
Introductory Remarks

“Just as nonlinear is understood in mathematics to mean not necessarily linear, we

intend the term nonsmooth to refer to certain situations in which smoothness (differ-

entiability) of the data is not necessarily postulated” [5, p.1]. Nonsmooth or, equiv-

alently, nondifferentiable optimization tackles the problem of finding the minima (or

the maxima) of real-valued functions on Rn in absence of differentiability hypothesis.

Numerical algorithms for nonsmooth optimization aim at solving two different kind

of problems: the nonsmooth convex problem and the nonsmooth nonconvex problem;

therefore it is essential to know whether or not the objective function of the problem

is convex.

Chapter I. Convex analysis provided not only the mathematical basis of nons-

mooth convex optimization through new concepts such as the Rockafellar’s subd-

ifferential [35], but also the basis of nonsmooth nonconvex optimization. In fact, the

main tool of nonsmooth nonconvex optimization, i.e. Clarke gradient [5], is a sys-

tematic extension of the Rockafellar’s subdifferential; therefore we summarize some

results and concepts of convex analysis.

Chapter II. We review the Cutting-Plane algorithm [4, 17] for minimizing convex

functions and its stabilized variants, say bundle methods [16], which were introduced

both by C. Lemaréchal and P. Wolfe. We report first two examples which show the

inefficiency of Cutting-Plane algorithm and then we describe the penalty and the level

set approaches adopted by the bundle methods.

Chapter III. Another famous method for nonsmooth convex optimization is the sub-

gradient method [38], whose general scheme we describe. Then we present two ways

to approximate the initial nonsmooth convex function by a smooth convex function;



ii Introductory Remarks

in particular we deal with the Moreau-Yosida regularization and a new smoothing

technique by Yu. Nesterov [28].

Chapter IV. We analyze some of the different definitions of differentiability, i.e. the

Fréchet, the Gâuteaux and the directional differentiability. We present some concepts

relative to Clarke gradient, Goldstein ε-subdifferential and the semismoothness. Then

we describe two mean value theorems, one for directionally differentiable functions

and the other for locally Lipschitzian functions, and we report a proof of Rademacher

Theorem [25].

Chapter V. We present some algorithms for nonsmooth nonconvex optimization. In

particular, we describe the bundle algorithms BTNC [37], NCVX [10], DC-NCVX [10]

and the Gradient Sampling algorithm [3].

Chapter VI. Finally we describe the new bundle method for nonsmooth nonconvex

optimization NonConvexNonSmooth (NCNS) [12]. The algorithm is based on the con-

struction of both a lower and an upper piecewise affine approximations of the objective

function. In particular, at each iteration, a search direction is calculated by solving

a quadratic programming problem aiming at maximizing the difference between the

lower and upper model. A proximal approach is used to guarantee convergence to a

stationarity point under the hypothesis of weak semismoothness [24].
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Chapter I

Some Elements of Convex

Analysis

Introduction. The objective of the chapter is not, of course, to provide a complete

description of the theory of convex functions. We give some theoretical results useful

to deal with the numerical algorithms for convex programming problems.

1 Convex Functions

In this section we present some basic definitions and results related to convex analysis.

1.1 Basic Concepts

The epigraph builds a bridge between the functional language and the powerful lan-

guage of the sets.

Definition 1.1.1 (Epigraph)[35] Let f : A ⊂ Rn → R ∪ {±∞}. The set

epi f
4
= {(x, t) ∈ Rn+1 : x ∈ A, t ∈ R, t ≥ f(x)} (1.1.1)

is called the epigraph of f .
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x

epi f

Fig. 1.1.1: Epigraph.

Definition 1.1.2 (Convex functions)[35] Let f : A ⊂ Rn → R ∪ {±∞}. The

function f is said to be convex on A, if epi f is convex as a subset of Rn+1. The

function f is called concave on A if −f is convex on A. The function f is said to be

affine on A, if it is finite, convex and concave on A.

The following theorem provides a different definition of convex functions.

Theorem 1.1.1 [35] Let f : A → R∪ {+∞}, where A is a convex subset of Rn.

Then f is convex on A if and only if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) , λ ∈ (0, 1) (1.1.2)

for every x and y in A.

A finite convex function defined on a subset A of Rn can be considered as defined

on the whole Rn by setting f(x) = +∞ for x /∈ A; for this reason we are interested

in extended real-valued functions.

Definition 1.1.3 (Effective domain)[35] Let f : A ⊂ Rn → R ∪ {±∞} be convex

on A. The effective domain of f is the projection on Rn of the epigraph of f , i.e.

dom f
4
= {x ∈ Rn : ∃ t, (x, t) ∈ epi f} = {x ∈ A : f(x) < +∞} .
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xx y

λf(x) + (1− λ)f(y)

λx + (1− λ)y

λ ∈ (0, 1)

Fig. 1.1.2: A convex function

Observe that the effective domain of a convex function is a convex set.

Proposition 1.1.2 (Jensen’s Inequality)[15] Let f : Rn → R ∪ {+∞} be convex

(on Rn). Then

f

(
m∑

i=1

λixi

)
≤

m∑

i=1

λif(xi) , (1.1.3)

whenever λi ≥ 0, . . . , λm ≥ 0 and
∑m

i=1 λi = 1.

Proof. Take xi ∈ dom f , for i = 1, . . . , m. From (1.1.1), we have

(xi, f(xi)) ∈ epi f, i = 1, . . . ,m .

Taking into account that epi f is a convex set, we obtain
m∑

i=1

λi (xi, f(xi)) =

(
m∑

i=1

λixi,

m∑

i=1

λif(xi)

)
∈ epi f ,

which implies the thesis.

¤

Jensen’s Inequality is “one of the most useful observations in the world” [2, p.61].

Definition 1.1.4 (Proper functions)[35] Let f : Rn → R∪{±∞} be convex. The

function f is called proper, if its epigraph is a nonempty set and contains no vertical

lines, i.e. if f(x) < +∞ for a least one x and f(x) > −∞ for all x.
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The set of proper convex functions on Rn taking values in the extended real axis

R ∪ {+∞} is denoted by ConvRn [15].

1.2 Lipschitz Property of Convex Functions

Now we analyze the relationship between convex functions and Lipschitzian functions.

Proposition 1.2.1 [2] Let f ∈ ConvRn and let x ∈ ri dom f . Then

(i) there exist C ≥ 0, r > 0 such that

|f(y)| ≤ C ∀ y ∈ Ur(x)
4
= B(n)

r (x) ∩ aff(dom f) , (1.2.1)

where B
(n)
r (x) is the ball of radius r centered at x;

(ii) there exist L, ρ > 0 such that

|f(y)− f(z)| ≤ L‖y − z‖ ∀ y, z ∈ Uρ(x) . (1.2.2)

Proof. (i) For a given x ∈ ri dom f , there exists r′ > 0 such that

Ur′(x) ⊂ dom f .

Let m be the dimension of aff(dom f) and let L be a linear subspace such that

aff(dom f) = L + x. Choose m vectors, denoted as y1, . . . , ym, forming a basis in L.

Substituting y0 = −
m∑

i=1

yi into the system

∣∣∣∣∣∣∣∣∣∣

m∑

i=0

λiyi = 0

m∑

i=0

λi = 0 ,

(1.2.3)

it follows that y0, y1, . . . , ym are affinely independent.

Take ε > 0 such that xi
4
= εyi + x ∈ Ur′(x), for i = 0, 1, . . . , m. Finally construct

the m-dimensional simplex with vertices x0, x1, . . . , xm:

∆
4
= co{x0, . . . , xm} .
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Consequently

x =
1

m + 1

m∑

i=0

xi,

which in turn implies that x is a relative interior point for ∆. It follows that there

exists r > 0 such that

Ur(x) ⊂ ∆ ⊂ dom f .

From Jensen’s inequality (1.1.3), we have

f(z′) ≤
m∑

i=0

λif(xi) ≤ C ′ ∀ z′ ∈ Ur(x), (1.2.4)

where C ′
4
= max

0≤i≤m
f(xi) < ∞.

Let z′ be any point of Ur(x). Then, as displayed in Fig. 1.2.1, we have

z′′ = x− (z′ − x) ∈ Ur(x) .

Since x =
z′ + z′′

2
, we have

z′

z′′

r
x

Ur(x)

Fig. 1.2.1: Ur(x).

f(x) = f

(
1
2
z′ +

1
2
z′′

)
≤ 1

2
f(z′) +

1
2
f(z′′),

whence f(z′) ≥ 2f(x) − C ′. Then, taking into account (1.2.4), (i) follows by setting

C = max{|C ′|, |2f(x)− C ′|}.
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(ii) For any x′, x′′ ∈ U r
2
(x), there exist xa, xb ∈ ∂riUr(x) such that x′ ∈ (xa, x′′)

and x′′ ∈ (x′, xb). Since f is finite on Ur(x), from (1.1.2) we have

f(x′)− f(x′′)
‖x′ − x′′‖ ≤ f(xa)− f(x′′)

‖xa − x′′‖ (1.2.5a)

f(x′′)− f(x′)
‖x′′ − x′‖ ≤ f(xb)− f(x′)

‖xb − x′‖ (1.2.5b)

which yields, by using triangle inequality, the following relations

f(x′)− f(x′′) ≤ f(xa)− f(x′′)
‖xa − x′′‖ ‖x′ − x′′‖ ≤ 4C

r
‖x′ − x′′‖ (1.2.6a)

f(x′′)− f(x′) ≤ f(xb)− f(x′)
‖xb − x′‖ ‖x′′ − x′‖ ≤ 4C

r
‖x′′ − x′‖ (1.2.6b)

r

Ur(x)

r

2

x′′

x′

xa

xb

x

Fig. 1.2.2: U r
2
(x).

By setting ρ
4
= r

2 e L
4
= 4C

r , (ii) follows.

¤

The following theorem states that a finite convex function on Rn is locally Lips-

chitzian.

Theorem 1.2.2 [2] Let f ∈ ConvRnand let C ⊂ ri dom f be a compact set. Then

f is Lipschitzian on C.

Proof. We show, by contradiction, that f is Lipschitzian on C. Suppose in fact

that for each i ∈ N there exist xi, yi ∈ C such that xi 6= yi and

|f(xi)− f(yi)| > i‖xi − yi‖.
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Taking into account that C is bounded, there exist two convergent subsequences

{xi}i∈P , {yi}i∈P .

Let

x = lim
i→∞
i∈P

xi, y = lim
i→∞
i∈P

yi. (1.2.7)

Two cases can occur:

1. x = y. From (1.2.7), we have that there exists ı̂ ∈ N such that

xi, yi ∈ Ur(x),
|f(xi)− f(yi)|
‖xi − yi‖ > i ∀ i ≥ ı̂ ,

which contradicts (1.2.2).

2. x 6= y. By virtue of Proposition 1.2.1,

lim
i→∞
i∈P

f(xi) = f(x), lim
i→∞
i∈P

f(yi) = f(y) .

Consequently we have

∞ > |f(x)− f(y)| = lim
i→∞
i∈P

|f(xi)− f(yi)| > lim
i→∞
i∈P

i‖xi − yi‖

= ‖x− y‖ lim
i→∞
i∈P

i = ∞.

which is a contradiction.

¤

1.3 Closed Proper Convex Functions

We are usually interested in a family of convex functions with nice properties of

representation. This family is formed by closed proper convex functions.

Definition 1.3.1 ( Closed functions)[35] The function f : Rn → R ∪ {±∞} is

said to be lower semicontinuous at x, if the condition

lim inf
y→x

f(y) ≥ f(x)
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closed, but not convexconvex, but not closed closed and convex

Fig. 1.3.1: Closed functions.

holds. The function f is called closed (or lower semicontinuous), if it is lower semi-

continuous at every point x in Rn (see Fig. 1.3.1).

Remark 1.3.1 [35] It is known that f is closed if and only if its epigraph is

closed or equivalently its sublevel sets

Ft
4
= {x ∈ Rn : f(x) ≤ t} , ∀ t ∈ R

are closed.

The set of closed proper convex functions on Rn taking values in the extended real

axis R ∪ {+∞} is denoted by ConvRn [15].

By considering the relationship between convex functions and convex sets, we

can translate to the functional language several results related to convex sets. For

example, by using Hahn-Banach Theorem (see, e.g., [15]), it is possible to prove the

following basic proposition.

Proposition 1.3.1 [2] Let f ∈ ConvRn and let B be the set of all its affine

minorants, i.e.

B 4
= {g : Rn → R : g(x) ≤ f(x) ∀x, g is affine}.

Then

f(x) = sup
g∈B

g(x)
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Moreover, if x ∈ ri dom f , then

f(x) = max
g∈B

g(x) .

2 Subdifferential of Finite Convex Functions

The concept of subdifferential ∂f(x) of a function f at x generalizes that of gradient

∇f(x) of f at x, in the sense that ∂f(x) coincides with ∇f(x) whenever f is differen-

tiable at x. In the definition of the subdifferential we will restrict ourselves to finite

convex functions.

2.1 Support Functions

“In classic real analysis, the simplest functions are linear, in convex analysis the

simplest convex functions are so-called sublinear” [15, p.195].

Definition 2.1.1 (Sublinear functions)[15] Let σ : Rn → R ∪ {+∞} be proper.

The function σ is said to be sublinear, if it is convex and positively homogeneous (of

degree 1): σ ∈ ConvRn and

σ(tx) = tσ(x), ∀ x ∈ Rn, t > 0 . (2.1.1)

It is known (see, e.g., [15]) that the function σ, participating in Definition 2.1.1,

is sublinear if and only if it is subadditive, i.e.

σ(x + y) ≤ σ(x) + σ(y) ∀ x, y ∈ Rn ,

and positively homogeneous. From (2.1.1), we deduce that σ(0) is either zero or +∞.

If σ is also closed, then

σ(0) ≤ lim
t↓0

σ(tx) = 0 ∀ x ∈ dom f

and so σ(0) = 0.
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Definition 2.1.2 (Support functions)[15] Let C be a nonempty subset of Rn.

The function σC : Rn → R ∪ {+∞} defined by

σC(x)
4
= sup

g∈C
gT x (2.1.2)

is called the support function of C.

C

ḡ

{g ∈ R2 : gT x̄ = σC(x̄)}
x̄

Fig. 2.1.1: The geometrical meaning of the support function.

For a given nonempty set C, the supremum in (2.1.2) may be finite or not finite,

achieved on C or not (see Fig. 2.1.1).

Proposition 2.1.1 [15] The support function σC : Rn → R ∪ {+∞} of a set C

is finite everywhere if and only if C is bounded.

Proposition 2.1.2 [15] The support function σC : Rn → R ∪ {+∞} of a set C

is closed and sublinear.

Proof. Let x 7→ lg(x) = gT x : Rn → R. Since epi σC =
⋂

g∈C

epi lg, it follows that

σC is convex and closed. Moreover, σC(0) = 0 implies that σC is proper. It is clear

that f is positively homogeneous and therefore we obtain the result.

¤
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The closed convex hull of any nonempty set can be express through its support

function. In fact we have the following result.

Theorem 2.1.3 [15] Let C ⊂ Rn be nonempty and let σC be the support function

of C. Then

co C =
{
g ∈ Rn : gT x ≤ σC(x), ∀ x ∈ Rn

}
(2.1.3)

Proof.

Considering that the closure of the convex hull of a set coincides with its closed

convex hull (see, e.g., [15]), the property σC = σcoC is a consequence of the continuity

and convexity of the function x 7→ gT x. Thus, from Definition 2.1.2, we have

co C ⊂ {
g ∈ Rn : gT x ≤ σC(x), ∀ x ∈ Rn

}

C

ĝ

x̂

Fig. 2.1.2: An application of Hahn-Banach Theorem.

If ĝ /∈ co C, by Hahn-Banach Theorem (see, e.g., [15]), there exists x̂ ∈ Rn, as

displayed in Fig. 2.1.2, such that

ĝT x̂ > σcoC(x̂)
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Consequently we have

co C ⊃ {
g ∈ Rn : gT x ≤ σC(x), ∀ x ∈ Rn

}

¤

Theorem 2.1.4 [15] Let σ : Rn → R∪{+∞} be closed and sublinear. Then σ is

the support function of the nonempty closed convex set

C =
{
g ∈ Rn : gT x ≤ σ(x), ∀ x ∈ Rn

}

2.2 Subdifferential of Finite Convex Functions

Now we prove that the directional derivative is a particular sublinear function.

Proposition 2.2.1 [15] Let f ∈ ConvRn be finite. For a fixed x ∈ Rn, the

function1 d → f ′(x, d) on Rn is finite sublinear.

Proof. Let d1, d2 ∈ Rn and λ ∈ (0, 1). Since f is convex, we have

t ∈ R, f(x + t(λd1+(1− λ)d2))− f(x) = f (λ(x + td1) + (1− λ)(x + td2))− f(x)

≤ λ[f(x + td1)− f(x)] + (1− λ)[f(x, td2)− f(x)] .

