATION OF

ARTICULATED OBJECTS IN 3D WITH GRAVITY VIA PDDL+

• A process move-increase(l2, plane) is used for modelling the continuous

movement performed by the robot to increase the absolute angle related to l2 on

the corresponding plane. This process is activated by the above operator.

• An operator stop-increase(l1,l2,plane) is activated by the planner to stop

the modification of the orientation of the l1 and l2 links. The robot is therefore

releasing the two links.

• The events back-to-zero(l, plane) and back-to-360(l, plane) are trig-

gered when the value of the angle of link l on plane reaches, respectively, 360 or 0.

In the former (latter) case, the value of the angle is reset to 0 (359).

• A process propagate-increase(l1,l2,plane) is activated when a process

move-increase(l2, plane) is ongoing, and it allows to propagate the effects of

the current manipulation on all the affected upstream angles.

In a nutshell, the planning engine can modify the angle between two connected links

via the operator start-increase(l1,l2, plane): this starts the movement process,

that can be stopped by the engine using another dedicated operator. The movement process

is also impacting a (potentially long) cascade of processes that models the propagation of

the manipulation to affected upstream angles.

The above-listed constructs are in charge of performing and modelling manipulations

aimed at increasing angles. A corresponding set of constructs is used to allow the plan-

ner to decrease some specified angles. Figure 6-2 shows the PDDL+ encoding of the

start-increase operator and the back-to-zero event. Notably, the predicate in-use

is exploited to avoid parallel manipulations of the articulated object by the robot. This is

because the robot’s grippers are not explicitly modelled, therefore many different actions

could potentially be planned in parallel by the planning engine. The freeToMove predi-

cates are used to indicate if a link is currently being manipulated or not; these predicates

are a sort of token for grasping a specific link.

6.3. FORMULATION 93

(:action start-increase
:parameters (?l1 -link ?l2 -link ?x -plane)
:precondition (and (connected ?l1 ?l2)
(not (in-use)))
:effect (and (in-use)
(not (freeToMove ?l2))
(not (freeToMove ?l1))
(increasing_angle-robot ?l2 ?x)))

(:process move-increase
:parameters (?l2 -link ?x -plane)
:precondition
(increasing_angle-robot ?l2 ?x)
:effect
(increase (angle ?l2 ?x)(* #t (speed-i))))

(:event back-to-zero
:parameters (?l3 -link ?x -plane)
:precondition
(>= (angle ?l3 ?x) 360)
:effect
(assign (angle ?l3 ?x) 0))

Figure 6-2: Part of the proposed PDDL+ formulation.

6.3.1 Modelling Gravity

Gravity is one of the main reasons for encoding a model in PDDL+, as gravity effects are

(i) continuous in nature, and (ii) not under the direct control of the planning engine. For

these reasons, PDDL+ constructs such as continuous processes and events are extremely

handy for describing the impact of gravity on the 3D manipulation of an articulated object.

The representation of the effects of gravity on an articulated object can be cumbersome

and may prevent the generation of valid plans in a reasonable amount of time. Because

of that, we introduce three different levels of complexity that can be implemented in the

proposed PDDL+ model. It is worth noting that the typical articulated object, in order

to support the manipulation via a robot, has quite stiff joints, which are therefore resisting

–up to some degrees– to the gravity effect.

94
CHAPTER 6. AUTOMATED PLANNING ENCODINGS FOR THE MANIPULATION OF

ARTICULATED OBJECTS IN 3D WITH GRAVITY VIA PDDL+

No Gravity (NoG). The most trivial way to reduce the complexity burden due to the

computation of the effects of gravity on the articulated object is, of course, to completely

ignore gravity. In cases where the joints of the articulated objects are extremely stiff, this

model can still give some useful information to the robot. Notably, the reduced complexity

may allow to quickly re-plan in cases where the robot observes that gravity has significantly

modified the configuration of the object.

Uniform Circular Motion (MCU). A more sophisticated way of modelling the impact

of gravity on an articulated object can be obtained by taking a joint-by-joint perspective.

As links are connected by joints, they can not fall to the ground but are bound to each

other by the joints. The impact of gravity on a joint angle can be modelled as a uniform

circular motion that moves the angle towards a value of 360 (if we consider a 180-degree

angle to be on the z axis). In this encoding, the angular speed is constant. The impact

of gravity on an angle is modelled using a pair of dedicated processes (according to the

fact that the initial angle is lower or higher than 180) and, due to the fact that angles are

absolute, such motion is also propagated to all the affected joints via a different PDDL+

process. The effects of gravity on a joint can be stopped for two reasons: (i) the angle has

reached the rest position (360/0 degrees), or (ii) the corresponding link has been grabbed

by the gripper of the robot.

Uniformly Accelerated Circular Motion (MCUA). Building on top of the MCU for-

malisation, we introduce a more advanced representation of the impact of gravity by mod-

elling it as a uniformly accelerated circular motion. As before, all joints angle tend to

return to a 360 degree position on the z axis. However, their initial angular speed is 0,

but it is uniformly accelerated. The acceleration is encoded in PDDL+ employing an ad-

ditional process, that is in charge of increasing the angular speed while the gravity effect

is active on a specific joint, and an appropriate event that “resets” the speed value when

the effect of gravity ends.

6.3. FORMULATION 95

(:process gravity-increase
:parameters (?l1 - link)
:precondition (and (freeToMove ?l1)
(> (angle ?l1 ZAXES) 180)
(< (angle ?l1 ZAXES) 360))
:effect (and
(increase
(angle ?l1 ZAXES) (* #t (speed-g)))
(increasing_angle-gravity ?l1)))

Figure 6-3: The process used in the MCU formulation to model the effect of gravity on
angles between 180 and 359 degrees.

As for the manipulation of angles performed by the robot, also in the MCU and MCUA

formulations, the effect of gravity on an angle is propagated to all the affected joints by a

set of dedicated processes and events. An example of the process exploited in the MCU

formulation for modelling gravity is provided in Figure 6-3.

6.3.2 Alternative Formulations

The process presented in Figure 6-3, as the dual gravity-decrease and those exploited

in the MCUA formulation, has been modelled in the most human-readable way, due to the

fact that robotics experts have to be involved in the modelling process. For this reason, the

process keeps true the Boolean predicate (increasing angle-gravity ?l1), that is

used to represent the fact that gravity is impacting the corresponding link. Semantically,

this implies that every time step in which the process is active, the corresponding predicate

is set to true. Therefore, the angle assigned to a link affected by gravity is the increase of

the constant value speed-g at each discrete time steps t. While this can be interpreted

as an abuse of PDDL+ language features, it is supported by some state-of-the-art planning

engines and provides a good ground for describing and discussing the model with robotics

experts.

Furthermore, in a preliminary set of experiments, we observed that some aspects of the

modelling of processes and events of the presented PDDL+ models were not accepted by

96
CHAPTER 6. AUTOMATED PLANNING ENCODINGS FOR THE MANIPULATION OF

ARTICULATED OBJECTS IN 3D WITH GRAVITY VIA PDDL+

some of the planning engines at the state of the art. With regards to events, an example

of an unaccepted event is provided in Figure 6-2. The back-to-zero event is used to

reset an angle to 0 degrees as soon as the value of 360 degrees is reached. While it is easy

to see that the effect of the event is making the precondition false, preventing the event to

be re-applied immediately, some planning engines do not accept this formulation. Instead,

they require that a Boolean precondition is falsified by the list of effects. We, therefore,

modified the formulations with an additional predicate: it is initially set to true to allow

events to be triggered. As soon as an event is triggered, its effects falsify the predicate,

that is then reset to true by a subsequent reset event.

