
Università della Calabria

Dipartimento di Elettronica, Informatica e Sistemistica

Doctor of Philosophy in Operations Research (MAT/09) – XXI edition

PH.D. DISSERTATION

Modeling, Simulation and Optimization

in Logistics

Roberto Trunfio

Supervisor Advisor

Prof. Lucio Grandinetti Prof. Pasquale Legato

Academic Year 2007-2008

To Antonella...

ii

Table of Contents

Table of Contents iii

Acknowledgements vi

Introduction 1

1 Modeling of Logistic Systems: Processes and Models at a Maritime

Container Terminal 3

1.1 Introduction . 4
1.2 Event Graph . 10

1.2.1 Elements and Structure . 11
1.3 Petri Nets . 13

1.3.1 Timed and Stochastic Petri Nets 15
1.4 Hierarchical Control Flow Graphs . 16

1.4.1 Fundamental Elements and Structure 17
1.5 Holistic Discrete Event Simulation Models with Process Interaction

Modeling . 22
1.5.1 Holistic Modular Process Simulation Models 22
1.5.2 Model Objects . 25
1.5.3 Processes and Event-Activity Diagrams 27

1.6 Modeling of a Whole Maritime Container Terminal 35
1.6.1 A Simulation Model for a Marine Container Terminal 38
1.6.2 A Modeling Case Study . 44

1.7 Simulation and Optimization of Logistic Systems 60
1.8 Conclusions . 61

2 Simulation-based Optimization 62

2.1 Introduction . 63
2.2 An overview on simulation-based optimization 65

2.2.1 Simulation-based optimization generic scheme 66

iii

2.2.2 Classification of the simulation-based algorithms 70
2.3 Selection of Promising Solutions: Commercial Packages or Ad Hoc

Software? . 71
2.4 Nested Partitions . 77

2.4.1 Method description . 78
2.5 Balanced Explorative and Exploitative Search 85

2.5.1 RBEES . 87
2.5.2 ABEES . 89

2.6 Simulation-based Optimization of a Manufacturing System 91
2.7 Conclusions . 96

3 Simulation-based Optimization Techniques for the Quay Crane Schedul-

ing Problem 97

3.1 Introduction . 98
3.2 Problem Description . 100
3.3 Mathematical Formulations . 102

3.3.1 Kim and Park Formulation for RTG Quay Cranes 103
3.3.2 A Positional Formulation of the QCSP 106

3.4 Simulation-based Optimization Approach 109
3.4.1 Evaluation of the makespan 111
3.4.2 A distance measure . 112
3.4.3 Generation of a feasible schedule 115
3.4.4 Global search procedure . 116
3.4.5 Local search procedure . 120
3.4.6 Partitioning scheme . 123

3.5 Numerical experiments . 125
3.5.1 Choice of the parameters . 127
3.5.2 Deterministic Optimization 129
3.5.3 Simulation-based Optimization with non-deterministic times . 131

3.6 Conclusions . 137

A The Quay Crane Deployment Problem 139

A.1 Introduction . 140
A.2 The Quay Crane Deployment Problem 142

A.2.1 A IP Model for the Crane Assignment Phase 145
A.2.2 An IP Model for the Crane Deployment Phase 148

A.3 Numerical Experiments . 151
A.4 Conclusion and future development 153

B Instances of the Quay Crane Scheduling Problem 155

B.1 Instances . 155

iv

Bibliography 164

v

Acknowledgements

My first sincere thanks go to Prof. Pasquale Legato, my supervisor, for his many

suggestions and constant support during my doctoral program.

I am grateful to Prof. Roberto Musmanno who gave me the opportunity to work

at the NEC Italia S.r.l. Center for High-Performance Computing and Computational

Engineering (CESIC).

I am also thankful to my PhD colleague Rina Mary Mazza for her friendship and

for being so supportive during the three years of PhD studies.

I would like to express my heartfelt appreciation to Daniel Gull̀ı for his loyal

friendship and precious technical support.

Of course, I am grateful to my family for their precious advice and love.

I am grateful to my family for all the sacrifices they have made for me to succeed

throughout my life and for their precious advice, love and support.

The foremost thanks go to Antonella: she literally saved my soul in the early

years of chaos and confusion and illuminated my path. Without her love this work

would never have been completed.

Rende (CS), Italy Roberto Trunfio

December 1, 2008

vi

Introduction

Nowadays, the competitiveness of a company concerns both the organization and the

management of the business processes, from the relationship with suppliers for the

supply of raw materials to the relationship with customers for delivery of finished

products. In this context, logistics has a key role in modern systems for goods

manufacturing and freight transportation, and, therefore, the success of a company

is related to the optimum management of the logistics.

The need to represent the overall business decisions in a dynamic and uncertain

context results in a growing demand for Research & Development of Operations

Research tools for modeling and simulation of logistics processes, with particular

demand for mathematical programming models combined with stochastic simulation

tools.

Thus, this thesis is concerned with the definition of OR methodologies for some

practical applications in logistics and focuses its attention on methods for integrated

representation of the decisions and process in logistics. In particular, the necessity to

model in an integrated manner strategic, tactical and operative processes for the def-

inition of a tool for the optimal management of a logistical system, drawn this thesis

to highlight the need of modeling and optimizing large and complex logistical sys-

tems. In this area, some research efforts have been addressed by using mathematical

programming models formulated in a deterministic-static environment. Vice versa,

discrete-event simulation models in a stochastic-dynamic environment are well capa-

ble of representing the entire processes. Hence, simulation results to be an effective

tool for decision making at all decisional levels.

The first Chapter of the dissertation is devoted to the study of modeling paradigm

1

2

based on both reductionist and holistic approach and devoted to the representa-

tion of logistical processes and the formalization of problems with complex schedul-

ing/assignment constraints. A new modeling paradigm based on the process inter-

action conceptual framework is also presented. The proposed modeling paradigm

is well suited to represent the logistical processes, distinguishing between “atomic”

components which, in fact, implement natural resources, and “manager” components

who, conversely, incorporating methods of allocation of resources and sequencing of

activities. Finally, an example of modeling of logistic processes of the Gioia Tauro

maritime container terminal is proposed, with particular attention to the process of

discharging/loading of a vessel under a set of complex constraints.

The second Chapter propose an overview of Simulation-based Optimization. There-

fore, the Chapter is devoted to describe a generic framework for simulation-based

optimization and to discuss about the features of the most known optimizer for com-

mercial simulators. Moreover, two frameworks recently developed are introduced.

The first framework is the well-known Nested Partitions method, while the second

is the Balanced Explorative and Exploitative Search. The frameworks are deeply

discussed and specialized on a problem of production logistics.

The Quay Crane Scheduling Problem is taken in the third Chapter, with a mixed

integer programming formulation based on position variables and devoted to mini-

mize the makespan (i.e., the vessel overall completion time). The proposed model

is compared with another celebrated mathematical model. Successively, the frame-

works proposed within the previous Chapter are here specialized on the quay crane

scheduling problem and numerical results on both deterministic and stochastic ver-

sion of the problem are reported. Instances are finally depicted in the apposite

Appendix B.

The thesis concludes with Appendix A. This Appendix completes the modeling

effort of the logistical processes described in Chapter 1 by proposing two mathemat-

ical formulations for the assignment of the quay cranes to the incoming vessels and

the successive deployment of the cranes along the quay (with respect to non-crossing

constraints).

Chapter 1

Modeling of Logistic Systems:

Processes and Models at a

Maritime Container Terminal

Since some decades, discrete simulation has become the most powerful tool in mod-

eling logistic systems in a dynamic stochastic environment. An open challenge is

trigged by the need to devise ways of developing easy-to-read and expressive visual

modeling paradigms. Most modeling paradigms, as Event Graphs, Petri Nets and

Hierarchical Control Flow Graphs, currently adopted mainly in an academic context,

have been generally supplanted by simulation packages in real system applications.

Nevertheless, our belief is that these are more expressive and powerful in modeling

logistic systems. We rely on an innovative visual modeling paradigm based on the

process interaction conceptual framework and on the holistic modeling approach,

which we are presenting in this paper.

This Chapter focuses on the way of representing processes, resources and en-

tities that compose our simulation modeling paradigm. Here we aim to design a

modeling paradigm that is able to provide a clear and detailed description of the lo-

gistical processes that arise in a maritime container terminal. Modeling capabilities

of our modeling paradigm are compared to those of Event Graphs, Petri Nets and

Hierarchical Control Flow Graphs within a real case study.

3

4

1.1 Introduction

The increasing international division of labor in the course of globalization, the re-

sulting trade movements and the consequent need for just in time goods production

and faster freight transportation, lead manufacturing and transport companies to

study and develop efficient and effective planning and control (P&C) tools for deci-

sion making, at all decisional levels. Research and development have a crucial role

in this business by providing sophisticated decision support systems on powerful and

easy-to-use modeling platforms. As stated by several authors [95, 35], in a stochastic

dynamic environment, discrete event simulation (DES) models are well capable of

representing the behavior of large systems (e.g., manufacturing systems and supply

chains). Thus DES models are widely adopted as planning and control tools to

estimate system performances under uncertainty and conduct scenario analysis.

Modern, commercial DES simulation packages based on a “point & click” logic

– that is what Pidd [65] calls visual interactive modeling simulators (VIMSs) –

are devoted to minimize the system modeling effort by hiding the behavior of the

components adopted to construct the model, but at a loss of model readability, un-

derstanding and customization. In opposition, a modeling paradigm (MP) is a visual

modeling approach based on a formalism designed on a worldview which requires a

lot of modeling ability, and which provides superior representational capabilities.

In the past, a lot of interesting and powerful DES modeling paradigms (MPs)

have been developed based on the three classical worldviews (or conceptual frame-

works), i.e. Event Scheduling (ES), Activity Scanning (AS) and Process Interaction

(PI) [59]. The most notable MPs developed using these conceptual frameworks

are respectively: Event Graphs [79], Petri Nets [62] and Hierarchical Control Flow

Graphs [22].

Main conceptual frameworks Derrick, Balci and Nance [21] stated that a

worldview is an underlying structure and organization of ideas which constitute

the outline and basic frame that guide a modeler in representing a system in the

form of a model.

When using the ES conceptual framework, the modeler describes the system of

interest in terms of events which occur during system simulation. This worldview is

5

based on a time-ordered schedule of events, called the event list, which will occur in

the future simulated time. The event list is constructed at runtime, where the events

occurrence in the future depends on the length uncertainty of the simultaneous

activities contained in the modeled stochastic system. Some events are determined,

that is they occur at a known future time (e.g., the bootstrapping of arrivals);

while others are known as contingent or conditional and their occurrence depends

upon the satisfaction of some sets of conditions not predictable in advance (e.g.,

the “start service time” depends from an unpredictable customer arrival and is

conditioned by server availability). The implementation of the ES worldview is based

on the definition of an event routine associated to each event. An event routine,

according to Pidd [66], is a “set of actions that may follow from a state change

in the system”. The scheduling and un-scheduling of events and logical checks

for contingent events is demanded to an event routine. The ES is the widespread

worldview, seeing that it stands out for lowest burden on executive. Otherwise, it has

a high burden on modeler, a very low maintainability, a poor natural representation

capability and a high effort required for the time of development, which makes the

MPs developed using this conceptual framework not appealing for large and complex

system modeling.

In the AS worldview, the modeler is required to identify all the system objects

that must be modeled, and then the activities that the objects perform, together at

the conditions under these activities take place. An activity is initiated by a state

change determined by a test set of boolean conditions, called testhead. Testheads

are used to link the various activities and to produce the state transitions of the

model objects and the intersections among them. Thus, a model is composed by

a set of testheads and the associated resulting action awaiting execution at the

appropriate time. AS worldview implementation is based on a two-phase monitor

which performs a time scan (a routine that advances the simulated time) and an

activity scan (a routine which determines the next executed activity checking all the

testheads). In a different way by the ES worldview, the AS conceptual framework is

affected by a high burden on executive, but it has a low burden on modeler, a high

maintainability, a good natural representation capability and a low effort required

for the time of development.

6

The PI conceptual framework better suits the needs for model readability and

understanding. In fact, while ES and AS modeling approaches are based respectively

on events and activities, the PI is based on the concept of process. A process is a

complex concept which represents a flow of events and activities through which a

particular model object moves; therefore, in a model specification, it describes the

life cycle of a model object. Whilst a model object moves through its process, it may

experience certain delays and be hold in its movement. Thus, the first thing to do in

the PI worldview is to identify all the model objects which are involved in the model

specification. Subsequently, the modeler must specify the sequence of events and

activities for each model object. For this reason, a process is often represented with

a schematic representation known as flow-chart, where the events and activities that

compose the process are the nodes of the chart. A flow-chart is usually represented as

a directed graph. For each activity included in a process routine there is a stretch of

simulated time (even null). The PI qualities are a moderate burden for the modeler,

a high maintainability, an excellent natural representation capability. The most

notable drawback is the high burden on execution, even if modern object-oriented

approaches better fit the implementation needs of this conceptual framework, and

the effort required for the time of development, which is quite high.

Main modeling approaches Modeling a stochastic system using a MP or, in

alternative, a commercial VIMS (e.g., GPSS and Arena) implies the use of a specific

modeling approach. As anticipated before, the two classical dichotomous modeling

approaches are reductionism and holism.

Reductionism relies on the belief that a large and complex system may be decom-

posed into its constituent parts without any loss of information, predictive power

or meaning [67]. The totality of MPs and VIMS are developed using the modular

modeling approach, which is the most notable expression of reductionism. In fact,

a modular model, as argued by Zeigler [96, 97], must satisfy the following condi-

tions: i) each module (or component) must not directly access, modify or refer to

the state of any other module; and ii) each module must have a known input and

output ports through which all interaction with the exterior is pursued. Therefore,

by mean of the modular approach, a system is decomposed into its constituent parts

7

or components, depicted as black boxes, as requested by the reductionism.

Unfortunately reductionism does not consider that large and complex logistic

systems cannot be decomposed into their constituent parts with the guarantee of all

the above conditions. This statement can be practically proved by trying to analyze

real systems, e.g. maritime container terminals. In this context, it is easy to verify

that it is not possible to decompose the system into its constituent parts (i.e. logistic

processes – see Stahlbock and Voß [86] for an up-to-date review on logistic processes

in maritime container terminals) and analyze them separately, because they are

partially or entirely related: some significant loss of information, predictive power

and meaning will occur. According to Pidd and Castro [67] we do believe that the

best approach for the management of a large and complex dynamic discrete system

should be based on holism.

Holism assumes that systems possess some properties that are meaningful only

in the context of the whole and not in the parts. This is just what occurs in lo-

gistic systems, due to the fundamental role of logistics which amounts to integrate

manufacturing and transportation processes as well as to coordinate the usage of

shared resources. Holism allows to develop a simulation model by means of many

atomic components, and using few context-specific components, that are called man-

ager components. Atomic components are characterized by a simple behavior and

are un-dependent by the model layout (as in the reductionist approach). Manager

components have a complex behavior (e.g., they may use complex algorithms to

make resource assignment or task scheduling) and they are designed around a spe-

cific system layout, therefore each of these components has a high-level view of the

system and of its components. Atomic components are usually linked to one or more

manager, which act as a hub. This approach it may remarkably reduces the overall

number of links in the model, improving the model readability.

To show the difference between the two modeling approaches, here we provide an

introductive example of a model of some logistical processes of a typical maritime

container terminal. In Section 1.6 is provided a more detailed description of a holistic

simulation model of a real container terminal.

8

Crane 1
Container

Handler 1

Crane m

...

Container

Handler n

...

V
e

s
s

e
l

O1

On

I1

In

O1

On

I1

In

I1

Im

O1

Om

I1

Im

O1

Om

(a) Reductionistic approach.

Operations

Manager

Crane 1
Container

Handler 1

Crane m

...

Container

Handler n

...

I1

Im

Im+1

Im+n

O1

V
e

s
s

e
l

Om+1

Om Om+n

I

O

O

I

I

O

O

I

(b) Holistic approach.

Figure 1.1: Vessel discharging/loading model.

We are interested in depicting the model for the process of vessel discharg-

ing/loading through m quay cranes (QCs) and simultaneously transferring con-

tainers from the ship at the storage area (and vice versa) by means of a fleet of n

shuttle vehicles (SVs). In Figure 1.1(a) is depicted the corresponding model using

the reductionist approach. In this case, we have m buffered QCs (“Crane” com-

ponent), used to perform containers discharge and loading operations of a specific

vessel. These cranes interact with n resources for container handling (“Container

Handler” component), i.e., special SVs that are used to transfer, set-up and set-

down containers and are known as straddle carriers (SCs). Both component types

interact by message passing in order to negotiate containers transfer. Each Crane

9

component interacts with the static component vessel, with the purpose to negotiate

the access of the assigned tasks (i.e. decks and holds that must be discharged/loaded

under specific constraints): then, the end-user must specify for each Crane the list

of tasks that must be performed. Another parameter that must be specified is the

assignment at one specific Crane of each Container Handler (runtime assignment of

the Container Handler is difficult with this approach). Besides, with this approach

we have 4 · m · n links among components.

The corresponding model designed using the holistic approach is proposed in Fig-

ure 1.1(b). This model introduce a manager component (the “Operations Manager”)

to coordinate the assignment of the vessel’s tasks to the each Crane component and

the integrated management of the Container Handler components within the trans-

fer process of containers forth and back from the quay to the yard. In particular

the routing function of straddle carriers among several container storage points on

the yard and vessel berthing points on the quay is recognized as crucial with re-

spect to the whole performance of the terminal and the Operations Manager is a

component that can include several policy of resource allocation. In this model, the

Crane components and the Container Handler components interact via the manager

component, which act as an interface between both component types. Obviously, in

this case the end-user must specify key parameters only for the Operations Manager

and not for all the others m + n resource components. The overall number of links

among components is also reduced to 2(m + n): in real cases we have about 4 QCs

per vessel and 4 SCs per QC, which means 256 links using the reductionist approach

versus 40 using the holistic approach.

It should be clear at this point that the use of a holistic approach to model a whole

system achieves better results in terms of the replication of the real system behavior

and model readability. Thus, developing an MP or VIMS by using the holistic

approach should be appropriate. However, considering that both alternatives are

affected by an intrinsic difficulty in model understanding, which makes simulation

models unpopular at the model end-users, here we propose an MP which provides:

i) a high representational capability from the conceptual point of view, as well as ii)

a common language for both modelers and end users from the model understanding

sight.

10

The definition of an innovative MP for logistic systems operating under uncer-

tainty based on a holistic approach, is the basis for developing a simulation-based

optimization platform. Besides, the considerations about strong and weak points of

the ES, AS and PI worldviews convince us that we must define our MP using the

PI conceptual framework. Afterwards, in the next sections we introduce the Event

Graph (EG), Petri Nets (PN) and Hierarchical Control Flow Graph (HCFG) simu-

lation models, to describe three successful modeling approaches based on the three

classical conceptual frameworks from which we define our MP. Thus, we dedicate

the subsequent section describing our MP, inspired by a previous work [47].

Successively, we introduce problems and features of a maritime container ter-

minal, proposing a high-level simulation model of a real container port. Then, to

compare our MP with three different and successful MPs (i.e., EG, PN and HCFG),

the attention is focused on a part of the proposed simulation model and the part is

modeled using the MPs introduced in this Chapter. Thus, different way of modeling

the same reality are shown.

After that, we discuss some specific issues when developing a friendly tool for

the integration of optimization techniques within simulation platforms. Conclusions

are finally provided.

1.2 Event Graph

The EG is a MP based on ES worldview developed by Schruben [79]. An EG is an

oriented graph, where a vertex represents an event an arcs stands for relationship

among events. An EG model may be disconnected, thus it may consists of a set of

components whose behavior is an EG itself. In this case, the components interaction

is based on underlying model variables. Besides, EG allows hierarchical modeling

regrouping sub-graphs in a single vertex and exploding the compound vertex if

needed. Therefore, EG is a powerful and quite simple tool for discrete event system

modeling.

The following subsection provides a detailed description of the EG based mod-

eling.

11

1.2.1 Elements and Structure

Modeling through EG requires to define and number all the events of the system,

therefore one has to identify all the prominent system state changes (i.e. a variation

in the system state variables) which take place when events occur. All the events

are depicted as a circle, or rather as a vertex of the graph. The occurrence of the

event i modifies a definite set of system state variables, whether deterministic or

stochastic. The use of these set of state variables is needed to implicitly represent

system entities (jobs) – e.g. increasing a variable which represents the number of

queuing entities [93]. Events are provided of parameters (e.g., the resource id for

the start service event in M/M/m queuing models), therefore a vector of event

parameters must be provided. The use of vertex parameters minimizes the model

overall dimension, in fact events which differ only by parameters value are depicted

through the same vertex. Some practical examples about system modeling using

EG graphical modeling can be found in [77, 80].

A pair of events A and B is connected by a directed edge (arcs), so an edge

point outs how the event A (the edge head) influences the occurrence of the event

B (the edge tail). In the EG paradigm there are two types of edges: scheduling

edge and cancelling edge. The first type is depicted as a solid arc, whereas the

latter as a dashed arc. Similar to events, edges have a set of attributes representing

a set of logical and temporal expressions (i.e., delay times). Logical expressions

may be constructed coupling simple conditions using both i) boolean operators and

(∨), or (∧) and not (¬) and ii) relational operators (<, 6, =,6=, >, >). Logical

and temporal expressions may be based on values generated from random variables

sampled using such distribution by means of the convenient software library [38]. If

necessary, the edge head and tail can be the same vertex; in addition, more arcs can

exist between the same pair of nodes. Moreover, if an edge is not marked by any

attributes, (scheduling or cancelling) it is called unconditional edge.

According to Schruben, events may execute the following actions: i) transforma-

tion of state variables, ii) generation of edge delay times, iii) testing of event logical

conditions, and iv) scheduling/cancelling future events.

In the EG based modeling, simulation clock and future events list are not explic-

itly represented, even if in a subsequent work Yücesan and Schruben [93] introduced

12

A B
t

(i)

(a)

A B
t

(i)

(b)

A B[j]
t

(i)

[k]

(c)

A B
t

(d)

Figure 1.2: Event Graph notation.

current simulation clock as a model state variable. In that way, EG allows designing

a set of variable to collect system performance measures. Schruben remarks that

the use of this class of variables as edge conditions is not allowed.

In Figure 1.1 the constructs adopted to model a system using EG are depicted.

Through the formalism in Figure 1.2(a) is possible to model the scheduling of the

event B after t delay time by the occurrence of the event A, only if the logical

condition i holds. Likewise, in Figure Figure 1.2(b) the modeling case for event can-

cellation is illustrated. Finally, Figure 1.2(c) shows the notation for the scheduling

of the event B as described in case (a), with the parameter vector j assuming the

current values of the vector k. For sake of completeness, Schruben claimed in his

first work about EG that cancelling edges are useful, but not absolutely necessary.

Unconditioned edges are depicted as a simple directed edge, as in Figure 1.2(d).

An unconditioned edge depicts a relation among two events A and B that is not

bounded by any timed or boolean condition.

Schruben developed a set of rules that must be fulfilled to attempt a right model

simulation. The most notable rules regard the i) event initialization, and ii) event

execution priority.

The former rule concerns the set of events that must be scheduled to prevent

simulation starvation. In each EG strongly connected events can be identified, by

the subgraph obtained once all the cancelling edges have been removed from the

EG. Therefore, the rule states that “at least one event in each strongly connected

component of an event scheduling subgraph with no entering edges needs to be

13

initially scheduled in a simulation program”.

The latter rule has been developed to avoid simulation deadlock when multiple

events are scheduled at the same simulated time. In this case, an execution priority

must be decided. Thus, the rule suggests “to establish a priority between the events

A and B if there is a non-null intersection between the set of state variables possibly

altered by event B and the set of state variables involved in the conditions of all the

edges originating by vertex A”. As it is easy to recognizes, the application of the

latter rule makes modeling through EG not as easy as it could seem.

1.3 Petri Nets

A Petri Net (PN) is a graphical and mathematical modeling tool developed by

Petri [62] in his PhD thesis. PNs have a simple graph-based representation. A PN

has two components: a net and initial marking. The net is a directed graph with

two sorts of nodes, called places and transitions, such that there is no arc between

two nodes of the same sort (sometimes are used different arc type, e.g. inhibitor

arcs). Places are graphically represented by a circle while a transition by a bar, as

depicted in Figure 1.3. Each arc has a weight that is not displayed in case of value

equal to one.

Figure 1.3: Petri Nets notation. On the left the classic Petri Net components, on

the right an example of Petri Net with an inhibitor arc.

A place can store a natural number of tokens, represented by black dots. A

marking is a deployment of tokens among places and it corresponds to a state of

the PN. Petri calls input places those places which are linked through transition

incoming arcs (or input arcs), whereas he calls output places those places which are

corrected via the outgoing arcs of the transition (or output arcs). A transition acts

on input tokens by a process called firing, and it may fire whenever it is enabled. A

14

transition is enabled when each input place has at least a number of tokens equal

to the weight of the arc. A transition may fire when it is enabled; its firing changes

the marking of the net consuming a number of tokens (equal to the weight of each

input arc) from each of its input place, and producing an amount of tokens (equal

to the weight of each output arc) to each of its output place. Transition does this

atomically, in one non-interruptible step. Execution of PNs is non-deterministic,

therefore: i) multiple transitions can be enabled at the same time, any one of which

can fire; ii) none are required to fire, i.e. they fire at will, between time 0 and

infinity, or nothing fires at all. Transitions are in conflict if they share input places,

therefore in this case a firing priority must be declared.

Figure 1.4 depicts an example of a PN before and after firing of a transition.

Figure 1.4: Petri Nets: Before firing (on the left side) and after firing (on the right

side).

A transition with an input inhibitor arc is enabled when both the following

conditions occur: i) each of all input places connected to the transition via normal

arcs have a number of tokens at least equal to the weight of corresponding arcs; ii)

each of all input places connected by mean of inhibitor arcs have no tokens.

A lot of properties mark a PN. Liveness is the first property. A PN is live if

every transition can always occur again. In particular, if for every reachable marking

(i.e., every marking which can be obtained from the initial marking by successive

occurrence of transitions) and every transition t it is possible to reach a marking

that enables t. Moreover, a PN has the property to be deadlock-free, that it is a

weaker property than liveness. A PN is deadlock-free if every reachable marking

enables some transitions.

A PN is bounded if exist a number b such that no reachable marking puts more

than b tokens in any places. Places in a PN are often used to model buffers and

15

registers for storage data (while transitions represents activities). If the PN is un-

bounded, then overflows can occur in these buffers/registers.

Another important property regards the reachability of the initial marking. In

PNs, a marking is a home marking if it is reachable from every reachable marking.

Thus, if the initial marking of a PN is a home marking then the PN has the property

to be cyclic.

Many extensions of the original PN model have been proposed through the

decades: Coloured Petri Nets (CPNs) have been developed in order to distinguish

different token types [31]; Time Petri Nets (TPNs) have been developed in order

to include the concept of time. In DES models, a key role is covered by Stochastic

Petri Nets (SPNs), which are a particular specialization of TPNs. In the following,

we introduce TPNs and SPNs.

1.3.1 Timed and Stochastic Petri Nets

The ordinary PNs do not include any concept of time. Therefore, the original

PN MP is not able to describe the evolution over the time of dynamic systems.

Responding to the need for the temporal performance analysis of discrete-event

systems, time has been introduced into PNs in a variety of ways (associating a time

delay to places, transitions, arcs or tokens), as with TPNs. A TPN is similar to a

PN with the addition of a deterministic firing delay associated to each transition

(i.e. a timed transition). A delay specifies the time when the firing effects of an

enabled transition become evident. Whenever there are both timed and not timed

transitions (i.e. immediate transitions), transitions that are not timed have a higher

priority than timed ones.

However, fixed delays are not appropriate for most real systems characterized

by an intrinsic variability. Thus, since most of the variables involved in complex

DES systems are stochastic by nature, SPNs have been developed as a stochastic

extension of TPNs. In a SPN, a probability distribution is assumed for each time

delay (more formally stochastic delay) [53]. However, to make analysis tractable

typically only a restricted set of probability distributions is allowed. For instance, a

particular and widely used SPN developed by Marsan, Balbo and Conte [50], known

16

as Generalized Stochastic Petri Net (GSPN), allow both immediate transitions, i.e.

transitions with no delay, and timed transitions, i.e. transitions with exponential

delays.

Some additional considerations about transitions enabling and firing rules are

necessary for TPNs. Considering TPNs where delays are determined by timed tran-

sitions, a possible approach is based on the so called race semantics. In the race

semantics, time delay is associated to the enabling time and once a transitions has

been enabled it races against each other enabled transitions to fire for first. Another

approach is the preselection semantics, where time delay is associated to the firing

time and enabled transitions are scheduled to fire after a time delay using a priority

or probabilistic mechanism. The race semantics approach allow for more compact

model representation, while the preselection semantics are more intuitive and easier

to use.

1.4 Hierarchical Control Flow Graphs

HCFG models are a MP developed by Fritz and Sargent [22] and based on a modified

version of the PI conceptual framework [18] that includes concepts as encapsulation

and locality. HCFG models are a hierarchical extension of the Control Flow Graph

(CFG) models formerly designed by Cota and Sargent [17]. Modeling by CFG mod-

els means to specify the behavior of each model component, i.e. a process, using

a graph called CFG. Processes interact via message passing using input and out-

put ports of the components that are connected through channels (directed edges).

Therefore, each component is depicted as a box equipped with a set of labelled in-

put ports and output ports. A component has a type and an instance name. This

distinction is necessary to avoid misunderstanding in a simulation model; in fact, a

component type should be instanced many times in the same model and the instance

name works as a unique ID for components of such a type in the same layer. The

component inside (inner view) depicts the component behavior, while the compo-

nent outside (outer view) shows the relationship between model components linked

together by means of directed edges forming a net. The approach that Cota and

Sargent used to describe the interaction between model components has inspired

17

some of those used in modern VIMS, which is one success factor for commercial

VIMS.

In the following a comprehensive description of the HCFG models is provided.

1.4.1 Fundamental Elements and Structure

HCFG models are a hierarchical extension of CFG models. Fundamental in HCFG

understanding is the introduction of CFG models. A CFG model is composed

by a set of components interacting by message passing through input/output ports

linked solely by mean of directed edges called channels. A structure known as

Interconnection Graph (IG) is used to specify the components links: it is a directed

graph in which vertices are model components and arcs are channels.

A channel is able to connect only one output port to an input port and to transfer

only one message type, therefore many channels should be instanced between a

couple of components. Messages are queued into the input port of a component

until the component does not accept them. In the CFG models, system entities are

symbolized as messages. Components apply a timestamp to each sent message to

show its sending time.

CFG models are not an easy-to-use MP for large and complex systems, because

they are not designed for hierarchical modeling. This lack has been filled by HCFG

models introducing two independent but complementary type of hierarchical model

specification. The first is called Hierarchical Interconnection Graph (HIG); while

the second is know as HCFG.

A HIG is based on the main idea of HCFG models: components should be linked

together to compose a new model component (hierarchical approach). Thus, likewise

an IG, a HIG is a graphical tool used to represent a hierarchical model depicting

components as nodes and channels as arcs. A compound component (a node) should

be expanded in order to show the connections between sub-components from its

inner view and components from its outer view. Only one HIG must be defined for

each HCFG model. Components that are not decomposable are known as Atomic

Components (ACs), while components resulting by coupling other components are

called Compound Components (CCs). Therefore, in a HIG un-expandable nodes are

18

ACs.

As stated before, the outer view of a component depicts the relationship of a

component with the others, i.e. a set of input and/or output ports is depicted and

directed edges are used to couple components through the ports. In Figure 1.5 is

shown the outer view of a component developed using HCFG models.

(type: ContainerHandler)

name: ContainerHandler1

i1 (container) o1 (transferred container)

Figure 1.5: Outer view of a component for a container terminal system using HCFG

models.

Using HCFG models, we have two different way of representing the inner view

of a component. The inner view of a CC is defined using a structure called Coupled

Component Specification (CCS). A CCS is a directed graph whose nodes are model

components and arcs are channels. In Figure 1.6 is depicted the inner view of the

component shown in Figure 1.5. As it easy to see, the CCS of a CC does not include

the specification of the sub-components behavior. The CCs cover a key role in the

modeling of large and complex models, since they allow the modeler to easily design

a hierarchical model through components composition and decomposition. In that

way, expanding a node in a HIG means to replace the expanded node with the

corresponding CCS.

(type: Process)
name: ContainerLoader

i1 o1

(type: Process)
name: ContainerTransfer

i1 o1

(type: Process)
name: ContainerUnLoader

i1 o1
i1 o1

Figure 1.6: Inner view of a component for a container terminal system using HCFG

models.

The inner view of an AC is depicted through a HCFG. A HCFG is a tool for the

design of components behavior, i.e. it is a hierarchical version of a CFG. A CFG

19

specifies a component’s state space through an augmented directed graph, where a

state is depicted as a node and the possible state transitions are shown as directed

edges among couples of node. Considering that a process should be suspended

when it possesses the thread of control and then it may be reactivated [20, 95],

all the states are possible process reactivation points (i.e., once a process has been

reactivated, its thread of control starts again from the last visited state). Each AC

has a set of local variables not visible by other components; these variables comprise

a local simulation clock. Three attributes are associated to each directed edge: a

condition, that defines when the arc is candidate to be traversed; a priority, that

is used to decide which arc must be traversed when multiple edges are candidate

for traversal at the same simulated time; and an event, which specifies the state

transition that occurs during simulation whenever the arc is traversed.

time delay function

(a) Time Edge

port identifier

(b) Port Edge

boolean predicate

(c) Bool Edge

T

event

(d) True Edge

Figure 1.7: Edge notation in a CFG.

Edge conditions may be of the following types: time-delay, non-empty input port

and boolean expression. Thus, we may refer respectively to TimeEdges, PortEdges

and BoolEdges. A TimeEdge is equipped of a time delay function which returns a

non-negative number representing the edge traversal time, i.e. how many simulated

time from the current system clock the edge should be traversed. A PortEdge is

an edge associated to an AC input port (many PortEdges can be associated to the

same input port). For this edge type, the edge traversal is permitted when at least

an un-received message is waiting into the message queue of the associated input

port. A BoolEdge has a boolean expression which refer only to local variables. The

20

boolean expression must be evaluated to decide if the edge can be traversed. A sub-

type of BoolEdge is called TrueEdge, that is a BoolEdge whose condition is defined

to always evaluate to true. In Figure 1.7 is depicted the notation for all the edge

types.

The event is an edge attribute that specifies a set of actions that must be executed

when the edge is traversed. Allowed actions include changing in AC local variables,

message sending to output ports, and only for PortEdges the message receiving from

the associated input port. A null event occurs if no action must be performed during

edge traversal (in this case the event is depicted with the function “e-null”, but we

prefer to omit it to ease the model readability).

Simulation execution is generally initialized by inserting messages into compo-

nents input ports. Fritz and Sargent proposed a generic algorithm for model simula-

tion, specifying how to identify the next traversed edge, when advancing simulation

clock and how transfer the control between component states.

In a similar way as Schruben proposed for the EG models, whenever using ACs

is necessary to design k instances of the same element (e.g. ports and edges), is

possible to use multi-ports and multi-edges recurring to a vectorial notation [78, 37].

Multi-edges are depicted using a dashed line and the edge cardinality is shown in

square brackets upon the edge.

In Figure 1.8 is shown an example of CFG for a SimpleServer AC as proposed

by Sargent [78]. The behavior of this AC is described using the states “idle” and

“busy”, designed respectively using the vertices “I” and “B”. Message arrival from

the input port i1 represents the arrival of a job requiring processing. Whenever a

message arrival takes place at the same time that the AC status is on the vertex B,

then the message is queued in the message queue of the input port i1.