Dividing by t > 0 and by passing to limit as t ↓ 0, we have

f ′(x, λd1 + (1− λ)d2) ≤ λf ′(x, d1) + (1− λ)f ′(x, d2) . (2.2.1)

Consequently d → f ′(x, d) is convex. This function is also positively homogeneous;

in fact for every λ > 0 we have

f ′(x, λd) = lim
t↓0

f(x + tλd)− f(x)
t

= lim
τ↓0

λ
f(x + τd)− f(x)

τ

= λf ′(x, d) .

(2.2.2)

1f ′(x, d) is the directional derivative of f at x in the direction d.
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Finally, from Theorem 1.2.2, we have

|f ′(x, d)| = lim
t↓0

∣∣∣∣
f(x + td)− f(x)

t

∣∣∣∣ ≤ L‖d‖ ∀ d ∈ Rn, (2.2.3)

where L is the Lipschitz constant of f around x and the thesis follows.

¤

After we have proved that d → f ′(x, d) is finite and sublinear, we can immediately

apply Theorem 2.1.4 and extrapolate the following definition.

Definition 2.2.1 (Subdifferential)[15] Let f ∈ ConvRn be finite and let x any

point of Rn. The subdifferential of f at x, denotes as ∂f(x), is the nonempty compact

convex subset of Rn whose support function is d → f ′(x, d), i.e.

∂f(x)
4
=

{
g ∈ Rn : gT d ≤ f ′(x, d), ∀ d ∈ Rn

}
(2.2.4)

From another point of view the subdifferential is defined as follows.

Definition 2.2.2 [15] Let f ∈ ConvRn be finite and let x any point of Rn. The

subdifferential of f at x is the set of vectors g ∈ Rn satisfying2

f(y) ≥ f(x) + gT (y − x) ∀ y ∈ Rn . (2.2.5)

A vector g ∈ ∂f(x) is said to be a subgradient of f at x.

The two definitions of the subdifferential are equivalent (see [35]) and we remark

that the subdifferential is a generalization of the concept of Fréchet differentiability.

To see this it is sufficient to prove that if f is differentiable at x, then the subdifferential

is the singleton

∂f(x) = {∇f(x)} .

In fact given a vector g ∈ ∂f(x), we have

f(x + td)− f(x) ≥ tgT d ∀ d ∈ Rn ,

whence ∇f(x)T d ≥ gT d for all d ∈ Rn. Last inequality is possible if and only if

g = ∇f(x).
2(2.2.5) is called the “subgradient inequality” [35].



16 Part I - Nonsmooth Convex Optimization

Proposition 2.2.2 [15] Let f ∈ ConvRn be finite and let x any point of Rn.

Then the subdifferential mapping of f is outer semicontinuous, i.e.

∀ ε > 0, ∃ δ > 0 : y ∈ B
(n)
δ (x) ⇒ ∂f(y) ⊂ ∂f(x) + B(n)

ε (0). (2.2.6)

Moreover, for a given d ∈ Rn the function x 7→ f ′(x, d) is upper semicontinuous, i.e.

f ′(x, d) = lim sup
y→x

f ′(y, d) ∀ x ∈ Rn (2.2.7)

Theorem 2.2.3 [15] Let f ∈ ConvRn be finite and let x any point of Rn. Then,

for every x ∈ Rn we have

∂f(x) = co { lim
i→∞

∇f(xi) : lim
i→∞

xi = x, xi /∈ Gf},

where Gf
4
= {x ∈ R : f is not differentiable at x}

Proof. Consider the set

γf(x)
4
= { lim

i→∞
∇f(xi) : lim

i→∞
xi = x, xi /∈ Gf}

From (2.2.3), it follows that ∇f is bounded around x. Thus γf(x) is a nonempty

bounded set. Let {sk}k∈N be a sequence such that sk = lim
xki→x

∇f(xki). Thus we have

lim
k→∞

sk = lim
k→∞

lim
i→∞

∇f(xki) ∈ γf(x).

which implies that γf(x) is a closed set. Taking into account that the convex hull of

a compact set is a compact set (see, e.g., [15]), we have that co γf(x) is a compact

set.

Moreover (see [15]), by Proposition 2.2.2, it follows that

γf(x) ⊂ co γf(x) ⊂ ∂f(x) .

Let σγf(x) the support function of γf(x). By Theorem 2.1.3, we have

co γf(x) = {g : gT d ≤ σγf(x)(d) ∀d ∈ Rn} .

To show that co γf(x) ⊃ ∂f(x), we prove by contradiction that

f ′(x, d) ≤ σγf(x)(d) ∀ d ∈ Rn
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Suppose in fact that there exist d∗ ∈ Rn and ε̄ > 0 such that

σγf(x)(d∗) < f ′(x, d∗)− ε̄ . (2.2.8)

From (2.1.2), for all d ∈ Rn we have

σγf(x)(d) = lim sup
y→x

y∈Gf

∇f(y)T d .

Or equivalently, for every d ∈ Rn, ε > 0 there exists δ > 0 such that

y ∈ Gf , ‖y − x‖ ≤ δ ⇒ ∇f(y)T d ≤ σγf(x)(d) +
ε

2
.

Consequently, from (2.2.8), we have that there exists δ̄ > 0 such that

y ∈ Gf , ‖y − x‖ ≤ δ̄ ⇒ ∇f(y)T d∗ < f ′(x, d∗)− ε̄

2
.

Let Bδ̄(x, d∗)
4
= {y ∈ B

(n)

δ̄
(x) : yT d∗ = 0} and Ly

4
= {y + td∗ : t ∈ R}. By virtue

of both Fubini’s Theorem (see [34]) and Rademacher Theorem IV.4.2.2, we derive

that the linear measure of Ly ∩Gf is zero for almost all y ∈ Bδ̄(x, d∗).

Let y∗ be any point of Bδ̄(x, d∗) such that λ1(Ly∗ ∩Gf ) = 0.

Consider φ(t)
4
= f(y∗ + td∗). Since φ is absolutely continuous (see [34]), we have

y∗ + td∗ ∈ Bδ̄(x, d∗),
f(y∗ + td∗)− f(x)

t
=

φ(t)− φ(0)
t

<

∫ t

0

(
f ′(x, d∗)− ε̄

2

)
dτ

t

= f ′(x, d∗)− ε̄

2
,

By continuity of f , we have

f ′(y, d∗) ≤ f ′(x, d∗)− ε̄

2
∀ y ∈ B

(n)

δ̄
(x, d∗)

which contradicts (2.2.7).

¤
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Chapter II

Bundle Methods

Introduction. In this chapter we deal with the bundle methods. These efficient

algorithms were introduced both by C. Lemaréchal and P. Wolfe in the Seventies [16].

The bundle methods are stabilized versions of the Cutting-Plane algorithm. Conse-

quently, before discussing the bundle methods, we present the Cutting-Plane algo-

rithm, introduced by both Cheney and Goldestein [4] (1959) and Kelley [17] (1960).

1 Cutting-Plane Algorithm

We consider the following problem

(P )





min f(x)

x ∈ C,
(1.0.1)

where f ∈ ConvRn is finite and C is a compact convex set. The set C is introduced

to overcome problems of convergence and the problem (P ) is not the standard con-

strained problem. We assume the existence of an oracle which, given any point x ∈ C,
computes both the objective function value f(x) and a subgradient g ∈ ∂f(x). We

assume also that a starting point belonging to C, say x1, is available.
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1.1 The Algorithm

The main idea of the Cutting-Plane consists in minimizing a piecewise affine ap-

proximation of the objective function and such lower approximation is more and

more enriched during the execution of the algorithm. Let x1, . . . , xk be k points and

gj ∈ ∂f(xj) any subgradient of f at xj , with j ∈ 1, . . . , k. Then we construct the

following polyhedral approximation of f

f̌k(x)
4
= max

1≤j≤k

{
f(xj) + gT

j (x− xj)
}

.

This function f̌k is called the “cutting-plane function” associated with points x1, . . . , xk.

x4x1 x3
x2

f(x3) + gT
3 (x− x3)

f̌4(x)

Fig. 1.1.1: Cutting-plane function.

We remark (Proposition I.1.3.1) that f is the maximum of all its linearizations,

namely

f(x) = max
xj∈Rn

{
f(xj) + gT

j (x− xj)
}

.

Consequently f̌k, for k ≥ 1, is an under-estimate of f .

The following lemma establishes some results on cutting-plane functions.

Lemma 1.1.1 For all x ∈ Rn, we have

(i) f̌j(x) ≤ f̌k(x) ∀ 1 ≤ j ≤ k;

(ii) f̌k(x) ≤ f(x) ∀ k ≥ 1;
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(iii) f̌k(xj) = f(xj) ∀ 1 ≤ j ≤ k.

Proof. The assertion (i) follows directly from definition of the cutting-plane func-

tion. Moreover the subgradient inequality implies (ii). In fact we have

f(x) ≥ f(xj) + gT
j (x− xj) ∀ 1 ≤ j ≤ k.

The property (iii) is a consequence of the convexity of f .

¤

Finally we can present the Cutting-Plane algorithm.

Algorithm 1.1.2 (Cutting-Plane algorithm) [16]

Step 0. Choose ε ≥ 0 and x1 ∈ C. Set k := 1.

Step 1. Solve the kth “cutting-plane” problem

(Pk)





min f̌k(x)

x ∈ C

to obtain a solution x̄.

Step 2. Set xk+1 := x̄, evaluate f(xk+1) and calculate a subgradient gj ∈ ∂f(xj).

Step 3. If

f(xk+1) ≤ f̌k(xk+1) + ε,

then stop. Otherwise set k := k + 1 and return to step 1.

Of course the subproblem (Pk) is equivalent to following simpler problem





min v

v ≥ f(xj) + gT
j (x− xj) ∀ j = 1, . . . k

x ∈ C

We remark that, since C is bounded, the cutting-plane function is bounded from

below. To solve (Pk), we must maintain the information about the points previously

generated; so, at kth iteration of the algorithm, the “bundle” Bk denotes the set of

triplets

{(xj , f(xj), gj) : 1 ≤ j ≤ k} .
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1.2 Convergence

Now we prove the convergence of Algorithm 1.1.2.

Theorem 1.2.1 Let f∗c the optimum value of (P ). Then we have

(i) If ε > 0, then the algorithm stops in a finite number of iterations at a point xk+1

satisfying the condition

f(xk+1) ≤ f∗c + ε;

(ii) If ε = 0, then both min
0≤i≤k

f(xi+1) and f̌k(xk+1) tend to f∗c when k →∞.

Proof. (i) If stopping condition at step 3 is satisfied, then we have

f(xk+1) ≤ f̌k(xk+1) + ε ≤ f∗c + ε.

Suppose that the algorithm loops infinitely many times. Then for all indices k we

have

f(xk+1)− ε > f̌k(xk+1) ≥ f(xj) + gT
j (xk+1 − xj) ∀ 1 ≤ j ≤ k.

Hence, by Lipschitz property (Theorem I.1.2.2) and letting L be the Lipschitz constant

of f in C, we have

−ε ≥ −2L‖xk+1 − xj‖ ∀ 1 ≤ j ≤ k,

which is a contradiction, since C is compact.

(ii) For all δ > 0, there exists an index k̄ such that at step 2

f(xk̄+1) ≤ f̌k̄(xk̄+1) + δ

is satisfied (see the above proof of (i)). That is, for all δ > 0, there exists an index k̄

such that

0 ≤ min
0≤i≤k

f(xi+1)− f̌k(xk+1) ≤ δ ∀ k ≥ k̄.

Taking into account that { min
0≤i≤k

f(xi+1)} and {f̌k(xk+1)} are monotone sequences

bounded by f∗c , respectively, from below and above, i.e.

f̌k(xk+1) ≤ f∗c ≤ min
0≤i≤k

f(xi+1) ,

the thesis follows.

¤
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1.3 Instability of Cutting-Plane

The Cutting-Plane algorithm is unstable and its numerical performance is intolerably

low. We discuss these facts by means of two examples.

Example 1.3.1 [16] Consider the function

f(x) =
1
2
x2 .

The minimum is at x∗ = 0. To prove the instability of the Cutting-Plane algorithm,

we consider two iterates x1 = 1 and x2 = −ε. The cutting-plane approximation of f ,

associated with these points, is :

f̌2(x) = max
{

x− 1
2
,−εx− 1

2
ε2

}
.

For a small ε > 0, x2 is close to point x∗, while the new iterate x3 =
1
2
− 1

2
ε is far

from x∗.

1
2

1−1 ε

Fig. 1.3.1: Instability of Cutting-Plane.

The next example, proposed by A. Nemirovskij, proves that the Cutting-Plane

algorithm could require a large number of iterations.
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Example 1.3.2 [16] Let ε ∈ (0, 1
2 ). Consider the following minimization problem

(P)





min f(y, η)

(y, η) ∈ C ,

where the objective function is

(y, η) 7→ f(y, η) = max {|η|,−1 + 2ε + ‖y‖} : Rn × R→ R

and C is the unit ball B(n+1).

The function f attains its minimum on C at all points of the set

Argmin
C

f =
{

(y, 0) : y ∈ B
(n)
1−2ε

}
,

with minimum value f∗c = 0.

Let x1
4
= (y1, η1) = (0, 1) be the starting point. Therefore we have f(x1) = 1 and

f̌1(x) = η. Then we solve the 1st cutting-plane problem

(P1)





min v

v ≥ η

‖y‖2 + η2 ≤ 1 .

Its minimal value is v∗ = −1, obtained at the point

(v∗, y∗, η∗) = (−1, 0,−1) .

Consequently, x2 = (0,−1). Thus we have f(x2) = 1 and f̌2(x) = |η|. Then we

solve the 2nd cutting-plane problem

(P2)





min v

v ≥ |η|
‖y‖2 + η2 ≤ 1

Its minimal value is v∗ = 0, obtained at all points of the set

{(v∗, y∗, η∗) : v∗ = η∗ = 0, ‖y∗‖ ≤ 1}
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Let x3 ∈ {(y3, 0) : ‖y3‖ = 1}. Therefore we have f(x3) = 2ε and f̌3(x) =

max{|η|, 2ε + yT
3 (y − y3)}. Then we solve the 3rd cutting-plane problem

(P3)





min v

v ≥ |η|
v ≥ 2ε + yT

3 (y − y3)

‖y‖2 + η2 ≤ 1

Its minimal value is v∗ = 0, obtained at all points of the set
{

(v∗, y∗, η∗) : v∗ = η∗ = 0, ‖y∗‖ ≤ 1, y∗T y3 ≤ 1− 2ε
}

Let x4 ∈ {(y4, 0) : ‖y4‖ = 1, yT
4 y3 ≤ 1− 2ε}. Therefore we have f(x4) = 2ε. We

remark that v∗ = η∗ = 0, for k ≥ 2. In fact the following formula holds:

0 = f̌2(x3) ≤ f̌k(xk+1) ≤ f∗c = 0 k ≥ 2.

y3 y4

(a) (b)

1
θ

r

yT
3 y = 1− 2ε

yT
4 y = 1− 2ε

S(ε)

Fig. 1.3.2: Cuts and surfaces in the unit ball.

Before all the vectors of norm one are eliminated by successive cuts (see Fig. 1.3.2(a)),

we can take

xi+1 ∈
{
(yi+1, 0) : ‖yi+1‖ = 1, yT

i+1yp ≤ 1− 2ε, p = 3, . . . , i
}

where xi+1 is a minimizer of (Pi).
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It is known that the area of the sphere S
(n)
r (0) is rn−1Sn, where Sn is the area of

the unit sphere S(n). Furthermore the area of the infinitesimal ring in Rn at distance

r of the origin, displayed in Fig. 1.3.2(b), is

Sn−1(
√

1− r2)n−2dr = Sn−1(sin θ)n−1dθ.

We define S(ε) as the area of ith “cap”, shown in Fig. 1.3.2(a), i.e.

{
y ∈ Rn : ‖y‖ = 1, yT yi ≥ 1− 2ε

}
.

At least 2 +
Sn

S(ε)
iterations will occur, before the stopping condition at step 3 of

Algorithm 1.1.2 can be satisfied. Setting θε
4
= cos−1(1− 2ε), we have

S(ε) =Sn−1

∫ θε

0

(sin θ)n−1dθ ≤ Sn−1

∫ θε

0

(θ)n−1dθ = Sn−1
1
n

(θε)n

Sn =2Sn−1

∫ π
2

0

(sin θ)n−1dθ ≥ 2Sn−1

∫ π
2

0

(sin θ)n−1 cos θd =
2
n

Sn−1.

Tacking into account that θε ' 2
√

ε for a given small ε, we have

Sn

S(ε)
' 2

(2
√

ε)n
.

2 Stabilized Variants of Cutting-Plane

Consider the minimization problem (P ) mentioned in §1 with C = Rn. Some refine-

ments of the Cutting-Plane algorithm have been studied since 1975. These algorithms

are so-called bundle methods. We present three variants of bundle methods depending

on how we calculate the next iterate:

• Cutting-plane with stabilization by penalty. This is also the most popular bun-

dle method. To stabilize the algorithm, the “stability center” yk has been

introduced; in particular yk is the current estimate of the minimum of f . The

next iterate is calculated as

xk+1 := argmin
x∈Rn

{
f̌k(x) +

1
2
ρ‖x− yk‖2

}
, (2.0.1)
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where ρ, the weight of quadratic term, is the current “proximity parameter” (or

“penalty”). If f evaluated at xk+1 turns out to be “sufficiently decreased” with

respect to its value at the stability center yk, then we update the stability center,

i.e. yk+1 = xk+1 (descent step). Otherwise the stability center is unchanged,

i.e yk+1 = yk (null step).