For the sake of completeness, and to exploit the opportunity to investigate how planning

engines performance are affected by different models, we consider in our experimental

analysis both formulations. We will refer to the “Original” formulation as the formulation

that is not well-supported by planning engines but maximises human readability. The other

formulation will be referred to as “Modified”, and it aims at maximising the parsability by

planning engines. Both versions of the models and the corresponding problem instances

can be found at https://github.com/Flaudia/AMAO.

6.4 Experimental Analysis

This section presents the PDDL+ benchmarks and the planners employed in our analysis,

as well as the results of the experiments we conducted. The main aim of this analysis is

to test whether our overall PDDL+ solution can solve tasks that model practical, real-

world applications, i.e., in terms of robot workspace and the number of links and physical

features characterising the articulated object. For each set of formulations, we have gen-

erated planning instances by varying the following parameters: (i) number of links of the

articulated object: 3, 4, 5, 6, 7, 8, 10, 12; (ii) in MCU: angular speed of 0.1, 0.5, and 1.0

grades per second; and (iii) in MCUA: acceleration of 0.1 and 0.5 grades per second.

In order to guarantee a fair assessment of the performance of planners according to

https://github.com/Flaudia/AMAO

6.4. EXPERIMENTAL ANALYSIS 97

Figure 6-4: A simulated Baxter robot manipulating a four link articulated object. The
robot-centred reference frame is highlighted with different colours for the three reference
axes.

the level of complexity used for encoding the impact of gravity, for each size of the artic-

ulated object 5 manipulation tasks were created by randomly generating initial and final

configurations (while ensuring that a plan is possible). Those instances are then encoded

in PDDL+ according to the complexity level and to the value of the corresponding MCU

or MCUA parameter. Besides the size of the object, no additional parameters have to

be set for the NoG formulation. Therefore, for each size of the object, there are 5 tasks,

encoded in 30 different problem models. The total number of problem models considered

in our experimental analysis is 240.

As a reference robot, we considered a Baxter dual-arm manipulator, which is widely

used for research purposes and for performing manipulation tasks. This type of robot is

directly supported by the presented PDDL+ formulation and has been used –in simulation–

to validate the generated plans. Moreover, it takes care also of the motion planning part.

An example is shown in Figure 6-4.

In our analysis we have employed the following state-of-the-art PDDL+ solvers:

• UPMurphi [23] is possibly the most popular domain-independent PDDL+ planner,

98
CHAPTER 6. AUTOMATED PLANNING ENCODINGS FOR THE MANIPULATION OF

ARTICULATED OBJECTS IN 3D WITH GRAVITY VIA PDDL+

Table 6.1: Results achieved by DiNo on the considered benchmarks. Sizes greater than 7
are omitted, as the planner did not solve any benchmark of these sizes. For each dimension
of the articulated object, results are presented in terms of average runtime (percentage of
solved instances). The average is calculated by considering solved instances only.

Size – Number of links of the articulated object
3 4 5 6 7

NoG 0.5 (40) 88.1 (40) 8.9 (20) 22.0 (40) – (0)

MCU
0.1 0.6 (40) 130.1 (40) 13.4 (20) 27.2 (40) – (0)
0.5 0.6 (40) 130.2 (40) 13.5 (20) 26.8 (40) – (0)
1.0 0.6 (40) 125.5 (40) 13.4 (20) 26.7 (40) – (0)

MCUA
0.1 0.6 (40) 0.9 (20) 15.4 (20) 36.2 (40) – (0)
0.5 0.6 (40) 1.1 (20) 15.4 (20) 36.0 (40) – (0)

and is based on a model-checker adapted to deal with PDDL+;

• DiNo [86], which adds heuristics to the UPMurphi approach;

• ENHSP [89, 92], a numeric planner with heuristics extended to process PDDL+

problems.

Those planners have been selected due to their widespread use in literature and in appli-

cations of PDDL+ planning.

Experiments have been run on a machine equipped with i7-6900K 3.20 Ghz CPU, 32 GB

of RAM, running Ubuntu 16.04.3.LTS OS. 8 GB of memory were made available for each

planner run, and a 5 CPU-time minutes cut-off time limit was enforced. All such plan-

ners do not utilize multiple cores. The experiments on the Original formulation –i.e. the

formulation presented in the corresponding section of this paper– failed on two of the se-

lected planners, i.e., UPMurphi and DiNo. A detailed analysis of logs highlighted that

some aspects of the modelling of processes and events of the presented PDDL+ models

were not accepted by the mentioned planning engines. With regards to events, an example

of an unaccepted event is provided in Figure 6-2. The back-to-zero event is used to

reset an angle to 0 degrees as soon as the value of 360 degrees is reached. As we state in

6.4. EXPERIMENTAL ANALYSIS 99

Table 6.2: Results achieved by ENHSP on the considered benchmarks. For each dimension
of the articulated object, results are presented in terms of average runtime (percentage of
solved instances). The average is calculated by considering solved instances only.

Size – Number of links of the articulated object
3 4 5 6 7 8 10 12

NoG 0.4 (100) 0.6 (100) 0.7 (80) 7.3 (80) 15.5 (40) 3.8 (20) 108.4 (60) 4.5 (20)

MCU
0.1 0.5 (100) 1.9 (100) 1.3 (80) 4.4 (60) 63.9 (40) 36.0 (20) – (0) 198.5 (20)
0.5 0.5 (100) 1.9 (100) 1.3 (80) 14.9 (80) 14.5 (40) 60.7 (20) – (0) – (0)
1.0 0.5 (100) 1.7 (100) 40.0 (80) 3.2 (80) 15.4 (40) 55.3 (20) – (0) – (0)

MCUA
0.1 0.5 (100) 1.2 (100) 1.3 (80) 4.4 (60) 19.3 (20) 42.5 (20) 50.3 (20) – (0)
0.5 0.5 (100) 1.2 (100) 1.3 (80) 4.8 (60) 19.4 (20) 50.0 (20) 55.3 (20) – (0)

Section 6.3.2, it is easy to see that the effect of the event is making the precondition false,

preventing the event to be re-applied immediately, DiNo and UPMurphi do not accept this

formulation. For this reason, we added adopted the precautions described in the above-

mentioned Section

In terms of processes, Figure 6-3 shows an example of a process formulation that is not

accepted by DiNo and UPMurphi.

In such process, the Boolean predicate (increasing angle-gravity ?l1) is listed

as an effect. This issue was quite expected, and it has been discussed also in the Formu-

lation section that having predicates as effects of processes can be controversial. However,

interestingly, ENHSP does support this modelling approach and provides valid plans nev-

ertheless. For the sake of providing a model that can be parsed by all the considered

planners, we removed the Boolean predicate from the effects of processes: such predicates

were used for making it easier for a human expert to model events. In the modified PDDL+

models, events have a longer list of preconditions.

To be as inclusive as possible in terms of planning engines, in the rest of this section we

will discuss results obtained with the modified version of the PDDL+ models.

Tables 6.1-6.2-6.3 present the results of DiNo, ENHSP, and UPMurphi, respectively. All

tables are organised as follows. The columns report the various number of links, while

100
CHAPTER 6. AUTOMATED PLANNING ENCODINGS FOR THE MANIPULATION OF

ARTICULATED OBJECTS IN 3D WITH GRAVITY VIA PDDL+

Table 6.3: Results achieved by UPMurphi on the considered benchmarks. Sizes greater
than 5 are omitted, as the planner did not solve any benchmark as well. For each dimension
of the articulated object, results are presented in terms of average runtime (percentage of
solved instances). Average is calculated by considering solved instances only.