Modeling the behavior of ACs is straightforward in simple systems, but can

become really complicated in large and complex systems. Therefore, Fritz and

Sargent developed a hierarchical extension of CFG, called HCFG, which guarantees

reusability and modularity. The behavior specification of an AC using HCFG is

based on the idea that it should be decomposed in partial disjoint behaviors known

as Macro Control States (MCSs). In that way, it is possible to depict the inner

view of an AC by coupling MCSs (likewise for the inner view of a CC). A MCS is a

21

SimpleServer AC

BI

i1

e2

Functions:

e1:

Receive message Job from i1;

e2:

Send message Job to o1;

t(s):

Generate service time using Service Distribution;

e1

t(s)

SimpleServer

istanceName

AC

States:

I = Idle

B = Busy

i1 (jobInput) o1 (jobOutput)

CFG

Figure 1.8: The CFG for the AC SimpleServer (left side) and the outer view of the

AC SimpleServer (right side).

SimpleServer AC

I

i1 e1

Functions:

e1:

Send message Job to o1;

t(s):

Generate service time using Service Distribution;

e1 t(s)

SimpleServer

istanceName

AC

State:

I = Idle

i1 (jobInput) o1 (jobOutput)

HCFG

Idle Busy

MCS Idle MCS Busy

State:

B = Busy

B

Functions:

e1:

Receive message Job from i1;

Figure 1.9: A HCFG for the AC SimpleServer.

CFG where nodes are states or MCSs, the input port and output port are explicitly

depicted as pins. Thus, the simplest MCS is designed as a CFG. An MCS has

no visibility of its outer view; then if a MCS or an AC encapsulates a MCS, its

22

local variables can not be accessed by the encapsulated MCS. The HCFG of the AC

SimpleServer depicted in Figure 1.8 is given in Figure 1.9: this HCFG is composed

of two MCSs, the MCS “Idle” and “Busy”. Comparing the inner view of the AC

SimpleServer provided by the CFG in Figure 1.8 with the one described by the two

MCSs of the HCFG in Figure 1.9, it is easy to recognize that the use of HCFG also

improves the readability of the behaviour of an AC.

1.5 Holistic Discrete Event Simulation Models with

Process Interaction Modeling

Here we describe the MP called Holistic Modular Process (HMP) for developing

simulation models originally proposed by Legato, Gull̀ı and Trunfio [40]. A HMP

model is a holistic MP for DES modeling based upon the PI worldview. Main

concepts are presented in the following and its potentiality is illustrated by modeling

a typical logistic process that arises in a maritime container terminal. Comparisons

with the EG, PN and HCFG models are also provided.

1.5.1 Holistic Modular Process Simulation Models

The MP proposed in this paper is aimed to be flexible and expressive in the modeling

of complex systems. It tries to achieve three primary objectives: model readability,

reusability and personalization.

Model readability is a property which allows a model to be simple-to-read for a

non-modeler. This property has a special importance when top managers are directly

involved in scenario analysis: in our MP readability is achieved by describing the

components’ behavior within a simulation model by a sort of flow-chart. As for re-

usage property, our experience at the Gioia Tauro Container Terminal confirms the

requirement that a specialized simulation tool has to be reused in some of its forms

(model reuse, component reuse, function reuse and code scavenging [64]). Model

reuse, under calibration and repeated tuning, occurs as soon as traffic conditions

change over time. Furthermore, component and function reuse are both required to

23

give the operational manager the possibility of quickly implementing a first order

model of some emerging situations, before the structured intervention of external

expertise. According to our concept of holistic MP, we provide model reusability

by means of hierarchical, modular model definition and redefinition of simulation

parameters.

Model personalization is the base of an MP for the effective modeling of complex

systems. It relies on the user-definition of process properties that allow describing

uncommon situations, as it is the case when the modeler is asked to represent local,

best practices in logistics organization and management.

An outline of the HMP simulation models follows now. An HMP model includes

a set of model objects, or objects for short. For each model object an inner and outer

view is defined. The outer view is depicted as a box equipped of input and output

ports (see Figure 1.10). The inner view depicts a sequence of activities and events.

The sequence is also called the model object process routine, or simply process.

TypeName

InstanceName OI

Figure 1.10: The outer view of a model object in a HMP simulation model.

In a similar way as described for HCFG models, relationships between model

objects are depicted using directed edges (channels). Model objects are equipped

with input and output ports (depicted as shown in Figure 1.10) that can, eventually,

be renamed to improve model readability. Two model objects are linked by means

of only one channel from an output port of the first object to an input port of the

second object and vice versa, i.e. no more than two channels connect directly two

model objects. Two model objects interact by message passing via channel, despite

a channel has its own direction (the head of the edge is connected to an output

port, while the tail to an input port). Multiple types of messages flow forward and

backward along a channel, whilst entities (or jobs) of the simulation model can flow

only through the proper channel direction.

In this way, by adopting a modular approach, an HMP simulation model is a net

24

T: ServiceStation
I: aStation OI

(a) Outer view.

T: Queue

I: Buffer OI

T: Server

I: Machine OI

ModelType

InstanceName

OI

(b) Inner view.

Figure 1.11: A sub-model depicting a service station, composed by a buffer and a

server.

of model objects. Therefore, hierarchical modeling is pursued by coupling different

processes and grouping the resulting net of model objects into a sub-model (which

is depicted in a similar to a model object, as proposed in Figure 1.11). In this case,

the sub-model can be used to be coupled together with other model objects or sub-

models. A requirement when constructing sub-models is that at least one input or

output port must be defined and linked to the inner model-objects, otherwise, the

depicted model is a super-model or final model. The inner view of a sub-model is

just another HMP model where some channels link the inner part to the outer part

of the model through its boundaries.

As stated above, the inner view of a model object is a process, or rather a

sequence of activities and events that define the model object behavior. The process

is represented as a particular hierarchical flow-chart, called Event-Activity Diagram

(EAD), where activities and events are nodes and edges fix the logical and temporal

sequence between nodes (other node types will be introduced in the following).

A process can be constructed hierarchically by grouping events and activities to

compose a sub-process. Thus, a sub-process is an EAD itself. By means of a sub-

process we provide component reuse and model readability.

Similar to the conical methodology [55, 21], that is a framework for simulation

model development, a model definition and specification using two main tools is

provided.

The first tool is the model hierarchy structure (MHS). The MHS is a tree that

provides a high-level model definition showing hierarchically the sub-models and

25

model objects that compose a simulation model (see Figure 1.12 for an example).

Model 1

Model 2.1

Model 2.1.1Object 2.1.1 Object 2.1.2

Object 1.1

Object 2.1.1.1

Object 1.2

Object 2.1.1.2 Object 2.1.1.3 Object 2.1.1.4

Figure 1.12: A Model Hierarchy Structure (MHS).

A more detailed model definition is obtained by a second tool, the EAD. An EAD

provides the process definition. In fact, an EAD defines the structure of a process

by means of a sort of flow-chart. Because of the possible use of sub-processes for the

process definition, an EAD could be a hierarchical structure (composite nodes are

expanded revealing a new EAD) and a hierarchical tree, similar to the MHS, may

be used to explore the EAD structure.

1.5.2 Model Objects

Following the PI worldview, the first step consists in identifying all the model objects

which are involved in system modeling and detect all common features. Then, class-

dependent features are described for the few classes of model objects introduced

in our MP. The objects are contextual, so it is necessary to specify the model in

which they are defined. The model name parameter is used to declare which model

an object belongs to. This parameter serves two reasons: first of all, the holistic

approach says that such objects can only be used in some contexts; furthermore,

the use of sub-models could cause a lot of confusion, especially if a sub-model is

exploded (i.e. deleting model boundaries) and the same object is used in a model

and in its sub-models. Objects of the same type are identified by the type name

parameter. If the model name is a parameter that depends on the model, the type

name is a non-changeable parameter. Each instance of a certain type of object is

26

also identified by the instance name parameter. The set composed by these three

parameters univocally identifies a model object within an HMP simulation model.

There is at least another important parameter that allows managing heteroge-

neous objects, known as category name. The use of the category name allows us to

make associations between objects that are apparently disjoined. A possible use can

be seen in the development of a simulation package, in the packages for statistical

analysis and optimization of system performance measures. As a matter of fact,

in this context generic rules and algorithms can be defined over a class of mixed

objects - the benefits that can be derived by this approach has been investigated in

a companion paper [48].

Model objects have a set of variables and data structures used to support the

logical representation of the process behavior. These properties are not explicitly

depicted and refer to the code implementation of each model object type. Model

objects variables and data structures are accessed by a set of public functions which

allow their manipulation. A function is called by message passing, or rather sending

an explicit message to call a specific model object function.

Model objects are illustrated in detail in the following.

There are two basic classes of objects: resources and resource managers. As

stated above, entities of the simulation model are depicted as messages that are

able to envelop properties, data structures and other entities (e.g., a ship that carries

thousands of containers loaded in different holds).

Resources are active or passive depending on their role in the simulation model.

Passive resources are not depicted explicitly and are not able to execute action/events

or process entities. Nevertheless, a passive resource is able to execute incoming re-

quests and actions of other model objects (as declared above, a passive resource

shows a set of public functions that can be used to manipulate the resource). Pas-

sive resources are generally managed by an active resource or a resource manager.

Whenever a passive resource is managed by a resource manager, active resources

linked to the resource manager are able to overwork it only under the conditions

specified by the resource manager. A passive resource must be managed by a re-

source manager if more than one resource may request it for use during a simulation

(e.g., items storage into a shelf using forklifts). An active resource can possess

27

passive resources and it can offer a service to one or more entities per time. It

can also make queries to other objects to which it is linked by message passing via

input/output ports. The behavior of an active resource is described using an EAD.

By means of resources one can only represent just a system governed by a few

simple rules. As matter of fact, the need of modeling complex systems in a holistic

approach leads us to introduce the resource managers. A resource manager is a

high-level object, which is able to interact with a set of model objects (also het-

erogeneous). Resource managers can take decisions (e.g., solve a scheduling or an

assignment problem, negotiating the use of a sub-system, etc.) by applying rules and

policies and making queries to other model objects. They have free access to modify

the behaviour of all the resources in their own model to which they are linked. In

a holistic approach, as demonstrated by Pidd and Castro [67], the use of that kind

of model objects avoids the explosion of object links and therefore it represents a

more easy-to-use modeling tool.

1.5.3 Processes and Event-Activity Diagrams

The role of a process in model object specification is analyzed here and process

representation is shown. The interaction of processes during the simulation is briefly

described.

According to the definition of process given in the PI worldview overview, a

process is a series of temporally related events and activities. Usually flow-charts

may be used to represent processes. In our flow-charting methodology, called Event-

Activity Diagram (EAD), events and activities are nodes, while directed edges define

one or more paths that can be covered by a process. Other useful elements compose

a process, namely the logical nodes.

Activities and events are not intended to perform actions, but to show to non-

modelers, in a friendly-way, how a process can work. The role of executing requests,

performing actions and introducing time delays between activities and/or events is

assigned to directed edges. Therefore, the use of a flow-charting graphical method-

ology to depict a process allows us to achieve at a good extent the readability ob-

jective. Bearing in mind the list of the process components, let us start an in-depth

28

discussion about these components.

In our MP, activities are classified focusing on the simulation duration of the

activity; hence activities are partitioned in timed and instantaneous. The first type

of activities are those able to start operations at a simulated time instant and finish

operations in a future simulated time instant. For instance, timed activities are

those that perform operations characterized by a variable simulated time length,

e.g. waiting or servicing activities. The second type refers to activities that start

and end operations at the same simulated time instant, e.g. activities representing a

choice or check by a resource or resource manager. Nevertheless, also timed activities

can starts and ends operations at the same simulated time instant.

A process needs the specification of an initial activity that is enabled, or rather

the activity that possesses the process checkpoint (more details about checkpoints

are provided in the following). The initial activity is the activity from which the

process starts when it becomes active (initial process state). In an EAD one or more

activities per time can be enabled, i.e. when the process flow has been forked in

different logical paths. The set of currently enabled activities is called the process

state.

An event is a fact that forces one out of a set of possible changes of the current

state. It may precede or follow an activity, thus representing something that is just

happened or that is going to happen. If an event precedes an activity, then it is

processed at the same simulated time of the activity start; if an event follows an

activity, then it is processed at the same simulated time of the activity end.

As stated before, EADs have a hierarchical process structure. In fact, nodes

are activities and events and even sub-processes. A sub-process is itself an EAD,

therefore it can be zoomed revealing the included flow-chart. The EAD of a sub-

process can refer to input and output ports of the including process, i.e. a sub-

process is only a convenient arrangement for grouping an EAD sub-net and depicting

it as a single node (this solution aims to improve model readability).

The different shapes for the main nodes of an EAD are depicted in Figure 1.13.

The core of the process behavior is designed adding directed edges. Edges are

used i) for message passing and the evaluation of conditions through functions call,

and ii) for the introduction of timing into process activity flows. We classified edges

29

Timed Activity

Event

Istantaneous

Activity

Sub-Process

Figure 1.13: Nodes of an EAD.

in four types: null edges (or true edges), inner edges, incoming edges, outgoing edges.

A null edge can be used only to connect events to activities or activities to activities.

An inner edge connects an activity to another activity or to an event. These edges

are depicted as arcs (see Figure ??). Incoming edges are used to depict incoming

messages from an input/output port, while outgoing edges depict outgoing messages

to an input/output port. Incoming edges connect only activities to activities or

activities to events, while outgoing edges also link events to activities. Edges may

not have any node linked to the head, thus they work as a termination arc (i.e, the

process becomes definitely terminated when one of these nodes is traversed).

Requests Conditioning Requests

Actions

Inner Edge

T()

Incoming Edge

Actions

Port>Request Conditioning Requests

Outgoing Edge

Actions

Port<Request Conditioning Requests

Null Edge

T()

Figure 1.14: Edges of an EAD.

Edges produce a transition from the current enabled node (connected to the edge

tail) to the future enabled node (that is linked to the edge head). To avoid deadlock,

edge tail and head must be different nodes. While the transition rule for a null edge

is always true, for the other edge types the edge traversal is allowed only if certain

conditions are met. To understand the nature of these conditions, we introduce the

30

following edge functions: a Timer and a Request.

A Timer is a time function that generates a delay time using a probability dis-

tribution function (e.g., exponential) and the appropriate set of parameters. Only

inner and outgoing edges may have a Timer. Whenever an inner/outgoing edge is

selected by an activity to be eventually traversed, the Timer generates the simulated

delay time and an “alarm” is scheduled to warn the edge after the delay time. When

an edge has been warned, it is allowed to enable its head node (i.e., the process state

has been changed), or rather it is traversed.

The transition rule of an edge is composed by a set of Requests. A Request is a

(public or private) function of a process that can be called to check conditions, to

set up model objects and entities parameters and (in case) exchange entities among

model objects. If the conditions are met, the function returns true; false, otherwise.

A set of primary Requests can be used on the same edge by the formulation of a

logical expression using boolean operators (and, or, xor) and negation (not), that

we call the primary rule; moreover, the verification of the primary rule may depend

on a set of conditioning Requests, or what we call the conditioning rule. Both

conditioning and primary rules compose the transition rule in the following way:

“primary rule | conditioning rule”. Only if the conditioning rule is evaluated as

true, then the primary rule is evaluated.

All the edge types (excepted null edges) may have a transition rule. A con-

siderable difference exists between inner and incoming/outgoing edges. In fact, by

using incoming/outgoing edges, a process can: i) make a call to a public function of

an external process (receiver process) linked to an input or output port; ii) receive

a call to its own public functions by an outer process (sender process) linked to

an input or output port. In this way we enable communication among processes

(e.g., exchanging entities and assigning work). In particular, the primary rule of an

incoming (outgoing) edge must only include the call of a Request by (of) another

process linked to an input/output port. The symbolism used to call a Request of

an outer object is “PortName<Request”, while to depict the call of a Request by

an outer object “PortName>Request” is used. For incoming/outgoing edges, the

conditioning rule may also include calls to outer functions.

If a sender process calls a function of a receiver process, and this occurs only if at

31

least an incoming edge starting from the current node of the receiver has the called

Request as primary rule, then the call to the Request function may return true;

otherwise, false is automatically returned (i.e. the call is not accepted). Indeed,

incoming edges work as triggers for processes that are waiting for an external input.

With the exception of null edges, which are always traversed, if an inner edge (or

an outgoing edge) is selected to be traversed by the current node, then it is traversed

once the traversal rule is true.

Timers and Requests are the condition functions that may be involved to cause

an edge traversal. Nonetheless, inner and outgoing edges may have both a Timer

and Request function. In this case, the execution priority states that the Timer

must be executed before a Request, i.e. the transition rule is verified when the edge

has been warned.

All the edges may also have a list of Action functions. An Action is a function

that performs such operation, e.g. changing the parameters of the process or of an

owned entity. If a Timer and/or a transition rule have been defined for the same

edge, the Action must always be executed at last, i.e. after the edge has been warned

and if true has been returned by the transition rule.

Each Request and Action can explicitly receive a set of parameters; therefore, the

behavior of a Request/Action may change in function of the received parameters.

To improve MP scaling and model object reusability, as proposed in [78], each

process may use multiports. A multiport is an indexed set of k ports named port-

name[1],. . . , portname[k]. A multiport is explicitly depicted as different ports in the

external view of a model object; in the inner view, multiport may be used either in

an explicit or implicit way by incoming/outgoing edges. For instance, an explicit use

of a multiport may occur when the process needs to call a Request function of an

external process linked to the port “portname[i]” (where the suffix [i] stands for the

index of a port that is included in the multiport portname[1,. . . ,k]), then the name

of the port is explicitly depicted in the transition rule of the function as follows:

“portname[i]<Request”. Another example is introduced to show the implicit use of

a multiport. If the process needs to call the same Request function of the external

processes linked to the multiport, the following notation must be used in the tran-

sition rule of the outgoing edge: “portname[i:1,. . . ,k]<Request”. In this way, for

32

each portname[i], where index i varies between 1 and k, the edge must check the

associated transition rule and the edge is traversed whenever at least one transition

rule is true. The implicit use of a multiport allows our MP to be compact and to

easily implement the behavior of dynamic processes. Moreover, by using implicitly

a multiport, it is possible to specify a sub-set of port indexes that i) must be called

through an outgoing edge or ii) allow an external process to call an inner Request

through an incoming edge. The sub-set of port indexes can also be a list name

generated at runtime using an Action function.

Our MP allows defining a process behavior via EAD using activities, events,

sub-processes and directed edges. Another type of nodes, called logical nodes, has

been defined in order to support the definition of process paths. These nodes are:

i) boolean fork ; ii) split ; iii) and ; iv) or ; v) unconditional flow (Figure 1.15). A

logical node may be used to represent alternative paths to be chosen under specified

conditions.

Boolean Fork Split

And Or

Unconditioned Flow

Figure 1.15: Logical nodes of an EAD.

A boolean fork can be connected to the head of a conditional edge, or rather

those edges that have a transition rule. Using this node, if the transition rule is true,

then the edge is traversed and the process control flows through an edge starting

by the boolean fork node; otherwise, the edge is also traversed, but the process

control flows through a special edge, depicted with a dashed line, which starts by

the boolean fork node. Therefore, using the boolean fork node after a conditional

edge, the edge is always traversed. The outgoing edges from a boolean fork node are

of the null or inner type. In case inner edges are used, another boolean fork must

33

be used for each inner edge to catch the result of the transition rule.

The unconditional flow node acts in a similar way of a boolean fork, but whatever

be (true or false) the transition rule of the incoming edge, only one edge must leave

this node.

The remaining logical nodes may be connected to the head of any edge type.

Once the edge is traversed, the process control passes at the logical node. A split

node is used to separate the process path in two or more alternative paths. When

the process path is separated in more paths, to recombine two or more paths, an

and/or node is required. The and node, becomes enabled at the time all the edges

incoming to the node have been traversed. The or node become enabled at the time

at least one of the edges incoming to the node has been traversed.

The and, or and split nodes can be part of the process state. Typically the process

state has only one active activity per process state. However, once the process flow

is separated by using a split, many activities and the split/and/or nodes may be

enabled, thus they may be part of the process state.

Some explanations are required about the use of sub-processes as nodes of an

EAD. As they are EAD nodes, edges that start and arrive to these nodes are of

the types defined in the previous. The only restriction is for edges that start by a

sub-process node. If an edge that starts from a sub-process node is not a null edge

type, a boolean fork must catch the edge transition results (otherwise the process

checkpoint may stay on an edge included in the sub-process). The inner view of a

sub-process is a particular EAD which consists of at the most one edge that links the

outer view to an inner node (or rather from the inner boundary to a node) and/or

at the most one edge that links an inner node to the outer view (or rather from

a node to the inner boundary). Also if the edge that starts from the sub-process

inner boundary to a sub-process node is not of null edge type, a boolean fork must

catch the edge transition results (otherwise the process checkpoint may stay on an

edge included in the sub-process). An example about a finite queue is shown in

Figure 1.16.

Processes are usually executed during more simulation time periods. For this

reason the nodes of a process can be visited during different time periods. To track

this possibility, we adopt the process checkpoint. A process checkpoint is a property

34

O
>
P

u
ll

I>
P

u
s
h

R:IsFull()

Full Load

O
>

P
u
ll

Sub-Process “Working”

Inner view

Outer view

FiniteQueue

Inner view (using the sub-process

“Working”)

T:LimitedBuffer

I:aBuffer OI

Free
I>Push

Buffering
O<Push

Verification for Buffer
Capacity

IsEmpty

O
>

P
u

ll

I>
P

u
s
h

Is
F

u
ll

Full Load

O
>

P
u

ll

Free
I>Push

Buffering
O<Push

Verification for Buffer
Capacity

IsEmpty

Working

Add PopAdd Pop

P
o

p

P
o

p

P
o

p

P
o
p P

o
p

P
o
p

Figure 1.16: An example of use of a sub-process for a model object that is designed

as a buffer with a finite capacity.

of the processes that shows the set of nodes from which a process starts or is reacti-

vated, i.e. the checkpoint locates the enabled nodes (the process state). A process

checkpoint is also called reactivation point. For each process, the reactivation point

must be explicitly shown to depict the initial active states as done in Figure 1.16

for the “Free” node (that is the initial state of the FiniteQueue model object): the

reactivation point is depicted as a “target” and is usually placed on the upper-left

corner of a node.

In HMP simulation models, a process can have the following status in the sense

35

Active PassiveTerminated

Figure 1.17: EAD process simulation status.

of simulation execution: active, passive or terminated (see Figure 1.17). Focusing

on a non-concurrent simulation, only one process can be active at a time. A process

is active in the sense that it is moving through its paths, until it enters the passive

state or is terminated. A process enters the passive state when a Timer schedules a

delay time or a message is sent to an input/output port. In a similar way, a process

becomes active by means of an external trigger (a message from an input/output

port) or a previously scheduled warning time. To start model simulation, at least

one process must receive a message to be activated for the first time. An active

process may become terminated whenever an outgoing or transfer edge is traversed

and the edge head is not linked to any node. A terminated process returns false to

each incoming message and will never be active during the simulation.

1.6 Modeling of a Whole Maritime Container Ter-

minal

As stated into Section 1.1, freight transportation companies are focused on the study

and development of more efficient and effective transport systems.

In this context, maritime container terminals cover a key role in the freight

transportation network. The common, basic idea in freight transportation is that

of resorting to the aggregation of multicommodity flows to be transported, by large

carriers, for long distance routes across a certain number of intermediate logistic

platforms (terminals), where freight consolidation may occur together with store

and forward logistic functions and other source/sink based functions. Standardized

containerization appears as the most notable and consolidated practice for freight

36

transportation, especially through long distance maritime routes. Containerization

is a system of intermodal freight transport using standardized large bins known as

containers that can be loaded and sealed intact using multiple modes of transporta-

tion: ship, rail, road and air. Containers are an ISO standardized metal box of

8-ft wide by 8-ft high; the most common lengths are 20-ft and 40-ft. The container

capacity is often expressed in twenty-foot equivalent unit (TEU). Containers are

made out of steel and can be stacked on top of each other.

Nowadays, approximately 90 percent of the non-bulk cargo worldwide moves by

containers stacked on transport. On ships they are typically stacked up to seven

units high and there are ships that can carry over 9,000 TEUs. The world container

fleet amounts to about 23.2 million TEUs and the container throughput reached 440

million TEUs in 2006 [90].

Maritime container terminals are the most important crossroads for transship-

ment and intermodal container transfers. The maritime container shipment follows

the spokes-hub distribution paradigm: containers are shipped from a port (spoke)

to another one through a small number of maritime transshipment terminals (hubs).

Both spokes and hubs could be connected with inland container terminals by road

and rail (the so called intermodal transfer). In opposition with the high number of

container ports in the world, there are a few of transshipment terminals (e.g., the

Gioia Tauro terminal). Transshipment container terminals are large facilities for

intermodal transport, able to handle millions of containers per year and berth large

container vessels. These hubs are linked with spokes by means of small vessels called

feeders, through minor (or short sea trade) routes. There are a few major liner trade

routes that link the hubs (or deep sea trade routes). There are also oceanic container

vessels, known as mother vessels, which sail on these intercontinental routes.

A maritime container terminal is a large and complex logistic platform organized

around a set of logistic processes. The logistic activities at a container terminal often

belong to more logistic processes, which require a whole vision of the system to be

properly organized. This fact is critical for a good management of the system and

the choice of the system modeling approach: an efficient and effective management

of logistic activities in a container terminal can decrease the operating costs and

service times and increase the quality of services in order to achieve a better market

37

position.

Thus, in this Section we report the high level schema of a simulation model of

a whole maritime container terminal. We originally proposed the model in in [42].

The availability of a simulation environment where decision models could be devel-

oped and tuned according to a final customization phase is considered as a novel,

challenging market option.

In the following, we briefly classify and describe the logistic problem at hand.

Afterward, we depict the queuing network model used to represent the core logistic

processes at a container terminal. The model has been conceived using a holistic

approach and the model can be developed using some of the MPs described above.

Problem classification Vis and De Koster [91] produced an interesting overview

paper in the area of container logistics that gives a classification of the logistic

processes in modern container terminals: i) arrival of the ship, ii) discharging and

loading of the ship, iii) transport of containers from ship to stack (and vice versa),

iv) stacking of containers, and v) inter-terminal transport and other modes of trans-

portation. With respect to this classification, it is possible to identify a set of fea-

tures that are common to many maritime terminals. The main difference between

the greater part of container terminals located in Europe and North America and

those in the Asia-Pacific region regards the logistic processes ii) and iv). The latter

relies on the “Indirect Transfer System” (ITS), in which process iii) and iv) are

closely connected: a fleet of shuttle vehicles transports the containers from a vessel

to beside the stack area (and vice versa) while dedicated cranes stack containers

in compact regions. European and North-American container terminals are gener-

ally based upon the “Direct Transfer System” (DTS) in which process iii) and iv)

are performed by the same actors: in this case a fleet of SV called SCs moves the

containers from a vessel to the storage area (and vice versa) for container stacking

(retrieval) operations into (from) the slots assigned in the storage area [15]. In this

study we refer to a DTS maritime container terminal.

38

1.6.1 A Simulation Model for a Marine Container Terminal

To fix ideas, we give a brief description of a real case that we are familiar with: the

Gioia Tauro terminal.

This terminal, located in southern Italy, since it opened in 1995 has become in

just a few years one of the largest transhipment port in Europe. Its management

has been early characterized by significant efforts towards an increasing computer

aided organization and control of the various logistic processes. Recently a manager

friendly simulator has been designed for studying the congestion phenomenon at

the port-input channel, the port admission policy for the newly arrived vessels in

the roadstead and the allocation policies of berthing slots [11]. Now, the problem

of achieving an integrated management based on the usage of simulators and other

operations research tools becomes more and more important.

Description of the container terminal The terminal is a large facility com-

posed by: a harbor entrance of 250 m wide and 18 m water depth followed by a large

roadstead for incoming vessels; 2 pilot boats; a 3,100 m quay length with along a

channel of multiple water depth ranging from 13.5 to 15.5 m (the quay is discontinu-

ous, thus it is usually decomposed into two sub-quays); 18 quay rail-mounted gantry

cranes (RMGCs) and 5 rubber-tired gantry cranes (RTGCs); a fleet of 75 SCs, han-

dling vehicles used to transfer the containers between the quay cranes and the yard;

and a yard surface of 1.1 million square meters that can store nearly 59,000 TEUs.

The yard has 32 sectors parallel to the quay and organized in two lines. An average

quay has 32 lines, each containing 16 slots. A slot can host two one-TEU containers

stacked one on top of the other. The layout of the container terminal is depicted in

Figure 1.18.

Description of the Logistic Processes The logistic processes are described in

the following.

Planners of the terminal company construct a “berth schedule” on a weekly ba-

sis, which shows the berthing time and position for each incoming vessel according

to the ETA (Expected Time of Arrival) and DTD (Due Time of Departure) of the

39

ILOT

OAT

Figure 1.18: The layout of the Gioa Tauro Maritime Terminal. Special zoom on a

yard sector and on the loading/unloading and containers transport processes.

vessel and the preferred sub-quay. This is the so called “Berth Planning Prob-

lem” [60, 16]. The goal is to find the optimal berth position for each vessel, i.e., the

berth position that minimizes container handling cost from the vessel to location

40

in the marshalling yard where outbound containers for the corresponding vessel are

stacked. In Figure 1.19 there is an example of a berth schedule. We assume that the

berth schedule is an exogenous input to the part of the simulation model discussed

here. Actually, vessel entrance at port and berth schedule may be affected by the

specific features and physical characteristics of the real port of interest, but, here we

focus on common logistics connected with other basic operations to be performed

on berthed (standard) vessels by (standard) QCs.

T
IM

E
-S

L
O

T

BERTH-SLOT

Vessel A

Vessel B

Vessel D
Vessel C

Figure 1.19: An example of berth schedule.

The arrival of the ship process proposed in [43] is the starting point for a new

generalized model and is described in the following. Once the vessel has arrived

outside the port (the arrival time is an uncertain time close to the vessel ETA), its

mooring along the assigned berth position depends on the following requirements:

i) formal conditions (e.g. contractual agreements between the vessel’s shipping line

and the port of call for the use of port facilities), which means a priority policy for

the port entrance queue; ii) operational settings (i.e. pilot mariner and pilot boat

availability, berth space assignment and the least number of free quay cranes). If

requirements are met, the ship is manoeuvred down the navigation channel and into

its berth slots by one or two pilot boats; otherwise it must wait in the roadstead. In

the model the ship population is finite and corresponds to a specific set of feeders

and mother vessels.

Once a vessel is at berth, container discharge/loading can be initiated only if

41

mechanical (and human) resources are allocated; if not, the ship waits in its berth

position until resource assignment. Discharge/loading operations are performed by

QCs placed along the berth: one or multiple cranes move containers between the ship

and the quay area according with a pre-established operation plan. The maximum

number of QCs that is possible to assign to each vessel is restricted by i) the total

number of cranes in the quay and ii) the maximum number of allowable cranes to

each vessel due to physical (i.e. the length of the vessel) and logical constraints

(i.e. interference between cranes). Considering the span of the cranes (about 30 m)

and the horizontal space necessary to stack and transfer away the incoming/outgoing

containers of a vessel, the maximum number of cranes assignable to the longest vessel

is 5 (this number is proportionally decreased for shortest vessel). The problem of

assigning QCs to the vessels for each time-slot is called “Quay Crane Deployment

Problem” (QCDP) [41, 39]. This problem is crucial for the design of an intelligent

resource allocation. In Appendix A we propose a preliminary study on the QCSP.

When multiple cranes are assigned to the same ship, crane interference has to

be avoided and a complex scheduling problem arises to manage the relationships

(precedence and mutual exclusion) existing among the deck/hold tasks of the same

ship. This is the “Quay Crane Scheduling Problem” (QCSP) [12] (the QCSP is

deeply discussed in Chapter 3).

Both problems can be managed together in a two-phase approach: the first phase

concerns the QCDP, while the second one involves the QCSP. Assuming that the

berth schedule is deterministic for the model, in the first phase, using such heuristics

or commercial IP solver, an assignment for every vessel at each one-hour time-slot a

sub-set of QCs is found [39]. Afterwards, in the second phase we use a metaheuristics

to schedule the ship’s tasks to the assigned QCs [44]. In this way, the simulation

model is initialized.

The performance of the discharge/loading process highly depends on the avail-

ability of this type of cranes and their turnover speed. Again, this problem has been

deeply studied within the real context of Gioia Tauro Terminal [12], but without

being integrated with the problem of simulating yard organization, SCs travel back

and forth from the yard and analyzing the effects of crane shifting along the berth,

under the condition that multiple vessels are at berth.

42

In a DTS container terminal the transport of containers from ship to yard (and

vice versa) and the container stacking processes are performed by a fleet of straddle

carriers (SCs). SCs take in charge containers and cycle between the berth area and

the assigned storage positions within the yard. Straddle carriers are capable with a

laden container of relatively low speeds (up to 20–26 km/h). The yard is a passive

resource: it consists of a matrix of 2 lines and 16 columns (this is an average value),

in which each matrix element is a three-dimensional matrix that stands for a yard

sector. SCs are able to select a slot within the yard structure to load/unload or

stack containers. They are also able to compute the distance from the assigned QC

to the yard slot and back.

Each QC has about four SCs assigned. An optimization code to dynamically

assign SCs to QCs may be useful.

In the present case, no considerable inter-modal TEU transportation will be

considered.

A Queuing Network Model Description The model has been designed

using a holistic approach. As explained in Section 1.1 at page 1.1, the model rep-

resents the interaction between different logistic processes through special model

objects called resource managers. Resource managers are gifted of a high-level view

of the whole system and are able to operate on the system resources. They use ex-

ogenous data (i.e. berth schedule, QC deployment and scheduling) to dynamically

assign the container terminal resources to the jobs.

The logistic processes described above have been depicted using queuing net-

works. The arrival of the ship process is described in Figure 1.20. The model is

based on the hierarchical representation proposed by Legato and Mazza [43]. Incom-

ing vessels wait in a priority queue that represents the roadstead; outgoing vessels

wait in another priority queue that stands for served vessels waiting in the assigned

berth slot. A resource manager called “Berth Manager” assigns pilot boats to in-

coming and outgoing vessels according to previously defined conditions (i.e., active

and passive resource availability).

A vessel entering the rightmost (black) box in the figure means that it has been

berthed and another queuing network model takes charge of it.

43

...

Waiting in
roadsted

Vessel in
navigation

Pilot
Boats

Berth Manager allows
berthing/unberthing

operations and rules the
roadstead and outgoing
vessels priority queues

Waiting
into

assigned
berth-slot

i) Loading/
unloading

of the
vessel and

ii)
containers
handling

O
u

tg
o

in
g

 v
e
s
s
e

ls

Outgoing vessels

Figure 1.20: Arrival of the ship process

Crane 1

discharge/

loading

service
To be loaded

TEUs

Discharged

TEUs

From ship to yard-

slot travel time

Container

loading/stacking service

From yard-slot to

ship travel time

Container

loading/

unloading

service

TEU SC

SCTEU

Operations Manager assigns cranes to

berthed vessels, assigns holds to cranes

and routes straddle carriers through the

yard

Crane m

discharge/

loading

service
To be loaded

TEUs

Discharged

TEUs

From ship to yard-

slot travel time

Container

loading/stacking service

From yard-slot to

ship travel time

Container

loading/

unloading

service

TEU SC

SCTEU
...

Figure 1.21: Discharging/loading of the ship, containers transfer and stor-

age/retrieving processes.