• Cutting-plane with “trust region”. The next iterate is calculated as

xk+1 := argmin
x∈Rn

{
f̌k(x), ‖x− yk‖ ≤ τk

}
,

that is f̌k(x) is minimized on a ball of center yk. The stability center is updated

using the same logic as the previous case.

• Cutting-plane with level-stabilization. In this approach the next iterate is com-

puted as

xk+1 := argmin
x∈Rn

{
1
2
‖x− yk‖2, f̌k(x) ≤ lk

}
, (2.0.2)

where lk is the current level; in particular lk is the “current estimate” of min
Rn

f .

In this case the stability center is simply the last iterate.

In [9] it is proved that the above approaches are substantially equivalent. Now

we restrict our attention to the cutting-plane with stabilization by penalty and the

cutting-plane with level-stabilization.

2.1 Cutting-Plane with Stabilization by Penalty

Now we consider the penalization point of view. The problem (2.0.1) is equivalent to

the following quadratic problem




min r + 1
2ρ‖x− yk‖2

r ≥ f(xj) + gT
j (x− xj) ∀ j = 1, . . . k .

(2.1.1)

To implement an efficient method, for all index j we introduce the quantity

αk
j
4
= f(yk)− [f(xj) + gT

j (yk − xj)],

that is the jth linearization error, i.e. it is the difference between the actual value of

f at yk and the linear expansion of f generated at xj and evaluated at yk.
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Set v
4
= r − f(yk) and d

4
= x− yk, so that the problem (2.1.1) becomes

(QPρ)





min
v,d

v +
1
2
ρ‖d‖2

v ≥ gT
j d− αk

j ∀ j ∈ Ik,
(2.1.2)

where Ik
4
= {1, . . . , k} are the points previously generated. By duality this is equiva-

lent to finding multiplier vector λ(ρ) that solve the quadratic problem

(DPρ)





min
λ≥0

1
2ρ
‖Gλ‖2 + λT αk

eT λ = 1 ,

where G is the matrix whose columns are the vectors gj , j ∈ Ik. Analogously, the

terms αk
j , j ∈ Ik, are grouped into the vector of appropriate dimension αk.

We indicate by (d(ρ), v(ρ)) and λ(ρ), respectively, the optimal solutions of (QPρ)

and (DPρ) so that the role of ρ is emphasized. The following primal-dual relations

hold:

d(ρ) = −1
ρ
Gλ(ρ) (2.1.3a)

v(ρ) = −1
ρ
‖Gλ(ρ)‖2 − λ(ρ)T αk (2.1.3b)

Theorem 2.1.1 Let λ(ρ) be the optimal solution of (QPρ) with

‖Gλ(ρ)‖ ≤ ε and λ(ρ)T αk ≤ ε.

Then yk is ε-optimal, i.e.

f(yk) ≤ f(x) + ε‖x− yk‖+ ε ∀ x ∈ Rn.

Proof. Choose any x ∈ Rn. Then, since the subgradient inequality holds, we have:

f(x) ≥ f(yk) + gT
j (x− yk)− αk

j ∀ j ∈ Ik.

Consequently we have

f(yk) ≤ f(x)−



k∑

j=1

λj(ρ)gj




T

(x− yk) +
k∑

j=1

λj(ρ)αk
j ≤ f(x) + ε‖x− yk‖+ ε.
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¤

The storage capacity is finite for any computer, thus it is not possible to augment

the bundle size indefinitely. To cope with this difficulty, we define the aggregate sub-

gradient gk
p
4
=

∑k
j=1 λj(ρ)gj and the aggregate linearization error αk

p
4
=

∑k
j=1 λj(ρ)αk

j .

The following problems shave the same optimal solution

(QPρ)





min v + 1
2ρ‖d‖2

v ≥ gT
j d− αk

j ∀ j ∈ Ik

(QP a
ρ )





min v + 1
2ρ‖d‖2

v ≥ gk
p

T
d− αk

p

v ≥ gT
j d− αk

j ∀ j ∈ Īk,

where Īk is an arbitrary subset possibly empty of Ik. Let l̄ be the upper threshold on

the bundle capacity. If |Ik| ≥ l̄, then we delete a part of the bundle, i.e. Ik+1 = Īk∪p,

where p is the index of the aggregate bundle element p.

Hence we can present a typical bundle method with stabilization by penalty.

Algorithm 2.1.2 [8]

Step 0. Select the starting point x1. Choose the stopping parameter ε, the maximal

bundle size l̄ and the descent parameter m ∈ (0, 1). Put y1 := x1. Set the initial

bundle1 B1
4
= {(0, g1)} and k := 1.

Step 1 (main computation and stopping test). Select a value ρ of the proximity pa-

rameter and solve either (QPρ) or (DPρ). If ρ‖dk‖ ≤ ε and −vk − ρ‖dk‖2 ≤ ε, then

stop: yk is ε-optimal. Else put xk+1 := yk + dk and calculate gk
p and αk

p.

Step 2 (descent test). Evaluate f(xk+1) and calculate gk+1 ∈ ∂f(xk+1); if the descent

test

f(xk+1) ≤ f(xk) + mvk

is not satisfied put yk+1 := yk and go to step 4.

Step 3 (descent or serious step). Change the stability center: yk+1 := xk+1 and

update the linearization error for all index j of the bundle Bk:

αk+1
j := αk

j + f(yk+1)− f(yk) + gT
j (yk − yk+1)

1The set of triplets Bk is replaced by the set of pairs {(αk
j , gj) : j ∈ Ik}
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Step 4 (managing the bundle size) If |Ik| = l̄, then delete at least 2 elements from the

bundle and add the element (αk
p , gk

p) to the bundle.

Step 5 Set l = |Ik| and

αk+1
l+1 :=





0 in case of serious step

f(yk+1)− [f(xk+1) + gT
k+1(yk+1 − xk+1)] in case of null step

Update the bundle Bk+1 := Bk ∪ {αk+1
l+1 , gk+1}, replace k by k + 1 and return to step

1.

See [16] for convergence properties of the bundle methods.

2.2 Cutting-Plane with Level-Stabilization

We restrict ourselves to the problem of minimizing a finite convex function f on a

nonempty compact convex set2 C. The core of the algorithm is the solution of the

problem

xk+1 := argmin
x∈C

{
1
2
‖x− xk‖2, f̌k(x) ≤ lk

}
.

L denotes the Lipschitz constant of f in C, D denotes the diameter of C with respect

to the Euclidian norm, π(x, C) denotes the unique point of C closest to x, finally f∗c
denotes the minimum value of f over C.

Moreover we define the quantity

ε(x)
4
=





+∞ x /∈ C
f(x)−min

C
f x ∈ C,

Algorithm 2.2.1 [19]

Step 0 (initialization). Choose λ ∈ (0, 1). Select a starting point x1 ∈ C. Set k := 1.

Step 1. Evaluate f(xk) and calculate gk ∈ ∂f(xk). Furthermore compute
∣∣∣∣∣∣∣∣∣

f∗(k) := min
x∈C

f̌k(x)

f∗(k) := min{f(xj) : 1 ≤ j ≤ k}
x∗k ∈ Argmin{f(xj) : 1 ≤ j ≤ k}

2We introduce the compact set C in order to guarantee convergence of the algorithm.
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Set lk := f∗(k) + λ∆(k), where the gap ∆(k) is equal to f∗(k)− f∗(k).

Finally compute xk+1 = π(xk,
{
x : x ∈ C, f̌k(x) ≤ lk

}
).

Step 2 (stopping test). If ε(x∗k) ≤ ε stop. Otherwise replace k by k + 1 and return to

step 1.

Let Si be the interval [f∗(k), f∗(k)]. Then we have

S1 ⊃ S2, · · · , with |Sk| = ∆(k).

In fact, by the properties of the cutting-plane function, we have

f∗(1) ≤ f∗(2) ≤ . . . ≤ f∗(k) ≤ f∗c , f∗(1) ≥ f∗(2) ≥ . . . ≥ f∗(k) ≥ f∗c .

Lemma 2.2.2 Let i′′ > i′ be such that ∆(i′′) ≥ (1− λ)∆(i′). Then f∗(i′′) ≤ li′ .

Proof. We suppose, ab absurdo, that f∗(i′′) > li′ . Consequently we have ∆(i′′) <

(1− λ)∆(i′), which is impossible (see Fig. 2.2.1).

f∗(1)

(1− λ)∆(1)

f∗(2) f∗(2)

f∗(1)l1

Fig. 2.2.1: [f∗(i), f∗(i)].

¤

Theorem 2.2.3 For Algorithm 2.2.1. Let c(λ) = (1− λ)−2λ−1(2− λ)−1.

If the number of iteration N exceeds the value c(λ)
(

LD

ε

)2

, then ε(x∗k) ≤ ε.

Proof. Let IN
4
= {1, . . . , N}. For all i ∈ IN , we have ∆(i) ≥ ε(x∗i ). We prove, by

contradiction, the thesis. Suppose in fact that

ε(x∗i ) > ε ∀ i ≤ N,

where ε > 0 is a fixed number.

We partition the index set I into the groups I1, . . . , Il as follows. Let j1 = N .

Then we define

I1
4
=

{
i ≤ j1 : ∆(i) ≤ (1− λ)−1∆(j1)

}
.
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Let j2 be the largest element of I, which does not belong to I1. Then we define

I2
4
=

{
i ≤ j2 : ∆(i) ≤ (1− λ)−1∆(j2)

}
.

Let jp be the largest element of I, which does not belong to Ip−1. Then we define

Ip
4
=

{
i ≤ jp : ∆(i) ≤ (1− λ)−1∆(jp)

}
.

Let l ∈ {1, . . . , p} and let u(l) be a minimizer of f̌jl
(x) over C, with jl previously

defined. Taking into account Lemma 2.2.2 and by virtue of the cutting-plane function

properties, we have

f̌j(u(l)) ≤ f̌jl
(u(l)) ≤ li ∀ i, j ∈ Il.

Consequently, u(l) ∈ Ci
4
=

{
x ∈ C : f̌i(x) ≤ li

}
for all i ∈ Il.

Let τi
4
= ‖xi − u(l)‖2 (see Fig. 2.2.2). For all i ∈ Il, we have

‖xi − u(l)‖2 = ‖xi − xi+1 + xi+1 − u(l)‖2 =

= ‖xi+1 − xi‖2 + ‖xi+1 − u(l)‖2 − 2(u(l)− xi+1)T (xi − xi+1)

≥ dist2(xi | Ci) + τi+1

On the other hand, we have

f̌i(xi)− li = f(xi)− li ≥ f∗(i)− li = (1− λ)∆(i)

and f̌i(xi+1) ≤ li. From above inequalities, we have

f̌i(xi)− f̌i(xi+1) ≥ (1− λ)∆(i).

From Lipschitz property of f̌i, it follows that

dist(xi | Ci) = ‖xi+1 − xi‖ ≥ L−1|f̌i(xi)− f̌i(xi+1)| ≥ L−1(1− λ)∆(i).

Thus, for all i ∈ Il, we have the following recurrence relation

τi+1 ≤ τi − L−2(1− λ)2∆2(i) ≤ τi − L−2(1− λ)2∆2(jl).

Since 0 ≤ τi ≤ D2, we have

Nl ≤ D2L2(1− λ)−2∆−2(jl) ,
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xi

u(l) xi+1

Ci

Fig. 2.2.2: τi
4
= ‖xi − u(l)‖2.

where Nl is the number of elements of Il. Tacking into account the definition of Il,

we have

∆−1(jl) < ∆−1(j1)(1− λ)l−1 < ε−1(1− λ)l−1.

Finally N =
p∑

l=1

Nl < D2L2(1 − λ)−2ε−2
∑

l≥1

(1 − λ)2(l−1) =
(

LD

ε

)2

c(λ), which

is a contradiction.

¤
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Chapter III

Subgradient Methods and

Smoothing Techniques

Introduction. We consider first the Generalized Gradient Descent method (known

also as the subgradient method) introduced by N.Z. Shor in 1961 (see [38]). Then

we briefly deal with the subgradient method with space dilatation in the subgradient

direction.

Successively we present two systematic ways to approximate the initial nonsmooth

objective function by a smooth function. In particular we describe the Moreau-Yosida

regularization and a smoothing technique by Yu. Nesterov.

1 Subgradient Methods

Consider the following unconstrained minimization problem

(P )





min f(x)

x ∈ Rn,
(1.0.1)

where f ∈ ConvRn is finite.
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1.1 The Subgradient Method

The subgradient method is an extension of the gradient method for smooth optimiza-

tion. Given a starting point x1, the algorithm generates a sequence of points {xk}∞k=1

according to the following formula

xk+1 := xk − tk
gk

‖gk‖ , (1.1.1)

where tk > 0 is the step length and gk is an arbitrary element of ∂f(xk). It is shown

in [31] that the antisubgradient direction −gk is not necessarily a descent direction,

as it is in the smooth optimization.

Let xk /∈ Argmin
Rn

f, x∗ ∈ Argmin
Rn

f . From subgradient inequality, we have

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 + t2k − 2tk
gT

k

‖gk‖ (xk − x∗)

< ‖xk − x∗‖2

for 0 < tk < −2
gT

k

‖gk‖ (x∗−xk). Therefore, for small step sizes tk, even if descent is not

achieved, the distance between the current iterate and x∗ decreases. This observation

is the basis for all subgradients methods.

Theorem 1.1.1 [39] Let f ∈ ConvRn be finite such that Argmin
Rn

f is bounded.

Let {tk}∞k=1 be a sequence of positive real numbers satisfying the following relations:

lim
k→∞

tk = 0,

∞∑

k=1

tk = +∞ .

Then the sequence {xk}∞k=1 obtained by (1.1.1), for any starting point x1, satisfies

one of the following properties: either there exists k̄ such that xk̄ ∈ Argmin
Rn

f or

lim
k→∞

min{‖xk − x‖ : x ∈ Argmin
Rn

f} = 0, lim
k→∞

f(xk) = min
Rn

f

This method was extended to the convex programming problems in Hilbert spaces

by B.T. Polyak [32].
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1.2 The Subgradient Method with Space Dilatation in the

Subgradient Direction

When the upper bounds of the angles between the antigradients −gk ∈ ∂f(xk) and the

directions1 x∗−xk are equal to
π

2
, then the convergence of the subgradient algorithm

is very slow. To cope with this problem, at each iteration k it is introduced a linear

operator changing the metric of the space (see [38]).

Let ξ ∈ IRn be a vector such that ‖ξ‖ = 1. Then any point x ∈ Rn may be

represented as follows

x = γξ(x)ξ + dξ(x) (1.2.1)

where ξT dξ(x) = 0.

Consequently, we have γξ(x) = xT ξ and dξ(x) = x− ξξT x.

Definition 1.2.1 [38] For a given number α ≥ 0 and a vector ξ ∈ IRn, ‖ξ‖ = 1.

The operator in vector form Rα(ξ),

x 7→ Rα(ξ)x = [In + (α− 1)ξξT ]x

= αγξ(x)ξ + dξ(x).
(1.2.2)

is called an operator of space dilatation along direction ξ with coefficient α.

Now we present the subgradient algorithm with space dilatation in the subgradient

direction. Given a nonsingular matrix Bk, let y 7→ ϕk(y)
4
= f(Bky) be a function

obtained from f taking into account the linear transformation y = B−1
k x.

Algorithm 1.2.1 [39]

Step 0. Choose a starting point x1 and put B1 := In. Set k := 1.

Step 1. Calculate an arbitrary subgradient gk ∈ ∂f(xk).

Step 2. Determine ĝk := BT
k gk, where ĝk is an particular subgradient of the function

ϕk, defined in the “dilated” space, at yk = B−1
k xk.

Step 3. Put ξk :=
ĝk

‖ĝk‖ . Find a scalar tk and, successively, put xk+1 := xk − tkBkξk.

Step 3. Select a coefficient αk > 1 of space dilatation and update the the matrix of

space transformation

Bk+1 := BkR 1
αk

(ξk). (1.2.3)

1x∗ ∈ Argmin
Rn

f .
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From the point of view of dilated space, it results that

yk+1 = Rαk
(ξk) [yk − tkξk] .

Step 4. Replace k by k + 1 and go to step 2.

As regards convergence, the coefficient αk of space dilatation plays the main role.

N.Z. Shor proved that the Ellipsoid method, introduced by D.B. Judin and A.S.

Nemirovskij, is a special case of algorithm with space dilatation in the subgradient

direction [39].

2 Smoothing Techniques

Now we present two smoothing techniques.

