
Università della Calabria

FACOLTÀ DI INGEGNERIA

DIPARTIMENTO DI ELETTRONICA, INFORMATICA E SISTEMISTICA

DOTTORATO DI RICERCA IN RICERCA OPERATIVA
MAT/09-XX ciclo

Agent Scheduling in a Multiskill Call Center

Schedulazione di operatori in un call center multi-skill

Ornella Pisacane

Candidata:

Anno Accademico 2007–2008

Administrator
Rectangle

A mia madre

1

Contents

1 Introducing Call Center 1
1.1 Contact and Call Center . 1
1.2 Customer satisfaction and service quality 5

1.2.1 Some waiting time metrics 7
1.3 The importance of the economies of scale in the call center . . . 8
1.4 How is it possible to model a call center? 8

1.4.1 A generic queueing model for a call center 8
1.4.2 A queueing model for a multiskill call center 12

1.5 Why simulation? . 13
1.5.1 Steady State Analysis vs Transient Simulation 13
1.5.2 Simulation-Optimization 14

1.6 Staffing and Scheduling problem 16
1.7 Demand Forecast and Rostering problem 17
1.8 Contact Center Simulation Tools 18
1.9 The general thesis’s organization 18

2 Mathematical models 20
2.1 A general framework . 20
2.2 Staffing and Scheduling mathematical formulation 22

3 Two Step Approach 25
3.1 TS:a general methodology . 25
3.2 The formulation of Bhulai et al. 25
3.3 The weakness of TS . 27

4 Daily scheduling with fixed shift length: some difficulties 31
4.1 Shift constraints . 31
4.2 A lower bound on the number of shifts 33
4.3 A heuristic approach to avoid the overstaffing 34

5 A cutting plane algorithm 38
5.1 Cutting plane method . 38
5.2 How to initialize the algorithm 41
5.3 A heuristic method to obtain subgradient and feasibility check . 42
5.4 An integer problem or a linear one? 44

5.4.1 Rounding module . 44
5.5 Local search . 45
5.6 CP:Some improvements . 46

i

5.6.1 Rounding module: some improvements 46
5.6.2 Local Search Procedure: some improvements 47
5.6.3 Increasing the target service levels 48

6 Randomized search(RS) 50
6.1 Loss-delay (LD) approximation 50
6.2 The first phase . 52
6.3 The second phase . 58

6.3.1 SimAdd procedure . 59
6.3.2 SimRemove procedure . 59

7 Optimization with constraints on the abandonments 61
7.1 Definition for abandonments in a call center 61
7.2 An extension of the cutting plane algorithm for controlling the

abandonment probability . 64
7.2.1 How to find the linear cuts 65

8 New solution approaches 67
8.1 The Max-flow problem . 67
8.2 The scheduling problem as a maximum flow problem 68
8.3 The original approach . 70
8.4 The hybrid approach . 72

9 Computational results 74
9.1 CPnew:the feasibility problem . 75
9.2 CP vs CPnew: some comparisons 82

9.2.1 Computational results . 84
9.3 Some tests on Randomized Search initialization 95

9.3.1 The common scenario and its different versions 96
9.3.2 Results . 96

9.4 Comparisons: CPnew, TS and RS 97
9.4.1 Computational Results . 98

9.5 Adding constraints on abandonment ratios 107
9.5.1 Numerical Results . 108

9.6 Other Comparisons . 115
9.6.1 N-Design and MS2 . 115

10 Conclusions 117

References 119

ii

List of Figures

1.1 Contact Center Architecture . 2
1.2 Multidimensional customer contact 2
1.3 Cost comparisons for different media channels 3
1.4 A typical Call Center . 4
1.5 The monitoring of the perfermance and of the service quality . . 5
1.6 The importance of the customer satisfaction 6
1.7 the three components that drive the quality of a call center . . . 6
1.8 A queue model for a call center 9
1.9 Communicating with a call contact center through an ACD . . . 10
1.10 A flow chart of a call center customer 11
1.11 A general multiskill call center 12
1.12 Simulation model . 15
1.13 Simulation-Optimization model 15

2.1 An example of three different shifts 21

4.1 N-Design example . 32
4.2 staffing solution:Ã(105)vs Ã(267) 35
4.3 staffing solution:Ã(267)vs Ã(285) 36
4.4 shift length flexibility . 36

5.1 Cutting plane scheme . 39
5.2 An example of the max flow network for a single period 41
5.3 A max-flow network example . 43

6.1 Round-robin method scheme . 54
6.2 Complex method scheme . 55
6.3 Remove move . 57
6.4 Computing the set of cost-reducing neighbors of candidate (a−, s−):

Neib(a−,s−) . 58
6.5 Remove move . 60

7.1 Impatience Functions of Regular and Priority Customers 63
7.2 Empirical Relationship Between Abandonment and Delay 63
7.3 The abandonment probability . 66

8.1 the general scheme of the Hybrid Approach 73

9.1 Larger instances: arrival rates . 77
9.2 No increment on the target service level, varying τ 80

iii

9.3 Incrementing the target service level to 0.81, varying τ 80
9.4 Incrementing the target service level to 0.82, varying τ 85
9.5 Small center: arrival rates . 87
9.6 N-Design Example: Boxplots of optimality gap (CP vs CPnew

with target 0.8 . 88
9.7 N-Design Example: Boxplots of optimality gap (CP vs CPnew

with target 0.81 . 88
9.8 Medium-sized center: arrival rates 90
9.9 MS1 Example: Boxplots of optimality gap (CP vs CPnew with

target 0.8 . 91
9.10 MS1 Example: Boxplots of optimality gap (CP vs CPnew with

target 0.81 . 91
9.11 MS2 Example: Boxplots of optimality gap (CP vs CPnew with

target 0.8 . 92
9.12 MS2 Example: Boxplots of optimality gap (CP vs CPnew with

target 0.81 . 92
9.13 Big36 Example: Boxplots of optimality gap (CP vs CPnew) . . . 94
9.14 Big52 Example: Boxplots of optimality gap (CP vs CPnew) . . . 95
9.15 Computational times varying the RS initialization methods . . . 97
9.16 Small center: box-plots of the relative cost distribution 99
9.17 Small center: service levels by period 100
9.18 MS1: boxplots of the relative cost distribution 102
9.19 MS2: boxplots of the relative cost distribution 103
9.20 Service level by period for MS1 and MS2 103
9.21 Big36: boxplots of the relative cost distribution 106
9.22 Abandonment Ratio . 110
9.23 Abandonment Ratio after AWT 110
9.24 Abandonment Ratio before AWT 111
9.25 Abandonment ratios without cuts on the abandonments 111
9.26 Service levels by periods with 1% abandonment ratio 112
9.27 Service levels by periods with 2% abandonment ratio 113
9.28 Service levels by periods with 5% abandonment ratio 113

iv

List of Tables

3.1 call volumes matrix (call type/ period) 29

4.1 Shift types with Ã(285) . 35

6.1 cost matrix (agent type/ shift) 53
6.2 staffing matrix (agent type/ period) 53
6.3 scheduling matrix (agent type/ shift) 53
6.4 UpLoad matrix (agent type/ period) 55
6.5 UpLoad matrix (agent type/ period) 56

9.1 The skill sets for the larger instances 78
9.2 Results without increment of SL and τ = 0.5 79
9.3 Results without increment of SL and τ = 0.6 79
9.4 Results without increment of SL and τ = 0.7 81
9.5 Results with target SL equals to 0.81 and τ = 0.5 81
9.6 Results with target SL equals to 0.81 and τ = 0.6 82
9.7 Results with target SL equals to 0.81 and τ = 0.7 82
9.8 Results with target SL equals to 0.82 and τ = 0.5 83
9.9 Results with target SL equals to 0.82 and τ = 0.6 83
9.10 Results with target SL equals to 0.82 and τ = 0.7 84
9.11 Description of shift types (285 types) 84
9.12 N-Design Example: solution quality with CP and CPnew,varying

the CPU time budget . 89
9.13 Medium-sized center: skill sets 89
9.14 MS1 Example: solution quality with CP and CPnew,varying the

CPU time budget . 89
9.15 MS2 Example: solution quality with CP and CPnew,varying the

CPU time budget . 93
9.16 Big36 Example: solution quality with CP and CPnew,varying the

CPU time budget . 93
9.17 Big52 Example: solution quality with CP and CPnew,varying the

CPU time budget . 95
9.18 RS initialization procedure: cost comparisons (in bold the best

solution for each example) . 97
9.19 N-Design: results obtained with CPnew, TS and RS for different

CPU time budgets . 99
9.20 Small center: scheduling solutions 100
9.21 MS1: results obtained with CPnew,TS and RS for different

CPU time budgets . 101

v

9.22 MS1: scheduling solutions . 102
9.23 MS1: total number of agents of each type in the scheduling so-

lutions . 102
9.24 MS2: results obtained with CPnew, TS and RS varying the

CPU time budget . 104
9.25 MS2: scheduling solutions . 104
9.26 MS2: total number of agents for each type in the scheduling

solutions . 104
9.27 Big36: results obtained with CP −LP and TS for different CPU

time budgets . 105
9.28 Big36: scheduling solutions . 105
9.29 Big52: results obtained with CP −LP and TS for different CPU

time budgets . 106
9.30 Big52: a summary of the best feasible solutions found by CP−LP

and by TS . 107
9.31 N-Design example: results with the abandonments probability

control . 109
9.32 N-Design example: results with the maximum abandonment ra-

tion equal to 2% . 114
9.33 N-Design example: results with the maximum abandonment ra-

tion equal to 5% . 114
9.34 N − design results . 115
9.35 N-Design: scheduling solutions 115
9.36 MS2 results . 116
9.37 MS2: scheduling solutions . 116
9.38 MS2: total number of agents for each type in the scheduling

solutions . 116

vi

Acknowledgements

I thank my father and my mother for their continuous moral support, my princi-
pal source of strength. During my PhD, they have always encouraged me to do
my best with their words and, in particular, with their facts. I shall never forget
their great help during my studies at the Université dé Montréal, allowing me
to overcome some critical moments and to complete this important experience.
They have taught me to use passion and sacrifice for reaching my goals!

My thanks also go to Prof. Pierre L’Ecuyer and Prof. Roberto Musmanno
who have allowed me to increase my knowledge, teaching me more than what I
have summarized in this PhD thesis.

My thanks go to my sister Ilaria and my best friend Adamo who always
support me in all what I do, sharing with me the happy and the sad moments.

Finally, my thanks go to a special Angel that whenever is, she is supporting
me as usually: Grazie Nonna!

vii

Abstract

Il principale scopo del presente lavoro di tesi e’ risolvere il problema di
scheduling del personale di un call center multi-skill.

Un call center a skill multiplo gestisce diversi tipi di chiamate distinte in
base agli skill richiesti per il servizio. Ciascun gruppo di operatori (agenti) e’
distinto in base al numero di tipi diversi di chiamate (alias numero di skill)
in grado di gestire. L’insieme di regole per assegnare le chiamate agli agenti (o
viceversa) e’ indicato con il nome di routing. In un tipico call center, le chiamate
in ingresso arrivano in maniera casuale secondo un qualche sofisticato processo
stocastico. Sono, quindi, anche componenti casuali: la durata delle chiamate, i
tempi di attesa prima di ricevere il servizio, gli abbandoni (utenti abbandonanti
il sistema prima di ricevere il servizio e dopo aver aspettato un certo tempo,
detto di impazienza, anche esso casuale) e, in alcuni contesti operativi, anche il
numero di clienti che riprova ad ottenere il servizio dopo aver abbandonato il
sistema.

In genere, la giornata lavorativa e’ suddivisa in periodi (tipicamente di 15
minuti ciascuno) in maniera tale da definire e prevedere anche pause per gli
agenti e dettagliare l’andamento delle chiamate durante il giorno (specificandone
il tasso di arrivo).Un turno (shift) per un agente e’ una sequenza di periodi
lavorativi (comprese le pause) ed e’ definito attraverso i periodi in cui l’agente e’
in servizio e puo’ rispondere alle chiamate (cioe’ possiede tutti gli skill richiesti).

Il principale obiettivo e’ quello di garantire una data qualita’ di servizio a
minimo costo. La piu’ comune misura di qualita’ del servizio e’ il livello di
servizio, definito come la frazione di chiamate il cui tempo di attesa in coda non
e’ piu’ lungo di una data soglia.

Tipicamente,vengono prese in considerazione diverse misure di livello di
servizio: per un dato periodo del giorno, per una data chiamata, per una cop-
pia (periodo, chiamata), globali (aggregati su tutti i periodi e su tutti i tipi di
chiamate).

Sulla base delle previsioni effettuate sui volumi di chiamate, i manager dei
call center devono decidere (tra le altre cose) quanti agenti di ciascun tipo avere
nel centro in ogni istante della giornata lavorativa; devono costruire turni di
lavoro per gli agenti disponibili;devono, anche, decidere le regole di routing.
Queste decisioni sono prese sotto un elevato livello di incertezza.

I classici problemi relativi alla gestione degli agenti di un call center possono
essere suddivisi in due grandi categorie: problemi di staffing e di scheduling.

Nel primo, si deve stabilire quanti agenti di ciascun tipo assegnare a ciascun
periodo della giornata lavorativa, con l’obiettivo di soddisfare i livelli di servizio
minimizzando il costo della soluzione finale.

Nel secondo, invece, si procede all’individuazione dell’assegnamento a costo
minimo degli agenti ai vari turni al fine di soddisfare sempre i livelli di servizio.

I due problemi non sono separati: dalla soluzione finale di scheduling si puo’
agevolmente risalire alla relativa soluzione di staffing.

Si noti che, in entrambi i casi, l’ammissibilita’ della soluzione deve essere
verificata utilizzando la simulazione, a causa della non linearita’ di alcuni vin-
coli, e, per questo motivo, i due suddetti problemi rientrano nella categoria di
problemi di simulazione-ottimizzazione.

In letteratura, il classico approccio per risolvere il problema di scheduling e’
quello a due stadi: nel primo stadio si risolve un problema di staffing per quanti
sono i periodi individuati; nel secondo si cerca di definire schedule ammissibili
per gli agenti sfruttando le informazioni ricavate nel primo.

In questo lavoro di tesi, supponendo di avere un dettagliato modello sto-
castico delle dinamiche di un call center per un giorno lavorativo, si formula
il problema di scheduling come un modello di ottimizzazione stocastica in cui
l’obiettivo e’ quello di minimizzare il costo totale degli agenti utilizzati, sotto
vincoli non lineari sui livelli di servizio.

In primo luogo, si dimostra come la metodologia a due stadi fornisca soluzioni
che sono, in molti casi, lontane dalle soluzioni ottime.

Quindi, si descrivono due possibili approcci risolutivi, alternativi a quello a
due stadi, per risolvere il suddetto problema di ottimizzazione.

Il primo e’ un approccio di tipo cutting-plane in cui i vincoli non lineari sui
livelli di servizio vengono dapprima rilassati e successivamente stimati, utiliz-
zando la simulazione. Qualora la soluzione, correntemente trovata, non dovesse
soddisfarli, vengono trovati dei tagli (cioe’ vincoli lineari che eliminano dalla
regione ammissibile la soluzione corrente senza eliminare nessun altra soluzione
ammissibile) da aggiungere alla formulazione, utilizzando, ancora una volta, la
simulazione. La procedura termina quando la soluzione finale risulta ammissi-
bile per una simulazione con una fissata lunghezza. Quindi, l’approccio prevede
l’applicazione di un algoritmo di ricerca locale sulla migliore soluzione trovata.
Questo approccio euristico cerca, muovendosi nell’intorno della soluzione cor-
rente, di migliorarne la qualita’ (decrementandone il costo totale).

Il secondo approccio, invece, prevede la definizione e l’implementazione di
una procedura di ricerca casuale. E’ mostrato come l’implementazione della
suddetta metodologia non riesce ad ottenere soluzioni di buona qualita’ (quindi
basse in costo) soprattutto all’aumentare dello spazio di ricerca e quindi della
complessita’ della specifica istanza risolta.

Utilizzando alcuni esempi, tratti dalla letteratura e da framework opera-
tivi reali, e’ mostrato come la procedura di cutting plane fornisca la migliore
soluzione di scheduling rispetto alle altre metodologie risolutive sopra descritte
(approccio a due stadi e ricerca casuale).

Una sezione specifica viene dedicata all’estenzione della metodologia di cut-
ting plane, introducendo anche il controllo sulla probabilita’ di abbandono dei
clienti. Alcuni risultati vengono, quindi, analizzati e presentati.

Infine, due approcci risolutivi, ancora oggetto di studio, vengono proposti
come possibili alternative all’algoritmo di cutting plane.

ii

Abstract

The aim of this thesis is to develop a methodology for solving the agents
scheduling problem for a multi-skill call center.

A multi-skill call center manages different call types distinguished on the base
of their specific requirements. Each group of employees (also called agents) is
distinguished by the number of different call types (i.e. number of skills) can be
handled. The set of rules for assigning the calls to the agents (or viceversa) is
named routing. In a typical call center, the inbound calls arrive in a random way
accordingly to a sophisticated stochastic process. There are also other random
components: the calls duration,the waiting times in queue before the service,
the abandonments (i.e. users abandoning the system before the service and
after waiting a specific random patience time) and, in some operative contests,
also the number of customers trying again for the service after abandoning the
system.

In general, the working day is divided into periods (each of about 15 minutes
long) for defining agents pauses and detailing the calls trend during the day
(specifying the arrival rate). Moreover a shift for an agent is a sequence of
working periods (including pauses) and it is defined by the periods in which
the agent is available and can handle the calls (i.e. he/she has all the required
skills).

The main goal is to guarantee the service quality at minimum cost. The most
common service quality measure is the service level, defined as the fraction of the
calls whose waiting time in queue is not longer than a fixed threshold. Usually,
different measures of service quality are considered: for a given period, for a
given call type, for a couple (call type, period) or/and global (i.e. aggregated
over all periods and call types).

Considering the forecasts of the calls volumes, the call center managers have
to decide (among the other things) how many agents of each type have to be
present in the center in each instant of the working day; they have to define the
agents shifts; they have, also, to decide about the routing rules. These are all
decisions taken under an high level of uncertainty.

The classical problems, related to the managing of the agents, could be
divided into two categories: staffing and scheduling problems. In the first case,
one has to establish how many agents of each type have to be assigned to each
period of the working day in order to satisfy the service levels at minimum cost.
In the second case, instead, one has to find the assignment, at minimum cost,
of the agents to the different shifts in order to satisfy the service levels. The
two problems are not independent from each other: from the final scheduling
solution, it is possible to find the staffing one.

Note that, in both cases, the solution feasibility has to be checked using
simulation due to the presence of nonlinear constraints (on the service levels,
for example). For this last aspect, these two problems belong to the class of
simulation optimization problems.

In literature, the classical approach for solving the scheduling problem is a
two step one: in the first step a staffing problem is solved for each period; in
the second one, instead, feasible schedules for the agents are found considering
the staffing information.

In this thesis, supposing to have a detailed stochastic model of a call center
dynamics for a working day, the scheduling problem is formulated as a stochastic
optimization model with the goal of minimizing the total agents cost, under
nonlinear service levels and/or abandonment constraints.

Firstly, it is shown that the two step methodology gives sub-optimal so-
lutions. Secondly, two solving approaches are described for solving the same
model. The first one is a cutting plane approach in which the nonlinear service
levels and/or abandonments constraints are relaxed and then estimated by sim-
ulation. If the solution is not feasible for all of them, then some linear cuts (i.e.
linear constraints that remove from the feasible region the current solution but
any other feasible one) are added to the formulation. Simulation is again used
for finding these cuts. The cuts generation process ends when the final solution
is feasible for a simulation with a fixed length. Then the method applies a local
search module on the best solution. This heuristic approach tries, exploring
the neighborhood of the current solution, to improve its quality (decreasing the
total cost). The second approach, instead, defines and implements a random
search. It is shown that the implementation of this specific procedure is not able
to find good solutions in particular when the search space becomes too large.

Using examples, some taken from literature and some inspired by real life,
it is shown how the cutting plane approach gives the best solutions in regard to
the others.

A specific section is dedicated to extend this methodology for considering
also the control on the abandonments. Some results are presented and analyzed.

Finally, as future work, other two possible solving approaches are proposed.

ii

Chapter 1

Introducing Call Center

Firstly, a brief introduction to the call/contact center world is proposed. Sec-
ondly, it is shown how the customer satisfaction can be evaluated. Then, in the
remain sub-sections, it is shown how a call center, single-skill and multi-skill,
can be modelled using the queue theory and so it is also defined what types of
problems the managers should deal with. Two of them are described with more
details: the staffing problem and the scheduling one.

Finally, the general thesis organization is shown.

1.1 Contact and Call Center

Nowadays each organization has a contact center through which the customers
or users can contact the organization and vice-versa, by telephone, FAX, email,
Internet chat, Web and so on (figure 1.1).

For example, in figure 1.2 ((Sharp 2003)) some possible ways, that a customer
can use to call a contact center, are shown. Customers, usually, can choose the
communication channel. There could be some companies that want to use the
old communication systems, but they will gradually be replaced because they
will no longer be competitive. The Internet spread has allowed to transform the
typical call center in a more general contact center. Call centers are automated
service delivery points, full of customer data and products, dedicated to one
major objective: providing customers with whatever services or products they
require. How does Internet fit into the call center model? It is just one more
communication channel for the customer, a channel that call centers need to
manage at least as well as traditional communication channels.

In figure 1.3((Sharp 2003)), it is shown that each communication channel
has a specific cost. More specifically the figure shows as these costs, related
to the use of a communication system to handle a call, vary with the used
channel. The contact center becomes call center if the communication is only
made by telephone. The call center industry is developing a lot. Recent studies
show that about 3% of workforce in the United States and Canada works at a
call center. Just to have a brief idea about, some of television advertising end
with a message that suggests you to call to a call center in order to have more
information about the product/service, for example. There are other typical
examples of using a call center : to have a pizza delivery service, to rent an

1

CUSTOMER

EMAIL Wap-UMTS PHONE WEB MAIL COUNTER

CALL CENTER
AGENT

Figure 1.1: Contact Center Architecture

Figure 1.2: Multidimensional customer contact

2

Figure 1.3: Cost comparisons for different media channels

hotel, to have a service on mobile phone and so on.
Then it is not a surprise if most of the operating cost of a call center (around

3/4) is due to the labor costs. For this reason, in general, it is important to
schedule in an optimal way the call center employees (also called agents), min-
imizing the costs due to their salaries and satisfying some constraints (usually
imposed on the service levels and/or on the abandon probability of the cus-
tomers). By 2008, various studies predict that: the United States will have
over 47, 000 call centers and 2.7 million agents; Europe, Middle Est and Africa
together will have 45, 000 call centers and 2.1 million agents; finally Canada and
Latin America will have 305, 500 call centers and 730, 000 agents (Akşin et al.
(2007)).

Koole and Pot (2006) affirm that the larger call centers employ about from
500 to 2000 agents, there are ten thousands of call centers across the globe, and
between 1,500,000 and 2,000,000 agents. It is expected that India, for example,
will build up an industry that is worth 17 billion by 2008. In this country, in
fact, 100,000 of agents who can work in call centers, graduate each year.

In Mehrotra (1997), a call center is defined as a group of people whose main
economic activity is the communication towards the clients or potential ones.
The main components that build a call centers are a set of phone lines, of
routers, of employees (or agents) and computers (figure 1.4((Sharp 2003))).

In particular, all turns around the calls that can be inbound (customers
towards call center) or outbound (call center towards customers). The latter is
done, usually, like an advertising for a new product or a new promotion of the
company. If a call center handles both types then it is mixed. In any case, all the
calls can be classified in regard to their type (inbound or outbound for example),
the required service and their origin. This last aspect is important because the

3

Figure 1.4: A typical Call Center

place from which a call comes specifies also the language to be used during the
conversation. This means that, for example, for all the bilingual countries, a
skill required for the call center agents could be related to the spoken languages.

An outbound call can be done or directly from an agent who selects a tele-
phone number from an ordered list made in advance or from an automatic dialer
(called automatic dialling unit) that keeps the phone numbers accordingly to
some rules. In the latter case, if there is a successful connection, then the au-
tomatic dialing unit forwards the call to the first free agent that can handle
it. When all the agents are busy, then either the call is put in queue or it is
suppressed.

The inbound calls, instead, arrive to the call center for different reasons and
they try to access to the phone lines. If all the phone lines are busy (e.i. there
is not a free employee with the correct skills), then it is put in queue and the
customer receives a signal that alarms him/her. It is important to note that if
the waiting time for a customer is too long, then he/she will decide to close the
communication (e.i. abandon). Who has to handle these calls is the employee
or agent that belong to the Customer Service Representatives (CSRs). Also
about them, it is possible to have a classification into different groups in regard
to the capabilities. For example if the calls can only arrive to the call center
from France and England, then a generical agent could be able to speak only in
French, or only in English or both (in French and in English). In the first and in
the second case, the agent is a specialist, instead in the third case a generalist.
If in a call center only one skill is required to the agents, then it is called single
skill call center, otherwise it is multiskill.

4

1.2 Customer satisfaction and service quality

The customer satisfaction is an efficient instrument to measure the level of
the services to the customers, also to verify the performance guaranteed by an
external service, in the case in which a service is given from a third entity.
The elaboration of the data coming from the customers revelations could be an
input to improve and to innovate the services. A bad service could generate
two possible cases: it is not noticed or it is not managed by the operator (the
customer is not satisfied); the operator notices the bad service and manages it
(the customer is satisfied)(figure 1.5).

CRITICAL FACTORS:
RELATION;
AVAILABILITY

CUSTOMER :
A SERVICE REQUIREMENT

OPERATOR (FRONT-OFFICE)

CRITICAL FACTORS:
OUTPUT QUALITY;
TIMES

OPERATOR (FRONT-OFFICE):
PROBLEM SOLVEDCRITICAL FACTORS:

RELATION;
AVAILABILITY

CUSTOMER SATISFIED

Figure 1.5: The monitoring of the perfermance and of the service quality

The entire call center organization is built around the customer requirements
(figure 1.6). The service quality of a call center (how the agents work or equiv-
alently how much the customer satisfaction is) can be measured through the
so called service level (defined later). It is evident that this measure depends
strongly on the objective of the call center. For a call center that has to handle
emergency calls then it is important the number of busy phone lines because it
is supposed that all the customers have to be served in a reasonable time.

Usually the managers have to balance three important components that
drive the quality of the call centers and are shown in figure 1.7: costs, employee
satisfaction and service quality. It is clear enough that employee satisfaction
and service quality, in particular, are linked to each other. In fact an employee
that is satisfied guarantees a good service and it means that the customers are
satisfied too.

Another important performance measure, for a call center, is represented
by the number of abandons and/or retrials. These are two subjective measures
because the customers’s point of view is incorporated. Then the customer’s
patience could be computed and evaluated in terms of the ratio between the
number of abandonments and the total number of arrivals (Bassamboo et al.
(2004)).

5

Structure
or
Company

Structure
or
Company

CUSTOMER

cooperation cooperation

services
requirements

actions and value

Figure 1.6: The importance of the customer satisfaction

Figure 1.7: the three components that drive the quality of a call center

6

In particular, one can also define service level as the average waiting time of
all served calls that is the sum of waiting times divided by the number of served
calls.

Moreover, the service level is the average number of calls served within a
time limit called AWT (Acceptable Waiting Time). For example 80%, such as
they want that at least 80% of the calls are served within 20 seconds.

These two definitions are used in the case in which there are no abandon-
ments. In case of abandonments, instead, one has to define, for example, the
service level as the ratio of calls served within AWT and the number of served
calls plus the ones that abandon after waiting a time less than AWT. Of course
it is one of several possible definitions; some call centers use slightly different
definitions, depending on what they do with abandonments.

It is also possible to consider a limit for the total number of abandons. For
example,call center managers could require that the total number of abandons
is at most equal to a fixed threshold. In real cases, this threshold is between 5%
and 20% of total calls.

1.2.1 Some waiting time metrics

Two of the most important waiting time metrics used in the call center envi-
ronment are: TSF and ASA.

Definition 1.1. The telephone service factor (TSF) is defined as the percentage
of calls that is answered in less than a certain fixed waiting time.

Definition 1.2. ASA is defined as the average speed answer.

The TSF is commonly used as service level metric in call centers, but it is
very important to pay attention to its interpretation. For example, 80/20 TSF
means that the calls have to be served within 20 seconds (from their arrival) to
have a good service quality. An 80/20 TSF means that 80% of the calls receive
good service, and 20% bad.

For the unsatisfied call the service level becomes relevant when he-she tries
to call again. If the TSF at that moment is again 80/20, then the probability
of another bad experience is 0.2, or 20%.

Considering, for example, 2 types of calls for which an 80/20 SL is targeted.
Now what happens if 70/20 is obtained on one and 90/20 on the other? More-
over, what if there is the choice, with the same means, between 70/20 and 90/20
or 75/20 and 80/20? The former has a better average SL (assuming an equal
load), the latter shows less variance. The answer depends again on how the
different call (customer) types are valuated and the nature of the service.

Formula 1.1. TSF= 1− C(λ, µ, N)e−(N−ρ)AWT/µ

where:

• ρ represents the load (see Chapter 2 for a more detailed definition);

• C(λ, µ, N) (probability of delay) is the probability that an arbitrary call
type finds all agents busy (see the next paragraph).

A particular case for this formula occurs when the number of agents N is
lower than the load ρ and TSF becomes equal to 0.

As a direct consequence of this formula:

7

Formula 1.2. ASA =
(C(λ,µ,N) 1

µ)

N−ρ .

1.3 The importance of the economies of scale in
the call center

The number of calls, that usually arrive in a call center considering a fixed
time unit, is unpredictable. In a small call center the deviation between the real
number of arrivals and the estimated one can increase in a considerable way due
to the fact that in general this number is small. In fact one can mathematically
express this dependency through a simple formula: assuming that X is the
number of calls arriving in a time unit (0,t) and that the arrival process follows
a Poisson process whose rate is λ, then the variation coefficient is υX = 1√

λ
, i.e.

the standard deviation divided by expectation. So it is evident that if the rate
λ is small (in a small call center), the coefficient υ is large; if, on the contrary,
this rate λ is large (large call center) the variation υ is small. This is a very
important aspect that implies a simple consideration: in a large call center one
is able to predict in a more detailed way the workload in a fixed period due
to the fact that the randomness source is very little. Of course, this does not
happen in a small call center where the workload forecast becomes hard.

In a single skill large call center environment,the staffing requirements can
be approximately equal to the workload prediction.

But in a multi-skill call center, when the size becomes larger, to have agents
specialize in specific tasks can be beneficial because, limiting the number of
different tasks of an agent decreases the handling time of a job and shorter
service times increase the productivity.

In a medium size call center, instead, to have only specialists or only gener-
alists is inefficient. In this last case, it is very crucial to balance the number of
specialists with the number of generalists with the main goal to meet the service
levels as possible.

It is clear that a good policy helps.

1.4 How is it possible to model a call center?

In this section, a single-skill and a multiskill call center are modelled using
the queue theory. The attention will be also focused on the realistic case with
abandonments.

1.4.1 A generic queueing model for a call center

Queueing theory was introduced by A.K. Erlang at the beginning of the 20th
century and has become one of the most important research themes of Opera-
tions Research. In a generic queueing scheme, one has: clients (or customers)
, servers and queues. In order to model a call center as a queueing system,
the callers become clients, the agents become servers and queues are made up
by callers that require a service and that wait for it. In particular the queues
represent the meeting point for managers, service providers and customers. The
first can use them in order to check and improve the services, instead the cus-
tomers use them in order to access to the services of the system. For this

8

reason, queueing models are the natural ground to develop tools for the call
centers. A possible queueing model is the so-called M/M/N system (also called
the Erlang-C model). According to it, the calls are characterized by arrival rate
λ and the N agents, working in parallel, by the service rate µ−1. Then, the
Erlang-C formula C(λ, µ, N) describes, for example, under the very restrictive
assumption of no abandonments, the fraction of customers delayed in queue
before receiving the service. But it is a very restrictive model to represent all
the call center aspects. In fact, for example, it is assumed, among other things,
a steady-state environment in which the arrivals occur according to a Poisson
process, the service durations are exponentially distributed, and customers and
servers are statistically identical. But, they do not act independently from each
other. Moreover it should be remarked that the strong assumption, for a realistic
framework, is that abandonments do not occur. For all these aspects, Erlang-A
systems, which can explicitly model the customer patience, were developed. In

Figure 1.8: A queue model for a call center

figure 1.8, a simple call center model is shown, in which there are only 4 agents
and 1 queue. In a realistic framework, the scenario is more complicated than
the one in figure 1.8.

A functionality, available in some systems designed to handle and manage
large volumes of incoming calls, is the Automatic Call Distribution (ACD).
Typical applications include customer service desks, telemarketing operations,
reservation systems, and so on. An ACD allows efficient distribution of calls
to available operators or voice processing options such as voice mail. The cus-
tomers are represented by ”arrivals” such as the inbound calls that require some
services. In figure 1.9, an example of communication with a call contact center,
through an ACD, is shown.