Size – Number of links
3 4 5

NoG 29.2 (40) 170.2 (20) – (0)

MCU
0.1 33.1 (40) 180.3 (20) – (0)
0.5 32.5 (40) 178.9 (20) – (0)
1.0 32.1 (40) 175.6 (20) – (0)

MCUA
0.1 2.4 (20) – (0) – (0)
0.5 45.6 (40) 214.8 (20) – (0)

in the rows there are the different formulations, with their variants. For each introduced

gravity encoding and the number of links, it is reported the average runtime for solved

instances, while in parenthesis it is reported the percentage of solved instances. In general,

it is easy to derive from the results presented in the tables that, of course, the difficulty

in solving the instances increases with the number of links. With regards to the level of

complexity of the gravity, the NoG model –which completely ignores gravity– seems to be

the easiest (relatively) to solve, followed by MCUA, while MCU seems to be the hardest.

Intuitively, the fact that MCUA is easier than MCU can be due to the fact that in the

MCUA model the effect of gravity slowly builds up, while in the MCU formulation the im-

pact of gravity starts immediately at full speed. In other words, gravity has a much more

significant impact on the search process in the MCU model, rather than in the MCUA.

Considering the MCU and MCUA formulations separately, the performance of the

planning engines are not significantly affected by the employed parameters for MCUA,

while for MCU the situation looks different: DiNo and UPMurphi do not look to be

affected by the employed parameters, while the performance of ENHSP can significantly

differ, also in the percentage of solved instances (see, e.g., analysis for 6 links). Our analysis

suggests that this is due to the fact that DiNo and UPMurphi tend to solve only the easiest

6.4. EXPERIMENTAL ANALYSIS 101

instances, for each considered size of the object, that requires short and quick to execute

plans to be solved. In that, the impact of using the MCU or MCUA model is limited.

Instead, as ENHSP can solve also some more complicated instances, taking into account

gravity becomes pivotal. Moreover, we can see that ENHSP can solve instances up to 12

links, while DiNo and UPMurphi stop at 6 and 2, respectively. ENHSP is also the only

solver able to solve all instances up to 4 links, and the majority of the instances up to 6

links.

About the plans returned by solvers, we noticed no significant difference in terms of

both quality and structure for the three approaches. It may be the case that DiNo is able

to take better into account the upstream propagation of the effects of the manipulation on

angles. While ENHSP tends to provide plans where the robot operates directly on the links

of the joint that needs to be modified for reaching the goal position, DiNo seems to prefer

the robot to work on different links, and to exploit the use of propagation processes to

reach the goal position. However, given the small number of instances solved by DiNo, it is

hard to assess whether this behaviour emerged by chance, or it is due to the characteristics

of the planning approach exploited by the engine.

Validation. The validation performed by simulating the execution of generated plans

on a Baxter robot suggests that the MCU representation provides a reasonably accurate

way to encode the gravity effect, as the generated plans can be executed in the simulation

environment without further adjustments.

6.4.1 Comparison of PDDL+ Models

Out of the considered planners, only ENHSP does support the Original formulation encod-

ings and provides valid plans. In this section, we, therefore, exploit this planner to compare

the impact of the two formulations on its performance. For the sake of providing a model

that can be parsed by all the considered planners, we removed the Boolean predicate from

102
CHAPTER 6. AUTOMATED PLANNING ENCODINGS FOR THE MANIPULATION OF

ARTICULATED OBJECTS IN 3D WITH GRAVITY VIA PDDL+

1 2 3

4 5

Figure 6-5: The planning and execution process on the extended scenario: the robot actions
and (intermediate) states induced by the computed plan.

the effects of processes: such predicates were used for making it easier for a human expert

to model events.

Figure 6-6 shows how the performance of ENHSP are affected by the two sets of PDDL+

models, i.e., the Original and Modified models introduced in Section 6.3.

In Figure 6-6, performance is compared in terms of Penalised Average Runtime 10

(PAR10). PAR10 is the average runtime where unsolved instances count as 10*cutoff

time. PAR10 is a metric usually exploited in machine learning and algorithm configuration

techniques, as it allows to consider coverage and runtime at the same time.

In our analysis, PAR10 is calculated considering all instances of the same size, in terms

of the number of links, regardless of the way in which gravity is modelled. In other words,

each point of the graph corresponds to the PAR10 score obtained by the planner on the

6.4. EXPERIMENTAL ANALYSIS 103

0

500

1000

1500

2000

2500

3000

3 4 5 6 7 8 10 12

P

A

R

1

0

Number of Links

Modi�ed

Original

Figure 6-6: Comparison of ENHSP performance, in terms of PAR10, when run on the
Original formulation and on the Modified models.

30 planning instances generated for the considered size of the object. It can be noted

that when considering objects with more than 5 links, the use of the Original formulation

allows improving the performance of ENHSP. According to the Wilcoxon signed-rank test

[99], performed by considering all the instances, the performance improvement obtained

by using the Original models is substantial and statistically significant (p < 0.05). In

terms of quality of the generated plans, there is still no significant difference between plans

generated using the Original or the Modified models.

While this may be due to the way in which the specific planner has been designed,

and it is not easy to generalise, it is still interesting to note that the most human-friendly

encoding is the one that allows to deliver the best performance.

104
CHAPTER 6. AUTOMATED PLANNING ENCODINGS FOR THE MANIPULATION OF

ARTICULATED OBJECTS IN 3D WITH GRAVITY VIA PDDL+

Chapter 7

Related and Future works

7.1 Related works

Manipulation of Flexible/Articulated Objects The manipulation of articulated ob-

jects plays an important role in real-world robot tasks, both in home and industrial environ-

ments [55, 64]. Attention has been paid to the development of approaches and algorithms

for generating the sequence of movements a robot has to perform in order to manipulate

an articulated object. In the literature, the problem of determining the two-dimensional

(2D) configuration of articulated or flexible objects has received much attention in the past

few years. In [13?] a similar framework based on automated reasoning methodologies

has been presented. Such framework employs PDDL language and automated planning

engines for the planning module, and Description Logic (DL) solvers in the configuration

module, where data are explicitly stored in an ontology, while we use a uniform language

and approach (ASP-based) for the whole framework. Moreover, differently from most of

our approaches, encodings and solvers employed in [13?] are not currently able to re-

turn shortest plans, which is otherwise important, given that in this context executing

the actions can be expensive. In [61], instead, a custom-designed multi-robot platform

is presented, focused on HRI in indoor service robot for understanding natural language

106 CHAPTER 7. RELATED AND FUTURE WORKS

requests. Planning is specified using the action language BC [65]. In [97] they propose a

planning method for knotting/unknotting of deformable linear objects. They propose a

topological description of the state of a linear object with four transitions operations. They

demonstrate that it is theoretically possible to knot a linear object placed on a table with

a one-handed robot with three translational DOF and one rotational DOF. Furthermore,

the approached described in [97] plans using hard encoded states of the linear object. This

mean that it is no possible to get to configurations of the object that are not reachable us-

ing the encoded states. Our architecture give up on the flexibility of the object in order to

implement a more general approach that does not relay predetermined states. in [78] they

propose a learning-based approach to associate the behaviour of a deformable object with

a robot’s actions, using self-supervision from large amounts of data gathered autonomously

by the robot. Their method uses human-provided demonstrations as higher level guidance:

the demonstrations tell the robot what to do, while the learned model tells it how to do

it. Differently from our architecture, there is no planning involved since it is a human

operator that gives instructions to the actions to perform and in which sequence. In [94] it

is present a method for adapting a demonstrated trajectory from the geometry at training

time to the geometry at test time. Trajectory transfer is based on non rigid registration,

which computes a smooth transformation from the training scene onto the testing scene.In

this work the use a multi-step task by repeatedly looking up the nearest demonstration and

then applying trajectory transfer. [9] describes an adaptable system which is able to per-

form manipulation operations (such as Peg-in-Hole or Laying-Down actions) with flexible

objects. They integrate visual tracking and shape reconstruction with a physical modeling

of the materials and their deformations as well as action learning techniques. Furthermore,