2.1 Moreau-Yosida Regularization

Consider the following unconstrained minimization problem

(P )





min f(x)

x ∈ Rn,
(2.1.1)

where f ∈ Conv Rn.

Let Q be a positive definite matrix. Then the function

x 7→ fQ(x)
4
= min

y∈Rn

{
f(y) +

1
2
(y − x)T Q(y − x)

}
: Rn → R ∪ {+∞} (2.1.2)

is called the “Moreau-Yosida regularization” of f associated with Q.

Lemma 2.1.1 [16] The minimization problem involved in (2.1.2) is well-posed

and has unique solution, characterized as the unique point y ∈ Rn satisfying

Q(x− y) ∈ ∂f(y).

The unique solution of the minimization problem in (2.1.2), denoted as pQ(x), is

called the “proximal point” of x associated with f and Q.

Consequently, we have

pQ(x) = x−Q−1gQ(x) ,
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where gQ(x) is the particular subgradient of f at pQ(x) defined via Lemma 2.1.1. We

remark that gQ(x) must not be confused with an arbitrary subgradient of f at pQ(x).

Theorem 2.1.2 [16] The function fQ in (2.1.2) is finite everywhere, convex and

differentiable; its gradient is

∇fQ(x) = gQ(x) = Q(x− pQ(x))

and

‖∇fQ(x)−∇fQ(y)‖ ≤ λmax(Q)‖x− y‖ ∀ x, y ∈ Rn ,

where λmax(Q) is the largest eigenvalue of Q.

Consequently, the function fQ is continuously differentiable (or smooth). It is an

approximation of f as well; in fact we have the following result.

Proposition 2.1.3 [16] Let λmin(Q) be the smallest eigenvalue of Q. As λmin(Q) →
+∞, fQ(x) tends to f(x) for every x ∈ Rn and pQ(x) tends to x for all x ∈ dom f .

The basic properties of the Moreau-Yosida regularization can be summarized by

the following theorem.

Theorem 2.1.4 [16] Let fQ be the Moreau-Yosida regularization of f . Minimizing

f and fQ are equivalent problems, in the sense that

inf
x∈Rn

fQ(x) = inf
x∈Rn

f(x)

and the following statements are equivalent:

(i) x minimizes f ;

(ii) pQ(x) = x;

(iii) gQ(x) = 0;

(iv) x minimizes fQ;

(v) f(pQ(x)) = f(x);

(vi) fQ(x) = f(x).
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Consequently, (ii) seems to suggest to design an algorithm finding a fixed point

of the mapping x 7→ pQ(x). According to this idea, the following algorithm aims to

solve the problem (P ).

Algorithm 2.1.5 (Proximal Point algorithm)[16]

Step 0. Select an initial point x1 ∈ Rn. Choose an initial positive definite matrix Q1.

Set k := 1.

Step 1. Calculate xk+1 by finding the proximal point of x associated with Qk, i.e.

xk+1 := pQk
(xk) = argmin

y∈Rn

{
f(y) +

1
2
(y − xk)T Qk(y − xk)

}
.

Step 2. If xk+1 := xk stop.

Step 3. Choose a new positive definite matrix Qk+1. Replace k by k + 1 and return

to step 1.

Algorithm 2.1.5 is just an abstract scheme, since is not clear how to compute xk+1

at step 1. There exist some improvements of this method (see, e.g., [16]).

2.2 Nesterov’s Technique

Consider the convex problem (P ) defined in §II.1. Let ε > 0 be the requested absolute

accuracy in the solution of (P ), that is it is required to find x ∈ C such that

f(x)−min
C

f ≤ ε .

The lower complexity bound of the standard subgradient method (see, e.g., [27])

is 2 of the order O

(
1
ε2

)
. It was also proved in [26] that it is not possible to improve

the efficiency estimate uniformly in the dimension of the space of variables, that is

the theoretical lower complexity of (P ) is of the order O

(
1
ε2

)
. In fact the following

problem is difficult for all numerical algorithm schemes:




min
x∈Rn

max
1≤i≤n

xi

∑n
i=1 x2

i ≤ 1 .

2O(t): there exists C > 0 such that |O(t)| ≤ C|t|; in this case it is the bound on the number of

iterations.
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We restrict our attention to functions endowed with a special explicit structure,

i.e. f is a function of the form

x 7→ f(x) = f̂(x) + max
λ∈C̄

{
xT Qλ− φ̂(λ)

}
,

where C̄ ∈ Rm is a compact convex set, f̂ is continuously differentiable and convex on

C, φ̂ is continuously differentiable and convex on C̄ and Q is a matrix of appropriate

dimension.

For the class of functions above considered, the problem (P ) can be solved with

efficiency estimate of the order O

(
1
ε

)
.

Let d2 : C̄ → R be convex and continuously differentiable such that

d2(λ) ≥ 1
2
σ2‖λ− λ0‖2 + (λ− λ0)T∇d2(λ0) + d2(λ0) ∀ λ, λ0 ∈ C̄ ,

for some σ2 > 0. Then d2 is called a prox-function of C̄ with parameter σ2. Let

λ0 = argmin
C̄

d2 and assume without loss of generality that d2(λ0) = 0. Consequently,

we have

d2(λ) ≥ 1
2
σ2‖λ− λ0‖2 ∀ λ ∈ C̄ . (2.2.1)

Theorem 2.2.1 [29] Let d2 be a prox-function of C̄ of the form (2.2.1) and let

µ2 be a positive number. Then the function

fµ2(x)
4
= max

λ∈C̄

{
xT Qλ− φ̂(λ)− µ2d2(λ)

}
(2.2.2)

is convex and continuously differentiable on Rn and its gradient at a point x is

∇fµ2(x) = Qλµ2 ,

where λµ2 is the unique solution of the optimization problem involved in (2.2.2).

Furthermore, the function ∇f : Rn → Rn is Lipschitzian with constant

1
µ2σ2

‖A‖2 ,

where ‖A‖ 4= max
‖x‖=1

‖QT x‖.
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Let D2
4
= max

C̄
d2 and f̄µ2(x)

4
= f̂(x) + fµ2(x). Consequently, we have

f̄µ2(x) ≤ f(x) ≤ f̄µ2(x) + µ2D2 ∀ x ∈ Rn. (2.2.3)

Obviously, the function f̄µ2 , for µ2 > 0, is convex and continuously differentiable on

C. Thus, f̄µ2 can be seen as a uniform smooth approximation of the function f .

2.3 Excessive Gap Technique

By considering the particular form of the objective function f , discussed in §2.2, we

can write the problem (P ) in an “adjoint form”:

(D)





max φ(λ)

λ ∈ C̄,

where φ(λ) = −φ̂(λ) + min
x∈C

{
xT Qλ + f̂(x)

}
.

It is clear that

φ(λ) ≤ f(x) ∀λ ∈ C̄, ∀x ∈ C .

From Sion-Kakutani Theorem, taking into account that L(x, λ) = −φ̂(λ) + xT Qλ +

f̂(x) is continuous and convex in x ∈ C for every fixed λ ∈ C̄ and is continuous and

concave in λ ∈ C̄ for every fixed x ∈ C and that C and C̄ are compact convex sets, it

follows (see, e.g., [2]) that

max
C̄

φ = min
C

f .

Similarly, let d1 be a prox-function of C of the form (2.2.1) with parameter σ1 and

let µ1 be a positive number. Then the function

φ̄µ1(λ)
4
= −φ̂(λ) + min

x∈C

{
xT Qλ + f̂(x) + µ1d1(x)

}

is concave and continuously differentiable on C̄. Of course, we have

φ̄µ1(λ)− µ1D1 ≤ φ(λ) ≤ φ̄µ1(λ) ∀ λ ∈ Rm , (2.3.1)

where D1
4
= max

C
d1.

Lemma 2.3.1 Let x ∈ C and λ ∈ C̄. If the “excessive gap condition”

f̄µ2(x) ≤ φ̄µ1(λ)



Chap. 3 - Subgradient Methods and Smoothing Techniques 43

is satisfied, then

0 ≤ f(x)− φ(λ) ≤ µ1D1 + µ2D2 .

Proof. From (2.2.3) and (2.3.1), we have

f(x)− µ2D2 ≤ f̄µ2(x) ≤ φ̄µ1(λ) ≤ φ(λ) + µ1D1.

Consequently, the thesis follows.

¤

Now we require that the optimization problems involved in the definitions of f

and φ are solved in a closed form. We assume also that the structures of the objects

f̂ , φ̂, C and C̄ are simple enough and that the functions f̂ and φ̂ have Lipschitzian

gradients. Under these hypotheses is described in [28] an algorithm which generates

a sequences of pairs3 {xk, λk}k∈N satisfying the excessive gap condition and such that

f(xk)− φ(λk) ≤ 4‖A‖
k + 1

√
D1D2

σ1σ2
∀ k ∈ N.

Letting

ε ≤ 4‖A‖
k + 1

√
D1D2

σ1σ2
,

the rate of convergence is ε = O

(
1
k

)
.

3Either the parameter µ1 or µ2 is decremented at each iteration k.
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Optimization
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Chapter IV

Some Elements of Nonsmooth

Analysis

Introduction. The notion of the derivative was introduced by G.W. Leibnitz in Nova

Methodus (1684) (see, e.g., [1]). Since 1684 the differential calculus has been more

and more enriched by new definitions of differentiability. We analyze the Fréchet, the

Gâuteaux and the directional differentiability and we discuss some results on both the

theory of Clarke gradient and Goldstein ε-subdifferential. Then we present two mean

value theorems, one for directionally differentiable functions and the other for locally

Lipschitzian functions, and we define the semismoothness and weak semismoothness.

Finally we report a proof of Rademacher Theorem.

1 Differentiability

The derivative of a real-valued function on R gives a measure of how the function

changes when its argument changes.

Definition 1.0.1 (Derivative)[40] Let f be a real-valued function defined on an

interval (y, z) and let x ∈ (y, z). If the limit

f ′(x) = lim
d→0

f(x + d)− f(x)
d

(1.0.1)
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exists, then f is differentiable at x. The value of the limit (1.0.1) is called the deriva-

tive of f at x.

If we consider functions of several real variables instead of functions of just a real

variable, since d is a vector in Rn, then Definition 1.0.1 is without meaning. On the

other hand, Definition 1.0.1 suggests how to approximate f near x; in particular if

f is differentiable at x, then there exists a linear function d → f ′(x)d on R taking

values in R which approximates the change f(x + d)− f(x) in f up to a remainder1

which is o(|d|):
|f(x + d)− f(x)− f ′(x)d| ≤ o(|d|) .

Using last formulation of the derivative, it is possible to deal with the differentia-

bility for real-valued functions of several real variables.

1.1 Fréchet Differentiability

A real-valued function on Rn is Fréchet differentiable, if it is differentiable in the

classical sense.

Definition 1.1.1 (Fréchet differentiability)[2] Let f be a real-valued function

defined on an open set A ⊂ Rn and let x be a point of A. Then f is said to be Fréchet

differentiable (or just differentiable) at x, if there exists a linear function Lx(d) :

Rn → R, called derivative of f at x, which approximates the change f(x + d)− f(x)

in f up to a remainder which is o(‖d‖):

|f(x + d)− f(x)− Lx(d)| ≤ o(‖d‖). (1.1.1)

Equivalently: f is called Fréchet differentiable at x, if there exists a linear function

d 7→ Lx(d) on Rn taking values in R such that for every ε > 0 there exists δε > 0

satisfying the relation

‖d‖ ≤ δε ⇒ |f(x + d)− f(x)− Lx(d)| ≤ ε‖d‖. (1.1.2)

Moreover if f is differentiable at each point of A, then f is said to be Fréchet

differentiable (or just differentiable) on A.

1o(|d|) indicates all functions of d which vanish at d = 0 and are such that the ratio
o(d)
|d| approaches

zero as |d| → 0.



Chap. 4 - Some Elements of Nonsmooth Analysis 49

The linear function Lx satisfying (1.1.1) is unique. This basic result is established

by following lemma.

Lemma 1.1.1 (Uniqueness of the derivative) [2] Let f be a real-valued function

defined on an open set A ⊂ Rn and differentiable at a point x ∈ A. Then the derivative

Lx(d) : Rn → R participating in Definition 1.1.1 is

Lx(d) = lim
t↓0

f(x + td)− f(x)
t

. (1.1.3)

In particular, Lx is uniquely defined by f and x.

Proof. Choose any v ∈ Rn. Substituting d = tv whit t > 0 into (1.1.1) and taking

into account that Lx is linear, we have
∣∣∣∣
f(x + tv)− f(x)

t
− Lx(v)

∣∣∣∣ ≤
o(t‖v‖)

t
.

The thesis follows by passing to limit as t ↓ 0.

¤

Taking into account that Lx is a linear function, then the derivative can be rep-

resented as

Lx(d) = ∇f(x)T d,

where ∇f(x) is a vector and it is called the gradient of f at x.

1.2 Directional Differentiability

Given two vectors x, d ∈ Rn and a real-valued function f on Rn, we define the

unidimensional function φ(t)
4
= f(x + td). The directional derivative of f at x along

d is defined as the right-hand-side derivative of φ at 0. It is gives the approximate

change in φ for a small step t > 0.

Definition 1.2.1 (Directional derivative)[2] Let f be a real-valued function de-

fined on an open set A ⊂ Rn. Let x be a point of A and let d be a vector in Rn. If

the limit

lim
t↓0

f(x + td)− f(x)
t

(1.2.1)
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exists, it is called the directional derivative of f at x along the direction d and is

denoted by f ′(x, d).

The importance of the directional derivative is based on the fact that it is easy

to conceive. Of course if we restrict ourselves to the unidimensional case, all the

quantities at stake assume a meaning easier to guess.

Definition 1.2.2 (Directional differentiability)[7] Let f be a real-valued function

defined on an open set A ⊂ Rn and let x be a point of A. The function f is said

directionally differentiable at x if the limit (1.2.1) exists for every d ∈ Rn. Finally

f is said directionally differentiable on A if it is directionally differentiable at every

point of A.

It follows that if f is differentiable at x, then the value of the derivative Lx at a

point d coincides with the directional derivative of f at x in the direction d.

Remark 1.2.1 If the function f participating in Definition 1.2.2 is directionally

differentiable at a point x and d 7→ f ′(x, d) is a linear function of d, then f ′(x, d) =

−f ′(x,−d) and consequently

lim
t→0

f(x + td)− f(x)
t

= lim
t↓0

f(x + td)− f(x)
t

= lim
t↑0

f(x + td)− f(x)
t

.

1.3 Gâuteaux Differentiability and Examples

Definition 1.3.1 (Gâuteaux differentiability)[25] Let f be a real-valued function

defined on an open set A ⊂ Rn and let x be a point of A. Then f is said to be

Gâuteaux differentiable at x, if there exists a linear function d 7→ f∗(x, d) on Rn

taking values in R such that

|f(x + td)− f(x)− tf∗(x, d)| ≤ o(|t|) . (1.3.1)

Equivalently: f is called Gâuteaux differentiable at x, if there exists a linear func-
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tion d 7→ f∗(x, d) on Rn taking values in R such that

∀ d > 0, ∀ ε > 0 ∃ δε,d > 0 s.t. (1.3.2)

|t| ≤ δε,d ⇒ |f(x + td)− f(x)− tf∗(x, d)| ≤ ε|t|

or simply there exists the limit

f∗(x, d)
4
= lim

t→0

f(x + td)− f(x)
t

, ∀ d ∈ Rn . (1.3.3)

Moreover if f is Gâuteaux differentiable at each point of A, then f is said to be

Gâuteaux differentiable on A.

In other words, f is called Gâuteaux differentiable at x ∈ A, if it is directionally

differentiable at x and the directional derivative2 f ′(x, d), viewed as function of d, is

linear.

It remains to understand what is the difference between the Fréchet differentiabil-

ity and Gâuteaux differentiability; it can be viewed by analyzing the role of δ in (1.1.2)

and (1.3.2). We observe that in the last formula δ depends on both ε and d, whereas

in (1.1.2) only on ε.

Now we examine more formally the relationship between the Fréchet differentia-

bility and Gâuteaux differentiability.

Theorem 1.3.1 Let f be a real-valued function defined on an open set A ⊂ Rn

and let x be a point of A. Then f is Fréchet differentiable at x if and only if it is

Gâuteaux differentiable at x and the limit (1.3.3) is uniform on the unit sphere S(n).

Proof.

(⇒) Let v ∈ Rn and take d = tv, for t > 0. It follows from (1.1.1) that

0 = lim
‖d‖→0

f(x + d)− f(x)− Lx(d)
‖d‖ = lim

t↓0
f(x + tv)− f(x)− tf ′(x, v)

t‖v‖
Thus f is Gâuteaux differentiable at x. To prove that the limit (1.3.3) is uniform

on S(n), take any v ∈ S(n). Applying (1.1.2) with d = tv, we have that for every

ε > 0 there exists δε > 0 satisfying the relation

|t| ≤ δε ⇒ |f(x + tv)− f(x)− tf ′(x, v)| ≤ ε|t| . (1.3.4)
2By considering Remark 1.2.1 f ′(x, d) coincides with f∗(x, d)



52 Part II - Nonsmooth Nonconvex Optimization

(⇐) Taking into account that any vector v ∈ Rn can be represented as v = td, for

some d ∈ S(n) and t > 0, and the limit (1.3.3) is uniform on S(n), we derive

from (1.3.2) that for every ε > 0 there exists δε > 0 such that

‖v‖ ≤ δε ⇒ |f(x + v)− f(x)− f ′(x, v)| ≤ ε‖v‖.