There are two different cases: in the first one, the call is done without success
(”lost call”) and the customer, may be, will retrial in another time. This case
can occur because the queue has a fixed capacity and it could be ”full”. In the
second one, instead, the call is put in queue because the queue is not busy and
there is a free slot for it. The fact that a call is in queue does not guarantee that
is served. In fact if the customer waits in queue for a long time, he/she could
decide to abandonments and may be to try again in another time. But if the call
is served in time, then the specific router will assign it to the first free agent (in a
single skill call center), to the first free agent that can handle it (in a multiskill
call center). If a customer is unserved, he/she could return in another time

9

Figure 1.9: Communicating with a call contact center through an ACD

(”returns”). It is easy for the managers to experiment with different situations
or scenarios that can occur, for example, varying the number of active trunk
lines.

One can generalize considering the flow chart in figure 1.10 as shown in Koole
and Pot (2006).

The flow chart is generical and means that the number of customers who
abandonments the call center is influenced a lot by the specific routing rule
chosen. When a customer finds all the lines busy then he/she can be put in
queue or could decide to retry in another moment. If he/she does not retry
then he/she is a lost customer. Obviously the call center managers want to
limit the number of lost customers meeting the service levels.

Gans et al. (2003a) affirmed that, for most inbound call centers, the manage-
ment objective is to achieve relatively short mean waiting times and relatively
high agent utilization rates.The authors called this environment like Quality and
Efficiency Driven (QED) regime. If, in the following, R is the system offered
load, in terms of the mean arrival rate times and the mean service time, then
the so-called Square-root safety-staffing rule affirms that if R is large enough,
staffing the system with R+β

√
R servers (for some parameter β) achieves both

short customer waiting times and high server utilization. This rule was observed
firstly by Erlang (1923) and then formalized by Halfin and Whitt (1981) for the
Erlang-C model. Borst et al. (2004) identified two other operating regimes: the
Quality Driven (QD) and the Efficiency Driven (ED) regimes which are ratio-
nal operating regimes under certain costs structures. In the latter, the server
utilization is emphasized over service quality. However, with customer aban-
donment, this regime can also result in reasonable performance as measured by
expected waiting time and fraction of customer abandonment (Whitt (2004e)).

The Erlang C formula has some very relevant properties that one could
summarize as in the following:

1. Lack of robustness: even for big call centers, with a moderate service
level, one, with a relatively limited effort, can increase the SL to an accept-
able level. But a higher load, needing an additional agent, can deteriorate

10

Customer calls

All lines busy?

 Router

Customer waits

Customer abandons?

Customer is served

Customer retries?

Customer is lost

yes

no

yes

no

no

yes

no

yes

Figure 1.10: A flow chart of a call center customer

11

the service level considerably. For this reason the formula is very sensitive
to the variation of its parameters:λ, µ and N .

2. Stretching time: If either 1µ or λ becomes doubled and the other is di-
vided by two, then the load ρ remains the same. This does not mean that
the same number of agents is needed to obtain a certain service level. If
AWT is multiplied by the same number then the TSF remains the same.
The relationship between the ASA and stretching time is more compli-
cated. If time is stretched, and the acceptable waiting time is stretched
with it, then the TSF remains the same. Of course, this is just theory,
although often the AWT is higher in call centers with long talk times
compared to call centers with short talk times. For the ASA the effect of
stretching time is simple: the ASA is stretched by the same factor.

3. Economies of scale: big call centers work more efficiently.

1.4.2 A queueing model for a multiskill call center

In Section 1.4.1, a generic scenario is shown in order to figure out how to use the
queue theory to analyze a call center. But in this thesis, the multiskill call center
is analyzed. The scenario is made up by a set of call types, each of them with
a particular requirement, and a set of agents, each of them with a particular
skill set. It means that only the so-called generalist can handle all types of
calls, instead the specialist can handle only the calls that require his/her skills.
Of course they are only two extreme and particular cases. In many large call
centers, all the agents are somewhere in between. In figure 1.11 it is supposed

Figure 1.11: A general multiskill call center

to have K call types and I agent types. The λk’s are the arrival rates for a call
type k, assumed exponential distributed; the Si represent a set of agents whose
skill group is i and finally 1/µk,i is the mean service time required from the skill
group i for the call type k. Each inbound call is dispatched accordingly to the
router policies to an agent who belongs to a skill group that can handle it. In
the multiskill call center, the service rates may depend not only on the agent
but also on the call.

In general there are different types of router policies. In particular, in the
static routing, each inbound call has an ordered list of agent groups to try

12

and only if all are busy, then it put in queue. Again, there could be different
scenarios: one queue per agent group, or one queue per call type or one single
queue for several call types or a mixture of these (Cez̧ik and L’Ecuyer (2006)).
More complicated scenarios could require to add also the priorities used by the
agents to serve the inbound calls, for example. Instead in the dynamic routing
the decisions may depend on the entire state of the system (the current time,
the number of calls of each type in service and in the queues, the elapsed service
time of the calls in service, etc). In general, due to the fact that the optimal
dynamic scheme is too complicated, the routing strategies are selected from a
specific set of simpler rules.

The literature is full of studies on the single-skill call center and the related
models are based on the Continuous Time Markov Chains (CTMCs). In fact
Erlang C and A models are special cases of CTMCs.

But due to the dimension problems (the number of the operations expo-
nentially grows up with the number of call types and agents types), for the
multiskill environment, approximated models are used.

1.5 Why simulation?

In this section, it is clarified what simulation is and why it is important to use
it, describing two different types of simulation used in call centers.

On the other hand it is also described, in a brief way, the approach used in
this work: simulation-based optimization (or optimization via simulation).

”A simulation is an imitation of some real thing, state of affairs, or process.
The act of simulating something generally entails representing certain key char-
acteristics or behaviors of a selected physical or abstract system” [Wikipedia]. In
a more specific way, simulation in computer science is referred to what happens
when a digital computer runs a program describing a particular system.

Sometimes, simulation is used jointly to optimization. In this way,simulations
of physical processes are used in conjunction with evolutionary computation to
optimize control strategies. ”Evolutionary computation” is just one of the many
ways doing optimization via simulation.

1.5.1 Steady State Analysis vs Transient Simulation

When a call center model is constructed, then one can analyze its performances
making some experiments on it. In particular two types of simulation analysis
can be performed: the steady state and the transient.

Steady State Simulation

In some cases, one can be interested to evaluate the system answer in a long run,
such as estimating its performances in an infinite horizon, to verify, for example,
if the resources dimension is that to avoid eventual bottleneck decreasing the
customer satisfaction. This is a stationarity simulation (or simulation on a
infinite horizon or steady state simulation). In these cases, the time limit of the
simulation is not fixed a priori but only after executing a run and the results
analysis. The reason for this type of simulation can be related to the experiments
goal (i.e. the transitory length evaluation correspondent to an initial state of

13

the system) and to the statistical analysis on the performance measures of the
system.

In a long-term simulation, it is very important how to get the results. In fact,
the infinite horizon simulation has to be truncated and it represents a source of
bias in the estimators. In order to reduce the bias, one has to use simulation
budget for a single, long replication, and not multiple replications.

When one is interested in controlling the statistical error on the average
values of the performance measures, it is necessary to evaluate the so-called
confidence intervals. In general, it is not simple to estimate the variance on
a single long run due to the sample size. To overcome this problem, the total
simulation time is divided into batches to get (almost) independent observations.
Each batch has a fixed duration s in simulation time units. The set of batches
can be the base to determine the interval confidences (batch means method).

Transient Simulation

If one wants to evaluate the system answer in a short term, then a transient
simulation (or terminating simulation or simulation on a finite horizon) is re-
quired. It lasts the necessary time for recording the sequence of the system
changes that are related to the sequence of events.

Then, a finite horizon simulation is used to estimate short-term performance
measures (for a day, a week, etc). In this case, to compute confidence intervals
on performance measures, the simulator performs a determined number n of
independent replications. In a replication, the simulator is initialized, the whole
horizon is simulated, and statistical observations are collected for each estimated
performance measure. During a replication, it is important to remark, that
random numbers generators are used but the model is unchanged.

For this reason, when a mathematical model used to describe a real system
is studied by simulation, it becomes a simulation model.

1.5.2 Simulation-Optimization

As already said in section 1.5, simulation can be used jointly to optimization in
order to control and describe some complicate real system. For example, in call
center, a such approach (simulation and optimization at the same time) is used
in order to solve the scheduling problem where the service levels constraints are
too complicate to be computed exactly.

In fact, when the system to be optimized is too complex, usually using
simulation and optimization is a natural approach.

In order to fix the idea, one can assume that a generical simulation model is
given with n input variables (x1 . . . xn) and m output variables (f1(x) . . . fm(x)
or y1 . . . ym)(fig.1.12) .

Simulation can be linked to optimization to be used efficiently in order to
design systems. In fact simulation optimization has the main goal to find the
optimal set of values for the input variables, such as the values to be given to
X that optimizes the output variables (Y).

A possible simulation optimization model can be represented in figure 1.13
where output is used by an optimization strategy to give feedback during the
solution search.

14

Simulation Model

Input Output

X1

X2

Xn

Y1

Y2

Ym

Figure 1.12: Simulation model

Input Output

Simulation Model Optimization Model

Figure 1.13: Simulation-Optimization model

15

Nowadays, simulation optimization is an area that is attracting the attention
and interest of researches. In fact recently there has been considerable research
focused on how to combine simulation and optimization in practice (Fu et al.,
2000; April et al., 2001; Ólafsson and Kim, 2001; Fu, 2002). For this reason,
simulation optimization can be considered as an active field of research and it
is also increasingly being used in practical simulation applications and being
incorporated into simulation software tools.

In this work, simulation optimization approach is used to solve the scheduling
problem for a multi-skill call center where the simulator evaluates the service
levels constraints and the optimizer solves different optimization problems at
each step of the algorithm.

1.6 Staffing and Scheduling problem

It is well known that in the call center environment there is a large number
of optimization problems because of the large variety of managers objectives.
They want to obtain ”good solutions” in order to save their budget using as
well as possible the demand forecasting and so satisfying the customers (tactic
decision). On the other hand, there are also strategic decisions that employee
the managers in searching for new services or improving the already existent
ones. But if they are typically long or medium-term decisions, usually the
managers have to handle also short term decisions.

Considering a quantitative approach, a call center manager can react to
the different situations (too many customers are abandoning or waiting). But
the way in which the manager reacts could be not appropriate and could have
a different consequence than what his goal is. For this reason, actually, many
managers prefer to follow an approach for which a manager could be ”pro-active
rather than active” (Koole and Mandelbaum (2002)).

Due to this last aspect, it is important to define mathematical models that
can describe all the managers requirements. The two relevant call center prob-
lems are the staffing and the scheduling one. For both, the working day is, in
general, divided into periods and each of them has a fixed duration. In this
way it is possible to take in account, for example, of the lunch break and the
pauses. Moreover, in the two problems, the customer satisfaction can be taken
in account through the service levels constrains.

The staffing problem determines the number of agents of each group required
for each period in order to meet the service levels constraints.

In the scheduling problem, instead, firstly a set of feasible work schedule
(also called shifts) is decided and then it is found the number of agents of each
type to be assigned to a shift in order to meet the service levels constraints. This
problem is complete in the sense that it implicitly decides how many agents will
work in each period.

In both problems

1. the objective function is to minimize the total cost due to the agents
salaries. But if in the staffing problem, an agent cost only depends on
his/her type, instead in a scheduling one, it also depends on the shift type
to which he/she is assigned. In fact, as shown later, it is important, for
the quality of the final solution, to have different type of shifts, where a
shift type is different from another only for length;

16

2. the service levels constraints are the fraction of calls answered within a
certain time limit that, in the long run, exceeds a given threshold. They
are defined, in this work, for each call type and period, for each call type
(and so grouped by periods), for each period (and so grouped by calls) and
finally the global one (grouped by calls and periods). In this thesis, the
abandonments constraints are also considered fixing a maximum threshold
on this number.

The main goal of this thesis is to solve efficiently the scheduling problem
for a multiskill call center. An efficient method, based on some analytical ap-
proximations, to solve the staffing problem, for one period and for a multiskill
framework, can be found in Avramidis et al. (2006).

Atlason et al. (2004a), Atlason et al. (2004b) have proposed a general
methodology to optimize the scheduling of agents in a single-call-type and single-
skill call center, under service level constraints. Their method combines simu-
lation with integer programming and cut generation.

Cez̧ik and L’Ecuyer (2006) have designed an iterative cutting plane algorithm
on an integer program, for minimizing the staffing costs of a multi-skill call
center subject to service-level requirements which are estimated by simulation.
Our cutting plane algorithm is an extension of this approach in order to solve
the scheduling problem for a multi-skill call center.

1.7 Demand Forecast and Rostering problem

One of the most important issue, when managing a call center, is demand fore-
cast. It is clear that in this context the term ”demand” means number of calls
arriving to the call center. One can define the call forecasts according to the
specific queue or call type associated with the forecast; to the time between the
creation of the forecast and the actual time period for which the forecast was
created and to the duration of the time periods. For this last aspect, in fact,
the forecast could be over a month or over a short period (15, 30, 60 minutes).

Over the years, there were a lot of scientific contributions about this aspect.
For example, Weinberg et al. (2007) proposed a multiplicative effects model

for forecasting Poisson arrival rates for short intervals, typically of length 15-,
30-, or 60-minutes, with a one day lead time.

Soyer and Tarimcilar (2007) introduced a new methodology for call forecast-
ing that draws on ideas from survival analysis and marketing models of customer
heterogeneity.

Shen and Huang (2007) developed a statistical model for forecasting call
volumes for each interval of a given day, and also provided an extension of their
core modeling framework to account for intra-day forecast updating.

When one has a well fixed set of available agents to be scheduled for the
day or the week, where each agent has a specific set of skills, then the prob-
lem becomes a scheduling and rostering problem. This last problem will be
not discussed in this thesis. Similiarly, Cez̧ik and L’Ecuyer (2006) proposed
a methodology combining linear programming with simulation to determine a
schedule. Avramidis et al. (2006) developed search methods using queueing per-
formance approximations in order to produce agent schedules for a multi-skill
call center.

17

1.8 Contact Center Simulation Tools

Due to the increased importance of the contact center industry, it becomes also
relevant to develop some software tools in order to simulate its behavior. It
is clear that they can help the managers analysis and can improve the perfor-
mances of these centers.

A simulation tool can be seen like a computer game reproducing exactly the
behavior of the call center. As already said, it is relevant to the decisions the
managers want to make.

The positive aspect is that one can try everything he/she wants and simulates
different scenarios.

There are some software tools already available to the managers: Arena
Contact Center Edition, ccProphet and so on. Their main feature is to have
a good graphical module that allows the user to analyze in a simpler way the
final results. Sometime this graphical representation can be helped by a good
animation presenting with a lot of details the situation. But these positive
aspects, usually, are paid a lot because of these software are slow and not flexible
even if they are very expensive.

The present thesis uses ContactCenters library (Buist and L’Ecuyer (2005)
and Buist (2005)) developed in the Prof. L’Ecuyer laboratory.

It is a java library developed on SSJ (L’Ecuyer and Buist (2005)). It presents
a strong expressive power and it is GUI-independent. Moreover, the way in
which it is developed allows the user the interoperability with other software
(statistics, optimization, databases, etc).

Just to have an idea about its performances, one can compare its speed with
another good software like Arena. ContactCenters Library is resulted 30 times
faster than Arena (in some experiments that have been conducted in the same
lab).

The general framework of this library provides building blocks to simulate all
types of call centers. Moreover it supports several types of contacts, multiskill,
blend, arbitrary dialing and routing policies, various types of arrival processes
and so on.

1.9 The general thesis’s organization

This thesis is organized as follows:

• firstly, some mathematical formulations are shown (Chapter 2). In par-
ticular in this chapter, mathematical formulations are proposed for the
staffing and scheduling problems. The staffing ones are presented for bet-
ter understand the two step approach, for example, even if the main goal
is to solve the scheduling problem;

• secondly, the two step approach is presented for solving the scheduling
problem. In particular the focus of this section is to show that its solutions
could be considerable sub-optimal (Chapter 3);

• in chapter Chapter 4, some lower bounds on the total number of shifts are
presented in order to reduce the overstaffing of the final solution without
considering a specific methodology for obtaining it;

18

• then in chapter Chapter 5, the cutting plane methodology and its different
versions are described.

• in the chapter Chapter 6 another heuristic approach (Randomized Search)
for solving the scheduling problem is proposed, extending the one already
defined for a single staffing problem of a multi-skill call center;

• in chapter Chapter 7, an extension of the cutting plane methodology is
proposed in order to take into account not only the service level constraints
but also the ones on the abandons probability;

• chapter Chapter 8 is dedicated to present some future works, i.e. two
different new approaches, as alternative to the ones already described in
the previous sections for solving the scheduling problem;

• finally, chapter Chapter 9 reports all the computational results considering
call centers of different size.

19

Chapter 2

Mathematical models

In this section, the mathematical formulation of the staffing and the schedul-
ing problem is presented. For the scheduling problem, in particular, different
types of formulations are proposed in order to reach an unique model that can
better represent all the constraints. It is important to remember that all these
formulations are defined in a multiskill environment.

2.1 A general framework

Whenever possible, in the following, numerical values are not specified to main-
tain generality. The working day, whose duration is equal to h, is supposed to
be divided into some periods, each of them with a fixed length d (usually equal
to 15 or 30 minutes or sometimes to 1h). The set of the possible periods is
P = {1, . . . , p}. Considering some constraints, taken from real call centers, the
agents have two different types of pauses: the lunch break and the coffee break.
Dividing the working day into periods allows describing better all the possible
feasible schedules (shifts) for the agents.

Definition 2.1 (Shift definition). A shift is a unique time pattern of an agent
availability to handle calls.

It is characterized by: start period(time in which the agent starts work);
break period(time in which the agent has a break) and end period(time in which
the agent ends work).

For example in figure 2.1, three different types of shifts are shown, assuming
that the working day is divided into 15 periods (P = {1, . . . , 15}). The first one
(shift 1), for example, starts at the period 1, has its first coffee break at period
3, then the lunch break starting at period 7, the second coffee break starting
at period 11 and finally it ends at period 13. Each shift, in figure 2.1, has two
coffee breaks and one lunch break.

In general the duration of these breaks could vary. For example, it is possible
to have three different types of break (the pre-lunch (b1), the lunch(b2) and
post-lunch break(b3)) and in general b2 is longer than the other two. The set
of the all feasible working schedules is Q = {1, . . . , q}.

Due to the fact that the call center is multiskill, then there are other two
important sets that should be defined: N = {1, . . . , n} and T = {1, . . . , t} that
are the call types and the agent types set respectively.

20

Figure 2.1: An example of three different shifts

The two sets P and Q are related to each other through a block-diagonal
matrix Ã = A1 . . . At and the number of blocks is equal to the number of agent
types. A generic block:

Ak =

 a11 . a1q

. . .
ap1 . apq


is a binary matrix in which an element aij is equal to 1 if i is a working period
for the shift j, 0 otherwise.

Definition 2.2 (Working period). A period i is a working period for the shift
j if and only if this shift covers this period.

In figure 2.1, the period 2 is a working period for the shifts 1 and 2 but not
for the shift 3. In fact an agent, assigned to shift 3, starts working at period 3.

Later on, Ã(number) indicates the matrix Ã with number columns.
In a multiskill call center, as already said, the most relevant thing is that

each agent belongs to a specific agent group characterized by a specific skill set.

Definition 2.3 (Skill set). A skill set Si of an agent type/group i is defined by
the list of call types that the agent type i can handle.

It means that skill set Si,∀i ∈ T can be seen as a subset of the call types
set N : Si ⊆ N . A particular case occurs when Si ≡ N , i.e. the agent type i is
able to handle all the call types and he/she is a generalist.

Moreover c = (c11, . . . , c1q, . . . , ct1, . . . , ctq)t is the cost vector where cij is
the cost of an agent type i assigned to the shift j. If all the shifts have the
same length then the cost only depends on the particular agent type and it is
modelled as a constant plus an increment of between five to twenty percent for
each additional skill (ξ). Even if it is not always allowed in real life,for the final
solution quality (as shown later), it is important to have shifts whose length
varies and so the cost also depends on the particular shift. The cost vector c
and the block-diagonal matrix Ã are input data for the scheduling problem.

The scheduling vector is x = (x11, . . . , x1q, . . . , xt1, . . . , xtq)t where xij is the
number of agents of type i assigned to the shift j. Moreover the staffing vector

21

is y = (y11, . . . , y1p, . . . , yt1, . . . , ytp)t where yij is the number of agents of type
i available in the period j in order to satisfy the service levels constraints. The
staffing vector represents the set of intermediate auxiliary variables.

In a general framework, the constraints are imposed on the service levels.
In this context, a service level is defined as the fraction of calls whose virtual
queue time is no larger than a given constant (in general set to 20 seconds).
The virtual queue time is the time a hypothetical customer with infinite patience
must wait in queue before beginning service ((Avramidis, Chan, and L’Ecuyer
2006)). It is assumed that they could be expressed for each couple (period,
call type), for each period (grouped by call types), for each call type (grouped
by periods) and global (grouped by call types and periods). For example the
service level for call type j in period p can be defined as:

gj,p(y) =
expected # calls arrived in period p with virtual queue time < τj,p

expected # calls arrived in period p

for some constant τj,p. Similarly the other types of service levels can be also
defined and τp, τj , and τ are the time limits for the aggregate service levels for
period p, for call j and overall respectively.

Definition 2.4 (Load). If λkp is the arrival rate of the call type k in the period
p and µkp is the service rate of the call type k in the period p, then the load can
be defined as ρkp = λkp/µkp for the call type k in the period p.

To formulate a mathematical program with a finite number of shift types,
it is necessary to discretize time. For this thesis’s purposes, it is convenient to
partition the planning horizon into periods of some length d > 0, where period
t corresponds to the time interval [(t− 1)d, td], and where d is selected so that
all the relevant events that affect any agents work status occur exactly at the
beginning of some period, i.e., at a time that is an integer multiple of d. These
events are,for example,the start and end of shifts and the start and end of any
breaks scheduled to occur within the shift. With the planning horizon fixed
(e.g., 24 hours) and d decreasing, the number of periods increases, the number
of possible shifts increases accordingly, and one may generally expect optimal
schedules to exhibit smaller cost (Thompson 1995); this is achieved at the ex-
pense of needing to solve larger mathematical programs. In applications, the
time discretization used in schedule planning depends primarily on the level of
detail at which forecasts of future arrivals are available, because the forecasts
are crucial inputs to the mathematical programs supporting scheduling deci-
sions. Typically encountered values of d are 15 minutes to one hour. In this
generical framework, it is assumed that a time discretization parameter d has
been selected. In this way, time is measured in units of d, unless otherwise said;
and, by convention, events occur at the beginning of the stated period.

2.2 Staffing and Scheduling mathematical for-
mulation

In this section mathematical formulations for the staffing and scheduling prob-
lems are given. In order to understand, it is important to start formulating the
scheduling problem (P1).

22

min
∑t

i=1

∑q
j=1 ci,jxi,j

subject to
Ãx ≥ y
gi,p(y) ≥ li,p for all i ∈ N, p ∈ P
gp(y) ≥ lp for all p ∈ P
gi(y) ≥ li for alli ∈ N
g(y) ≥ l
x ≥ 0 and integer

(P1)

In (P1) the first group of constraints links the scheduling vector to the
staffing one and checks about the schedule feasibility. The other types of con-
straints are on the service levels. In particular the last type of constraint is on
the global service level.

Because these functions g(.) are unknown and too complicated to be esti-
mated exactly, they are approximated via simplified queueing models (Ingolfsson
et al. (2003)) or estimated by simulation (Ingolfsson et al. (2003), Atlason et al.
(2004a), Cez̧ik and L’Ecuyer (2006)).

On the other hand the constraints on the service levels are non linear and,
also for this reason, the problem (P1) is too complicated to be solved exactly. If
the constraints about the schedule feasibility are relaxed, the problem (P1) be-
comes the so-called staffing problem (P2) in which it is assumed that any staffing
is admissible. In this case, the cost vector is c = (c1,1, . . . , c1,p, . . . , ct,1, . . . , ct,p)t

where cij is the cost of the agent type i in the period j. It is easy to understand
that in the staffing problem any relationship with the scheduling one disappears
and then the cost is only related to the agent type and the period in which
he/she works.

min
∑t

i=1

∑p
j=1 ci,jyi,j

subject to
gi,p(y) ≥ li,p for all i ∈ N, p ∈ P
gp(y) ≥ lp for all p ∈ P
gi(y) ≥ li for all i ∈ N
g(y) ≥ l
y ≥ 0 and integer

(P2)

Moreover if one period at a time is considered, the staffing problem becomes the
so called single period staffing problem (P3) in which the cost vector becomes
c = (c1, . . . , ct)t where ci is the cost of the agent type i and the decision variables
become y = (y1, . . . , yt)t where yi is the number of agents of type i. In general
it is assumed that the system is in steady state over the given period and the
problem formulation becomes:

23

min
∑t

i=1 ciyi

subject to
gi(y) ≥ li for all i ∈ N
g(y) ≥ l
y ≥ 0 and integer

(P3)

The mathematical formulations, proposed so far, are taken from (Cez̧ik and
L’Ecuyer 2006).

On (P3), different types of algorithm were proposed. For example, in Cez̧ik
and L’Ecuyer (2006) it is solved using a cutting plane methodology, instead in
Avramidis et al. (2006) a randomized search algorithm is used where the service
level constraints for each call class are represented by an analytical approxima-
tion (Loss-Delay (LD) Approximation).

In fact, in the next sections of this thesis, some algorithms, to solve the
scheduling problem for the multi-skill call center, are presented.

24

Chapter 3

Two Step Approach

Two Step Approach, in the following called TS, is a general methodology for
solving the scheduling problem (P1) of a multiskill call center. In this section,
its description is given and at the same time some of its weakness are shown
and explained.

3.1 TS:a general methodology

TS is an approach that can be divided into two independent steps:firstly P
single-period staffing problems(P3) are solved obtaining the staffing vector y∗;
then y∗ becomes the input data to find a schedule solving the following problem
(P4):

min
∑t

i=1

∑q
j=1 ci,jxi,j

subject to
Ax >= y∗

x ≥ 0 and integer

(P4)

But, even if it is a natural way to solve the problem (P1),in general, it is defi-
nitely suboptimal and the suboptimality gap can become significant (e.g.,Jennings
et al. (1996)).

In particular, in Avramidis et al. (2007) is shown that the main reason of
this suboptimality gap is due to the fact that staffing problems are solved, for
each period, independently from each other and from the scheduling one and
performing a steady state simulation.

3.2 The formulation of Bhulai et al.

A description of TS can be found in Bhulai et al. (2005).In fact they adopt this
methodology for solving the scheduling problem. In particular, they modify the

25

formulation P1 introducing a new type of decision variables that allow modelling
agents transfers.

In the following the staffing requirement y for all agent types and for all
periods is assumed given. The optimization problem, solved in the second step
of this approach, is based on the definition of two sets for each agent type i ∈ T
(see also Avramidis et al. (2007)):

Definition 3.1 (Superset of a skill-set). A set of the agent types whose skill set
is a minimum strict superset of the skill-set of the agent type i is S+

i = {j ∈ T :
Sj ⊃ Si∧ 6 ∃m ∈ T : Sj ⊃ Sm ⊃ Si}

Definition 3.2 (Subset of a skill-set). A set of the agent types whose skill set
is a maximum strict subset of the skill-set of the agent type i is S−

i = {j ∈ T :
Sj ⊂ Si∧ 6 ∃m ∈ T : Sj ⊂ Sm ⊂ Si}

Example 3.1. For a specific example with 2 call types N = {0, 1} and 2
agent types T = {0, 1} and skill sets S0 = {0}(specialist agent) and S1 =
{0, 1}(generalist agent): S+

0 = {1}; S−
0 = ∅; S+

1 = ∅; S−
1 = {0}.

The skill transfer can be easily modelled introducing the vector of new de-
cision variables z, where zp,l,m∀p ∈ P,∀m ∈ T,∀l ∈ S+

m ∧ l ∈ S−
m is the number

of the agents of type l that work as agents of type m in the period p. Then the
mathematical formulation, proposed in Bhulai et al. (2005), can be seen as an
extension of the well known set covering problem formulation (P5) (proposed
by Dantzig (1954)) to the multi-skill environment:

min
∑q

j=1 cjxj

subject to ∑q
j=1 apjxj ≥ yp for all p ∈ P

x ≥ 0 and integer
(P5)

min
∑t

i=1

∑q
j=1 cijxij

subject to ∑q
j=1 aijxij +

∑
l∈S+

i
zp,l,i −

∑
l∈S−

i
zp,i,l ≥ yp,i ∀p ∈ P ∧ ∀i ∈ T

x ≥ 0, z ≥ 0 and integer

(P6)

(P6) can be also written in the following way:

min c
′
x

s.t.
Ax + Bz ≥ ŷ
x ≥ 0, z ≥ 0 and integer

(P7)

26

The number of nonzero entries in the main constraints (i.e., other than
nonnegativity) in (P7) is often used as a measure of problem size (Aykin 1996).
For fixed number N of call classes, the worst case occurs when agent types exist
with all possible skill combinations: each nonempty subset of N = {1, 2, . . . , n}
corresponds to a unique agent type, so there are T = 2n − 1 agent types.
Assuming the requirements yp.i are positive for all p ∈ P and i ∈ T , for an
agent type i with skills {a1, . . . , ak}:|S−i | = k. This because all maximal subsets
are obtained by removing exactly one of the k skills (they are {a1, . . . , ak}\{ai}
for i = 1, 2, . . . , k). Similarly, |S+

i | = n − k, because all minimal supersets are
obtained by adding exactly one of the n− k skills the agent does not have.

The number of decision variables

zv,j,i =
∑p

v=1

∑t
i=1(|S

−
i |+|S

+
i |) = p

∑n
k=1(

n
k

)(k+n−k) = np
∑n

k=1(
n
k

) =

np(2n − 1)

To count the number of decision variables xq,i, assumptions must be made on
the structure of shifts.

In order to solve the staffing problem for each period of the call center,
steady state simulations are performed to estimate the service levels (Chapter
1). In particular each single period staffing problem P3 is solved using steady-
state simulations and assuming that a period does not affect the next ones. In
real life, instead, the decisions made in a period affect the next ones and the
simulation is transient then the output measure of performance is defined over
a specific interval of time with a specific starting condition and a specific ending
condition. Performing a transient simulation one is able to take in account that
the decisions taken in a period affect the behavior in the next period.

3.3 The weakness of TS

If the presence of skill-transfer variables generally reduces the optimal cost in
(P2) by adding flexibility, compared with the case where no downgrading is
allowed, on the other hand, there could be a significant gap between the optimal
solution of (P1) and the best solution found for the same problem by the TS.

The following simplified example, taken from Avramidis et al. (2007), illus-
trates this.

Example 3.2. Let N = T = P = 3, and Q = 1. The single type of shift
covers the three periods. The skill sets are S1 = {1, 2}, S2 = {1, 3}, and
S3 = {2, 3}. All agents have the same cost. Suppose that the total arrival
process is stationary Poisson with mean 100. This incoming load is equally
distributed between call types {1, 2} in period 1, {1, 3} in period 2, {2, 3} in
period 3. Any agent can be downgraded to a specialist that can handle a single
call type (that belongs to his/her skill set), in any period. In the presence of
such specialists, an incoming call goes first to its corresponding specialist if there
is one available, otherwise it goes to a generalist that can handle another call
type as well. When an agent becomes available he/she serves the call that has
waited the longest among those in the queue (if any). The service times are

27

exponential with mean 1, there are no abandonments, and the SL constraints
specify that 80% of all calls must be served within 20 seconds, in each time
period, on average over an infinite number of days.

If it is assumed that the system operates in steady-state in period 1, then
the optimal staffing for that period is 104 agents of type 1. Since all agents
can serve all calls, there is an M/M/s queue with s = 104 , and the global SL
is 83.4%, as can be computed by the Erlang-C formula (see Chapter 1). By
symmetry, the optimal staffing solutions for the other periods are obviously the
same: 104 agents of type 2 in period 2 and 104 agents of type 3 in period 3.
Then, the TS gives a solution to (P2) with 104 agents of each type, for a total
of 312 agents.

If, instead, (P1) is directly solved , assuming again (as an approximation)
that the system is in steady-state in each of the three periods, it gives a feasible
solution with 35 agents of type 1, 35 agents of type 2, and 34 agents of type
3, for a total of 104 agents. With this solution, during period 1, the agents of
types 2 and 3 are downgraded to specialists who handle only call types 1 and 2,
respectively, and the agents of type 1 act as generalists. A similar arrangement
applies to the other periods.It is important to note that TS is not able to find
this solution because solving a single period staffing problem in the first step,
it does not consider that the choices taken in a previous period affect the ones
of the next. For example in a period it only choices the agents whose skill set
contains exactly the calls arriving in it (i.e. agents of type 1 in period 1); instead
solving (P1) directly it is possible that in the period there are also other types
of agents that can be used in other periods.