The strategy described in [100] involves manipulating the object at highspeed. By moving

the robot at high-speed, they assume that the dynamic behaviour of the flexible rope can

be obtained by performing algebraic calculations of the highspeed robot motion. Based on

this assumption, a dynamic deformation model of the flexible rope it is derived. [7] present

7.1. RELATED WORKS 107

a method to manipulate deformable objects that does not require modeling and simulating

deformation. This method is based on the concept of diminishing rigidity, which we use to

quickly compute an approximation to the Jacobian of the deformable object. This Jaco-

bian is used to drive the points within the deformable object towards a set of targets. In

describe a technique to models the bending of a sheet of paper abd the paper crease lines

which allows the monitoring of the deformations.Moreover, they enabled an anthropomor-

phic robot to fold paper using a set of tactile- and vision-based closed loop controllers.

However, in all these cases, manipulation actions are directly grounded on perceptual cues,

such as the peculiar geometry of the object to deal with, assumed to be easy to identify

in a robust way, or based on a priori known or learned information about the object to

manipulate, e.g., its stiffness or other physical features [31, 37]. As a result, every time

either the element that has to be manipulated or the manipulator changes, a new reasoner

has to be developed from scratch. In [59] they present a feature representation based on a

histogram of oriented wrinkles, to describe the shape variation of a highly deformable ob-

ject like clothing. A precomputed visual feedback dictionary using an offline training phase

that stores a mapping between these visual features and the velocity of the end-effector.

Manipulation in Motion Planning It is possible to find examples in which robots

exhibit the capability of manipulating and operating on mobile parts of the environment,

such as handles of different shapes [21], home furniture [62] or valves in search and rescue

settings [80]. In [21] they design a task descriptor which encapsulates important elements

of a task.They propose a method that enables a robot to decompose a demonstrated

task into sequential manipulation primitives and construct a task descriptor and then

they show how to transfer a task descriptor learned from one object to similar objects.

[62] they èresent an automated assembly system that directs the actions of a team of

heterogeneous robots in the completion of an assembly task. From an initial user-supplied

geometric specification, the system applies reasoning about the geometry of individual

parts in order to deduce how they fit together. In [80] an integrated valve-turning skill is

108 CHAPTER 7. RELATED AND FUTURE WORKS

presented. It only requires an operator to issue a supervisory command to launch valve

identification, motion planning, biped locomotion and valve manipulation. However, the

employed manipulation strategies are often crafted specifically for the problem at hand,

with the relevant characteristics of the object and robot capabilities being either hard

coded or assumed, thus undermining generalisation and scalability. A structured approach

to perception, representation and reasoning, as well as execution, seems beneficial: on the

one hand, we can decouple perception and representation issues, thus not being tied to

specific perception approaches or ad hoc solutions; on the other hand, domain knowledge

and reasoning logic can be separated, with the advantages of an increased maintainability,

and the possibility to interchange reasoners and models in a modular way.

Reasoning About Actions Actions when executed often change the state of the world.

Reasoning about actions helps us to predict if a sequence of actions is indeed going to

achieve some goal that we may have; it allows us to plan or come up with a sequence

of actions that would achieve a particular goal and maintain particular trajectories; it

allows us to explain observations in terms of what actions may have taken place; and it

allows us to diagnose faults in a system in terms of finding what actions may have taken

place to result in the faults [5]. [72] points out that, in ontologies, semantic constraints

abstract from the way some fact about the case at hand may be actually represented in a

proper way. These semantic constraints can be computed from stored data, in the process

implementation. In [6, 48] ASP can be used for verification of properties with Bounded

Model Checking This is true if the actions are expressed in an extension of Linear Tem-

poral Logic, of an action domain modeled in terms of fluents, action laws providing direct

effects of actions, and causal laws. In [45] they combine Answer Set Programming with

Dynamic Linear Time Temporal Logic to define a temporal logic programming language

for reasoning about complex actions and infinite computations. Moreover, in [46] they

present a framework that can be used for reasoning on business processes. In this work

they show that ASP can be used for verifying process properties in temporal logic. In [47]

7.1. RELATED WORKS 109

it is showed that reasoning about actions performed in ASP can rely on domain knowl-

edge in a low-complexity Description Logic. In [44] they describe an approach to process

modelling and semantic analysis that is able to exploit terminological knowledge in relying

process activities to semantic constraints, via the definition of effects and preconditions of

activities, and domain knowledge that relates such effects to the terms used in semantic

constraints

Macro Operators An important line of research in AI planning focuses on increasing

efficiency of the planning process by reformulating the domain knowledge, to obtain models

that are more amenable for automated reasoners. Significant work has been done in the area

of reformulation for improving the performance of domain-independent planners. Macro-

operators [16, 63, 76, 81] are one of the best known types of reformulation in classical

planning; they encapsulate in a single planning operator a sequence of “original” operators.

Technically, an instance of a macro is applicable in a state if and only if a corresponding

sequence of operators’ instances is applicable in that state and the result of the application

of the macro’s instance is the same as the result of application in the corresponding sequence

of operators’ instances. Informally speaking, macros can be understood as shortcuts in the

search space allowing planning engines to generate plans in fewer steps. In automated

planning, macros have been proven to be effective in domains where some actions are

likely to be always executed in the same sequence, or in cases where critical sections

can be identified, i.e., where there are activities that need to use a limited resource [17].

Notably, the notion of macros can also be exploited by specifically enhanced planning

reasoners. This is the case for MacroFF SOL-EP version [10] which is able to exploit offline

extracted and ranked macros, and Marvin [19] that generates macros online by combining

sequences of actions previously used for escaping plateaus. Such systems can efficiently

deal with drawbacks of specific planning engines, in this case the FF planner [56]; however,

their adaptability for different planning engines might be low. In this work, we aimed at

exploiting macros in ASP following the more traditional solver-independent approach, i.e.,

110 CHAPTER 7. RELATED AND FUTURE WORKS

by modifying the encoding, replacing simple actions with macros.

7.2 Future Works

The ASP architecture described in this thesis can surely be improved and integrated with

different systems. It can be integrated with ROSClingo [2], which is a system that combines

the ASP solver Clingo (version 4) with the ROS middleware. In particular, it provides a

high-level ASP-based interface to control the behaviour of a robot and to process the results

of the execution of the actions. In our framework the interaction with ROS is handled by a

custom script. Unfortunately it does not receive any maintenance since a couple of years.

Morever, the ASP architecture presented in this paper can be integrated with telingo [12],

an extension of the ASP system Clingo with temporal operators over finite linear time,

which automatically uses the multi-shot interface of Clingo, and therefore it might be

useful to further simplify our architecture and improve performance. Furthermore, ASP

has been employed in different domains, including robotic, e.g., [2, 33, 34, 38, 93]. These

consider logistic and ricochet robots domain, as well as cooperative robots, whose ultimate

goal is not the validation and exploitation of the techniques on a real robot, as in our

case. For a recent overview, the interested reader is referred to [32]. Focusing on planning

encodings, recently the Plasp system [25] has been further extended with both SAT-inspired

and genuine encodings. Some of them have helped to reduce the (still existing) gap with

automated planning techniques. Our aim in the design of the encoding was to obtain

a devoted and working solution for the problem at hand, rather than the fastest possible

one. Nonetheless, results in [25] could be employed to further speed-up our Action Planning

module.