¤

The following example shows that the Fréchet differentiability not always coincides

with the Gâuteaux differentiability.

Example 1.3.1 (Apple function)[6] Consider the function f : R2 → R, displayed

in Fig. 1.3.1,

f(x) =

{
1 x ∈ C
0 x /∈ C .

x2

x1

C

Fig. 1.3.1: Apple function.

Take x̄ = (0, 0)T and remark that the stalk of the “apple” (C), shown in Fig. 1.3.1,

is a vertical tangent at x̄ to the curve forming the boundary of the “apple”.
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(i) For any d ∈ R, we have

f ′(x̄, d) = lim
t↓0

f(x̄ + td)− f(x)
t

= 0

Consequently f is Gâuteaux differentiable at x̄.

(ii) Let ε =
1
2
. For every δ > 0 there exists, for some d of the unit sphere S(2), a

point x̄ + td /∈ S(2), with 0 < t < min{δ, 2}, satisfying the inequality
∣∣∣∣
f(x̄ + td)− f(x̄)− tf ′(x̄, d)

t

∣∣∣∣ =
1
t

>
1
2
,

which contradicts (1.3.2). It follows that f is not Fréchet differentiable at x̄.

The following simple example proves that the directional differentiability does not

imply the Gâuteaux differentiability.

Example 1.3.2 Consider the real-valued function f of a real variable, shown in

Fig. 1.3.2,

f(x) = |x| .

x

f(x)

Fig. 1.3.2: f(x) = |x|.

Let x̄ = 0. For any d ∈ R, from (1.2.1), we have

f ′(x̄, d) = lim
t↓0

f(x̄ + td)− f(x̄)
t

= |d| .

Therefore f is directionally differentiable at x̄, but the function d 7→ f ′(x̄, d) is not

linear. Hence f is not Gâuteaux differentiable at x̄.
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1.4 Continuity and Differentiability

Now we analyze the relationship between continuity and differentiability.

Theorem 1.4.1 Let f be a real-valued function defined on an open set A ⊂ Rn

and let x be a point of A. If f is Fréchet differentiable at x, then f is continuous at

x.

Proof. Choose any d ∈ Rn. Taking into account that the derivative Lx(d) is linear

in d, it follows from (1.1.1) that

lim
d→0

f(x + d)− f(x) = lim
d→0

f(x + d)− f(x)
‖d‖ ‖d‖ = lim

d→0
Lx

(
d

‖d‖
)
‖d‖ = 0 .

¤

Remark 1.4.1 Continuity is not implied by Gâuteaux differentiability; in fact the

function considered in Example 1.3.1 is Gâuteaux differentiable and not continuous

at x̄.

In smooth optimization, we assume that the functions involved are continuously

differentiable on Rn.

Definition 1.4.1 (Continuous differentiability)[2] Let f be a real-valued function

defined on an open set A ⊂ Rn and Fréchet differentiable at x ∈ A. If the gradient

∇f : Rn → Rn is continuous at x, then f is said to be continuously differentiable

at x. If f is continuously differentiable at each x ∈ A, then f is called continuously

differentiable (or smooth) on A.

The set of continuously differentiable functions on Rn taking values in the real

axis is denoted by C1.

The continuous differentiability at a point x ∈ Rn is not a consequence of the

Fréchet differentiability as shown in Example 1.4.1.

Example 1.4.1 Consider the function f : R2 → R

f(x1, x2) =

{
x2

1 sin 1
x1

+ x2 x1 6= 0

x2 x1 = 0 .

Let d = (d1, d2)T and x = (x1, x2)T . Take x̄ = (0, 0)T .
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(i) Compute the directional derivative of f at x̄:

f ′(x̄, d) = lim
t→0

f(x̄ + td)− f(x̄)
t

= lim
t→0

t2d2
1 sin

(
1

td1

)
+ td2

t
= d2 .

Consequently f is Gâuteaux differentiable at x̄. For every d in the unit sphere

S(2), for every ε > 0 there exists δ = ε satisfying

|t| ≤ δ ⇒
∣∣∣∣
f(x̄ + td)− f(x̄)− tf ′(x̄, d)

t

∣∣∣∣ =
∣∣∣∣td2

1 sin
1

td1

∣∣∣∣ ≤ |t| ≤ ε .

By Theorem 1.3.1, f is Fréchet differentiable at x̄ and ∇f(x̄) = (0, 1)T .

(ii) Let {xk}k∈N such that xk =
(

1
2kπ , 1

k

)T . Then lim
k→∞

xk = x̄ and

lim
k→∞

∇f(xk) = lim
k→∞

( 1
kπ sin(2kπ)− cos(2kπ)

1

)
=

(−1
1

)
6= ∇f(x̄) .

Therefore f is not continuously differentiable at x̄.

1.5 Lipschitzianity and Differentiability

Now we illustrate the differential properties of Lipschitzian functions.

Definition 1.5.1 (Directional Dini derivatives)[25] Let f be a real-valued function

defined on an open set A ⊂ Rn. Let x be a point of A and let d be a vector in Rn.

Then the upper and lower directional Dini derivative of f at x along the direction d

are given respectively by

f
′
(x, d)

4
= lim sup

t→0

f(x + td)− f(x)
t

4
= lim

τ↓0
gx

τ (d)
4
= lim

τ↓0
sup

t∈(−τ,τ)\{0}

{
f(x + td)− f(x)

t

} (1.5.1a)

f ′(x, d)
4
= lim inf

t→0

f(x + td)− f(x)
t

4
= lim

τ↓0
gx

τ
(d)

4
= lim

τ↓0
inf

t∈(−τ,τ)\{0}

{
f(x + td)− f(x)

t

} (1.5.1b)
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It is clear from the properties of the limits (see, e.g., [36]) that the directional Dini

derivatives always exist as extended real numbers.

The following proposition summarizes the relationship between Fréchet differen-

tiability and Gâuteaux differentiability for Lipschitzian functions.

Proposition 1.5.1 Let f be a real-valued function defined and Lipschitzian on an

open set A ⊂ Rn and let x be a point of A. Then f is Fréchet differentiable at x if

and only if it is Gâuteaux differentiable at x.

Proof.

(⇒) See Theorem 1.3.1.

(⇐) Under the hypothesis that the function f is Lipschitzian it is known (see, e.g., [25])

that the limits (1.5.1) are uniform on the unit sphere S(n).

Thus, taking into account that the directional derivative coincides with the

directional Dini derivatives, it follows that for every ε > 0 there exists a δε > 0

such that

|t| < δε ⇒ −ε + f ′(x, d) <
f(x + td)− f(x)

t
< f ′(x, d) + ε.

The thesis follows by using Theorem 1.3.1.

¤

2 Subdifferentials of Nonconvex Functions

Nonsmooth analysis studies have greatly benefited from properties of Clarke gradient

which is a systematic extension of the subdifferential of convex functions to the family

of locally Lipschitzian functions.

2.1 Clarke Gradient

The Clarke gradient is developed for real-valued locally Lipschitzian functions defined

on a Banach space S (see [5]); we restrict ourselves to the finite-dimensional case, that

is S = Rn.
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Definition 2.1.1 (Clarke derivative)[5] Let f : Rn → R be Lipschitzian near

x ∈ Rn. Then the Clarke derivative (or generalized directional derivative) of f at x

along a direction d, denoted as fo(x, d), is given by

lim sup
y→x
t↓0

f(y + td)− f(y)
t

. (2.1.1)

Moreover f is said to be “regular” at x if f is directionally differentiable at x and

f ′(x, d) = fo(x, d) ∀ d ∈ Rn.

The Clarke derivative was introduced by F.H. Clarke in the Seventies [5].

Definition 2.1.2 (Clarke gradient)[5] Let f : Rn → R be Lipschitzian near

x ∈ Rn. Then the Clarke gradient (or generalized gradient) of f at x, denoted as

∂f(x), is given by

{g ∈ Rn : gT d ≤ fo(x, d) ∀ d ∈ Rn}

We remark that Clarke gradient is not a generalization of the concept of Fréchet

differentiability as is proved by following example.

Example 2.1.1 Consider the function f : R→ R, displayed in Fig. 2.1.1,

f(x) =





x2 sin
1
x

x 6= 0

0 x = 0 .

Let x̄ = 0. It is clear that f is Lipschitzian near x̄. We have f ′(x̄) = 0, while

∂f(x̄) = co{−1, 1} .

Proposition 2.1.1 [5] Let f : Rn → R be Lipschitzian near x ∈ Rn and let d be

a vector in Rn. Then the Clarke derivative is finite and sublinear3 and

fo(x, d) = max
g∈∂f(x)

gT d .

3see Definition I.2.1.1
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x
1
π

f(x)

Fig. 2.1.1: A classic example.

The following theorem summarizes a basic property of Clarke gradient.

Theorem 2.1.2 [5] Let f : Rn → R be Lipschitzian near x ∈ Rn and let Ω be

any set of Lebesgue measure zero. Then

∂f(x) = co{ lim
i→∞

∇f(xi) : lim
i→∞

xi = x, xi /∈ Ω, xi /∈ Gf} (2.1.2a)

fo(x, d) = lim sup
y→x

y /∈Ω∪Gf

∇f(y)T d ∀ d ∈ Rn , (2.1.2b)

where Gf
4
= {x ∈ Rn : f is not differentiable}. A vector g ∈ ∂f(x) is called a

subgradient of f at x.

We remark (Theorem I.2.2.3) that for convex functions the Clarke gradient co-

incides with the subdifferential. Consequently each convex function is “regular”.

Clarke’s theory provides a very powerful theoretical tool. On the other hand the

practical use of concepts such as Clarke derivative in designing numerical optimiza-

tion algorithms appears conditioned by the fact that the regularity assumption is very

strong4.
4“The Clarke derivative is too rough to be used for local approximations since it often gives

unrealistic results” [6, p.101].
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Example 2.1.2 Consider the simple function, displayed in Fig. 2.1.2,

f(x) =





min{x, 2− x} 0 ≤ x ≤ 2

0 otherwise

f(x)

x1

1

Fig. 2.1.2: A non regular function.

Let x̄ = 1. By Theorem 2.1.2, we have ∂f(x̄) = [−1, 1] and

fo(x̄, d) = |d| and f ′(x, d) = −|d| ∀ d ∈ R

Thus f is not regular.

Now we state a necessary condition of optimality for locally Lipschitzian functions

used in the analysis of convergence of algorithms which tackle nonsmooth minimiza-

tion problems.

Theorem 2.1.3 (Stationarity condition)[22] Let f : Rn → R be Lipschitzian

near x∗ ∈ Rn. If f attains its local minimum at x∗, then

0 ∈ ∂f(x∗). (2.1.3)

2.2 Goldstein ε-Subdifferential

Now we define the Goldstein ε-subdifferential.
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Definition 2.2.1 (Goldstein ε-subdifferential)[22] Let f : Rn → R be Lips-

chitzian near x ∈ Rn and ε ≥ 0. Then the Goldstein ε-subdifferential of f at x,

denoted ∂G
ε f(x), is given by

co{∂f(y) : ‖y − x‖ ≤ ε} .

Each element g ∈ ∂G
ε f(x) is called an ε-subgradient of f at x.

It is clear that ∂f(x) ⊂ ∂G
ε1f(x) ⊂ ∂G

ε2f(x) for 0 ≤ ε1 ≤ ε2. Of course if we

substitute ∂f(x) with ∂G
ε f(x), ε ≥ 0, into the statement of Theorem 2.1.3 the result

is valid again.

2.3 Demyanov and Rubinov Quasidifferential

Quasidifferential calculus was introduced in [6] by V.F. Demyanov and A.M. Rubinov.

It provides an interesting alternative to Clarke gradient, based on the definition of two

sets at any point x, namely ∂f(x) and ∂f(x), the subdifferential and the superdif-

ferential respectively. The interested reader is referred to the complete treatment

provided in [7].

3 Mean Value Theorems and Semismoothness

Now we deal with other theoretical tools used in the analysis of convergence of some

numerical optimization algorithms.

3.1 Mean Value Theorems

Now we present two mean value theorems: one for directionally differentiable functions

and the other for locally Lipschitzian functions.

Lemma 3.1.1 [7] Let f be a real-valued function defined and continuous on an

interval [y, z] and suppose that at each point x ∈ [y, z] there exists the right-hand-side

derivative:

f ′+(x)
4
= lim

d↓0
f(x + d)− f(x)

d
.

If

f ′+(x) ≥ 0 ∀ x ∈ [y, z] , (3.1.1)
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then

f(z) ≥ f(y) . (3.1.2)

Proof. For any given ε > 0, consider the set

Ω
4
= {x ∈ [y, z] : f(ξ)− f(y) ≥ −ε(ξ − y) ∀ ξ ∈ [y, x]} . (3.1.3)

We prove that Ω coincides with [y, z]. It is clear that y ∈ Ω; in fact

f(y)− f(y) = −ε(y − y).

Let x ∈ Ω; so we have [y, x] ⊂ A. Two cases can occur:

(i) Ω = [y, γ)

(ii) Ω = [y, γ]

for some γ ∈ [y, z] . From (3.1.3), we have

f(ξ)− f(y) ≥ −ε(ξ − y) ∀ ξ ∈ [y, γ)

and, since f is continuous on [y, z],

f(γ)− f(y) = lim
ξ↓γ

f(ξ)− f(y) ≥ lim
ξ↓γ

−ε(ξ − y) = −ε(γ − y) . (3.1.4)

Consequently Ω coincides with [y, γ] and the case (i) is impossible.

We prove, by contradiction, that γ = z, i.e. Ω = [y, z]. Suppose in fact that γ < z,

then for all δ > 0 there exists an αδ ∈ (0, δ] such that

f(γ + αδ)− f(y) < −ε(γ + αδ − y) . (3.1.5)

It follows from (3.1.4) and (3.1.5) that

f(γ + αδ)− f(γ) = f(γ + αδ)− f(y)− (f(γ)− f(y))

< −ε(γ + αδ − y) + ε(γ − y)

= −εαδ

This means that

f ′+(γ) ≤ −ε,
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which contradicts (3.1.1). Thus z ∈ Ω and therefore

f(z)− f(y) ≥ −ε(z − y)

which in turn, taking into account that ε is an arbitrary positive number, implies

(3.1.2).

¤

Corollary 3.1.2 [7] Let f be a real-valued function defined and continuous on

an interval [y, z] and suppose that at each point x ∈ [y, z] there exists right-hand-side

derivative. Then

m(z − y) ≤ f(z)− f(y) ≤ M(z − y),

where m
4
= inf

x∈[y,z]
h′+(x) e M

4
= sup

x∈[y,z]

f ′+(x).

Proof. We apply Lemma 3.1.1 to functions

f1(x)
4
= Mx− f(x), f2(x)

4
= f(x)−mx .

¤

Finally we show the mean value theorem for directionally differentiable functions.

Theorem 3.1.3 (Mean value theorem I)[7] Let f be a real-valued function defined

and continuous on an open set A ⊂ Rn. Fix x0 ∈ A, t0 ∈ R and d ∈ Rn such that

C 4
= [x0, x0 + t0d] ⊂ A .

Suppose that there exists the directional derivative of f at each point x ∈ C along the

direction d. Let m
4
= inf

x∈C
f ′(x, d) and M

4
= sup

x∈C
f ′(x, d). Then

f(x0 + t0d) = f(x0) + ct0,

for some c ∈ [m,M ] .

Proof. Let φ(t)
4
= f(x0 + td) be defined on [0, t0]. Then the thesis follows by

applying Corollary 3.1.2.

¤
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We report the mean value theorem for locally Lipschitzian functions without the

proof.

Theorem 3.1.4 (Mean value theorem II: Lebourg)[5] Let x and y be points in

Rn, and suppose that f : Rn → R is Lipschitzian on an open set containing the line

[x, y]. Then there exists a vector g ∈ ∂f(x + t(y − x)) with t ∈ (0, 1) such that

f(y)− f(x) = gT (y − x) .

3.2 Semismoothness and Weak Semismoothness

The notion of semismoothness was originally introduced by R. Mifflin [24]. Obviously,

convex functions and smooth functions are semismooth.

Definition 3.2.1 (Semismoothness and weak semismoothness)[30] Let f : Rn →
R be Lipschitzian near x ∈ Rn. Suppose that

lim
d′→d

t↓0

g(t)T d′ (or lim
t↓0

g(t)T d)

exists for all d ∈ Rn, where g(t) ∈ ∂f(x + td′) (or g(t) ∈ ∂f(x + td)). Then f is said

to be semismooth (or weakly semismooth) at x. Moreover f is called semismooth (or

weakly semismooth) if it is semismooth (weakly semismooth) at each x ∈ Rn.