Example 3.3. Suppose now that three additional skill sets S4 = {1}, S5 = {2},
S6 = {3} are added to the previous example, and that these new specialists
cost 6 each, whereas the agents with two skills cost 7. In this case it becomes
attractive to use specialists to handle a large fraction of the load, because they
are less expensive, and to keep a few generalists in each period to obtain a
“resource sharing” effect. It turns out that an optimal staffing solution for period
1 is 2 generalists (type 1) and 52 specialists of each of the types 4 and 5. An
analogous solution holds for each period. With these numbers, if downgrading
is not possible, TS gives a solution with 6 generalists (2 of each type) and 156
specialists (52 of each type), for a total cost of 978. If downgrading is allowed,
then TS finds the following much better solution: 2 agents of type 1 and 52 of
each of the types 2 and 3, for a total cost of 742. The reader can easily verify
that by appropriate downgrading in each period, this solution can cover the
optimal staffing in each period. In fact,the skill transfer works in this way. In
period 1: 52 agents of type 2 are downgraded to specialists of type 4 and 52 of
type 3 to specialists of type 5. In period 2: 2 agents of type 1 are downgraded
to agents of type 5, 52 of type 2 to type 6 and 50 of type 3 to type 5. In period
3: 2 agents of type 1 are downgraded to agents of type 4, 50 of type 2 to type
4 and 52 of type 3 to type 6.

If (P1) is directly solved with these additional skill sets, it gives the same
solution as without them; i.e., 104 agents with two skills each, for a total cost
of 728. This is again better than with TS, but the gap is much smaller than
what we had with only three skill sets.

Example 3.4. Observe that in the previous example, if all the load was from
a single call type, there would be a single agent type and the two-step approach

28

would provide exactly the same solution as the optimal solution of (P1). The
example illustrates a suboptimality gap due to a variation in the type of load.

Another potential source of suboptimality (this one can occur even in the
case of a single call type) is the time variation of the total load from period
to period. If there is only a global SL constraint over the entire day, then the
optimal solution may allow a lower SL during one (or more) peak period(s) and
recover an acceptable global SL by catching up in the other periods. To account
for this, Bhulai et al. (2007) propose a heuristic based on the solution obtained
by their basic two-step approach. Although this appeared to work well in their
examples, the effectiveness of this heuristic for general problems is not clear.

Yet another (important) type of limitation that can significantly increase the
total cost is the restriction on the set of available shifts. Suppose for example
that there is a single call type, that the day has 10 periods, and that all shifts
must cover 8 periods, with 7 periods of work and a single period of lunch break
after 3 or 4 periods of work. Thus a shift can start in period 1, 2, or 3, and
there are six shift types in total. Suppose we need 100 agents available in each
period. For this we clearly need 200 agents, each one working for 7 periods, for
a total of 1400 agent-periods. If there were no constraints on the duration and
shape of shifts, on the other hand, then 1000 agent-periods would suffice.

Example 3.5. This is another simple example that is used in order to show the
main weakness of TS. In the following: N = {0, 1}; T = {0, 1, 2}; P = {0, 1, 2};
Q = {0} and the skill sets are: S0 = {0, 1}; S1 = {0, 2}; S2 = {1, 2}. Moreover
aij = 1∀i ∈ P ∧ j ∈ Q. The arrival rates are shown in 3.1. The service rates are
all equal to 1.

λ =

period
0 1 2

call type 0 15 0 15
call type 1 15 15 0
call type 2 0 15 15

Table 3.1: call volumes matrix (call type/ period)

All the service times are exponential. The AWT is 20 seconds and lp =
0.5∀p ∈ P, lk = 0.8∀k ∈ N and l = 0.8. The router policy is based on the agent’s
preference with FIFO queues. In this case the costs are computed considering
the following formula:

Equation 3.1. Agent Cost

cij = 1 + (ηi − 1)ξ ∀i ∈ T, j ∈ Q

where ηi represents the number of skills of the agent type i (that is the
cardinality of the set Si where i ∈ T). Assuming that the agent costs are the
same, ξ is equal to 1 and ηi is equal to 2 ∀i ∈ T , the costs cij are equal to
2 ∀i ∈ T ∧ j ∈ Q. In the following, it is assumed that a ”good” scheduling
solution (x∗) is already given: x∗00 = 16;x∗10 = 17;x∗20 = 4. This solution is
experimentally obtained starting from a solution that schedules 15 agents of
type 0 and 1 and 0 of type 2 and adding an agent at time (without considering
its type because the cost is the same) while the service levels are not reached.

29

The staffing solution (y∗) associated to this scheduling is: y∗0j = 16 ∀j ∈ P ;
y∗1j = 17 ∀j ∈ P and y∗2j = 4 ∀j ∈ P .

Considering TS, instead,the sets S+
i and S−

i ∀i ∈ T are all empty. This
means that there is not skill transfer. In the following it is assumed that the P
single-period staffing solutions of the first stage are obtained using a randomized
search algorithm (Avramidis et al. (2006)) because comparing to the one ob-
tained using a cutting plane algorithm (Cez̧ik and L’Ecuyer (2006)) it gives us
a better solution: y00 = 28; y01 = 6; y02 = 14; y10 = 5; y11 = 6; y12 = 19; y20 =
4; y21 = 25 and y22 = 4. Considering the period 0, the greater part of the agents
is related to the type 0 because in this period there are only call type 0 and 1
and so the agent type 0 in period 0 constitutes the generalist, in regard to the
others that are the specialists (because the skill to handle the calls of type 2 in
not used). The same considerations can be extended to the other two periods
and agent types. This is because to solve the P single staffing problems, steady
state simulations are performed considering that a decision taken in a period
doesn’t affect the next ones. Obviously, the second stage of TS must adapt the
final scheduling solution to the staffing one that is given in input as right sides of
the mathematical formulation P7. In this particular case in order to satisfy the
input data, the problem assigns the maximum number of agents of each type
that is required (as it is possible to note considering the scheduling solution:
x00 = 28; x10 = 19; x20 = 25). The related staffing solution is:y0j = 28 ∀j ∈ P ;
y1j = 19 ∀j ∈ P and y2j = 25 ∀j ∈ P .

Examining it, one can note that there are a lot of useless agents. In fact,
supposing to satisfy before the periods 0 and 2, after scheduling the 28 agents
of type 0 and the 19 of type 1, it is possible to cover the load in the periods 0
and 2. But these are also sufficient to cover the load of the period 1. In fact
in this period 28 − 6 = 22 and 19 − 6 = 13 agents of type 0 and 1 are not
necessary. Then due to the fact that S0 = {0, 1} and S1 = {0, 2}, at the end
there are 22 + 13 = 35 agents that are able to handle to the call types 1 and
2 when only 25 are required in this period. This means that the assignment of
agents of type 2 is not necessary (the same argument can be extended to the
other cases). These particular considerations are not taken in account by TS
because in the formulation P7 these type of transfers are not considered. The
total number of agents required by this solution is equal to 72 and the final cost
is equal to 144. Considering, instead the scheduling solution x∗ and the period
0,we have 16 agents of type 0 that are able to handle the call types that arrive
in this period. Obviously they are not sufficient because there are 15 calls of
type 0 and 15 of type 1 and the lower bound on the number of agents is equal to
30 (remember that the service rate is 1). In fact they are helped by the agents
of type 1(who are able to handle the call type 0) and 2 (who are able to handle
the call type 1). In this case, there is an implicit transfer of agents that TS
is not able to do. In fact,to do this particular agents transfer it is necessary
to have a complete vision during the shifts-composition phase . Moreover the
final solution x∗ assigns less agents of type 2 because the ones of type 0 and
1 are able to handle alone all the call types. The percentage of cost reduction
compared with TS is about 48.61%.

30

Chapter 4

Daily scheduling with fixed
shift length: some
difficulties

In this section, some difficulties, related to the definition of a set of possible agent
shifts, are presented. Considering, in fact, a first possible set of the constraints,
it’s possible to show the overstaffing of the final solution. In the following
all the steps, considered to avoid the overstaffing, are shown and analyzed.
Finally, a lower bound on the number of shifts is obtained in order to reduce
the overstaffing of the final solution and so its cost. This lower bound is found
for the single and multi-skill case.

4.1 Shift constraints

The set of constraints on the structure of shifts is described. Whenever possible,
numerical values are not indicated to maintain generality. Each shift must have
three distinct breaks, which must occur in the following order: break 1 (pre-
lunch), lunch break, and break 3 (post-lunch). Breaks 1 and 3 last l1 and
l3, respectively; the lunch break lasts l2. Each shift has length l, including all
breaks. Break 1 must occur within a time window [w1,min, w1,max] after the shift
start time, i.e., it must occur within the time window [s + w1,min, s + w1,max],
where s is the shift start time. The lunch break must occur within an absolute
time window. Break 3 must be within a time window [w3,min, w3,max] after
the end of the lunch break, i.e., it must occur within the time window [t2 +
l2 + w3,min, t2 + l2 + w3,max], where t2 is the lunch break start time. Note the
difference between lunch break constraints, defined in absolute time, and break
1 and 3 constraints, defined relative to shift start and lunch end, respectively.

Shifts can be represented by the 4-tuple (s, t1, t2, t3) denoting the start pe-
riod, break 1 start period, lunch break start period, and break 3 start period,
respectively. The set of possible shifts is

Q = {(s, t1, t2, t3) : s ∈ S, t1− s ∈ D1, t2 ∈ P2, t3− (t2 + l2) ∈ D3, t3 < s+ l},
(4.1)

31

where: S is the set of possible shift start periods (without loss of gener-
ality, take min(S) = 1 and define smax = max(S)); D1 := {w1,min, w1,min +
1, . . . , w1,max} is the set of possible delays between the shift start and break 1
start; P2 is the set of periods in which a lunch break may start; and D3 :=
{w3,min, w3,min + 1, . . . , w3,max} is the set of possible delays between the lunch
break end and the break 3 start.

For any possible shift, the set of periods where break 1 may start is P1 =
S + D1, where A + B denotes the set {a + b : a ∈ A, b ∈ B}. Clearly,
P1 = {t1,min, t1,min + 1, . . . , t1,max}, where t1,min1 + w1,min and t1,max =
smax + w1,max. Similarly, the set of periods where break 3 may start is P3 =
P2+{l2}+D3 = {t3,min, t3,min+1, . . . , t3,max} where t3,min = t2,min+l2+w3,min

and t3,max = t2,max + l2 + w3,max. Because of its validity for any possible shift,
P1 is a global window for the break-1 start time; and similarly for P3.

Example 4.1. The call center opens at 8 h (hours) and closes at 17 h. All shifts
are exactly 7h 30 m (minutes) long (shift end occurs 7h 30 m after shift start);
this suggests that the latest shift start that needs to be considered is 9h 30.
Breaks 1 and 3 last 15 minutes; the lunch break lasts 30 minutes. The window
for break 1 is [1h 30 m, 2h 15m] after the shift start. The window for the lunch
break is between 12h and 13h 30. The window for break 3 is [1h 30 m, 2h 15m]
after the end of the lunch break. Shift starts and lunch starts can occur only
on the hour or the half hour; that is, possible shift starts are 8h, 8h30, 9h and
9h30, and possible lunch starts are 12h, 12h30, and 13h. Moreover: T = 1, 2 ;
N = 1, 2; S1 = {1} and S2 = {1, 2}.

1

1

2

2

Figure 4.1: N-Design example

As shown in figure 4.1, for the particular configuration, in the following, it
will be called as N-Design Example. This is a particular example, that usually
is presented in literature, because of the agent type 1 is the specialist instead
the type 2 is the generalist able to handle both types of call.

32

Each call has a patience time with an Exponential distribution of mean 20
(ν = 20) for each period and the service rate is equal to 8. For the moment
we are assuming that all the shifts have the same length (7h30min) and so also
the cost only depends on the agent type (c=(1, 1.2)). On the other hand we
have also that the load of the call type 1 is 20 and the load of the call type
2 is equal to 5.With time discretization d = 15 minutes, we have: P = 36;
l = 30; l1 = l3 = 1; l2 = 2; S = {1, 3, 5, 7}; D1 = D3 = {6, 7, 8}; P1={7, . . . , 15};
P3={25, . . . , 31}; P2 = {17, 19, 21} and smax = 4. The number of possible shifts
is Q = 108− 3 = 105. To see this, note that without the shift-length constraint
t3 < s + l in (4.1), we would have Q = 4 × 3 × 3 × 3 = 108 possible shifts; of
these, (1, t1, 21, 31) for t1 ∈ {7, 8, 9} exceed the maximum shift length, which
leaves Q = 108− 3 = 105 shifts.

4.2 A lower bound on the number of shifts

It is assumed, firstly, a single call class and a single type of agent. In the
following, the problem (P5) is simplified to the problem (P4). |P | = p is the
total number of periods in the day and for simplicity, it is assumed that the cost
of all shifts is 1. A simple lower bound on the optimal cost in (P4), i.e., the
minimum number of shifts in a feasible schedule (considering that the maximum
shift length is l), is detected.

Proposition 4.1. The lower bound on the number of shifts in the single-skill
formulation (P4) and in the multi skill one (P5) is equal to c̃ = max1≤p̄≤p−l c̃(p̄)
∀p̄ ∈ P (with p̄ + l ≤ p).

Proof : Fix a period p̄ ≤ l. To cover the constraints of periods 1 to p̄,
one needs at least max(y1, y2, . . . , yp̄) shifts starting at or before period p̄ (and
otherwise unspecified). The constraints for periods p̄+ l to p must be “covered”
by shifts separate from (i.e., in addition to) the first set, because the shifts in the
first set start at or before the beginning of period p̄ and have maximum length
l, so they end at (the beginning of) period p̄ + l. This implies at least c̃(p̄) =
max(y1, y2, . . . , yp̄) + max(yp̄+l, yp̄+l+1, . . . , yp) shifts are needed. Considering
all periods p̄ (with p̄ + l ≤ p) in the same way, at least c̃ = max1≤p̄≤p−l c̃(p̄)
shifts are necessary.

It is possible to extend the same considerations to the multi-skill case (but
one must be more careful because of possible skill substitution (decision variables
z•)), finding a lower bound on the number of shifts for the formulation P5.
Suppose agent type i has a skill set that is maximal, i.e. S+

i = ∅. Then there
exist no skill substitution variables z• with positive sign in the left side in the
constraints in (P5). The earlier argument, applied to period p̄, implies we need
at least c̃i(p̄) = max(y1,i, y2,i, . . . , yp̄,i) + max(yp̄+l,i, yp̄+l+1,i, . . . , yp,i) type-i
shifts. Considering all periods p̄ in the same way, at least c̃i = max1≤p̄≤p−l c̃i(p̄)
shifts of agent type i are necessary. A lower bound can obtained for the total
number of shifts, i.e., regardless of agent type. At least c̃ = max1≤p̄≤p−l c̃(p̄)
shifts of any agent type are required, where now :

c̃(p̄) = max

(
I∑

i=1

y1,i,

I∑
i=1

y2,i, . . . ,

I∑
i=1

yp̄,i

)
+max

(
I∑

i=1

yp̄+l,i,

I∑
i=1

yp̄+l+1,i, . . . ,

I∑
i=1

yp,i

)

33

In the next section,for the multi-skill environment,an example is presented
showing that increasing and allowing more shifts flexibility the final cost is
reduced. In this example, some shifts of different length are heuristically added
in order to avoid the overstaffing of the solution.

One can easy see that relaxing the assumption of fixed shift length, allowing
shifts of arbitrary length and assuming agent type i is maximal, ie S+

i = ∅,
a lower bound on the number of shifts of type i is max{y1,i, y2,i, . . . , yp,i}. In
fact there exist no skill-transfer variables with positive sign associated with the
constraints for each yp,i∀p ∈ P . Thus, to cover the constraints of period p̄, one
needs at least yp̄,i shifts of type i. Varying p̄ over 1, 2, . . . , p, the stated bound
is obtained.

4.3 A heuristic approach to avoid the overstaffing

As shown in the previous section, it is not impossible to meet the shifts con-
straints imposed so far, without having an overstaffing on the final solution. In
fact, in this last section of this chapter, a heuristic method is presented to avoid
overstaffing with the final solution. In particular all the different steps, that
build a final staffing solution able to meet better the service level constraints,
are described. In the following, the N-Design example will be considered. As
already affirmed, to avoid overstaffing, it is important to increase the shift types.
A shift type is characterized by its own length. It means that having shifts with
different length defines a set of shift types.

Increasing the shift types

In order to avoid the overstaffing of the final solution,the incident matrix Ã(105),
containing only shifts whose length is equal to 30 periods, will be changed
into Ã(267) adding shifts whose length can be equal to 36, 35 ,. . . ,31 periods,
increasing the start frequency. In fact, for example,the shift whose length l is
equal to 36 starts at 8 : 00 a.m., the ones with l equals to 35 at 8 : 15 a.m. and
so on until the shift length l equals to 31 starting at 9 : 15 a.m..These new shifts
can define an interaction between the start periods and the end ones allowing
to reduce the overstaffing and so the cost of the final solution (see figure 4.2).
In this new solution there is a shift type whose length is equal to 9 : 00 a.m.
and, in real life, perhaps, it could be not so attractive for an agent.But now the
agents cost depends on a particular shift type too and it is directly proportional
to its length. In fact,defining ci,l as the cost of an agent of type i assigned to
the shift whose length is equal to l, the new cost vector is found considering this
general formula: ci,l = l ∗ ci,30/30. This means that the cost is not only related
to the agent type but also to the shift one.

To reduce the peaks that are present during the pauses, the breaks frequency
can be increased and new types of shifts can be added (table 9.11). In this way
the total number of shifts becomes 285 (Ã(285))(figure 4.4).

Just to have a brief idea about the different steps performed in order to define
a ”good” shifts structure, in figures a comparison between the final solution with
105, 267 and 285 shift types respectively is shown.

In conclusion, to improve the quality of the final staffing solution, it is very
important to define shifts that allow reducing the overstaffing meeting better

34

Shift Length flexibility

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

period

to
ta

l n
um

be
r o

f a
ge

nt
s

optimal staffing staffing with 105 shifts staffing with 267 shifts

Figure 4.2: staffing solution:Ã(105)vs Ã(267)

Type length shift start break1 start lunch start break3 start final solution
1 7:30 8:00,8:30,9:00,9:30 9:30,11:30 12:00,12:30,13:00 14:00,15:30 10
2 7:45 9:15 10:45,11:15 12:00,12:30,13:00 14:00,15:30 2
3 8:00 9:00 10:30,11:00 12:00,12:30,13:00 14:00,15:30 3
4 8:15 8:45 10:15,10:45 12:00,12:30,13:00 14:00,15:30 2
5 8:30 8:30 10:00,10:30 12:00,12:30,13:00 14:30,16:00 2
6 9:00 8:00 11:00,12:00 13:00,13:30,14:00 14:45,16:15 10
7 6:30 10:00 11:30,12:00 13:00,13:30,14:00 14:15,15:45 2

Table 4.1: Shift types with Ã(285)

35

Shift Length flexibility

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

period

to
ta

l n
um

be
r o

f a
ge

nt
s

Optimal staffing Staffing with 267 shifts Staffing with 285 shifts

Figure 4.3: staffing solution:Ã(267)vs Ã(285)

Shift Length Flexibility

nu
m

b
er

 o
f a

g
en

ts

periods

Figure 4.4: shift length flexibility

36

the service level constraints. Here it has been only proposed a heuristic method
that iteratively adds shifts of different length. To improve the quality of the
final solution does not only mean to meet better the SL constraints but also to
reduce the final cost. In fact in period in which there is a peak in regard to the
real load more agents than required are working.

Moreover it is important to remark that these final results on the shifts
structure are completely general without considering a specific solution algo-
rithm. The overstaffing on the final solution can be improved simply changing
the shifts structure. It will be evident that the different solution methods meet
in a different way the SL constraints. The higher the overstaffing, the higher
the cost.

37

Chapter 5

A cutting plane algorithm

In this section, an algorithm, based on the cutting plane methodology, in order
to solve the scheduling problem with service level requirements, is presented and
described. It is based on the same approach, already proposed in (Cez̧ik and
L’Ecuyer 2006), adapted for the scheduling problem and improved for obtain-
ing a high quality solution. Moreover, in the following, only the service levels
constraints are taken into account and not the ones on the abandonments (see
Chapter 7).

The general idea of this approach relaxes, firstly, the service levels constraints
and, at each iteration, solves a linear optimization problem (LP). If the solution
satisfies all the service levels constraints then the algorithm ends. Otherwise
some cuts are added in LP.

The optimization problem, solved at each iteration, can be integer (IP) or
not on the base of the complexity of the problem. In fact when the problem
has a small dimension (few periods, agent groups, call types and shifts), then
at each iteration a linear integer problem can be solved and the simulation time
(required to evaluate the service levels) is dominant on the total CPU time.
But when the complexity of the problem grows up then the time required to
solve the IP becomes relevant and so it is necessary to solve a LP(relaxing
integrality)rounding the final solution. In both cases a local search is performed
on the final solution in order to reduce its cost.

5.1 Cutting plane method

In the following, the cutting plane algorithm is called CP. Its scheme is pre-
sented in figure 5.1 where all the modules of the application are shown. Firstly,
it is important to remark that the proposed algorithm is simulation-based op-
timization procedure. In fact, at each iteration of the first phase, at the end of
the first phase, at each iteration of the local search implemented in the second
phase and at the end of it, the simulator is used in order to check about the
feasibility of the solution in regard to the service level constraints. The general
idea is to replace the problem (P1) by a sample version of it, (SP1n), and then
replace the nonlinear SL constraints by a small set of linear constraints, in a
way that the optimal solution of the resulting relaxed sample problem is close
to that of (P1).

38

optimization
solver

simulator

Feasible?
no

cuts
generator

End

 Rounding

 Local Search

First Phase

Second Phase

Integer?

no

yes

yes

Figure 5.1: Cutting plane scheme

In figure 5.1, the general structure of the algorithm is shown: solving the
sample version of the problem P1, through the optimization module, provides a
staffing solution whose feasibility has to be checked using the simulator module.
If it is, then the first stage can end otherwise the cut generator module finds new
cuts to be added to the current sample formulation of the original scheduling
problem.

In the second step of the procedure, if the final solution is already an integer
one (later it is better explained) then the local search module can improve, if
it is possible, the quality of the final solution trying to reduce the total cost. If
it is not an integer solution then the rounding module, before calling the local
search module, rounds the not integer components. This phase ends when it is
not possible to improve the quality of the final solution any more.

In what follows, it is shown how the relaxation works, when applied directly
to (P1). In fact it should be remarked that it is works in the same way when
applied to the sample problem. A version of (P1), in which the SL constraints
have been replaced by a small set of linear constraints that does not cut out the
optimal solution, is considered. Let y be the optimal solution of this (current)
relaxed problem. If y satisfies all SL constraints of (P1), then it is an optimal
solution of (P1) and the procedure can end. The most important property
required in the algorithm is that the g functions are concave in y.

Definition 5.1 (Concavity definition). A function g(y) is concave in the domain
[A,B], if for all points (a, b) such that A ≤ a and b ≤ B, the following inequality
is verified:

g(δa + (1− δ)b) ≥ δg(a) + (1− δ)g(b), 0 ≤ δ ≤ 1

39

Definition 5.2 (Subgradient definition (taken from Wikipedia)). If g:U → R
is a real-valued convex function defined on a convex open set, a vector q, in this
space, is called a subgradient at a point y0 in U if for any y in U one has

g(y)− g(y0) ≥ q(y − y0)

If the concavity property holds, then the service level function can be ap-
proximated by piecewise linear concave functions, which can be generated as
described below.

A violated constraint of (P1) is considered, say g(y) < l, suppose that g is
concave in y for y ≥ y, and that q is a subgradient of g at y. Then

g(y) ≤ g(y) + q
′
(y − y)

for all y ≥ y. One wants g(y) ≥ l, so it is necessary to have

l ≤ g(y) ≤ g(y) + q
′
(y − y),

i.e.,
q
′
y ≥ q

′
y + l − g(y). (5.1)

Adding this linear cut inequality to the constraints removes y from the cur-
rent set of feasible solutions of the relaxed problem without removing any fea-
sible solution of (P1). This last point is shown in Cez̧ik and L’Ecuyer (2006).

Since the g functions are complicated to be evaluated exactly, then they
are replaced by a sample average over n independent days, using simulation.
Let ω be the sequence of independent uniform random numbers that drives the
simulation for those n days. It is assumed ,in the following, that, during the
simulation, for each day and for different values of y, the same uniform random
numbers are used for the same purpose. Such as:the same ω for all y is used.
The empirical SL over these n simulated days is a function of the staffing y and
of ω. In the following, ĝn,k,p(y, ω) denotes the empirical service levels for call
type k in period p; ĝn,p(y, ω) the empirical aggregated over period p; ĝn,k(y, ω)
the empirical aggregated for call type k; and ĝn(y, ω) the empirical aggregated
overall. For a fixed ω, these are all deterministic functions of y. Instead of solving
directly (P1), a sample-average approximation (SP1n), obtained by replacing
the functions g in (P1) by their sample counterparts ĝ, is considered.

It is known that ĝn,k,p(y) converges to gk,p(y) with probability 1 for each
(k, p) and each y when n → ∞. In this sense, (SP1n) converges to (P1) when
n→∞.

Let Y ∗ be the set of optimal solutions of (P1) and it is assumed that no
SL constraint is satisfied exactly for these solutions. Let Y ∗

n be the set of
optimal solutions of (SP1n). Then, the following theorem implies that for n
large enough, an optimal solution to the sample problem is also optimal for the
original problem.

Theorem 1. With probability 1, there is an integer N0 < ∞ such that for all
n ≥ N0, Y ∗

n = Y ∗. Moreover, under mild assumptions on the arrival processes
there are positive real numbers α and β such that for all n,

P [Y ∗
n = Y ∗] ≥ 1− αe−βn.

(SP1n)is solved by the cutting plane method replacing the functions g by
their empirical counterparts. The major practical difficulty is to obtain the sub-
gradients q̄. In fact, the functions ĝ in the empirical problem are not necessarily
concave for finite n, even in the areas where the functions g of (P1) are concave.

40

5.2 How to initialize the algorithm

At the beginning of the algorithm, all the constraints on the service levels are
relaxed. In this way the scheduling formulation maintains only these ones:∑q

j=1 apjxij +
∑

l∈S+
i

zp,l,i −
∑

l∈S−
i

zp,i,l ≥ yp,i ∀p ∈ P ∧ ∀i ∈ T (c1)

These constraints are maintained in order to model the skill transfer. If one
solves the (P1) problem under this condition, the optimal staffing solution is
the null vector in which the g function are not concave at all. To avoid this
problem, Cez̧ik and L’Ecuyer (2006) add some types of constraints considering
a max-flow problem for the particular period p. They impose that the skill
supply of agents in p covers a fraction αkp of the load ρkp of the call type k for
all k ∈ N . The generic variable w(i, j) represents the fraction of load of the call
type i served by the agent type j. All these variables w are auxiliary and they
allow linking the fraction of the load for all call types to the agent requirements
(vector y) in a particular period p. Due to the fact there are more than a period,
a max-flow network for each of them is considered (see figure 5.2 taken from
(Cez̧ik and L’Ecuyer 2006)) and the relative constraints are added. Then the y
vectors of each period are related each other by the constraints in (c1).

N

T

N N T

Figure 5.2: An example of the max flow network for a single period

In this way the problem (P8) is solved at the first iteration.

41

min
∑t

i=1

∑q
j=1 cijxij

subject to ∑q
j=1 apjxij +

∑
l∈S+

i
zp,l,i −

∑
l∈S−

i
zp,i,l ≥ yp,i ∀p ∈ P ∧ ∀i ∈ T∑

j=1...t∧i∈Sj
wp

ij ≥ αipρip ∀i ∈ N ∧ ∀p ∈ P∑
i=1...n∧i∈Sj

wp
ij ≤ yjp ∀j ∈ T ∧ ∀p ∈ P

x ≥ 0, z ≥ 0, y ≥ 0 and integer
w ≥ 0

(P8)

The formulation (P8) allows finding an initial solution (as shown in Cez̧ik
and L’Ecuyer (2006)). The problem (P8) represents the initial model solved at
the first iteration of the algorithm and in which, step by step, the linear cuts
on service levels are added. It is easy to show that at a generical step u of the
algorithm, the scheduling problem, in which the service levels functions (g(y))
are replaced by linear cuts (G(y)), becomes:

min
∑t

i=1

∑q
j=1 cijxij

subject to ∑q
j=1 apjxij +

∑
l∈S+

i
zp,l,i −

∑
l∈S−

i
zp,i,l ≥ yp,i ∀p ∈ P ∧ ∀i ∈ T∑

j=1...t∧i∈Sj
wp

ij ≥ αipρip ∀i ∈ N ∧ ∀p ∈ P∑
i=1...n∧i∈Sj

wp
ij ≤ yjp ∀j ∈ T ∧ ∀p ∈ P

Gu,k,p(y) ≥ lk,p∀k ∈ N ∧ p ∈ P
Gu,p(y) ≥ lp∀p ∈ P
Gu,k(y) ≥ lk∀k ∈ N
Gu(y) ≥ l
x ≥ 0, z ≥ 0, y ≥ 0 and integer
w ≥ 0

(P9)

Example 5.1. A max flow network
In figure 5.3, in fact, it is shown a max-flow network when, considering a

specific period p, N = {0, 1}, T = {0, 1} and S0 = {0, 1} and S1 = {1}.

5.3 A heuristic method to obtain subgradient
and feasibility check

Solving (P9) a new staffing solution can be obtained.Then at each iteration of
the algorithm, a check about the feasibility is needed.

A generic cut, related to a service level function g, is a linear constraint
G(y) ≥ l (Cez̧ik and L’Ecuyer (2006)). Considering a current staffing solution
ȳ and taking a violated constraint, g(ȳ) < l, for the sample version of the
problem (P9), supposing that g is (jointly) concave in y for y ≥ ȳ.

Then G(ȳ) = q̄ty − q̄tȳ + g(ȳ) and so, one want q̄ty − q̄tȳ + g(ȳ) ≥ l such as
q̄ty ≥ q̄tȳ + l− g(ȳ) ; y is the staffing variables vector; q̄ is a sub-gradient of g

42

Figure 5.3: A max-flow network example

in the point ȳ; l is the target service level associated to the one represented by
the function g(y). A generic component j of the array q̄ is obtained as

Formula 5.1. q̄j = (g(ȳ + dej)− g(ȳ))/d

where d ≥ 0 is an integer value and ej is a vector such that the j-th com-
ponent is 1 and the others are equal to 0. So ȳ + dej means to add d agents in
the position j (related to a specific couple agent-period of the staffing vector).
The computation of the new service level g(ȳ + dej) is done by the simulator.
It is important to remark that the unitary vector e is chosen in a different way
in regard to the particular function g. In fact:

1. considering a no-grouped service level, let be c̃ and p̃ the call and period
indices of a violated service level respectively, the sub-gradient q̄ has a
number of non zero components equal to the number of agent types. In
particular, the indices j, in the formula 5.1, are obtained fixing the period
to p̃ and varying the agents type;

2. considering the service level aggregated by period, then only c̃ is found and
the number of non zero components of q̄ is equal to |T |×|P |. In particular,
the indices j, in the formula 5.1, are obtained varying the period and the
agents type;

3. considering the gradient of a service level aggregated by call, then p̃ is
found and the number of non zero components of q̄ is equal to |T |. In this
case the indices j, in the formula 5.1, are obtained fixing the period to p̃
and varying the agents type;

4. considering the gradient of the global service level, then the indices j, in
the formula 5.1, are obtained varying the period and the agents type. In
fact the number of non zero components of q̄, in this last case, is |T |× |P |.

43

The value d, i.e. the number of agents to be added, is set to 3 if the service level
is less than 0.5, 2 if it is between 0.5 and 0.65, 1 otherwise(Cez̧ik and L’Ecuyer
(2006)).

In the cuts generation process more priority is given to the global service
level. For this reason, the check on the service levels starts from the global one:
if it is not satisfied, then the cut related to it is found and added. Otherwise the
ones aggregated by period are considered and if at least one is not satisfied then
all the cuts related to the violated service levels of this category are computed
and added. If all of the service levels aggregated by period are satisfied then
the ones aggregated by call are considered. Finally if all of the service levels
aggregated by call are satisfied, then the global ones are checked.