44

Figure 1.21 shows the queue network model for the loading/unloading of the

ship process and container transport from the ship to the assigned yard-slot (and

vice versa) and the consequent storage process. The simulation model uses a list

of berthed vessels. Each vessel is assigned to a berth slot (a discrete part of the

quay assigned in the berth schedule). For each vessel in list, a resource manager

called “Operations Manager” assigns cranes to the vessels and starts the operations

on the vessels. When discharging and/or loading operations have been performed,

the Operations Manager pushes the served vessel out of the model and updates

the system performance measures (e.g., the vessel’s overall completion time). In

Figure 1.21, both the discharging and loading process of the ship are depicted. The

Operations Manager tasks are: i) for each vessel in the berth, to assign the vessel0s

tasks to be served to each QC; and ii) to route SCs within the network in order to

execute the optimal handling operations.

In the following, we concentrate our attention on the model shown in Figure 1.21

and in particular on the discharging operations of a particular vessel. We aim to

show how the same model can be developed using different modeling approaches.

1.6.2 A Modeling Case Study

In this section, a real case study of modeling of a complex logistic process is pre-

sented, with the aim of comparing the expressiveness of our MP with other well-

known approaches.

The system that we are intended to model concerns the management of quay

crane operations on a specific vessel. We present a special case of the model depicted

in Figure 1.21: the discharging and the related container transfer from ship to yard

process is described. Details on container storage are not provided. Moreover,

container retrieving and transfer from the yard to the quayside and vessel loading

are not modeled.

To fix ideas, we give a more detailed description of the system that we are mod-

eling, with respect to the description provided in SectionContainerTerminalSection.

Once a vessel is moored, a known number of containers must be discharged from

the vessel’s bays (i.e. from the deck or the hold of a bay) according to the operation

45

1

2

3 4

6

5

21 43 65TASK

Discharge

Figure 1.22: Map with discharge info per vessel task.

Crane Task Sequence

Crane 1 Task 1, Task 2, Task 3

Crane 2 Task 5, Task 6, Task 4

Table 1.1: Discharging sequence.

plan shown in Figure 1.22.

As described in Section 1.6, discharge operations are performed by some QCs

placed along the berth, which move containers between the ship and the quay area.

When multiple cranes are assigned to the same ship, crane interference has to be

avoided and a the QCSP must be resolved to shun the violation of precedence and

non-simultaneity constraints existing among vessel’s tasks.

Here, we are interested in depicting the container discharge process of a certain

vessel and the container transfer from the limited buffer area (max 6 containers)

under each QC to the yard side by means of SCs (as described in Section 1.6) .

Since the process of transferring containers from the quayside to the yard is

performed by SCs that are used to cycle among these areas with (outward path)

and without containers (backward path), this process may also be depicted as a

unique service time, or rather “the yard cycle time”, which includes the outward

time, the container unloading time and the backward time.

In the following, we suppose for simplicity that two QCs must simultaneously

perform the discharging operations of the vessel depicted in Figure 1.22. In Table 1.1

is reported the sequence of tasks that must be discharged by the two cranes.

46

StartD

[1]

EndD

[1]
TD

StartTD

[1]

EndTD

[1]

Rule 1 AND Rule 2

Rule 5

N
O

T
 R

u
le

 4

Rule 1
StartL

[1]

EndL

[1]

TSU

Rule 6

TC

InQ

[1]
Rule 7

N
O

T
 R

u
le

 4

Rule 6

Rule 6

AND Rule 7

R
u

le
 3

Rule 3 AND Rule 4

R
u

le
 3

WaitNT

[1]

NOT Rule 3

Rule 3

StartD

[2]

EndD

[2]
TD

StartTD

[2]

EndTD

[2]

Rule 5

Rule 1

Rule 1 AND Rule 2

WaitNT

[2]
Rule 3

Rule 3 AND Rule 4

NOT Rule 3

EndDO

[1]

EndDO

[2]

StartL

[2]

EndL

[2]
TSU

TC

InQ

[2]

Rule 7
Rule 6 AND

Rule 7

StartDO

Figure 1.23: The event graph of event graph of the quay crane operations model.

Event Description State Changes

StartDO Cranes start discharging op-

erations

For each crane i, set current task

using the index of the first task

to be discharged in the crane i-th

discharging sequence

EndDO[i] Crane i-th ends assigned dis-

charging operations

Set current task to null

StartTD[i] Crane i-th starts discharging

of current task

Set current task status to in

progress

EndTD[i] Crane i-th ends discharging of

current task

Set current task status to free

47

Event Description State Changes

StartD[i] Crane i-th starts discharge of

a container from the current

task

EndD[i] Crane i-th ends discharge of

a container from the current

task

Decrease by one the “number of

containers” in current task. Im-

prove by one the size of “buffer

area under crane i-th”

WaitNT[i] Crane i-th waiting to acquire

the next task

Set current task using the index

of the next task to be discharged

in the crane i-th discharging se-

quence

InQ[i] Straddle carrier arrival in

quay

Improve by one the size of “wait-

ing line in Quay to crane i-th”

StartL[i] SC starts container loading Decrease by one the size of “wait-

ing line in Quay to crane i-th”

EndL[i] SC completes container load-

ing

Decrease by one the size of “buffer

area under crane i-th”

Table 1.2: Events of event graph of the quay crane operations model.

Edge Condition Description

Rule 1 Buffer area under crane capacity is less than 6

Rule 2 Hold has not been completely discharged

Rule 3 No violation of precedence and non-simultaneity

constraints

Rule 4 Crane has more tasks to be discharged

Rule 5 Current task is completely discharged

Rule 6 At least one SC waiting in quay

Rule 7 At least one container under the crane

Table 1.3: Enabling conditions of event graph of the quay crane operations model.

48

Figure 1.23 shows the Event Graph model of the logistic processes described

above; events are labeled with numbers in squared brackets that refer to a specific

crane.

Table 1.2 and 1.3 report the descriptions of the events (the vertices of the graph)

with the related state change performed once an event is selected to be executed, and

the edge conditions. The edge delay time functions TD, TSU , TC , are respectively: i)

container discharging time for each QC, ii) container set-up time for a generic SC,

and iii) cycle-time for an SC (i.e. the time to transfer a container from the quay to

the assigned yard-slot, to set-down the container and, finally, to move back to the

assigned QC). As a matter of fact, the possibility to discharge a task by a crane is

due to the respect of the precedence and non-simultaneity constraints. In this way,

the availability of a task depends on the current task that is assigned to the next

crane. In our example, if Crane 1 is discharging Task 3, then Crane 2 must wait the

completion of Task 1 to discharge Task 3 (and vice versa). To depict this process,

every time a crane completes its discharging operation on a task, then it warns the

next crane (edges in blue and red).

Using Petri Nets, the system may be modeled as depicted in Figure 1.24. In this

model, seeing that the number of tokens in some places were too large to be explicitly

indicated (e.g. the tokens which stand for the containers to be discharged) we have

directly put in each place the number of tokens. Using Petri Nets, we are able to

design the non-simultaneity constraint between Task 3 and Task 6 (edges and nodes

in blue), as well as precedence between tasks to be discharged (inhibitor arcs in red).

Nevertheless, this approach does not provide reasonable model readability, and the

net explosion is inevitable as the number of tasks and constraints rise up, as in real

cases.

49

Buffer Area Under

Crane 1
6

Num

SC

Crane 1 Discharge

Time

Straddle Carrier

Loading Time

80 100 35

Task 1 Task 2 Task 3

Straddle Carrier

Yard Cycle Time

Buffer Area Under

Crane 2
6

Num

SC

Crane 2 Discharge

Time

Straddle Carrier

Loading Time

120 90 60

Task 4 Task 6 Task 5

Straddle Carrier

Yard Cycle Time

Figure 1.24: The Petri Net for the quay crane operations model.

50

ThinkingStation

yardCycleTime1

ContainerLoader

containerSetUp1

i1

i0

o0

o1

o2

i0 o0

FiniteQueue

containerWaiting

LineUnderCrane1

i0

i1

i2

o0

o1

o2

Crane

crane1

i0

i1

i2

i3

o0

o1

o2

ThinkingStation

yardCycleTime2

ContainerLoader

containerSetUp2

i1

i0

o0

o1

o2

i0 o0

FiniteQueue

containerWaiting

LineUnderCrane2

i0

i1

i2

o0

o1

o2

Crane

crane2

i0

i1

i2

i3

o0

o1

o2

CraneController

operationsManager
i1[1...2]

i2[1...2]

o1[1...2]

o2[1...2]

[2]

[2]

[1]

[1]

[1]

[1]

[2]

[2]

Figure 1.25: The HCFG Model for the Quay Crane Operations Model.

51

Crane

istanceName

I = Idle

SNH = Setting Next Hold

VA = Verification for Availability

WP = Waiting Permission

D = Discharging

WA = Waiting Acknowledgment

CS = Checking Status

i0 (scheduleInput)

i1 (ackInput)

i2 (pushOut)

i3 (useNotification)

o0 (ContainerOutput)

o1 (holdUseRequest)

o2 (holdCompleted)

Local Variable(s)

type Task : nextTask

type Distribution : DischargingTimeDistribution

type Boolean : locked

Event(s)

e1:

Receive message TASKLIST from i0;

e2:

If TASKLIST is empty then

Set nextHold = null;

Else

Remove first hold from TASKLIST;

Set nextTask = first task;

e3:

Create message USE_PERMISSION;

Set USE_PERMISSION = nextTask;

Send message USE_PERMISSION to o1;

e4:

Receive message USE_PERMISSION;

locked = false;

e5:

Decrease by one the number of container in nextTask;

Create message Container;

Send message Container to o0;

e6:

Receive message ACK from i1;

If ACK = TRUE then

locked = false;

Else

locked = true;

e7:

Receive message PUSH_OUT_Container from i2;

Create message Container;

Send message Container to o0;

Set locked = false

e8:

Create message TASK_COMPLETED;

Set TASK_COMPLETED = nextTask;

Send message TASK_COMPLETED to o2;

Boolean predicate(s)

B1: nextTask = null

B2: number of container in nextTask is greated than zero and

locked is not true

B3: number of container in nextTask is zero and locked is not true

Time-delay function(s)

t1:

Generate discharging time using DischargingTimeDistribution;

Crane

Inner view Outer view

i0

e1

T

D

t1

e5

SNH

I

e2

VA
1

B1

2 e3

T

WP
i3

e4
CS

B2
2

i1

e6

i2

e7

1

B3

3

WA

e8

Figure 1.26: The HCFG and the corresponding external view of the Crane AC.

52

CraneController

istanceName

EO = ExecuteOperations

WC = Waiting for Communication

i1[1...K] (taskUseRequest)

i2[1...K] (taskCompleted)

o1[1...K] (scheduleOutput)

o2[1...K] (useNotification)

Local Variable(s)

type Crane Array : CraneList

type Task Array : TaskList

type final int : K = 2

Event(s)

e1:

For each Task j in TaskList

Set status of j equal to free;

For each Crane i in CraneList

Create message TASKLIST using the proper task schedule;

Send message TASKLIST to o1[i];

e2[i]:

Receive message USE_PERMISSION;

If status of task USE_PERMISSION is free and there are no

simultaneity and precedence violations then

Create message USE_PERMISSION;

Send message USE_PERMISSION to o[i];

Else

Set Crane i status to waiting for task USE_PERMISSION;

e3[j]:

Receive message TASK_COMPLETED;

Set status of task TASK_COMPLETED equal to done;

For each Crane j in CraneList

If status of j is waiting for the task i then

If status of task i is free and there are no simultaneity and

precedence violations then

Create message USE_PERMISSION;

Send message USE_PERMISSION to o2[j];

Boolean predicate(s)

B1: All the tasks in TaskList are done

CraneController

Inner view Outer view

EO

e1

WC

T

e2[i]

i1[i]

[1...K]

i

e3[j]

i1[j]

[1...K]

K+j

B1

Figure 1.27: The HCFG and the corresponding external view of the CraneController

AC.

53

FiniteQueue

istanceName

E =Empty

WA = Waiting Acknowledgment

CS = Checking Status

L = Load

FL = Full Load

i0 (ContainerInput)

i1 (ackInput)

i2 (pushOut)

o0 (ContainerOutput)

o1 (ackOutput)

o2 (pushIn)

Local Variable(s)
type Container Array : Stack

type int : size = 0

type final int : MAX_CAPACITY

Event(s)

e1:

Receive message Container from i0;

Put message Container into the bottom of Stack;

size <- size + 1;

Send message Containerto o0;

Create message ACK;

Set ACK = TRUE;

Send message ACK to o1;

e2:

Receive message ACK from i1;

If ACK = TRUE then

size <- size - 1;

Extract from the top of Stack a message Container;

e3:

Receive message Container from i0;

Put message Container into the bottom of Stack;

size <- size + 1;

Create message ACK;

Set ACK = TRUE;

Send message ACK to 01;

e4:

Receive message PUSH_OUT_JOB from i2;

Create message PUSH_OUT_JOB;

Send message PUSH_OUT_JOB to o2;

e5:

Receive message PUSH_OUT_JOB from i2;

Extract from the top of Stack a message Container;

size <- size - 1;

Send message Container to o0;

e6:

Receive message Container from i0;

Create message ACK;

Set ACK = FALSE;

Send message ACK to 01;

Boolean predicate(s)

B1: size = 0

B2: size > 0 and size < MAX_CAPACITY

B3: size = MAX_CAPACITY

FiniteQueue

Inner view Outer view

E WA

CS

i0

i1

i2

B2

B1

e1

e2

e5

i2
e4

e3
B3

i0

Li0
e6

i2

e5

FL

1

23

Figure 1.28: The HCFG and the corresponding external view of the FiniteQueue

AC.

54

ContainerLoader

istanceName

ContainerLoader

I = Idle

L = Loading

WC = Waiting for Container

WSC = Waiting Straddle Carrier

CS = Checking Status

i0 (containerInput)

i1 (SCInput)

o0 (loadSCOutput)

o1 (ackOutput)

o2 (pushIn)

Local Variable(s)

type Distribution : LoadingTimeDistribution

Event(s)

e1:

Receive message Container from i0;

e2:

Receive message StraddleCarrier from i1;

Create message ACK;

Set ACK = TRUE;

Send message ACK to o1;

e3:

Create message ACK;

Set ACK = FALSE;

Send message ACK to o1;

e4:

Create message LoadStraddleCarrier;

Send message LoadStraddleCarrier to o1;

e5:

Receive message StraddleCarrier from i1;

Create message PUSH_OUT_Container;

Send message PUSH_OUT_Container to o2;

e6:

Receive message Container from i0;

Create message ACK;

Set ACK = TRUE;

Send message ACK to o1;

Time-delay function(s)

t1:

Generate loading time using

LoadingTimeDistribution;

I

i0

i1
e2

1

2e3

e1

T

i1

L

WC

t1

e4

CS

WSC e5

i0

e6

Inner view Outer view

Figure 1.29: The HCFG and the corresponding external view of the ContainerLoader

AC.

T:FiniteQueue

I:Container waiting

line under Crane 1 CC

T:Crane

I:Crane 1 C

T:CraneManager

I:Crane Coordinator

R
M

G
1

T:ContainerLoader

I:Container Set-up 1 L-SCC

SC

T:ContainerStoraging

I:Yard Cycle Time SC

L-SC

LEGEND

CM = Crane manager V = Vessel C = Container SC = Empty Straddle Carrier L-SC = Loaded Straddle Carrier

R
M

G
2

T:FiniteQueue

I:Container waiting

line under Crane 2 CC

T:Crane

I:Crane 2 C

W
o

rk

T:ContainerLoader

I:Container Set-up 2 L-SCC

SC

T:ContainerStoraging

I:Yard Cycle Time

SCL-SC

W
o

rk

T:Queue

I:SC Waiting line on
Quay SCSC

T:Queue

I:SC Waiting line on

Quay SCSC

Figure 1.30: The HMP for the quay crane operations model.

55

Inner view Outer view

Crane

T:Crane

I:aCraneCM

Waiting for Task List

CM<UseNextTask

Start Task
Discharging

C

CM>AssignTasks

Verification of Next
Task Availability

End Task
Discharging

Waiting for Next
Task Availability

Identification of Next
Container from Current Task

Is
T

a
s
k
D

is
c
h

a
rg

e
d

Container
Discharging

SelectNextContainer

Verification of Task Work
Completed

Selection of Next
Task

h
a

s
M

o
re

T
a
s
k

CM>DischargeNextTask

S
e

tN
e

x
tT

a
s
k

Operations
Completed

Operations
Started

isFirstTask

Start Task
Discharging

C
M

<
T

a
s
k
C

o
m

p
le

te
d

Figure 1.31: The EAD and the corresponding outer view of the Crane model object.

In the following we present the HCFG model for the discrete system at hand.

Sargent [78] proposed a useful and wide set of ACs and CCs for the modeling of

queuing systems. Unfortunately, as underlined by Sargent in its work, more effort

is required to develop HCFG models of complex communication networks or man-

ufacturing systems. The reason can be lead back to the need of the use of finite

56

Sub-Process “Container Discharging”

Container
Discharging

Start
Discharging

End Discharging

Hold

DischargingTime()

C<Push

C
>

P
u

ll

S
e

tC
o

n
ta

in
e

r

DeSetContainer

D
e

S
e

tC
o

n
ta

in
e

r

Inner view Outer view

Container
Discharging

Figure 1.32: The sub-process “Container Discharging” used in the EAD of the Crane

model object.

queues that implies the development of a push/pull job transfer system among ACs

(or CCs): this transfer system has been programmed into the components behavior

by i) requiring acknowledgment messages to confirm at the sender component if the

job sent to an output port is definitely accepted by the receiver component, and i)

sending to backwards components a request message for pushing out a job (if any job

can be sent). Obviously, also the continuous communication among components to

take decision on the use of shared passive resources takes a role in complicating the

behavior of the ACs. In Figure 1.25 the HCFG model of the quay crane operations

model is presented. In opposition to modern VIMS, this system is quite complex to

analyze, due to the high number of channels among ACs. A more compact repre-

sentation of the model may be obtained using set of identical instances of the same

component type. This is a fine solution for model scaling, but it also complicates

the model understanding.

The set of ACs used to compose the HCFG model of the system is the following:

57

Inner view Outer view

CraneManager

T:CraneManager

I:aCraneManager
RMG[1]

Crane Scheduling

Schedule Assignment
to Selected Cranes

A
s
s
ig

n
T

a
s
k
s
T

o
C

ra
n

e
s

R
M

G
[i:1

,…
,k

]<
A

s
s
ig

n
T

a
s
k
s

Waiting for Task
Access Permission

R
M

G
[i:1

,…
,k

]>
U

s
e

N
e

x
tT

a
s
k

A
d

d
C

ra
n

e
T

a
s
k
e

dS
e

tT
a

s
k
In

W
o

rk

Waiting for Task
Completed

RMG[i:1,…,k]<DischargeNextTask | CraneIsTasked

R
M

G
[i:1

,…
,k

]>
T

a
s
k
C

o
m

p
le

te
d

S
e

tT
a

s
k
C

o
m

p
le

te
d

Enabling Holded
Cranes

Verification of
Operations status

Overall Operations
Completed

Is
V

e
s
s
e

lC
o

m
p

le
te

d

RMG[k]

Figure 1.33: The EAD and the corresponding outer view of the CraneManager

model object.

i) a Crane (Figure 1.26) for depicting the QC resource, ii) a CraneController (Fig-

ure 1.27) to manage the interaction among Cranes that are competing to discharge

tasks under specific constraints and assign the sequence of tasks of the berthed ves-

sel, iii) a FiniteQueue (Figure 1.28) to depict the finite buffer area under each quay

crane, iv) a ContainerLoader (Figure 1.29) to perform container set-up operations

in each straddle carrier (here intended as a job able to carry on containers), v)

58

Inner view Outer view

Container Loader

T:ContainerLoader

I:aLoader L-SCC

SCIdle

C
>

P
u

s
h

|
S

C
<

P
u

ll

S
C

>
P

u
s
h

 |
C

<
P

u
ll

Loading

Start Loading

End Loading

Hold

LoadingTime()

L-SC<Push

L
-S

C
>

P
u

ll

L
o
a
d

DeSetStraddleCarrier

S
e

tC
o

n
ta

in
e

r

S
e

tS
tra

d
d

le
C

a
rrie

r

D
e
S

e
tS

tr
a
d
d

le
C

a
rr

ie
r

Verification for

Container-SC Ready

S
C

<
C

a
n

IP
u

ll

A
N

D
 C

<
C

a
n

IP
u

ll

S
C

<P
ul

l A
N

D
C

<P
ul

l

Figure 1.34: The EAD and the corresponding outer view of the model object Con-

tainerLoader model object.

a ThinkingStation to depict the time required by each loaded straddle carrier for

transferring the container from the quayside to the yardside, set-down the container

and come back empty under the crane area. We omitted to depict the ThinkingSta-

tion, nevertheless it is a CC presented by Sargent [78] composed by a set of identical

servers (one for each straddle carrier) and by a controller that assign incoming jobs

to idle servers: Sargent called this CC the KParServers.

Finally, we provide a representation of the quay crane operations model using a

HMP model, as shown in Figure 1.30, based on the coupling of six types of model

objects and a sub-system. The model objects are: i) a Crane (Figures 1.31 and 1.32)

for depicting the QC resource, ii) a CraneManager (Figure 1.33) to manage the

interactions among QCs working on the same vessel and assign the sequence of tasks

of the berthed vessels, iii) a ContainerLoader (Figure 1.34) to perform container

set-up operations for empty SCs, iv) a Queue (Figure 1.35) to depict the waiting

59

Outer view

T:Queue

I:aQueue OI

Inner view

Queue

Free
I>Push

Buffering
O<Push

Verification for Buffer

Capacity

IsEmpty

O
>

P
u

ll

I>
P

u
s
h

Load

Add Pop

P
o

p

P
o

p

Figure 1.35: The EAD and the corresponding outer view of the model object Queue

model object.

line of empty SCs that wait for load discharged containers and v) a FiniteQueue

(Figure 1.16) to depict the buffer area under a crane (for no more than 6 TEUs).

With this approach, a modeler can design the behavior of a set of context spe-

cific model objects (e.g., cranes and queues), even unrelated, and then he/she can

reproduce a certain system by linking these model objects and simply specifying

suitable parameters (e.g., the distribution function for the crane discharge time). If

the designed model objects are collected in a library in a “point & click” simulation

environment, they are close at hand to be reused to design a new system.

It is clear that by using this approach we provide a compact way of representing

the system logic: in fact, entities flow through the model objects and the relation-

ships between the model components are very clear. This is true especially if the

model end-user looks at name of the ports, which explicitly identifies which are the

input(s) and the output(s) of each model object.

Moreover, if one wishes to further simplify the readability of the model by hiding

a given part of the system, this can be performed in a simple way by grouping and

depicting the selected system part as a sub-model. For instance, in Figure 1.30 the

ContainerStoraging is a sub-model that receives in input a loaded SC and returns an

empty SC after a while (the yard cycle time); focusing our attention on the quayside

60

operations, we are not interested in understanding how an SC has been unloaded

and why it has returned after a certain time period, therefore the use of a sub-model

in this context appears convenient.

The behavior of each model object is designed by using an EAD. Each EAD is

composed by i) default components (events, activities, logical nodes, edges) and ii)

context specific timers and functions. Both timers and functions must be developed

around a set of global variables related to each process (e.g., a list of entities for the

infinite queue depicted by the model object Queue).

This approach has its strong point on the use of functions to check conditions

and execute algorithms devoted to take decisions. For instance, once a vessel arrives

at berth, the CraneManager uses a function that solves a mathematical model (the

Quay Crane Scheduling model proposed in Chapter 3) to dynamically assign the

tasks of the vessel to a specific set of cranes. Obviously, this approach is possible

using our MP or EGs and HCFGs. Petri Nets are a powerful tool for modeling a

system at a very low level, describing also conditions and complex constraints by

means of its intuitive formalism, but a PN cannot be re-designed at runtime in case

of need (e.g., is not possible to use the PN in Figure 1.24 to simulate the discharge

process of a vessel with a different structure).

1.7 Simulation and Optimization of Logistic Sys-

tems

A modern simulation platform for logistic systems must provide an easy-to-understand

language for system modeling, but also a tool for designing of optimization problems.

For us, a platform for the optimal management of logistic systems must be based

on the following three phases: i) system modeling, ii) model analysis and iii) system

optimization. In the first phase, the real system is modeled by using the appropriate

MP.

Numerical results from the simulation model obtained in the system modeling

phase are analyzed in the second phase by means of a statistical analysis tool. Per-

formance measures are evaluated by the outputs of a set of simulation experiments

61

of the simulation model. In the model analysis phase, indices and parameters are

defined on the simulation model by means of some tool or language. The evaluation

of these indices and parameters provides the set of performance measures that is

approximately necessary to improve during the optimization phase.

Thus, in the third phase an optimization problem is defined. General problem

setting is made of input and output variables, objective function and constraints.

The nature of the optimization problem is intrinsically stochastic (due to the nature

of the simulation output variable).

Simulation modeling and analysis should become an ordinary P&C tool, e.g., to

evaluate the performance of the container terminal when changes occur in the system

configuration (what-if analysis) or to use simulation-based optimization techniques

to optimize the whole system [35].

Therefore, the Chapter 2 is devoted to show the feature of a simulation technol-

ogy known as simulation-based optimization, while the Chapter 3 describe how the

case study proposed in Section 1.8 is optimized using this new methodology.

1.8 Conclusions

In this Chapter has been proposed a Modeling Paradigm to support the development

of simulation models oriented to the optimal management of logistic activities. The

MP uses a holistic approach to capture the complex relationships among sub-systems

and allows for a direct representation of the hierarchical structure of the decision

making process for system management. System modeling is completed by a flow-

chart based definition of processes involved in the model at hand. Real case examples

of modeling have been presented, comparing our approach to those provided by

Event Graph models, Petri Nets and Hierarchical Control Flow Graph models, with

the aim of supporting the future design of simulation-based optimization techniques.

Chapter 2

Simulation-based Optimization

The need for the optimal management of real-systems is well recognized since some

decades, as for instance in manufacturing, logistics and defense. In this context, sim-

ulation is widely adopted for an accurate modeling of real systems, evaluating their

performances and analyzing the effects of alternative conditions and organizational

policies. General purpose and problem-oriented software packages have increased

the diffusion of simulation as analysis tool in system management. Very challenging

for real applications should be a new methodology known as Simulation-based Opti-

mization, in that it combines both simulation and optimization techniques with the

objective of optimizing the performance measures of a system under study. Some

optimization features have added in the majority of commercial simulation software,

but they are not usually customizable. Furthermore, those features just play around

the possibility of optimizing an objective function under box constraints.

This chapter discusses how optimization uses simulation to design new systems

and to improve the performance of existing ones. Therefore, we present an overview

of simulation-based optimization. In particular, we focus on those techniques that

select new system configurations by means of suitable moves, i.e. using procedures

that change the values of key variables in an intelligent way. Thus, we discuss about

the importance of using intelligent moves, which collides with the use of commercial

simulation-based optimization packages. Then, we introduce two frameworks newly

developed for both global and local search. Finally, a comprehensive example of the

performance optimization of a production line will be given to show the effect of the

use of advanced selection rules.

62

63

2.1 Introduction

There is a wide range of decision-making problems (e.g., transport, storage, manufac-

turing, medical and military applications, demand management, etc.) whose efficient

and effective management has a key role in modern economies. All of these prob-

lems involve some combination of complex dynamics, uncertainty, high-dimensional

decision vectors and a need to make decisions that take into account the impact on

the future.

Decision-making problems are studied, with particular kinds of stochastic op-

timization problems, for the development of convenient decision support models.

In the beginning these problems were essentially of types that could be formulated

suitably by using scenarios. Subsequently they were reduced to large, structured,

deterministic problems [25] generally solved using techniques based on optimization.

On the other hand, more recently many of those problems characterized by uncer-

tainty, which could not be adequately handled by optimization, have required the

use of simulation to achieve feasible and practical solutions: in fact, through the

decades simulation was verified to be very effective and in many cases, even the

unique, practical choice to approach decision-making problems.

Several decision problems in manufacturing, goods transportation and storage,

are primarily studied using discrete-event simulation (DES). Over the decades, many

simulation platforms (SPs) have been developed with the aim of supporting the

modeler in the design, testing and evaluation of simulation models. More remarkable

commercial SPs are Arena, AweSim!, exteNd, ProModel and WITNESS. Seila [81]

defined a simulation platform (SP) as a software environment used to develop, test

and run a simulation experiment. The following list provides the minimal capabilities

that must be available in a SP:

1. Model representation. A tool to describe a system using mathematical and

logical relationships among system objects (e.g., a modeling paradigm, as pro-

posed in the Chapter 1).

2. Distributions set and pseudo-random numbers. A tool for pseudo-random num-

ber generation to support the Monte Carlo generation of random deviates from

several distributions.

64

3. Simulation methodology. A tool to reproduce the system behavior over the time

and execute statistical computations (e.g., confidence intervals by batching

elementary observations).

Law and Kelton [35] provided a list of advantages of a SP: i) reduction of pro-

gramming effort and cost by means of a collection of modeling features, ii) sim-

plification of model modification, iii) better error detection for simulation-specific

errors and iv) faster model analysis via statistical tools. They also classified modern

SP in general-purpose and application-oriented. Following Pidd [65] the majority

of commercial simulators may be classified as Visual Interactive Modeling System

(VIMS) – e.g., Arena and exteNd. VIMSs allows the modeler to develop a model

using a flow chart based methodology to depict the logic of the system, which is then

translated by the program to generate the underlying model code. VIMS are suc-

cessful because they offer the prospect of rapid application development by people

who are not computer professionals [66].

As we stated before, almost the totality of the decision-making problems arising

from a real system whose dynamics is affected by uncertainty are faced by resorting

to two widespread approaches: optimization and simulation. While optimization

can allow the modeling of the whole system from a static, deterministic point of

view, with a significant loss of information, simulation allows to keep a more realis-

tic, dynamic and non-deterministic point of view on a system without a significant

loss of information. Therefore, it should be preferable to develop decision support

models for non-deterministic systems that are based first on simulation and, after

that, possibly also on embedded optimization models. Alternately, one stimulat-

ing possibility is that of combining both simulation and optimization techniques to

pursue the so called “optimum seeking by simulation” [35]. The possibility of the

optimization of simulation models have made possible by the increasing availability

of computing power and memory over the last two decades [26]. This development

offers the opportunity of automating the search for the “optimal” values for the

controllable inputs of the simulation model [8]. Different approaches have been pro-

posed to optimize a simulation model – primarily metaheuristics – [5], and many

optimization packages (OPs) have been developed and integrated in major commer-

cial SPs (e.g., OptQuest for Arena).

65

Thus, we claim that a modern SP for the optimal management of large and

complex systems must include simulation-based optimization (SO) techniques – also

known as optimization via simulation or simulation-optimization methodologies.

The Chapter is organized as follows: next section provides a brief overview of

simulation-based optimization. The subsequent section focuses on the relevance of

the system configurations selection in a large space state. Successively, two recent SO

frameworks are introduced. Finally, a production line example shows the importance

of the use of an ad hoc methodology for system alternatives selection.

2.2 An overview on simulation-based optimiza-

tion

SO is the most important new simulation technology in the last two decades [36].

SO is the optimization of performance measures based on outputs from stochas-

tic (primarily discrete-event) simulations [24, 27]. Thus, an optimization model is

defined upon a simulation model, afterward a SO technique searches the optimal

system configuration within the defined feasible region using a simulation routine.

As in any optimization problems, there are the following primary components [88]:

• deterministic input parameters and stochastic output variables from the DES

model;

• objective function;

• constraints.

Input parameters (or controllable parameters) are defined over a feasible region

Θ, while output variables, which are function of input parameters, are estimated

by mean of simulation. Since output variables are system performance measures,

so they are quantitative in nature. Despite classical mathematical problems, the

input parameters may be either qualitative (e.g., queue disciplines) or quantitative

(e.g., the number of type of machines for a particular objective). Quantitative input

66

parameters are distinguished between two cases: the continuous values and discrete

values.

The objective function combines output variables and at times quantitative input

parameters (e.g., the number of buffer spaces in a just-in-time production line). The

goal is to determine input values such that objective function is optimized.

Fu [24] separates constraints in implicit versus explicit, and deterministic versus

stochastic. An implicit constraint is something like “the number of machine tools

in a numerical control machine cannot exceed 10”, whereas an explicit one would

be more like “the number of machine tools (summed over all the numerical control

machines) in the whole system cannot exceed 100”. These are also deterministic

constraints, while a stochastic constraint might be “the proportion of parts having

a flow-time greater than 30 minutes should not exceed 5%”.

Thus, SO is concerned with solving the following problem:

min
θ∈Θ

f(θ) = E[L(θ)] (2.1)

where f : Θ → R is an objective function that is subject to noise and Θ is

the feasible region (that is, for any feasible point θ ∈ Θ, f(θ) cannot be evaluated

analytically). L(θ) is a random variable which depends on the parameter θ ∈ Θ, and

is a simulation estimate of the output of a system configuration (i.e. the “point”

or “solution” θ). L(θ) is referred as the sample performance. Thus, f(θ) is an

expectation of some random estimate of the performance of a complex stochastic

system given a parameter θ.

The previous problem can be also in the form of maximization of f(θ). Our

interest is particularly in solving the problem (2.1) in situations where the objective

function value f(θ) at any θ cannot be evaluated exactly, but need to be estimated

using simulation.

2.2.1 Simulation-based optimization generic scheme

Law and Kelton [35] present a clear scheme of the interaction between optimization

and simulation. Here we present a more detailed scheme, with the purpose to

67

underline the simulation dependency of the optimization in the system optimization

process and show the typical data structure used in a SO framework (Figures 2.1

and 2.2).

Start

Optimization

(Optionally) set an initial

feasible system configuration

(i.e. an initial solution)

Generate new system

configuation(s) using a

had hoc schema

List of solutions

Need more

output estimates?

Simulation Routine

[Yes]

num of output

estimates

output

[No]

simulation output

Select next system

configuration (i.e. a

solution)

Is list of solutions

empty?
[No]

Report solution

[Yes]

Is stopping

criterion satisfaied?

[Yes]

Stop

[No]

solution,

num of output

estimates

Evaluate Function Value
Is evaluated

solution optimal?

Best solution found

Update best configuration found (i.e.

the current optimal solution)

[Yes]

[No]

Optimization Routine

Figure 2.1: System optimization via simulation.

The steps in the general scheme in Figure 2.1 are extended by the selected

framework for optimization via simulation (in Sections 2.4 and 2.5 are reported two

late search schemes). Some issues in the design of all the SO frameworks concerns

the steps related to i) the updating of the best solution found (i.e. the estimation of

68

system configuration, k

Simulation Model

Simulation Routine

Estimate the output

k times

Set current
configuration

controllable inputs current simulation model

output estimate

Figure 2.2: Simulation routine.

the optimal solution), and ii) the determination of the additional output estimates

for a specific solution. Both issues are challenging in the SO setting due to the noise

in the estimated objective function values.

About the first issue, commonly, the most considered estimates of the optimal

solution in stochastic SO are [2, 3] i) the solution with the best estimated objective

function value, ii) the most visited solution, and iii) the solution with the highest

estimated objective function value among solutions that have been visited sufficiently

often. Obviously, only the first estimates is computationally practicable for large

feasible regions: in fact, the other estimates reveal the necessity to memorize several

(if not all) the solutions evaluated during the search process.

As regards the second issue, the variance of the observations from the simula-

tion replications is not known in advance. Therefore is required a methodology for

computing the number of replications required to produce a good estimate of the

simulation output. Some methodology have been developed [51, 14, 13], but still the

celebrated Rinott’s procedure [72] is usually used to prescribe how many simulation

experiments are needed for each solution. These methodologies typically assume

that is possible to collect independent and identically distributed (i.i.d.) normal ob-

servations from a each solution. Generally, these normal observations are simply

the batch means from one long run of each solution, or the sample means from

independent replications of the same solution.