Moreover if f is weakly semismooth, then it is locally Lipschitzian (see the proof

of the Theorem I.1.2.2).

Proposition 3.2.1 Let f : Rn → R be weakly semismooth at x ∈ Rn and let d be

any vector in Rn. Then

f ′(x, d) = lim
t↓0

g(t)T d

where g(t) ∈ ∂f(x + td).

Proof. Let {τk} be a sequence such that lim
k→∞

τk = 0. Then by virtue of Lebourg

theorem

lim
τk↓0

f(x + τkd)− f(x)
τk

= lim
k→∞

gT
k d, (3.2.1)
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where gk ∈ ∂f(xk + tkd) for some tk ∈ (0, τk). Consequently the thesis follows.

¤

4 Rademacher Theorem

Rademacher Theorem [33] (1919) is a theoretical tool largely used in nonsmooth

optimization, since it explains that for a very large class of real-valued functions

defined on Rn the “lacking in information” part of the space Rn (the nondifferentiable

points) is a set of measure zero in the sense of Lebesgue measure.

4.1 Case 1): Functions of a real variable

The following theorem was proved first by H. Lebesgue (1904) for continuous mono-

tonic functions and subsequently by F. Riesz (see [34]) for monotonic and not neces-

sarily continuous functions.

Theorem 4.1.1 (Lebesgue’s Theorem)[34] Let f be a real-valued function defined

and monotonic on an interval [y, z]. Then f possesses a (finite) derivative at every

point x ∈ [y, z] with the possible exception of the points x of a set of measure zero, or,

as it is often phrased, almost everywhere.

x′ x′′ x

f(x)

Fig. 4.1.1: Continuous monotonic functions

Remark 4.1.1 The statement of Theorem 4.1.1 holds also for real-valued func-

tions defined and monotonic on R. By a simple trick, we prove this result. In partic-
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ular, we partition R into the intervals [n, n + 1), for n ∈ Z. Then the derivative of

f , by Theorem 4.1.1, exists everywhere on each interval [n, n + 1) and so, by apply-

ing (B.1b), it follows that f is differentiable on R a.e.

Definition 4.1.1 (Functions of bounded variation)[34] Let f be a real-valued

function defined on an interval [y, z]. The function f is said to be function of bounded

variation, if the sum
n∑

i=1

|f(xi)− f(xi−1)|

does not surpass a finite bound for any choice of the decomposition of [y, z], denoted

as T (y, z)
4
= {y = x0 < x1 < . . . < xn = z}.

The set of functions of bounded variation on [y, z] is denoted by BV[y, z].

Theorem 4.1.2 [34] Let f ∈ BV[y, z] . Then f is the difference of two non-

decreasing functions, i.e. there exist two nondecreasing functions f1, f2 such that

f(x) = f1(x)− f2(x) for every x ∈ [y, z].

Finally we show “Rademacher Theorem” for functions Lipschitzian and defined

on an interval [y, z] taking values in R.

Proposition 4.1.3 Let f be a real-valued function defined and Lipschitzian on an

interval [y, z]. Then f is of bounded variation and almost everywhere differentiable

on [y, z].

Proof. Indicate by L a Lipschitzian constant of f on [y, z]. By Definition C.1, we

have
n∑

i=1

|f(xi)− f(xi−1)| ≤ L

n∑

i=1

|xi − xi−1| = L(z − y).

It follows that f ∈ BV[y, z], which in turn, by both theorems 4.1.1 and 4.1.2, implies

that f is differentiable on [y, z] a.e.

¤

Proposition 4.1.3 summarizes also Rademacher Theorem for real-valued Lips-

chitzian functions defined on the whole of real axis (see Remark 4.1.1).

Proposition 4.1.4 Let f be a real-valued function defined and convex on an
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interval [y, z]. Then is differentiable at every point x ∈ [y, z] except at most in a

countable set of points.

Proof. Let x be any point of (y, z). By considering that the slope-function

d 7→ f(x + d)− f(x)
d

is increasing on [y − x, z − x] \ {0} (see [15]), then the limits

f ′+(x)
4
= lim

d↓0
f(x + d)− f(x)

d
e f ′−(x)

4
= lim

d↑0
f(x + d)− f(x)

d

exist.

From Axiom of Choice (see, e.g., [36]), it follows that f ′+(x) and f ′−(x) are contin-

uous at each point of the domain except at most in a countable set of points. Taking

into account that

f ′+(x) ≤ f ′−(x + d) ≤ f ′+(x + d), d > 0,

the thesis follows by passing to the limit as d ↓ 0.

¤

4.2 Case 2): Functions of several real variables

The statement of Rademacher Theorem [33] is more general that well-known version

used in nonsmooth optimization and here presented.

Lemma 4.2.1 Let f : Rn → R be Lipschitzian on Rn and let d be a given point

in Rn. Let τ be an arbitrary positive number. Then5 the functions

x 7→ f
′
(x, d), x 7→ f ′(x, d), x 7→ gx

τ (d), x 7→ gx
τ
(d)

are measurable functions.

Theorem 4.2.2 (Rademacher Theorem)[25] Let f be a real-valued function de-

fined and Lipschitzian on a set A ⊂ Rn. Then f is almost everywhere Fréchet differ-

entiable on A.

Proof.
5The functions considered in Lemma 4.2.1 are defined in (1.5.1)
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To simplify the proof, we consider the case A = Rn.

Consider the measure space (Rn,Ln, λn). Let6

Af
4
=

⋃

d∈Rn

Af,d ,

where7 Af,d
4
= {x ∈ Rn : f∗(x, d) does not exists} . Let C be a countable dense

subset of Rn and let L be a Lipschitzian constant of f on Rn.

Choose any z /∈
⋃

d∈C

Af,d. Let ε be an arbitrary positive number and let d̂ /∈ C.

From Definition A.7, we have that there exists d̄ ∈ C such that

‖d̂− d̄‖ ≤ ε

L

Taking into account that d 7→ f
′
(x, d) and d 7→ f ′(x, d) are Lipschitzian functions

(see [25]) with constant L on any compact set of Rn, we have8

∣∣∣f ′(z, d̂)− f∗(z, d̄)
∣∣∣ ≤ L‖d̂− d̄‖ ≤ ε

∣∣∣f ′(z, d̂)− f∗(z, d̄)
∣∣∣ ≤ L‖d̂− d̄‖ ≤ ε

which in turn implies

−2ε ≤ f
′
(z, d̂)− f ′(z, d̂) ≤ 2ε

Thus f
′
(z, d̂) = f ′(z, d̂), and consequently f∗(z, d̂) exists. In other words, we obtain

Af =
⋃

d∈C

Af,d.

Let φ(t)
4
= f(x0 + td). By Proposition (4.1.3), we have that

Af,d ∩ {x0 + td : t ∈ R} = {x0 + td : φ′(t) does not exists}

is a set of linear measure zero. By virtue of Fubini’s Theorem (see, e.g., [34]), we have

λn(Af,d) = 0. Hence, taking into account that C is a countable set, we have

λn(Af ) = 0 .

6f∗(x, d) is defined in (1.3.3)
7Af,d is a measurable set. See [14] for a discussion on how to prove this statement.
8The directional Dini derivatives exist everywhere.
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Gf \Af

Af

Gf \Af = {x ∈ Rn : d 7→ f∗(x, d) is not a linear function}

Af = {x ∈ Rn : f∗(x, d) does not exists for any d ∈ Rn}

Fig. 4.2.1: The entire space: Rn.

Let Gf
4
= {x ∈ Rn : f is not Gâuteaux differentiable at x}. In order to prove

that f is almost everywhere Fréchet differentiable on Rn, by Proposition 1.5.1 it

is sufficient to show that f is almost everywhere Gâuteaux differentiable on Rn or

equivalently Gf \Af is a set of measure zero.

Choose any point y ∈ Gf \Af . Of course d 7→ f∗(y, d) is a homogeneous function,

i.e. for all d ∈ Rn

f∗(y, d) = tf∗(y, d) ∀ t ∈ R,

Hence the function d 7→ f∗(y, d) is not additive, i.e. there exist d1, d2 ∈ Rn satisfying

the following relation

f∗(y, d1) + f∗(y, d2)− f∗(y, d1 + d2) 6= 0 ,

and from the continuity of d 7→ f∗(y, d) there exist v1, v2 ∈ C such that

f∗(y, v1) + f∗(y, v2)− f∗(y, v1 + v2) 6= 0 . (4.2.1)

Then consider the following measurable9 sets

B(w1, w2, r1, r2)
4
= {x /∈ Af : f∗(x,w1) > r1, f∗(x,w2) > r2, f∗(x,w1 + w2) < r1 + r2}

B∗(w1, w2, r1, r2)
4
= {x /∈ Af : f∗(x,w1) < r1, f∗(x,w2) < r2, f∗(x,w1 + w2) > r1 + r2}

B(w1, w2, r1, r2,m)
4
= {x ∈ Rn : gx

1
m

(w1) > r1, gx
1
m

(w2) > r2, gx
1
m

(w1 + w2) < r1 + r2}

Let us prove that B(w1, w2, r1, r2) is a set of measure zero.
9See [14] for a discussion on how to prove this statement.
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i) w1 + w2 = 0: f∗(x,w1) + f∗(x,w1) = f∗(x,w1 + w2). From (B.1a), we have

λn (B(w1, w2, r1, r2)) = 0.

ii) w1 +w2 6= 0: Choose any m ∈ N\{0}. Let T
4
= B(w1, w2, r1, r2,m)∩{x0 + t(w1 +

w2) : t ∈ R}. Let x′, x′′ ∈ T be two points such that x′ 6= x′′. Moreover take

t̄ =
‖x′′ − x′‖
‖w1 + w2‖ .

Two cases can occur:

1. x′′ = x′ + t̄(w1 + w2);

2. x′ = x′′ + t̄(w1 + w2).

We can assume without loss of generality that the first case occurs. We show,

by contradiction, that the following inequality holds:

‖x′′ − x′‖ ≥ ‖w1 + w2‖
m

.

Suppose in fact that

‖x′′ − x′‖ <
‖w1 + w2‖

m

holds. Thus, by the definition of the set B(v1, v2, r1, r2,m), we have

f(x′ + t̄w1)− f(x′) > r1t̄ (4.2.2a)

−f(x′ + t̄w1) + f(x′′) > r2t̄ (4.2.2b)

f(x′′)− f(x′) < r1t̄ + r2t̄ (4.2.2c)

which yields a contradiction. As consequence of Axiom of Choice (see, e.g., [36]),

we have that T is countable, which in turn implies that T is a set of linear

measure zero. From Fubini’s Theorem, we have λn(B(w1, w2, r1, r2,m)) = 0.

Taking into account that

B(w1, w2, r1, r2) ⊂
∞⋃

m=1

B(v1, v2, r1, r2,m) ,

we have λn(B(w1, w2, r1, r2)) = 0.
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From corollary of Axiom of Archimedes (see, e.g., [36]), we have

Gf \Af =
⋃

r1,r2∈Q
w1,w2∈C

B(w1, w2, r1, r2) ∪B∗(w1, w2, r1, r2). (4.2.3)

Since B(w1, w2, r1, r2) = B∗(−w1,−w2,−r1,−r2), it follows that that Gf \ Af is a

set of measure zero. Consequently

µ(Gf ) = µ(Gf \Af ) + µ(Af ) = 0.

It is clear that the scheme of the proof is unchanged, if we remove the assumption

A = Rn.

¤

The statement of Theorem 4.2.2 holds also for locally Lipschitzian functions (see

Remark 4.1.1).



Chapter V

Algorithms for Nonsmooth

Nonconvex Optimization

Introduction. In this chapter we present some numerical algorithms for nons-

mooth nonconvex optimization. We describe first the bundle method BTNC [37]

by H. Schramm and J. Zowe. This method consists essentially in adapting the bun-

dle method BTC [37] for nonsmooth convex optimization to solve nonsmooth non-

convex problems. Then we describe two recent bundle methods, NCVX and DC-

NCVX [10, 11] by A. Fuduli, M. Gaudioso and G. Giallombardo, designed for nons-

mooth nonconvex optimization. Finally we describe the Gradient Sampling algorithm

introduced in [3] by J. Burke, A. Lewis and L. Overton.

1 Some Bundle Methods

We consider the unconstrained minimization problem:

(P )





min f(x)

x ∈ Rn ,
(1.0.1)

where f : Rn → R is not necessarily differentiable.

We require that f is locally Lipschitzian, thus it is (Theorem IV.4.2.2) differen-

tiable almost everywhere. We assume the existence of an oracle which, given any
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point x ∈ Rn, calculates both the objective function value f(x) and a subgradient

g ∈ ∂f(x), i.e. an element of the Clarke gradient. We assume also that a start-

ing point, say x1, is available and we indicate by yk the stability center during the

execution of kth “main iteration”.

1.1 BTC and BTNC Algorithms

We present both convex (BTC) and nonconvex (BTNC) versions of the approach by

H. Schramm and J. Zowe. We describe first the convex version.

BTC Algorithm[37] We assume that f is convex. We remark (Theorem I.1.2.2)

that if f is a convex function, then it is also locally Lipschitzian. This method is quite

like Algorithm II.2.1.2, therefore we describe only the different steps, that is the kth

“main iteration” (steps 1 and 2 of the Algorithm II.2.1.2).

We set the following parameters:

• the stopping parameter ε and the descent parameter m1 ∈ (0, 1);

• the safeguard parameters ρmin and ρmax, 0 < ρmin < ρmax;

• ν > 0, m3 ∈ (0, 1) and m2 ∈ (m1, 1).

Algorithm 1.1.1 (kth BTC main iteration)[37]

Step 1. Set ρ1 := ρk−1. Fix l1 := ρmin, u1 := ρmax and i := 1.

a) Solve1 either (QP ρi) or (DP ρi) and compute (d(ρi), v(ρi)) and λ(ρi). If ρi‖d(ρi)‖ ≤
ε and −v(ρi)− ρi‖d(ρi)‖2 ≤ ε, then stop: yk is ε-optimal. Else put xi := yk + d(ρi),

evaluate f at xi and compute gi ∈ ∂f(xi).

Step 2. Two cases can occur:

a) f(xi) < f(yk) + m1v(ρi) . If giT d(ρi) ≥ m2v(ρi) or ρi ≤ (ρmin + ν), then

calculate2 gk
p , αk

p and put xk+1 := xi, gk+1 := gi. Else put li+1 := li, ui+1 := ρi, set

ρi+1 := 0.5(li+1 + ui+1), replace i by i + 1 and go to step 1a).

b) f(xi) ≥ f(yk)+m1v(ρi) . If3 αik ≤ m3α
k−1
p or |f(yk)−f(xi)| ≤ ‖gk−1

p ‖+αk−1
p

or ρi ≥ (ρmax−ν), then calculate gk
p , αk

p, put yk+1 := yk, xk+1 := xi, gk+1 := gi and
1(QP ρi ) and (DP ρi ) are defined in §II.2.1
2gk

p and αk
p are defined in §II.2.1

3αik is f(yk)− [f(xi) + giT (yk − xi)]
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go to step 4. Else put li+1 := ρi, ui+1 := ui , set ρi+1 := 0.5(li+1 + ui+1), replace i

by i + 1 and go to step 1a).

We remark that if the algorithm enters step 2a), then the descent condition

f(xi) < f(yk) + m1v(ρi)

is fulfilled; whereas if the algorithm enters step 2b), then a cut for the subproblem

(QP ρi) is generated and thus the optimal solutions of (QP ρi+1) and (QP ρi) are not

the same. The Algorithm 1.1.1 implements a quite standard strategy to adjust the

proximity parameter ρ.

Theorem 1.1.2 [37] Let ε = 0 and let f be convex. Then the sequence {yk},
generated by the BTC algorithm, converges to the infimum of f on Rn as k →∞.

Remark 1.1.1 For convex function f , since the subgradient inequality holds, we

have

f̌k(yk + d)
∣∣
d=0

= max
j∈Ik

{
f(yk) + gT

j d− αk
j

}∣∣∣∣
d=0

= f(yk) + max
j∈Ik

{−αk
j } = f(yk)

Hence it is guaranteed that function f̌k interpolates f at yk.

x1

|αk
1 |

yk

Fig. 1.1.1: αk
1 < 0.
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BTNC Algorithm[37] For nonconvex function f , the linearization error αk
j , j ∈

Ik, could be negative, since the first order expansion at any point does not necessarily

support from below the epigraph of the function, as shown in Fig. 1.1.1. Consequently

the values of f and f̌k at yk could be different. Moreover the cutting-plane function

f̌ is not necessarily a lower approximation of the objective function f . Schramm and

Zowe, in [37], adopt a technique also used by Lemaréchal in [18] in order to guarantee

interpolation at yk. In particular αk
j , for all j ∈ Ik, is replaced by

βk
j
4
= max{αk

j , c0‖xj − yk‖2} ≥ 0,

where c0 is a fixed small positive number. Thus the modified cutting-plane approxi-

mation of f , at iteration k, is

f̄k(yk + d)
4
= max

j∈Ik

{f(yk) + gT
j d− βk

j }

Consequently f̄k(yk + d)
∣∣
d=0

= f(yk) + max
j ∈Ik

{−βk
j } = f(yk). Moreover both the

subproblems (QP ρi) and (DP ρi) remain formally unchanged.