5.4 An integer problem or a linear one?

As it is possible to see in the figure 5.1, adding the linear cuts at each iteration
of the method could define a new integer linear problem too complicated to
be solved, in particular when the complexity grows up. In the following, the
complexity of the problem is related to the number of variables and constraints.
In real life call center scenario, one has a lot of call types, agent types and periods
and it implies a very complex framework. To have a complicated scenario implies
very long CPU time to solve an IP and sometimes Cplex (the optimization tool
used in this work) ends with a typical message of ”out of memory”.In fact,as
well known, Cplex implements a Branch and Bound algorithm to solve the IP
problems and growing up the complexity of the model, the branch and bound
tree depth increases so much that it is not possible to explore it in a reasonable
time. The message ”out of memory” appears when the number of sub-problems
to be explored has became considerable. To avoid this problem, instead to wait
for a long time to have a solution and sometimes without result, a LP problem
is solved in regard to an IP and then a rounding method is performed on the
solution. It is evident that the computational time is consistent but less than
the situation in which an IP is solved. In fact it is important to remark that
the rounding procedure is called not only at the end of the method to give an
integer output solution, but at each step of the algorithm, when the simulation
module is called.

At each time a feasibility check on the current solution is required, the
rounding method is called because the simulator needs an integer input solution
in any case. It means that it is important to define a ”good” approximation
module in the general application in order to reduce noise in the final solution.

5.4.1 Rounding module

In order to recover an integer solution, a threshold τ between 0 and 1 is selected.
The approximation module rounds up (to the next integer) the real numbers
whose fractional part is larger than τ and it truncates (round down) the other
ones. So it memorizes the cumulated amount of truncation and whenever it
exceeds 1, it is reset to 0 and one agent of the currently considered type is
added in the solution.

We use two rounding algorithms: during the cut generation process we fixe
the value of τ in order to save time owing to the fact that the rounding is required

44

at each iteration. After the cut generation phase, we round the solution in order
to obtain an integer one. In this second rounding we dynamically adapt τ finding
its optimal value in the interval [0.1, 1.0].

The rounding module is called only if the solution has at least one non-integer
component. It usually happens whenever the problem test is characterized by
a complex scenario. For this reason, in the following, two different versions of
the same algorithm are presented: CP − IP and CP − LP . The former is run
when at each step it is possible to solve an integer problem; the latter, instead,
when the integer constraints are relaxed and a linear problem is solved.

5.5 Local search

After adding enough linear cuts, the final solution could be:

1. infeasible for (P1) (because of random noise, especially if n is small);

2. feasible but suboptimal for (P1) (because one of the cuts may have re-
moved the optimal solution of (P1) from the feasible set of (SP1n)).

In order to improve the solution to (SP1n), a local search is performed around
it, still using the same n and the same random numbers.

This local search has two phases.
In phase 1 (remove phase), the cost is hopefully reduced iteratively removing

one shift at a time, until either none of the possibilities is feasible or a time limit
is reached. For the CP-LP version, firstly the solution is round to integer by
using a threshold τ as explained earlier. Starting with τ = 0.1 and the value of
τ is increased by 0.01 successively until a feasible solution is obtained.

Phase 2 ,(switch phase), attempts to reduce the cost by iteratively consid-
ering a switch move in which it tries to replace an agent/shift pair by another
one with smaller cost. In particular: it chooses in a random way two couples
(removeAgent rA, removeShift rS) and (addAgent aA,addShift aS). An agent of
type rA is removed from the shift rS and an agent of type aA is added in the
shift aS. Obviously the two couples are chosen in a way that the final cost is
reduced and so such that crA,rS > caA,aS .This phase ends when a time limit is
reached, or when a maximum number of consecutive moves without improve-
ment is reached.

When at the end of the CP algorithm, the final solution is not feasible at all
for the original scheduling problem (P1), before performing any type of moves
(in the local search module), an ADD phase is performed starting adding agents
with the smaller costs. This is performed until a feasible solution is obtained.
In particular, the agent type that is added and the related shift is chosen in the
following way:

1. if there is at least one service level grouped by call j that is not satisfied,
then the agent type is the less expensive able to handle the calls whose
type is j;

2. otherwise, if there are no service levels grouped by call that are violated,
then the agent type less expensive but more busy (i.e. whose occupancy
is maximum) is chosen.

45

On the other hand, the shift type is chosen in this way: it is the shift
that covers more periods in which there is the service level more violated. In
particular:

1. the calls whose service level is more violated are found;

2. the periods, with the maximum arrival rate of the calls, found in the
previous step,are found;

3. between the shifts that cover the maximum number of these periods, the
final shift, in which the agent is added, is chosen according to an uniform
distribution.

5.6 CP:Some improvements

In this section of this chapter, some improvements are presented in regard to
two phases of the CP algorithm.

The fist one is the rounding phase calling when a LP is solved at each step of
the procedure instead of IP; the second one is the local search procedure calling
at the end of the algorithm in order to improve the quality of the final solution
decreasing its cost (when it is possible).

In the following, in order to refer this new version, the names CPnew and
CP − LPnew are used.

Moreover at the end of the section, it’s showed a little adjustment to the
algorithm for detecting more feasible solutions, increasing the targets of the
service levels.

5.6.1 Rounding module: some improvements

As one can well note considering the description of the algorithm CP, one of
the most critical aspect is in solving CP-LP when an approximation is used to
obtain, from a not integer solution, an integer one.

This approximation is needed in two situations:

• during the cut generation process, after solving the LP problem, in order
to check about the feasibility of the obtained solution;

• after the cut generation phase, in order to give an integer solution to the
module of local search.

Moreover, an important parameter for the rounding module is τ .
Higher values of it (i.e. higher than 0.5) allow having less expensive solutions

(that with more probability will be infeasible) because with more probability
a no integer component will be approximated to the previous integer one. For
example, if the value of τ is set to 0.7 then it means that all the components
whose integer part less than 0.7 will be approximated to the previous integer
value. On the contrary, lower values of τ (i.e. less than 0.5) allow having
more expensive solutions but with that are able to satisfy more service levels
constraints at the same time. It means that choosing the parameter τ in the
right way is fundamental for having good performances of the rounding module.

On the other hand, as one can figure out, the rounding procedure performed
in the first phase can not be more time consuming because it is run at each

46

iteration of the CP algorithm. For this reason, it is run with a τ value fixed
a-priori and chosen using the input file.

The rounding before the local search module,instead, is run only one time
and at the same time it is more predominant on the final solution quality. For
this reason, it is run with a variable value of τ .

In the first version of CP, the τ parameter linearly varies starting from a value
of 0.5 and incremented by 0.01 until the integer solution remains feasible. But
this procedure could be more inefficiency because it is experimentally observed
that the optimal values of τ are the ones in the range [0.6, 0.7]. This last aspect
implies a number of iterations of the rounding procedure that could pass from
10 to 20. In order to improve (in efficiency) the rounding procedure, a binary
search is performed (that is faster) replacing the linear one.

Assuming, for example, to perform the binary search in the interval [0, 0.1],
the maximum number of iterations is 7.

In particular, the new scheme of the algorithm becomes the following one:

Algorithm Rounding
1. double low = 0.0;
2. double high = 1.0;
3. double bestApprox = high;
4. while ((high− low) > 0.01)
5. do
6. double mid = (low + high)/2;
7. round solution with τ=mid
8. Check feasibility
9. if (!feasible(sl))
10. then low = mid + 0.01;
11. else
12. high = mid− 0.01;
13. bestApprox = mid;
14. round solution with τ= bestApprox

This change could give better solutions using less CPU time budget.

5.6.2 Local Search Procedure: some improvements

Another important aspect of CP is the local search procedure.
It has been noted that not always the final solution is feasible after a check

using a long simulation (n∗ = 50000 days). This happens because the local
search is performed with fewer number of days n1. In fact, in the original
version of CP (presented and described in this chapter), the local search is
performed using a value of n equal to the one used during the cutting plane
phase to check the feasibility of the solution. When it ends, one can be sure
that the solution is feasible for a simulation of n days. But considering that the
final feasibility check is performed using a simulation of n∗ = 50000 days, the
original local search cannot guarantee that this final solution is feasible for this
last check too.

On the other hand, one can not perform the local search with long simula-
tions because otherwise this procedure will become too much time consuming.
For this last aspect, in the new version of CP, the local search starts from a

47

parametric value of n1 that is not necessarily chosen equal to the number of
days simulated during the cut generation phase. This value is set to n2 (an
input value) and it is incremented by 50% at a time until the obtained solution,
after the local search, is feasible for a simulation with n3 = max(n, 500) or if a
time limit is reached. We have:

Algorithm Local Search
Input: scheduling solution x,int n2, n
1. boolean longFeasible=false;
2. n1=n2;
3. n3= max(500,n);
4. repeat
5. simulate(x,n1);
6. if (!feasible())
7. then addAgents(x,n1);
8. removeAgents(x,n1);
9. switchAgents(x,n1);
10. simulate(x,n3);
11. longFeasible=feasible();
12. n1+=0.5*n1;
13. if (time-limit-reached())
14. then break;
15. until ((longFeasible))

In this algorithm:
simulate(x,n1) means that the solution x is simulated with a number of

days n1;
addAgents(x,n1), removeAgents(x,n1), switchAgents(x,n1) means re-

spectively add/remove/switch agents considering the solution x and the check
for the feasibility is performed with a number of days equal to n1. After switch-
ing, it is sure that the solution is feasible for n1.

Moreover if the time limit is reached and the longFeasible variable is false,
the method ends with a solution that is, in any case, feasible for a simulation
with n1 days.

5.6.3 Increasing the target service levels

When the problem to be solved becomes too complex (more agent types, call
types, period, shifts), the chance that the algorithm finds non feasible solutions
increases due to the noise of simulation.

In a lot of cases, the infeasibility is not high and so it is acceptable. The call
center managers could accept low infeasibility gaps to have lower cost solutions,
considering that, due to the forecast uncertainty, in real cases, these violations
on the service levels could never occur.

However, for having only solutions that respect all the service levels con-
straints, we apply a simple adjustment to the algorithm.

Before starting the algorithm, the service level targets are increased (they
are the right and sides of the optimization problem P9). The entire algorithm
is executed with the incremented targets, but, before performing the long sim-
ulation, they are decreased to the original ones in order to check its feasibility
considering only the targets imposed by the call center manager.

48

In this way, the entire algorithm is run with tighter constraints on the service
levels and it should preserve the final solution by the noise of the simulation.

Naturally if all these changes (on the rounding, on the local search and on the
service level targets) guarantee better solutions in quality, on the other hand,
they imply higher computational times.

49

Chapter 6

Randomized search(RS)

In this chapter a heuristic approach to solve the scheduling problem P1 for a
multi-skill call center is proposed. It is a randomized search, in the following
called RS (Randomized Search Algorithm), and it is a relatively straightforward
adaptation of the one already proposed for solving the single period staffing
problem in a multi-skill call center (Avramidis et al. (2006)).

The approach is divided in two stages. In the first one, some moves are
applied to the current solution in order to improve it and its feasibility is checked
using an evaluator of the service levels (Loss-delay (LD) approximation, section
6.1). In this step a Randomized Neighborhood Search is performed and it ends
after a finite amount of work with an incumbent that is locally optimal. Also
in the second stage, some moves are applied to the current solution in order
to reduce the final cost but here the simulation is used as the service level
constraints evaluator. This stage is needed whenever the LD approximation
error in estimating the service levels may be considerable.

6.1 Loss-delay (LD) approximation

The loss-delay approximation (LD) is a service level evaluation method for each
call class of the call center.It is used in the first stage of the randomized search
in order to check about the solution feasibility. In fact this method evaluates
the service levels for a single period, while we need evaluating all periods. For
this reason, as said later, it will be used for evaluating the service levels period
by period and a solution will be feasible if and only if there are no violated
service levels (of all periods). In this section we shall describe, briefly, the LD
approximation for a single period (Avramidis et al. (2006)).

It was already formulated in Avramidis et al. (2006) for solving a single
period staffing problem and was inspired by the approximation of Koole and
Talim (Koole and Talim (2000)). Respect to Koole and Talim (2000) in the
LD approximation the queueing of calls that cannot be served immediately is
introduced . The call classes flowing into each station 1 are classified into one
of two types: if the station is the last one on the call’s routing list, then the call
is of delay type, otherwise it is of the loss type.

1A station is the set of all agents of the same type

50

For each station Avramidis et al. (2006) approximate the call-overflow rate
of the loss type calls and the stationary delay distribution for the delay type
calls.

In this section the key aspects of this technique are summarized (for details
refer to Avramidis et al. (2006)).

Let’s be:

• λj , j ∈ N arrival rates;

• µi,j , i ∈ T , j ∈ N service rates;

• τj , j ∈ N wait times;

• R := {Rj , j ∈ N} the routing information . For each call class j (j ∈
N),Rj = {Rj(1), Rj(2), ..., Rj(mj)} (where Rj ⊆ T) is the set of stations
able to handle it and mj is the number of station able to handle call class
j. When a call of class j arrives, it is assigned to an agent in the first
station in the list Rj that has an available agent.

• r(i, j) i ∈ Rj the rank of station i in the list Rj of calls type j, so that
Rj(r(i, j)) = i;

• p(i, j) := Rj(r(i, j) − 1), whenever r(i, j) > 1, the index of the station
immediately preceding station i in the routing of calls of type j.

The approximated key objects are the rate of arrivals into station i of call type
j: γi,j , for i ∈ T , j ∈ Si. If r(i, j) = 1, they are the arrival rates λj ; if r(i, j) > 1
they are overflows from station p(i, j) into station i. The approximate overflow
rates satisfy the following system of nonlinear equations:

λi,j = λp(i,j),jBp(i,j), if r(i, j) > 1, j ∈ Si, i ∈ T

This system says that the arrival rate of call type j to station i has to
be equal to the arrival rate of call type j to station p(i, j) times the blocking
probability at that station Bp,j .

Other computed probabilities are:

• the blocking probability Bi for stations i;

• the virtual queue time tail probability Di for stations i;

The service level of class j is one minus the product of the fraction of such
calls that arrive to the last station in the routing, γLj ,j/λj , times the virtual
queue time tail probability for that station, DLj

, as stated by the following
relation:

(αj)n
j=1 = 1− γLj,jDLj

λj
, j ∈ N

Avramidis et al. (2006) defined the crossed rounding as follows:

Definition 6.1. crossed routing occurs if and only if there exists call classes
j1 6= j2 and agent types i1 6= i2 such that r(i1, j1) < r(i2, j1) and r(i2, j2) <
r(i1, j2), that is, any call of type j1 that flows into station i− 2 has overflowed
from station i1 and any call of type j2 that flows into station i1 has overflowed
from station i2 (the overflow can be direct of not).

51

If the routing is not crossed, then an ordering of the stations, such that call
overflows occur only along increasing order, exists. When the routing is crossed,
proceeding as above is impossible because (by definition) there exist stations i1
and i2 that mutually affect each others input flows. Avramidis et al. (2006)
propose an iterative solution method inspired from Koole and Talim (2000).

Avramidis et al. (2006) formulates a sufficient condition for convergence
of the algorithm. Of course, it should be clarified that it does not necessarily
converge to a feasible or optimal solution.

6.2 The first phase

The evaluator, used in the first stage, is the LD-approximation. In order to
follow the steps of this first phase, it is very useful this definition:

Definition 6.2. LD- feasible solution
A solution x is LD-feasible if all the periods are LD-feasible (the evaluator

declares it as feasible for P3), otherwise it is LD-infeasible.

Initialization. Like for all heuristic methods, this phase matters a lot
on the quality of the final solution. For this reason a lot of different methods
to initialize the search have been considered. In all the methods, the initial
staffing, for each period (i.e. the number of agent of each type that have to be
in the period), is calculated as an LD-feasible solution of the staffing problem
for that period (Avramidis et al. (2006)). In the following, a brief description
of these different methods is presented in order to give an idea about their
own performance for the scheduling problem. In particular the initialization
methods differ only for the way to obtain an initial scheduling solution from the
P staffing ones as one can easily see in the following.

Best shift method. All the agents of a particular type that must be in a
period are assigned to the less expensive shift that covers this period. If the
shifts have the same cost, then all the agents of a type that must be in a period
are assigned to the first shift that covers it. In particular, supposing that the
current period is p and the agent type is i, it is possible to define the set:

Shiftp
i = {j|i ∈ Q ∧ ap,j = 1}

If the shifts have different lengths, the cost of the agent i varies with the
length of the shift:

j∗ =argminj∈Shiftp
i

ci,j

xi,j∗+ = yp,i

Example 6.1. In the following example it is assumed that there are 2 call
types N = {0, 1} and 2 agent types T = {0, 1}. Moreover the two skill sets
are: S0 = {0} and S1 = {0, 1}. There are three shifts (Q = {0, 1, 2}) and three
periods (P = {0, 1, 2}) in total such that:

A =

 1 1 0
1 1 1
1 0 1


For this reason the costs vary (table 6.1). Moreover, in order to show how this

52

shift 0 shift 1 shift 2
agent type 0 3 2 2
agent type 1 6 5 5

Table 6.1: cost matrix (agent type/ shift)

period 0 period 1 period 2
agent type 0 10 5 6
agent type 1 7 8 9

Table 6.2: staffing matrix (agent type/ period)

method works, it is also assumed that the staffing requirements are the ones
indicated in table 6.2. Firstly it is considered the case p = 0, then the less
expensive shift covering it is 1 for both agent types and so it means: x01 = 10
and x11 = 7.

Then p = 1 and again the less expensive shift covering it is 1 and so:x01 = 15
and x11 = 15.

Finally p = 2 and the less expensive shift is 2: x02 = 6 and x12 = 9.
The starting scheduling solution is reported in table 6.3.

shift 0 shift 1 shift 2
agent type 0 0 15 6
agent type 1 0 15 9

Table 6.3: scheduling matrix (agent type/ shift)

Random Method. All the agents of a type that must be in a period are
assigned to a shift that is chosen randomly among the ones that cover it. It is
possible to describe this method, supposing, again, that the current period is p
and the agent type is i:

xi,j+ = yp,j

where j ∈ Shiftp
i

Round-robin method. All the agents of a type that must be in a period are
distributed on all shifts that cover it. In other words, supposing to be in a
particular period p, the method slides the list of shifts that cover it in a circular
way and inserts an agent at a time until the number of the agents that has to
stay in p is equal to zero. In figure 6.1, this method is summarize supposing
that the current period is p and the agent type is i.

Example 6.2. Considering the example 6.1, in the following it is shown how
the uniform method works. It is important to remark that, in order to simplify
and to allow the reader to follow all the steps, it is shown the method for a
particular couple (period p, agent type i): p = 0 and i = 0. 2

2In the following, we are assuming that the method head, applied to a list, returns its first
element, instead tail the last one.

53

Algorithm Round-robin
1. ULp

i = {j ∈ Q ∧Ap,j = 1};
2. j =head(ULp

i);
3. while (staffingp,i 6= 0)
4. do
5. xi,j+ = 1;
6. staffingp,i −−;
7. if (j=tail(ULp

i))
8. then j =head(ULp

i);
9. else
10. j =next(ULp

i);

Figure 6.1: Round-robin method scheme

Firstly, as reported in figure 6.1, the following set is built: UL0
0 = {0, 1}.

Then the shift j is chosen as j = head(UL0
0) = 0 and 1 agent of type 0 is

assigned to the shift 0: x00 = 1; the corresponding staffing is decreased by 1
becoming y00 = 9. In the next step, j = 1 and 1 agent of type 0 is assigned to
the shift 1: x01 = 1; the staffing becomes y00 = 8. This is done until there are
0 agents to be assigned and at the end of the procedure, the reader can simply
verify that: x00 = 5 and x01 = 5. It means that the 0 agents required in the
period 0 are uniformly distributed in the shifts of type 0 and 1.

Extending the same considerations (mutatis mutandis), one can obtain the
starting scheduling matrix for this particular example applying the Round-robin
method.

Complex method : the staffing matrix rows are obtained solving the staffing
problems for each period. Let’s suppose to be in the row p (the staffing vector
of the period p called v). For each agent type a, all the agents of this type,
already scheduled in the period p, are computed (summing all the agents of
type a that are in the shifts that cover the period p). If this number is less than
va, the method adds agents in order to satisfy the staffing requirements. These
agents are added in a shift that covers the period p and at the same time has
the maximum coverage.

Definition 6.3. The shift coverage
Let be p the current period and j a shift index. We can define as coverage

of j the number of periods p′ (from p + 1 . . . |P |) that it covers.

In figure 6.2, this method is summarize supposing that current period is p
and agent type is i.

Example 6.3. Again the general scenario presented in the example 6.1 is con-
sidered and applied to this particular method.

As in the example 6.2, this procedure is shown for a particular couple (period
p, agent type i): p = 0 and i = 0.

Firstly, the coverage of the shift 0 and the shift 1 (the shift 2 does not cover
the period p) are defined: C0

0 = 2 and C0
1 = 1. The shift whose coverage

is maximum is 0. It means that, following the general steps presented above:
sum0

0 = 0 and x00 = 10.
Mutatis mutandis, one can easily find the complete scheduling matrix.

54

Algorithm Complex
1. Cp

j =| {p′ | Ap′,j = 1 ∧Ap,j = 1, p
′
= p + 1, . . . , p} |;

2. sump
i =

∑|Q|
j=1,|Ap,j=1 xi,j ;

3. if (sump
i < staffingp,i)

4. then ∗ =argmaxj∈QCp
j ;

5. xi∗,j∗+ = staffingp,i − sump
i ;

Figure 6.2: Complex method scheme

Fifth method : a copy of the staffing matrix staffing is defined and it is
called staffing1. For each period p and agent type a, the following procedure
is performed: until staffing1p,a is greater than 0, an agent of type a is assigned
to a particular shift that covers the period p, chosen in the following way:

1. the excess staffing for each period p′ and for each agent type j is found as:

upLoadp′,j = currentStaffingp′,j − staffingp′,j ;

currentStaffing is the staffing matrix containing the agents scheduled
until this iteration.

2. for each shift s that covers the period p, the surplus of agents of type a,
supLoada,s, in all the periods covered by s, is found summing upLoadp′,a

for each period p′ covered by s:

supLoada,s =
∑

p′∈P |Ap′,s=1 upLoadp′,a ∀s ∈ Q|Ap,s = 1

3. the shift s∗ is chosen such that: s∗ = argmins=1,...,Q∧Ap,s==1supLoada,s;

4. schedulings∗,a is increased by one and staffing1p,a is decreased by one.

Example 6.4. Considering the example 6.1, it is possible to see how this
method works. The particular couple (period p, agent type i), chosen to show
the steps, is: p = 0 and i = 0.

Firstly the matrix UpLoad is computed and is reported in table 6.4, being
currentStaffing a matrix whose all elements are equal to 0.

period 0 period 1 period 2
agent type 0 -10 -5 -6
agent type 1 -7 -8 -9

Table 6.4: UpLoad matrix (agent type/ period)

Then SupLoad00 and SupLoad01 can be obtain being shift 0 and shift 1 the
only one that cover the period 0: SupLoad00 = −21 and SupLoad01 = −15.
Then s∗ = 0 and 1 agent of type 0 is assigned to the shift s∗ = 0: x00 = 1.
To this scheduling solution corresponds the following staffing one, reporting the
only components not equal to 0: currentStaffing00 = 1, currentStaffing01 =
1 and currentStaffing02 = 1.

55

period 0 period 1 period 2
agent type 0 -9 -4 -5
agent type 1 -7 -8 -9

Table 6.5: UpLoad matrix (agent type/ period)

The next iteration:
The matrix UpLoad in table 6.5 is obtained considering that the current

staffing is the one reported above. Then SupLoad00 and SupLoad01 can be
obtain: SupLoad00 = −18 and SupLoad01 = −13. Then s∗ = 0 and 1 agent of
type 0 is assigned to the shift s∗ = 0: x00 = 2. To this scheduling solution corre-
sponds the following staffing one, reporting the only components not equal to 0:
currentStaffing00 = 2, currentStaffing01 = 2 and currentStaffing02 = 2.

In order to obtain the scheduling solution, one can continue applying the
same considerations to the other cases. It is evident that this method is applied
only in the case in which the elements of UpLoad are > 0 because of it tries to
associate agents to shifts in a way that the load is low.

In the section related to experiments, one can easily see that the round-robin
method gives the best solution.

Moves. After finding an initial solution, some moves are applied to the
current one in order to explore its neighborhood in a way that it is possible to
improve it. Two different types of moves are performed.

Remove move: applied to the current solution , if it is possible, it returns
another solution whose cost is reduced by removing agents (figure 6.3). The
most important parameter of this procedure is r: the number of agents that it
tries to reduce at a particular iteration. Initially set to the maximum number
of agents in each shift maxi,jxi,j , during the procedure, it is decreased by one
if the current value doesn’t produce any LD-feasible solution. Only when it
becomes zero, the method ends. At this point, it is important to remark that a
scheduling solution is LD-feasible if all the periods are LD-feasible. Considering
the scheduling matrix x, in a generic iteration, the candidates to be reduced
are only the elements xi,j ≥ r. Among all of these candidates, only a sub-set
is chosen according to some parameters in order to reduce the computational
time. The candidates in the sub-set are randomly processed and between the
LD-feasible solutions, obtained reducing xi,j by r, the one that gives the best
cost reduction is chosen. The stop criterion of this procedure is verified either
when the time limit is reached or when the value of r becomes zero. In a variant
of the algorithm, the sub-set of candidates is not sorted in a random way but
by increasing cost of the pair <agent-shift>. In fact ,in this way, the most
expensive agents are always taken. But, comparing to the first approach, it
does not give any improvement on the cost of the final solution.

Switch move: it tries to reduce the solution cost performing some agents
moves, where the moves are related to the pairs <agent-shift>. Each iteration of
this procedure is characterized by: a pivot (a−, s−) and a parameter Φ ≥ 0. The
neighborhood, in a generic iteration, is made up by all the solutions obtained
removing Φ agents of type a− by the shift s− and adding Φ agents of a type
a+ in a shift s+. In other words, the method performs the following operations:
xa−,s− = xa−,s− − Φ and xa+,s+ = xa+,s+ + Φ. The number of agents (Φ), to

56

 r:=max[xij]
 currentSolution
 time:=0

RemoveList=defineList(x,r)

 RemoveList1=reduce(RemoveList)

 sort(RemoveList1)

 Neighbors=neig(x,RemoveList1,r)

solution=best(Neighbors)
currentSolution=solution

r--

is time==time_limit or r==0?

end

no

ye
s

Figure 6.3: Remove move
57

be initially switched, is randomly chosen among the variables xa,s. The new
pair (a+, s+) is chosen such that c(a+, s+) < c(a−, s−) in order to obtain a
cost reduction. A pivot (a−, s−) and a size Φ are considered infeasible if the
neighborhood, characterized by the relative move, is empty (infeasibility1) or it
is made up by LD-infeasible solutions (infeasibility2). In a generic switch move
iteration, the candidate pivots, belonging to the so called Pivots List, are chosen
as the elements (a, s) of the scheduling matrix x such that xa,s ≥ Φ. From all of
these candidates, the couples (a′, s′) are removed such that the move (Φ

′
, (a′, s′))

with Φ′ ≤ Φ is not feasible, obtaining a new Pivots List1. The pivot (a−, s−)
is chosen in a random way from Pivots List1. The move (Φ, (a−, s−)) can be
in the case of infeasibility1 if its neighborhood is empty and so it is tagged
as a infeasible move. Otherwise, the neighborhoodList is defined as the list of
the neighbors of (a−, s−) and sorted in a random way. Among the elements
in neighborhoodList, the one, that generate the LD-feasible solution with the
maximum cost reduction, is chosen. If there are no LD-feasible neighbors, the
case of infeasibility2 occurs and so the move is tagged as not-feasible.

The parameter Φ is reduced by 1 after each switch moves and the procedure
ends when it becomes 0. Figure 6.4 describes the algorithm to compute the
neighborhood of a pivot (a−, s−).

Algorithm NEIGHBORHOOD
1. Φ←random({xa,s, a = 1, . . . , |T |, s = 1, . . . , |Q|});
2. Pivots={(a, s) | xa,s ≥ Φ ∧ a = 1, . . . , |T |, s = 1, . . . , |Q|};
3. Pivots1=Pivots \ {a′ , s′) ∈ Pivots | ((a′ , s′),Φ′) is-not-feasible,Φ

′ ≤
Φ};

4. (a−, s−)←random(Pivots1);
5. Neib(a−,s−) = {(a, s) | c(a, s) < c(a−, s−)};

Figure 6.4: Computing the set of cost-reducing neighbors of candidate (a−, s−):
Neib(a−,s−)

6.3 The second phase

This phase is necessary because of the LD-approximation, in stage 1, can intro-
duce some errors and so the solution may be infeasible or far from the optimal
one(Avramidis et al. (2006)).

This is relevant, in particular, in the scheduling problem, in which the LD-
feasibility check is applied independently period by period.

The service levels evaluator in this stage is the simulator. At the end of
stage 1, two different cases can occur:

1. the solution is SIM-feasible (see Avramidis et al. (2006) for more details
about);

2. the solution is not SIM-feasible: it has to be modified in order to become
SIM- feasible, calling SIMAdd procedure.

58

6.3.1 SimAdd procedure

This procedure adds agents until the SIM-feasibility is reached. The agent type
a∗ that has to be added and the shift s∗ in which it is added are chosen on the
base of the unsatisfied service levels.

Firstly the pair (a∗, s∗) is found on the base of the period grouped service
levels. The call type m∗ with the maximum service level violation, obtained
summing on all periods the differences among the target service level and the
reached one, is selected. Then an agent of type a∗ is added in a shift s∗,
maximizing the fraction of the agent-type’s time spent serving call m∗, until all
the no global SL are satisfied. Defining:

1. s̃p̄,m,a as the service rate of the call type m for the agent type a in the
period p̄ computed by the simulator;

2. sp̄,m,a as the correspondent service rate given by the call center parame-
ters;

3. αp̄,m as the estimate of the simulator for the service level of the call type
m in the period p̄;

4. lp̄,m as the target service level of the call type m in the period p̄;

5. Sum(p̄, a) =
∑

m|m∈Sa s̃p̄,m,a/sp̄,m,a

it is possible to have (a∗, s∗)=argmaxa∈T,s∈Q

∑
p̄|Ap̄s=1 s̃p̄,m∗,a/(sp̄,m∗,a∗Sum(p̄, a)).

If all the service levels aggregated per period are satisfied, the global service
level is considered in the following manner: iteratively an agent type a∗ in a shift
s∗ is added such that (a∗, s∗) maximizes the occupancy-to-cost ratio over all the
shifts, i.e. (a∗, s∗) =argmaxa∈T,s∈Q

∑
p̄|Ap̄s=1 Sum(p̄, a)/(schedulea,j ∗ c(a, j))

The SimAdd procedure is executed until all the service levels are not satis-
fied.

6.3.2 SimRemove procedure

This procedure is applied both the solution is already Sim-feasible and it is not
(and so SimAdd procedure is called). Calling the SimRemove procedure, the
solution cost is tried to be reduced removing an agent at each time.

In this case the agent type to be removed and the shift from which it is
removed are chosen on the base of the service levels and the agents occupancy.

In a generic iteration the candidates list is given by the couples (a, s) such
that xa,s ≥ 0. For each candidate, the slack is computed in the following
manner:

χ̃a,s =
∑

p̄|Ap̄,s=1

∑
m w̃m ∗ (αp̄,m − lp̄,m)

where

wm =
∑

p̄|Ap̄,s=1
s̃p̄,m,a

sp̄,m,a

and so

w̃m = wm∑
m

wm

59

then

χ(a,s) = χ̃(a,s) ∗ c(a, s)

The candidates list π is sorted by decreasing values of χ(a,s) and for each
candidate π(i) ≡ (a, s) an agent from xa,s is removed. If the obtained solution
is SIM-feasible, π(i) is removed from the candidate list if xa,s = 0 and the
slacks are again computed; otherwise π(i) is removed and the removed agent is
reinserted and then the procedure can consider the next candidate in the sorted
list. The iteration ends if and only if the candidate list is empty.

Figure 6.5 illustrates the entire RS algorithm.

Initilization

LD - Remove

LD - Switch

SIM - Feasible ?

YES

SIM - Remove

NO
SIM - Add

END

First Stage

Second Stage

Figure 6.5: Remove move

60

Chapter 7

Optimization with
constraints on the
abandonments

In this chapter, a version of the problem P1 is proposed in order to take in
account the abandonments.

The main goal is to show that other types of constraints than those on the
service levels can be handled as well.

In fact in real call centers, there are usually constraints on the service levels,
on the abandonments, on the server’s utilization for each server and so on. In
the following, we show an example of this extension to handle the abandonments
and the service levels constraints at the same time.

7.1 Definition for abandonments in a call center

Usually, in fact, a call center manager is very interested in controlling the number
of abandonments. Having a high number of abandonments is a clear measure of
the quality of services that the center offers. It means that something is wrong
in managing the center and so something should be changed. It is evident that
controlling the service levels, trying to reach the targets, it is a first method to
improve the quality of services. But it should be remarked that it is not the
only one.