The use of Rinott’s procedure for the determination of the number of estimates

69

needed to evaluate a solution θ, is recommended in SO to reduce the presence of

stochastic errors in the estimated objective function values. Therefore, in the fol-

lowing we report this procedure that will be integrated in the metaheuristic schemes

adopted within this PhD thesis. Finally, note that estimation is usually not incorpo-

rated explicitly in SO methods, above all to preserve the structure of search schemes

for deterministic optimization that are adapted for stochastic SO.

Determination of the number of estimates using the Rinott’s procedure

Rinott’s procedure makes the following assumptions: there are k > 2 solutions,

Xij is the j-th independent observation from solution θi, Xij ∼ N(µi, σ
2
i), where

µi is the expected value of the output from the solution θi and σ2
i is the related

variance (with µi and σ2
i unknown), and all the Xij are allegedly i.i.d.. In the

Rinott’s procedure: h is the Rinott’s constant ; n1 is the number of observations Xij

for each solution θi; 1−α is the probability of correct selection of the best solution,

whenever the true best is at least an amount δ better than the others. Therefore,

δ represents the minimum detectable difference between competing solutions and is

called indifference-zone parameter. Both α and δ are used defined, with α small. The

Rinott’s parameter h depends on n1, α and the number of comparing alternatives

k. The values of h can be found in the tables in [92].

To implement this simple procedure, the following steps are taken.

Initialization Select confidence level 1−α, indifference zone parameter

δ > 0, and the common first stage sample size (n1 > 2). Obtain

Rinott’s constant h.

Stage 1 For each solution θi, with i = 1, . . . , k:

1. Obtain n1 observations Xij , with j = 1, . . . , n1.

2. Compute the sample mean:

X i(n1) =

∑n1

j=1 Xij

n1

.

3. Compute the sample variance:

S2
i =

1

n1 − 1

n1
∑

j=1

(

Xij − X i(n1)
)2

.

70

4. Compute the final sample size:

Ni = max

{

n1,

⌈

(

h · Si

δ

)2
⌉}

.

Stage 2 For each solution θi, with i = 1, . . . , k:

1. Take Ni − n1 additional i.i.d. observations from solution θi,

independently of the first-stage sample.

2. Compute the overall sample mean:

X i(Ni) =
Xi(n1) · n1 +

∑Ni

j=n1+1 Xij

n1 + Ni

.

2.2.2 Classification of the simulation-based algorithms

Banks et al. [6] classified the main approaches in SO according to algorithms that: i)

guarantee asymptotic convergence to the optimum (generally for continuous-valued

parameters); ii) guarantee optimality under deterministic counterpart (i.e., if there

were no statistical error or sampling variability; generally based on mathematical

programming formulations); iii) guarantee a pre-specified probability of correct se-

lection (generally from a pre-specified set of alternatives); iv) are based on robust

heuristics (mainly combinatorial search algorithms that follow evolutionary strate-

gies, e.g., genetic algorithms).

Fu [23] divides the techniques used in SO into the following main categories: i)

statistical procedures, e.g. sequential response surface methodology, ranking &

selection procedures, and multiple comparison procedures; ii) heuristics, i.e. meth-

ods directly adopted from deterministic optimization search strategies, i.e. meta-

heuristics (such as simulated annealing, nested partitions and tabu search), and evo-

lutionary algorithms (for instance genetic algorithms, the scatter search algorithm,

etc.); iii) stochastic optimization, e.g. random search, stochastic approximation;

iv) others, including ordinal optimization and sample path optimization.

Otherwise, Ólafsson and Kim [58] classified the techniques used by SO consider-

ing the nature of the feasible region. They classified Θ as i) infinite and uncountable

if the decision variables are continuous, ii) finite and fairly small, if the decision vari-

ables are discrete and Θ consists of about 30 alternative solutions (or less), or iii)

71

finite but combinatorially large, if the decision variables are discrete and the feasible

region is made up by a number of combinatorial solutions. In the first case, Ólafsson

and Kim [58] suggest to use the stochastic optimization, e.g. using the stochastic

hill climbing method. In the second case is possible to examine all the available

system configurations, therefore the use of statistical procedures is recommended. In

the latter case, considering the high number of alternative system configurations,

we know that the evaluation of all the alternatives is not practicable: in fact, gen-

erally we will need to make n independent simulation for each system configuration

followed by the use of the sample mean over the n replications as an estimate of the

expected value of the objective function corresponding to a configuration. Then the

use of metaheuristic is commonly the most appropriate approach.

Thus, our purpose concerns problems in which there are only discrete input

parameters and there are a combinatorial number of alternatives (which means that

is not possible to evaluate all the possible alternatives). Therefore, in the following

we focus our interest on the metaheuristics approach to the SO. In this perspective,

the selection of promising system configurations holds a key role in the identification

of the optimal alternative with desirable convergence properties.

2.3 Selection of Promising Solutions: Commer-

cial Packages or Ad Hoc Software?

Advanced OPs for discrete-event simulator are designed to search for optimal solu-

tion to the following class of optimization problem [88, 4]:

minimize or maximize f(θ) (2.2a)

72

subject to

g(θ) 6 0 (Constraints) (2.2b)

hl 6 h(θ) 6 hu (Requirements) (2.2c)

l 6 θ 6 u (Bounds) (2.2d)

The objective function f(θ) combines the “variables” θ ≡ (θ1, . . . , θn) (i.e. com-

bines the expected values of the output variables and in case quantitative input

parameters).

The set of constraints must be linear, i.e., g(θ) is a linear function. The require-

ments are simple upper and/or lower bounds imposed on a function h(θ) that can be

linear or non-linear. The values of the bounds hl and hu must be known constants.

The whole of θ are continuous or discrete (or both) and must be bounded.

As reported in [36], the most notable OPs are AutoStat, exteNd Optimizer, WIT-

NESS Optimizer and OptQuest. AutoStat and exteNd Optimizer are OPs that use

evolution strategies. The WITNESS Optimizer uses metaheuristics approaches, in

particular it is based on the simulated annealing and tabu search methods. The

OptQuest package is the most widespread (adopted for instance in the simulators

Arena and Simul8) and probably the most complete: its optimization engine is

based on the use of metaheuristics (in particular the tabu search algorithm), evolu-

tion strategies (such as the scatter search) and artificial neural networks.

At this point, we are interested in explaining how a modeler must optimize a

simulation model interacting with a commercial OP integrated in a SP. Therefore,

we briefly illustrate the main feature of the OP developed by the OptTek Systems,

Inc., in the version that has been developed to be tightly integrated within the

Rockwell Automation, Inc.’s Arena (version 9.0) SP: OptQuest.

As the above general description of the SO approach should have suggested, the

two key phases in attempting to use an OP to choose the optimum values of the

input parameters for a system that has been modeled in a SP are:

• Selection of the input parameters. This phase concerns the selection of a sub-

set of input parameters whose values will be changed by a SO technique under

specific constraints; the SO technique aims to find a combination of values

73

that produces the best objective function. Each set of input values correspond

to a unique system configuration, or rather to a solution.

• Identification of the objective. In this phase the modeler must identify the

goal and through the SO technique evaluate the quality of each alternative

solution. The goal is the maximization or minimization of an input dependent

mathematical expression.

Afterwards, we now can see how OptQuest for Arena allows the modeler to

attempt the two phases for the optimization model definition. Here we refer to

information extracted by some applied research study [73] and the “OptQuest for

Arena User’s Guide” [9]. In the first phase, the modeler must specify the controls

(i.e., the controllable parameters associated with the system being modeled) that

OptQuest is allowed to select values for, establish upper and lower limits for each

control, and define linear and non-linear constraints (non-linear constraints include

output variables of the simulation model, therefore non-linear constraints feasibility

is checked after the evaluation through simulation of the solution). The set of

controls the modeler is allowed to select from includes all Arena model user defined

variables (e.g. the number of completions of workpieces in a production line) and

all model resource capacities (e.g. the number of servers in a service station) – a

snapshot of the OptQuest GUI for Arena is shown in Figure 2.3. In the latter phase,

the modeler must define the objective function that combines any statistic defined

in the model, i.e. typically, system performance measures. (In the User’s Guide is

heedless to develop complex objectives, despite the solver can approach also very

complex objective functions).

As it easy to recognize, using this kind of SO packages is not possible to approach

many interesting and practical optimization problem (for instance, see the Chapter 3

at page 97). In fact:

In a previous study on an OP developed as embedded tool for an open-source

simulator [46], we have shown that an objective function, sometimes, includes both

input and output parameters. Then, we have evaluated a cost-function for a produc-

tion line, whose costs where dependent by the line throughput, the average flow-time,

74

[Ticket Takers] <= 8

Figure 2.3: The OptQuest GUI for Arena.

and the capacity of the buffer areas located after and before of each machine. Obvi-

ously, the first two elements of the objective function were performance indexes (i.e.

outputs by the simulation model), while the buffer capacity was a system parameter

(i.e. input to the simulation model). The value of the buffer capacity was obviously

also included in the optimization model constraints in order to change their values.

1. Commercial OPs let the modeler to define an optimization problem using the

model output and quantitative input parameters. Nevertheless, sometimes

may be interesting to search for a set of values of both quantitative and quali-

tative input parameters that maximizes (or minimizes) the performance of the

system.

2. Optimization problems in some closed systems may refer to a static set of

model entities (e.g., the vessels in a maritime container terminal), whose pa-

rameters may be used to perform some assignment or scheduling at the system

resources.

3. The set-up of large optimization problems (i.e. with many variables and con-

straints) is a manual labor that may require too much effort for the modeler

75

and it may lead mistakes in copying. Furthermore, storing the structure of a

large optimization problem usually requires too much computer memory: in

these cases, is preferable to use a lightest form to memorize the structure of a

problem, e.g. memorizing only the variables whose values cannot be given by

others and using ad hoc algorithms to evaluate the feasibility of each solution.

In conclusion, we believe that commercial SO packages are not yet enough mature

to approach many interesting problems in a satisfying way. Therefore, the approach

of certain SO problems needs the use of ad hoc software or customizable OPs. As

we anticipated in the previous section, using metaheuristics is the most appropriate

approach in the context of SO for finite and combinatorially large feasible regions.

Then, in the following we discuss on how metaheuristics are generally adopted in an

environment for optimization via simulation.

A metaheuristics is a high-level strategy that guides other heuristics in a search

for the optimum solution in a feasible region. Typically, metaheuristics searches

for the optimal solution through the feasible region performing global search, local

search or both.

SO metaheuristics based on global search, generally starts from the examinations

of a set of randomly sampled points from the whole feasible region to address the

search at the most promising subregion. In this case, if an initial feasible solution

exists (e.g., the actual real system configuration), it may be compared at the end

of the search with the (sub-)optimal solution or it may be evaluated with one of

the randomly chosen feasible points. The previous, are generally memoryless meta-

heuristics, i.e. methods that rely on semirandom processes that implement a form of

sampling. Examples of memoryless methods include semigreedy heuristics and the

prominent “genetic” and “annealing” approaches inspired by metaphors of physics

and biology. Metaheuristics with memory are provided of rigid memory or adaptive

memory. This metaheuristics search through the whole feasible space by selecting

solutions and avoiding the exploration of un-promising or yet explored sub-regions.

Examples of methods with rigid memory ar typical metaheuristics which imple-

ments branch and bound strategies, while the most notable metaheuristics that uses

adaptive memory is Tabu Search [28, 29]

If a metaheuristics for simulation-optimization is based on local search, then its

76

search strategy involves moving successively between neighboring feasible points in

search of the optimal solution [1]. Thus, in this case the metaheuristics searches for

optimal solution within the feasible region by determining and evaluating alternative

solutions into the neighborhood of the current solution, eventually replacing the

current solution with a neighbor. In SO, the neighborhood is a selected set of

alternative system configurations classified as proximal to the current configuration.

Neighbors are classically generated using the so called moves.

First of all, let us provide a clear and simple definition of move. As stated in [48],

a move is a procedure that generates a new feasible solution θj similar (near) to the

current candidate solution θ by changing just one or (at most) some values of θ,

namely some values of the input parameters of the simulation model that is referred

to the current candidate solution (the use of such a distance measure may be helpful,

if not crucial, in the generation of neighbor solutions). At the moment we do not

consider the generation of un-feasible candidate solution (e.g., this may occur in

the Tabu Search metaheuristic, where the generation of solutions that fit only a

subset of the problem constraints is allowed). Therefore, the problem of correctly

defining the neighbor solutions concerns first the definition of the set of moves and

successively the selection of the move that must be performed – this is the so called

neighborhood generation problem.

Often a move is a simple procedure that increases or decreases, with the same

probability, the value of only one input parameter per time [7]. The value is increased

(decreased) of a quantity that do not go beyond the fixed bounds. Rarely the

new value is chosen randomly between the minimum and maximum value of the

parameter. In both cases, the new value for the selected input parameter must not

violate the constraints of the mathematical model (2.2) and, if possible, should drive

the search process towards a feasible solution with a better value of the objective

function. The “classical” move used in [7] changes a single parameter value per time,

but this could reveal as a not efficient choice in some strictly bounded mathematical

models of our interest, where a strong dependency has been detected among the

input parameters of the SO model. A better choice should use moves which consider

the above dependencies.

Our proposal is to construct a neighborhood generation procedure that once a

77

parameter p has been changed, directly reconsiders the values associated to other

parameters strongly dependent by p, which belong to the same constraints and re-

quirements. This is expected to outperform the classical approach where parameter

values are changed one at a time.

In Legato Trunfio and Mari [48] the new proposal has been pursued in a frame-

work of production logistics and numerical evidence was given on the better per-

formance of the new neighborhood generation procedure. Specifically, it gives the

possibility to evaluate a larger number of feasible solutions and to directly discard

solutions that are clearly not worth to generate. Recalling that the solution eval-

uation is a time-consuming step in a simulation optimization algorithm, one may

easily recognize that the feature of avoiding usefulness evaluations is particularly

appreciable. Finally, a Tabu Search scheme was embedded in the SO algorithm, to

implement the neighborhood generation procedure. Details are given in [48].

Numerical results reveals that, to a large extent, the success and the efficiency of

the entire search process relies upon the right balancing of two phases the exploration

of the whole feasible region and the exploitation (i.e. the intensification process, in

the tabu search language) of the neighborhood of a promising solution θ.

In the Sections 2.4 and 2.5 are described two recent metaheuristic frameworks

for the exploration and exploitation of Θ. Both framework use randomization,

that is a popular and effective approach to escape local optima. In the following,

the Nested Partitions method is shown, while in subsequent Section, two random-

methods based on the Balanced Explorative and Exploitative Search framework are

described.

2.4 Nested Partitions

In this Section is described a randomized method for solving global optimization

problems, called Nested Partitions (NP) and proposed by Shi and Ólafsson [56,

83, 84]. The NP method iteratively partitions the feasible region in a promising

subregion and in the corresponding surrounding region, with the goal to identify

the smallest most promising subregion that may include the optimal solution. The

78

NP algorithm evaluates each promising region by sampling a set of points included

in the region, and then defining the average value of the objective function of this

points (that is an estimate of how much promising is the examined subregion). Shi

and Ólafsson [83] stated that the method is shown to converge with probability one

to a global optimum in finite time.

This metaheuristics is inspired by the popular branch-and-bound (B&B) algo-

rithm [34]. Note that this algorithm is a non-randomized optimization method orig-

inally proposed to solve integer linear programs, and generally adopted for global

optimization [30]. The basic idea behind B&B is to systematically partition the

feasible region and estimate upper and lower bounds for each of these subregions,

as well as for the entire feasible region. The bounds obtained for each subregion are

compared with the bounds for the entire feasible region. This comparison is used to

eliminate each of the subregions until only the optimal solution remains.

The NP method systematically partitions the feasible region into subregions,

estimates the potential of each region by random sampling a set of included feasible

points, and then concentrates the computational effort in the most promising region.

Therefore, NP method combines both global and local search by exploring the whole

feasible region and exploiting the most promising region. Like the B&B, the NP

method aims to find singletons regions, i.e., subregions with that include only one

solution.

The NP method has been introduced for deterministic optimization, but it can

also be applied to stochastic problems [57, 63]. In fact, every time a point is sampled

by a subregion, it can be evaluated using such estimator of the performance of the

point (e.g., by using simulation in a SO approach).

2.4.1 Method description

Formally, the feasible region Θ is a finite set of n-dimensional points, therefore

Θ ⊂ R
n, such that:

Θ = {θ = (θ1, . . . , θn) | θi ∈ Θi},

where Θi is a finite set of values that θi can assume, and the cardinality of Θi

79

may depends on the region that is currently partitioned. Let σ be the region that

the NP aims to partitions by considering the values that θi can assume in σ. Thus,

let Mi(σ) be the number of possible values of θi in σ, it is definite by a function

m(·) such as Mi(σ) = m(θi, σ).

In the following, the main phases of the NP scheme are briefly described [83].

• Partitioning. At each iteration, the attention is focused on the decision variable

θi, and Θ is partitioned into i) a number of subregions which depend on Θi,

and ii) in the surrounding region of all the previous subregions (if one exists).

This subregions cover the feasible region but concentrate the search in what

is believed to be the most promising region. The most promising region is

the subregion that is considered the most likely to contain the best solution.

Practically, more points are sampled by the promising region (i.e., the union

of the subregions generated fixing the |Θi| feasible values of θi) than by the

surrounding region.

• Random sampling. The evaluation of each subregion is achieved by obtain-

ing a random sample of points and evaluating their performance and then

using these values to estimate the so called promising index, i.e. the index of

performance of each the subregion.

• Estimation of the promising index. Once a certain number of points have

been sampled and evaluated by each partition of the feasible region, then an

estimation of the promising index may be achieved as the best performance

value found on the points sampled by each partition. A second estimator of

the promising index of a subregion may be computed as the average value of

the performance of the point sampled by the partition.

• Backtracking. Finally, the most promising region is computed as the best

promising index among the subregions and the surrounding region. Sev-

eral backtracking methods have been proposed. An effective backtracking

method [84] suggests to backtrack to the whole feasible region if the most

promising region is the surrounding region, otherwise the subregion selected

as the current most promising region must be partitioned. In this way, the

80

method can move immediately out of the un-promising region in one transi-

tion. This method also requires less computational effort.

Therefore, a key aspect in the design of the NP method is the development of

a partitioning method (or partitioning scheme). The generic partitioning scheme

proposed in [57], aims to fix one of the n decision variable θi ∈ θ at a time and

propose to partition Θ into |Θi| subregions defined by:

σj = {θ ∈ Θ | θi = θij}.

where θij ∈ Θi for j = 1, . . . , |Θi|. Some crucial points are still i) the identifica-

tion of the decision variables θi ∈ θ, ii) the identification of Θi
1 or rather of Mi(σ)

and, finally iii) the generation of an intelligent sorting of the variables θi.

The first point is strictly connected with the structure of the mathematical model

to be optimized, where the decision variables may be different (e.g., continuous,

discrete and binary). For what concern the second point, the number of values

that each decision variable θi can assume is variable. This number depends on the

region that the NP is currently partitioning considering the i-th dimension of Θ, i.e.

the decision variable θi. For instance, in the NP scheme proposed at page 81, the

number |Θi| depends on the values fixed for the already evaluated decision variables.

Therefore, the first two points are strictly related to the structure of the problem

and must be tailored on the specific structure of a solution. Some example of design

of a partitioning scheme is shown in Section 2.6 and in Chapter 3.

The third point concerns the decision of the order in which the decision variables

should be selected, that is, which variable θi should be fixed first, and so forth.

Ólafsson and Kim [57] proposed an intelligent partitioning to obtain a ranking of the

decision variables θ1, θ2, . . . , θn. The authors stated that an intelligent partitioning

should intuitively increase the probability of correct selection of the most promising

region, but it does no assure it in a rigorous manner. Therefore, the decision variables

should be sorted randomly or do not sorted at all.

A region constructed using a fixed partitioning scheme is called a valid region

given the fixed partition. The set of all valid regions is denoted by Γ. In the NP

1In other words, the identification of Θi concerns the definition of the function m(·).

81

method, singleton regions are of special interest, because this particular regions

are characterized to include only one point. Therefore, singletons are regions of

maximum depth, or rather, regions that cannot be partitioned further. The set of

all the singletons is referred as Γ0, and obviously Γ0 ⊂ Γ. The goal of the NP search

scheme is to select the region in Γ0 that has been visited most frequently during the

search. Then, this is the proposed optimal solution for the NP method.

The following scheme describes the NP method for a simulation-optimization

framework that uses the Rinott’s procedure described at page 69 for a two-stage

sampling, as proposed in [56].

Initialization Let η be the current iteration of the NP search scheme,

then set η = 0.

Let Λ = {λi | 1 6 λi 6 n, λi 6= λj} be a list of indices standing for

a ranking of the decision variables θi, i = 1, . . . , n.

Let σ(η) be the most promising region at iteration η, s(σ(η)) be the

surrounding region of σ(η) (with s(Θ) = ∅). As nothing is assumed

to be known about location of good solutions before the search is

started, then set σ(1) = Θ.

We recall that a decision variable θi may assume Mi(σ(η)) values.

Then, let σj(η) be the j-th subregion of the current most promising

region σ(η), where σj(η) is achieved by assigning at θi the j-th value

that it can assume. Thus, let Î(σj(η)) be the promising index of

the j-th subregion.

Moreover, let Di
j(η) be the i-th set of N points sampled from the

subregion σj(η), where j = 1, . . . , Mi(η) + 1 and 1 6 i 6 n1 in

the first sampling stage and 1 6 i 6 nj
2(η) in the second sampling

stage. Let n1 be the number of sets Di
j required in the first sampling

stage (with n1 > 2), while the nj
2(η) is the number of sets Di

j for

the second stage (this value may be computed using the Rinott’s

procedure). Eventually, if n1 has been set-up to 1, then is not

required any two stage Ranking & Selection procedure to compute

nj
2(η), because this value is naturally set to 0.

Finally, let λ(η) be the current examined dimension at iteration η,

82

where λ(η) ∈ Λ and λ(1) = λ1.

Step 1 Set η = η + 1.

Given the current most promising region σ(η), let θλη
be the current

value depending on σ(η) will be partitioned, then partition σ(η)

into M(η) subregions σ1(η), . . . , σj(η), . . . , σM(η)(η), with M(η) =

Mλη
(σ(η)) and:

σj(η) = {θ ∈ σ(η) | θλη
= θληj

}.

Then, let σM(η)+1(η) be the surrounding region of σ(η), with:

σM(η)+1(η) = Θ\σ(η).

Goto Step 2.

Step 2 For each subregion j, with j = 1, . . . , M(η) + 1 and for each i

with 1 6 i 6 n1, then

• Use uniform sampling to obtain a set Di
j(η) of N sample points

from region j.

• For each point θ ∈ Di
j(η), then evaluate f(θ).

• Estimate the performance of the region from the i-th set Di
j(η)

of points as:

X i
j(η) = min

θ∈Di
j(η)

f(θ).

Goto Step 3.

Step 3 For each subregion j, with j = 1, . . . , M(η) + 1, calculate the

first-stage sample means Xj(η) and variance S2
j (η) using the X i

j(η)

estimates of the performance of the subregion. Then, use the Rinott’s

procedure to estimate the value of nj
2(η), by selecting a confidence

level 1 − α, an indifference zone parameter δ > 0 and using n1 as

the common first stage sample size.

Goto Step 4.

83

Step 4 For each subregion j, with j = 1, . . . , M(η)+1 and (nj
2(η)−n1) >

0 then:

• for each i with 1 6 i 6 (nj
2(η) − n1), then

– Use uniform sampling to obtain a set Di
j(η) of N sample

points from region j.

– For each point θ ∈ Di
j(η), then evaluate f(θ).

– Estimate the performance of the region from the i-th set

Di
j(η) of points as:

X i
j(η) = min

θ∈Di
j
(η)

f(θ).

Goto Step 5.

Step 5 Let the over all sample mean be the promising index Î(σj(η))

for the subregion j (j = 1, . . . , M(η) + 1), with

Î(σj(η)) = Xj(η) =

∑n1

i=1 X i
j(η) +

∑n
j
2
(η)

i=1 X i
j(η)

n1 + nj
2(η)

.

Goto Step 6.

Step 6 Select the index ̂η of the region with the best promising index,

such as:

̂η = arg min
j=1,...,M(η)+1

Î(σj(η)).

Goto Step 7.

Step 7 If more than one region is equally promising, the tie can be

broken arbitrarily. If this index corresponds to a region that is

a subregion of σ(η), then let this be the most promising region

in the next iteration. Otherwise, if the index corresponds to the

surrounding region, backtrack to the whole feasible region, which

contains the current most promising region (e.g., the surrounding

region). In other words, let:

σ(η + 1) =







σ̂η
(η) if ̂η 6 M(η),

Θ otherwise.

84

If σ(η + 1) = Θ, then set η = 1. Goto Step 8.

Step 8 If η is equal to n, that is, all the dimensions of Θ have been

fixed then STOP : Add σ(η + 1) in the set of singleton regions Γ : 0

and present σ(η +1) as the optimum solution; otherwise go back to

Step 1.

If the partitioning schema has been generated randomly, then we propose the

following modification on the preceding schema. Once in Step 7 the NP method

backtracked to the whole feasible region, then produce randomly a new partition

schema. The effects of this choice will be discussed in Section 2.6 and in Chapter 3.

Another consideration on the scheme proposed above regards the output of the

algorithm. The preceding scheme is used to produce a singleton. Therefore, here we

propose a schema for the development of the stopping criterion proposed in [84]. We

recall that that stopping criterion aims to select the singleton region that has been

visited most frequently. The following procedure implements the previous stopping

criterion.

Initialization Let k be the current iteration and let kmax be the maxi-

mum number of singletons that must be found using the NP method.

Let Γ0 be a set of singleton regions and let σ(k) be the singleton

found at iteration k.

Step 1 Set k = k + 1.

Use the NP method to produce a singleton region σ and set σ(k) =

σ. Set Γ0 = Γ0 ∪ {σ}. Goto Step 2.

Step 2 If k is equal to kmax, then goto Step 3.

Else goto Step 1.

Step 3 Let Γ∗
0 be the set of most visited singletons.

For each σ ∈ Γ0, compute the number υ(σ), such as:

υ(σ) =

kmax
∑

i=1

ζ(σ, i),

85

where:

ζ(σ, i) =







1 if at iteration i results σ(i) equals to σ,

0 otherwise.

Let Γ∗
0 = {σ̂ | ∀σ : υ(σ) 6 υ(σ̂)}.

Goto Step 4.

Step 4 STOP : Present σ∗ ∈ Γ∗
0 as the singleton with the best objective

function estimate.

2.5 Balanced Explorative and Exploitative Search

In this Section is described a general scheme for designing a search process based

on both global and local search called Balanced Explorative and Exploitative Search

with Estimation (BEESE). This framework has been originally proposed by Prudius

and Andradóttir [71] and later more comprehensive developed in an in-depth study

by Prudius [70].

The BEESE is a random search based-framework for simulation-based optimiza-

tion. With exception of the estimation phase, the framework may also be used for

deterministic optimization. In this case, the framework is usually referred as BEES.

In this framework, exploration refers to searching globally for promising solutions

within the entire feasible region Θ, while exploitation involves local search of promis-

ing subregions of Θ. The estimation phase, which is adopted only in a SO context,

refers to the process of obtaining a precise function estimates of a solution θ and an

improved estimator of the optimal solution. Thus, the search for the optimal solu-

tion through the feasible region is pursued by balancing two phases: exploration and

exploitation. Prudius remarks the need for maintaining the balance between explo-

ration and exploitation during the search for an optimal solution. In fact, specially

for those problems whose structure is unknown, it would be reasonable to start the

search by performing a global search stage (i.e., exploring the entire feasible region):

in that way is possible to assess how the objective function behaves over the feasible

space. This initial stage may help in the identification of a good subregion and

86

hence the search may be concentrate on the most promising subregion. Once a good

subregion is identified, the search must exploit the subregion for better solutions

by executing a local search stage (exploitation of the neighborhood). Whenever a

subregion has been fully exploited, the search must perform another global search

stage aiming to find another promising subregion.

As a consequence of the above discussion, is reasonable to conclude that the

effectiveness of the search algorithm depends heavily on the ability of the scheme to

identify when it should switch focus from global search (exploration) to local search

(exploitation).

As the author suggested, this framework is inspired by other successful frame-

works that adopt concepts of exploration and exploitation, such as Tabu Search,

Nested Partitions and genetic algorithms. For instance, as we discussed in Sec-

tion 2.4, the Nested Partitions is based on the diversification and intensification

processes that may be considered parallel to the exploration and exploitation pro-

cesses. In the Tabu Search scheme, diversification refers to the process of identifi-

cation of a set of elite solutions from the whole Θ, and intensification refers to the

evaluation of solutions that are in the neighborhood of the elite solutions.

The estimation of the best solution has been discussed in Section 2.2.1. Our

belief is that the most practicable and less computing intensive solution estimator

for the BEESE framework consists on the best solution found at a certain algorithm

iteration.

Prudius, developed two metaheuristics on the BEES framework: the Random-

ized -BEES(E) or simply RBEES(E) and the Adaptive-BEES(E) or ABEES(E) for

short. For both development he demonstrated their almost sure convergence. The

RBEES and ABEES are two random search methods that proved to have similar

performance [70].

Both scheme need the definition of two context specific schemes for the sampling

of solution during the exploration and exploitation phase. With respect to the

exploration phase, the global search. Recalling that exploration and exploitation

are respectively the global and local search of promising solutions, the schemes

for sampling solutions are called global sampling procedure G and local sampling

procedure L(θη−1). The global sampling procedure G samples a new solution θ from

87

the whole Θ; the local sampling procedure L(θη−1), samples at the iteration η a new

solution θ ∈ Θ that is neighbor to θη−1.

In both schemes, at the η-th iteration: θ is the solution currently examined,

i.e., is a candidate solution generated using the procedure G or L(θη−1); θη is the

best solution found yet; θ∗ is the best solution found at the conclusion of the search

process.

The effectiveness of the search scheme strictly depends on the choice of the

sampling procedures G and L.

Thus, in the following we provide a description of the RBEES and ABEES meta-

heuristics.

2.5.1 RBEES

The RBEES is a random search method designed to balance global and local search.

The RBEES framework, at any iteration, with probability 0 > p 6 1 the sampling

procedure G is used, and with probability 1 − p the sampling procedure L is used.

This creates a balance in the use of exploration and exploitation during all stages

of the search. An user must properly define the value of p in order to find the right

balance between the exploration and estimation process. For instance, if p = 1

the RBEES is used as a pure random search method, i.e., only global search is

performed.

The following is the RBEES search scheme with a few of modification in order

to let the algorithm be consistent with the general scheme shown in Figure 2.1.

Initialization Let η be the current iteration of the RBEES search scheme,

then set η = 0.

If an initial solution has been set-up, then let θ be the the initial

solution. Otherwise, sample a solution θ using the global sampling

procedure G.

Evaluate f(θ) and set θη = θ.

Step 1 Set η = η + 1.

Get a variate u from a uniform random variable U{0, 1}.

88

if u 6 p, then sample a solution θ using G

else sample a solution θ using L(θη−1).

Evaluate f(θ) and goto Step 2.

Step 2 If f(θ) > f(θη−1) and the goal is to maximize or f(θ) 6 f(θη−1)

and the goal is to minimize, then set θη = θ.

Goto Step 3.

Step 3 If stopping criterion is not satisfied, then goto Step 1

else goto Step 4.

Step 4 STOP : Present θ∗ = θη.

The previous algorithm, every time the local sampling procedure L is chosen

for sampling the current candidate solution θ at a specific iteration η, it focuses the

search around the solution that proved to have the highest objective function values,

i.e., θη.

Classical stopping criterion can be used. Thus, the search process can be stopped

i) after that a fixed number of iterations are performed, ii) if a time limit is reached,

and iii) if the current optimal solution is within few units from a good upper-bound

(lower-bound) in a maximization (minimization) process. Definitely, combination of

the previous stopping criterion are desirable.

An intelligent stopping criterion can be defined reasoning on the alternation

of the exploration and exploitation phases. Reasonably, the need for exploration

may decrease with the rise of the iterations. After a sufficiently large number of

iterations, the whole feasible region is generally enough exploited and the sub-region

that includes the global optimal solution is identified. In this case, is possible to

reduce the effort due to the exploration by operating on the value of the probability

p. In fact, p can be obtained as result of a function that depend on some meaningful

data, e.g., i) the iteration number η, and ii) the sample path of the method up

to iteration η − 1. This idea may recall to the cooling process in the Simulated

Annealing metaheuristics [33].

89

2.5.2 ABEES

The ABEES strategy adaptively alternates between (local) sampling from the neigh-

borhood of a current solution and (global) sampling in the entire space of feasible

solutions. As stated before, the adopted sampling technique is a key performance

factor of the methodology.

Contrarily at the RBEES that switch at each iteration from global to local search

with a probability 1 − p (and vice versa), the ABEES search strategy aims to it-

eratively change the search focus (exploitation or exploitation) in an adaptive way.

So, the ABEES reviews the search nature every k iterations in order to evaluate if

the current search process is achieving good results or not. An advanced approach

require to perform kg iterations with the global search before to review the search

nature, and analogously kl iterations in the local search stage. Empirical studies

proved that generally is better to set kl > kg. This is reasonable is we consider that

the exploitation of a promising neighborhood is a key factor in the updating of the

search nature. In fact, the ABEES framework switch from local search to global

search every time a neighborhood appear to be fully exploited.

Reminding that θη is the best solution found at the iteration η, let also θl be the

best point found the last time local search was performed (note that its function

value may be worst than the previous best point found during the previous local

search stage), and θk be the point corresponding to the best solution found at the

last review. Moreover, the corresponding function values are vη = f(θη), vl = f(θl)

and vk = f(θk).

Let ∆ be the improvement in the function value between the current and preced-

ing reviews and D the distance between the points where the corresponding function

values were achieved. The ABEES also requires two user-defined thresholds, namely

the distance threshold d and the improvement threshold δ.

Initialization Let η be the current iteration of the ABEES search

scheme, then set η = 0. Let counter be the number of iterations

performed during the current search nature, then set counter = 0.

Let LS be a boolean flag that is true if the search nature is local

search, false otherwise, then set LS = false.

90

If an initial solution has been set-up, then let θ be the the initial

solution. Otherwise, sample a solution θ using the global sampling

procedure G.

Evaluate f(θ) and set θη, θ
k, θl = θ. Set vη, v

k, vl = f(θ).

Step 1 Set η = η + 1 and counter = counter + 1.

If LS is false, then sample a solution θ using G

else sample a solution θ using L(θη−1).

Evaluate f(θ) and goto Step 2.

Step 2 If f(θ) > f(θη−1) and the goal is to maximize or f(θ) 6 f(θη−1)

and the goal is to minimize,

then set θη = θ and vη = f(θ).

Goto Step 3.

Step 3 If LS is false and counter = kg or LS is true and counter = kl,

then

• If the goal is to maximize, then set ∆ = (vk − vη)/v
k.

• Else if the goal is to minimize, then set ∆ = (vη − vk)/vη.

• Compute D between θη and θk using such distance measure.

• Set θk = θη and vk = vη and counter = 0.

Goto Step 4.

Step 4 If LS is true and ∆ 6 δ, then set LS = false, thetal = thetaη

and vl = vη.

Otherwise, if LS is false and ∆ 6 δ then

• If the goal is to maximize and (vl − vη)/v
l > δ, or the goal is

to minimize and (vη − vl)/vη > δ,

then set LS = true.

Else if LS is false and D 6 d, then set LS = true.

Goto Step 5.

Step 5 If stopping criterion is not satisfied, then goto Step 1

else goto Step 6.