For what regard Answer Set programming different combination of grounders and solvers

could be tested:

• grouder: I −DLV + solver: WASP

7.2. FUTURE WORKS 111

• grouder: GRINGO + solver: WASP

• grouder: I −DLV + solver: CLASP

Where I-DLV [66] and WASP [27] are respectively a grounder and a solver developed by

University of Calabria and Vienna University of Technology.

Finally, the proprieties of macros in ASP can be further explored. New macros can be

implemented joining different basic actions or developing new simple actions to be then in-

cluded in the already developed macros or in new ones. Furthermore, new mixed encodings

can be modeled using new mix of simple and macros actions.

112 CHAPTER 7. RELATED AND FUTURE WORKS

Chapter 8

Extendability of the framework

and Conclusions

8.1 Extendability fo the framework

The architecture presented in this paper it is composed by different models as shown in

Chap 4. However, the communication between these models is independent of the language

used to perform the module task. The only necessary requirement is that the output of the

model remains with the same syntax. Indeed, both the consistency checking module and the

goal checker module, that we developed using ASP, can be developed using other knowledge

representation languages such as OWL, CycL or KL-ONE. The action planning module can

be developed using other planning languages such as PDDL. Moreover, our architecture

could be tested on other dual-arm robots, such as YuMi - IRB 14000, TIAGo++ for pal

robotics, AMIGO from Eindhoven University of Technology, Romeo is a humanoid robot

built by Aldebaran and with any other dual-arm robot. However, our architecture could

be used to find a solution for the manipulation of articulated objects using single-arm

robots. This can be done with, mainly, two approaches; the first one, would not require

any change in the high-level planning system. It would be sufficient to add to the set-up

114 CHAPTER 8. EXTENDABILITY OF THE FRAMEWORK AND CONCLUSIONS

an object, i.e. a hook, used to keep steady one of the link as if it was grasped by one of the

robot grippers. This would lead to some changes in the low-level planning module since

the action to grasp a certain link will have to be modified in order to put a link inside

the ”hook”. However, the planning strategy we develop to move the articulated object

from an initial configuration to a desired one would be valid. Instead, the second approach

would require to modify the encoding adding to the knowledge base the hook used to keep

steady one of the link. Moreover, at least one simple action would have to be added to the

encoding. This action would state that the robot has to grasp a certain link to then put it

inside the hook. This would lead to a small increase in the complexity of the problem.

8.2 Future Works

The ASP architecture described in this thesis can surely be improved and integrated with

different systems. It can be integrated with ROSClingo [2], which is a system that combines

the ASP solver Clingo (version 4) with the ROS middleware. In particular, it provides a

high-level ASP-based interface to control the behaviour of a robot and to process the results

of the execution of the actions. In our framework, the interaction with ROS is handled by a

custom script. Unfortunately, it does not receive any maintenance since a couple of years.

Moreover, the ASP architecture presented in this paper can be integrated with telingo [12],

an extension of the ASP system Clingo with temporal operators over finite linear time,

which automatically uses the multi-shot interface of Clingo, and therefore it might be

useful to further simplify our architecture and improve performance. Furthermore, ASP

has been employed in different domains, including robotic, e.g., [2, 33, 34, 38, 93]. These

consider logistic and ricochet robots domain, as well as cooperative robots, whose ultimate

goal is not the validation and exploitation of the techniques on a real robot, as in our

case. For a recent overview, the interested reader is referred to [32]. Focusing on planning

encodings, recently the Plasp system [25] has been further extended with both SAT-inspired

and genuine encodings. Some of them have helped to reduce the (still existing) gap with

8.3. CONCLUSION 115

automated planning techniques. Our aim is the design of the encoding was to obtain

a devoted and working solution for the problem at hand, rather than the fastest possible

one. Nonetheless, results in [25] could be employed to further speed-up our Action Planning

module.

For what regards Answer Set programming different combination of grounders and solvers

could be tested:

• grouder: I −DLV + solver: WASP

• grouder: GRINGO + solver: WASP

• grouder: I −DLV + solver: CLASP

Where I-DLV [66] and WASP [27] are respectively a grounder and a solver developed by

University of Calabria and Vienna University of Technology.

Finally, the proprieties of macros in ASP can be further explored. New macros can be

implemented joining different basic actions or developing new simple actions to be then in-

cluded in the already developed macros or in new ones. Furthermore, new mixed encodings

can be modeled using new mix of simple and macros actions.

8.3 Conclusion

With this work, we presented an ASP framework for the automated manipulation of artic-

ulated objects in a robot 2D workspace. We demonstrated the validity and usefulness of

the proposed approach by running real-world experiments with a Baxter, on two scenarios.

In the second, extended scenario, we imported in ASP the concept of macros in order to

deal with the task more efficiently. Our analysis shows the effectiveness of our proposed

ASP-based approach, using Clingo as a solver, and the usefulness of employing macros.

We see several avenues for future work. First, we are interested in validating the

framework on different dual-arm robots, possibly manipulating different articulated ob-

jects: given the nature of the approach, we expect it to generalise with a reasonably

116 CHAPTER 8. EXTENDABILITY OF THE FRAMEWORK AND CONCLUSIONS

limited effort. We also plan to integrate our approach with telingo, to simplify the inter-

action with robots. Then, we plan to develop a mixed encoding composed of simple and

macro actions. Finally, our instances could be an interesting benchmark domain for ASP

Competitions (see, e.g., [40]).

All materials presented in this thesis, including instances, results and validations, can

be found at https://tinyurl.com/ycbp798j .

Bibliography

[1] Agostini, A., Torras, C., and Worgotter, F. (2011). Integrating task planning and

interactive learning for robots to work in human environments. In Proc. of the 22nd

International Joint Conference on Artificial Intelligence (IJCAI 2011), pages 2386–2391.

IJCAI/AAAI. 86, 88

[2] Andres, B., Rajaratnam, D., Sabuncu, O., and Schaub, T. (2015). Integrating ASP into

ROS for reasoning in robots. In Proceedings of the International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR), pages 69–82. Springer. 110, 114

[3] Baral, C. (2003a). Knowledge Representation, Reasoning and Declarative Problem Solv-

ing. Cambridge University Press. 16

[4] Baral, C. (2003b). Knowledge representation, reasoning and declarative problem solving.