It is very difficult to model the customer’s abandonments due to the vari-
ability of the factors that influence them. For example some callers decide to
abandon as soon they are put in queue if all the lines are busy; some of them,
instead, decide to abandon only after a time is passed.

An interesting factor is the psychology of abandonment and the ways to
influence it. There is, in fact, a set of primitives, in operational queueing models,
related to the behavior of the customers who have to be served. In literature,
particular attention is given to patience and abandonment. In any case, one has
to decide (among the other things) how the so-called patience time has to be
represented.

61

The customer decide to abandon only on the base of time spent in queue.But
why do people abandon at entering the queue? They have no patience at all?

A possible way used to explain abandonments is based on the following
criterion: ”people make their decision on the time that they expect that they
still have to wait” (Koole 2005). In fact, some customers abandon at entering
the queue because they expect their waiting time surpasses the time that they
accept to wait.

In order to figure out, it is important to remark that usually a customer
abandons because of he/she does not know a priori his/her waiting time. Re-
maining in queue teaches to a customer about his/her own waiting time.((Koole
2005)).

One can mathematically model the impatience function through out the
cumulative distribution function F that represents the distribution function of
the impatience time. Its corresponding hazard rate function, assuming that F
has a density f = F ′, is

h(t) = f(t)
(1−F (t)) , t ≥ 0.

In fact h(t)dt can be considered like the probability that a customer, who
has already waited for t units of time, will abandon within the next dt units,
i.e. during (t, t + dt]. For this reason , the hazard rate h(t) represents a natural
dynamic depiction of (im)patience, as it evolves while waiting. It is very impor-
tant to remark that, usually, the call center managers want to provide a sort of
priority to a/some particular class of customers.

In general, high priority customers could be either more or less impatient,
and the hazard rate can be monotone or not, depending on the call center.

In this case, the impatience of priority customers lies strictly below that of
regular customers, so that the high priority customers emerge as (stochastically)
more patient (less impatient) than regular customers. Second, the impatience
functions of both types of customers are not monotone (see figure 7.1 from Gans
et al. (2003b)).

To be able to find a ”good” model to represent abandonments is one of the
most important goal for managing a call center.

The first model of impatience was developed by Palm [123] in the 1940s
estimating the inconvenience of waiting. Introducing an inconvenience function
I(t), t ≥ 0, he defined its derivative as irritation of the customer: dI(t) =
c ∗ tl ∗ dt, t ≥ 0 and it is proportional to the hazard function and the patience
distribution is Weibull.

Zohar et al. (2002) consider the following linear relationship between the
abandonment fraction and expected delay, considering for patience that is ex-
ponentially distributed with parameter θ:

PAbandonment = θ ∗ E[wait]

In order to verify this relationship, there is an empirical support shown in
figure 7.2 taken from Brown et al. (2005a). In fact, in this figure, it is shown,
using some experiments, as the relationship between the fraction abandoning
and the average waiting time (in second) is supported by a linear trend.

Through this plot, Zohar et al. (2002) tried to represent the effect of cus-
tomer learning. In fact, the customers should learn using the experience and
consequently adjust their expectations concerning delay. Only in this way, they

62

Time

H
az

ar
d

 R
at

e

Regular Customers
Priority Customers

0 100 200 300 400

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5
0.

00
6

Hazard Rate: Empirical (Im)Patience

Figure 7.1: Impatience Functions of Regular and Priority Customers

Fr
ac

ti
o

n
 A

b
an

d
o

n
in

g

50 100 150 200 250

Average Waiting Time (seconds)

Figure 7.2: Empirical Relationship Between Abandonment and Delay

63

can become more patient. This effect tends to flatten the observed slope of plots
(7.2).

7.2 An extension of the cutting plane algorithm
for controlling the abandonment probability

As already shown in the previous section of this chapter, it is very important
to control the abandonment probability of the customers in order to obtain
good performance of the system. In this section, it is shown how to control the
abandonment using the cutting plane algorithm.

Firstly, it is important to clarify that three different types of statistics on
the abandonments exist:

• ABANDONMENT-RATIO : Represents the fraction of the expected num-
ber of contacts having left the system without service over the total ex-
pected number of arrivals.

• ABANDONMENTRATIO-AFTER-AWT : Represents the fraction of the
expected number of contacts having left the system without service and
after a waiting time greater than or equal to the acceptable waiting time,
over the total expected number of arrivals.

• ABANDONMENTRATIO-BEFORE-AWT : Represents the fraction of the
expected number of contacts having left the system without service and
without waiting the acceptable waiting time, over the total expected num-
ber of arrivals.

In the new version of CP (i.e. the one plus the abandonments), constraints
on all of these three statistics are imposed. At the first time, changing the
scheduling problem P1 and imposing new constraints means also to change the
call center parameters considering so far. In fact, now, there are also new three
targets:

• abandonParams

• abandonParamsBeforeAWT

• abandonParamsAfterAWT

They are represented by matrices. All of them have dimension equal to (N +
1)× (P + 1) (where N is the number of call types and P the number of periods
as already said). The generical element of a matrix (i, j), (i ∈ N, j ∈ P) is
the upper bound imposed on the abandonment probability of the corresponding
type (abandon, abandon-Before-AWT, abandon-After-AWT) for the call i in
the period j. Moreover the row whose index is N +1 represents the parameters
grouped by call type; the column P + 1, instead, the ones grouped by period;
the last element in position ((N + 1), (P + 1)) represents the global parameter.

At this point, let ai,j be the abandonment probability of the call type i in
the period j (supposing a generic type of statistic among the three ones). Then
the generical constraint imposed has the following expression:

ai,j ≤ ui,j

64

where ui,j is the upper bound decided by the user.
Due to the fact that the functions a·,· are non linear at all, then it is necessary

to find, also for them, linear approximations âi,j using the simulator. The
corresponding constraint is

âi,j ≤ ui,j

7.2.1 How to find the linear cuts

As already remarked in the Chapter 5, the cutting plane methodology replaces
the non linear constraints on the service levels by linear cuts that are found
using the simulator. In this chapter, this method is extended in order to control
the abandonment probability too. It means that the non linear constraints on
the abandonment probability are replaced by linear equations using again the
simulator. In order to understand well how it works, let’s suppose that y is
the current staffing solution found at a generical iteration of the algorithm and
let’s suppose that it does not satisfy a generical constraint on the abandonment
probability:

ai,j(y) > ui,j

It is important to remark that the a·,· are functions of the staffing solution.
In order to replace this equation by a linear cut, adopting the same method-
ology, already described for the original scheduling problem P1 and using the
simulation, it is possible to find the subgradient q such that:

A(y) .= qt × y − qt × y + ai,j(y) ≤ ui,j (7.1)

It could be considered the simple adoption of the same algorithm to this new
version of the scheduling problem that controls at the same time the abandon-
ment probability too.

But, as already remarked in the chapter 5, an important property that the
non linear function, giving the abandonment probability, must satisfy is the
concavity. In fact only in this specific case, it is sure that the found subgradient
is the right one.

So the mathematical equation 7.1 has to be replaced by a new one:

1−A(y) = 1− qt × y − qt × y + ai,j(y) (7.2)

In order to understand the 7.2, it is important to note that increasing the
number of agents working at the call center, the abandonment probability fol-
lows a trend shown in figure 7.3.

In figure 7.3, it is shown a reasonable behavior: increasing the number of
agents working at the call center, the abandonment probability, starting from 1
(no agents at the call center), decreases until reaching low values. On the other
hand, in order to guarantee the concavity property of the functions, the inverse
of the abandonment probability is plot too. In fact in figure 7.3, the black curve
and the red one represent the function A(y) and 1−A(y) respectively.

Firstly, one can re-write 7.1, in a generic expression as in the follow:

A(y) = qt × y − qt × y + a(y) ≤ u (7.3)

65

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10

of agents

pr
ob

ab
ili

ty

A 1-A

Figure 7.3: The abandonment probability

In order to obtain the 7.2, it is necessary to manipulate 7.3:

−A(y) = −qt × y + qt × y − a(y) ≥ −u (7.4)

Then

1−A(y) = 1− qt × y + qt × y − a(y) ≥ 1− u (7.5)

Finally

qt × y ≤ −a + qt × y + u (7.6)

And so 7.6 represents the cut to be added.
A generic component of the subgradient is estimated in the following way:

q̃i =
a(y + d× ej)− a(y)

d
(7.7)

To choose d and ej , one can follow the same considerations done with the
service levels constraints. In this case, two aspects are important:

• the priority used for adding cuts: the cuts related to the service levels
and the ones to the abandonment probability are examined separately. At
each iteration cuts of both types can be added;

• during the execution of the algorithm, cuts of all the three abandonment
types are added.

For the computational results, see the related section of this thesis.

66

Chapter 8

New solution approaches

This chapter is the final part of this thesis in which some possible solving ap-
proaches, that in any case will be future works, are analyzed and presented in
order to solve the scheduling problem for a multi-skill call center.

In particular some of them are improvements of the CP algorithm described
so far while others are completely new.

Some of these new approaches were suggested by Prof. Koole 1 from the
University of Amsterdam (Netherlands) starting from a Max-flow problem for-
mulation in order to generalize to the scheduling one.

In the following, two different solution approaches are proposed for solving
the scheduling problem of a multiskill call center.

The former is a new solution method described in section 8.3. The latter, in-
stead, is a cutting plane approach initialized using a different max flow problem
(section 8.4).

8.1 The Max-flow problem

The Max-flow problem is the problem to find a flow from a source to a destination
that satisfies the so called balance equation(see definition 8.1) and maximum
and minimum capacity constraints on each arc (see also (Schoen 2006) for more
details).

Definition 8.1. The balance equation
For any transient node of the network the input flow has to be equal to the

output one; for the source node its output flow has to be equal to the input flow
into the destination one.

In this problem the circulating flow amount is a variable and its definition
is given in 8.2.

Definition 8.2. Circulating Flow
Assuming that in the network there are only a source and a destination and

the other nodes are transient, the circulating flow represents the sum of the
output flows from the source node.

1one can find info at this web page Ger Koole

67

http://www.math.vu.nl/~koole/

For the balance equation, the circulating flow is equal to the input flow into
the destination node. If in the network there are more than one source node
then one can easily report himself to the previous situation inserting a dummy
node linked to each source node by arches whose maximum capacity is infinity
(the same thing for the destinations).

In general, one can formulate the max-flow problem in this way:
Let be V the nodes set and E ⊆ V × V the arches set of the network.

Moreover, s ∈ V is the source node and t ∈ V is the destination one. Cminij

represents the minimum capacity of the arc (i, j) ∈ E (usually equal to 0) and
Cmaxij the maximum capacity of the arc (i, j) ∈ E. The variables of the
problem are of two types:

• fij : ∀(i, j) ∈ E represents the flow on the edge (i, j);

• val represents the flow value.

Instead the constraints are of two types:

• the balance equations:∑
(v,j)∈E fv,j −

∑
(i,v)∈E fi,v = bv∀v ∈ V

where bv is equal to val if v = s; −val if v = t; 0 otherwise;

• Bounds on the flow on each arc:

Cmini,j ≤ fi,j ≤ Cmaxi,j∀(i, j) ∈ E

The objective is to maximize the flow value. In this way the general max-flow
formulation can be presented in 8.1

max val∑
(v,j)∈E fv,j −

∑
(i,v)∈E fi,v = bv∀v ∈ V

Cmini,j ≤ fi,j ≤ Cmaxi,j∀(i, j) ∈ E 8.1

This problem has a lot of applications in real life. For example, to find the
maximum water quantity in a distribution network or the analysis of the urban
traffic flows or the emergency exits design of public buildings.

If the minimum and maximum capacities on the arches are integer, then all
the feasible solutions, in particular the optimal one, will be integer too.

8.2 The scheduling problem as a maximum flow
problem

In this section, it is assumed that:

• N is the set of call types

• b(i) is the demand for type i ∈ N

• y(S) is the supply of agents whose skill set S ⊂ N

68

In order to formulate the scheduling problem for a multi-skill call center, it
is important to add to the previous assumptions the following ones:

• Q, the set of shifts;

• P , the set of time periods;

• gt(S), the number of generalists necessary to deal with the traffic from
skill set S ⊂ N during period t, according to some appropriate traffic
model (e.g., Erlang A), and some SL definition;

• atj = 1 if an agent with shift j works during period t, 0 otherwise;

• c(i, S), the cost of an agent having shift i and skill set S;

• x(i, S), the number of agents having shift i and skill set S (the decision
variable);

• p, a parameter indicating the amount of efficiency loss due to multi-skilling
compared to having only fully x-trained agents (e.g., p = 1.05);

• q, a parameter indicating the amount of x-training (e.g., q = 0.25).

The shift scheduling algorithm proposed by Koole and implemented and
analyzed in this thesis works as follow:

Schema 8.1.

1. choose some values of p and q;

2. solve the MPP below which gives values for x;

3. simulate this schedule;

4. adapt p and q accordingly;

5. repeat from 2 until optimum found.

The MPP is as follows:

min
∑

j∈Q

∑
S:S⊂N c(j, S)x(j, S) (1)

subject to∑
j∈Q atjx(j, S) = yt(S) ∀S ⊂ N, t ∈ P (2)∑
S′:S′∩S 6=∅ yt(S′) ≥ pgt(S) ∀S ⊂ N, t ∈ P (3)∑
S′:S′∩S 6=∅,S′ 6⊂S yt(S′) ≥ qgt(S) ∀S ⊂ N,S 6= N, t ∈ P (4)

x(j, S) ≥ 0 and integer ∀j ∈ Q, S ⊂ N (5)

(MPP)

The (2) can be modified replacing = by ≥ if it is better from an optimization
point of view.

69

Another interesting option could be to replace
∑

j∈Q atjx(j, S) ≥ yt(S) by∑
j∈Q

atjx(j, S) = yt(S) + zt(S)

One can add a constraint of the form
∑

t zt(S) ≥ z(S), with z(S) represents
the time that agents with skill set S are in total needed for other work such as
responding to emails. In fact, a new single-period max-flow can be formulated
for this.

Furthermore it is natural to add constraints of the form
∑

j∈Q′ x(j, S) ≤ e(S)
or = e(S), where e(S) is the number of agents with skill set S and a contract
that allows them to do the shifts in the set Q′.

In the following sections, two different approaches, for solving the scheduling
problem for a multiskill call center, are presented and described. The former is
the original approach as presented in schema 8.1. The latter is an hybrid one in
the sense that it starts solving MPP and adds cuts as found in CP algorithm.

8.3 The original approach

In order to implement the approach presented in section 8.2 and described in
schema 8.1, the variables x(i, S) (the number of agents having shift j and skill
set S) have to be interpreted as the xij introduced in §2. Then they have to be
seen as the number of agents of type i assigned to the shift j. At the same time,
c(i, S) (the cost of an agent having shift j and skill set S) has to be interpreted
as cij (the cost of an agent type i assigned to the shift j) introduced in §2.

The values of gt(S) (i.e. the number of generalists necessary to deal with
the traffic from skill set S ⊂ N during period t) become gt(i), i ∈ T (where T is
the set of agents types). It means that they assume the following meaning: the
number of generalists necessary to deal with the traffic from skill set Si ⊂ N
during period t. Moreover they are computed using the Erlang formula (Erlang-
A or Erlang-C if there are or not abandons respectively) as in the follow:

gt(i) =
∑
j∈Si

sjp

where sjp represents the number of agents needed to handle the calls of type j
in period p computed using one of the Erlang formulas accordingly .

In practise it is supposed that the number of generalists, necessary to deal
with the traffic from skill set Si, is equal to the sum of agents needed to handle
all the call types in the set Si.

The values of p and q are adapted if the current solution does not respect all
the service level constraints. In this case, the adaptation procedure increases p
and q by a fixed value (0.05 in the performed tests (see chapter Chapter 9 for
more details)) starting from a value that is an input data to the algorithm.

At the end of the procedure, the Local Search is performed in order to
improve the quality of the solution, if it is possible, and it is the same of the
one already described in chapter Chapter 5.

In the example 8.1,one can see as the approach works.

70

Example 8.1. In the following the example 3.2 will be considered. Using the
Erlang-C formula and observing the particular structure of the shifts and of the
skill sets, it is possible to affirm that the optimal solution has 35 agents of type
1, 35 2 type agents and 34 3 type agents. In this way, in total this example has
104 agents.

Considering the formulation (MPP), in particular the constraints in which
there are the two parameters p and q, it is possible to write:

y(0, 0) + y(1, 0) + y(2, 0) ≥ pg0(0)
y(0, 1) + y(1, 1) + y(2, 1) ≥ pg0(1)
y(0, 2) + y(1, 2) + y(2, 2) ≥ pg0(2)
y(0, 0) + y(1, 0) + y(2, 0) ≥ pg1(0)
y(0, 1) + y(1, 1) + y(2, 1) ≥ pg1(1)
y(0, 2) + y(1, 2) + y(2, 2) ≥ pg1(2)
y(0, 0) + y(1, 0) + y(2, 0) ≥ pg2(0)
y(0, 1) + y(1, 1) + y(2, 1) ≥ pg2(1)
y(0, 2) + y(1, 2) + y(2, 2) ≥ pg2(2)

y(1, 0) + y(2, 0) ≥ qg0(0)
y(1, 1) + y(2, 1) ≥ qg0(1)
y(1, 2) + y(2, 2) ≥ qg0(2)
y(0, 0) + y(2, 0) ≥ qg1(0)
y(0, 1) + y(2, 1) ≥ qg1(1)
y(0, 2) + y(2, 2) ≥ qg1(2)
y(0, 0) + y(1, 0) ≥ qg2(0)
y(0, 1) + y(1, 1) ≥ qg2(1)
y(0, 2) + y(1, 2) ≥ qg2(2)

The optimal values of the parameters p and q allow to write the following
constraints:

y(0, 0) + y(1, 0) + y(2, 0) ≥ 96.28
y(0, 0) + y(1, 0) + y(2, 0) ≥ 48.97
y(0, 0) + y(1, 0) + y(2, 0) ≥ 48.97
y(0, 1) + y(1, 1) + y(2, 1) ≥ 96.28
y(0, 1) + y(1, 1) + y(2, 1) ≥ 48.97
y(0, 1) + y(1, 1) + y(2, 1) ≥ 48.97
y(0, 2) + y(1, 2) + y(2, 2) ≥ 96.28
y(0, 2) + y(1, 2) + y(2, 2) ≥ 48.97
y(0, 2) + y(1, 2) + y(2, 2) ≥ 48.97
y(1, 0) + y(2, 0) ≥ 69.6
y(1, 1) + y(2, 1) ≥ 35.4
y(1, 2) + y(2, 2) ≥ 35.4
y(0, 0) + y(2, 0) ≥ 35.4
y(0, 0) + y(1, 0) ≥ 35.4
y(0, 1) + y(2, 1) ≥ 69.6
y(0, 1) + y(1, 1) ≥ 35.4
y(0, 2) + y(2, 2) ≥ 35.4
y(0, 2) + y(1, 2) ≥ 69.6

71

As one can easily see, only some of these constraints are dominant:

y(0, 0) + y(1, 0) + y(2, 0) ≥ 96.28
y(0, 1) + y(1, 1) + y(2, 1) ≥ 96.28
y(0, 2) + y(1, 2) + y(2, 2) ≥ 96.28
y(1, 0) + y(2, 0) ≥ 69.6
y(1, 1) + y(2, 1) ≥ 35.4
y(1, 2) + y(2, 2) ≥ 35.4
y(0, 0) + y(2, 0) ≥ 35.4
y(0, 1) + y(2, 1) ≥ 69.6
y(0, 2) + y(2, 2) ≥ 35.4
y(0, 0) + y(1, 0) ≥ 35.4
y(0, 1) + y(1, 1) ≥ 35.4
y(0, 2) + y(1, 2) ≥ 69.6

In this way, this method gives a solution with 35 agents of each type (in
total 105). The next phase of Local Search has eliminated one agent allowing
to obtain a final solution with 104 agents in total.

8.4 The hybrid approach

Using the model (MPP), it is possible to design a new algorithm that uses, at
the same time, the schema 8.1 and the general idea of CP presented in Chapter
5.

As already remarked, a very important phase in CP is the initialization one.
In the original version of CP (presented in Chapter 5), it is performed solving
a max flow problem that allows starting with a number of agents that, in each
period, is a given fraction of the load.

The hybrid approach represents a possible variation of the initialization
phase of CP and it can be obtained replacing the max flow problem (defined
in Chapter 5) with MPP. This means that in this new method, the starting
problem is MPP while in the next phases cuts are added found as described in
Chapter 5. It is important to note that in this approach the two parameters
p and q are not changed during the execution. In fact they remain fixed and
are set experimentally. This happens because in this case the max-flow is only
a tool in order to initialize the cutting plane approach and to find an initial
solution.

On the other hand, it has to be noted that in this hybrid approach the z
variables (representing the skill transfer) are not used at all.

The schema 8.1 shows the hybrid approach.
Note that the initialization procedure used in the cutting plane algorithm

(Chapter 5) is completely different form the one used in this approach, even
though both are using a max-flow problem.

In particular, the max flow problem of the cutting plane procedure (described
in Chapter 5) assigns, for each call type, a number of agents that can handle it
greater than equal to a fraction of its load.

The max flow problem, described in this section, instead, assigns, for each
agent type a and period p, a number of agents that depends on the number of
generalist necessary to handle the calls that belong to the skill set Sa.

72

Algorithm Hybrid
Input: boolean IP
1. Initialization phase:x=solve MPP;
2. while (!x feasible)
3. do
4. add cuts (see Chapter 5 for more details)to MPP;
5. x= solve MPP;
6. if (!IP)
7. then rounding on x;
8. Local search on x;

Figure 8.1: the general scheme of the Hybrid Approach

73

Chapter 9

Computational results

In this section, it’s shown an overview about the computational results obtained
considering all the methods and algorithms described in detail in the previous
chapters.

In the following, after selecting some significant problem tests, some final
comparisons, among the three different solution approaches described in Chap-
ter 3, Chapter 5 and Chapter 6, are proposed.

The problem tests will be partially taken from real life ,inspired by Bell
Canada 1 that, as already said, is a telephonic company that supports, in part,
this research. This is done in order to have an idea about the performances of
all the methods considering realistic scenarios. In fact, as already remarked in
Chapter 4, increasing the number of call types, agent types and periods, the
complexity of the scheduling problem is increased too.

This chapter is organized as in the follow:

• firstly, it is studied and analyzed the improved version of the cutting-
plane methodology already described in section 5.6. This is done in order
to understand how CPnew is able to get more feasible solutions in regard
to the original version of the method. It is shown how the new rounding
(for the instances that require solving LP) and the new local search can
improve the quality (in terms of feasibility and cost) of the final solutions.
In particular this analysis will be done on a real instance that requires
both rounding and local search during the algorithm execution. In this
way, one can see the benefits of both new modules;

• secondly, comparisons between CP (original version) and the new one
(CPnew,described in section 5.6) are presented and analyzed;

• then, considering some problem tests, it is shown the behavior of the
different methods used to initialize the Randomized Search algorithm. In
fact in the section Chapter 6, it is affirmed that the best initialization
method, by experiments, is the so called round-robin method. In this
specific section some results are shown in order to support it (section 9.3).

1Bell Canada is a great telephonic company that for 127 years is serving Canadians com-
munication needs. Its home page is Bell Canada

74

file:www.bce.ca

• so, comparisons are shown among the three methods: TS, CPnew and RS
considering the same scenarios and looking not only to the cost of the final
result but also to its quality (see section 9.4);

• then the results, controlling, directly, the abandonment probability (method
described in Chapter 7), are presented;

• finally, also some results obtained using the two new approaches presented
in Chapter 8 are shown;

9.1 CPnew:the feasibility problem

As problem instances become larger and more complex, there is a definite pos-
sibility that cutting plane algorithm would return a set of low-cost, but only
near-feasible solutions.

While this may be acceptable in some practical settings, it is nonetheless
annoying to be unable to provide the call center manager with a solution that
meets all his/her requirements.

A simple and attractive way of tackling this problem consists in slightly
increasing the right-hand side value of the service level constraints when ap-
plying the algorithm , except, obviously, for the final long simulation that is
used to check the feasibility of solutions.In fact the long simulation is performed
considering the original targets.

This idea is tested on a large size call center, using first a value of 0.81 and
then of 0.82 as target SL for all periods.

Moreover these tests are combined with experiments on the value of the
threshold τ that is used for rounding continuous solutions to integer ones in
CP − LP version.

The rationale for investigating different values of τ is that the rounding pro-
cedure used in CP −LP introduces a heuristic element in what would otherwise
be an exact procedure and that selecting the best value for this threshold is far
from obvious.

The example (Big52),analyzed in the following, is characterized by: 20 call
types (N = {1, . . . , 20}) and 35 agent types (T = {1, . . . , 35}). The skill sets are
shown in table 9.1. The patience time of each call is exponentially distributed
with mean ν = 10 for each period. For this big example, the service levels
grouped by call type and the global one are only considered with the following
targets: l(p) = 0.8∀p ∈ P and l = 0.8.

The general setting is characterized by some particular aspects briefly de-
scribed in the following:

• the call center opens at 8:00 AM and closes at 5:00 PM;

• the working day is divided into P = 36. Each of them has a length equal
to 15-minutes (unless otherwise specificated);

• each shift must include 3 breaks: pre-lunch, lunch, and post-lunch breaks.
The first and the third breaks are 15-minute long (one period). The lunch
break is 30-minute long (2 periods);

75

• shifts can vary in length between 6.5 hours (26 periods) and 9 hours (36
periods) according to pre-defined patterns (see Table 9.11), thus yielding
285 shift types;

• calls arrive according to a piecewise Poisson process;

• the routing policy is an agents’ preference-based router (Buist and L’Ecuyer
(2005));

• All service times are exponential with service rate µ = 8 calls per hour.
Patience times have a mixture distribution: the patience is 0 with proba-
bility 0.001, and with probability 0.999, it is exponential with rate 0.1 per
minute;

• For most instances, the aggregate service level constraints for each period
are only considered. These require that at least 80% of all the calls received
during the period has to be answered within 20 seconds (i.e., τp = 20
seconds and lp = 0.8 for each p). The satisfaction of these constraints
implies that the global constraint with τ = 20 seconds and l = 0.8 is
automatically satisfied, but still this is explicitly required, because this
constraint plays a key role in the cutting-plane algorithm. In some cases,
also disaggregate SL constraints, for each couple (call type k, period p)
with τk,p = 20 seconds and lk,p = 0.5 for all k and p, are imposed.

The formula used in order to compute agents’ costs takes in account both
the number of skills in the agent’s skill set and the length of the shift being
worked.

This formula is as follows:

Formula 9.1. cij = (1 + (ηi − 1)∗ξ) ∗ lj
30 ∀i ∈ T, j ∈ Q (9.1)

where lj is the length (in periods) of shift type j, 30 is the number of periods
in a ”standard” 7h30-shift, ηi is the cardinality of Si, ∀i ∈ T, and ξ is an
instance-specific parameter representing the cost associated with each agent
skill. For this example, the parameter ξ is equal to 0.1.

All the results are obtained performing a number of replications nr equal to
8.

Moreover, two CPU time budgets are examined: 5 and 10 hours. Due to
the complexity of the scenario, the CP − LPnew is run.

The working day starts at 8:00 AM and ends at 9:00 PM and the total
number of periods is equal to 52. All the shifts have a fixed length of 7.5 hours,
thus yielding a total of 123 different shifts (considering also shifts starting at
1:00 PM and 1:30 PM in order to cover all the periods).

The arrival rates are plotted in Figure 9.1.
All 48 runs performed for each of the two target values (0.8 and 0.81) turned

out to be feasible for the 50,000-day simulation!
The results can be summarized in tables in which the meaning of each column

is reported in the following:

• n:number of days, simulated during the cuts generation process, to check
about the feasibility of the solution;

76

1

6

11

16

21

26

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

periods

ar
riv

al
 ra

te
s

types 1 and 14 type 2 type 3
type 4 type 5 types 6,7,10,11,13,15,16,18
types 8 and 20 type 9 type 12
type 17 type 19

Figure 9.1: Larger instances: arrival rates

77

Skill Agent types
1 10, 12, 14, 16, 35
2 1, 3, 5, 7, 9, 17
3 3, 11, 13, 18
4 1, 4, 10, 19, 35
5 2, 6, 7, 9, 20
6 4, 8, 11, 12, 21
7 4, 5, 9, 11, 13, 14, 22
8 1, 3, 4, 5, 9, 23
9 4, 5, 8, 12, 13, 24
10 4, 7, 9, 11, 25, 35
11 3, 8, 10, 13, 14, 26
12 1, 4, 6, 9, 14, 27
13 7, 8, 12, 14, 28
14 1, 5, 6, 13, 29
15 4, 9, 11, 30, 35
16 1, 5, 10, 31
17 2, 3, 12, 13, 32
18 1, 7, 11, 14, 33
19 2, 5, 7, 11, 12, 13, 34
20 2, 4, 6, 8, 15, 35

Table 9.1: The skill sets for the larger instances

• preR : solution at the end of the cuts generation phase and before the
second type of rounding;

• finalA : value of τ at the end of the second type of rounding (in the second
type of rounding the value of approx is adapted using the simulation);

• postR : the cost of the solution after the second type of rounding;

• postLS : the cost of the solution after the local search (i.e. final solution);

• worstSL : the worst sl (for each run the worst sl is the one that is smaller
than the target);

• % : the violation in percent of the Worst sl ((target -worstsl)/target);

• IT : number of iterations performed by the cut generation process;

• minF : the best solution cost found considering all the runs;

• medF: median value on the all costs obtained with all runs;

• max violation: the maximum violation (in percent) on all the runs;

• min pre R: minimum cost value before the second type of rounding on all
the runs;

• min post R: minimum cost value after the second rounding on all the runs;

78

• med post R: median of all the cost values after the second type of rounding
on all the runs.

Moreover , in the following, b1 and b2 are, respectively, the smaller and the
larger CPU time budget.

The tables 9.2, 9.3 and 9.4 show the final results with the target on service
levels equal to 0.8 and varying the threshold τ for the rounding module from
0.5, to 0.6 and to 0.7.

The tables 9.5, 9.6 and 9.7 show the final results with the target on service
levels equal to 0.81 and varying the threshold τ for the rounding module from
0.5, to 0.6 and to 0.7.

Finally, the tables 9.8, 9.9 and 9.10 show the final results with the target on
service levels equal to 0.82 and varying the threshold τ for the rounding module
from 0.5, to 0.6 and to 0.7.

Budget n preR finalA postR postLS worstSL target % IT minF medF max violation min pre R min post R med post R
300 122.36 0.60 129.2 134.10 0.798 0.800 0.26 40
300 130.41 0.58 137.8 131.50 0.793 0.800 0.90 64
300 133.66 0.64 145.5 135.50 0.799 0.800 0.12 41
300 125.22 0.64 137.4 131.70 0.800 0.800 0.00 73

b1 300 128.81 0.55 133.9 134.50 0.794 0.800 0.71 52 130.80 133.60 0.899 122.36 129.20 135.65
300 124.43 0.60 137.9 133.10 0.795 0.800 0.62 84
300 128.81 0.55 133.9 134.50 0.794 0.800 0.71 52
300 125.72 0.60 131.9 130.80 0.797 0.800 0.42 41
400 128.46 0.64 145.9 137.20 0.800 0.800 0.00 36
400 130.94 0.74 151.4 135.00 0.796 0.800 0.49 25
400 122.00 0.71 141.4 135.20 0.797 0.800 0.41 14
400 132.32 0.60 139.5 133.50 0.800 0.800 0.04 90

b2 400 139.60 0.60 153.0 139.00 0.794 0.800 0.80 51 130.50 137.65 0.799 116.03 139.50 149.30
400 132.59 0.60 147.2 138.30 0.800 0.800 0.03 45
400 132.71 0.68 157.4 139.00 0.800 0.800 0.00 38
400 116.03 0.88 160.3 138.10 0.799 0.800 0.15 8

Table 9.2: Results without increment of SL and τ = 0.5

Budget n preR finalA postR postLS worstSL target % IT minF medF max violation min pre R min post R med post R
300 118.92 0.66 131.8 135.40 0.790 0.800 0.75 47
300 120.90 0.60 133.0 132.30 0.800 0.800 0.18 48
300 121.19 0.56 132.0 130.90 0.800 0.800 0.00 33
300 125.50 0.77 160.2 131.70 0.790 0.800 0.84 40

b1 300 121.00 0.68 143.0 132.70 0.790 0.800 0.92 63 130.90 132.50 0.924 118.92 131.80 136.90
300 120.53 0.68 139.1 141.30 0.800 0.800 0.59 54
300 123.85 0.58 134.7 132.20 0.800 0.800 0.00 58
300 122.80 0.68 139.4 132.70 0.800 0.800 0.03 65
400 116.35 0.79 152.9 142.10 0.800 0.800 0.00 10
400 122.10 0.63 141.1 130.40 0.800 0.800 0.00 65
400 123.04 0.66 142.6 134.40 0.795 0.800 0.57 25
400 116.21 0.71 141.6 137.60 0.799 0.800 0.17 9

b2 400 124.06 0.63 135.8 134.20 0.793 0.800 0.92 116 130.40 134.30 0.915 116.21 135.80 141.35
400 127.69 0.66 140.5 131.70 0.800 0.800 0.00 27
400 117.31 0.72 139.5 131.60 0.796 0.800 0.46 22
400 127.92 0.66 144.5 136.20 0.800 0.800 0.00 27

Table 9.3: Results without increment of SL and τ = 0.6

Moreover, in all of the previous tables, one can easily see that increasing
the CPU time budget, from b1 to b2, the minpostR and the medpostR are
increased too, even if we get a better final solution. It seems to underline the
importance of the local search procedure.