For nonconvex case, we assume that f is weakly semismooth as well, so that the

problem of finding the scalar t at step 2bb) of Algorithm 1.1.3 is well-posed. The

“main iterations” for convex and nonconvex cases are very much alike.

We set the following parameters:

• the stopping parameter ε and the descent parameter m1 ∈ (0, 1);

• m3 ∈ (0, 1), m2 ∈ (m1, 1) and c0 > 0;

Algorithm 1.1.3 (kth BTNC main iteration)

Step 1. Set ρ1 = ρk−1. Fix l1 := 0, u1 := ρmax and i := 1.

1a) Solve either (QP ρi) or (DP ρi) and compute (d(ρi), v(ρi)) and λ(ρi). If ρi‖d(ρi)‖ ≤
ε and −v(ρi)− ρi‖d(ρi)‖2 ≤ ε, then stop4. Else put xi := yk + d(ρi), evaluate f at xi

and compute gi ∈ ∂f(xi).

Step 2. Two cases can occur:

4‖gk
p‖ ≤ ε, gk

p ∈ co

{
∂εf(xj) : ‖xj − yk‖ ≤

√
ε

c0λj

}
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2a) f(xi) < f(yk) + m1v(ρi) . Calculate5 gk
p , βk

p and put xk+1 := xi, gk+1 := gi.

2b) f(xi) ≥ f(yk) + m1v(ρi) . Four cases can occur6:

2ba)
[
βik ≤ m3β

k−1
p or |f(yk)− f(xi)| ≤ ‖gk−1

p ‖+ βk−1
p

]
and giT d(ρi)−βik ≥

m2v(ρi). Calculate gk
p , βk

p , put yk+1 := yk, xk+1 := xi, gk+1 := gi and go to step 4.

2bb) giT d(ρi)− βik < m2v(ρi) and |f(yk)− f(xi)| ≤ ‖gk−1
p ‖+ βk−1

p . Calculate

gk
p , βk

p and find a scalar t ∈ (0, 1) such that either xk+1 := xi + td(ρi) satisfies

a descent condition (serious step: updating stability center) or a cut for (QP ρi) is

generated (null step: yk+1 := yk and go to step 4).

2bc) giT d(ρi) − βik < m2v(ρi) and βik ≤ m3β
k−1
p . Put li+1 := ρi, ui+1 := ui,

set ρi+1 := 0.5(li+1 + ui+1), replace i by i + 1 and go to step 1a).

2bd) βik > m3β
k−1
p and |f(yk)−f(xi)| > ‖gk−1

p ‖+βk−1
p . Put li+1 := ρi, ui+1 :=

ui, set ρi+1 := 0.5(li+1 + ui+1), replace i by i + 1 and go to step 1a).

We observe that at step 2ba) the condition

giT d(ρi)− βik ≥ m2v(ρi)

assures that the solution of (QP ρi), generated at the previous iteration, is cut away.

The algorithm BTNC is an adaptation of the convex bundle method BTC for

dealing with nonconvex functions. The definition of the local model of the objective

function f of (P ) is somehow arbitrary, due to the possible “upward” translation of

some of the affine pieces.

Theorem 1.1.4 [37] Let ε = 0 and let f be weakly semismooth and bounded below.

If the sequence {yk} generated by the BTNC algorithm is bounded, then it converges

to y∗k such that 0 ∈ ∂f(y∗k).

We remark that the stopping condition at step 1a) is a very rough approximate

stationarity condition.

1.2 NCVX and DC-NCVX Algorithms

We present two numerical algorithms by A. Fuduli, M. Gaudioso and G. Giallombardo

designed for nonconvex case and reported in [10, 11].

5βk
p
4
= λ(ρ)T βk

6βik is equal to max{f(yk)− [f(xi) + giT (yk − xi)], c0‖xi − yk‖}
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We assume that the sublevel set

F1
4
= {x :∈ Rn : f(x) ≤ f(x1)}

is compact. As usual we denote by yk the stability center during the execution of the

kth “main iteration”.

NCVX Algorithm[10] The originality of this approach is contained in the bundle

splitting technique, i.e. the index set Ik is divided into two sets I+
k and I−k on the

basis of the sign of the linearization error. If the objective function is nonconvex, it

is essential the way to handle the linearization error αk
j , j ∈ Ik. In particular, I+

k and

I−k are defined as

I+
k

4
= {j : αk

j ≥ 0} and I−k
4
= {j : αk

j < 0} , (1.2.1)

The bundles corresponding to the index sets I+
k and I−k are characterized by points

that exhibit, respectively, a “convex behavior” and a “concave behavior” relative to

yk. We observe that I+
k is never empty, as at least the index corresponding to the

stability center belongs to the I+
k .

Let h(d)
4
= f(yk + d) − f(yk) be the difference function. Then we consider two

polyhedral approximations of h:

∆+(d)
4
= max

j ∈I+
k

{
gT

j d− αk
j

}

and

∆−(d)
4
= min

j ∈I−
k

{
gT

j d− αk
j

}
.

We observe that h(0) = ∆+(0) and, when I−k is nonempty, ∆+(0) < ∆−(0). Conse-

quently

C 4
= {d : ∆+(d) ≤ ∆−(d)}

denotes a kind of trust region model. The core of NCVX algorithm consists, as shown

in Fig. 1.2.1, in finding a tentative stepsize by solving the following problem:

d(ρ) = argmin
d∈C

∆+(d) +
1
2
ρ‖d‖2 , (1.2.2)

which, by introducing the scalar variable v, can be rewritten as a quadratic program
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x2x1

d(ρ)

h(d)

∆−(d)

yk x4x3

∆+(d)

C

Fig. 1.2.1: NCVX approach.

of the form:

(QPρ)





min
v,d

v +
1
2
ρ‖d‖2

v ≥ gT
j d− αk

j ∀ j ∈ I+
k

v ≤ gT
j d− αk

j ∀ j ∈ I−k .

(1.2.3)

The dual of (QPρ) can be written in the form:

(DPρ)





min
λ≥0,µ≥0

1
2ρ
‖G+λ−G−µ‖2 + λT αk

+ − µT αk
−

eT λ− eT µ = 1 ,

where G+ and G− are matrices whose columns are, respectively, the vectors gj , j ∈ I+
k ,

and gj , j ∈ I−k . Analogously, the terms αk
j , j ∈ I+

k , and αk
j , j ∈ I−k , are grouped into

the vectors αk
+ and αk

−, respectively.

The optimal primal solution (d(ρ), v(ρ)) is related to the optimal dual solution

(λ(ρ), µ(ρ)) by the following formulae:

d(ρ) =
1
ρ

(−G+λ(ρ) + G−µ(ρ)) (1.2.4a)

v(ρ) = −1
ρ
‖G+λ(ρ)−G−µ(ρ)‖2 − λ(ρ)T αk

+ + µ(ρ)T αk
− . (1.2.4b)
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For nonconvex case, a small αk
j , j ∈ I+

k ∪I−k , does not imply that the corresponding

point xj is near the stability center yk. Thus the bundle is enriched by

ak
j
4
= ‖xj − yk‖, ∀ j ∈ I+

k ∪ I−k .

The bundle of available information used in [10, 11] is the set

{
(xj , f(xj), gj , α

k
j , ak

j ) : j ∈ I+
k ∪ I−k

}
.

Now we describe the NCVX algorithm based on repeatedly solving problem (QPρ),

or equivalently (DPρ). The kernel of the algorithm is the “main iteration”, i.e. the

set of steps where the stability center remains unchanged.

The whole algorithm can be summarized as follows:

Algorithm 1.2.1 (NCVX: algorithm outline)

1. Initialization.

2. Execute the kth “main iteration”.

3. Bundle updating. Replace k by k + 1 and return to 2.

We remark that the updating of the bundle is necessary since the quantities αk
j

and ak
j , j ∈ I+

k ∪ I−k , are dependent on the stability center yk.

The initialization of the algorithm requires a starting point x1 ∈ Rn. The initial

stability center is set equal to x1. The initial bundle is made up by just one element

(x1, f(x1), g1, 0, 0), where g1 ∈ ∂f(x1). Consequently I−1 is the empty set, while I+
1

is a singleton. The following global parameters are to be set:

• the stationarity tolerance η > 0 and the distance parameter ε > 0;

• the descent parameter m1 ∈ (0, 1) and the cut parameter m2 ∈ (m1, 1);

• the reduction parameter r ∈ (0, 1), and the increase parameter R > 1.

The following local parameters are set each time the “main iteration” is entered:

• the proximity measure θ > 0;

• the safeguard parameters ρmin and ρmax, 0 < ρmin < ρmax.
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Two exits from the “main iteration” may occur:

(i) termination of the whole algorithm, due to satisfaction of an approximate

stationarity condition;

(ii) update of the stability center, due to satisfaction of a sufficient decrease

condition.

Algorithm 1.2.2 (kth NCVX main iteration)

Step 1. If ‖g(yk)‖ ≤ η then stop.

Set

ρmax :=
2R

ε
‖g(yk)‖, ρmin := rρmax, θ :=

ρminη

R
.

Step 2. Choose ρ̂ equal to the maximum value of ρ ∈ [ρmin, ρmax] such that:

f(yk + d(ρ)) > f(yk) + m1v(ρ)

if such ρ does exist. Otherwise set ρ̂ := ρmin. If ‖d(ρ̂)‖ > θ go to 4.

Step 3. Set

I+
k := I+

k \ {j ∈ I+
k : ak

j > ε}
and

I−k := I−k \ {j ∈ I−k : ak
j > ε} .

Calculate

‖g∗‖ = min
g∈co{gj : j∈I+

k
}
‖g‖ .

If ‖g∗‖ ≤ η then stop. Else set ρmin := ρmin + r(ρmax − ρmin) and go to step 2.

Step 4. Set x̂ := yk + d(ρ̂), calculate ĝ ∈ ∂f(x̂) and set

α̂ := f(yk)− f(x̂) + ĝT d(ρ̂).

Step 5. a) If α̂ < 0 and ‖d(ρ̂)‖ > ε, then insert the element (x̂, f(x̂), ĝ, α̂, ‖d(ρ̂)‖) into

the bundle for an appropriate value of j ∈ I−k and set ρ̂ := ρ̂ + r(ρmax − ρ̂).

b) Else, if ĝT d(ρ̂) ≥ m2v(ρ̂) then insert the element (x̂, f(x̂), ĝ, max(0, α̂), ‖d(ρ̂)‖)
into the bundle for an appropriate value of j ∈ I+

k .

c) Else find a scalar t ∈ (0, 1) such that g(t) ∈ ∂f(yk+td(ρ̂)) satisfies the condition

g(t)T d(ρ̂) ≥ m2v(ρ̂) and insert the element (yk + td(ρ̂), f(yk + td(ρ̂)), g(t), max(0, αt),
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t‖d(ρ̂)‖) into the bundle for an appropriate value of j ∈ I+
k , where αt = f(yk)−f(yk+

td(ρ̂)) + tg(t)T d(ρ̂).

Step 6. If ‖d(ρ̂)‖ ≤ θ go to step 3. If

f(x̂) ≤ f(yk) + m1v(ρ̂) , (1.2.5)

set the new stability center yk+1 := x̂ and exit from the “main iteration”.

Step 7. Solve QP (ρ̂), or equivalently DP (ρ̂), obtain both the primal and the dual

optimal solution (v(ρ̂), d(ρ̂)) and (λ(ρ̂), µ(ρ̂)), and go to step 4.

We assume that f is weakly semismooth, so that the problem of finding the scalar

t at step 5c) of Algorithm 1.2.2 is well-posed.

The separate handling of the points of bundle, according to sign of linearization

error, is one of the greatest strengths of this approach. Consequently, this algorithm

is not a simple adaptation of a convex bundle algorithm; it takes into account the

nonconvex nature of the objective function f of (P).

The main disadvantage of this approach is that in the objective function of (1.2.2)

only the lower polyhedral approximation ∆+ is present, even though the upper poly-

hedral approximation is useful to define the feasible set of (1.2.2). Furthermore there

is the danger of solving several subproblems (QPρ) at step 2.

Theorem 1.2.3 [10] For any ε > 0 and η > 0, NCVX algorithm stops in a

finite number of “main iterations” at a stability center y∗k satisfying the approximate

stationarity condition

‖g∗‖ ≤ η with g∗ ∈ ∂G
ε f(y∗k) . (1.2.6)

DC-NCVX Algorithm[11] Now we utilize the technique of handling of the bundle

used in NCVX, but we define a new local model of the objective function f of (P ).

In particular, the index sets I+
k and I−k are defined as follows

I+
k

4
= {j : αk

j ≥ 0} and I−k
4
= {j : αk

j ≤ 0} . (1.2.7)

We remark that the sets I+
k and I−k are not disjoint; in fact at least the index cor-

responding to the stability center yk belongs to both I+
k and I−k . Consequently

∆+(d) ≥ ∆−(d) for all d ∈ Rn.
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Let ∆p(d)
4
= p∆+(d) + (1− p)∆−(d), for some p ∈ (0, 1).

The core of DC-NCVX algorithm consists, as displayed in Fig. 1.2.2, in finding a

tentative stepsize by solving the following problem:

dp(ρ) = argmin
d∈Rn

∆p(d) +
1
2
ρ‖d‖2 (1.2.8)

x2x1

h(d)

∆−(d)

yk x4x3

dp(ρ)

∆+(d)

∆p(d)

Fig. 1.2.2: DC-NCVX approach.

See [11] for a discussion on how to find a global optimal solution of the previous

problem.

In this approach a relevant role is played also by the strictly convex program

d(ρ) = argmin
d∈Rn

∆+(d) +
1
2
ρ‖d‖2 , (1.2.9)

which is equivalent to the following quadratic programming problem

(QPρ)





min
v,d

v +
1
2
ρ‖d‖2

v ≥ gT
j d− αk

j j ∈ I+
k .



82 Part II - Nonsmooth Nonconvex Optimization

The dual of QP (ρ) is

(DPρ)





min
λ≥0

1
2ρ
‖G+λ‖2 + λT αk

+

eT λ = 1 ,

where G+ and αk
+ are the quantities previously defined.

The optimal primal solution (d(ρ), v(ρ)) is related to the optimal dual solution

λ(ρ) by the following formulae:

d(ρ) = −1
ρ
G+λ(ρ) (1.2.10a)

v(ρ) = −1
ρ
‖G+λ(ρ)‖2 − λ(ρ)T αk

+ , (1.2.10b)

where v(ρ) = ∆+(d(ρ)).

The initialization of the algorithm requires a starting point x1 ∈ Rn. The initial

stability center is set equal to x1. The initial bundle is made up by just one element

(x1, f(x1), g1, 0, 0), where g1 ∈ ∂f(x1). The corresponding index is put in both I+
1

and I−1 , which are consequently both a singleton. The scheme of whole algorithm

coincides with Algorithm 1.2.1.

The following global parameters are to be set:

• the stationarity tolerance η > 0 and the distance parameter ε > 0;

• the descent parameter m ∈ (0, 1);

• the reduction parameter r ∈ (0, 1) and the increase parameter R > 1;

• the initial balance parameter p0 ∈ (0, 1).

The following local parameters are set each time the “main iteration” is entered:

• the descent threshold parameter ξ > 0

• the safeguard parameters ρmin and ρmax, 0 < ρmin < ρmax

• the linearization error threshold parameter σ > 0 and the approximation pa-

rameter γ > 0;
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• the balance parameter p := p0.

The following conditions on the parameters are imposed during the “main itera-

tion”:

ρmax >
2
ε
‖gI−

k
‖, (1.2.11)

where ‖gI−
k
‖ 4= max

j ∈I−
k

{‖gj‖} and

η ≥
√

ρmax(ξ + γ) . (1.2.12)

We assume that f is weakly semismooth, so that the problem of finding the scalar

t at step 5d) of Algorithm 1.2.4 is well-posed.

Algorithm 1.2.4 (kth DC-NCVX main iteration)

Step 1. If ‖g(yk)‖ ≤ η then stop.

Step 2. Set ρmax := max
{

ρmax,
2R

ε
‖gI−

k
‖
}

, ξ :=
η2

2ρmax
, γ := ξ and σ := γ. Select

ρ ∈ (ρmin, ρmax).

Step 3. Calculate dp(ρ) and d(ρ) by solving, respectively, (1.2.8) and (1.2.9).

If ∆+(dp(ρ)) ≤ −ξ go to 4. If ∆+(dp(ρ))−∆+(d(ρ)) > γ, then set p := p+r(1−p)

and return to step 2. Else go to step 7 .

Step 4. Set x̂ := yk + dp(ρ). If

f(x̂) ≤ f(yk) + m∆+(dp(ρ))

set the new stability center yk := x̂ and exit from the main iteration.

Step 5. Calculate ĝ ∈ ∂f(x̂) and set

α̂ := f(yk)− f(x̂) + ĝT dp(ρ) .