Cambridge university press. 23

[5] Baral, C. (2010). Reasoning about actions and change: from single agent actions to

multi-agent actions. In Twelfth International Conference on the Principles of Knowledge

Representation and Reasoning. 21, 108

[6] Baral, C. and Gelfond, M. (2000). Reasoning agents in dynamic domains. In Logic-based

artificial intelligence, pages 257–279. Springer. 21, 108

[7] Berenson, D. (2013). Manipulation of deformable objects without modeling and simu-

118 BIBLIOGRAPHY

lating deformation. In 2013 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 4525–4532. IEEE. 19, 106

[8] Bertolucci, R., Capitanelli, A., Dodaro, C., Leone, N., Maratea, M., Mastrogiovanni,

F., and Vallati, M. (2019). An asp-based framework for the manipulation of articulated

objects using dual-arm robots. In Proc. of the 15th International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR 2019), volume 11481 of Lecture

Notes in Computer Science, pages 32–44. Springer. 86

[9] Bodenhagen, L., Fugl, A. R., Jordt, A., Willatzen, M., Andersen, K. A., Olsen, M. M.,

Koch, R., Petersen, H. G., and Krüger, N. (2014). An adaptable robot vision system per-

forming manipulation actions with flexible objects. IEEE Transactions on Automation

Science and Engineering, 11(3):749–765. 14, 15, 86, 106

[10] Botea, A., Enzenberger, M., Müller, M., and Schaeffer, J. (2005). Macro-FF: im-

proving AI planning with automatically learned macro-operators. Journal of Artificial

Intelligence Research (JAIR), 24:581–621. 22, 109

[11] Brewka, G., Eiter, T., and Truszczynski, M. (2011). Answer set programming at a

glance. Communications of the ACM, 54(12):92–103. 16

[12] Cabalar, P., Kaminski, R., Morkisch, P., and Schaub, T. (2019). telingo = ASP +

time. In Proceedings of the International Conference on Logic Programming and Non-

monotonic Reasoning (LPNMR), volume 11481 of Lecture Notes in Computer Science,

pages 256–269. Springer. 110, 114

[13] Capitanelli, A., Maratea, M., Mastrogiovanni, F., and Vallati, M. (2017). Auto-

mated planning techniques for robot manipulation tasks involving articulated objects.

In Proceedings of the International Conference of the Italian Association for Artificial

Intelligence (AI*IA), pages 483–497. Springer. 14, 18, 86, 105

BIBLIOGRAPHY 119

[14] Capitanelli, A., Maratea, M., Mastrogiovanni, F., and Vallati, M. (2018). On the

manipulation of articulated objects in human–robot cooperation scenarios. Robotics

and Autonomous Systems, 109:139 – 155. 14, 18, 86, 91

[15] Chakravarthy, U. S., Grant, J., and Minker, J. (1988). Foundations of semantic query

optimization for deductive databases. In Foundations of deductive databases and logic

programming, pages 243–273. Elsevier. 23

[16] Chrpa, L. (2010). Generation of macro-operators via investigation of action depen-

dencies in plans. Knowledge Engineering Review, 25(3):281–297. 21, 109

[17] Chrpa, L. and Vallati, M. (2019). Improving domain-independent planning via critical

section macro-operators. In Proceedings of the the Thirty-Third AAAI Conference on

Artificial Intelligence (AAAI 2019), pages 7546–7553. AAAI Press. 16, 22, 75, 109

[18] Chrpa, L., Vallati, M., and McCluskey, T. L. (2015). On the online generation of

effective macro-operators. In Yang, Q. and Wooldridge, M. J., editors, Proceedings

of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI

2015), pages 1544–1550. AAAI Press. 16

[19] Coles, A., Fox, M., and Smith, A. (2007). Online identification of useful macro-actions

for planning. In Proceedings of ICAPS, pages 97–104. 22, 109

[20] Costantini, S. and Formisano, A. (2009). Modeling preferences and conditional prefer-

ences on resource consumption and production in asp. Journal of Algorithms, 64(1):3–15.

24

[21] Dang, H. and Allen, P. K. (2010). Robot learning of everyday object manipulations

via human demonstration. In 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 1284–1289. IEEE. 20, 107

120 BIBLIOGRAPHY

[22] Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. (2001). Complexity and expres-

sive power of logic programming. ACM Computing Surveys (CSUR), 33(3):374–425.

23

[23] Della Penna, G., Magazzeni, D., Mercorio, F., and Intrigila, B. (2009). Upmurphi:

A tool for universal planning on PDDL+ problems. In Proc. of the 19th International

Conference on Automated Planning and Scheduling (ICAPS 2009). AAAI. 97

[24] Di Rosa, E., Giunchiglia, E., and Maratea, M. (2010). Solving satisfiability problems

with preferences. Constraints, 15(4):485–515. 30, 59, 61

[25] Dimopoulos, Y., Gebser, M., Lühne, P., Romero, J., and Schaub, T. (2017). plasp

3: Towards effective ASP planning. In Proceedings of the International Conference on

Logic Programming and Nonmonotonic Reasoning (LPNMR), volume 10377 of Lecture

Notes in Computer Science, pages 286–300. Springer. 61, 110, 114, 115

[26] Dimopoulos, Y., Nebel, B., and Koehler, J. (1997). Encoding planning problems

in nonmonotonic logic programs. In Proceedings of the 4th European Conference on

Planning: Recent Advances in AI Planning, ECP ’97, pages 169–181, Berlin, Heidelberg.

Springer-Verlag. 33

[27] Dodaro, C., Alviano, M., Faber, W., Leone, N., Ricca, F., and Sirianni, M. (2011).

The birth of a wasp: Preliminary report on a new asp solver. CILC, 810:99–113. 111,

115

[28] Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., and

Schaub, T. (2008). Conflict-driven disjunctive answer set solving. KR, 8:422–432. 24

[29] Eiter, T., Faber, W., Leone, N., and Pfeifer, G. (2000). Declarative problem-solving

using the dlv system. In Logic-based artificial intelligence, pages 79–103. Springer. 23,

26

BIBLIOGRAPHY 121

[30] Eiter, T., Gottlob, G., and Mannila, H. (1997). Disjunctive datalog. ACM Transac-

tions on Database Systems (TODS), 22(3):364–418. 23

[31] Elbrechter, C., Haschke, R., and Ritter, H. (2012). Folding paper with anthropo-

morphic robot hands using real-time physics-based modeling. In 2012 12th IEEE-RAS

International Conference on Humanoid Robots (Humanoids 2012), pages 210–215. IEEE.

19, 107

[32] Erdem, E. and Patoglu, V. (2018). Applications of ASP in robotics. Künstliche

Intelligenz, 32(2-3):143–149. 110, 114

[33] Erdem, E., Patoglu, V., and Saribatur, Z. G. (2015). Integrating hybrid diagnostic

reasoning in plan execution monitoring for cognitive factories with multiple robots. In

Proceedings of ICRA, pages 2007–2013. IEEE. 110, 114

[34] Erdem, E., Patoglu, V., Saribatur, Z. G., Schüller, P., and Uras, T. (2013). Finding

optimal plans for multiple teams of robots through a mediator: A logic-based approach.

Theory and Practice of Logic Programming, 13(4-5):831–846. 110, 114

[35] Fernández, J. A. and Minker, J. (1992). Semantics of disjunctive deductive databases.

In International Conference on Database Theory, pages 21–50. Springer. 23

[36] Fox, M. and Long, D. (2006). Modelling mixed discrete-continuous domains for plan-

ning. Journal of Artificial Intelligence Research, 27:235–297. 90

[37] Frank, B., Schmedding, R., Stachniss, C., Teschner, M., and Burgard, W. (2010).

Learning the elasticity parameters of deformable objects with a manipulation robot.

In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

1877–1883. IEEE. 19, 107

[38] Gebser, M., Jost, H., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T., and

Schneider, M. (2013). Ricochet robots: A transverse ASP benchmark. In Proceedings

122 BIBLIOGRAPHY

of the International Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR), pages 348–360. Springer. 110, 114

[39] Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., and Wanko,

P. (2016). Theory solving made easy with clingo 5. In Proceedings of the Technical

Communications of the International Conference on Logic Programming (ICLP), pages

2:1–2:15. Schloss Dagstuhl. 59, 72

[40] Gebser, M., Maratea, M., and Ricca, F. (2017). The sixth answer set programming

competition. Journal of Artificial Intelligence Research, 60:41–95. 116

[41] Gelfond, M. and Lifschitz, V. (1988). The stable model semantics for logic program-

ming. In Proceedings of the International Conference on Logic Programming (ICLP),

pages 1070–1080. MIT Press. 16

[42] Gelfond, M. and Lifschitz, V. (1991). Classical negation in logic programs and dis-

junctive databases. New generation computing, 9(3-4):365–385. 23

[43] Gerevini, A. E., Saetti, A., and Vallati, M. (2015). Exploiting macro-actions and

predicting plan length in planning as satisfiability. AI Communications, 28(2):323–344.