Step 6 STOP : Present θ∗ = θη.

91

The ABEES algorithm can switch every kg iterations from global to local search

in two ways: i) whenever the improvement ∆ is small (less than or equal to the

user-defined threshold δ), but the method finds a substantial improvement in the

objective function value compared to the improvement found during the last time

local search has been performed (in this case, a promising sub-region has been iden-

tified); ii) when the improvement ∆ is small, but the distance D between successive

reviews is small (less than or equal to the user-defined measure d). In both cases,

the local search flag LS is set to true. Vice versa, the algorithm switches from local

to global search if no meaningful improvement has been achieved during the last kl

algorithm iterations (in this case, LS is set to false).

Like fore the RBEES, the ABEES needs the definition of both the global and

local sampling procedures. Nevertheless, the ABEES scheme also requires a distance

measure. In literature, there are several distance measures that have been defined

for different classes of problems (an example is shown in Chapter 3 on a scheduling

problem).

As discussed in Section 2.5.1 at page 88, classical stopping criterion can be used

also for the ABEES metaheuristic scheme.

Contrarily to the RBEES, the ABEES has natively an adaptive search scheme.

Therefore, we propose an advanced stopping criterion that regard the number of

review executed consecutively without switching on local search. In fact, if the

ABEES execute consecutively rg = g(kg) reviews without switching on the exploita-

tion phase, then all the sub-regions have been fully exploited and the search may

be stopped. The function g depends on the number of iterations kg executed during

each exploration phase before each review of the nature search.

2.6 Simulation-based Optimization of a Manufac-

turing System

In this Section is proposed an example of optimization via simulation of a multi-

product flow-shop manufacturing system that operates in a supply chain. In par-

ticular, here is discussed a common problem in supply chain management, i.e., the

92

allocation of discrete resources. However, in a stochastic environment, the alloca-

tion of discrete resources appears as a problem very difficult to solve. Therefore,

we are interested to show the potentiality of the SO approach to a typical Resource

Allocation Problem (RAP). SO is applied to the problem described below using the

NP method and the RBEES and ABEES algorithms.

The manufacturing system is depicted in Figure 2.4 as a queuing network model

with two-classes of products (C1 and C2) and m = 10 buffered machines, with a

FIFO queue policy. The model has been already proposed in [82].

The classes of products have different arrival distributions. In particular the class

C1 has an exponential arrival distribution with a rate λ, while the class C2 has a

hyper-exponential arrival distribution with parameters λ1, λ2 and α. Both classes

arrive at any of the machines 1–4 (i.e. with the same probability 0.25), and leave the

system after have been processed by three different processing. Part routing within

the queuing network is class dependent. As shown in Figure 2.4, class C1 leaves the

system by machine 9, while class C2 leaves by machine 10.

C2C1,C2

M1 C1C1,C2

C1

C2

M2

M5

M6

C2C1,C2

M3 C1C1,C2

C1

C2

M4

M7

M8

M8

M10

C1

C2

C1

C2

C2

C1

Figure 2.4: Queuing network model for a manufacturing system.

The processing time of all the machines is exponentially distributed, and in

particular, µi is the processing rate for the machine i, with i = 1, . . . , m.

93

Let Bi be the buffer size for the queue related with the machine Mi, with

i = 1, . . . , m and Bi finite. Then, the finiteness of the buffer size for each of

the m queue of the production line makes possible the definition of an interest-

ing and simple-to-understand resource allocation problem. In particular, the goal

is in distributing optimally buffer spaces to different queues given a limited budget

bmaxfor the buffer sizes. In real systems, the finiteness of the buffer sizes may affect

the performance of a manufacturing system by producing starvation and blocking

phenomena, and therefore reducing system throughput, resources utilization and

increasing tremendously the cycle time. Here, we consider the problem of allocat-

ing 12 buffer units, among the 10 different buffers. Let T be the throughput of the

production line, then the SO problem that we are interested to solve is the following:

maximize f(B) = E[T (B)] (2.3a)

subject to

m
∑

i=1

Bi = bmax (2.3b)

Bi > 0 ∀ i = 1, . . . , m (2.3c)

T > 0,∈ R (2.3d)

where B = (B1, B2, . . . , Bm) is a solution of the problem and the objective func-

tion f(B) is an estimate of the random variable T (B). With a fixed set of parameters

(i.e., arrival times and service times), only the decisional variables Bi can affect the

performance of the system throughput. For the previous system, the throughput

must be computed considering the number of products C1 and C2 that leave the

production line in a fixed time period (that generally do not include the transient

period).

In this example, we set-up the parameter bmax as 12. Note that the total number

of point in the feasible region is quite high: in particular, there are 293,930 different

solutions B which satisfy the constrain in (2.3b). While the simulation time for each

94

system configuration is not very long, the total simulation time for all the designs

is not affordable. Therefore, an heuristic approach is required.

Moreover, deterministic optimization cannot provide any solution to the math-

ematical model (2.3), notwithstanding the structure is quite simple. In fact, the

evaluation of the objective function (2.3a) requires the evaluation of the perfor-

mance of a system which operates in a stochastic-dynamic environment. Therefore,

only discrete-event simulation is well capable of representing the system described

in Figure 2.4 and to evaluate the system throughput for each feasible solution.

To perform SO using the BEES and NP frameworks, some details must be ad-

dressed to the generation of a feasible resource assignment. In particular, we propose

a brief description about the implementation of two possible procedures for sampling

a solution globally and locally within the BEES framework. Successively, an expla-

nation about the use of the NP method on the above SO problem is also provided.

Solution generation In the BEES framework, both RBEES and ABEES meta-

heuristics use a global and a local sampling procedure. A possible global sampling

procedure for this this simple SO problem may be defined using a uniform random

variable U within the range [1, m], and iteratively producing a variate u such as the

value of the buffer Bu is increased by one until the summation over all the Bi satisfy

the constraint (2.3b), with i = 1, . . . , m.

Then, given a feasible assignment B1 = (B1, B2, . . . , Bm), a local sampling pro-

cedure can be designed by generating a neighbor assignment B2. Therefore, a key

aspect is the definition of a distance measure able to specify if two assignment are

in the same neighborhood or not. A possible distance measure is the following.

d(B1, B2) =
m

∑

i=1

∣

∣B1
i − B2

i

∣

∣ (2.4)

Thus, a local sampling procedure may be defined as a procedure that, using a

uniform random variable U defined within the range [1, m], iteratively generates

the variates u1 and u2 until u1 is not different by u2 and Bu1
or Bu2

is greater

than 0. Once two buffer with the desired capacity have been found, the procedure

increase by one a buffer chosen randomly between Bu1
or Bu2

and decrease the

95

related buffer size. Obviously, if one of the two buffer has capacity equal to 0, then

this buffer size is increased and the other buffer capacity is decreased. The capacity

are increased/decreased by one in order to produce two assignment that are within

a maximum distance of 2, according to the distance measure in (2.4).

The NP method requires the specification of such method for the evaluation of the

number Mi(σ) of possible values that a decision variable Bi, with i = 1, . . . , m can

assume within the current most promising region σ and, therefore, a procedure for

the sampling of points from i) every subregion of σ, and ii) the related surrounding

region.

First and foremost, an explanation about the nature of a generic region σ is

required. A region is banally a partial assignment of the m buffer capacities. There-

fore, for the current most promising region σ found at iteration η, let bη be the

budget for buffer sizes already allocated at iteration η and nη
0 be the number of

buffers whose size has been set to zero in region σ at iteration η. Then, the num-

ber of possible values Mi(σ) that can be assigned to the i-th buffer Bi is exactly

bmax − bη + 1. The plus one value takes into account the possibility to assign the 0

value to the buffer size Bi.

In a simple way, the sampling of a point from a region σ at the iteration η is

achieved in at most bmax − bη steps, i.e. the number of steps required to allocate all

the residual buffer spaces. Therefore, let B be the set of all the un-allocated buffer

spaces and br = bmax − bη be the buffer spaces not yet allocated. Then, let U be a

uniform random variable defined within the range [1, br], then chosen at random a

buffer Bi ∈ B and generated a variate u from U , set Bi = Bi + u and br = br − u,

until br > 0. If some Bi ∈ B have never been selected, then set Bi = 0.

Points from the surrounding region s(σ) (if the surrounding region is not null)

are sampled likewise. In particular, all the bmax buffer spaces are assigned to all

the buffers as described above (i.e., B = {B1, B2, . . . , Bm}). During the buffer sizes

allocation, for each Bi already fixed in σ, the allocation for Bi in s(σ) must be

different.

Numerical experiments Here is reported a numerical experiment for the queu-

ing network model depicted in Section 2.6. For the following experiment, we fixed

96

the subsequent parameters: λ = 12 [products/min], λ1 = 10 [products/min], λ2 =

30 [products/min] and α = 0.9, µ1 = µ2 = 4 [products/min], µ3 = µ4 = 3 [prod-

ucts/min], µ5 = µ6 = µ7 = µ8 = 4 [products/min], µ9 = µ10 = 5 [products/min].

The simulated time is set up to 8 hours.

For the RBEES we tested the metaheuristics with the probability p equals to

0.3, 0.5 and 0.8. The ABEES has been tested with d = 4, δ = 0.01 and the following

couple of values for kg and kl: (5, 50), (50, 5), (25, 25)

The previous is a simple and replicable experiment that shows how contextual-

izing a SO algorithm on a realistic system.

Some other interesting and more complicated examples of optimization through

simulation in production logistics have been proposed by the authors in [46, 48].

In particular, in [46] a just in time production line with the celebrated Kanban-

based mechanism of production control, and in [48] a Flexible Manufacturing System

(FMS), have been optimized using an open-source discrete-event simulator with

some metaheuristics for SO suitably integrated into the simulator.

2.7 Conclusions

In this Chapter has been introduced simulation-based optimization. A generic schema

for the design of a simulation-optimization procedure has been proposed. Therefore,

has been discussed some procedure for the correct selection of a system configura-

tion in a simulation-optimization procedure. Therefore, commercial optimization

packages for discrete-event simulators are discussed, with particular attention to

the need of solving complex mathematical models. Therefore, two recently de-

veloped metaheuristics generally applied to a simulation-optimization environment

have been discussed. Finally, an example of tuning of the introduced metaheuristics

on a resource allocation problem related to a production line is discussed.

Chapter 3

Simulation-based Optimization

Techniques for the Quay Crane

Scheduling Problem

Maritime terminals of pure transhipment are emerging logistic realities in long-

distance containerized trade. Here, complex activities of resource allocation and

scheduling should be optimized in a dynamic, non deterministic environment. The

assignment of expensive quay cranes to multiple vessel-holds for container discharg-

ing and loading operations is a major problem, whose solution affects the opera-

tional performance of the whole terminal container. In OR literature, this problem

is known as the quay crane scheduling problem. With the objective of minimiz-

ing the vessel’s overall completion time, we first give our IP formulation and then,

under the more realistic assumption that discharge-loading times are non determin-

istic, we focus on a simulation-based optimization approach which embodies the IP

formulation. Two different simulation optimization algorithms are tailored to the

problem: Balanced Explorative and Exploitative Search and Nested Partitions. Nu-

merical results are also presented on real vessel data and on randomly generated

instances.

97

98

3.1 Introduction

The world container fleet amounts to about 23.2 million TEUs (twenty-foot equiv-

alent units) and in 2006 the container throughput reached 440 million TEUs [90].

Containerized trade is forecasted to grow by an average annual rate of 5.32% until

the year 2025 [89]. As a result of this trend, the number of maritime and inland

container terminals worldwide keeps increasing. Competition has become both price

driven and service driven and, therefore, the success of an individual company will

depend on its ability to fulfill customer demand with high standard quality service,

while keeping operations lean.

Maritime container terminals are the most important crossroads for transship-

ment and intermodal container transfers, based on the spokes-hub distribution

paradigm. These facilities have different layouts and they are typically composed

by heterogeneous sets of resources deployed within each port sub-area. Accord-

ing to Steenken et al. [87], the main sub-areas are i) the ship operation area (i.e.,

the quay), ii) the import/export stacking area (i.e., the yard) and iii) the truck

and train operation area. Referring to the operations that occur within the quay

and yard areas, the most common resources are cranes and shuttle vehicles. Quay

cranes (QCs) are usually of two types: rail-mounted gantry cranes (RMGCs) and

rubber-tired gantry cranes (RTGCs)1. Shuttle vehicles are selected according to

how container transfer occurs from the quay to the yard and vice versa: most Euro-

pean and North-American container terminals are generally based upon the “Direct

1Another feature that characterize the QCs is the number of trolleys. The mojority of the QCs

are of single-trolley type, while few terminals are equipped with dual-trolley QCs. Single-trolley

QCs move the containers from the ship to the shore either putting them on the quay or on a

vehicle (and vice versa for the loading cycle). Dual-trolley QCs have a main trolley that moves

the container from the ship to a platform while a second trolley picks up the container from the

platform and moves it to the shore (and vice versa for the loading cycle). Contrarily to single-

trolley cranes, that are man-driven, in dual-trolley cranes only the first trolley is man-driven, while

the second is automatic. Thus, dual-trolley QCs are characterized by higher performances. The

performance in operations of QCs is in the range of 22–30 boxes/h.

99

Transfer System” (DTS), which implies the use of straddle carriers, special vehicles

able to pick-up/set-down and transfer one or more containers per time.

Stahlbock and Voß [86] claim that container handling (i.e., stacking and transport

operations) is a key factor for a container terminal’s efficiency. In this context, a

complex scheduling problem, which arises when multiple quay cranes are assigned

to the same ship with the aim of performing discharge and loading operations, is

known as the quay crane scheduling problem (QCSP).

The goal of the QCSP is to planning the quay crane movements to load or

unload ships considering a known stowage plan and under a specific goal, e.g. the

minimization the overall completion time (makespan minimization). The QCSP is

a particular m-parallel machines scheduling problem [10, 68, 69], where quay cranes

are the machines and a task is defined as the discharge or loading of all containers

related to the deck or the hold of a specific vessel bay.

Consequently, precedence relationship must be considered between tasks related

to the same bay: in particular, during discharging operations, tasks stowed on the

deck must be performed before tasks in the hold of the same ship-bay; also, the

loading operation in a hold must precede the loading operation on the deck of the

same bay. Moreover, discharging operations must precede loading operations on the

same bay. To avoid collisions for QCs working on adjacent bays, non-simultaneity

constraints between tasks must also taken into account. Generally, two adjacent

QCs must be apart from each other by approximately one bay so that they can

simultaneously perform their tasks without interference.

Some other considerations are referred to the QC types. RTGs are more flexible

in operation, while RMGs are more stable. Therefore, if the QCSP refers to RMGs,

i.e. to QCs that travel on the same track, then non-crossing constraints must be

taken into account. This is not necessary for RTGs, but we must consider that the

flexibility of RTGs has a cost in terms of time (that is the time required to move

from a bay to another bay by crossing other QCs).

The solution of the QCSP has been successfully dealt with in literature by using

both deterministic approaches (and solving the relaxation of the Integer Program-

ming formulation) and metaheuristics algorithms [19, 32, 49, 76].

In real life management of logistics at a maritime container terminal, the QCSP

100

arises as a decisional step within the discharge/loading process; thus, we address

the issue of using the solution of the QCSP within a simulation model of the above

process. The simulation model has to evaluate the key performance measure that

should be optimized. Here we show how a simulation-based optimization is a cost-

effective technique in terms of results realism and quality of the solution returned.

The remainder of this chapter is organized as follows. In the next section, we pro-

vide a detailed description of the logistic processes set around the discharge/loading

operations in a maritime container terminal. Afterward, we propose a mathematical

formulation of the QCSP based on a positional notation. In the following section, we

describe two simulation-based optimization approaches to the QCSP using the Bal-

anced Explorative and Exploitative Search (BEES) and the Nested Partitions (NP)

frameworks that we already introduced in Chapter 2. Numerical results using both

real vessel data and randomly generated instances are provided and compared with

the deterministic problem solution obtained through the CPLEX solver. Conclu-

sions are reported in the last section.

A preliminary version of this Chapter appeared in Legato, Mazza and Trun-

fio [44].

3.2 Problem Description

In the Chapter 1 we have described the whole processes that arise in a maritime

container terminal. In particular, we focused our attention onto the port of Gioia

Tauro. Moreover, we have pointed the attention on the importance of resource as-

signments (i.e., berth slots and QCs) for the vessel arrival-service-departure process

and the consequent construction of a suitable weekly plan for the berth allocation

office. Successively, we described both vessel discharge/loading and container trans-

fer processes of the port using some modelling paradigms (e.g., Event Graphs, Petri

Nets, etc.). The main focus was on the representational capabilities offered by some

modelling languages used to incorporate both the low level operational policies and

work rules of the above process and the specific scheduling constraints involved in

the assignment of QCs to the set of tasks.

101

Ship

Crane

discharge/

loading

time

TEUs waiting

line under

crane

Yard

Set-down

time
SC waiting line

on quay

SC

TEU

SC

TEU

Set-up

time
SC waiting line

on quay

Figure 3.1: The vessel discharge/loading and container transfer processes

On the other hand, to further improve the efficiency of berth operations, a very

important role is also played by the QCs and their ability to perform container dis-

charge/loading operations. As many as 6 units of this expensive handling equipment

can be deployed to serve the latest generation containerships during an operational

work-cycle.

A QC operates in the berth area by moving (on wheel or rail) in horizontal

directions to reach different bays within the same vessel or on different vessels. For

both discharge and loading operations, a very restricted area (e.g. a 6-slot space)

for buffering a limited number of containers is naturally provided at the basis of

each QC.

As we anticipated in Chapter 1, for those maritime container terminal that relies

on the indirect transfer system, a QC performs discharge and loading operations as

follows. When performing discharge operations, a quay crane picks-up containers

from the vessel and “feeds” them to straddle carries (SCs) which provide for their

transfer from the quay area to the assigned yard positions within the terminal storage

area. As one may observe in Figure 3.1, the discharge process from the ship to the

yard features a joining point (in blue) between the unloaded container and the

102

SC sent for its pick-up and transfer to the yard. As far as loading operations are

concerned, a QC picks-up containers delivered from the terminal yard by the SCs

and places them on the ship in the assigned vessel holds. Figure 3.1 accounts for

this process from the yard to the ship as well: in particular, the forking point (in

red) represents the physical separation carried out by an SC when it first sets-down

the container in the quay crane buffer area and then returns (empty) to the yard to

retrieve other containers.

From here on, we concentrate on the QCSP. The objective of our study is to

determine the crane schedule (in other words, which and in what order tasks should

be assigned to the single QCs) to minimize the vessel’s overall completion time. For

that goal, we take into account that:

• a minimum distance is left between quay cranes to avoid boom collision (i.e.

non-simultaneity constraints);

• some holds must be operated before others (precedence constraints);

• not every crane is available immediately (release constraints).

• each crane is of RTG type.

Other requirements may be necessary, e.g. when a QC that is already assigned

to the vessel is re-assigned to another vessel at a specific time.

For problem solution, in the following sections we propose both a mathematical

model and two simulation-based optimization approaches.

3.3 Mathematical Formulations

This section includes a Mixed Integer Programming (MIP) mathematical formula-

tion for the QCSP derived from the Kim and Park [32] model, and also proposes a

new MIP formulation of the QCSP based on a positional notation.

The scheduling of the operations of the QCs must be identified under the con-

straints shown below: i) Each QC can operate after its earliest available time (in

fact, a QC may be available only after it completes a previously assigned work on

103

another ship or when the assigned crane operator starts its workshift); ii) Some tasks

must be performed before others (e.g., whenever two holds are in the same bay); iii)

There are some tasks that cannot be performed simultaneously (e.g., neighboring

holds cannot be performed at the same time to avoid crane collisions). The following

notations are used for a mathematical formulation.

We refer to mathematical models for RTGs, therefore we do not provide non-

crossing constraints among cranes for both mathematical formulations.

3.3.1 Kim and Park Formulation for RTG Quay Cranes

In this section is shown the model proposed in [32] and successively reviewed and

strengthened in [54]. In particular, we focus our attention on problems with QCs

that are not on the same track and thus they can cross each other (i.e. RTGs).

The following notations are used for the mathematical formulation.

Let Ω = {1, . . . , n} be a set of n tasks and K = {1, . . . , q} be a set of q quay

cranes. Each task amounts to perform a fixed number of container moves (dis-

charge/loading) which require a non deterministic number of time slots to be carried

out. As first approximation, one may formulate a MIP model by resorting to the use

of the average values for the above processing times. Thus, let pi be the processing

time of task i ∈ Ω.

The set Ψ = {(i, j)|i, j ∈ Ω} of pairs of task describes non-simultaneity relation-

ships between task pairs, i.e. for each (i, j) ∈ Ψ task i must be completed before

task j starts or task i must start before task j is completed. Moreover, the set

Φ = {(i, j)|i, j ∈ Ω} of ordered pairs of tasks stands for the precedence relationships

between task pairs, i.e. for each (i, j) ∈ Φ task i must be completed before task j

starts. Note that Φ ⊆ Ψ.

Let rk be the release time of quay crane k ∈ K, with and note that, once again,

this is considered as a deterministic value.

In the end, let tij be the time required by a QC to move from the bay related

to the task i to the bay of the task j, with i, j ∈ Ω. Obviously, tasks from the same

bay have tij = 0. Let us also introduce tk0j and tkiT , respectively as the time required

by the QC k ∈ K to move i) from its initial position to the task j ∈ Ω, and ii)

104

from the position of the task i ∈ Ω to its final position. Thus, in this notation, the

start position and the final position of a QC are indicated as 0 and T . Therefore,

for notational convenience define Ω0 = Ω ∪ {0} and ΩT = Ω ∪ {T}.

M is a suitably big number (note that the value of M generally affects the per-

formance of the search process using commercial solver for MIP models).

The problem is modeled on a graph G = (V, A), where V = Ω ∪ {0, T} and

A ⊆ V × V .

The formulation uses the following variables.

• Xk
ij, for each (i, j) ∈ A is equal to 1 if and only if task i is performed by crane

k immediately before task j, 0 otherwise. The task j is the first task of QC k

if xk
0j = 1, and similarly, the task i is the last task of QC k if Xk

iT = 0.

• Zij, for each (i, j) ∈ A is equal to 1 if task i is completed before task j starts,

0 otherwise (obviously, if Zij = 1 therefore Zji = 0 and vice versa).

• Di, for each i ∈ Ω is the completion time of i.

• Ck, for each QC k ∈ K stands for the completion time of k.

• W , is the overall completion time of the vessel, i.e. is the makespan.

The Kim and Park QCSP without non-crossing constraints can be formulated

as follows.

minimize α1W + α2
∑

k∈K

Ck (3.1a)

105

subject to

Ck
6 W ∀ k ∈ K (3.1b)

∑

j∈Ω

Xk
0j = 1 ∀ k ∈ K (3.1c)

∑

i∈Ω

Xk
iT = 1 ∀ k ∈ K (3.1d)

∑

k∈K

∑

i∈Ω0

Xk
ij = 1 ∀ j ∈ Ω (3.1e)

∑

j∈ΩT

Xk
ij −

∑

j∈Ω0

Xk
ji = 0 ∀ i ∈ Ω, ∀ k ∈ K (3.1f)

Di + tij + pj − Dj 6 M(1 − Xk
ij) ∀ i, j ∈ Ω, ∀ k ∈ K (3.1g)

Dj − pj − Di 6 MZij ∀ i, j ∈ Ω (3.1h)

Zij = 1 ∀ (i, j) ∈ Φ (3.1i)

Zji = 0 ∀ (i, j) ∈ Φ (3.1j)

Zij + Zji = 1 ∀ (i, j) ∈ Ψ \ Φ (3.1k)

rk − Di + tk0i + pi 6 M(1 − Xk
0i) ∀ i ∈ Ω, ∀ k ∈ K (3.1l)

Dj + tkjT − Ck
6 M(1 − Xk

jT) ∀ j ∈ Ω, ∀ k ∈ K (3.1m)

Xk
ij ∈ {0, 1} ∀ (i, j) ∈ A, ∀ k ∈ K (3.1n)

Zij ∈ {0, 1} ∀ i, j ∈ Ω (3.1o)

Di, C
k

> 0 ∀ i ∈ Ω, ∀ k ∈ K (3.1p)

We now explain the model (3.1). The multi-objective function (3.1a) is a linear

combination of the makespan, defined in constraints (3.1b), and the sum of the

crane completion times computed in constraints (3.1m). In the previous, minimizing

the makespan coincides with the minimization of the overall completion time of

the vessel, while minimizing the completion time of the cranes maximizes their

productivity. Thus, Kim and Park [32] assumed that α1 ≫ α2, since minimizing

the makespan is considered a primary objective. Therefore, α2 is usually set to 0.

Constraints (3.1c) and (3.1d) respectively select the first and last tasks for each

QC. Constraints (3.1e) specify that every task can only be assigned to one crane2.

2The original constraints were for all i ∈ Ω, but obviously this is was a typing error, and

106

Constraints (3.1f) guarantee that on each QC tasks are performed in a well-defined

sequence. Constraints (3.1g) simultaneously determines the completion time for each

task and eliminates sub-tours. Constraints (3.1h) have been introduced in [54] to

make stronger the previous constraints. Constraints (3.1i) and (3.1j) guarantee that

task i will be processed before task j if there is a precedence relationship between

them. Note that also this constraints have been reviewed in [54]. Constraints (3.1k)

ensure that tasks i and j are not processed simultaneously if, as a pair, they belong to

the non-simultaneity set. Constraints (3.1l) and (3.1m) respectively guarantee that

a task cannot be assigned to a crane before the crane has been released, and that the

last task performed by each crane must be completed within the crane completion

time. Finally, constraints (3.1n)–(3.1p) are the constraints on the decision variables.

Note that this model has O(|Ω|2 · |K|) variables and O(|Ω|2 · |K|) constraints.

3.3.2 A Positional Formulation of the QCSP

We now introduce a new formulation of the QCSP that may be addressed to mar-

itime container terminals equipped with RTG QCs. The formulation assume that

each QC has a schedule of tasks that must be performed in a fixed sequence, so the

goal of the model is to compute the position in which each task will be performed

on a each QC.

The notations of the following MIP formulation is taken by the model defined in

section 3.3.1, with the following modifications.

Let P = {1, . . . , m} be a set of m positions. Considering that in the worst

case all the tasks must be performed by the same QC (therefore all the positions

of the QC will be allocated to the tasks), we will set |P | ≡ |Ω| = n. For notation

convenience, we also define the set P− = P\{m}.

In the following, we re-define the X and Z decisional variables:

• Xk
ih, for each i ∈ Ω is equal to 1 if and only if task i is performed in position

h by crane k, 0 otherwise.

therefore we modified the constraints by letting the summation to vary for all i ∈ Ω0.

107

• Zij, for each (i, j) ∈ Ψ is equal to 1 if task i is completed before task j starts, 0

if i starts after the completion of task j (obviously, if Zij = 1 therefore Zji = 0

and vice versa);

Our formulation of the QCSP without non-crossing constraints is formulated as

follows.

minimize α1W + α2
∑

k∈K

Ck (3.2a)

subject to

Ck
6 W ∀ k ∈ K (3.2b)

∑

k∈K

∑

h∈P

Xk
ih = 1 ∀ i ∈ Ω (3.2c)

∑

i∈Ω

Xk
ih 6 1 ∀h ∈ P, ∀ k ∈ K (3.2d)

∑

j∈Ω
j 6=i

Xk
jh > Xk

i h+1 ∀ i ∈ Ω, h ∈ P−, ∀ k ∈ K (3.2e)

Di + pj 6 Dj ∀ (i, j) ∈ Φ (3.2f)

Di + pj − Dj 6 M(1 − Zij) ∀ (i, j) ∈ Ψ \ Φ (3.2g)

Dj + pi − Di 6 MZij ∀ (i, j) ∈ Ψ \ Φ (3.2h)

Di + tij + pj − Dj 6 M(2 − Xk
ih − Xk

j h+1) ∀ i, j ∈ Ω, ∀h ∈ P−, ∀ k ∈ K (3.2i)

Di − pi > (rk + tk0i)X
k
i1 ∀ i ∈ Ω, ∀ k ∈ K (3.2j)

Di + tkiT − Ck
6 M

(

1 −
∑

h∈P

Xk
ih

)

∀ i ∈ Ω, ∀ k ∈ K (3.2k)

Xk
ih ∈ {0, 1} ∀ i ∈ Ω, ∀h ∈ P, ∀ k ∈ K (3.2l)

Zij ∈ {0, 1} ∀ (i, j) ∈ Ψ \ Φ (3.2m)

Di, C
k

> 0 ∀ i ∈ Ω, ∀ k ∈ Q (3.2n)

In model (3.2), the objective function (3.2a) is identical with the objective func-

tion of the Kim and Park formulation. The vessel overall completion time is com-

puted by constraints (3.2b). Constraints (3.2c) guarantee that each task is per-

formed by such a QC. Constraints (3.2d) ensure that each position related to a QC

108

is assigned at most to one task. Constraints (3.2e) guarantee that the schedule of

task assigned at each QC is constructed by the first empty position. The prece-

dence relationship among task couples are defined by constraints (3.2f), while con-

straints (3.2g) and (3.2h) ensure non-simultaneity relations. The constraints (3.2i)

guarantee that the tasks assigned to the same QC are performed without overlap-

ping. Constraints (3.2j) compute the completion time of the first task performed by

a QC taking into account i) the QC release time and ii) the time required to move

from the QC initial position to the bay of the task. Constraints (3.2k) compute the

completion time of the QCs considering the completion time of the last performed

task and the time required to move from the bay position of the last task to the

final position of the QC. At the end, constraints (3.2l)–(3.2n) are the constraints on

the decision variables.

We suggest to set tk0j and tkiT to 0, ∀ i, j ∈ Ω and ∀ k ∈ K, assuming that each

QC is located in front of the first task (i.e., after the release time the QC is exactly

located in front of the first assigned task) and that the final position of the QC can

be omitted.

Moreover, as we have shown in a research study on assignment and deployment

of QC along the berth [41, 39], sometime is necessary to consider that a crane may

have a release time and also a due date. In this context, the due date is the time

in which a quay crane becomes un-available (e.g., because it has been assigned to

another vessel). Therefore, let dk be the due date of the crane k ∈ K, then we can

introduce in model (3.2) the following constraints:

Ck
6 dk ∀ k ∈ K (3.3)

Complexity examination Note that this model has O(|Ω|·|P |·|K|) variables and

constraints. As we stated before on page 106, in the worst case |P | = n, therefore,

in this case, models (3.1) and (3.2) have an identical complexity. Notwithstanding,

using such a heuristic for computing a valid good enough or sub-optimal schedule,

we can compute an upper-bound for the cardinality of P , and thus we can surely

affirm that formulation (3.2) may have a lower complexity then formulation (3.1).

On this topic, we must consider that the Kim and Park formulation has been

109

widely studied in the past considering the analogy of the structure of model (3.1)

with the well-known TSP problem [54]. Henceforth, some branch-and-bound and

branch-and-cut algorithms have been proposed to solve it exactly.

Preliminary test on same instances using both formulations have been performed

using the ILOG’s CPLEX Solver 10.0 (tests were run on a 2.0 GHz Intel Pentium

M computer with 2GB of memory).

The empirical results seem to prove that the formulation (3.2) is capable to find

the optimal solution in less time than the formulation (3.1). Therefore, we use the

formulation (3.2) to obtain problem solution of the set of instances defined in the

section dedicated to numerical results (Section 3.5).

At this point, one may easily recognize that the MIP formulation focuses on the

sole allocation/scheduling decisions to be taken within the more complex, dynamic

discharge/loading process illustrated in Figure 3.1. A practical solution to the opti-

mization of the overall logistic process is proposed, in the following, by resorting to

simulation-based optimization.

3.4 Simulation-based Optimization Approach

In Chapter 2 we provided an introduction to simulation-based optimization (SO).

Here, we recall that SO is well known as the optimization of expected perfor-

mance measure(s) based on outputs from stochastic simulations of any given sys-

tem/process, whose dynamic behavior is partially defined by some decision variables

and constraints.

Here, the expected performance measure is the expected value of the overall

completion time (i.e. the makespan) for the discharging/loading operations of a

specific vessel. The makespan should be estimated through simulation of the queuing

network model in Figure 3.1.

The formulation of the simulation-optimization problem would require to replace

the objective function (3.2a) of problem (3.2) with the following f(θ) = E[L(θ)],

which also accounts for implicit additional process features and queuing phenomena

110

when searching for the optimal vector of decision variables θ. In the SO meth-

ods proposed in the following, solution “comparison” is based on statistics for the

makespan which are computed on a certain number of observations. Since these

observations are random variates returned from a simulation process, there are no

guarantees of selecting the best design during the solution comparison, despite it

being truly representative of the best system configuration. To this end, as stated

in Chapter 2, at the “comparison step” of each algorithm we decided to use the

Rinott’s procedure [72] to perform a correct selection of a solution with at least a

probability 1 − α (with α small enough).

Ere now, we claimed that the optimization of the QCSP may be pursued via the

stochastic simulation of the queuing network model depicted in Figure 3.1. Here

the numerical experiments are organized as follow. First of all, to compare the

performance of the metaheuristics NP, RBEES, and ABEES described in Chapter 2

with the solution provided by the commercial solver CPLEX, some procedure able

to evaluate the makespan of a feasible solution for the QCSP must be presented. In

particular, in Section 3.4.1 we present a procedure for the makespan evaluation of

the QCSP, for both deterministic and stochastic evaluation of a feasible schedule.

The procedure evaluate a schedule without considering the effects of blocking and

starvation phenomenons due to the presence of the buffer area under each crane and

straddle carriers in the real system. Successively, we show the effects of stochastic

phenomena on the evaluation of the performance of a solution by means of an

optimization via simulation approach.

Then, in Section 3.4.2 a distance measure for the QCSP is proposed. The distance

measure is useful in the development of the ABEES search scheme.

Finally, before presenting numerical results, we present in Section 3.4.3 a descrip-

tion of the procedures adopted for the generation of new global and local solutions.

This procedure are adopted in both RBEES and ABEES, while the first procedure

is adopted only within the NP scheme.

111

3.4.1 Evaluation of the makespan

We have developed a simple algorithm to evaluate the makespan of a solution S

for the QCSP, which can be also generalized in order to simulate a schedule under

uncertainty (i.e. generating the tasks processing time sampling by such distribution).

In the following, we recall to the notations defined by page 103. The solution

S is a set of m schedules of tasks. The schedule of tasks that refers to the the QC

i ∈ K is called Si.

The algorithm, called quasi-simulated makespan evaluation, is the following:

Initialization Let MS be the makespan of the assigned schedule.

For each task i ∈ Ω let be: bli the location of the bay whereat task

i is referred; and, we recall that pi is the processing time of the task

i.

For each QC j ∈ K, let be: Sj the schedule of assigned tasks; nj

the index of the next task that must be processed by the QC j,

with nj equal initially to the first task in Sj and Sj = Sj\ {nj}; sj

and clj be respectively the travel speed and the current location of

j, afterwards set clj equal to the location of the first task that must

be performed, i.e. clj = blnj
; ti be the clock of the i, with ti = 0.

Moreover, let T be the list of QCs’ clock, KW be the list of QCs

that are currently working (i.e. are performing a task and moving

at task location), KS be the list of QCs that are currently starved

(i.e. are waiting for the availability of the next assigned task), T W

be the list of currently working QCs’ clock. Finally, let KC be the

set of QCs that have completed the assigned schedule Sj (i.e. the

set of QCs that have processed all the assigned tasks), with KC = ∅.

Step 1 Set T =
{

tj |j ∈ K\KC
}

, KW , KS, T W , T S = ∅.

Goto Step 2.

Step 2 If T \T W = ∅, then goto Step 1.