It is possible to summarize all the final results by box-plots (see figures 9.2,
9.3 and 9.4).

79

Figure 9.2: No increment on the target service level, varying τ

Figure 9.3: Incrementing the target service level to 0.81, varying τ

80

Budget n preR finalA postR postLS worstSL target % IT minF medF max violation min pre R min post R med post R
300 113.56 0.72 136.9 134.20 0.796 0.800 0.49 41
300 122.95 0.64 138.9 135.10 0.798 0.800 0.22 45
300 112.11 0.66 135.8 132.80 0.800 0.800 0.00 52
300 116.50 0.68 136.2 132.30 0.798 0.800 0.25 47

b1 300 115.97 0.72 142.3 132.00 0.800 0.800 0.03 40 132.00 132.95 0.914 112.11 135.80 137.90
300 114.96 0.71 141.1 132.10 0.800 0.800 0.00 74
300 113.43 0.66 136.6 134.60 0.794 0.800 0.69 26
300 112.74 0.80 163.4 133.10 0.793 0.800 0.91 58
400 117.64 0.69 150.9 135.90 0.794 0.800 0.70 105
400 117.53 0.68 147.6 138.90 0.797 0.800 0.39 108
400 117.58 0.71 141.9 135.50 0.800 0.800 0.00 70
400 114.41 0.82 160.4 144.30 0.795 0.800 0.64 13

b2 400 113.32 0.76 149.2 132.40 0.799 0.800 0.17 15 131.80 135.55 0.697 113.32 136.80 144.75
400 114.03 0.68 138.8 131.80 0.798 0.800 0.28 29
400 115.99 0.69 139.2 132.00 0.800 0.800 0.00 43
400 118.69 0.58 136.8 135.60 0.797 0.800 0.37 70

Table 9.4: Results without increment of SL and τ = 0.7

Budget n preR finalA postR postLS worstSL target % IT minF medF max violation min pre R min post R med post R
300 127.07 0.58 133.2 135.90 0.800 0.800 0.00 50
300 127.36 0.58 134.9 135.10 0.800 0.800 0.00 30
300 127.00 0.66 137.8 132.10 0.800 0.800 0.00 64
300 127.03 0.58 133.2 134.20 0.800 0.800 0.00 56

b1 300 124.89 0.63 129.8 134.60 0.800 0.800 0.00 62 132.10 134.85 0.000 122.94 128.80 133.15
300 126.61 0.60 128.8 132.30 0.800 0.800 0.00 65
300 122.94 0.58 130.9 135.40 0.800 0.800 0.00 113
300 128.30 0.53 133.1 136.00 0.800 0.800 0.00 64
400 137.31 0.64 154.6 141.70 0.800 0.800 0.00 53
400 131.39 0.69 158.3 135.20 0.800 0.800 0.00 14
400 124.43 0.71 145.8 138.90 0.800 0.800 0.00 15
400 126.69 0.60 141.1 134.90 0.800 0.800 0.00 40

b2 400 122.38 0.72 143.2 139.70 0.800 0.800 0.00 10 132.30 136.80 0.000 118.76 141.10 150.90
400 134.87 0.68 156.2 133.10 0.800 0.800 0.00 88
400 118.76 0.76 158.5 138.40 0.800 0.800 0.00 21
400 132.22 0.60 147.2 132.30 0.800 0.800 0.00 48

Table 9.5: Results with target SL equals to 0.81 and τ = 0.5

At the first time, one can note that increasing the target service level to 0.81
allows having, at the end of the algorithm, final solutions that are completely
feasible satisfying all the service levels constraints.

On the other hand, it is not useful to increment this target to 0.82 because
it means to have at the end more expensive solutions without improving their
feasibility any more.

Moreover, these results show that the value selected for τ seems to have a
slight, but not critical impact, on the quality of the solutions. In fact, it seems
to be much more important to make sure that the runs, that are performed,
produce feasible solutions, to have a larger set to choose from. For this reason,
in the following sections, when the CPnew algorithm is used, the results, with no
increment of the target service level and increasing it to 0.81, are shown fixing
the threshold of τ to the value of 0.5, for the rounding procedure during the cut
generation process. This corresponds rounding the not integer components to
the nearest integer one.

In conclusion, these tests have clearly showed that modifying only τ was
not sufficient to consistently obtain feasible solutions, since more than half of
the runs, with target 0.8 (tables 9.2, 9.3 and 9.4), returned infeasible solutions.
However, they allow finding an even cheaper feasible solution with a cost 130.4
(obtained, seeing table 9.3, with a budget of 10 h). This again highlights the

81

Budget n preR finalA postR postLS worstSL target % IT minF medF max violation min pre R min post R med post R
300 121.98 0.60 133.0 133.40 0.800 0.800 0.00 69
300 129.80 0.61 138.7 133.70 0.800 0.800 0.00 53
300 118.78 0.63 140.9 132.50 0.800 0.800 0.00 43
300 122.43 0.61 137.9 132.20 0.800 0.800 0.00 56

b1 300 123.64 0.66 146.6 135.80 0.800 0.800 0.00 51 130.50 133.55 0.000 118.78 128.30 139.80
300 119.54 0.72 144.1 134.50 0.800 0.800 0.00 57
300 118.83 0.88 167.7 134.50 0.800 0.800 0.00 61
300 120.93 0.58 128.3 130.50 0.800 0.800 0.00 65
400 123.80 0.79 162.6 140.70 0.800 0.800 0.00 14
400 134.03 0.76 160.5 138.60 0.800 0.800 0.00 23
400 122.71 0.63 143.6 135.30 0.800 0.800 0.00 43
400 119.19 0.87 167.9 138.60 0.800 0.800 0.00 11

b2 400 131.52 0.60 136.5 139.70 0.800 0.800 0.00 104 135.30 138.60 0.000 119.19 136.50 147.00
400 121.74 0.69 150.4 138.20 0.800 0.800 0.00 14
400 122.29 0.71 141.9 136.00 0.800 0.800 0.00 32
400 121.07 0.69 140.3 139.90 0.800 0.800 0.00 40

Table 9.6: Results with target SL equals to 0.81 and τ = 0.6

Budget n preR finalA postR postLS worstSL target % IT minF medF max violation min pre R min post R med post R
300 113.98 0.68 141.2 135.80 0.800 0.800 0.00 81
300 115.42 0.66 135.4 134.90 0.800 0.800 0.00 86
300 117.45 0.72 143.8 138.10 0.800 0.800 0.00 57
300 115.50 0.66 133.6 132.50 0.800 0.800 0.00 43

b1 300 115.94 0.76 147.8 135.00 0.800 0.800 0.00 64 132.50 135.20 0.000 110.90 133.60 142.50
300 125.01 0.72 149.5 135.40 0.800 0.800 0.00 63
300 110.90 0.71 145.0 134.70 0.800 0.800 0.00 42
300 119.60 0.63 140.9 135.80 0.800 0.800 0.00 47
400 118.32 0.66 146.3 137.30 0.800 0.800 0.00 86
400 122.04 0.72 154.3 138.00 0.800 0.800 0.00 34
400 111.38 0.87 162.9 138.10 0.800 0.800 0.00 9
400 124.04 0.72 153.1 139.80 0.800 0.800 0.00 30

b2 400 116.94 0.85 163.0 141.90 0.800 0.800 0.00 22 131.60 138.05 0.000 111.38 135.50 151.85
400 119.50 0.68 135.5 131.60 0.800 0.800 0.00 86
400 122.48 0.66 150.6 135.40 0.800 0.800 0.00 107
400 116.69 0.66 141.7 139.10 0.800 0.800 0.00 75

Table 9.7: Results with target SL equals to 0.81 and τ = 0.7

stochastic nature of the overall procedure, which cannot be avoided considering
the significant amount of noise in the simulations.

9.2 CP vs CPnew: some comparisons

In this section, some comparisons are shown in order to present and analyze the
differences between the two solving approach: CP and CPnew.

In particular, this section wants to shown how the new rounding and local
search work on different call center sizes.

The general setting of the instances is characterized by some particular as-
pects briefly described in the following:

• the call center opens at 8:00 AM and closes at 5:00 PM;

• the working day is divided into P = 36. Each of them has a length equal
to 15-minutes (unless otherwise specificated);

• each shift must include 3 breaks: pre-lunch, lunch, and post-lunch breaks.
The first and the third breaks are 15-minute long (one period). The lunch
break is 30-minute long (2 periods);

82

Budget n preR finalA postR postLS worstSL target % IT minF medF max violation min pre R min post R med post R
300 129.15 0.63 140.3 136.30 0.800 0.800 0.00 63
300 128.12 0.58 136.5 132.50 0.800 0.800 0.00 52
300 128.53 0.56 135.9 133.70 0.800 0.800 0.00 75
300 128.14 0.58 135.6 137.50 0.800 0.800 0.00 111

b1 300 127.30 0.56 138.0 136.00 0.800 0.800 0.00 52 132.50 136.30 0.000 126.75 130.10 137.25
300 130.32 0.61 139.8 138.70 0.800 0.800 0.00 71
300 126.75 0.52 130.1 137.10 0.800 0.800 0.00 57
300 128.12 0.63 140.5 136.30 0.800 0.800 0.00 43
400 124.14 0.72 153.3 140.40 0.800 0.800 0.00 17
400 138.85 0.63 151.50 139.50 0.800 0.800 0.00 61
400 133.92 0.77 161.20 138 0.800 0.800 0.00 17
400 129.89 0.69 151.90 139.80 0.800 0.800 0.00 16

b2 400 130.94 0.76 158.00 144.20 0.800 0.800 0.00 22 133.90 139.65 0.000 108.83 137.20 152.60
400 108.83 0.87 159.90 134.60 0.800 0.800 0.00 23
400 128.70 0.66 144.70 141.20 0.800 0.800 0.00 31
400 136.36 0.56 137.20 133.90 0.800 0.800 0.00 60

Table 9.8: Results with target SL equals to 0.82 and τ = 0.5

Budget n preR finalA postR postLS worstSL target % IT minF medF max violation min pre R min post R med post R
300 123.97 0.66 137.5 135.80 0.800 0.80 0.00 53
300 124.14 0.64 139.2 133.00 0.800 0.80 0.00 75
300 123.94 0.61 140.9 135.50 0.800 0.80 0.00 107
300 122.94 0.68 143.6 136.00 0.800 0.80 0.00 47

b1 300 117.66 0.76 152.7 136.30 0.800 0.80 0.00 47 133.00 135.65 0.000 117.66 137.50 140.05
300 128.57 0.56 138.5 135.50 0.800 0.80 0.00 53
300 124.80 0.68 147.3 133.20 0.800 0.80 0.00 37
300 123.97 0.66 137.5 135.80 0.800 0.80 0.00 53
400 128.53 0.60 142.3 139.00 0.800 0.800 0.00 89
400 132.84 0.63 142.5 138.50 0.800 0.800 0.00 86
400 139.17 0.63 162.4 142.10 0.800 0.800 0.00 64
400 123.64 0.66 146.3 141.80 0.800 0.800 0.00 25

b2 400 130.78 0.72 162.8 152.10 0.800 0.800 0.00 12 138.50 141.95 0.000 123.64 142.30 156.05
400 128.11 0.77 167.3 145.50 0.800 0.800 0.00 30
400 130.72 0.74 164.1 150.50 0.800 0.800 0.00 9
400 123.70 0.74 149.7 140.00 0.800 0.800 0.00 68

Table 9.9: Results with target SL equals to 0.82 and τ = 0.6

• shifts can vary in length between 6.5 hours (26 periods) and 9 hours (36
periods) according to pre-defined patterns (see Table 9.11), thus yielding
285 shift types;

• calls arrive according to a piecewise Poisson process;

• the routing policy is an agents’ preference-based router (Buist and L’Ecuyer
(2005));

• All service times are exponential with service rate µ = 8 calls per hour.
Patience times have a mixture distribution: the patience is 0 with proba-
bility 0.001, and with probability 0.999, it is exponential with rate 0.1 per
minute;

• For most instances, the aggregate service level constraints for each period
are only considered. These require that at least 80% of all the calls received
during the period has to be answered within 20 seconds (i.e., τp = 20
seconds and lp = 0.8 for each p). The satisfaction of these constraints
implies that the global constraint with τ = 20 seconds and l = 0.8 is
automatically satisfied, but still this is explicitly required, because this
constraint plays a key role in the cutting-plane algorithm. In some cases,

83

Budget n preR finalA postR postLS worstSL target % IT minF medF max violation min pre R min post R med post R
300 116.02 0.64 135.3 138.60 0.800 0.800 0.00 50
300 122.75 0.66 144.5 138.20 0.800 0.800 0.00 70
300 114.63 0.69 139.3 135.10 0.800 0.800 0.00 68
300 122.78 0.68 144.7 135.30 0.800 0.800 0.00 39

b1 300 124.99 0.79 154.5 139.10 0.800 0.800 0.00 44 135.10 137.50 0.000 114.63 135.30 140.00
300 118.10 0.71 140.7 136.80 0.800 0.800 0.00 84
300 115.40 0.63 137.6 139.50 0.800 0.800 0.00 41
300 114.63 0.69 139.3 135.10 0.800 0.800 0.00 68
400 116.81 0.77 156.4 144.50 0.800 0.800 0.00 27
400 120.54 0.77 157.9 139.30 0.800 0.800 0.00 32
400 115.82 0.80 146.6 136.10 0.800 0.800 0.00 11
400 122.07 0.72 148.6 134.60 0.800 0.800 0.00 49

b2 400 118.78 0.76 146.7 137.00 0.800 0.800 0.00 50 134.60 137.75 0.000 115.82 138.40 147.65
400 121.95 0.64 138.4 134.90 0.800 0.800 0.00 76
400 123.84 0.74 150.6 138.50 0.800 0.800 0.00 65
400 117.17 0.69 138.4 138.70 0.800 0.800 0.00 39

Table 9.10: Results with target SL equals to 0.82 and τ = 0.7

also disaggregate SL constraints, for each couple (call type k, period p)
with τk,p = 20 seconds and lk,p = 0.5 for all k and p, are imposed.

To compute agents’s costs, (9.1) is used.
In order to assess the performance of the proposed algorithms, a number of

problem instances will be solved with the various approaches. It is important
to remark that all of these general instances have been constructed in such a
way as to mimic the operations of real call centers.

Type length shift start break1 start lunch start break3 start
1 7h30 8h,8h30,9h,9h30 9h30,11h30 12h,12h30,13h 14h,15h30
2 7h45 9h15 10h45,11h15 12h,12h30,13h 14h,15h30
3 8h 9h 10h30,11h 12h,12h30,13h 14h,15h30
4 8h15 8h45 10h15,10h45 12h,12h30,13h 14h,15h30
5 8h30 8h30 10h,10h30 12h,12h30,13h 14h30,16h
6 9h 8h 11h,12h 13h,13h30,14h 14h45,16h15
7 6h30 10h 11h30,12h 13h,13h30,14h 14h15,15h45

Table 9.11: Description of shift types (285 types)

9.2.1 Computational results

The original cutting plane algorithm is marked with CP when ,at each iteration,
an integer problem is solved and CP − LP is the cutting plane algorithm in
which, at each iteration, a no-integer linear problem is solved. In this last case,
the rounding module is called, not only at the end of the method, but, also, at
each time the simulator has to check about the feasibility (see Chapter 5 for
more details). It remarks again the importance to have a good rounding module.
The same considerations can be applied to CPnew: CPnew and CP − LPnew.

In order to solve both versions, Cplex9.0 is used as the optimization tool.
In total, three different sizes of call center are considered:

1. a little size, called N-Design example;

2. a medium one called MS example;

84

Figure 9.4: Incrementing the target service level to 0.82, varying τ

3. a biggest one, called Big example.

About MS example, two versions are analyzed: MS1 with only the global
service level and the ones grouped by call type; MS2 with all the service level
constraints. This is done in order to analyze the methods considering the same
general scenario and changing only the constraints on the service levels. More-
over, in real call centers, in general, the most relevant types of service levels
constrains are the only ones considered in MS1. It gives the opportunity to test
again the algorithms on more realistic scenarios.

About the Big example, in order to analyze different scenarios, there is a
first version (Big36) defined on a working day starting at 8 am and ending at
5 pm (i.e. the number of the periods is equal to 36) and a second one (Big52)
stretching the working day until 9 pm (i.e. the number of the periods is equal
to 52) (it is the same problem already described in section 9.1).This is done
in order to show that the performances of the algorithms, in any case, do not
depend on the particular shifts structure.

The length of a period is 15 minutes in all the examples and (9.1) is used to
compute the agent costs.

For each problem test and each solving method, nr replications are per-
formed, due to the random behavior of the methods, with different CPU time
budgets as shown in the final tables.

A critical parameter is n, i.e. the number of days, simulated during the cuts
generation phase, to check the feasibility. An higher value of n allows having, at
the end, more accurate and stable results, as it is possible to note considering
the numerical results. It is called minRep in the CP methods.

The CP methods (original and new version) are also characterized by an-
other parameter: the minimum number of replications (minRepCP) used by the
simulator during the gradient computation in the cuts generation phase (gener-
ally chosen equal to 10% of minRep) (see Cez̧ik and L’Ecuyer (2006)). Due to

85

the link between minRep and minRepCP, in the tables, n will be set to the first
one (unless otherwise said).

In the following empirical optimum is considered like the true optimum.

Definition 9.1. The empirical optimum is the lowest-cost solution generated
by either algorithm (over all replications and CPU time budgets) that passes
an optimality test constituted by a long simulation (in which the number of
simulated days is equal to 50000)

All the results, for each example, are summarized in a whole table with the
following columns:

1. case that is an index of specific CPU time budget;

2. CPUavg that is the average CPU time per replication;

3. Min Cost and Med Cost that is the minimum cost and the median one on
nr replications respectively.

It is also reported the percentage of solutions that are:

1. feasible (P ∗);

2. feasible and within 0.5% and 1% of the empirical cost (P ∗
0.5 and P ∗

1);

3. feasible and within 0.5% and 1% of the empirical optimum (P0.5 and P1)
without considering the feasibility.

Finally estimates (G) of the expected maximum normalized constraint vio-
lation (in percent) are computed as indicated in formula 9.2.

Formula 9.2. G = 100max{ l−g(x∗)
l ,

l(.)−g(.)(x
∗)

l(.)
} (9.2)

where (.) depends on the particular type of service level constraint.
About the service levels grouped by periods, the critical call class is obtained

following the formula 9.3.

Formula 9.3. (.) = j∗ = argmaxj∈N{lj − gj(x∗)} (9.3)

About the service level grouped by calls, the critical period is individualized
considering the formula 9.4.

Formula 9.4. (.) = p∗ = argmaxp∈P {lp − gp(x∗)} (9.4)

About the service level for each call and period, the critical couple (critical
period, critical call class) is obtained by the formula 9.5.

Formula 9.5. (.) = (p∗, j∗) = argmaxp∈P,j∈N{lp,j − gp,j(x∗)} (9.5)

These functions are computed using a long simulation (in which the number
of simulated days is equal to 50000) and whenever x∗ is an infeasible solution.

Finally, for all the tests executed running CPnew or CP − LPnew, two sub-
cases are analyzed: no increment on the target service level and incrementing
the target service level to 0.81. In both cases the threshold τ is fixed to 0.5
in order to have a rounding, during the cut generation process, more accurate.
These considerations are done on the base of the final results reported in section
9.1. In particular, in the following tables, CPnew(0.8) and CPnew(0.81) mean
respectively CPnew without increment on the target service level and CPnew

incrementing the target service level to 0.81.

86

Small size call center: N-Design example

In the following, considering CPnew and CP , the N-Design example (see exam-
ple 4.1 for more details) is analyzed.

This instance has N = 2 call types and T = 2 agent types, with S1 = {1}
and S2 = {1, 2}. Agent costs are computed by setting the parameter ξ equals
to 0.2 in (9.1). Arrival rates for the two call types are plotted in Figure 9.5.

In this small example, the CPU time budget is varied: case 1 corresponds
to 3m; case 2 to 15m; case 3 to 30m and case 4 to 1h.

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

periods

ar
riv

al
 ra

te
s

type 0
type 1

Figure 9.5: Small center: arrival rates

Observing the table 9.12, one can easily see that passing from the original
version of CP to the new one (not considering for a moment the target service
level), the cost of the best solution is increased a little bit. This is a natural and
reasonable behavior because in order to obtain final solutions that are totally
feasible (i.e. that respect all the service level constraints), the final cost is
increased. In particular this gap becomes thinner increasing the CPU time
budget. But it is very important to remark that already with a very short CPU
time budget equal to 3m, the both versions of CPnew find a final solution that
is totally feasible. In fact, it is possible to note that all the G values are equal to
0. Considering, instead, the comparison between CPnew(0.8) and CPnew(0.81),
there is a little increasing of the objective function in the second case and on the
other hand for this example one can not note a real benefit to run the algorithm
with a target equal to 0.81, due to the fact that with 0.8 there are all feasible
solutions.

In figures 9.6 and 9.7, comparisons between CP and CPnew are shown by
box-plots. In these figures, one can note that, increasing the CPU time budget,
the obtained solutions are more stable (i.e. the box-plots height is shorter).

87

Figure 9.6: N-Design Example: Boxplots of optimality gap (CP vs CPnew with
target 0.8

Figure 9.7: N-Design Example: Boxplots of optimality gap (CP vs CPnew with
target 0.81

88

Case Alg n CPUavg Min Med P ∗
0.5 P0.5 P ∗

1 P1 P ∗ Gcall Gperiod Gperiod,call

cost cost
CP 120 2m25s 35.19 35.33 12.5 21.89 53.13 81.25 65.62 0 0.17 0.59

1 CPnew (0.8) 120 2m16s 36.31 36.91 0 0 0 0 100 0 0 0
CPnew (0.81) 120 2m36s 36.25 37.21 0 0 0 0 100 0 0 0

CP 1500 14m57s 35.07 35.17 68.75 100 68.75 100 68.75 0 0 0.37
2 CPnew (0.8) 1500 15m14s 35.13 35.17 100 100 100 100 100 0 0 0

CPnew (0.81) 1500 15m33s 35.18 35.19 62.5 62.5 62.5 62.5 100 0 0 0
CP 3000 28m31s 35.09 35.17 53.12 100 53.12 100 53.12 0 0 0.36

3 CPnew (0.8) 1600 29m34s 35.03 35.17 75 87.5 75 87.5 87.5 0 0 0.15
CPnew (0.81) 1600 30m28s 35.13 35.16 100 100 100 100 100 0 0 0

CP 7800 60m2s 35.13 35.17 62.5 100 62.5 100 62.5 0 0 0.27
4 CPnew (0.8) 2000 61m34s 35.03 35.17 100 100 100 100 100 0 0 0

CPnew (0.81) 2000 60m27s 35.13 35.17 78.13 78.13 78.13 78.13 100 0 0 0

Table 9.12: N-Design Example: solution quality with CP and CPnew,varying
the CPU time budget

Two medium size call centers: MS1 and MS2

As already done for the previous example, also for this one, the results with two
different targets on the service levels are shown.

In the medium-sized instances, there are N = 5 call types and T = 15 agent
types. Skill sets are displayed in Table 9.13.

Moreover the CPU time budgets considered are the follows: 15m, 30m and
finally 1h.

Skill Agent types
1 1, 6, 9, 10, 11, 14, 15
2 2, 7, 9, 10, 12, 13, 14, 15
3 3, 8, 13, 15
4 4, 11, 12, 13, 14, 15
5 5, 6, 7, 8, 10, 11, 12, 14, 15

Table 9.13: Medium-sized center: skill sets

The parameter ξ used to compute agent costs in (9.1) is now equal to 0.1.
Arrival rates for all call types are plotted in Figure 9.8.

Case Alg n CPUavg Min Med P ∗
0.5 P0.5 P ∗

1 P1 P ∗ Gperiod

cost cost
CP 600 14m22s 20.9 21.48 0 0 0 0 62.50 0.46

1 CPnew (0.8) 300 14m15s 18.33 18.85 0 0 0 0 87.50 0.51
CPnew (0.81) 300 15m18s 17.92 18.76 0 0 0 0 100 0

CP 1000 24m39s 20.83 21.40 0 0 0 0 75 0.69
2 CPnew (0.8) 600 26m38s 17.56 18.43 0 0 0 0 75.00 0.41

CPnew (0.81) 600 28m40s 17.34 18.69 0 0 13 13 100 0
CP 2000 43m36s 20.19 21.69 0 0 0 0 75 0.22

3 CPnew (0.8) 1000 44m46s 17.36 17.66 0 0 25 25 87.50 0.02
CPnew (0.81) 1000 59m46s 17.22 18.27 12.50 12.50 12.50 12.50 100 0

Table 9.14: MS1 Example: solution quality with CP and CPnew,varying the
CPU time budget

89

3

8

13

18

23

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

periods

ar
riv

al
 ra

te
s

type 0 types 1 and 3 types 2 and 4

Figure 9.8: Medium-sized center: arrival rates

Analyzing tables 9.14 and 9.15, one can see that the final cost obtained by
CP is higher than the one given by the new version. This does not happen with
the previous example. In fact, when the complexity of the problem become
larger, then a LP is solved at each step of the cutting plane procedure and not
an IP. It means that with medium and large size call center, the final solutions
are affected by the improvements on the rounding method too (as described
in Chapter 5). This last aspect, again, underlines the importance of defining
a good rounding method because it can affect a lot on the quality of the final
solution in terms of its cost.

Moreover, another aspect that affects the quality of the final solution is the
CPU time budget. In fact one can note that increasing it, the final cost is
reasonable reduced. This happens in a very relevant way considering the results
obtained with CPnew(0.8).

In both methods MS1 and MS2, the best result is obtained by CPnew(0.81)
where the solution has the lower cost and at the same time satisfies all the
service level constraints. In particular, analyzing better tables 9.14 and 9.15,
it is possible to note that CPnew(0.81) is able to give solutions totally feasible
with all the CPU time budgets.

Moreover, as it will be explained later, it is possible to note that in MS2 the
final cost is reasonable increased.

In figures 9.9,9.10, 9.11 and 9.12 the all the results are plotted by box-plots.

90

Figure 9.9: MS1 Example: Boxplots of optimality gap (CP vs CPnew with
target 0.8

Figure 9.10: MS1 Example: Boxplots of optimality gap (CP vs CPnew with
target 0.81

91

Figure 9.11: MS2 Example: Boxplots of optimality gap (CP vs CPnew with
target 0.8

Figure 9.12: MS2 Example: Boxplots of optimality gap (CP vs CPnew with
target 0.81

92

Case Alg n CPUavg Min Med P ∗
0.5 P0.5 P ∗

1 P1 P ∗ Gcall Gperiod Gperiod,call

cost cost
CP 400 14m51s 21.04 22.56 0 0 0 0 87.50 0 0.82 4.55

1 CPnew (0.8) 400 13m48s 18.48 18.98 0 0 0 0 87.50 0 0.58 0
CPnew (0.81) 400 15m33s 18.07 19.18 0 0 0 0 100 0 0 0

CP 400 28m14s 20.92 22.48 0 0 0 0 75 0 0.86 0.12
2 CPnew (0.8) 400 29m11s 18.11 18.97 0 0 0 0 87.50 0 0.54 0

CPnew (0.81) 400 30m07s 17.91 18.59 0 0 0 0 100 0 0 0
CP 400 59m50s 21.04 22.70 0 0 0 0 75 0 0.69 0

3 CPnew (0.8) 400 58m40s 17.92 18.57 0 0 0 0 75.00 0 0.28 0
CPnew (0.81) 400 60m34s 17.39 18.44 13 13 13 13 100 0 0 0

Table 9.15: MS2 Example: solution quality with CP and CPnew,varying the
CPU time budget

Two large size call center: Big36 and Big52

In this section, two large size call centers will be analyzed in order to study and
to describe the performances of the two versions of the cutting plane algorithm
in presence of realistic frameworks (see section 9.1 for all the details about their
general framework).

They (Big36 and Big52) are executed solving a LP instead of IP due to their
complexity as done with the both versions of MS example. It means that the
results will underline both the benefits of the improvement on the local search
module and on the rounding one (as happens with the medium size call center).

In this sub-section, one can see not only the different behavior of CP and
CPnew on the same problem but also some comparisons between the two ver-
sions.

Case Alg n CPUavg Min Med P ∗
0.5 P0.5 P ∗

1 P1 P ∗ Gperiod

cost cost
CP 800 4h57m 79.74 79.91 0 0 0 0 100 0

1 CPnew (0.8) 400 4h48m 82.02 82.20 0 0 0 0 25 0.25
CPnew (0.81) 400 5h11m 81.97 82.89 0 0 0 0 100 0

CP 950 9h49m 80.09 80.54 0 0 0 0 50 0.07
2 CPnew (0.8) 500 9h37m 78.87 81.80 25 25 25 25 87.5 0.15

CPnew (0.81) 500 10h09m 79.79 81.51 0 0 0 0 87.5 0.11

Table 9.16: Big36 Example: solution quality with CP and CPnew,varying the
CPU time budget

In table 9.16, the comparisons, for the Big36 problem test, between the
original version of CP and the new one, are reported considering two different
CPU time budgets due to the complexity of the scenario: 5h and 10h. It is
worth noting that with a CPU time budget equal to 5h, the original version of
the method gives a result that is less expensive and at the same time satisfies all
the service level constraints. Increasing the CPU time budget, instead, the new
version of the method, with a target service level equal to 0.8, gives a solution
whose cost is equal to 78.87 that represents the so called empirical optimum
(i.e. a solution with a low cost and at the same time feasible for all the service
level constraints). On the other hand the difference, imposing a target equal to
0.8 or 0.81, is evident analyzing, for example, their results with both CPU time

93

budgets: in any case the second version, in fact, is able to reduce the infeasibility
gap. In particular,with the first budget, CPnew(0.81) gives all feasible solution
on the contrary of CPnew(0.8) that presents, over all the replications, a little
infeasibility for the SL grouped by period(0.25%). Considering the longer CPU
time budget, CPnew(0.8) gives, again, an infeasibility gap that is higher than
CPnew(0.81) by 0.03% but in any case it gives the best feasible solution over
all the methods, replications and budgets. This last fact shows that the cutting
plane methodology is affected by the noise of the simulation that can be only
reduced but not eliminated completely.

Moreover, for this specific problem test, the original version of CP gives
solutions that are either feasible (see 5h) or with a little infeasibility gap (see
10h). In any case, at the end, the new version of the methodology gives the best
solution, low in cost and feasible, for which one can see the effects of the new
local search and the benefits of the new way to round the not integer components
of the scheduling solution (as explained in details in chapter 5).

In figure 9.13, the different behaviors are shown by box-plots.

Figure 9.13: Big36 Example: Boxplots of optimality gap (CP vs CPnew)

In table 9.17, the comparisons are shown for the Big52 example.
At the first time, one can easily note that CP is not able to give a solu-

tion less expensive and feasible at the same time as happens in Big36. This
underlines again as the noise of simulation affects the final results. In this case,
the empirical optimum is equal to 131.7 given by CPnew(0.8) with 5h CPU
time budget. For all the versions, it is possible to underline that, increasing the
budget there is only a small increase of the final cost.

As a reasonable consequence, again CPnew(0.81) gives solutions that are,
a little bit, higher in cost than CPnew(0.8) but that are completely feasible

94

Case Alg n CPUavg Min Med P ∗
0.5 P0.5 P ∗

1 P1 P ∗ Gperiod

cost cost
CP 300 5h 136.2 137.5 0 0 0 0 50 0.41

1 CPnew (0.8) 300 4h56m 130.8 133.6 25 50 25 50 12.5 0.54
CPnew (0.81) 300 5h09m 132.1 134.85 25 25 25 25 100 0

CP 400 9h42m 139.2 139.9 0 0 0 0 0 0.47
2 CPnew (0.8) 400 9h48m 133.50 137.7 0 0 0 0 50 0.44

CPnew (0.81) 400 10h11m 132.30 136.8 0 0 0 0 100 0

Table 9.17: Big52 Example: solution quality with CP and CPnew,varying the
CPU time budget

already with a 5h CPU time budget.
In figure 9.14, the results are summarize by box-plots.