16

[44] Giordano, L. and Dupré, D. T. (2019). Asp and ontologies for reasoning on business

processes. 21, 109

[45] Giordano, L., Martelli, A., and Dupré, D. T. (2013a). Reasoning about actions with

temporal answer sets. Theory and Practice of Logic Programming, 13(2):201–225. 21,

108

[46] Giordano, L., Martelli, A., Spiotta, M., and Dupré, D. T. (2013b). Business process

verification with constraint temporal answer set programming. Theory and Practice of

Logic Programming, 13(4-5):641–655. 21, 108

BIBLIOGRAPHY 123

[47] Giordano, L., Martelli, A., Spiotta, M., and Dupré, D. T. (2016). Asp for reasoning

about actions with an elˆ bot knowledge base. In CILC, pages 214–229. 21, 108

[48] Giunchiglia, E. and Lifschitz, V. (1998). An action language based on causal expla-

nation: Preliminary report. In AAAI/IAAI, pages 623–630. 21, 108

[49] Giunchiglia, E. and Maratea, M. (2006). Solving optimization problems with DLL. In

Brewka, G., Coradeschi, S., Perini, A., and Traverso, P., editors, Proceedings of the 17th

European Conference on Artificial Intelligence (ECAI 2006), volume 141 of Frontiers in

Artificial Intelligence and Applications, pages 377–381. IOS Press. 30, 59, 61

[50] Goldberg, E. (2002). E. and y. novikov. berkmin: A fast and robust sat-solver. In

Proc. Design, Automation, and Test in Europe Conference and Exposition (DATE),

pages 131–149. 29

[51] Grossi, G., Marchi, M., Pontelli, E., and Provetti, A. (2007). Improving the adjsolver

algorithm for asp kernel programs. In Proc. of ASP2007, 4th International Workshop

on Answer Set Programming at ICLP07. 24

[52] Harnad, S. (1990). The symbol grounding problem. Physica D, 42:335–346. 40

[53] Henrich, D. and Worn, H. (2000). Robot manipulation of deformable objects. Advanced

Manufacturing. Springer. 88

[54] Heyer, C. (2010a). Human-robot interaction and future industrial robotics applica-

tions. In Proc. of IEEE International Conference on Intelligent Robots and Systems

(IROS 2010), pages 4749–4754. IEEE. 13, 85

[55] Heyer, C. (2010b). Human-robot interaction and future industrial robotics applica-

tions. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 4749–4754. IEEE. 13, 14, 18, 105

124 BIBLIOGRAPHY

[56] Hoffmann, J. and Nebel, B. (2001). The FF planning system: Fast plan generation

through heuristic search. Journal of Artificial Intelligence Research (JAIR), 14:253–302.

22, 109

[57] Ielpa, S. M., Iiritano, S., Leone, N., and Ricca, F. (2009). An asp-based system

for e-tourism. In International Conference on Logic Programming and Nonmonotonic

Reasoning, pages 368–381. Springer. 24

[58] Jeroslow, R. G. and Wang, J. (1990). Solving propositional satisfiability problems.

Annals of mathematics and Artificial Intelligence, 1(1-4):167–187. 29

[59] Jia, B., Hu, Z., Pan, J., and Manocha, D. (2018). Manipulating highly deformable

materials using a visual feedback dictionary. In 2018 IEEE International Conference on

Robotics and Automation (ICRA), pages 239–246. IEEE. 19, 107

[60] Kautz, H. A. and Selman, B. (1992). Planning as satisfiability. In Proceedings of the

European Conference on Artificial Intelligence (ECAI), pages 359–363. 59

[61] Khandelwal, P., Zhang, S., Sinapov, J., Leonetti, M., Thomason, J., Yang, F., Gori,

I., Svetlik, M., Khante, P., Lifschitz, V., Aggarwal, J. K., Mooney, R. J., and Stone,

P. (2017). Bwibots: A platform for bridging the gap between AI and human-robot

interaction research. International Journal of Robotics Research, 36(5-7):635–659. 18,

105

[62] Knepper, R. A., Layton, T., Romanishin, J., and Rus, D. (2013). Ikeabot: An au-

tonomous multi-robot coordinated furniture assembly system. In 2013 IEEE Interna-

tional conference on robotics and automation, pages 855–862. IEEE. 20, 107

[63] Korf, R. (1985). Macro-operators: A weak method for learning. Artificial Intelligence,

26(1):35–77. 21, 109

BIBLIOGRAPHY 125

[64] Krüger, J., Lien, T. K., and Verl, A. (2009). Cooperation of human and machines in

assembly lines. CIRP Annals, 58(2):628 – 646. 13, 14, 18, 85, 105

[65] Lee, J., Lifschitz, V., and Yang, F. (2013). Action language BC: preliminary report.

In Rossi, F., editor, Proceedings of the 23rd International Joint Conference on Artificial

Intelligence (IJCAI 2013), pages 983–989. IJCAI/AAAI. 18, 106

[66] Leone, N., Pfeifer, G., Faber, W., Calimeri, F., Dell’Armi, T., Eiter, T., Gottlob, G.,

Ianni, G., Ielpa, G., Koch, C., et al. (2002). The dlv system. In European Workshop on

Logics in Artificial Intelligence, pages 537–540. Springer. 111, 115

[67] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scarcello,

F. (2005). The dlv system for knowledge representation and reasoning. In In ACM

Transaction on Computational Logic. To Appear. Citeseer. 24

[68] Leone, N., Ricca, F., and Terracina, G. (2009). An asp-based data integration system.

In International Conference on Logic Programming and Nonmonotonic Reasoning, pages

528–534. Springer. 24

[69] Leone, N., Rullo, P., and Scarcello, F. (1997). Disjunctive stable models: Unfounded

sets, fixpoint semantics, and computation. Information and computation, 135(2):69–112.

24

[70] Lifschitz, V. (1999). Answer set planning. In International Conference on Logic

Programming and Nonmonotonic Reasoning, pages 373–374. Springer. 33

[71] Lifschitz, V. (2002). Answer set programming and plan generation. Artificial Intelli-

gence Journal, 138(1-2):39–54. 59

[72] Ly, L. T., Rinderle-Ma, S., Göser, K., and Dadam, P. (2012). On enabling inte-

grated process compliance with semantic constraints in process management systems.

Information Systems Frontiers, 14(2):195–219. 21, 108

126 BIBLIOGRAPHY

[73] Maratea, M., Ricca, F., Faber, W., and Leone, N. (2008). Look-back techniques and

heuristics in dlv: Implementation, evaluation, and comparison to qbf solvers. Journal

of Algorithms, 63(1-3):70–89. 24

[74] Marek, V. W. and Truszczyński, M. (1999). Stable models and an alternative logic

programming paradigm. In The Logic Programming Paradigm, pages 375–398. Springer.

23

[75] Marques-Silva, J. (1999). The impact of branching heuristics in propositional satis-

fiability algorithms. In Portuguese Conference on Artificial Intelligence, pages 62–74.