Else compute ̂ = arg min
j∈K

{

T \T W
}

.

Goto Step 3.

112

Step 3 If n̂ can be processed without constraints violation (i.e., prece-

dence and non-simultaneity constraints), then:

1. KW = KW ∪ {̂}, and T W = T W ∪ {t̂}.

2. Set t̂ = t̂ + s̂ · |cl̂ − bln̂
| + pn̂

.

3. If ̂ = arg min
j∈KW

{T W} then,

for each i ∈ KS, set ti = t̂.

4. If S̂ 6= ∅, then set nm̂ equal to the index of the first task in S̂

and set S̂ = S̂\ {n̂};

else KC = KC ∪ {̂}, and goto Step 4.

Else, KS = KS ∪ {̂}, and T S = T S ∪ {t̂}. Finally, goto Step 2.

Step 4 If KC = K, then set MS = arg max
j∈K

{tj} and STOP : Present

MS as the makespan.

Else, goto Step 1.

The preceding procedure computes the makespan of the QCSP with precedence

and non-simultaneity constraints. Nevertheless, the preceding procedure is valid for

each P |prec|Cmax scheduling problem with precedence constraints among jobs and it

can be modified in order to compute the makespan of K|prec|Cmax and R|prec|Cmax

scheduling problems.

3.4.2 A distance measure

Many recent metaheuristics (e.g. the Scatter Search) use distance measures primar-

ily for diversification purposes, i.e. to guide the search into previously unexplored

regions of the search space. As described in Chapter 2, the ABEES metaheuristics

needs a distance measure between solutions of an optimization problem. The de-

velopment of effective distance measures however is not a trivial task [85]. In fact,

a good distance measure should provide an accurate estimate of the difference (or

similarity) between two given solutions.

Different solution representations require different distance measures. Scheduling

problems have solutions that are naturally represented as a permutation of a set of

113

tasks and are also characterized by the fact that the order in which the tasks appear

in the solution is very important. For this class of problems there is no agreed upon

a common distance measure.

Ronald [74] proposes the exact match distance, that is an extension of the Ham-

ming distance, and considers the exact position of a task in the solution to be

important. Given two schedules R = [r1, r2, . . . , rn] and S = [s1, s2, . . . , sn] defined

over a set of n tasks, the exact match distance dEM(R,S) is defined as follows.

dEM(R,S) =
n

∑

i=1

mi(R,S) (3.4)

where mi(R,S) =







0 if ri = si,

1 otherwise.

This distance measure can be used to compare two different schedules of a single

machine scheduling problem. In multiple machine scheduling, each machine has an

own schedule defined over the set of tasks, therefore two solutions may differ by i)

a permutation of the sequence of the tasks assigned at each machine and ii) the

number of tasks assigned to each machine schedule. In particular, in the QCSP

we are dealing with a m-parallel machines scheduling problem, therefore we are

interested in constructing a distance measure that is able to compare the solutions

R and S, where R = {Rk|∀ k ∈ K} and S = {Sk|∀ k ∈ K}, and Rk is the schedule

of tasks assigned to the QC k ∈ K in the solution R (and likewise for Sk).

First and foremost, is necessary to consider that is possible to exchange the

schedules assigned to the RTGs i, j ∈ K into the same solution without affecting

the makespan. Thus, in a two-cranes QCSP, we can also consider to be equivalent

two solutions R and S where the schedules R1 and R2 are identical respectively

to the schedules S2 and S1. In that way, extending the previous statement, two

solutions R and S of a m-cranes QCSP are equivalent if each schedule in R is found

in S assigned to whatsoever QC (i.e. in whatever order).

Then, verified that the solutions R and S are not equivalent, we can compute

the distance between them using a method based on the exact match distance. This

distance method for the QCSP problem with RTGs is based on the idea that the

114

distance must be computed between the most similar couple of schedules (Ri,Sj)

with Ri ∈ R and Sj ∈ S, and not between the schedules assigned to the same

QC in the solutions R and S. This is reasonable if we recall to the possibility

of exchanging the schedules assigned to the QCs into the same solution without

changing the makespan: in fact, we can reorder the schedules in a solution without

changing the makespan of the solution. Then, we are interested to identity the

permutation of R that produces the minimum distance with the solution S.

The following algorithm, called the minimum exact match distance, is used to

compute the distance between two solutions of the QCSP.

Initialization Let d be the distance between two solutions R and S of a

n-tasks m-RTGs QCSP. Let Ri and Si be respectively the schedule

of tasks assigned to the i-th RTG.

Step 1 For each schedule Ri ∈ R, if Ri /∈ S, then goto Step 2.

Present d = 0 as the estimate of the distance between solutions R

and S.

Step 2 Let Si be the i-th permutation of S, achieved by permuting the

m schedules in S (thus, we have m! permutations of S). Finally, let

di be the distance between the solution R and the i-th permutation

of S.

Then, for each Si compute di as follows:

di =

m
∑

j=1

dEM(Rj ,Sj)

where dEM(Rj ,Sj) is the exact match distance (see equation (3.4)

on page 113) between the schedules in position j into R and S.

If two schedules Rj and Sj have different cardinality, then the

distance dEM(Rj ,Sj) is computed on the first cmin tasks, where

cmin = min{|Rj |, |Sj|}. Then the distance dEM(Rj ,Sj) is increased

by cmax, where cmax = max{|Rj |, |Sj|}.

Goto Step 3.

115

Step 3 STOP : Present d = min
i=1,...,m!

{di} as the distance between R and

S.

The following example shows how is computed the distance between two solutions

of a QCSP using the minimum exact match distance. Consider two solutions R =

{R1,R2} and S = {S1,S2} for a five-tasks and two-RTGs QCSP. Let be R1 =

[1, 2, 3], R2 = [4, 5], S1 = [5, 4] and S2 = [1, 2, 3]. The distance computed by

comparing the schedules R1 with S1 and R2 with S2 is respectively equal to 3 for

the first couple and 2 for the second couple, i.e. the total distance is 5. Using the

preceding algorithm, the minimum distance is obtained comparing the most similar

couple of schedules, i.e. R1 with S2 (distance 0) and R2 with S1 (distance 2),

therefore the total distance is 2.

3.4.3 Generation of a feasible schedule

In this Section we aim to describe the procedures used to perform global and local

search within the BEES framework and for the partitioning of the feasible region.

Here, the feasible region Θ is a finite set of n-dimensional points. The point θ ∈ Θ

(i.e. a feasible solution) is a valid schedule for the QCSP, where θ = (θ1, . . . , θn)

and θi ∈ Θi depicts a valid assignment of the task i ∈ Ω, and Θi is the finite set of

possible values of θi (e.g., the task i is scheduled in position p on the crane k). The

cardinality of Θi changes in function of the assignment of the other tasks, i.e., it

changes solution by solution. This particular property of Θi will be explained later

and is due to the precedence relationship among tasks. As introduced in Section 2.4,

the number of values that θi can assume is |Θi|.

Here we recall that a solution is the sets of task-sequence assigned to each QC.

Therefore, as proposed in Sections 3.4.1 and 3.4.2, a solution/schedule S is a set of

valid assignment task-crane, where for each task assigned to a crane, the order in

which the crane must perform the assigned tasks is specified. Let Sk be the ordered

list of tasks assigned to QC k ∈ K and sk, p be the task scheduled in position p on

crane k. Therefore, a schedule is depicted as follows:

S = {Sk = [sk, 1, . . . , sk,nk
] | ∀ k ∈ K,

∑

k∈K
nk = |Ω|}.

116

The procedures proposed in the following Sections have the goal to describe the

procedures used for the development of the metaheuristics adopted in this Chapter.

Generally, the set of precedence constraints Φ includes some implicit precedence

constraints. In fact, according to the famous transitive property, by two precedence

constraints (i, k), (k, j) ∈ Φ is possible to infer the precedence constraint (i, j). The

mathematical models (3.1) and (3.2) take into account these implicit precedence

constraints through their structure. Otherwise, the dynamic random-construction of

a feasible schedule that only considers the order in which each task will be processed

by the a QC, need the explicit generation of these “new” constraints. Therefore,

before starting the search process, a pre-processing on the set Φ is required, as

proposed in the following procedure.

Initialization Let η be the current iteration, then set η = 0.

Let ci and cn be respectively the initial and the new cardinality of

Φ. Let Φη be the set of precedence constraints inferred at iteration

η.

Step 1 Set η = η + 1, Φη = ∅ and ci, cn = |Φ|.

For each (i, k), (k, j) ∈ Φ, then set Φk = Φk ∪ {(i, j)}.

Goto Step 2.

Step 2 . Set Φ = Φ ∪ Φη and cn = |Φ|.

If cn is not equal to ci, then goto Step 1. Else STOP : Present Φ as

the new set of precedence constraints.

The procedures for global and local search adopted in the RBEES and ABEES

search schemes are proposed in Sections 3.4.4 and 3.4.5. The partitions procedure

adopted in the NP algorithms is proposed in Section 3.4.6.

3.4.4 Global search procedure

The global search procedure described in the following aims to sample a feasible

solution from the solutions set Θ. The procedure iteratively randomly select a not

yet assigned task i ∈ Ω and try to assign it at the position p of the schedule of

117

a crane k, where p and k are chosen randomly. The assignment must produce a

feasible solution θ.

To generate a feasible schedule, the procedure must check that the assignment

of i at position p in the schedule of crane k satisfies all the precedence constraints in

Φ. Nevertheless, the satisfaction of the precedence constraints not necessarily pro-

duce a feasible schedule. In fact, a solution produced checking only the constraints

in Φ may lead the process of evaluation of a solution θ to deadlock phenomena.

The following example shows how a solution with only two precedence constraints

could be infeasible (i.e., it produces a deadlock), notwithstanding all the precedence

constraints are satisfied.

Consider a solution S for a n-tasks and two-RTGs QCSP. Suppose that i) the

set of precedence constraints is Φ = {(i, j), (o, p)}, and ii) the schedule of tasks

assigned to the first crane is S1, with |S1| = n1, and the schedule of tasks assigned

to the second crane is S2, with |S2| = n2 and n1 + n2 = n, where:

S1 = [s1, 1, s1, 2, . . . , s1, α, . . . , s1, β, . . . , s1, n1
],

S2 = [s2, 1, s2, 1, . . . , s2, γ , . . . , s2, ǫ, . . . , s2, n2
].

Imagine that the tasks scheduled in position s1, α and s1, β are respectively the

task j and the task o, while the tasks scheduled in position s2, γ and s2, ǫ are respec-

tively the task p and the task i. Therefore, task j must be performed before task o

by the first crane, and task p must be performed before task i by the second crane.

It is easy to recognize that the solution composed by the schedules S1 and S2

satisfies both precedence constraints. But, the makespan of the proposed solution

can not be evaluated: In fact, according to the precedence constraint (i, j), the task

j can not be processed by the first crane once task i is performed by the second

crane; In a similar way, to perform the task i, the second crane must process task p,

that can not be performed because, according to precedence (o, p), the task o will

not be processed by the first crane until the predecessor task j will be completed.

Definitely, this is a typical deadlock situation. To avoid this situations, during

the construction of a solution, is necessary to take into account all the precedence

constraints in Φ, and, moreover, a set of precedence constraints that are built at

118

runtime considering the current structure of the proposed solution. Let Φ(S) be

the set of runtime constraints derived by the solution S joined the known “static”

precedence constraints in Φ.

The following procedure is designed to generate the set Φ(S) for a specific (par-

tial) schedule.

Initialization Let η be the current iteration, then set η = 0.

Let Φ be the set of precedence constraints (possibly pre-processed

using the procedure at page 116) and Φ(S) be the set of runtime

precedence constraints, then set Φ(S) = Φ. Let Φη be the set of

precedence constraints inferred at iteration η. Let ci and cn be

respectively the initial and the new cardinality of Φ(S).

Let S = {Sk = [sk, 1, . . . , sk, nk
] | ∀ k ∈ K,

∑

k∈K nk 6 |Ω|} be a

partial assignment of a sub-set of the n tasks in Ω to the q cranes

in K.

Step 1 Set η = η + 1, Φη = ∅ and ci, cn = |Φ(S)|.

For each Sk ∈ S and for all sk, α, sk, β ∈ Sk with sk,α < sk, β, then:

• Let i be the task sk,α and j be the task sk, β.

• For all (o, i), (j, p) ∈ Φ(S),

if (o, p) /∈ Φ(S) ∪ Φη with o 6= p , then set Φη = Φη ∪ {(o, p)}.

Goto Step 2.

Step 2 . Set Φ(S) = Φ(S) ∪ Φη and cn = |Φ(S)|.

If cn is not equal to ci, then goto Step 1. Else STOP : Present Φ(S)

as the set of precedence constraints for the (partial) solution S.

The global search procedure here proposed aims to produce a feasible solution

by starting from a schedule S and iteratively assigning all the un-assigned tasks in

the available positions of the q lists Sk, k ∈ K by considering the set of precedence

Φ(S). At each iteration, the procedure randomly selects a un-assigned task and try

to assign it in a position of a randomly selected crane.

The schedule S may also include a valid assignment of a sub-set of Ω (this feature

is useful for the generation of a solution in the NP metaheuristics).

119

The global search procedure is the following.

Initialization Let Ωu be the set of un-scheduled tasks and S be the

global sampled solution, then set Ωu = Ω\{sk,p ∈ Sk|k ∈ K, 1 6

p 6 nk}. Compute the set Φ(S) by the set of precedence constraints

Φ, the current solution S, and using the procedure proposed above.

Finally, let V B and V A be two boolean flags.

Step 1 Let i be a task randomly extracted by Ωu, k be a crane randomly

extracted by K.

Goto Step 2.

Step 2 Compute nk = |Sk|.

If nk is equal to 0, then:

• Add i in first position in Sk.

• Set Ωu = Ωu\{i}.

• Goto Step 1.

Else:

• Let p be a position randomly selected within the range [1, nk].

• Update the set Φ(S).

• Goto Step 3.

Step 3 Set V B = false. For all sk, α,∈ Sk with sk, α < sk, p, then:

• Let j be the task sk, α.

• If exists (i, j) ∈ Φ(S), then set V B = true and goto Step 4.

Goto Step 4.

Step 4 Set V A = false. For all sk, α,∈ Sk with sk, α > sk, p, then:

• Let j be the task sk, α.

• If exists (j, i) ∈ Φ(S), then set V A = true and goto Step 5.

Goto Step 5.

Step 5 [Some precedence constraints has been violated]

If both V B and V A are true, then goto Step 1.

Else if V B is true, then:

120

• If p is equal to nk, then goto Step 1.

• Else set p = p + 1;

Else if V A is true, then:

• If p is equal to 1, then goto Step 1.

• Else set p = p − 1;

Goto Step 3.

Step 6 [No precedence constraints has been violated]

Insert i in position p in the list Sk.

Set set Ωu = Ωu\{i}.

Goto Step 7.

Step 7 If Ωu = ∅, then STOP: Present S as a valid global sampled

solution. Else, goto Step 1.

The previous procedure checks if a task i can be inserted in position p of a

list Sk by evaluating if some precedence constraint is violated before or after the

specified position. In particular, a precedence constraint is “violated before” if

exists a precedence constraint (i, j) ∈ Φ(S) and the task j is assigned to the crane

k in a position preceding p. On the contrary, a precedence constraint is “violated

after” if exists a precedence constraint (j, i) ∈ Φ(S) such as the task j is assigned

to the crane k in a position that is greater or equal to p. Note that, the set of

precedence constraints Φ(S) must be computed at each iteration and it depends on

the current structure of the solution S. The boolean flags V B, V A are used to check

if some constraints is violated before/after the randomly selected position p.

3.4.5 Local search procedure

The local search procedure proposed in this Section is used in the RBEES and

ABEES search schemes for random sampling feasible solutions within the neighbor-

hood of a promising solution θ. According to the concept of distance between two

schedules R and S that we suggested in Section 3.4.2, the procedure that we are

proposing sample new points whose distance measure is at most 2. Thus, a neigh-

bor of a solution S can be generated by selecting two crane-list Si and Sj over the

121

set of cranes, and: i) if i = j, performing an exchange move between the task at

position h and that at position k in the same list Si (this is the only move that can

be performed on a same crane-schedule); ii) if the list Si is empty, removing the

task at the tail of Sj and adding it at the tail of Si (and vice versa if Sj is empty);

iii) if the list Si and Sj are not empty, performing an exchange move between the

task at position h in Si and the task in position k in Sj (not that if h = k the move

produce two different solution at the minimum distance). Obviously, almost one of

the two list Si and Sj must have a non-null cardinality and a move is executed if

and only if no precedence constraint is violated (considering the set of precedence

constraints Φ opportunely pre-processed).

The next procedure is used to perform the neighbors generation.

Initialization Let η be the current iteration and ηmax be the maximum

number of iterations, then set η = 0 and ηmax big enough.

Let S be a feasible solution, and R be a neighbor of S, then set

R = S. Thus, let Φ(R) be the set of precedence constraints built

on the solution R.

Step 1 Set η = η + 1. Let k1 and k2 be cranes randomly extracted by

K, with even k1 = k2.

Goto Step 2.

Step 2 [Task swapping on the same crane schedule]

If k1 = k2 then, for each couple of positions until all the positions

have been examined or a solution has been found.

• Let rk1, p and rk1, q be two positions with p 6= q.

• Let i be the task at position p and j that in position q.

• Set i in position rk1, q and j in position rk1, p. Compute Φ(R)

as described in Section 3.4.4.

For each Rk ∈ R and for all rk, α, rk, β ∈ Rk with rk, α < rk, β,

then:

– Create a boolean flag FEASIBLE, and set its value to

true.

– Let v be the task rk, α and w be the task rk, β.

122

– If exists (w, v) ∈ Φ(R), then re-set i in position rk1, p and j

in position rk1, q and set FEASIBLE = false.

If FEASIBLE = true goto Step 4.

Else goto Step 3.

Step 3 [Task swapping on a couple of tasks from two schedule]

• For each couple of positions rk1, p and rk2, q until all the couple

have been examined or a solution has been found.

• Let i be the task at position p on crane k1 and j that in position

q on crane k2.

• Set i in position rk2, q and j in position rk1, p. Compute Φ(R)

as described in Section 3.4.4.

For each Rk ∈ R and for all rk, α, rk, β ∈ Rk with rk, α < rk, β,

then:

– Create a boolean flag FEASIBLE, and set its value to

true.

– Let v be the task rk, α and w be the task rk, β.

– If exists (w, v) ∈ Φ(R), then re-set i in position rk1, p and j

in position rk2, q and set FEASIBLE = false.

If FEASIBLE = true goto Step 4.

[If a list is eventually empty, then remove the tail of the non-empty

list a try to add it to the empty list] Goto Step 4.

Step 5 If distance between R and S is greater than 0, then STOP :

Present R as a neighbor of S.

Else if η < ηmax goto Step 1.

Else if η is equal to ηmax, then STOP : No neighbor solution has

been found.

In some rare cases, e.g., for strongly constrained problems (i.e. with a high

number of precedence constraints with respect to the number of tasks), is possible

that no solutions with a distance of 2 may be computed with respect to a schedule S.

123

Therefore, the previous procedure tries to generate a neighbor of S until a maximum

number of attempts (ηmax) is reached (this is an user-defined parameter).

3.4.6 Partitioning scheme

Here we describe how the Nested Partitions metaheuristics has been tailored on the

QCSP, considering the description of the framework provided in Section 2.4.

We recall that a point θ ∈ Θ has n dimensions (one for each task), i.e., θ =

(θ1, . . . , θn) and θi ∈ Θi depicts a valid assignment of the task i ∈ Ω. We also

stated that Θi is the finite set of possible values of θi and that, the cardinality of

this set of values is a number M1(σ) which take into account the decision variable

θi and the region σ currently partitioned by the NP method. The NP partition

scheme is based on a known a priori partition scheme, or rather, it use an ordered

list of the θi decision variables. The order of the θi values is produced in some way,

also randomly. Thus, the partitioning scheme is used to know on which decision

variable θi the algorithm must partition the current most promising region. The

current most promising region σ can be partitioned in exactly Mi(σ) subregions.

Once a partition have been performed, a certain number of points must be sampled

for each subregion. Each subregion corresponds to a “partial” solution, i.e., for

all the already partitioned variables, some feasible assignment of the related tasks

has been performed. Therefore, points may be sampled assigning the remaining

un-partitioned tasks.

Thus, in the following we provides two procedure: the first is used to determine

the value Mi(σ) for each θi in a desired region σ, while the second is used to sample

points from a subregion. The notation used in the following have been introduced

in Section 2.4.

Initialization Let S = {Sk = [sk, 1, . . . , sk,nk
] | ∀ k ∈ K,

∑

k∈K nk 6

|Ω|} be a partial assignment of a sub-set of the n tasks in Ω to the

q cranes in K. Therefore, let σ(η) be the current most promising

region at the η-th iteration of the NP-method, then S ≡ σ(η).

Let Mi(S) be the number of values that the decision variable θi can

assume in a region σ, then set Mi(S) = 0.

124

Moreover, let Φ(S) be the set of precedence constraints built on the

solution S.

Step 1 If S is “empty” (i.e., Sk = ∅ ∀ k ∈ K, ∀ j ∈ S, then:

• Set Mi(S) = q, where q = |K|.

• Goto Step 3.

Else goto Step 2.

Step 2 Compute Φ(S) as described in Section 3.4.4.

For each Sk and for each possible position p = 1, . . . , nk + 1, then:

• Let V be a boolean flag, then set V = false.

• For all sk, α,∈ Sk with sk, α < sk, p, then:

– Let h be the task sk, α.

– If exists (i, h) ∈ Φ(S), then set V = true.

• If V is false, then set Mi(S) = Mi(S) + 1.

Goto Step 3.

Step 3 STOP : Present Mi(S) as the number of possible values of θi in

region identified depicted by S.

At this point, once the cardinality of Θi has been computed, at the η-th iteration

the NP method samples a set of points from each of the subregion σj(η), with

j = 1, . . . , Mi(σ(η)). Therefore, two key aspect are the procedures used to sample a

point by a subregion and by the surrounding region.

We recall that a each subregion can be see as a partial assignment of the tasks

in Ω, i.e. it is a schedule S = {Sk|∀ k ∈ K,
∑

k∈K |Sk| < |Ω|}. Therefore, using the

global sampling procedure proposed in Section 3.4.4, a feasible point θ can be sam-

pled by the subregion related to the partial schedule S. In fact, the global sampling

procedure that we proposed is able to complete a partial solution by producing a

feasible scheduling for all the un-assigned tasks.

At the η-th iteration, the NP implementation that we are proposing samples a

point by the surrounding region in two (iterative) phases. In the first phase, a new

feasible point θ is sampled from Θ. Subsequently, the distance measure proposed in

125

Section 3.4.2 is adopted to compute the distance between θ and the current most

promising region σ(η). If the distance is not maximum, then there is some task in θ

that has been scheduled in the same position on the same crane within the partial

solution depicted by σ(η).

3.5 Numerical experiments

The object of the analysis reported in the following is twofold. On one hand, ex-

periments on the QCSP mean to investigate and compare the performance of the

RBEES, ABEES and NP method, when system dynamics are affected by some major

source of uncertainty: i) the quay crane travel speeds and ii) the discharge/loading

service times operated by the quay cranes. The results returned are also examined

in relation to the optimal value found by the ILOG’s commercial software CPLEX

for the optimization model proposed in Section 3.3.2, which provides a lower bound

on the value of the makespan when data is deterministic. On the other hand, the

same tests intend to show how SO algorithms are often the only practical solu-

tion method available when dealing with difficult-to-solve combinatorial problem

instances, embedded in realistic, dynamic environments characterized by several

elements of randomness.

The QCSP is an operative problem that arises in every maritime container termi-

nal. It is generally solved by means of deterministic optimization. This approaches

do not consider that in the short-term the effects of stochastic processes must not

be ignored. Here, we show the results achieved on 13 problem instances using the

CPLEX solver, and the metaheuristics RBEES, ABEES and Nested Partitions (NP)

with deterministic discharging/loading and traveling time for the QCs. In Table 3.1

are reported the main features of the instances used in the numerical experiments

(Table 3.2 groups together similar instances). A detailed description about the

instances and their development is reported in Appendix B.

Instance Number of QCs Number of tasks Number of bays |Φ| |Ψ\Φ|

1 2 10 10 2 5

2 2 10 10 4 12

126

Instance Number of QCs Number of tasks Number of bays |Φ| |Ψ\Φ|

3 2 10 10 3 6

4 2 15 10 7 14

5 2 15 10 5 22

6 2 15 10 7 16

7 3 20 20 7 16

8 3 20 20 8 13

9 3 20 20 9 10

10 3 25 20 9 18

11 3 25 20 9 23

12 3 25 20 10 24

13 3 24 8 16 48

Table 3.1: Instances for the QCSP.

Instances Number of QCs Number of tasks Number of bays |Φ| |Ψ\Φ|

{1, . . . , 3} 2 10 10 3 8

{4, . . . , 6} 2 15 10 6 17

{7, . . . , 9} 3 20 20 8 13

{10, . . . , 12} 3 25 20 9 22

13 3 24 8 16 48

Table 3.2: Summarized description of the instances for the QCSP.

We must clarify that we assumed that the QCs were always available in all the

instances and that the initial location of each QC was identical to the bay-location

of the first task that must be performed.

For explanatory purposes, the instance 13 described in Appendix B is an example

of a real vessel and is depicted in Figure 3.2. The vessel is able to carry up to 1,200

TEUs. The reader can argue about the size of real problems: in fact, the largest

containership is actually able to carry 11,000 TEUs, therefore the QCSP is a very

complex problem to face.

127

DECK

HOLD

BAY

L = Load

D = Discharge

B1

HOLD

B1

DECK

B2

HOLD

B2

DECK

B3

HOLD

B3

DECK

B4

HOLD

B4

DECK

B5

HOLD

B5

DECK

B6

HOLD

B6

DECK

B7

HOLD

B7

DECK

B8

HOLD

B8

DECK

33 45

24 52

L D

B1

6 53

38 51

L D

B2

12 35

L D

B3

11 38

40 72

L D

B4

11 43

64 44

L D

B5

1

D

B6

10 87

34 38

L D

B7

82

D

B8

Figure 3.2: A real discharging/loading problem.

3.5.1 Choice of the parameters

The first step to deal with before starting the experiments is the set-up of the three

metaheuristics. The evaluation of the parameters of each metaheuristics is generally

a key aspect related to the core process of searching the best solution. Here, we

need to evaluate the performance of the following parameters.

The RBEES search scheme uses the p parameter, that is the probability value

depending on the global or local sampling procedure is used at each iteration of the

algorithm. In particular, with probability p the global sampling procedure is used,

otherwise the local sampling procedure is adopted.

The ABEES search scheme is more complex than the RBEES scheme. In partic-

ular, several parameters must be taken into account: kl and kg are respectively the

number of points samples using the local and global search procedure at each stage

of the search process; d and δ are two thresholds, namely the distance threshold d

and the improvement threshold δ, with, for this problem, d ∈ N.

Finally, in the BEES framework, a common parameter for both algorithms

RBEES and ABEES is ηmax, that is a parameter used within the stopping crite-

rion. In particular, the search schema is stopped if no substantial improvement has

been found within ηmax iterations.

For what concern the NP method, three main parameters must be addressed.

The first one regard the number of kmax of singleton point that must be selected

128

using the NP method (see the scheme at page 84). Then, the number n1 of i sets

Di
j required in the first sampling stage for the region j, and the number N of point

sampled from the region j for each set Di
j must be defined. We recall that n1 is,

here, the “number of observations” from each examined region in the first stage of

the Rinott’s procedure. The other parameters for the Rinott’s procedure adopted

within the NP method are the α and δ, with for all the instances: α = 0.05 and

δ = 0.25 (the value of the Rinott’s constant h is computed using the tables in [92]).

Here, the partitioning schema (i.e., the order in which the decision variables are

selected) is chosen at random.

We tested the RBEES algorithm and the ABEES with the following parame-

ters ηmax ∈ {1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000}. The overall number of

iterations has been set to 10, 000.

For the RBEES, we test the metaheuristics with p ∈ {0, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1}, while for the ABEES we use kg ∈ {10, 15, 20} and kl ∈

{10, 15, 20, 25}, and d ∈ {⌈|Ω| ·0.2⌉, ⌈|Ω| ·0.3⌉, ⌈|Ω| ·0.4⌉, ⌈|Ω| ·0.5⌉} while δ = 0.0001.

For what concern the NP method, we set up kmax ∈ {1, 5, 10, 15, 20, 30}. The

proposed values may appear small, but the search is time consuming and the iden-

tification of each singleton may require the evaluation of thousands feasible points.

Thus, we tested the method with n1 ∈ {1, 5, 10, 15} and with N ∈ {5, 10, 15, 20, 25}.

The tests have been conducted on a sub-set of the instances, and the number of

tests (obtained as combination of the above parameters) have not been included for

space grounds. Therefore, here we report the values that proved to be more effective

(considering both performance of speed and solution quality) and that we have used

in all the results provided in the following.

The ηmax value has been fixed to 3000. For the RBEES, the probability p has

been set-up to 0.4, while for the ABEES we fixed kg = 15, kl = 20 and d = ⌈|Ω|·0.2⌉.

The kmax parameter within the NP method has been fixed to 10 and the parameters

n1 and N respectively to 1 and 5. The fact that the optimal value of n1 is equal to

1 do not astonished the authors and it reflects some suspicious expressed during the

study of the NP method proposed in Section 2.4 (our belief is that is a nonsense to

take n1 sets of N uniformly sampled points from a region for the evaluation of the

performance of the region; at most is sufficient to produce one set of n1 ·N points).

129

3.5.2 Deterministic Optimization

In Table 3.3 is reported the solution found by the MIP solver (CPLEX), an the three

metaheuristics (RBEES, ABEES and NP). The Table 3.3 reports for each instance

the best solution found and the time in seconds spent during the search process. The

best solution found is the best makespan (MS) found in a maximum time period of

15.000 seconds (≈ 4 hours), therefore, the solution provided may not be the optimal.

Every time the search process of the chosen methodology (i.e. the CPLEX solver or

a metaheuristics) reaches the time-limit, then the search process is aborted: in this

case, the time spent during the search process is denoted as abort time limit (ATL).

The metaheuristics RBEES, ABEES and NP have been executed within the same

time limit of CPLEX, but with additional stopping criterions.

CPLEX RBEES ABEES NP

Instance MS Time MS Time MS Time MS Time

1 419.78 307.8 421.44 0.3 421.44 0.3 423.11 0.5

2 347.11 4871.0 347.11 1.1 347.11 1.3 348.22 2.3

3 398.78 5170.8 398.78 0.6 398.78 0.5 398.78 0.8

4 602.91 ATL 608.78 16.1 608.78 32.0 610.44 71.5

5 563.90 ATL 564.56 4.2 569.67 4.8 568.11 18.2

6 594.00 ATL 598.22 11.5 599.33 24.5 596.33 34.3

7 527.23 ATL 584.89 22.3 541.33 43.8 537.33 109.2

8 638.56 ATL 644.11 39.9 665.67 58.8 659.78 251.7

9 646.22 ATL 657.22 38.1 673.00 63.8 658.67 288.1

10 627.77 ATL 627.33 181.7 648.44 192.6 639.44 683.7

11 722.55 ATL 722.55 140.3 724.44 179.8 733.00 588.5

12 690.99 ATL 690.99 168.0 698.44 241.2 692.11 2034.7

13 343.67 ATL 343.67 2735.2 343.78 2829.3 379.50 8655.3

Average 547.96 12334.6 554.62 258.4 555.75 283.8 557.29 979.9

Table 3.3: Comparison among CPLEX and the metaheuristics RBEES, ABEES and

NP.

130

Results shown in Table 3.3 clearly demonstrate that the three metaheuristic

approaches are well capable to select a good solution (sometimes the optimum) for

most instances, even the most complicated. As reported in Table 3.4, the most

effective method is the RBEES, but the performance of the ABEES method are

surely comparable with those of the RBEES. The previous table also shows that the

worst average performance is at most the 1.7% far from the CPLEX optimum.

The average time required by the RBEES, ABEES and NP method for finding

the proposed (sub)optimal values are respectively 4.3, 4.7 and 16.3 minutes. This

is not very much compared with the 205.6 minutes on average required by CPLEX.

Obviously, the execution time is not the faster ever developed for the QCSP: but,

this is quite normal considering that this search schemes are different by the others

proposed in literature. In fact, these schemes are based on two time-consuming steps:

i) the generation of a feasible schedule and, ii) the evaluation of a schedule. The

other methodologies usually produce a feasible schedule whose makespan has been

evaluated during the construction. Moreover, generally these methods exploit such

a mathematical structure for the generation of a solution. However, the proposed

metaheuristics are designed to evaluate a schedule under uncertainty, while other

deterministic and faster methodologies are not capable to produce any results.

RBEES ABEES NP

Instance ∆%MS ∆%MS ∆%MS

1 0.40% 0.40% 0.79%

2 0.00% 0.00% 0.32%

3 0.00% 0.00% 0.00%

4 0.97% 0.97% 1.25%

5 0.12% 1.02% 0.75%

6 0.71% 0.90% 0.39%

7 10.94% 2.67% 1.92%

8 0.87% 4.24% 3.32%

9 1.70% 4.14% 1.93%

10 0.00% 0.83% 1.86%

11 0.00% 0.26% 1.45%

12 0.00% 1.08% 0.16%

131

RBEES ABEES NP

Instance ∆%MS ∆%MS ∆%MS

13 0.00% 0.03% 10.43%

Average 1.22% 1.42% 1.70%

Table 3.4: Comparison between the solution provided by CPLEX and the solutions

provided by the RBEES, ABEES and NP method considering deterministic travel

times and task processing time.

3.5.3 Simulation-based Optimization with non-deterministic

times

Numerical experiments discussed in this section use a simplified simulation model

of that described by the queuing network in Figure 3.1. Specifically, we have short-

circuited both the “SC waiting line on quay” and the “TEUs waiting line under

crane” with the purpose of isolating and highlighting the random effects of process

discharge/loading times upon the schedules and, therefore, on the makespan. There-

fore, we may still use the procedure for the evaluation of the makespan proposed in

Section 3.4.1.

This Section aims to show how deterministic solutions found neither with MIP

solvers and deterministic heuristic approaches are of such practical usefulness in

a short term operative context. In fact, in the following the same instances are

evaluated using the identical approaches and methodologies proposed in the previous

Sections. Nonetheless, in the first stage of experiments, we use the RBEES(E),

ABEES(E) and NP method for searching the best solution by using the procedure

for the makespan evaluation proposed in Section 3.4.1, where the travel speed sk for

each crane k ∈ K is a variate get by a random variable distributed as an exponential

distribution with rate λk = 45 meters per minute. In the first stage we suppose that

the discharge/loading time is still deterministic (therefore, the processing time pi

for the i-th task in Ω is consequently deterministic).

In the second stage, also the task processing time is assumed to be aleatory: in

132

particular, let xi be the processing time for the task i ∈ Ω, then xi is a variate

from an exponentially distributed random variable Xi with rate µi = 1/E[Xi], and

E[Xi] = pi.

Tests are performed using the same configurations adopted in the Section 3.5.2.

Moreover, the base number of simulation runs for each evaluated solution has been

set to 10.

Table 3.5 reports data on the 13 instances solved using an exponentially dis-

tributed travel speed for the RTGCs. Then, in Table 3.6 are given the results by the

same tests conduced using exponentially distributed times for both travel time and

task processing time. Successively, Table 3.7 gives the results of the simulation of

the optimal schedules found by the ILOG’s CPLEX solver using i) stochastic travel

times and deterministic processing time, and ii) stochastic travel and processing

times. The Table also reports the proportional increase/decrease on the makespan

found by CPLEX using deterministic times.