Figure 9.14: Big52 Example: Boxplots of optimality gap (CP vs CPnew)

9.3 Some tests on Randomized Search initializa-
tion

In the following, considering some different versions of the problem test called
as N-Design, it is shown the behavior of Randomized Search (RS) changing its
own initialization procedure. In fact as already anticipated, RS gives different
final solutions, whose quality and cost is different changing the initialization
procedure.

95

In this section one can easily see how the final solution, with this solving
approach, depends from the starting point chosen to initialize it. In fact its
quality affects the future search of the method.

In the following, it will be considered only a common scenario, even if some
different tests have been performed in order to figure out about the initialization
method of this procedure.

9.3.1 The common scenario and its different versions

The N-Design example (see example 4.1)is considered in the following with
P = 17 periods. Again the period length is equal to 30 minutes and in total
there are 9 shifts. Each of them has 14 periods with 2 coffee-break and 1 lunch-
break.

The agents costs are obtained implementing the formula 3.1 imposing ξ =
0.2.

The service times are all exponential and their average is equal to 4 minutes.
The patience times are equal to 0 with probability 0.001 and with probability
0.999 are exponential with rate 0.1 per minute.

The different versions obtained by this generical scenario are distinguished
on the basis of two factors:

• the arrival rate distribution of the two call types:

1. asl : the call type 1 has an arrival rate equal about to 4 times the one
of the call type 2 in all periods;

2. asl2 : the call type 2 has an arrival rate equal about 4 times the one
of call type 1 in all periods;

3. eql : the two call types have the same arrival rate in all periods.

• the routing:

1. npr :the routing does not consider the priority and the agent type 2
can receive both the two call types without preferences;

2. pr : the routing considers the priority and the agent type 2 gives more
priority to the call type 2.

Then the total number of examples (considering the different versions de-
scribed so far) is equal to 6 named as in the follow: npr.asl, npr.asl2, npr.eql,
pr.asl, pr.asl2, pr.eql.

The service levels are equal to 80/20 for the ones grouped by periods and
the global one. The others are equal to 50/20.

9.3.2 Results

Considering the chapter 5 in which RS has been presented in detail and con-
sidering the general scenario introduced in section 9.3.1, in the following some
results are presented. It is very important to underline that all of these final
solutions have been obtained performing 10 simulation runs and taken for each
different initialization procedure the best one.

As shown in table 9.18, the best initialization method has been the so called
uniform one. In fact it gives the best compromise between objective function

96

Problem name Random bestShift Uniform Complex Fifth
npr.asl 22.77 20.53 21.65 25.67 22.40
npr.asl2 27.35 24.36 26.97 29.96 28.19
npr.eql 34.53 35.65 34.21 43.77 38.83
pr.asl 19.41 20.53 20.91 25.67 22.40
pr.asl2 24.73 24.36 24.17 29.96 28.19
pr.eql 33.04 35.65 32.95 43.77 38.83

Table 9.18: RS initialization procedure: cost comparisons (in bold the best
solution for each example)

value and the computational time required to find it (see figure 9.15). For this
reason, in order to compare RS with CPnew and TS, in the following, results
will be obtained initializing it by uniform method.

Computational Times

0

5

10

15

20

25

npr.asl npr.asl2 npr.eql pr.asl pr.asl2 pr.eql

Problem test

Ti
m

es
 (s

ec
)

Random method BestShift Method Uniform Method Complex Method Fifth Method

Figure 9.15: Computational times varying the RS initialization methods

9.4 Comparisons: CPnew, TS and RS

In this section, a comparison among CPnew, TS and RS is analyzed and studied
in order to assess the efficient behavior of the cutting plane algorithm improved
by a new local search and rounding (as already said in Chapter 5 and in section
9.1).

97

Again, three different sizes of call center are considered and they are the
same already introduced in the section 9.2.

9.4.1 Computational Results

A small size call center: N-Design

For the general framework already introduced in section 9.2.1, in table 9.19
some comparisons (CPnew, TS and RS) are shown.

In the following, it should be underlined that less attention is given to RS
(because of it is not able to give competitive results in term of final costs),
instead much more attention is given to the two approaches: CPnew and TS.

It is, in fact, very clear that for all the performed simulation runs, RS
gives the worst solutions (considering that the optimality gap in regard to the
empirical optimum is very consistent). In any case, it should be noted that
increasing the budget, RS has a reasonable behavior,because the final cost is
reduced, even if it is completely affected by the random search. The little
increasing passing from 15m to 30m is a reasonable consequence of the random
nature of the method. Moreover, considering RS method, one has to take in
account that if the method is able to obtain good results solving a single-period
staffing problem (Avramidis et al. (2006)), in the case of the scheduling problem,
its performances decrease because of the search space becomes larger. In fact,
it has not only to decide the number of agents of each type in each period, but
also to establish the assignment agent-shift in a set of |Q| possibilities.

About CPnew it is important to underline that an IP is solved at each iter-
ation and so at the end one can easily see the only benefits of the local search
module and not of the rounding one. This method gives solutions that are al-
most always feasible and most of them are very good. The only case in which
they are more expensive than the ones by TS, but all the TS solutions are
infeasible, is when n = 120. It could indicate that the value chosen for the
parameter n might be too small. In fact, at this point, one has to remember the
meaning of this parameter: it is the number of days simulated during the cuts
generation process to check the feasibility of the current solution. On the other
hand, the results obtained for the three larger values of n are quite similar and
setting n to 1500 is probably sufficient for this small center.

Considering again the table 9.19, one can note that not only the parameter
n is reported but also the values for the parameter n2 that is set as an input
value for the method. This controls the local search module in the sense that,
as already explained in chapter 5, it defines the starting value of the parameter
n1 that represents the number of simulated days used during an iteration of the
local search module.

At the end of the cutting plane method, accordingly to the considerations
of chapter 5, each iteration of the local search ends with a feasibility check
of max(500, n) simulated days.It means that in the first case (n=120) these
simulations are of 500 days, in the other, they are, respectively, of 1500, 1600
and 2000. The module of local search ends when either the solution is feasible
or the time limit is reached. The long simulation, performed at the end of the
entire cutting plane module (including the local search one), has always a length
of 50000 days.

For all the three solving methods, nr = 32 replications are performed.

98

It is not a surprise that TS method finds out that all runs fail to find a
feasible solution, even though constraint violations were always inferior to 1%.

Moreover, all the solutions by TS are much more expensive than the ones
obtained by CPnew (with a large enough value of n).

On the other hand, CPnew has a reasonable behavior because of increasing
the value of the parameter n, passing from a budget to another one, it gives less
expensive solutions.

Case Algorithm n n2 CPUavg Min Med P ∗
1 P ∗ Gperiod Gcall,period

sec. cost cost
1 CPnew 120 50 136 36.31 36.91 0 100 0 0

TS 120 162 35.60 35.60 0 0 0.81 0
RS 350 180 47.02 50.05 0 50 0 0.32

2 CPnew 1500 800 914 35.13 35.17 100 100 0 0
TS 1500 898 35.59 35.59 0 0 0.94 0
RS 700 900 42 46.27 0 100 0 0

3 CPnew 1600 1000 1774 35.03 35.17 75 87 0 0.15
TS 2800 1753 35.67 35.67 0 0 0.79 0
RS 4100 1645 43.47 50.91 0 62.5 0.33 0

4 CPnew 2000 1000 3694 35.03 35.17 100 100 0 0
TS 6000 3453 35.67 35.67 0 0 0.79 0
RS 8000 3304 43 50.56 0 100 0 0

Table 9.19: N-Design: results obtained with CPnew, TS and RS for different
CPU time budgets

Figure 9.16: Small center: box-plots of the relative cost distribution

In figure 9.16, all the results are summarized, by box-plots, taking into ac-
count only the comparison between CPnew and TS.

In table 9.20, the best scheduling solutions, by CPnew and TS, are compared.

99

Algorithm Agent type Shift type
1 2 3 4 5 6 7

CPnew 1 6 3 3 1 1 8 2
2 3 0 0 1 1 2 0

TS 1 6 1 3 1 2 7 1
2 4 1 0 1 0 3 1

Table 9.20: Small center: scheduling solutions

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36

period

Se
rv

ic
e

Le
ve

l

call type 1 call type 2 aggregate target for the service levels aggregated by call types target for the other service levels

Figure 9.17: Small center: service levels by period

In particular, both methods return solutions with the same number of agents
(31), most of which are specialists (type 1). They differ only slightly in terms
of the duration of the shifts scheduled, but CPnew uses more specialists than
TS (24 vs 21) and it guarantees that CPnew obtains a cheaper solution.

In figure 9.17, the service levels, obtained by the best run of CPnew, are
plotted. One can see: a wide variation of the SL throughout the day and that
calls of type 1 have much better SL than those of type 2. This is due to the fact
that the type 1 calls can be answered by less expensive specialists, while type 2
calls must be handled by generalists. This remarks that it is often necessary to
include call-type specific SL constraints (either over the whole day or for each
period) in the problem formulation, if one is interested in controlling the service
levels of each call type.

100

Two medium size call centers: MS1 and MS2

Considering the framework already described in the section 9.2 for these two
problems, CPnew is compared to TS and RS.

Again it should be remarked that for these tests, CPnew solves at each
iteration a LP. It means that one can note the effects of the local search and
the rounding method.

Case Algorithm n n2 CPUavg Min Med P ∗
1 P ∗ Gperiod

sec. cost cost
1 CPnew 300 100 855 18.33 18.85 0 87 0.51

TS 1200 897 21.83 21.83 0 100 0
RS 200 850 22.51 25.87 0 25 0.64

2 CPnew 600 100 1598 17.56 18.43 0 75 0.41
TS 2400 1774 21.72 21.72 0 100 0
RS 1000 1794 24.76 26.38 0 75 0.35

3 CPnew 1000 400 2686 17.36 17.66 25 87 0.02
TS 3000 2793 21.69 21.69 0 100 0
RS 3500 3600 23.74 26.04 0 100 0

Table 9.21: MS1: results obtained with CPnew,TS and RS for different CPU
time budgets

For each of the two versions of the problem, nr = 8 replications are per-
formed for the CPU time budgets of 15, 30 and 60 minutes.

As already said in the previous example, RS is not able to give good results.
In particular, for this framework, one can note that increasing the complexity
of the problem (i.e. number of call types, agent types, periods and shifts), the
randomized search has a search space larger and it is imply more difficulties to
find a good solution.

The results for MS1 and MS2 are summarized in tables 9.21 and 9.24.
From these tables, one can conclude that most replications of CPnew return

low-cost feasible solutions for both variants, but the cost variation, between TS
and CPnew solutions, is more pronounced than for the small center.

The quality of solutions also increases significantly with n, which emphasizes
the importance of performing long enough simulations in order to obtain good
results. In fact, as already remarked in the previous sections, having a large
value of n means performing more accurate simulations, during the cut gener-
ation process, to check feasibility. But, as happened, increasing n more than a
particular threshold could not give benefits.

Contrary to what was observed for the small center, TS always finds feasible
solutions, but their cost is much higher than the cost of CP solutions; in fact,
the optimality gap,respect to the best solution found, is over 25% for MS1 and
close to that value for MS2.

These conclusions remark that large suboptimality gaps found by TS occur
in realistic call center settings as in artificial examples.

The comparison between CPnew and TS is also summarized by box-plot in
figure 9.18 for MS1 example.

101

Figure 9.18: MS1: boxplots of the relative cost distribution

As done with the simple example, one can compare the best scheduling
solutions obtained for MS1 with CP and TS (tables 9.22 and 9.23).

shift types total
1 2 3 4 5 6 7

agents CP 4 1 1 0 2 4 2 14
agents TS 5 1 1 2 1 6 1 17

Table 9.22: MS1: scheduling solutions

agent types
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CP 1 0 1 1 1 0 1 2 0 1 1 1 2 0 2
TS 0 0 3 0 0 1 2 2 0 1 1 1 2 1 3

Table 9.23: MS1: total number of agents of each type in the scheduling solutions

One observes that CPnew not only uses significantly less agents (14 vs 17),
but also that these agents have on average a smaller number of skills (2.50 vs
2.76) and work shorter hours (more than 10 minutes less a day, on average).

The results for MS2 are summarized in table 9.24. In figure 9.19 these are
plotted by box-plots.

Comparing the cost of the best solutions obtained by CPnew for MS1 and
MS2, the solution obtained for MS1 is cheaper (as already said in section 9.2),
which is exactly what was to be expected since MS1 turns out to be a relaxation
of MS2. This last conclusion seems to remark that the increase in cost, incurred
when imposing the disaggregate SL constraints, is rather marginal.

The SL by period for these solutions are plotted in figure 9.20. They clearly
show that the overall SL undergoes significant variations throughout the day.

102

Figure 9.19: MS2: boxplots of the relative cost distribution

0.79

0.84

0.89

0.94

0.99

1 6 11 16 21 26 31 36

period

Se
rv

ic
e

Le
ve

l

QoS Medium 1 QoS Medium 2 Target

Figure 9.20: Service level by period for MS1 and MS2

103

Case Algorithm n n2 CPUavg Min Med P ∗
1 P ∗ Gperiod Gcall,period

sec. cost cost
1 CP-LP 400 100 828 18.48 18.98 0 87 0.58 0

TS 600 876 21.58 21.58 0 100 0 0
RS 800 870 24.62 25.03 0 100 0 0

2 CP-LP 400 100 1751 18.11 18.97 0 87 0.54 0
TS 1500 1677 21.65 21.65 0 100 0 0
RS 1000 1226 23.67 24.44 0 75 0.14 0

3 CP-LP 400 100 3520 17.92 18.57 0 75 0.28 0
TS 3000 3212 21.80 21.80 0 100 0 0
RS 3000 3281 22.95 24.26 0 87.50 0.05 0

Table 9.24: MS2: results obtained with CPnew, TS and RS varying the CPU
time budget

Moreover, the two patterns observed are quite different, which highlights the
importance of imposing SL constraints by type of calls.

Similar results, shown for MS1, are observed for MS2 in tables 9.25 and
9.26.

shift types total
1 2 3 4 5 6 7

agents CP 4 0 1 1 0 6 2 14
agents TS 3 1 1 2 1 7 2 17

Table 9.25: MS2: scheduling solutions

agent types
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CP 0 1 1 0 1 1 0 3 1 0 1 1 2 1 1
TS 0 0 2 0 0 2 2 3 0 1 1 1 2 1 2

Table 9.26: MS2: total number of agents for each type in the scheduling solu-
tions

Two large size call centers: Big36 and Big52

As done in the previous sub sections, here some comparisons, among the three
solving methods, are shown.

In this case, it seems that the RS method is able to give good solutions, bet-
ter than TS. This result remark, again, the stochastic behavior of the method.

In any case, CPnew gives the best results over all the two other methods.
The general scenario that is considering in this section is the more realistic

one and, again, CPnew solves LP instead of IP.
For this larger problem, CPnew has difficulty finding a feasible solution with

the smaller computing budget (the first case of the table 9.27). In fact, only two

104

Case Algorithm n n2 CPUavg Min Med P ∗
1 P ∗ Gperiod

min. cost cost
1 CP − LP 400 50 288 82.02 82.20 0 25 0.25

TS 1500 299 96.08 96.08 0 100 0
RS 2000 294 87.08 94.71 0 75 0.47

2 CP − LP 500 50 577 78.87 81.80 25 87 0.15
TS 2400 598 102.87 102.87 0 100 0
RS 5000 555 87.41 95.47 0 75 0.03

Table 9.27: Big36: results obtained with CP − LP and TS for different CPU
time budgets

runs out of 8 succeed in finding feasible solutions to the problem, even though
constraint violations might not be severe. This situation is clearly alleviated by
allotting more CPU time (the second case of the table 9.27). With more time,
CPnew finds better solutions. It should be remarked that, as in the previous
problem test, the final result is affected by the rounding module and, at the
same time, by the local search one.

TS always finds feasible solutions within the allotted computing budget,
but the solutions are on average 20% more expensive than those obtained with
the cutting-plane algorithm. This confirms the initial observations regarding
the poor performance of TS. Surprisingly, increasing the CPU budget does not
improve the quality of the results obtained with TS, returning inferior solutions.
This is, mainly, because the method obtains a different staffing solution in the
first step; while this solution might track more closely the call arrival curve, it
ends up leading to a poorer scheduling solution. A close examination of the
relative cost distributions of solutions highlights the fact that, in the case of
TS, all replications produce identical, and largely suboptimal, solutions.

These conclusions can be summarized by box-plots in figure 9.21.
In table 9.28, a comparison, between the best scheduling solution obtained

by CPnew and the two step approach, is presented. This analysis explains the
lower cost of the cutting-plane algorithm solution. In fact, resorting to slightly
more agents with long shifts, CPnew is capable of covering the demand with
only 52 agents compared to 62 for TS.

shift types total
1 2 3 4 5 6 7

agents CP 17 1 4 7 3 17 3 52
agents TS 25 4 4 4 2 17 6 62

Table 9.28: Big36: scheduling solutions

Some comparisons can be done considering the variant of the Big36 problems
with more periods (52) and they are reported in table 9.29.

On this version, a single one of the 8 solutions found by CP − LP (case
1), was declared feasible by the 50,000-day simulation, but it is an excellent
solution with a cost of 131.7 obtaining with the first CPU time budget.

105

Figure 9.21: Big36: boxplots of the relative cost distribution

Case Algorithm n n2 CPUavg Min Med P ∗
1 P ∗ Gperiod

minutes cost cost
1 CP − LP 300 50 296 130.8 133.6 12 12 0.54

TS 1500 262 156.1 156.1 0 100 0
RS 2000 263 158.3 165.55 0 25 0.23

2 CP − LP 400 50 588 133.5 137.7 0 50 0.44
TS 1800 542 156.1 156.1 0 100 0
RS 4500 580 161 173.5 0 0 0.78

Table 9.29: Big52: results obtained with CP − LP and TS for different CPU
time budgets

With more CPU time budget, CP returned 4 feasible solutions out of 8
runs, but these turned out to be inferior to the one found in 5 hours, probably
due to simulation noise.

Overall, these results emphasizes the importance of performing several trial
runs when using this type of approach.

All the solutions returned by TS were declared feasible, but they are signif-
icantly more expensive, with a cost of 156.1. This is once more an example of
the large suboptimality gaps produced by the TS method.

Table 9.30 reports the best solutions found by the cutting-plane algorithm
and TS. In the table, agent types are regrouped by cost (i.e. to group them by
number of skills, since in this variant, because all agents work 7.5-hour shifts,
agent costs depend only upon their skill sets). The table gives the total number
of agents of each group (each cost) in the solution. It is worth noting that the
cutting plane approach employees only 96 agents compared to 107 for TS.

106

agent type cost CP − LP TS
4 1.8 1 1

1,5,9,11,13 1.6 12 32
7,12,14 1.5 29 18
2,3,8,35 1.4 15 33

6,10 1.3 24 23
15,. . .,34 1.0 15 0

total number 96 107
total cost 131.7 156.1

Table 9.30: Big52: a summary of the best feasible solutions found by CP −LP
and by TS

Moreover, several of the agents in the CPnew solution are specialists, while
TS uses a large number of expensive generalists with 7 skills. On the contrary
of TS, CP employees 15 agents of type 1.

These two factors combined motivate the large difference in cost.
Considering the final results on Big52, one can easily understand the main

motivation for investigating this specific variant of the problem. In fact, accord-
ingly, it was possible to verify that the cutting plane algorithm gives good solu-
tions in presence of instances with a different shift structure. It again confirms
that the cutting-plane algorithm performances do not depend on the particu-
lar shift structure definition and for this reason it can be considered a general
approach.

9.5 Adding constraints on abandonment ratios

In this paragraph, some tests are proposed introducing also the control on the
abandonment probability, running the algorithm proposed in Chapter 7.

In Chapter 7, the three main performance measures (ABANDONMENT-
RATIO,ABANDONMENTRATIO-AFTER-AWT and ABANDONMENTRATIO-
BEFORE-AWT) have been introduced and they have been controlled during
the algorithm execution adding some particular cuts in the general formulation
of the scheduling problem.

In order to clarify better, the meaning of these three measures of performance
is reported:

• ABANDONMENT-RATIO : Represents the fraction of the expected num-
ber of contacts having left the system without service over the total ex-
pected number of arrivals.

• ABANDONMENTRATIO-AFTER-AWT : Represents the fraction of the
expected number of contacts having left the system without service and
after a waiting time greater than or equal to the acceptable waiting time,
over the total expected number of arrivals.

• ABANDONMENTRATIO-BEFORE-AWT : Represents the fraction of the
expected number of contacts having left the system without service and

107

without waiting the acceptable waiting time, over the total expected num-
ber of arrivals.

These measures, as the service levels, could be not aggregate (for each period
and call type), aggregate by period, aggregate by call type and finally global
(aggregate by period and call type at the same time).

In order to control their level, on all of these measures, an upper bound
is imposed to the expected number of abandonments and this means to add
some additional constraints to the original problem(Chapter 7). This limit has
been set, in all the tests, to the value of 0.01. Such as at most 1% of the total
expected number of arrivals can leave the system without service and without
considering the waiting time (i.e. it could be less or greater than AWT).

9.5.1 Numerical Results

In the following, some results are shown taking into account the previous con-
siderations.

In particular one of the already described problem tests will be considered
and analyzed: N-Design example. In this example, there are only two call types
(N = {1, 2}) and two agents types (T = {1, 2}), such that S1 = {1, 2} and
S2 = {1}. The total number of periods is equal to 36 (P = {1, . . . , 36}) and the
total number of shifts is equal to 285.

In this case the value of nr is equal to 8 for each of the different CPU time
budget:1h30m,2h30m and 3h30m.

In particular the CPU time budgets are imposed greater than the ones of
the version without constraints on the abandonments because of considering
the abandonments that increase a lot the general complexity of the problem in
terms, also, of computational times.

In fact the total number of constraints is increased a lot: there are (|N |+1)∗
(|P | + 1) constraints more than the previous version (i.e. without considering
the abandonment probability).

For this specific case, for example, the original scheduling problem has (3) ∗
(37) = 111 constraints more than its previous version.

In table 9.31, the final results, for the different CPU time budgets, are
reported where the three measures are indicated, respectively, by A-R, A-A-
AWT and A-B-AWT. In particular, for each of these measures and for each of
CPU time budgets,the final abandonments ratios are shown. Note that even
though A-A-AWT and A-B-AWT could be redundant (because they are included
by the first one A-R), introducing them makes a difference in the optimization
algorithm.

Firstly, it is worth nothing that the empirical optimum is found by a CPU
time budget of 1h30m and a value of n equal to 2000. Its value is 49.41.

Increasing the CPU time budget, one can note that the abandonments ratios
are reasonable decreased. In particular, focusing the attention on the unique
no-zero values (column A-R: Acall,period), increasing the budget, its value is
considerable decreased. The phenomena that passing from n = 4000 to n =
8000, its value passes from 0 to 8.84, is due to the stochastic nature of the
algorithm.

It is important to remark that the abandonments probability control is put
in the new version of the cutting plane algorithm (CPnew) and, in this case, the

108

IP is run and, as in the previous tests, a final feasibility test is executed with a
50,000-days simulation.

Again, increasing the budget, one can note a little increase on the min cost
value due to the stochastic nature of the approach. What one has to consider
is that, reasonably, the median cost is decreased arriving to the littlest value of
51.72 obtained by the case 3.

Again, increasing the budget, one can note a little increase on the min cost
value. On the other hand the median cost is decreased arriving to the littlest
value of 51.72 obtained by the case 3. So, one can affirm that the little increment
of the min cost value is due only to the stochastic nature of the method.

Considering the table 9.31, one can easily note that the final cost is increased
comparing it with the table 9.19. It is a reasonable result because, considering
the abandonments probability too, the number of constraints is increased in the
scheduling problem. As known, increasing the number of constraints implies
having a smaller feasible region and so it is not possible to find a solution that
is better in regard to the first case (without constraints on the abandonments).
If one compares the final two costs, with the same number of n (=2000), it
happens that the problem with few constraints finds a solution whose cost is
35.03, while this new version finds a cost equal to 49.41. Examining, again,
the table 9.31, it is possible to remark that the violations on the abandonments
probability (whose targets are all equal to 0.01) occur for the call type 2 that
can be handled only by the agent type 1. This agent type is a generalist in fact
he/she is able to handle both calls types, thus he/she is naturally slower than
the one of type 2 than can handle only the call type 1.

In figures 9.22, 9.23 and 9.24, the trends, of the best feasible solution, are
shown for each call type, considering the imposed targets (all equal to 0.01).
One can observe an increment of the abandonments during the break periods
and the extreme ones (at the beginning and at the end of the working day).
This is a natural behavior due to the inferior number of agents during these
periods.

A-R

Budget n CPUavg Min Cost Med Cost P ∗ Acall,period
1 2000 1h30m 49.41 52.40 87.5 14.89
2 4000 2h30m 50.47 51.87 100 0
3 8000 3h30m 49.67 51.72 87.5 8.84

Table 9.31: N-Design example: results with the abandonments probability con-
trol

It is important to underline that the table 9.31 only shows, for each CPU
time budget, the non zero maximum violation percentage. The other cases have
value equal to zero and it means no violation. In the figure 9.26 the service
levels are shown.

The figure 9.25 shows the abandonments ratios of the best solution found
by the cutting plane algorithm (described in Chapter 5) without controlling the
abandonments. As we can easily note, almost all the abandonments ratios (of
all call types) are greater than the 1%. This means that, without imposing
specific cuts on the abandonments, we cannot have a directly control on them.
So even though we have a good service levels, there could be an abandonment

109

0,00E+00

2,00E-03

4,00E-03

6,00E-03

8,00E-03

1,00E-02

1,20E-02

1 6 11 16 21 26 31 36

period

ab
an

do
ne

m
nt

 ra
tio

call 1 call 2 grouped target

Figure 9.22: Abandonment Ratio

0,00E+00

2,00E-03

4,00E-03

6,00E-03

8,00E-03

1,00E-02

1,20E-02

1 6 11 16 21 26 31 36

periods

A
ba

nd
on

m
en

t r
at

io
 a

fte
r A

W
T

call 1 call 2 grouped target

Figure 9.23: Abandonment Ratio after AWT

110

0,00E+00

2,00E-03

4,00E-03

6,00E-03

8,00E-03

1,00E-02

1,20E-02

1 6 11 16 21 26 31 36

periods

A
ba

nd
on

m
en

t r
at

io
 b

ef
or

e
A

W
T

call 1 call 2 grouped target

Figure 9.24: Abandonment Ratio before AWT

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

3.50E-01

1 6 11 16 21 26 31 36

periods

ab
an

do
nm

en
t r

at
io

call 1 call 2 grouped target

Figure 9.25: Abandonment ratios without cuts on the abandonments

111

ratio not equal to zero.
As expected, the service levels are increased (in regard to the version of

the problem without abandonments, figure 9.17). In fact, imposing others con-
straints, the final solution has a greater number of agents and so a better service
level. This is can be explained also considering that to reach the main goal of
reducing the number of abandonments, a manager has to use more agents and
so the average waiting time is reduced consequently.

0,79

0,82

0,85

0,88

0,91

0,94

0,97

1

1 6 11 16 21 26 31 36

period

Se
rv

ic
e

Le
ve

l

call 1 call 2 Grouped Target

Figure 9.26: Service levels by periods with 1% abandonment ratio

In particular, as a reasonable consequence, the service levels of 1 call type is
higher than the 2 call type because of it can be handled by both agent types.

Moreover, what one can observe is that adding the constraints on abandon-
ments increases the cost by a very large percentage. As we can see in figure 9.26
the service levels are increased to a value very close to 1.

It is possible to assume, in the following, to vary the percentage of aban-
donment. In fact, observing the results in table 9.31, we can note to have high
costs and service levels very close to 1. This implies that imposing maximum
abandonment ratio equal to 1% is very unrealistic. For this reason, we perform
other tests imposing maximum ratio of abandonments equal to 2% and 5%.

In tables 9.32 and 9.33, we can note that not only the final costs are lower
than the ones presented in table 9.31, but we, also, get all feasible solutions.

In figures 9.27 and 9.28, the service levels, related to the best solution, found
in both cases, are shown. We can note, comparing them to the ones obtained in
figure 9.26, that the service levels are farer from 1. This is a reasonable behavior
because we have less tight abandonments constraints and so the solutions have
less agents.

112

0.79

0.82

0.85

0.88

0.91

0.94

0.97

1

1 6 11 16 21 26 31 36

period

Se
rv

ic
e

Le
ve

l

Call 1 Call 2 Grouped

Figure 9.27: Service levels by periods with 2% abandonment ratio

0.79

0.82

0.85

0.88

0.91

0.94

0.97

1

1 6 11 16 21 26 31 36

period

Se
rv

ic
e

Le
ve

l

Call 1 Call 2 Grouped

Figure 9.28: Service levels by periods with 5% abandonment ratio

113

A-R

Budget n CPUavg Min Cost Med Cost P ∗ Acall,period
1 2000 1h15m 48.49 49.39 100 6.95
2 4000 2h28m 49.49 49.73 100 0.80
3 8000 3h33m 47.49 49.04 100 0

Table 9.32: N-Design example: results with the maximum abandonment ration
equal to 2%

A-R

Budget n CPUavg Min Cost Med Cost P ∗ Acall,period
1 2000 1h10m 46.44 49.60 100 4.60
2 4000 2h35m 45.66 49.61 100 2.59
3 8000 3h38m 43.31 48.47 100 0

Table 9.33: N-Design example: results with the maximum abandonment ration
equal to 5%

114

9.6 Other Comparisons

Some comparisons are, finally, presented for CPnew, the Original Approach and
the Hybrid one (called later A1 and A2) proposed in chapter 8. Remembering
that these are two other possible way for solving the scheduling problem for
a multi skill call center, we consider two examples already introduced in the
previous sections: N-Design and MS2.

This section represents, in any case, future work for researching in new
innovative algorithms.

9.6.1 N-Design and MS2

Case Algorithm n CPUavg Min Med P ∗
0.5 P0.5 P ∗

1 P1 P ∗ Gcall Gperiod Gcall,period

1 CPnew 1600 1774 35.03 35.17 28.125 28.125 75 87.5 87.5 0 0 0.15
A1 2000 1703 35.42 36.05 0 0 0 0 62.5 0 0.49 0.03
A2 600 1879 34.53 34.96 25 62.5 37.5 87.5 37.5 0 0.86 0.50

2 CPnew 2000 3694 35.03 35.17 43.75 43.75 43.75 43.75 100 0 0 0
A1 3000 3634 35.99 36.16 0 0 0 0 62.5 0 0.38 0.09
A2 1100 3596 34.48 34.98 75 87.5 75 87.5 75 0 0.09 0

Table 9.34: N − design results

Table 9.34 remarks the fact that CPnew is capable of finding the best solution
(with both CPU time budgets) considering not only the final cost but also its
feasibility.

In fact A2 is capable of finding a better solution in regard to the one of
CPnew, but with more difficulties it ends with a totally feasible solution (even
though the infeasibility gap is very low).

Algorithm Agent type Shift type
1 2 3 4 5 6 7

CPnew 1 6 3 3 1 1 8 2
2 3 0 0 1 1 2 0

A1 1 8 0 4 2 0 9 2
2 4 0 0 0 1 2 0

A2 1 8 2 2 2 1 8 1
2 2 0 1 0 1 2 1

Table 9.35: N-Design: scheduling solutions

In particular, the approach named A1 (the original approach proposed in
Chapter 8) does not give us good solutions because it is based on an iterative
updating of some parameters and it is not possible to have a fixed rule for
setting/updating them.

On the other hand, instead, the Hybrid Approach (A2) gives us good so-
lutions because it solves the MPP problem only at the beginning but later it
adopts a cutting plane algorithm for reaching more feasible solutions. In fact,
its final solutions are almost equal to the ones found by CPnew.

115

The little cost decrement, passing from CPnew to A2, is due to a different
agents arrangement to the shifts. For example, observing the table 9.35, one can
see that the total number of 1 and 2 agents types is the same for both methods.

The final results, reported in table 9.34, suggest an important aspect: in-
creasing the CPU time budget, CPnew is able to find more feasible solutions.
For example, looking at the results with budget b2, CPnew finds all feasible
solutions in the performed runs.