Springer. 29

[76] McCluskey, T. L. and Porteous, J. M. (1997). Engineering and compiling planning

domain models to promote validity and efficiency. Artificial Intelligence, 95(1):1–65. 21,

109

[77] Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S. (2001). Chaff:

Engineering an efficient sat solver. In Proceedings of the 38th annual Design Automation

Conference, pages 530–535. ACM. 29

[78] Nair, A., Chen, D., Agraval, P., Isola, P., Abbeel, P., Malik, J., and Levine, S. (2017a).

Combining self-supervised learning and imitation for vision-based rope manipulation. In

Proc. of the 2017 IEEE International Conference on Robotics and Automation (ICRA

2017), pages 2146–2153. IEEE. 18, 86, 106

[79] Nair, A., Chen, D., Agrawal, P., Isola, P., Abbeel, P., Malik, J., and Levine, S. (2017b).

Combining self-supervised learning and imitation for vision-based rope manipulation. In

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),

pages 2146–2153. IEEE. 14

[80] Newman, W., Chong, Z.-H., Du, C., Hung, R. T., Lee, K.-H., Ma, L., Ng, T. W.,

Swetenham, C. E., Tjoeng, K. K., and Wang, W. (2014). Autonomous valve turning with

BIBLIOGRAPHY 127

an atlas humanoid robot. In 2014 IEEE-RAS International Conference on Humanoid

Robots, pages 493–499. IEEE. 20, 107

[81] Newton, M. A. H., Levine, J., Fox, M., and Long, D. (2007). Learning macro-actions

for arbitrary planners and domains. In the International Conference on Automated

Planning and Scheduling, ICAPS, pages 256–263. 21, 109

[82] Niemelä, I. (1999). Logic programs with stable model semantics as a constraint pro-

gramming paradigm. AMAI, 25(3-4):241–273. 16

[83] Niemelä, I. (1999). Logic programs with stable model semantics as a constraint pro-

gramming paradigm. Annals of mathematics and Artificial Intelligence, 25(3-4):241–273.

33

[84] Pellier, D. and Fiorino, H. (2018). Pddl4j: a planning domain description library for

java. Journal of Experimental & Theoretical Artificial Intelligence, 30(1):143–176. 87,

88

[85] Perri, S., Scarcello, F., Catalano, G., and Leone, N. (2007). Enhancing dlv instantiator

by backjumping techniques. Annals of Mathematics and Artificial Intelligence, 51(2-

4):195. 24

[86] Piotrowski, W. M., Fox, M., Long, D., Magazzeni, D., and Mercorio, F. (2016). Heuris-

tic planning for PDDL+ domains. In Proc. of the 25th International Joint Conference

on Artificial Intelligence (IJCAI 2016), pages 3213–3219. IJCAI/AAAI Press. 98

[87] Przymusinski, T. C. (1989). On the declarative and procedural semantics of logic

programs. Journal of Automated Reasoning, 5(2):167–205. 28

[88] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and

Ng, A. Y. (2009). Ros: an open-source robot operating system. In ICRA workshop on

open source software, volume 3, page 5. Kobe, Japan. 45

128 BIBLIOGRAPHY

[89] Ramı́rez, M., Papasimeon, M., Lipovetzky, N., Benke, L., Miller, T., Pearce, A. R.,

Scala, E., and Zamani, M. (2018). Integrated hybrid planning and programmed con-

trol for real time UAV maneuvering. In Proc. of the 17th International Conference on

Autonomous Agents and MultiAgent Systems (AAMAS 2018), pages 1318–1326. Interna-

tional Foundation for Autonomous Agents and Multiagent Systems Richland, SC, USA

/ ACM. 98

[90] Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., and Leone, N.

(2008). Ontodlv: an asp-based system for enterprise ontologies. Journal of Logic and

Computation, 19(4):643–670. 24

[91] Saadat, M. and Nan, P. (2002). Industrial applications of automatic manipulation of

flexible materials. Industrial Robot: an International Journal, 29(5):434–442. 88

[92] Scala, E., Haslum, P., Thiébaux, S., and Ramı́rez, M. (2016). Interval-based re-

laxation for general numeric planning. In Proc. of the 22nd European Conference on

Artificial Intelligence (ECAI 2016), volume 285 of Frontiers in Artificial Intelligence

and Applications, pages 655–663. IOS Press. 98

[93] Schäpers, B., Niemueller, T., Lakemeyer, G., Gebser, M., and Schaub, T. (2018). ASP-

Based Time-Bounded Planning for Logistics Robots. In Proceedings of the International

Conference on Automated Planning and Scheduling (ICAPS), pages 509–517. AAAI

Press. 110, 114

[94] Schulman, J., Ho, J., Lee, C., and Abbeel, P. (2016). Learning from demonstrations

through the use of non-rigid registration. In Robotics Research, pages 339–354. Springer.

19, 86, 106

[95] Schulman, J., Lee, A., Ho, J., and Abbeel, P. (2013). Tracking deformable objects

with point clouds. In 2013 IEEE International Conference on Robotics and Automation,

pages 1130–1137. IEEE. 14, 15

BIBLIOGRAPHY 129

[96] Subrahmanian, V. S. and Zaniolo, C. (1995). Relating stable models and ai planning

domains. In In Proc. ICLP-95, pages 233–247. MIT Press. 33

[97] Wakamatsu, H., Arai, E., and Hirai, S. (2006a). Knotting and unknotting manipula-

tion of deformable linear objects. International Journal of Robotic Research, 25(4):371–

395. 18, 86, 106

[98] Wakamatsu, H., Arai, E., and Hirai, S. (2006b). Knotting/unknotting manipulation

of deformable linear objects. International Journal of Robotic Research, 25(4):371–395.

14, 15

[99] Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin,

1(6):80–83. 103

[100] Yamakawa, Y., Namiki, A., and Ishikawa, M. (2013). Dynamic high-speed knotting

of a rope by a manipulator. IJARS, 10:1–12. 14, 15, 19, 39, 106

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Answer Set Programming
	2.1 Introduction
	2.2 The Language
	2.2.1 Syntax
	2.2.2 Semantics

	2.3 Answer Set Programming in Planning
	2.3.1 Introduction
	2.3.2 Macros in Automated Planning

	3 Problem Statement and Reference Scenarios
	3.1 Introduction
	3.1.1 Articulated Object

	3.2 Simple Model
	3.3 Extended Model

	4 Architecture
	4.1 Software
	4.1.1 Robot Operating System
	4.1.2 Ar_Track_Alvarr
	4.1.3 MoveIt!
	4.1.4 Potassco

	4.2 Hardware
	4.2.1 Baxter robot
	4.2.2 The Microsoft Kinect

	4.3 Modules and Functioning of the ASP-based Architecture
	4.4 Modules
	4.4.1 Knowledge Base
	4.4.2 Consistency Checking
	4.4.3 Goal Checker
	4.4.4 Action Planning
	4.4.5 Extended Scenario

	5 Validation of the Framework and Performances Analysis
	5.1 Validation of the Framework
	5.1.1 Simple Scenario
	5.1.2 Extended Scenario

	5.2 Performances and Data Analysis
	5.2.1 Simple Scenario
	5.2.2 Extended Scenario

	6 Automated Planning Encodings for the Manipulation of Articulated Objects in 3D with Gravity via PDDL+
	6.1 PDDL
	6.2 Problem Statement
	6.3 Formulation
	6.3.1 Modelling Gravity
	6.3.2 Alternative Formulations

	6.4 Experimental Analysis
	6.4.1 Comparison of PDDL+ Models

	7 Related and Future works
	7.1 Related works
	7.2 Future Works

	8 Extendability of the framework and Conclusions
	8.1 Extendability fo the framework
	8.2 Future Works
	8.3 Conclusion

	Bibliography