RBEES ABEES NP

Instance MS Time MS Time MS Time

1 248.34 0.7 237.20 0.9 256.22 1.3

2 307.66 1.2 310.02 2.6 297.90 2.7

3 358.34 0.7 343.60 1.5 345.50 0.9

4 244.23 24.0 316.45 23.6 312.38 78.2

5 383.64 3.7 287.53 5.2 274.33 17.0

6 353.17 18.6 363.49 19.6 391.61 48.3

7 321.50 21.4 361.34 22.5 373.49 129.1

8 565.51 61.1 560.87 68.9 470.48 462.0

9 390.95 39.5 408.17 63.5 508.06 553.2

10 340.62 205.6 392.34 169.5 461.07 1124.5

11 455.74 64.1 496.98 110.0 524.53 1377.3

12 403.07 113.5 444.29 160.3 501.65 1035.2

13 268.85 1709.6 237.63 1569.9 298.82 ATL

Average 357.05 174.1 366.15 170.6 385.85 1549.0

Table 3.5: Comparison among the metaheuristics RBEES, ABEES and NP using a

non-deterministic QCs speed.

133

RBEES ABEES NP

Instance MS Time MS Time MS Time

1 275.67 0.9 242.31 1.1 273.96 0.8

2 236.97 2.9 236.97 2.1 291.30 2.1

3 293.47 0.8 294.01 0.9 303.60 2.0

4 413.12 19.0 410.00 32.7 417.68 70.4

5 339.98 6.1 460.60 5.7 486.18 23.1

6 443.93 11.8 472.12 15.9 544.27 55.4

7 342.05 27.2 354.25 32.8 287.24 119.7

8 607.81 38.4 566.48 99.4 416.55 263.4

9 457.75 47.6 417.20 79.7 502.50 267.7

10 476.21 195.0 393.63 235.9 474.35 883.0

11 450.24 60.0 607.85 108.6 543.25 952.5

12 415.63 124.4 539.93 242.6 492.05 1331.5

13 293.04 1351.6 254.26 1369.9 313.76 ATL

Average 388.14 145.0 403.82 171.3 411.28 1459.4

Table 3.6: Comparison among the metaheuristics RBEES, ABEES and NP using a

non-deterministic QCs speed and task processing time.

CASE1 CASE2 CASE3

Instance MS MS ∆%MS MS ∆%MS

1 419.78 419.71 -0.02% 460.70 8.88%

2 347.11 346.72 -0.11% 361.87 4.08%

3 398.78 401.01 0.56% 548.14 27.25%

4 602.91 609.04 1.01% 752.93 19.92%

5 563.90 564.98 0.19% 685.25 17.71%

6 594.00 595.10 0.18% 782.87 24.13%

7 527.23 530.91 0.69% 40.77 28.83%

8 638.56 644.06 0.85% 854.83 25.30%

9 646.22 649.61 0.52% 1022.32 36.79%

134

CASE1 CASE2 CASE3

Instance MS MS ∆%MS MS ∆%MS

10 627.77 636.25 1.33% 905.45 30.67%

11 722.55 724.45 0.26% 1059.47 31.80%

12 690.99 694.06 0.44% 1078.01 35.90%

13 343.67 345.80 0.62% 446.93 23.10%

Average 547.96 550.90 0.50% 746.12 24.18%

Table 3.7: Evaluation of the optimal schedule found by CPLEX by means of Case 1)

deterministic times; Case 2) exponentially distributed RTGC travel speed and deter-

ministic task processing time; Case 2) both RTGC travel speed and task processing

time distributed by an exponential distribution.

The results of this first stage demonstrate that simulating the “optimal” solutions

provided by CPLEX the estimated overall completion time is substantially identical

than the deterministic value provided by CPLEX (in particular, the average value

over all the 13 instances is higher than the 0.5%, as shown in Table 3.7).

The first stage introduces a little of randomness in the QCSP, but a substantial

difference may be found between the best solution provided by the metaheuristics

and the supposed optimal solution provided by CPLEX within the time-limit and

successively simulated. On the real instance, the three methods need a lot of time

to perform the search, and in particular, the NP has been stopped at the time-limit.

This fact can be clarified considering that the instance 13 has a complex feasible

region, therefore the partition of this region may require many additional estimates

in order to identify the best subregion.

As reported in Table 3.5, the performance of the three metaheuristics compared

with the performance of the CPLEX solution is globally better. As shown in Ta-

ble 3.8, the average performance of the three algorithms adopting a simulation-

based approach is globally better than using the deterministic-approach provided

by CPLEX. In fact, the average value over all the 13 instances is lower than the

35.2% in the best case (i.e., using the RBEES(E) method) and by the 30.0% in

the worst case (i.e., by using the NP method). The performance of the ABEES(E)

135

method are comparable with that of the RBEES(E).

This result shows clearly that the use of simulation for the identification of the

best solution of a problem related to a system that operates under uncertainty is

necessary, despite, as stated above, the first stage introduces a little of randomness.

This is true because the RTGQs cover small distances when moving from a bay to

another and this time is generally small with respect to the time required to process

a task. Moreover, the results changes in a meaningful way if the travel speed (with

directly influences the time required to cover the distance between two bays) reflect

the possibility of such delay due to a crane breakdown.

RBEES(E) ABEES(E) NP

Instance ∆%MS ∆%MS ∆%MS

1 -40.83% -43.48% -38.95%

2 -11.26% -10.58% -14.08%

3 -10.64% -14.32% -13.84%

4 -59.90% -48.04% -48.71%

5 -32.10% -49.11% -51.44%

6 -40.65% -38.92% -34.19%

7 -39.44% -31.94% -29.65%

8 -12.20% -12.92% -26.95%

9 -39.82% -37.17% -21.79%

10 -46.46% -38.34% -27.53%

11 -37.09% -31.40% -27.60%

12 -41.93% -35.99% -27.72%

13 -22.25% -31.28% -13.59%

Average -35.19% -33.54% -29.96%

Table 3.8: Comparison between the solution provided by CPLEX (and succes-

sively simulated) and the solutions provided by the RBEES(E), ABEES(E) and NP

method considering exponentially distributed RTGC travel speed and deterministic

task processing time.

The second stage introduces another source of randomness in the QCSP. More

136

specifically, in the previous stage, the crane speed was distributed with an expo-

nential time. Here, also the task processing time is exponentially distributed. The

effects of this change are tremendous on the performance of the solutions proposed

by CPLEX. In fact, simulating the “optimal” solutions provided by CPLEX, the

estimated makespan is noticeably different than the deterministic value provided by

CPLEX (in particular, the average value over all the 13 instances is the 24.2% far

from the deterministic value, as shown in Table 3.7). In this case, as reported in

Table 3.6, the results provided by the three metaheuristics are better than the values

found by CPLEX. In particular, the solutions provided by CPLEX are globally the

44.0-48.0% worst than the values provided using the three algorithms. The results

still confirm the trend of the performance of the three methods identified into the

two cases (deterministic and with exponential travel times). The RBEES(E) method

results to be the best search method, despite its search schema is quite simple. The

performance of the ABEES(E) are comparable of that provided by the RBEES(E)

method. The NP method, probably, require too much computational effort in a

simulation-based approach, and the use of the BEES framework appear to be more

appropriated.

RBEES(E) ABEES(E) NP

Instance ∆%MS ∆%MS ∆%MS

1 -40.16% -47.40% -40.53%

2 -34.52% -34.52% -19.50%

3 -46.46% -46.36% -44.61%

4 -45.13% -45.55% -44.53%

5 -50.39% -32.78% -29.05%

6 -43.29% -39.69% -30.48%

7 -53.83% -52.18% -61.22%

8 -28.90% -33.73% -51.27%

9 -55.22% -59.19% -50.85%

10 -47.41% -56.53% -47.61%

11 -57.50% -42.63% -48.72%

12 -61.44% -49.91% -54.36%

137

RBEES(E) ABEES(E) NP

Instance ∆%MS ∆%MS ∆%MS

13 -34.43% -43.11% -29.80%

Average -47.98% -45.88% -44.88%

Table 3.9: Comparison between the solution provided by CPLEX (and succes-

sively simulated) and the solutions provided by the RBEES(E), ABEES(E) and

NP method considering exponentially distributed both RTGC travel speed and task

processing time.

Another interesting example may be pursued by using a hyper-exponentially

distributed task processing time (e.g., the processing time may be higher for the

effect of a crane failure or for the arrives of the next shift work). This example

has been proposed by the authors in [44], with the purpose to finally demonstrate

that SO is more suitable in a stochastic-dynamic environment than deterministic

approaches. Finally, whenever the QCSP is contextualized in a larger dynamic-

stochastic environment, e.g. within the queuing network proposed in Figure 3.1,

other phenomena (e.g. cranes blocking and starvation) will surely must be taken

into account. This complexity of relationship that made the system increasingly

more realistic requires a discrete-event simulation model for the correct evaluation

of the vessel overall completion time.

3.6 Conclusions

In this Chapter has been described the quay crane scheduling problem and the related

logistical processes. In particular, a queuing network model has been proposed. The

model is aimed to capture the key features of the logistic processes at hand, viewed

as a dynamic, non deterministic process. Successively, a new mixed integer math-

ematical model has been proposed to be used for supporting allocation-scheduling

decisions regarding quay cranes and vessel tasks to be discharged and/or loaded.

Moreover, procedures for the development of a simulation-based optimization ap-

proach to the quay crane scheduling problem have been proposed. These procedures

138

have been integrated within the search schema of three recent and promising meta-

heuristics. The NP metaheuristic seems particularly promising in quickly providing

cost effective solutions to the practical problem of determining the (sub)optimal

assignment/schedule of quay cranes to vessel tasks. The RBEES proved to posses

the best performance under uncertainty, while the ABEES is the best trade-off

between solution quality and execution time. Currently, we are including more op-

erational details in the simulation model to provide a finer representation of the

discharge/loading process.

Appendix A

The Quay Crane Deployment

Problem

The complex logistic process of vessel berthing followed by container discharge/loading,

at maritime container terminals, is focused in this paper. Discrete-event simulation

models are well capable of representing the entire process in a stochastic, dynamic

environment. Hence, simulation results to be an effective planning and control tool

for decision making and evaluation. The assignment of quay cranes to berthed ves-

sels and their deployment along the berth represent crucial decisions that could be

well supported by integer programming (IP) models. Usually, these models are used

as standalone tools. Starting from a discrete-event simulator for the berth plan-

ning, previously developed for a real maritime container terminal, we propose two

IP models that can be embodied within the simulator to verify whether or not the

weekly plan of the berth schedule produced by the simulator itself is feasible with

respect to the available quay cranes. If not, the manager would be asked to repeat

the berth planning step by rerunning simulation. The goodness of the proposed IP

formulations is established by a numerical comparison against a test case taken from

literature.

139

140

A.1 Introduction

A maritime container terminal is a complex set of physical and human resources or-

ganized around a set of logistic processes. In a pure transhipment terminal, logistic

processes are defined around the pure “store and forward” function of the terminal.

This asks for the respect of high standards in the quality of service provided to

shipping companies, otherwise, the terminal could lose some of these companies to

competition. Thus the internal organization should be carefully optimized. Vice

versa, in a different terminal devoted to an import/export function, possibly con-

nected to a dry port [75], the logistic operations and infrastructures for optimally

supporting inland/outland transportation by different modal choices should also be

carefully considered [61] to improve the reasons of competitiveness.

In Chapter 1 we focused on the modeling of a high-level simulation model for

a maritime container terminal. Her we goes deeper focusing the attention on the

development of intelligent system for the optimal resource allocation.

Our preliminary consideration when addressing the modeling efforts referred to

a marine container terminal, is that the major operational activities and resources

should be managed by considering that they belong to multiple, interacting logistic

processes (e.g. “vessel arrival” and “vessel discharge/loading” processes [91]) where

some limited resources should be adequately shared. This fact is critical for a cost-

effective management of the system and the choice of the modeling approach for

performance evaluation and system optimization. Terminal competitiveness can

be improved by optimizing the internal organization through the introduction of

decision support systems in resource allocation and scheduling of logistic resources

and operations [87, 86], with the objective of decreasing the operating costs and

service times.

Several papers focus on IP models for specific processes in port logistics [60, 45,

16]. Besides, other papers based on simulation, such as [94, 43, 12] point out the

opportunity of evaluating starvation and congestion phenomena occurring at those

major resources on which both the terminal productivity and response time strongly

depend.

In Section 1.6.1 at page 42 a queuing network model has been proposed. The

141

so called “inner model” described in that Section is equipped by a manager com-

ponent (i.e. the “Operations Manager”) whose tasks were to manage the container

resource allocation. The most important resources that must be managed in a mod-

ern maritime container terminal are the berth and the quay cranes. The largest

container terminal are equipped by a long berth and modern quay rail-mounted

gantry cranes (RMGCs). Here we propose a methodology that can be developed

within the “Operations Manager” to support the formulation of the so called weekly

plan under the programmed flow of containership arrivals, provided that the statis-

tical analysis of delays upon arrivals is continuously updated taking into account all

the sources of uncertainty of the arrival process. In this context, the estimation of

the vessel processing time (at berth) for discharge/loading operations is recognized

as the second key point upon which the effectiveness of the whole planning process

depends. The current release of the simulator asks the user to provide the so called

“crane intensity”, i.e. the average number of cranes that work, simultaneously, on

the same vessel, as it is fixed by formal agreement with the shipping company to

which the same vessel belongs. Hence, a decisional problem arises for the cranes

manager because he should dynamically deploy the right number of RMGCs along

the berth and assign these cranes to the vessels that succeed at the various berthing

points, day by day, according to the weekly plan. The major constraints consist in

respecting the vessels’ due-time of departure and shifting the cranes (on rail) along

the quay-side. The objective to pursue is that of employing the minimum number

of quay cranes, while maximizing crane productivity.

In the language of Operations Research the above decisional problem may be

referred as the quay crane deployment problem (QCDP) [39]. It is a complex

assignment-scheduling problem that we tackle by two separated IP-based formu-

lations. The first is focused on the assignment phase and produces the optimal

number of cranes that must be assigned to each berthed vessel on the basis of a

one-hour time-slot, under the guarantee that due-times of departure are respected.

Work-shift are also considered in order to minimize the cost-per-use of the cranes.

In the second IP formulation, the cumulative number of cranes returned by the first

model is deployed over all the vessels previously berthed, each in their own posi-

tion, in order to establish which cranes should service any given vessel on berth and

142

minimize the number of crane shifts between adjacent vessels.

The Appendix is organized as follows. In the following Section, the focus is on

the QCDP and on the mathematical models applied within the two-phase approach.

Finally, some computational results are presented.

This Appendix appeared in Legato, Gull̀ı and Trunfio [41, 39].

A.2 The Quay Crane Deployment Problem

In Chapter 1 at page 35 we provided a description of the logistics and decision

problems in a maritime container terminal, focusing the attention on a real terminal

of pure transhipment: the container terminal in Gioia Tauro, Italy, which is situated

along the major maritime routes from the far-east port sources in Asia to the ports

of Northern Europe and other western destinations.

Here the focus is centered on the problem of allocating QCs mounted on rails at

the incoming vessels considering a weekly plan that is known a priori.

An IP formulation of the quay crane deployment problem together the berth

allocation problem (BAP) has been successfully discussed by Park and Kim [60]. In

real life, the QCDP arises as follows.

The planning office of the terminal operating company constructs a weekly “berth

schedule”, which contains the berthing position and time window for each incoming

vessel (this being the solution to the so-called berth scheduling problem). A time

window shows the expected time of berthing and un-berthing for a single vessel;

time windows are constructed using the ETA (Expected Time of Arrival) and PTD

(Promised Time of Departure) of each vessel (a penalty cost must be sustained if the

departure of a vessel occurs later than its previously committed PTD). Figure A.1

shows an example of a berth schedule, where the berth time and space are partitioned

into 22 × 24 grid squares (24 one-hour time-slots).

The berth schedule is used to assign the RMG quay cranes to the incoming vessels

on a daily basis. The double goal is to i) minimize the number of quay cranes to

be employed and ii) maximize their utilization, under the constraint of completing

the discharge/loading operations, for each vessel, within the related expected time

143

ti
m

e
-s

lo
t

berth-slot1 2 3 4

1

2

3

4
Vessel A Vessel B

Vessel C

Vessel D

Vessel E

Vessel F

Figure A.1: An example of berth schedule presented by Park and Kim.

of un-berthing.

The QCDP is solved under the following assumptions.

1. Each vessel has a time window; the lower bound of the time window is the ves-

sel’s expected time of berthing, while the upper bound is the vessel’s expected

time of un-berthing.

2. Each vessel has a total number of TEUs to be handled within its time window:

this number is related to the container discharge/loading moves required by

the vessel.

3. Each vessel has a maximum and minimum number of cranes that can and must

be assigned when operations starts. The maximum number of cranes that can

be simultaneously assigned to a vessel is limited by vessel length. Vice versa,

the minimum number of cranes to be assigned (usually for mother vessels)

depends on the contract terms between the terminal operating company and

the vessel’s shipping company. By default, when operations start on a vessel,

mostly all of the time-slots related to that vessel receive one crane.

144

4. Quay cranes are RMGCs, so non-crossing constraints must be guaranteed.

Furthermore, cranes are never unavailable.

The solution approach we propose is decomposed into two phases, as shown in

Figure A.2.

PHASE I: Crane Assignment

Berth schedule

Number of cranes assigned to each vessel

at each time-slot

Deployment of RMGCs

PHASE II: Crane Deployment

Figure A.2: The schema of the two-phase approach to the QCDP.

In the first phase (crane assignment phase), we solve an IP mathematical model

using ILOG’s CPLEX Solver 10.0 (tests were run on a 2.0 GHz Intel Pentium M

computer with 2GB of memory) to identify the optimal number of cranes that must

be assigned to each vessel at each time-slot considering the current workshift. Thus,

the model is able to identify exactly when the discharge/loading operations start

and end within the vessel’s time-window. In literature, this problem is known as

the quay crane assignment problem (QCAP) and it is usually studied together with

the BAP as in [52].

In the second phase, another IP model is used to deploy the cranes along the

quay, with the aim of matching the previously identified vessel-crane assignment

in order to i) respect the non-crossing constraints, and ii)minimize the number of

crane shifts from one vessel to another.

With respect to the two phases, the first IP model is the well-known QCAP,

while the second is called the quay crane deployment problem; nevertheless, one

145

could give a mathematical model which combines both of the previous IP models

and still refers to a QCDP.

A.2.1 A IP Model for the Crane Assignment Phase

The following notations will be used for the formulation of the QCAP. Let Ω =

{1, . . . , ω} be the set of ω vessels, T = {1, . . . , n} be the set of n time-slots, and

K = {1, . . . , q} be the set of q quay cranes (that moves on track).

Let also Φ = {1, . . . , m} be a set of m work-shift on the time horizon, where the

work-shift Φj is composed by nj−nj−1 time-slots. More precisely, the set of m work-

shifts must be a partition of T , so that Φ1 = {1, 2, . . . , n1}, Φ2 = {n1 + 1, . . . , n2},

. . . , Φm = {nm−1 + 1, . . . , n}.

Let sk be the service rate for the crane k ∈ K, expressed in TEUs per time-slot.

Let mi be the number of moves for the vessel i ∈ Ω.

We also define for each vessel i ∈ Ω: etbi as the berthing time for vessel i, i.e.

the time-slot starting from which vessel i is ready for the first lift, where 1 6 etbi 6

n− etui +1; etui the un-berthing time of vessel i; thus it is the last time-slot during

which vessel i is available for operations, where etbi 6 etui 6 n; mini the minimum

number of cranes that must be assigned to vessel i when operation starts; maxi

the maximum number of cranes that can be assigned to vessel i. Moreover, for

notational convenience, for each vessel i ∈ Ω we define the following sets of time-

windows Υi = {etbi, . . . , etui}, Υ+
i = Υi\{etbi}, Υ−

i = Υi\{etui}, and Υ =
⋃

i∈Ω Υi.

We introduce the following decisional variables:

• qj is the maximum number of cranes used to perform discharging/loading

operations on the vessels within the work-shift j ∈ Φ.

• θk
it, for each vessel i ∈ Ω, time-slot t ∈ Υi and RMGC k ∈ K, is equal to 1 if

crane k works on vessel i at time-slot t, 0 otherwise.

• φit, for each vessel i ∈ Ω, time-slot t ∈ Υi, is equal to 1 if vessel i is processed

at time-slot t, 0 otherwise.

• γit, for each vessel i ∈ Ω, time-slot in t ∈ Υi, is equal to 1 if operations for

vessel i have been started at time-slot t, 0 otherwise.

146

• ηit, for each vessel i ∈ Ω, time-slot t ∈ Υi, is equal to 1 if operations for vessel

i have not been completed at time-slot t, 0 otherwise.

• ρit, for each vessel i ∈ Ω, time-slot t ∈ Υ+
i , is the difference between the

number of cranes assigned at time-slot t and those assigned at the previous

time-slot (t − 1).

The QCAP can be formulated as follows:

minimize
∑

j∈Φ

c1 · qj +
∑

i∈Ω

∑

t∈Υi

c2 · φit +
∑

i∈Ω

∑

t∈Υ+

i

c3 · |ρit| (A.1a)

subject to

γit 6 γi (t+1) ∀ i ∈ Ω, ∀ t ∈ Υ−
i (A.1b)

ηit 6 ηi (t+1) ∀ i ∈ Ω, ∀ t ∈ Υ−
i (A.1c)

γit + ηit = φit + 1 ∀ i ∈ Ω, ∀ t ∈ Υi (A.1d)
∑

k∈K

∑

t∈Υ−

i

skθ
k
it = mi ∀ i ∈ Ω (A.1e)

∑

k∈K

θk
it −

∑

k∈K

θk
i(t−1) = ρit ∀ i ∈ Ω, ∀ t ∈ Υ+

i (A.1f)

∑

i∈Ω|t∈Υi

θk
it 6 1 ∀ t ∈ Υ, ∀ k ∈ K (A.1g)

∑

k∈K

θk
it 6 maxi · φit ∀ i ∈ Ω, ∀ t ∈ Υi (A.1h)

∑

k∈K

θk
it > mini · φit ∀ i ∈ Ω, ∀ t ∈ Υi (A.1i)

∑

k∈K

∑

i∈Ω|t∈Υi

θk
it 6 qj ∀ j ∈ Φ, ∀ t ∈ Φj (A.1j)

qj 6 q ∀ j ∈ Φ (A.1k)

qj ∈ N ∀ j ∈ Φ (A.1l)

ρit ∈ N ∀ i ∈ Ω, ∀ t ∈ Υ+ (A.1m)

φij, γij, ηij ∈ {0, 1} ∀ i ∈ Ω, ∀ t ∈ Υi (A.1n)

θk
ij ∈ {0, 1} ∀ i ∈ Ω, ∀ t ∈ Υi, ∀ k ∈ K (A.1o)

147

We now explain the IP model (A.1).

The objective function (A.1a) aims to the minimization of i) the number of quay

cranes employed in each work-shift of the planning horizon, ii) the overall number

of time-slots required to perform vessel discharge/loading operations, and iii) the

crane back and forth movements (implicitly accounted for by the |ρ| factor, to be

linearized as usual).

Clearly, function (A.1a) has been homogenized by introducing the cost multiplier

c1, c2 and c3, where: i) c1 is the cost due to the activation of a crane during a work-

shift (in fact, due to national contractual agreements, the labor force cannot be

adopted whenever it is needed, but it must be employed within a known work-

shift); ii) c2 is the cost related to the processing time of a vessel, that is expressed in

function of the overall number of time-slots on which the operations where performed

with continuity; iii) c3 is the cost due to the movement of a crane along the quay.

Constraints (A.1b)–(A.1d) ensure that for every vessel, once discharge/loading

operations start, the operations must be performed without interruption until they

are completed (the vessel operations cannot be preempted). Constraints (A.1e)

specify that for each vessel, the discharge/loading operations must be executed and

completed within the vessel time-window. Constraints (A.1f) evaluate the value of

variables ρit. Constraints (A.1g) guarantee that every crane can be assigned to only

one vessel at each time-slot. Constraints (A.1h) and (A.1i) ensure that the number

of cranes assigned to a vessel during its operations time is between a minimum

(i.e., due to contractual agreement) and a maximum (i.e., due to the vessel length).

Constraints (A.1j) guarantee that, for each time-slot t, the number of assigned cranes

result not greater than the number of available cranes. Constraints (A.1k) ensures

that the number of cranes activated within the work-shift j ∈ Φ do not exceed the

total number of quay cranes q. Constraints (A.1l)–(A.1o) are the basic constraints

on the decision variables.

The IP model defined above is a refinement of the QCAP developed by Legato,

Gull̀ı and Trunfio [41, 39].

148

A.2.2 An IP Model for the Crane Deployment Phase

As stated before, the solution of the QCAP provides the number of cranes that must

be assigned in order to complete the operations in time. This data is used in the

following to deploy, for each time-slot, the RMG quay cranes. The deployment fol-

lows the criteria of non-crossing cranes and crane shifting reduction between vessels

during different time-slots.

In the following we introduce the notations that will be used for the formulation

of the quay crane deployment problem (QCDP).

Let Ω be the set of ω vessels, T be the set of n time-slots,Φ be the set of m

work-shift and Φj, is the set of time-slot into the work-shift j ∈ Φ, as introduced

into the previous section. Let K = {q1, . . . , qm} be the set of rail-mounted quay

cranes available over the m work-shift. Note that qj is the minimum number of

RMGCs necessary to perform discharging and loading operations for all the vessels

in Ω into the work-shift j ∈ Φj , with qj 6 q. Let also Kj = {1, 2, . . . , qj} be the

cranes available within the work-shift j ∈ Φj .

Let also: act be the number of cranes assigned to the vessels berthed at time-

slot t; acit be the number of cranes assigned to vessel i at time-slot t; cbit be the

number of cranes assigned to the vessels berthed at time-slot t before (from the

left-side of the berth) vessel i; cait be the number of cranes assigned to the vessels

berthed at time-slot t after (from the left-side of the berth) vessel i; wi be the time-

window of vessel i; this time-window is computed from the first time-slot in which

discharge/loading operations start to the time-slot in which operations end. Note

that these parameters are computed by the output from the first phase.

Moreover, the following decisional variables are introduced:

• φk
it, for each vessel i ∈ Ω, work-shift j ∈ Φ, time-slot t ∈ Φj and RMGC

k ∈ Kj, is equal to 1 if crane k is assigned to vessel i at time-slot t, 0 otherwise.

• γk
it, for each vessel i ∈ Ω, work-shift j ∈ Φ, time-slot t ∈ Φj and RMGC

k ∈ Kj , is equal to 1 if crane k is after (or is itself) the left-most crane

assigned to vessel i at time-slot t.

• ηc
it, for each vessel i ∈ Ω, work-shift j ∈ Φ, time-slot t ∈ Φj and RMGC

149

k ∈ Kj, is equal to 1 if crane k is before (or is itself) the right-most crane

assigned to vessel i at time-slot t.

• fit, for each vessel i ∈ Ω, time-slot t ∈ T , is the left-most crane assigned to

vessel i at time-slot t.

• lit, for each vessel i ∈ Ω, time-slot t ∈ T , is the right-most crane assigned to

vessel i at time-slot t.

• sfi, for each vessel i ∈ Ω, it is the sum over time of all the left-most crane

indexes of vessel i.

• sli, for each vessel i ∈ Ω, it is the sum over time of all the right-most crane

indexes of vessel i.

Thus, the QCDP can be formulated as follows:

minimize
∑

j∈Φ

∑

t∈Φj

∑

i∈Ω

(qj − act) ·

(
∣

∣

∣

∣

sfi

wi

− fit

∣

∣

∣

∣

+

∣

∣

∣

∣

sli
wi

− lit

∣

∣

∣

∣

)

(A.2a)

150

subject to

∑

k∈Kj

φk
it = acit ∀ i ∈ Ω, ∀ j ∈ Φ, ∀ t ∈ Φj (A.2b)

γk
it 6 γk+1

it ∀ i ∈ Ω, ∀ j ∈ Φ, ∀ t ∈ Φj , ∀ k ∈ Kj , k 6= qj (A.2c)

ηk
it > ηk+1

it ∀ i ∈ Ω, ∀ j ∈ Φ, ∀ t ∈ Φj , ∀ k ∈ Kj , k 6= qj (A.2d)

γk
it + ηk

it = φk
it + 1 ∀ i ∈ Ω, ∀ j ∈ Φ, ∀ t ∈ Φj , ∀ k ∈ Kj (A.2e)

∑

k∈Kj

γk
it 6 qj − cbit ∀ i ∈ Ω, ∀ j ∈ Φ, ∀ t ∈ Φj (A.2f)

∑

k∈Kj

ηk
it 6 qj − cait ∀ i ∈ Ω, ∀ j ∈ Φ, ∀ t ∈ Φj (A.2g)

∑

k∈Kj

γk
it + fit = qj + 1 ∀ i ∈ Ω, ∀ j ∈ Φ, ∀ t ∈ Φj (A.2h)

∑

k∈Kj

ηk
it − lit = 0 ∀ i ∈ Ω, ∀ j ∈ Φ, ∀ t ∈ Φj (A.2i)

∑

t∈Φj

fit − sfi = (qj + 1) · wi ∀ i ∈ Ω, ∀ j ∈ Φ (A.2j)

∑

t∈Φj

lit − sli = 0 ∀ i ∈ Ω, ∀ j ∈ Φ (A.2k)

φk
it, γ

k
it, η

k
it ∈ {0, 1} ∀ i ∈ Ω, ∀ j ∈ Φ, ∀ t ∈ Φj , ∀ k ∈ Kj (A.2l)

fit, lit, sfi, sli > 0,∈ N ∀ i ∈ Ω, ∀ j ∈ Φ, ∀ t ∈ Φj (A.2m)

In the IP mathematical model (A.2), we aim to identify the RMGCs that must

process the berthed vessels at each time-slot, with the goal of minimizing the number

of cranes shifting from one vessel to another (i.e., if possible, the model tries to assign

to each vessel always the same quay cranes).

Constraints (A.2b) specify that exactly the desired number of quay cranes is

assigned to every vessel at each time-slot. Constraints (A.2c)–(A.2e) ensure that

RMGCs are assigned with respect to non-crossing constraints.

Constraints (A.2f) force the assignment of quay cranes to vessel i at time-slot

t, once the preceding vessels along the berth have received the expected amount of

quay cranes. Likewise, constraints (A.2g) ensure that crane assignment to vessel i

at time-slot t is done coherently with the assignment of the considered cranes to the

vessels that follows along the berth.

151

Constraints (A.2h) identify the first crane from the left-side of the quay (i.e.,

the left-most crane) that must perform discharge/loading operations on vessel i at

time-slot t; otherwise, constraints (A.2i) assign the last crane from the left-side

of the quay (i.e., the right-most crane) that must perform discharge/loading oper-

ations on the same vessel and at the same time-slot. Likewise, constraints (A.2j)

and (A.2k) extend constraints (A.2h) and (A.2i), respectively, over all the time-slots

that constitute the vessel time-window.

Constraints (A.2l)–(A.2m) are the basic constraints on the decision variables.

A.3 Numerical Experiments

Numerical results obtained by the exact solution of the two mathematical formu-

lations proposed in previous section are compared against the results reported by

Park and Kim [60]. Here, we consider only one work-shift, because of the size of the

instance.

In Figure A.3 we repeat the optimal assignment reported in the paper by Park

and Kim based on the berth schedule previously shown in Figure A.1. We assumed

that for each crane k ∈ K, the service rate sck = 30 TEUs per time-slot, and the

moves for the vessels are respectively equal to 240, 720, 750, 810, 780, 900 TEUs.

The cost have been assumed to be c1 = n, c2 = c3 = 1. For each vessel, ringed

numbers depict the quay cranes assigned to each vessel. As it is possible to see, the

QCDP solved by Park and Kim makes use of 9 cranes to complete all the operations

in time.

In this case study, the minimum number of cranes that must be assigned to the

vessels during operations is one, while the maximum number of cranes that can be

assigned to a specific vessel is equal to the number of occupied berth-slots (each

corresponding to 50 meters).

The first step of our approach produces the assignment depicted in Figure A.4(a).

In this berth schedule, the optimal value of acit, for each couple of vessel i and time-

slot t, is reported within each corresponding rectangle.

As it is easy to recognize, our mathematical model fills-in a berth schedule while

minimizing the overall number of cranes that must be used to process all of the

152

ti
m

e
-s

lo
t

berth-slot1 2 3 4

1

2

3

4
Vessel A Vessel B

Vessel C

Vessel D

Vessel E

Vessel F

1 2
1 2
1 2
1 2 3 4 5

3 4 5
3 4 5
3 4 5 6
3 4 5 6
3 4 5 6
3 4 5 6

6 7 8 9
6 7 8 9
6 7 8 9
6 7 8 9
6 7 8 9
6 7 8 9

7 8 9
7 8 9
7 8 9
7 8 9
7 8 9
7 8 9
7 8 9
7 8 9
7 8 9

1 2
4 5 6
4 5 6
4 5 6
4 5 6
4 5 6
4 5 6
4 5 6
4 5 6

31 2
31 2
31 2
31 2
31 2
31 2
31 2
31 2
31 2
31 2

Figure A.3: The optimal deployment found by the Park and Kim methodology.

ti
m

e
-s

lo
t

berth-slot1 2 3 4

1

2

3

4
Vessel A

Vessel C

Vessel D

Vessel E

Vessel F

3
3
2

4
4
4
4
4
4

3
3

5
5

4
5 2

4
3

4
4

4
4

3
3
3
3

3
2

3
3

4

4
4
4
4
4
4

2

3

2

(a) Output from the first phase.

ti
m

e
-s

lo
t

berth-slot1 2 3 4

1

2

3

4
Vessel A

Vessel C

Vessel D

Vessel E

Vessel F

1 2
1 2
1 2

1 2 3
1 2 3
1 2 3
1 2 3 4
1 2 3 4
1 2 3 4

4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7

6 7
5 6 7
4 5 6
4 5 6
4 5 6
4 5 6
4 5 6
6 7

1 2
1 2 3
1 2 3
1 2 3
1 2 3
3 4 5
5 6 7
5 6 7
5 6

1 2
31 2
31 2
31 2
31 2
31 2
31 2
31 2 4

4
4
4
4
4
4

3 7
7
7
7
7

5
5

4 5

3
3

(b) Output from the second phase.

Figure A.4: The output of the proposed methodology.

vessels. In fact, the first phase of our approach produced an assignment of 7 quay

cranes against the 9 quay cranes found by Park and Kim. Moreover, in our solution,

once operations start, no operation discontinuity can occur for any vessel: this is

153

a primary contractual agreement requested to the terminal operating company by

shipping companies, along with the minimum number of cranes to be assigned and

the respect of the bounds on operation completion time.

As a result of the second phase of our methodology, we propose the quay crane

deployment shown in Figure A.4(b).

The improvement obtained with the approach proposed in this paper is not only

due to the minimization of the activated cranes. In fact, in three cases i) we obtained

a reduction of the vessel overall completion time and ii) we improved the average

crane utilization (0.69 vs. 0.87).

E better results may be achieved considering that a normal work-shift is com-

posed by 6 hours. Therefore, the previous example mat have 4 work-shift, and

the maximum number of cranes assigned to each work-shift will be 6 for the last

work-shift and 7 for the others.

A.4 Conclusion and future development

In Chapter 1 we have reported on the possibility of improving the benefit of us-

ing a simulator when managing the logistic process of vessel berthing and dis-

charge/loading at a maritime container terminal. Combining discrete-event sim-

ulation with integer programming models results in a very powerful tool, where the

solution of assignment and scheduling problems plays a crucial role.