Case Algorithm n CPUavg Min Med P ∗
0.5 P0.5 P ∗

1 P1 P ∗ Gcall Gperiod Gcall,period

1 CPnew 400 1751 18.11 18.97 0 0 0 0 87.5 0 0.53 0
A1 6000 1623 23.53 25.61 0 0 0 0 87.5 0 0.54 0
A2 900 1881 21.40 21.84 0 0 0 0 100 0 0 0

2 CPnew 400 3520 17.92 18.57 0 0 0 0 75 0 0.28 0
A1 8000 3394 23.53 25.76 0 0 0 0 100 0 0 0
A2 900 3754 21.73 22.04 0 0 0 0 100 0 0 0

Table 9.36: MS2 results

shift types total
1 2 3 4 5 6 7

agents CP 4 0 1 1 0 6 2 14
agents A1 9 1 1 0 1 8 1 21
agents A2 4 3 0 0 1 8 1 17

Table 9.37: MS2: scheduling solutions

agent types
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CP 0 1 1 0 1 1 0 3 1 0 1 1 2 1 1
A1 1 2 3 4 4 1 2 3 0 0 0 1 0 0 1
A2 1 0 0 1 1 0 1 2 2 0 1 2 5 1 0

Table 9.38: MS2: total number of agents for each type in the scheduling solu-
tions

Examining MS2 results and observing table 9.36, it is possible to see that
CPnew finds better solutions (considering only the cost) but they present a little
infeasibility.

The reduced costs of CPnew is due to the fact that it assigns, in general, few
agents compared to the other methods (as shown in table 9.38).

The conclusions of this section (in particular with these two examples) should
not lead us to think that both methods have to be discarded. They, in fact,
represent future work on which one can define more adjustments of their imple-
mentation in order to reach (or to improve) CPnew performances.

116

Chapter 10

Conclusions

The main contribute of this PhD thesis has been the designing and implemen-
tation of a methodology for solving the scheduling problem for a multi-skill call
center under the service levels constraints.

Firstly, we have showed the main weakness of a two step approach, a typical
methodology proposed in literature, for solving the above problem. We have
also proposed some concrete examples showing the optimality gap of the final
solution obtained by this approach.

Secondly, we have detected some lower bounds on the number of shifts in
the single-skill and in the multi-skill call center. Then, we have performed a
series of numerical experiments to quantify, empirically, the impact of the shift
length flexibility provided by considering a rich set of shift types.

Combining the new type of constraints, introduced in Bhulai et al. (2007),
in order to model the skill-transfer in a multi-skill environment, with the typical
constraints on the service levels, we have proposed a new scheduling problem
formulation. Then we have designed and implemented a cutting plane algorithm
to solve this problem overcoming the weakness of a two step approach. This
methodology, extending the one already proposed in Cez̧ik and L’Ecuyer (2006)
for the single-skill call center, has been tested on a set of problem tests. We have
showed that, even if the use of common random numbers reduces the simulation
noise (or variance) significantly, there is still a fair amount of randomness in the
solution provided by the algorithm. For example, a source of noise for the
algorithm is the simulation length. In fact, due to the fact that the estimation
of each subgradient requires a lot of simulations, the simulation length has to be
kept short. In any case, one could run the algorithm a few times (e.g., overnight)
and, considering a few solutions, retains the best.

We have also showed that, by slightly perturbing the SL targets, it is possible
to overcome some of the problems related to the simulation noise. In fact, by
numerical experiments, we have showed that the probability to obtain more
feasible and high quality solutions increases.

In order to improve the quality of the final solution, we have designed also
a local search module for decreasing the total cost exploring its neighborhood
performing moves of removing and switching agents.

As another possible approach, for solving the problem, we have proposed a
Randomized Search method (extending the one already designed for the single-
period staffing problem in Avramidis et al. (2006)). But, by testing it on a set

117

of instances, we have showed that the particular implementation of the method
does not work well for the scheduling problem in particular when the search
space becomes too large.

Comparing the three different methodologies, we have showed that the cut-
ting plane one is able to obtain low cost solutions in reasonable computational
times.

For this reason, we have also extended this approach for solving a variant
of the scheduling problem in which not only the service levels constraints are
imposed but also the ones on the abandonments probability.

Finally, we proposed two new solving methods taking into account different
ways to model the scheduling problem by mathematical formulations.

118

REFERENCES

Aguir, M. S., O. Akşin, F. Karaesmen, and Y. Dallery. 2004a. The impact of
retrials on call center performance. OR Spectrum 26 (3): 353–376.

Aguir, M. S., O. Akşin, F. Karaesmen, and Y. Dallery. 2004b. On the interaction
between retrials and sizing of call centers. Technical report, Department of
Industrial Engineering, Koç University.

Akşin, O., and P. Harker. 2001a. Capacity sizing in the presence of a common
shared resource: Dimensioning an inbound call center. Technical report, The
Wharton School, Philadelphia.

Akşin, O. Z., M. Armony, and V. Mehrotra. 2007. The modern call-center: A
multi-disciplinary perspective on operations management research. Working
Paper .

Akşin, O. Z., and P. T. Harker. 2001b. Modeling a phone center: Analysis
of a multichannel, multiresource processor shared loss system. Management
Science 47 (2): 324–336.

Andrews, B., and S. M. Cunningham. 1995. L.L. Bean improves call-center
forecasting. Interfaces 25:1–13.

Armory, M., and C. Maglaras. 2004a. Contact centers with a call-back option
and real-time delay information. Operations Research. To appear.

Armory, M., and C. Maglaras. 2004b. On customer contact centers with a call-
back option: Customer decisions, sequencing rules, and system design. Op-
erations Research. To appear.

Atar, R., A. Mandelbaum, and M. I. Reiman. 2004. Scheduling a multi class
queue with many exponential servers: Asymptotic optimality in heavy traf-
fic. Annals of Applied Probability 14:1084–1134.

Atlason, J., M. A. Epelman, and S. G. Henderson. 2003. Using simulation to ap-
proximate subgradients of convex performance measures in service systems.
In Proceedings of the 2003 Winter Simulation Conference, 1824–1832: IEEE
Press.

Atlason, J., M. A. Epelman, and S. G. Henderson. 2004a. Call center staffing
with simulation and cutting plane methods. Annals of Operations Re-
search 127:333–358.

Atlason, J., M. A. Epelman, and S. G. Henderson. 2004b. Optimizing call
center staffing using simulation and analytic center cutting plane methods.
manuscript.

Avaya Communications 2001, September. Blending: The changing color of con-
tact center productivity. http://www1.avaya.com/enterprise/who/docs/
predictivedialing/resources.html.

Avramidis, A. N., W. Chan, and P. L’Ecuyer. 2006. Staffing multi-skill call
centers via search methods and a performance approximation. Submitted.

Avramidis, A. N., A. Deslauriers, and P. L’Ecuyer. 2004. Modeling daily arrivals
to a telephone call center. Management Science 50 (7): 896–908.

Avramidis, A. N., M. Gendreau, P. L’Ecuyer, and O. Pisacane. 2007. Optimizing
daily agent scheduling in a multiskill call center. Submitted.

Avramidis, A. N., and P. L’Ecuyer. 2005. Modeling and simulation of call cen-
ters. In Proceedings of the 2005 Winter Simulation Conference, 144–152:
IEEE Press.

Aykin, T. 1996. Optimal shift scheduling with multiple break windows. Man-
agement Science 42 (4): 591–602.

119

http://www1.avaya.com/enterprise/who/docs/predictivedialing/resources.html
http://www1.avaya.com/enterprise/who/docs/predictivedialing/resources.html

Baker, J. R., and K. E. Fitzpatrick. 1986. Determination of an optimal fore-
cast model for ambulance demand using goal programming. Journal of the
Operational Research Society 37 (11): 1047–1059.

Bapat, V., and E. B. Pruitte Jr.. 1998. Using simulation in call centers. In
Proceedings of the 1998 Winter Simulation Conference, Volume 2, 1395–
1399.

Bartholomew, D., A. Forbes, and S. McLean. 1991. Statistical techniques for
manpower planning . 2nd ed. Wiley.

Bassamboo, A., J. M. Harrison, and A. Zeevi. 2004. Design and control of a
large call center: Asymptotic analysis of an LP-based method. Manuscript,
Graduate School of Business, Stanford University.

Bechtold, S. E., and L. W. Jacobs. 1990. Implicit modeling of flexible break
assignments in optimal shift scheduling. Management Science 36 (11): 1339–
1351.

Belacel, N., P. Hansen, and P. L’Ecuyer. 2001, juillet. Rapport d’étape pour le
projet LUB: gestion optimale d’un centre d’appels en environement “blend”.
Rapport fourni à Bell, 28 pages.

Bell, S., and R. Williams. 2001. Dynamic scheduling of a system with two par-
allel servers in heavy traffic with resource pooling: asymptotic optimality of
a threshold policy. Annals of Applied Probability 11:608–649.

Berman, O., and R. C. Larson. 2000. A queueing control model for retail services
having backroom operations and cross-trained workers. Technical report,
Massachusetts Institute of Technology. Preprint.

Bhulai, S. 2004. Dynamic routing policies in multi-skill call centers. Technical
report, Technical report 2004-11, Free University, Amsterdam.

Bhulai, S., and G. Koole. 2003. A queueing model for call blending in call
centers. IEEE Transactions on Automatic Control :1434–1438.

Bhulai, S., G. Koole, and G. Pot. 2005. Simple methods for shift scheduling in
multi-skill call centers. Technical report, Technical Report WS 2005-10, Free
University, Amsterdam.

Bhulai, S., G. Koole, and G. Pot. 2007. Simple methods for shift scheduling in
multi-skill call centers. Technical report, Free University, Amsterdam.

Bianchi, L., J. Jarrett, and R. C. Hanumara. 1998. Improving forecasting for
telemarketing centers by ARIMA modeling with intervention. International
Journal of Forecasting 14:497–504.

Borst, S., A. Mandelbaum, and M. Reiman. 2004. Dimensioning large call cen-
ters. Operations Research 52:17–34.

Borst, S. C., R. J. Boucherie, and O. J. Boxma. 1998, 31. ERMR: a generalised
equivalent random method for overflow systems with repacking. In 742, 18.
ISSN 1386-3711: Centrum voor Wiskunde en Informatica (CWI).

Borst, S. C., and P. Serri. 2000. Robust algorithms for sharing agents with
multiple skills. manuscript.

Brandt, A., and M. Brandt. 1999a. On the M(n)/M(n)/s queue with impatient
calls. Performance Evaluation 35 (1-2): 1–18.

Brandt, A., and M. Brandt. 1999b. A two-queue priority system with impatience
and its application to a call center. Methodology and Computing in Applied
Probability 1:191–210.

Brandt, A., M. Brandt, G. Spahl, and D. Weber. 1997. Modeling and optimiza-
tion of call distribution. In Proceedings of the 15th International Teletraffic
Conference, ed. V. Ramaswani and P. E. Wirth, 133–144: Elsevier Science.

120

Brown, L., N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn, and L. Zhao.
2005a. Statistical analysis of a telephone call center: A queueing-science
perspective. Journal of the American Statistical Association 100:36–50.

Brown, L., N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn, and L. Zhao.
2005b. Statistical analysis of a telephone call center: A queueing-science
perspective. Journal of the American Statistical Association 100:36–50.

Buist, E. 2005. Outils de simulation en Java pour les centres de contact. Mas-
ter’s thesis, Département d’Informatique et de Recherche Opérationnelle,
Université de Montréal, Canada.

Buist, E., and P. L’Ecuyer. 2005. A Java library for simulating contact centers.
In Proceedings of the 2005 Winter Simulation Conference, 556–565: IEEE
Press.

Call Center News Service 2001. Call center statistics. http://www.
callcenternews.com/.

Cez̧ik, M. T., and P. L’Ecuyer. 2006. Staffing multiskill call centers via linear
programming and simulation. Management Science. To appear.

Chan, W. 2006. Optimisation stochastique pour l’affectation du personnel poly-
valent dans un centre d’appels téléphoniques. Master’s thesis, Département
d’Informatique et de Recherche Opérationnelle, Université de Montréal,
Canada.

Channouf, N., P. L’Ecuyer, A. Ingolfsson, and A. N. Avramidis. 2007. The
application of forecasting techniques to modeling emergency medical system
calls in Calgary, Alberta. Health Care Management Science 10. To appear.

Chen, B. P. K., and S. G. Henderson. 2001. Two issues in setting call center
staffing levels. Annals of Operations Research 108:175–192.

Chevalier, P., R. A. Shumsky, and N. Tabordon. 2003. Overflow analysis and
cross-trained servers. International Journal of Production Economics 85:47–
60.

Chevalier, P., R. A. Shumsky, and N. Tabordon. 2004. Routing and staffing in
large call centers with specialized and fully flexible servers. Technical report,
Simon Graduate School of Business, University of Rochester.

Chevalier, P., and J. Van den Schrieck. 2005. Optimizing the staffing and routing
of small-size hierarchical call centers. Preprint.

Chlebus, E. 1997. Empirical validation of call holding time distribution in cellu-
lar communications systems. In Proceedings of the 15th International Tele-
traffic Congress, 1179–1188: Elsevier.

Chokshi, R. 1999. Decision support for call center management using simulation.
In Proceedings of the 1999 Winter Simulation Conference, Volume 2, 1634–
1639: IEEE Press.

Cleveland, B., and J. Mayben. 1997. Call center management—on fast forward.
Preprint. Call Center Press.

Dantzig, G. B. 1954. A comment on Edie’s “traffic delays at toll booths”. Op-
erations Research 2 (3): 339–341.

Deslauriers, A. 2003. Modélisation et simulation d’un centre d’appels
téléphoniques dans un environnement mixte. Master’s thesis, Department of
Computer Science and Operations Research, University of Montreal, Mon-
treal, Canada.

Deslauriers, A., J. Pichitlamken, P. L’Ecuyer, A. Ingolfsson, and A. N.
Avramidis. Markov chain models of a telephone call center in blend mode.
Computers and Operations Research. To appear.

121

http://www.callcenternews.com/
http://www.callcenternews.com/

E-Comm 2005, July. Quarterly service report. Available from http://www.
ecomm.bc.ca/corporate/publications/esr_final.pdf.

Erdogan, G., E. Erkut, and A. Ingolfsson. 2006. Ambulance deployment
for maximum survival. Technical report. Available from http://www.bus.
ualberta.ca/aingolfsson/working_papers.

Franx, G. J., G. Koole, and A. Pot. 2006. Approximating multi-skill block-
ing systems by hyper-exponential decomposition. Performance Evalua-
tion 63:799–824.

Fukunaga, A., E. Hamilton, J. Fama, D. Andre, O. Matan, and I. Nourbakhsh.
2002. Staff scheduling for inbound call centers and customer contact centers.
Eighteenth National Conference on Artificial intelligence:822–829.

Gans, N., G. Koole, and A. Mandelbaum. 2003a. Telephone call centers: Tuto-
rial, review, and research prospects. Manufacturing and Service Operations
Management 5:79–141.

Gans, N., G. Koole, and A. Mandelbaum. 2003b. Telephone call centers: Tuto-
rial, review, and research prospects. Manufacturing and Service Operations
Management 5:79–141.

Gans, N., and Y.-P. Zhou. 2001, September. A call-routing problem with service-
level constraints. Technical report, The Wharton School, University of Penn-
sylvania, Philadelphia. Preprint.

Gans, N., and Y.-P. Zhou. 2002. Managing learning and turnover in employee
staffing. Operations Research 50:991–1006.

Gans, N., and Y.-P. Zhou. 2004. Overflow routing for call center outsourcing.
Preprint.

Garnett, O., and A. Mandelbaum. 2000. An introduction to skill-based routing
and its operational complexities. manuscript.

Garnett, O., A. Mandelbaum, and M. Reiman. 2002. Designing a call center with
impatient customers. Manufacturing and Service Operations Management 4
(3): 208–227.

Goldberg, J. B. 2004. Operations research models for the deployment of emer-
gency service vehicles. EMS Management Journal 1:20–39.

Green, L. V., and P. Kolesar. 1991. The pointwise stationary approximation for
queues with nonstationary arrivals. Management Science 37 (1): 84–97.

Green, L. V., and P. Kolesar. 1997. The lagged PSA for estimating peak con-
gestion in multiserver Markovian queues with periodic arrival rates. Man-
agement Science 43:80–87.

Green, L. V., and P. J. Kolesar. 2004. Improving emergency responsiveness with
management science. Management Science 50:1001–1014.

Grossman Jr., T. A., S. L. Oh, T. R. Rohleder, and D. A. Samuelson. 2000.
Call centers. In The Encyclopedia of Operations Research and Management
Science (second ed.)., ed. S. I. Gass and C. M. Harris, 73–76. New York:
Kluwer Academic Publishers.

Gulati, S. 2001. Call center scheduling technology evaluation using simulation.
In Proceedings of the 2001 Winter Simulation Conference, Volume 2, 1438–
1442.

Gunes, E., and R. Szechtman. 2005. A simulation model of a helicopter am-
bulance service. In Proceedings of the 1992 Winter Simulation Conference,
951–957: IEEE Press.

Halfin, S., and W. Whitt. 1981. Heavy-traffic limits for queues with many ex-
ponential servers. Operations Research 29:567–588.

122

http://www.ecomm.bc.ca/corporate/publications/esr_final.pdf
http://www.ecomm.bc.ca/corporate/publications/esr_final.pdf
http://www.bus.ualberta.ca/aingolfsson/working_papers
http://www.bus.ualberta.ca/aingolfsson/working_papers

Harris, C., K. Hoffman, and P. Saunders. 1987. Modeling the irs telephone
taxpayer information system. Operations Research 35:504–523.

Harrison, J. M., and M. J. Lopez. 1999. Heavy-traffic resource pooling in
parallel-server systems. Queueing Systems 33:339–368.

Harrison, J. M., and A. Zeevi. 2004. Dynamic scheduling of a multi-class queue
in the Halfin-Whitt heavy-traffic regime. Operations Research 52:243–257.

Harrison, J. M., and A. Zeevi. 2005. A method for staffing large call centers based
on stochastic fluid models. Manufacturing and Service Operations Manage-
ment 7 (1): 20–36.

Henderson, S., and A. Mason. 1998. Rostering by iterating integer programming
and simulation. In Proceedings of the 1998 Winter Simulation Conference,
Volume 1, 677–683.

Henderson, S. G., and A. J. Mason. 2004. Ambulance service planning: simula-
tion and data visualization. In Handbook of Operations Research and Health
Care Methods and Applications, ed. F. Sainfort, M. L. Brandeau, and W. P.
Pierskalla, 77–102. Boston: Kluwer Academic.

Henderson, S. G., A. J. Mason, I. Ziedins, and R. Thomson. 1999. A heuristic for
determining efficient staffing requirements for call centres. Technical Report
594, School of Engineering, University of Auckland, NZ.

Hoffman, K. L., and C. M. Harris. 1986. Estimation of a caller retrial rate for a
telephone information system. European Journal of Operational Research 27
(2): 207–214.

Ingolfsson, A., E. Akhmetshina, S. Budge, Y. Li, and X. Wu. 2005. A survey and
experimental comparison of service level approximation methods for non-
stationary M/M/s queueing systems. Technical report, School of Business,
University of Alberta, Edmonton, Alberta, Canada.

Ingolfsson, A., E. Cabral, and X. Wu. 2003. Combining integer programming and
the randomization method to schedule employees. Technical report, School
of Business, University of Alberta, Edmonton, Alberta, Canada. Preprint.

Ingolfsson, A., E. Erkut, and S. Budge. 2003. Simulation of single start station
for Edmonton EMS. Journal of the Operational Research Society 54:736–746.

Jennings, O. B., A. Mandelbaum, W. A. Massey, and W. Whitt. 1996. Server
staffing to meet time-varying demand. Management Science 42 (10): 1383–
1394.

Jiménez, T., and G. Koole. 2004. Scaling and comparison of fluid limits of queues
applied to call centers with time-varying parameters. OR Spectrum 26:413–
422.

Jones, S. A., M. P. Joy, and J. Pearson. 2002. Forecasting demand of emergency
care. Health Care Management Science 5:297–305.

Jongbloed, G., and G. Koole. 2001. Managing uncertainty in call centers us-
ing Poisson mixtures. Applied Stochastic Models in Business and Indus-
try 17:307–318.

Kamenetsky, R. D., L. J. Shuman, and H. Wolfe. 1982. Estimating need and
demand for prehospital care. Operations Research 30:1148–1167.

Kelley, J. 1960. The cutting plane method for solving convex programs. Journal
of the Society for Industrial and Applied Mathematics 8(4):703712.

Klungle, R. 1999. Simulation of a claims call center : a succss and a failure.
In Proceedings of the 1999 Winter Simulation Conference, Volume 2, 1648–
1652.

Koole, G. 2001. Mathematical modeling of call centers. Technical report, De-

123

partment of Stochastics, Vrije Universiteit, Amsterdam.
Koole, G. 2003. Redefining the service level in call centers. Technical report,

Department of Stochastics, Vrije Universiteit, Amsterdam.
Koole, G. 2004. A formula for tail probabilities of Cox distributions. Journal of

Applied Probability 41 (3). To appear.
Koole, G. 2005. Call center mathematics. In preparation.
Koole, G., and A. Mandelbaum. 2002. Queueing models of call centers: An

introduction. Annals of Operations Research 113:41–59.
Koole, G., and A. Pot. 2005. Approximate dynamic programming in multi-skill

call centers. In Proceedings of the 2005 Winter Simulation Conference: IEEE
Press.

Koole, G., and A. Pot. 2006. An overview of routing and staffing algorithms in
multi-skill customer contact centers. Submitted version.

Koole, G., A. Pot, and J. Talim. 2003. Routing heuristics for multi-skill call
centers. In Proceedings of the 2003 Winter Simulation Conference, 1813–
1816: IEEE Press.

Koole, G., and J. Talim. 2000. Exponential approximation of multi-skill call
centers architecture. In Proceedings of QNETs, 23/1–10.

Koole, G., and H. J. van der Sluis. 1998. An optimal local search procedure
for manpower scheduling in call centers. Technical report, Vrije Universiteit,
Amsterdam.

Koole, G., and H. J. van der Sluis. 2003. Optimal shift scheduling with a global
service level constraint. IIE Transactions 35:1049–1055.

Kort, B. 1983. Models and methods for evaluating customer acceptance of tele-
phone connections. In GLOBECOM ’83, 706–714: IEEE.

Larson, R. C. 1974. A hypercube queuing model for facility location and redis-
tricting in urban emergency services. Computers & Operations Research 1
(1): 67–95.

Larson, R. C. 1975. Approximating the performance of urban emergency service
systems. Operations Research 23 (5): 845–868.

L’Ecuyer, P. 2006. Modeling and optimization problems in contact centers. In
Proceedings of the Third International Conference on Quantitative Evalua-
tion of Systems (QEST’2006), 145–154. University of California, Riversdale:
IEEE Computing Society.

L’Ecuyer, P., and E. Buist. 2005. Simulation in java with ssj. In Proceedings of
the 2005 Winter Simulation Conference, 611–620: IEEE Press.

L’Ecuyer, P., and E. Buist. 2006. Variance reduction in the simulation of call
centers. In Proceedings of the 2006 Winter Simulation Conference, 604–613:
IEEE Press.

Mabert, V. A. 1985. Short interval forecasting of emergency phone call (911)
work loads. Journal of Operations Management 5 (3): 259–271.

Mandelbaum, A. 2003. Call centers: Research bibliography with abstracts.
Downloadable from http://iew3.technion.ac.il/serveng/References/
references.html.

Mandelbaum, A. 2006. Call centers: Research bibliography with abstracts.
Version 7, downloadable from http://iew3.technion.ac.il/serveng/
References/references.html.

Mandelbaum, A., W. Massey, and M. I. Reimann. 1998. Strong approximations
for Markovian service networks. Queueing Systems 30:149–201.

Mandelbaum, A., and M. I. Reimann. 1998. On pooling in queueing networks.

124

http://iew3.technion.ac.il/serveng/References/references.html
http://iew3.technion.ac.il/serveng/References/references.html
http://iew3.technion.ac.il/serveng/References/references.html
http://iew3.technion.ac.il/serveng/References/references.html

Management Science 44:971–981.
Mandelbaum, A., and N. Shimkin. 2000. A model for rational abandonments

from invisible queues. Queueing Systems: Theory and Applications 36 (1-3):
141–173.

Mandelbaum, A., and A. L. Stolyar. 2004. Scheduling flexible servers with con-
vex delay costs: Heavy-traffic optimality of the generalized c-mu rule. Oper-
ations Research 52:836–855.

Mandelbaum, A., and S. Zeltyn. Service engineering in action: The
Palm/Erlang-A queue, with applications to call centers. Manuscript,
downloadable from http://iew3.technion.ac.il/serveng/References/
references.html.

Mason, A. J., D. M. Ryan, and D. M. Panton. 1998. Integrated simulation,
heuristic and optimization approaches to staff scheduling. Operations Re-
search 46 (2): 161–175.

McConnell, C. E., and R. W. Wilson. 1998. The demand for prehospital emer-
gency services in an aging society. Social Science & Medicine 46 (8): 1027–
1031.

Mehrotra, A., K. E. Murphy, and M. A. Trick. 2000. Optimal shift scheduling:
A branch-and-price approach. Naval Research Logistics 47 (3): 185–200.

Mehrotra, V. 1997, October. Ringing up big business. ORMS Today 24 (4):
18–24.

Mehrotra, V. 1999, August. Call center simulation enhances planning and per-
formance. Call Center Management Review .

Mehrotra, V., and J. Fama. 2003. Call center simulation modeling: Methods,
challenges, and opportunities. In Proceedings of the 2003 Winter Simulation
Conference, 135–143: IEEE Press.

Mieghem, J. A. V. 1995. Dynamic scheduling with convex delay costs: the
generalized cmu rule. Annals of Applied Probability 5:809–833.

Mieghem, J. A. V. 1998. Investment strategies for flexible resources. Manage-
ment Science 44:1071–1078.

Milner, P. C. 1997. Ten-year follow-up of arima forecasts of attendances
at accident and emergency departments in the trent region. Statistics in
Medicine 16:2117–2125.

Moeller, A. 2004. Obstacles to measuring emergency medical service perfor-
mance. EMS Management Journal 1:8–15.

National Fire Protection Association 2002. NFPA 1221: Standard for the instal-
lation, maintenance, and use of emergency service communication systems.

Ormeci, E. L. 2004. Dynamic admission control in a call center with one shared
and two dedicated service facilities. IEEE Transactions on Automatic Con-
trol . to appear.

Palm, C. 1943. Intensitätsschwankungen im fernsprechverkehr. Ericsson Tech-
nics 44:1–189.

Pichitlamken, J., A. Deslauriers, P. L’Ecuyer, and A. N. Avramidis. 2003. Mod-
eling and simulation of a telephone call center. In Proceedings of the 2003
Winter Simulation Conference, 1805–1812: IEEE Press.

Repede, J. F., and J. J. Bernardo. 1994. Developing and validating a decision
support system for location emergency medical vehicules in Louisville, Ken-
tucky. European Journal of Operational Research 75:567–581.

Ridley, A. D., M. C. Fu, and W. A. Massey. 2003. Fluid approximations for
a priority call center with time-varying arrivals. In Proceedings of the 2003

125

http://iew3.technion.ac.il/serveng/References/references.html
http://iew3.technion.ac.il/serveng/References/references.html

Winter Simulation Conference, 1817–1823: IEEE Press.
Rockafellar, R. 1970. Convex analysis. Princeton, NJ: Princeton University

Press.
Saltzman, R. M., and V. Mehrotra. 2001. A call center uses simulation to drive

strategic change. Interfaces 31 (3): 87–101.
Samuelson, D. A. 1999. Call attempt pacing for outbound telephone dialing

systems. Interfaces 29 (5): 66–81.
Schoen, F. 2006. Modelli di ottimizzazione per le decisioni . 1nd ed. Pogetto

Leonardo-Esculapio.
Sharp, D. 2003. Call center operation: Design, operation, and maintenance. 1nd

ed. Digital Press.
Shen, H., and J. Huang. 2007. Interday forecasting and intraday updating of

call center arrivals. Working Paper .
Shumsky, R. A. 2004. Approximation and analysis of a call center with flexible

and specialized servers. OR Spectrum 26:307–330.
Soyer, R., and M. Tarimcilar. 2007. Modeling and analysis of call center arrival

data: A bayesian approach. Management Science, forthcoming .
Spaite, D. W., E. A. Criss, T. D. Valenzuela, and J. Guisto. 1995. Emergency

medical service systems research: Problems of the past, challenges of the
future. Annals of Emergency Medicine 26 (2): 146–152.

Steckley, S. G., S. G. Henderson, and V. Mehrotra. 2004. Service system plan-
ning in the presence of a random arrival rate. submitted.

Swersey, A. J. 1994. The deployment of police, fire and emergency medical
units. In Handbooks in Operations Research and Management Science, ed.
S. M. Pollock, M. Rothkopf, and A. Barnett, Volume 6, 151–190. New York:
North-Holland.

Tanir, O., and R. J. Booth. 1999. Call center simulation in Bell Canada. In
Proceedings of the 1999 Winter Simulation Conference, ed. P. A. Farrington,
H. B. Nemhard, D. T. Sturrock, and G. W. Evans, 1640–1647. Piscataway,
New Jersey: IEEE Press. Available on line via www.informs-cs.org.

Thompson, G. M. 1995. Improved implicit optimal modeling of the labor shift
scheduling problem. Management Science 41 (4): 595–607.

Tych, W., D. J. Pedregal, P. C. Young, and J. Davies. 2002. An unobserved
component model for multi-rate forecasting of telephone call demand: The
design of a forecasting support system. International Journal of Forecast-
ing 18:673–695.

van Dijk, N. M. 2000. On hybrid combination of queueing and simulation. In
Proceedings of the 2000 Winter Simulation Conference, Volume 1, 147–150.

Wallace, R. B., and W. Whitt. 2005. A staffing algorithm for call centers with
skill-based routing. Manufacturing and Service Operations Management 7
(4): 276–294.

Weinberg, J., L. D. Brown, and J. R. Stroud. 2007. Bayesian forecasting of an
inhomogeneous poisson process with applications to call center data. Journal
of the American Statistical Association, forthcoming .

Whitt, W. 1999a. Dynamic staffing in a telephone call center aiming to imme-
diately answer all calls. Operations Research Letters 24:205–212.

Whitt, W. 1999b. Improving service by informing customers about anticipated
delays. Management Science 45 (2): 192–207.

Whitt, W. 1999c. Partitioning customers into service groups. Management Sci-
ence 45 (11): 1579–1592.

126

www.informs-cs.org

Whitt, W. 2004a. A diffusion approximation for the G/GI/n/m queue. Opera-
tions Research 6:922–941.

Whitt, W. 2004b. Engineering solution of a basic call-center model. Management
Science. To appear.

Whitt, W. 2004c. Fluid models for many-server queues with abandonments.
Operations Research. To appear.

Whitt, W. 2004d. Sensitivity of performance in the Erlang a model to changes
in the model parameters. manuscript.

Whitt, W. 2004e. Staffing a call center with uncertain arrival rate and absen-
teeism. manuscript.

Zhu, Z., M. A. McKnew, and J. Lee. 1992. Effects of time-varied arrival rates:
an investigation in emergency ambulance service systems. In Proceedings of
the 1992 Winter Simulation Conference, 1180–1186: IEEE Press.

Zohar, E., A. Mandelbaum, and N. Shimkin. 2002. Adaptive behavior of impa-
tient customers in tele-queues: Theory and emperical support. Management
Science 48:566–583.

127

	Introducing Call Center
	Contact and Call Center
	Customer satisfaction and service quality
	Some waiting time metrics

	The importance of the economies of scale in the call center
	How is it possible to model a call center?
	A generic queueing model for a call center
	A queueing model for a multiskill call center

	Why simulation?
	Steady State Analysis vs Transient Simulation
	Simulation-Optimization

	Staffing and Scheduling problem
	Demand Forecast and Rostering problem
	Contact Center Simulation Tools
	The general thesis's organization

	Mathematical models
	A general framework
	Staffing and Scheduling mathematical formulation

	Two Step Approach
	TS:a general methodology
	The formulation of Bhulai et al.
	The weakness of TS

	Daily scheduling with fixed shift length: some difficulties
	Shift constraints
	A lower bound on the number of shifts
	A heuristic approach to avoid the overstaffing

	A cutting plane algorithm
	Cutting plane method
	How to initialize the algorithm
	A heuristic method to obtain subgradient and feasibility check
	An integer problem or a linear one?
	Rounding module

	Local search
	CP:Some improvements
	Rounding module: some improvements
	Local Search Procedure: some improvements
	Increasing the target service levels

	Randomized search(RS)
	Loss-delay (LD) approximation
	The first phase
	The second phase
	SimAdd procedure
	SimRemove procedure

	Optimization with constraints on the abandonments
	Definition for abandonments in a call center
	An extension of the cutting plane algorithm for controlling the abandonment probability
	How to find the linear cuts

	New solution approaches
	The Max-flow problem
	The scheduling problem as a maximum flow problem
	The original approach
	The hybrid approach

	Computational results
	CPnew:the feasibility problem
	CP vs CPnew: some comparisons
	Computational results

	Some tests on Randomized Search initialization
	The common scenario and its different versions
	Results

	Comparisons: CPnew, TS and RS
	Computational Results

	Adding constraints on abandonment ratios
	Numerical Results

	Other Comparisons
	N-Design and MS2

	Conclusions
	References