Here, we have proposed a practical solution to the problem of guaranteeing the

respect of the planned time windows (berthing–un-berthing) but also pursuing the

objective of minimizing quay crane idle time. The novelty is that we avoid handling

a unique, unmanageable formulation and, furthermore, that for practical applica-

tions in real life, we may use a berth schedule produced by a simulator, i.e. in

a more realistic modeling environment where operation delays and unpredictable

events may occur. Thus we may integrate the IP models with their respective solu-

tion algorithms in a discrete-event simulator to support run-time crane assignment

using a berth schedule. A metaheuristics based approach will be clearly pursued

to develop solution algorithms for real instances; this will also enable simulation-

based optimization features within the a discrete-event simulator. The proposed

154

methodology can also be used to practically approach deterministic problems.

Appendix B

Instances of the Quay Crane

Scheduling Problem

Here we present the instances that have been used in Chapter 3 for the comparison

with the solution provided using a commercial MIP solver (i.e, the ILOG’s CPLEX)

and the metaheuristic-based approach.

B.1 Instances

As defined in Section 3.3.1, let Ω be the set of tasks and K be the set of quay cranes.

Let also B be the number of ship-bays for a specific QCSP’s instance. Let Bi be the

number of the bay of the task i ∈ Ω, with Bi 6 B. The average operation time for a

task has been randomly generated from a uniform distribution of U{1, 190}. Also,

attributes of tasks were chosen randomly. The attributes are: bay number (Bi),

loading (L) or unloading (U), deck task (D) or hold task (H) , average processing

time (P) and spacing among task’s bay and the first bay (S). Thus, we report the

parameter for the ith task as Ti(Bi, L or U, D or H, P, S).

We consider a distance of d̄=25m between the center of adjacent couple of bays.

An exception is considered for instance 13, that has been designed around a real

vessel: in this case, an additional distance of 12.5m is placed between bays 2–3 and

6–7. We assumed that the average travel time of each quay crane is s̄=45m/min.

Therefore, the time tij required to cover the distance between two task i, j ∈ Ω is

155

156

computed as follows:

tij =
d̄

s̄
· |Bi − Bj |

The set Φ of precedence relationship among tasks in the same bay and the

set Ψ of non-simultaneity among tasks from adjacent bays are considered after the

deployment of the tasks within the ship’s bays. Obviously, is known that Φ ⊆ Ψ, but

the structure of the mathematical models proposed in Section 3.3 and the procedure

used for the evaluation of the makespan (see Section 3.4.1), let us to compute the

set of non-simultaneity constraints as Ψ = Ψ\Φ.

Instance 1

• |Ω| = 10.

• |K| = 2.

• B = 10.

• T1 (B1, L, D, 82, 0), T2 (B2, U, D, 158, 25), T3 (B2, U, H, 62, 25), T4 (B4,

U, H, 27, 75), T5 (B5, L, D, 154, 100), T6 (B6, U, D, 11, 125), T7 (B7, L, D,

121, 150), T8 (B7, L, H, 53, 150), T9 (B9, L, H, 150, 200), T10 (B10, U, H, 12,

225).

• Φ = {(3, 2), (9, 8)}.

• Ψ = {(1, 2), (1, 3), (5, 6), (7, 8), (9, 10)}.

Instance 2

• |Ω| = 10.

• |K| = 2.

• B = 10.

• T1 (B1, U, H, 26, 0), T2 (B3, U, D, 87, 50), T3 (B4, U, D, 47, 75), T4 (B4, L,

D, 48, 75), T5 (B4, L, H, 34, 75), T6 (B5, U, H, 67, 100), T7 (B5, L, H, 89,

100), T8 (B5, L, D, 70, 100), T9 (B7, U, D, 120, 150), T10 (B9, U, D, 98, 200).

157

• Φ = {(3,5), (5,4), (7,8), (8,6)}.

• Ψ = {(2,3), (2,4), (2,5), (3,6), (3,7), (3,8), (4,6), (4,7), (4,8), (5,6), (5,7),

(5,8)}.

Instance 3

• |Ω| = 10.

• |K| = 2.

• B = 10.

• T1 (B1, U, D, 77, 0), T2 (B1, L, H ,46, 0), T3 (B2, L, D, 56, 25), T4 (B4, L,

H, 78, 75), T5 (B5, U, H, 159, 100), T6 (B5, L, D, 168, 100), T7 (B6, U, H, 90,

125), T8 (B8, U, D, 39, 175), T9 (B8, L, H, 5, 175), T10 (B10, L, H, 69, 225).

• Φ = {(1,2), (6,5), (8,9)}.

• Ψ = {(1,3), (2,3), (4,5), (4,6), (5,7), (6,7)}.

Instance 4

• |Ω| = 15.

• |K| = 2.

• B = 10.

• T1 (B2, U, D, 23, 25), T2 (B2, L, D, 89, 25), T3 (B2, U, H, 38, 25), T4 (B2, L,

D, 103, 25), T5 (B3, U, H, 11, 50), T6 (B4, L, D, 90, 75), T7 (B4, U, H 103,

75), T8 (B5, U, H, 67, 100), T9 (B6, L, D, 137, 125), T10 (B7, U, D, 56, 150),

T11 (B7, U, H, 178, 150), T12 (B9, U, D, 45, 200), T13 (B10, U, D, 90, 225),

T14 (B10, U, H 45, 225), T15 (B10, L, H, 120, 225).

• Φ = {(1,3), (3,4), (4,2), (7,6), (10,11), (13,14), (14,15)}.

• Ψ = {(1,5), (2,5), (3,5), (4,5), (5,6), (5,7), (6,8), (7,8), (8,9), (9,10), (9,11),

(12,13), (12,14), (12,15)}.

158

Instance 5

• |Ω| = 15.

• |K| = 2.

• B = 10.

• T1 (B1, U, H, 45, 0), T2 (B2, L, D, 67, 25), T3 (B2, U, H, 120, 25), T4 (B3,

U, D, 50, 50), T5 (B3, L, H, 45, 50), T6 (B4, U, D 45, 75), T7 (B4, U, H, 120,

75), T8 (B5, L, H, 90, 100), T9 (B6, L, H, 120, 125), T10 (B7, L, D, 30, 150),

T11 (B7, L, H, 180, 150), T12 (B8, U, D, 34, 175), T13 (B8, U, H, 67, 175),

T14 (B9, U, H, 99, 200), T15 (B10, U, H, 5, 225).

• Φ = {(3,2), (4,5), (6,7), (11,10), (12,13)}.

• Ψ = {(1,2), (1,3), (2,4), (2,5), (3,4), (3,5), (4,6), (4,7), (5,6), (5,7), (6,8),

(7,8), (8,9), (9,10), (9,11), (10,12), (10,13), (11,12), (11,13), (12,13), (13,14),

(14,15)}.

Instance 6

• |Ω| = 15.

• |K| = 2.

• B = 10.

• T1 (B1, L, D, 25, 0), T2 (B1, U, H, 34, 0), T3 (B2, U, D, 90, 25), T4 (B2, U,

H, 171, 25), T5 (B3, U, H, 56, 50), T6 (B3, L, H, 43, 50), T7 (B4, L, D, 90,

75), T8 (B4, U, H, 146, 75), T9 (B6, L, H, 33, 125), T10 (B7, L, D, 180, 150),

T11 (B8, L, D, 45, 175), T12 (B8, U, H, 70, 175), T13 (B8, U, D, 56, 175),

T14 (B10, L, D, 78, 225), T15 (B10, U, H, 56, 225).

• Φ = {(2,1), (3,4), (5,6), (8,7), (12,13), (13,11), (15,14)}.

• Ψ = {(1,3), (1,4), (2,3), (2,4), (3,5), (3,6), (4,5), (4,6), (5,7), (5,8), (6,7), (6,8),

(9,10), (10,11), 10,12), (10,13)}.

159

Instance 7

• |Ω| = 20.

• |K| = 3.

• B = 20.

• T1 (B1, U, D, 23, 0), T2 (B2, U, D, 145, 25), T3 (B2, L, H, 34, 25), T4 (B3,

U, D, 22, 50), T5 (B4, U, D, 32, 75), T6 (B4, L, H, 167, 75), T7 (B7, L, D,

121, 150), T8 (B7, L, H, 53, 150), T9 (B9, L, H, 120, 200), T10 (B10, U, H, 89,

225), T11 (B11, U, D, 76, 250), T12 (B12, L, D, 134, 275), T13 (B12, L, H, 89,

275), T14 (B14, L, D, 45, 325), T15 (B14, U, H, 5, 325), T16 (B14, L, H, 111,

325), T17 (B15, U, H, 67, 350), T18 (B16, U, D, 87, 375), T19 (B17, U, D, 92,

400), T20 (B17, U, H, 28, 400).

• Φ = {(2,3), (5,6), (8,7), (13,12), (15,16), (16,14), (19,20)}.

• Ψ = {(1,2), (1,3), (2,4), (3,4), (4,5), (4,6), (9,10), (10,11), (11,12), (11,13),

(14,17), (15,17), (16,17), (17,18), (18,19), (18,20)}.

Instance 8

• |Ω| = 20.

• |K| = 3.

• B = 20.

• T1 (B1, L, H, 11, 0), T2 (B4, L, D, 78, 75), T3 (B4, U, H, 87, 75), T4 (B4, L,

H, 45, 75), T5 (B5, U, H, 135, 100), T6 (B7, L, D, 145, 150), T7 (B9, L, H, 56,

200), T8 (B10, U, D, 90, 225), T9 (B10, L, D, 45, 225), T10 (B10, U, H, 65,

225), T11 (B10, L, H, 101, 225), T12 (B13, U, D, 145, 300), T13 (B14, L, H,

99, 325), T14 (B16, U, H, 76, 375), T15 (B16, L, H, 47, 375), T16 (B17, L, D,

89, 400), T17 (B19, U, D, 99, 450), T18 (B19, U, H, 123, 450), T19 (B19, L, H,

145, 450), T20 (B20, U, H, 178, 475).

• Φ = {(3,4), (4,2), (8,10), (10,11), (11,9), (14,15), (17,18), (18,19)}.

160

• Ψ = {(2,5), (3,5), (4,5), (7,8), (7,9), (7,10), (7,11), (13,14), (14,16), (15,16),

(17,20), (18,20), (19,20)}.

Instance 9

• |Ω| = 20.

• |K| = 3.

• B = 20.

• T1 (B1, U, D, 65, 0), T2 (B1, L, D, 45, 0), T3 (B1, L, H, 10, 0), T4 (B3, U, H,

68, 50), T5 (B5, L, H, 78, 100), T6 (B6, U, H, 90, 125), T7 (B6, L, H, 67, 125),

T8 (B9, U, H, 174, 200), T9 (B10, L, D, 167, 225), T10 (B10, U, H, 145, 225),

T11 (B13, L, D, 77, 300), T12 (B13, U, H, 87, 300), T13 (B13, L, H, 145, 300),

T14 (B14, U, D, 34, 325), T15 (B16, U, H, 170, 375), T16 (B16, L, H, 7, 375),

T17 (B18, L, H, 156, 425), T18 (B19, U, D, 78, 450), T19 (B19, U, H, 99, 450),

T20 (B19, L, H, 135, 450).

• Φ = {(1,3), (3,2), (6,7), (10,9), (12,13), (13,11), (16,15), (18,19), (19,20)}.

• Ψ = {(5,6), (5,7), (8,9), (8,10), (11,4), (12,14), (13,14), (17,18), (17,19),

(17,20)}.

Instance 10

• |Ω| = 25.

• |K| = 3.

• B = 20.

• T1 (B1, L, D, 10, 0), T2 (B2, U, H, 89, 25), T3 (B3, L, D, 78, 50), T4 (B3, U,

H, 14, 50), T5 (B3, L, H, 67, 50), T6 (B5, L, D, 87, 100), T7 (B5, L, H, 78,

100), T8 (B7, U, D, 66, 150), T9 (B7, L, H, 145, 150), T10 (B9, L, D, 67, 200),

T11 (B9, U, H, 45, 200), T12 (B9, L, H, 98, 200), T13 (B10, U, D, 123, 225),

T14 (B11, U, D, 139, 250), T15 (B12, L, H, 22, 275), T16 (B13, U, H, 13, 300),

161

T17 (B14, L, D, 22, 325), T18 (B14, U, H, 89, 325), T19 (B15, L, H, 17, 350),

T20 (B16, L, D, 176, 375), T21 (B17, U, H, 56, 400), T22 (B19, U, D, 45, 450),

T23 (B19, U, H, 56, 450), T24 (B19, L, H, 143, 450), T25 (B20, U, H, 78, 475).

• Φ = {(4,5), (5,3), (7,6), (8,9), (11,12), (12,10), (18,17), (22,23), (23,24)}.

• Ψ = {(2,3), (2,4), (2,5), (10,13), (11,13), (12,13), (13,14), (14,15), (15,16),

(16,17), (16,18), (17,19), (18,19), (19,20), (20,21), (22,25), (23,25), (24,25)}.

Instance 11

• |Ω| = 25.

• |K| = 3.

• B = 20.

• T1 (B2, L, D, 67, 25), T2 (B2, U , H, 120, 25), T3 (B3, L, D, 45, 50), T4 (B3,

L, H, 98, 50), T5 (B4, U, D, 56, 75), T6 (B5, U, H, 120, 100), T7 (B5, L, H,

88, 100), T8 (B7, U, D, 87, 150), T9 (B7, L, H, 123, 150), T10 (B9, L, D, 56,

200), T11 (B9, U, H, 87, 200), T12 (B9, L, H, 120, 200), T13 (B10, U, D, 125,

225), T14 (B11, U, D, 167, 250), T15 (B12, L, H, 7, 275), T16 (B13, U, H, 45,

300), T17 (B14, L, D, 3, 325), T18 (B14, U, H, 34, 325), T19 (B15, L, H, 25,

350), T20 (B16, L, D, 140, 375), T21 (B17, U, H, 98, 400), T22 (B19, U, D,

39, 450), T23 (B19, U, H, 120, 450), T24 (B19, L, H, 69, 450), T25 (B20, U, H,

156, 475).

• Φ = {(2,1), (3,4), (6,7), (8,9), (11,12), (12,10), (18,17), (22,23), (23,24)}

• Ψ = {(1,3), (1,4), (2,3), (2,4), (2,4), (3,5), (4,5), (5,6), (5,7), (10,13), (11,13),

(12,13), (13,14), (14,15), (15,16), (16,17), (16,18), (17,19), (18,19), (19,20),

(20,21), (22,25), (23,25), (24,25)}

Instance 12

• |Ω| = 25.

162

• |K| = 3.

• B = 20.

• T1 (B1, U, H, 4, 0), T2 (B2, U, D, 55, 25), T3 (B3, L, D, 33, 50), T4 (B4, U,

D, 34, 75), T5 (B4, U, H, 67, 75), T6 (B4, L, H, 4, 75), T7 (B5, U, H, 99, 100),

T8 (B5, L, H, 134, 100), T9 (B7, L, D, 59, 150), T10 (B7, L, H, 111, 150),

T11 (B9, U, H, 50, 200), T12 (B9, L, H, 101, 200), T13 (B10, L, H, 123, 225),

T14 (B11, U, D, 198, 250), T15 (B12, U, H, 23, 275), T16 (B12, L, H, 27, 275),

T17 (B14, L, D, 79, 325), T18 (B14, U, H, 156, 325), T19 (B15, L, H, 59, 350),

T20 (B16, L, D, 126, 375), T21 (B16, U, H, 146, 375), T22 (B18, U, D, 78,

425), T23 (B18, U, H, 175, 425), T24 (B19, U, D, 19, 450), T25 (B19, L, D, 29,

450).

• Φ = {(4,5), (5,6), (7,8), (10,9), (11,12), (15,16), (18,17), (20,21), (22,23),

(24,25)}.

• Ψ = {(1,2), (2,3), (3,4), (3,5), (3,6), (4,7), (4,8), (5,7), (5,8), (6,7), (6,8),

(11,13), (12,13), (13,14), (14,15), (14,16), (17,19), (18,19), (19,20), (19,21),

(22,24), (22,25), (23,24), (23,25)}.

Instance 13

• |Ω| = 24.

• |K| = 3.

• B = 8.

• T1 (B1, U, D, 45, 0), T2 (B1, L, D, 33, 0), T3 (B1, U, H, 52, 0), T4 (B1, L,

H, 24, 0), T5 (B2, U, D, 53, 25), T6 (B2, L, D, 6, 25), T7 (B2, U, H, 51,

25), T8 (B2, L, H, 38, 25), T9 (B3, U, D, 35, 62.5), T10 (B3, L, D, 12, 62.5),

T11 (B4, U, D, 38, 87.5), T12 (B4, L, D, 11, 87.5), T13 (B4, U, H, 72, 87.5),

T14 (B4, L, H, 40, 87.5), T15 (B5, U, D, 43, 112.5), T16 (B5, L, D, 11, 112.5),

T17 (B5, U, H, 44, 112.5), T18 (B5, L, H, 64, 112.5), T19 (B6, U, D, 1, 137.5),

T20 (B7, U, D, 87, 175), T21 (B7, L, D, 10, 175), T22 (B7, U, H, 38, 175),

T23 (B7, L, H, 34, 175), T24 (B8, U, D, 82, 200).

163

• Φ = {(1,3), (3,4), (4,2), (5,7), (7,8), (8,6), (9,10), (11,13), (13,14), (14,12),

(15,17), (17,18), (18,16), (20,22), (22, 23), (23,21)}.

• Ψ = {(1,5), (1,7), (3,5), (3,7), (2,5), (2,7), (4,5), (4,7), (1,6), (1,8), (3,6), (3,8),

(2,6), (2,8), (4,6), (4,8), (9,11), (9,13), (10,11), (10,13), (9,12), (9,14), (10,12),

(10,14), (11,15), (11,17), (11,16), (11,18), (13,15), (13,17), (13,16), (13,18),

(12,15), (12,17), (12,16), (12,18), (14,15), (14,17), (14,16), (14,18), (15,19),

(17,19), (16,19), (18,19), (20,24), (22,24), (21,24), (23,24)}.

Bibliography

[1] S. Andradóttir, A review of simulation optimization techniques, Proceedings

of the 1998 Winter Simulation Conference (Washington, DC, USA), December

1998, pp. 151–158.

[2] , Accelerating the convergence of random search methods for discrete

stochastic optimization, ACM Transactions on Modeling and Computer Simu-

lation 9 (1999), no. 4, 349–380.

[3] , Simulation optimization with countably infinite feasible regions: Effi-

ciency and convergence, ACM Transactions on Modeling and Computer Simu-

lation 16 (2006), no. 4, 357–374.

[4] J. April, F. Glover, J.P. Kelly, and M. Laguna, Simulation/optimization using

“real-world” applications, Proceedings of the 2001 Winter Simulation Confer-

ence (New Orleans, Lousiana, USA), December 2001, pp. 71–78.

[5] , Practical introduction to simulation optimization, Proceedings of the

2003 Winter Simulation Conference (New Orleans, Louisiana, USA), December

2003, pp. 71–78.

[6] J. Banks, B.L. Carson, J.S. Nelson, and D.M. Nicol, Discrete event systems

simulation, 3rd ed., Prentice Hall, Englewood Cliffs, New Jersey, 2000.

[7] M.R.P. Barretto, L. Chwif, T. Eldabi, and R.J. Paul, Simulation optimization

with the linear move and exchange move optimization algorithm, Proceedings

of the 1999 Winter Simulation Conference (Phoenix, Arizona, USA), December

1999, pp. 806–811.

164

165

[8] J. Boesel, R.O. Bowden, Jr., F. Glover, J.P. Kelly, and E. Westwig, Future of

simulation optimization, Proceedings of the 2001 Winter Simulation Conference

(Arlington, Virginia, USA), December 2001, pp. 1466–1469.

[9] Allen Bradley, Optquest for arena, Rockwell Automation, 2007.

[10] P. Brucker, Scheduling algorithms, 5 ed., Springer, 2007.

[11] P. Canonaco, P. Legato, and R.M. Mazza, An integrated simulation model for

channel contention and berth management at a maritime container terminal,

Proceedings of the 21th European Conference on Modelling and Simulation

(Prague, Czech Republic), June 2007, pp. 353–362.

[12] P. Canonaco, P. Legato, R.M. Mazza, and R. Musmanno, A queuing network

model for the management of berth crane operations, Computers and Operations

Research 35 (2008), 2432–2446.

[13] E. Chen, C.-H. andYücesan, Y. Yuan, H.-C. Chen, and L. Dai, Computing bud-

get allocation for simulation experiments with different system structures, Pro-

ceedings of the 1998 Winter Simulation Conference (Washington, D.C., USA),

December 1998, pp. 753–741.

[14] S.E. Chick, Selecting the best system: A decision theoretic approach, Proceed-

ings of the 1997 Winter Simulation Conference (Atlanta, Georgia, USA), De-

cember 1997, pp. 326–333.

[15] J.-F. Cordeau, M. Gaudioso, G. Laporte, and L. Moccia, The service allocation

problem at the gioia tauro maritime terminal, European Journal of Operational

Research 176 (2007), 1167–1184.

[16] J.-F. Cordeau, G. Laporte, P. Legato, and L. Moccia, Models and tabu search

heuristics for the berth allocation problem, Transportation Science 39 (2005),

no. 4, 526–538.

[17] B. Cota and R. Sargent, Control flow graphs: A method of model representation

for parallel discrete event simulation, CASE Center Technical Report 9026,

Syracuse University, 1990.

166

[18] , A modification of the process interaction world view, ACM Transactions

on Modelling and Computer Simulation 2 (1992), no. 2, 109–129.

[19] C.F. Daganzo, The crane scheduling problem, Transport Research, Part B 23

(1989), no. 3, 159–175.

[20] O. Dahl and K. Nygaard, Simula - an algol-based simulation language, Com-

munications of the ACM 9 (1966), no. 9, 349–395.

[21] E.J. Derrick, O. Balci, and R.E. Nance, A comparison of selected conceptual

frameworks for simulation modelling, Proceedings of the 1989 Winter Simula-

tion Conference (Blacksburg, Virginia, USA), December 1989, pp. 711–718.

[22] D.G. Fritz and R.G. Sargent, An overview of hierarchical control flow graph

models, Proceedings of the 1995 Winter Simulation Conference (Arlington, Vir-

ginia, USA), December 1995, pp. 1347–1355.

[23] M.C. Fu, Encyclopedia of operations research and management science, 2nd

ed., ch. Simulation Optimization, pp. 756–759, Kluwer Academic Publishers,

Boston, 2000.

[24] , Simulation optimization, Proceedings of the 2001 Winter Simulation

Conference (Arlington, Virginia, USA), December 2001, pp. 53–61.

[25] M.C. Fu, S. Andradóttir, J.S. Carson, F. Glover, C.R. Harrell, Y.C. Ho, J.P.

Kelly, and S.M. Robinson, Integrating optimization and simulation: Research

and practice, Proceedings of the 2000 Winter Simulation Conference (Orlando,

Florida, USA), December 2000, pp. 610–616.

[26] M.C. Fu, F.W. Glover, and J. April, Simulation optimization: A review, new

developments, and applications, Proceedings of the 2005 Winter Simulation

Conference (Orlando, Florida, USA), December 2005, pp. 83–95.

[27] G. Ghiani, P. Legato, R. Musmanno, and F. Vocaturo, Optimization via sim-

ulation: Solution concepts, algorithms, parallel computing strategies and com-

mercial software, International Scientific Journal of Computing 3 (2004), no. 3,

7–12.

167

[28] F. Glover, Tabu search – part i, ORSA Journal on Computing 1 (1989), no. 3,

190–206.

[29] , Tabu search – part ii, ORSA Journal on Computing 2 (1990), no. 1,

4–32.

[30] R. Horst and H. Tuy, Global optimization: Deterministic approaches, Springer-

Verlag, 1990.

[31] K. Jensen, Advances in petri nets 1990, Lecture Notes in Computer Science,

vol. 483, ch. Coloured Petri nets: A high level language for system design and

analysis, pp. 342–416, Springer Berlin/Heidelberg, 1991.

[32] K.H. Kim and Y.M. Park, A crane scheduling method for port container termi-

nals, European Journal of Operational Research 156 (2004), 752–768.

[33] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Optimization by simulated an-

nealing, Science, New Series 220 (1983), no. 4598.

[34] A.H. Land and A.G. Doing, An automatic method of solving discrete program-

ming problems, Econometrica 28 (1960), no. 3, 497–520.

[35] A.M. Law and W.D. Kelton, Simulation modelling and analysis, 3rd ed.,

McGraw-Hill, 2000.

[36] A.M. Law and M.G. McComas, Simulation-based optimization, Proceedings of

the 2002 Winter Simulation Conference (San Diego, California, USA), Decem-

ber 2002, pp. 41–44.

[37] P. L’Ecuyer, Scaling, hierarchical modelling, and reuse in an object-orinted mod-

elling and simulation systems, Proceedings of the 1999 Winter Simulation Con-

ference (Phoenix, Arizona, USA), December 1999, pp. 95–105.

[38] , Software for uniform random number generation: distinguishing the

good and the bad, Proceedings of the 2001 Winter Simulation Conference, (Ar-

lington, Virginia, USA), December 2001, pp. 95–105.

168

[39] P. Legato, D. Gull̀ı, and R. Trunfio, Assignment and deployment of quay cranes

at a maritime container terminal, Proceedings of the 11th International Work-

shop on Harbour, Maritime & Multimodal Logistics Modeling & Simulation

(Amantea, Italy), September 2008, pp. 214–220.

[40] , Modeling, simulation and optimization of logistics processes, Proceed-

ings of 20th European Modeling and Simulation Symposium (Simulation in

Industry) (Amantea, Italy), September 2008, pp. 569–578.

[41] , The quay crane deployment problem at a maritime container terminal,

Proceedings of the 22th European Conference on Modelling and Simulation

(Nicosia, Cyprus), June 2008, pp. 53–59.

[42] P. Legato, D. Gull̀ı, R. Trunfio, and R. Simino, Simulation at a maritime con-

tainer terminal: Models and computational frameworks, Proceedings of the

22nd European Conference on Modeling and Simulation (Nicosia, Cyprus),

June 2008, pp. 261–269.

[43] P. Legato and R.M. Mazza, Berth planning and resources optimisation at a con-

tainer terminal via discrete event simulation, European Journal of Operational

Research 133 (2001), 537–547.

[44] P. Legato, R.M. Mazza, and R. Trunfio, Simulation-based optimization for the

quay crane scheduling problem, Proceedings of the 2008 Winter Simulation Con-

ference (Miami, Florida, USA), 2008, pp. 2717–2725.

[45] P. Legato and M.F. Monaco, Human resources management at a marine con-

tainer terminal, European Journal of Operational Research 156 (2004), no. 3,

769–781.

[46] P. Legato and R. Trunfio, An open-source discrete event simulation-based op-

timization package, Proceedings of 19th European Modelling and Simulation

Symposium (Simulation in Industry) (Bergeggi, Italy), October 2007, pp. 125–

132.

169

[47] , A simulation modelling paradigm for the optimal management of logis-

tics in container terminals, Proceedings of the 21th European Conference on

Modelling and Simulation (Prague, Czech Republic), June 2007, pp. 479–488.

[48] P. Legato, R. Trunfio, and F. Mari, The relevancy of moves definition in

the simulation-based optimization of manufacturing systems, Proceedings of

19th European Modelling and Simulation Symposium (Simulation in Industry)

(Bergeggi, Italy), October 2007, pp. 125–132.

[49] A. Lim, B. Rodrigues, and Z. Xu, A m-parallel crane scheduling problem with

a non-crossing constraint, Naval Research Logistics 54 (2007), no. 2, 115–235.

[50] Marsan M.A., G. Balbo, and G. Conte, A class of generalised stochastic petri

nets for the performance evaluation of multiprocessor systems, ACM Transac-

tions on Computer Systems 2 (1984), no. 1, 93–122.

[51] F.J. Matejcik and B.L. Nelson, Two-stage multiple comparisons with the best

for computer simulation, Operations Research 43 (1995), 633–640.

[52] F. Meisel and C. Bierwirth, Integration of berth allocation and crane assignment

to improve the resource utilization at a seaport container terminal, Operations

Research Proceedings 2005, 2006, pp. 105–110.

[53] P.M. Merlin, A study of the recoverability of computing systems, Ph.D. thesis,

Department of Information and Computer Science, University of California,

Irvine, California, USA, 1974.

[54] L. Moccia, J.-F. Cordeau, M. Gaudioso, and G. Laporte, A branch-and-cut

algorithm for the quay crane scheduling problem in a container terminal, Naval

Research Logistics 53 (2006), 45–59.

[55] R.E. Nance, The conical methodology: A framework for simulation model de-

velopment, Proceedings of the Conference on Methodology and Validation (San

Diego, CA, USA), The Society for Computer Simulation, 1987, pp. 38–43.

170

[56] S. Ólafsson, Iterative ranking-and-selection for large-scale optimization, Pro-

ceedings of the 1999 Winter Simulation Conference (Phoenix, Arizona, USA),

December 1999, pp. 479–485.

[57] S. Ólafsson and J. Kim, Towards a framework for black-box simulation opti-

mization, Proceedings of the 2001 Winter Simulation Conference (New Orleans,

Lousiana, USA), December 2001, pp. 300–306.

[58] , Simulation optimization, Proceedings of the 2002 Winter Simulation

Conference (San Diego, California, USA), December 2002, pp. 79–84.

[59] C.M. Overstreet and R.E. Nance, Characterizations and relationships of world

views, Proceedings of the 2004 Winter Simulation Conference (Piscataway, New

Jersey, USA), 2004, pp. 279–287.

[60] Y.-M. Park and K.H. Kim, A quay crane scheduling method considering inter-

ference of yard cranes in container terminals, OR Spectrum 25 (2003), 1–23.

[61] F. Parola and A. Sciomachen, Intermodal container flows in a port system net-

work: analysis of possible growths via simulation models, International Journal

of Production Economics 97 (2005), 75–88.

[62] C.A. Petri, Kommunikation mit automaten, Ph.D. thesis, Schriften des Insti-

tutes ft Instrumentelle Matematik, Bonn, Germany, 1962.

[63] L. Pi, Y. Pan, and L. Shi, Hybrid nested partitions and mathematical program-

ming approach and its applications, IEEE Transactions on Automation Science

and Engineering 5 (2008), no. 4, 573–586.

[64] M. Pidd, Simulation software and model reuse: A polemic, Proceedings of the

2002 Winter Simulation Conference (San Diego, California, USA), December

2002, pp. 722–775.

[65] , Computer simulation in management science, 5th ed., John Wiley &

Sons, 2004.

171

[66] , Simulation worldview – so what?, Proceedings of the 2004 Winter Sim-

ulation Conference (Blacksburg, Virginia, USA), December 2004, pp. 288–292.

[67] M. Pidd and R.B. Castro, Hierarchical modular modelling in discrete simula-

tion, Proceedings of the 1998 Winter Simulation Conference (Washington, D.C.,

USA), December 1998, pp. 383–389.

[68] M.L. Pinedo, Scheduling: Theory, algorithms and systems, Prentice Hall, 1995.

[69] , Planning and scheduling in manufacturing and services, Springer Series

in Operations Research, Springer, 2006.

[70] A.A. Prudius, Adaptive random search methods for simulation optimization,

Ph.D. thesis, H. Milton Stewart School of Industrial and Systems Engineering,

Georgia Institute of Technology, Atlanta, Georgia, USA, 2007.

[71] A.A. Prudius and S. Andradóttir, Simulation optimization using balanced ex-

plorative and exploitative search, Proceedings of the 2004 Winter Simulation

Conference (Piscataway, New Jersey, USA), December 2004, pp. 545–549.

[72] Y. Rinott, On two-stage selection procedures and related probability inequalities,

Communications in Statistics – Theory and Methods A7 (1978), 799–811.

[73] P. Rogers, Optimum-seeking simulation in the design and control of manufac-

turing systems: experience with optquest for arena, Proceedings of the 2002

Winter Simulation Conference (San Diego, California, USA), December 2002,

pp. 1142–1150.

[74] S. Ronald, More distance functions for order-based encodings, Proceedings

of the IEEE Conference on Evolutionary Computation, IEEE Press, 1998,

p. 558563.

[75] V. Roso, Emergence and significance of dry ports, Proceedings of the World

Conference on Transport Research (Berkeley, California, USA), June 2007.

[76] M. Sammarra, J.-F. Cordeau, G. Laporte, and M. F. Monaco, A tabu search

heuristic for the quay crane scheduling problem, Journal of Scheduling 10

(2007), 327–336.

172

[77] R. Sargent, Event graph modelling for simulation with an application to flexible

manufacturing systems, Management Science 34 (1988), no. 10, 1231–1251.

[78] , Modelling queuing systems using hierarchical control flow graph models,

Mathematics and Computers in Simulation 44 (1997), no. 3, 233–249.

[79] L.W. Schruben, Simulation modelling with event graphs, Communications of

the ACM 26 (1983), no. 11, 957–963.

[80] L.W. Schruben and T.M. Roeder, Fast simulations of large-scale highly con-

gested systems, Simulation 79 (2003), no. 3, 115–125.

[81] A.F. Seila, Spreadsheet simulation, Proceedings of the 2006 Winter Simulation

Conference (Monterey, California, USA), December 2006, pp. 11–18.

[82] L. Shi, C.-H. Chen, and E. Yücesan, Simultaneous simulation experiments and

nested partition for discrete resource allocation in supply chain management,

Proceedings of the 1999 Winter Simulation Conference (Phoenix, Arizona,

USA), December 1999, pp. 395–401.

[83] L. Shi and S. Ólafsson, Nested partitions method for stochastic optimization,

Methodology and Computing in Applied Probability 2 (2000), no. 3, 271–291.

[84] , Stopping rules for the stochastic nested partitions method, Methodology

and Computing in Applied Probability 2 (2000), no. 1, 37–58.

[85] K. Sörensen, Distance measures based on the edit distance for permutation-type

representations, Journal of Heuristics 13 (2007), no. 1, 35–47.

[86] R. Stahlbock and S. Voß, Operations research at container terminals: a litera-

ture update, OR Spectrum 30 (2008), 1–52.

[87] D. Steenken, S. Voß, and R. Stahlbock, Container terminal operation and oper-

ations research - a classification and literature review, OR Spectrum 26 (2004),

3–49.

173

[88] J.R. Swisher, P.D. Hyden, S.H. Jacobson, and L.W. Schruben, A survey of sim-

ulation optimization techniques and procedures, Proceedings of the 2000 Winter

Simulation Conference (Orlando, Florida, USA), December 2000, pp. 119–128.

[89] UNCTAD, Review of maritime transport, Tech. report, United Nations, New

York and Geneva, 2004.

[90] , Review of maritime transport, Tech. report, United Nations, New York

and Geneva, 2007.

[91] I.F.A. Vis and R. De Koster, Transshipment of containers at a container termi-

nal: an overview, European Journal of Operational Research 147 (2003), no. 1,

1–16.

[92] R.R. Wilcox, A table for rinott’s selection procedure, Journal of Quality Tech-

nology 16 (1984), no. 2, 97–100.

[93] E. Yücesan and L.W. Schruben, Structural and behavioral equivalence of sim-

ulation models, ACM Transactions on Modelling and Computer Simulation 2

(1992), no. 1, 82–103.

[94] W.Y. Yun and Y.S. Choi, A simulation model for container-terminal operation

analysis using an object-oriented approach, International Journal of Production

Economics 59 (1999), 221–230.

[95] B.P. Zeigler, Theory of modeling and simulation, John Wiley and Sons, 1976.

[96] , Multifacetted modelling and discrete event simulation, Academic Press

(1984).

[97] , Object-oriented simulation with hierarchical, modular models: intelli-

gent agents and endomorphic systems, Academic Press (1990).