Four cases can occur:

5a) α̂ ≤ −σ and ‖dp(ρ)‖ > ε. Set ρ := ρ + r(ρmax − ρ) and return to step 3.

5b) α̂ ≥ σ. Insert the element (x̂, f(x̂), ĝ, α̂, ‖dp(ρ)‖) into the bundle for an ap-

propriate value of j ∈ I+
k and return to step 3.

5c) 0 ≤ α̂ < σ. Insert the element (x̂, f(x̂), ĝ, 0, ‖dp(ρ)‖) into the bundle twice, for

two appropriate values of the indices one belonging to I+
k and the other to I−k .
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5d) (α̂ ≤ −σ and ‖dp(ρ)‖ ≤ ε) or (−σ < α̂ < 0). Find a scalar t ∈ (0, 1) such

that g(t) ∈ ∂f(yk + tdp(ρ)) satisfies the condition

g(t)T dp(ρ) ≥ m∆+(dp(ρ)) , (1.2.13)

insert the element (yk + tdp(ρ), f(yk + tdp(ρ)), g(t), 0, t‖dp(ρ)‖) into the bundle twice,

for two appropriate values of the indices one belonging to I+
k and the other to I−k .

Step 6. Set ρmax := max
{

ρmax,
2R

ε
‖gI−

k
‖
}

, ξ :=
η2

2ρmax
, γ := ξ, σ := γ and return

to step 3.

Step 7. Set

I+
k := I+

k \ {j ∈ I+
k : ak

j > ε}

and

I−k := I−k \ {j ∈ I−k : ak
j > ε} .

Calculate

‖g∗‖ = min
g∈co{gj : j∈I+

k
∪I−

k
}
‖g‖ .

If ‖g∗‖ ≤ η then stop. Else set:

ρmin := ρmin + r(ρmax − ρmin) (1.2.14)

and go to step 2.

The main disadvantage of this approach is that two subproblems must be solved

at step 3, i.e. (1.2.8) and (1.2.9). We remark that in the objective function of (1.2.8)

are present both lower and upper piecewise affine approximations of f . In fact, ∆p is

a convex combination of the local models ∆+ and ∆−.

Theorem 1.2.5 [11] For any ε > 0 and η > 0, DC-NCVX Algorithm stops in a

finite number of “main iterations” at a stability center y∗k satisfying the approximate

stationarity condition

‖g∗‖ ≤ η with g∗ ∈ ∂G
ε f(y∗k) . (1.2.15)
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2 Gradient Sampling Algorithm

We consider the problem (P) in §1. It is well-known that, if the objective function f

is smooth, the vector of norm one

d∗ = argmin
‖d‖≤1

f ′(x, d)

is the so-called normalized “steepest descent” direction of f at x. Coming back to our

nonsmooth problem (P ), if we assume that f is Lipschitzian near x and regular in

the Clarke’s sense, from Proposition IV.2.1.1 it follows that d∗, the steepest descent,

is the solution of the following minimax problem

min
‖d‖≤1

max
g∈∂f(x)

gT d , (2.0.1)

which is practically impossible to solve, since in general it is not provided a description

of the whole Clarke gradient ∂f(x).

2.1 The Idea

Before continuing our discussion of the Gradient Sampling algorithm [3], we show the

following simple result.

Lemma 2.1.1 [3] Let C be any compact convex subset of Rn. Then

(i) − dist(0 | C) = min
‖d‖≤1

max
g∈C

gT d;

(ii) Letting ĝ be the least norm element of C, the vector

d̂ = − ĝ

‖ĝ‖
solves the problem on the right-hand side of the equality in (i).

Proof. From Sion-Kakutani Theorem (see, e.g., [2]), we have

−dist(0 | C) = −min
g∈C

‖g‖ = −min
g∈C

max
‖d‖≤1

gT d

= − max
‖d‖≤1

min
g∈C

gT d = − max
‖d‖≤1

min
g∈C

−gT d

= min
‖d‖≤1

max
g∈C

gT d .
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C

ĝ

Fig. 2.1.1: dist(0 | C).

Taking into account that −‖ĝ‖ = ĝT d̂, (ii) follows (see Fig. 2.1.1).

¤

Consequently, after finding the minimizer g∗ of the problem

min
g∈∂f(x)

‖g‖ , (2.1.1)

the normalized steepest descent direction d∗ is given by d∗ = − g∗

‖g∗‖ .

J. Burke, A. Lewis and L. Overton, in [3], approximate the Clarke gradient of f

at x by the “gradient sampling”

Gε(x)
4
= co{∇f(x + di) : i = 1, . . . ,m, m > n, f is differentiable at x + di}

where, for some small fixed ε > 0, d1, . . . , dm is a linearly independent uniformly

distributed random collection of vectors of B
(n)
ε (0). By solving the following quadratic

programming problem

min
g∈Gε(x)

‖g‖2 , (2.1.2)

and letting ḡ∗ be the minimizer of above problem, the vector d̄∗ = − ḡ∗

‖ḡ∗‖ is the

approximate normalized steepest descent direction of f at x.
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2.2 The Algorithm

At each iteration k, the Gradient Sampling algorithm [3] calculates the approximate

steepest descent direction dk of f at the current iterate xk and then computes a step

tk along this direction by using a line search procedure. Finally the new iterate is set

as

xk+1 := xk + tkdk .

Even if the convergence of the method has been proved for locally Lipschitzian func-

tions, the algorithm has been tested on more general functions. In particular, the

results of the numerical experimentations appear to be promising for any continu-

ous and almost everywhere differentiable function. A MATLAB implementation of

the algorithm is available on the web at the URL http://www.cs.nyu.edu/overton/-

papers/gradsamp/alg.
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Chapter VI

A New Bundle Method for

Nonsmooth Nonconvex

Optimization

Introduction. In this chapter we present the new bundle method NonConvexNon-

Smooth (NCNS) [12], which implements the bundle splitting strategy used for both

NCVX and DC-NCVX algorithms and described in §V.1.2. NCNS introduces changes

into the local model of the objective function f of the nonsmooth nonconvex problem

(P), defined in §V.1, and into the localization of the new “sample point” at kth “main

iteration”.

1 The Model

We consider the unconstrained minimization problem (V.1.0.1), where the objective

function f is assumed to be weakly semismooth as well1.

We assume that we are able to calculate at each point x both the objective function

value f(x) and a subgradient g ∈ ∂f(x), i.e. an element of the Clarke gradient.

1The weak semismoothness assumption implies that f is locally Lipschitzian (see the proof of the

Theorem I.1.2.2)



90 Part II - Nonsmooth Nonconvex Optimization

We denote by yk the current stability center during the execution of the kth “main

iteration” and by gk any subgradient of f at yk. In the sequel we will assume that a

starting point, say x1, is available and that at least the stability center yk belongs to

the level set defined by x1, namely

yk ∈ F1
4
= {x ∈ Rn : f(x) ≤ f(x1)}.

We assume also that the set F1 is compact, so we indicate by L1 a Lipschitz constant

of f on F1. We denote by Lρ a Lipschitz constant of f on

Fρ =
{

x ∈ Rn : dist(x | F1) ≤ 2L1

ρ

}
.

1.1 The Bundle Splitting Idea

The way to split the bundle is slightly modified with respect to NCVX and DC-NCVX

algorithms:

I+
k

4
= {j : αk

j ≥ −σ} and I−k
4
= {j : αk

j < −σ} , (1.1.1)

for some σ > 0. We observe that I+
k is never empty, as at least the index corresponding

to the stability center yk belongs to the I+
k .

Let h(d)
4
= f(yk + d) − f(yk) be the difference function. We construct two

polyhedral models of h, using separately the two bundles. In particular, setting

αk
j = max{αk

j , 0}, for all j ∈ I+
k , we define the two piecewise affine functions:

∆+(d)
4
= max

j∈I+
k

{
gT

j d− αk
j

}

and

∆−(d)
4
= min

{
0, min

j∈I−
k

{gT
j d− αk

j }
}

,

which are convex and concave functions, respectively. We remark that ∆−(d) is equal

to zero around d = 0 and ∆+(0) = ∆−(0) = h(0).

1.2 The Quadratic Subproblem

Our approach, at current point yk, consists in finding a tentative stepsize by solving

the following problem:

d(ρ) = argmin
d∈Rn

∆(d) +
1
2
ρ‖d‖2 (1.2.1)
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where ∆
4
= ∆+ − ∆− and ρ > 0 is the proximity parameter introduced for both

stabilization and well-posedness purposes (see Fig. 1.2.1). The rationale of the model

is in the attempt of locating the new “sample point” so that both the model functions

∆+ and ∆− predict reduction, but, at the same time, their predictions are mostly

different.

x2x1

h(d)

∆−(d)

yk x4x3

∆+(d)

∆(d)

d(ρ)

Fig. 1.2.1: NCNS approach.

By introducing the scalar variables v and w, we can rewrite (1.2.1) as the following

quadratic programming problem

(QPρ)





z(ρ) = min
v,w,d

v − w +
1
2
ρ‖d‖2

v ≥ gT
j d− αk

j j ∈ I+
k

w ≤ gT
j d− αk

j j ∈ I−k

w ≤ 0
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The dual of QPρ is

(DPρ)





ζ(ρ) = min
λ≥0,µ≥0

1
2ρ
‖G+λ−G−µ‖2 + λT αk

+ − µT αk
−

eT λ = 1

eT µ ≤ 1 ,

where G+, G−, αk
+ and αk

− are the same quantities we have defined in §V.1.2.

By indicating (d(ρ), v(ρ), w(ρ)) and (λ(ρ), µ(ρ)) the optimal solutions of (QPρ)

and (DPρ) respectively, the following primal-dual relations hold:

d(ρ) =
1
ρ

(−G+λ(ρ) + G−µ(ρ)) (1.2.2a)

v(ρ) = d(ρ)T G+λ(ρ)− λ(ρ)T αk
+ (1.2.2b)

w(ρ) = d(ρ)T G−µ(ρ)− µ(ρ)T αk
− (1.2.2c)

We observe that, since the triple (d, v, w) = (0, 0, 0) is feasible for (QPρ), z(ρ) ≤ 0.

Consequently, v(ρ) ≤ − 1
2ρ‖d(ρ)‖2 + w(ρ) ≤ 0 and v(ρ)− w(ρ) ≤ 0.

Our approach solves only one quadratic subproblem, that is (QPρ), and a kind of

trust region is implicity defined, i.e.

C 4
= {d : ∆+(d) ≤ ∆−(d) },

as it happens in NCVX.

The function ∆ participating in the objective function of subproblem (1.2.1) con-

tains both lower and upper approximations ∆+ and ∆−, such as ∆p participating in

the subproblem (V.1.2.8) for DC-NCVX.

1.3 Some Results

Before giving a formal description of the algorithm, we state some simple properties of

problem (QPρ), assuming that ρ is not smaller than a fixed positive threshold ρmin .

Lemma 1.3.1 Let δ > 0 and v(ρ)− w(ρ) ≥ −δ, then

1
ρ
‖G+λ(ρ)−G−µ(ρ)‖2 ≤ δ.
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Proof. The property follows by (1.2.2) and by, respectively, nonnegativity of αk
+

and negativity of αk
−. In fact we have

−δ ≤ v(ρ)− w(ρ) = −1
ρ
‖G+λ(ρ)−G−µ(ρ)‖2 − λ(ρ)T αk

+ + µ(ρ)T αk
−

≤ −1
ρ
‖G+λ(ρ)−G−µ(ρ)‖2.

¤

Lemma 1.3.2 For any ρ > 0 the following inequality holds:

‖d(ρ)‖ ≤ 2L1

ρ
.

Proof. Since 1
2ρ‖d(ρ)‖2 + v(ρ)− w(ρ) ≤ 0, we have

v(ρ) +
1
2
ρ‖d(ρ)‖2 ≤ w(ρ) ≤ 0.

Hence, taking into account that

0 ≥ v(ρ) +
1
2
ρ‖d(ρ)‖2 ≥ gT

k d(ρ) +
1
2
ρ‖d(ρ)‖2 ≥ −‖gk‖‖d(ρ)‖+

1
2
ρ‖d(ρ)‖2,

the thesis follows by considering that ‖gk‖ ≤ L1 as by hypothesis yk belongs to F1.

¤

Lemma 1.3.3 Let α̂ρ
4
= f(yk) − f(yk + d(ρ))+ ĝT d(ρ), with ĝ ∈ ∂f(yk + d(ρ)).

For σ > 0 there exists a threshold value ρ̄(σ) such that |α̂ρ| ≤ σ for all ρ ≥ ρ̄(σ).

Proof. By Lemma 1.3.2, we have, for all ρ > 0, ‖d(ρ)‖ ≤ 2L1

ρ
. Since yk+d(ρ) ∈ Fρ,

taking into account ρ ≥ ρmin, we have

|α̂ρ| ≤ |f(yk)− f(yk + d(ρ))|+ |ĝT d(ρ)| ≤ 2Lρmin‖d(ρ)‖ ≤ 4LρminL1

ρ
.

Consequently for the threshold value we have ρ̄(σ) =
4LρminL1

σ
.

¤
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2 The Algorithm

The scheme of the entire algorithm coincides with Algorithm V.1.2.1 and the following

global parameters are to be set:

• the stationarity tolerance η > 0 and the distance parameter ε > 0;

• the descent parameter m1 ∈ (0, 1) and the concave cut parameter m2 > 1;

• the lower threshold on the proximity parameter ρmin > 0;

• the increase parameter R > 1;

• the linearization error threshold parameter σ > 0;

The initialization of the algorithm requires a starting point x1 ∈ Rn. The initial

stability center is set equal to x1. The initial bundle is made up by just one element

(x1, f(x1), g1, 0, 0), where g1 ∈ ∂f(x1). Consequently I−1 is the empty set, while I+
1

is a singleton.

Now we can describe our “main iteration”.

Algorithm 2.0.1 (kth NCNS main iteration)

Step 0. Select ρ ≥ ρmin.

Step 1. Solve either (QPρ) or (DPρ) and determine (d(ρ), v(ρ), w(ρ)) and (λ(ρ), µ(ρ)).

Set δ =
η2

ρ
. If v(ρ)− w(ρ) < −δ go to step 3.

Step 2. Two cases can occur:

a) µ(ρ) = 0. If ak
j ≤ ε for all j ∈ I+

k such that λj(ρ) > 0 then stop, else delete from

I+
k all the j’s such that ak

j > ε, set ρ = Rρ and return to step 1;

b) µ(ρ) 6= 0. Reset I−k . Set ρ = Rρ and return to step 1.

Step 3. Evaluate f(yk +d(ρ)). If f(yk +d(ρ))− f(yk) ≤ m1v(ρ), then exit from main

iteration (stability center update).

Step 4. Calculate ĝ ∈ ∂f(yk + d(ρ)), and2 α̂
4
= f(yk)− f(yk + d(ρ)) + ĝT d(ρ).

Step 5. Three cases can occur:

a) α̂ ≥ 0. Update the bundle, by introducing a new element in I+
k , and return to

step 1;
2To simply the notation, we drop the subscript ρ for α̂ρ.
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b) −σ ≤ α̂ < 0. Set α̂ = 0 and find a scalar t ∈ (0, 1] such that g(t) ∈ ∂f(yk + td(ρ))

satisfies the condition g(t)T d(ρ) ≥ m1v(ρ). Update the bundle, by introducing a new

element in I+
k , and return to step 1;

c) α̂ < −σ. If ĝT d(ρ)−α̂ ≤ m2w(ρ), update the bundle by introducing a new element

in I−k . Set ρ = Rρ and return to step 1.

2.1 Some Remarks

Before discussing the convergence, the following remarks are in order.

Remark 2.1.1 We observe that from the definition of α̂, whenever cases a) and

b) at step 5 of the main iteration occur, the condition ĝT d(ρ) − α̂ > m1v(ρ) holds.

On the other hand whenever case b) occurs, since α̂ is set equal to zero, the condition

ĝT d(ρ)− α̂ > m1v(ρ) holds as well. We observe that the problem of finding the scalar

t, at case b), is well-posed. In fact since the directional derivative f ′(yk + td(ρ), d(ρ))

exists for any t ≥ 0, from the mean value theorem (Theorem IV.3.1.3) it follows that

f(yk + d(ρ))− f(yk) = c (2.1.1)

for some c ∈ [f ′inf , f
′
sup], where

f ′inf
4
= inf

0≤t≤1
f ′(yk + td(ρ), d(ρ)) and f ′sup

4
= sup

0≤t≤1
f ′(yk + td(ρ), d(ρ))

Moreover, taking into account that the sufficient decrease condition is not satisfied,

i.e.

f(yk + d(ρ))− f(yk) > m1v(ρ),

by (2.1.1) and the definition of f ′sup there exists a scalar t̄ ∈ (0, 1] such that

f ′(yk + t̄d(ρ), d(ρ)) > m1v(ρ)

and, by weak semismoothness assumption, we have

lim
t↓t̄

g(t)T d(ρ) > m1v(ρ),

where g(t) ∈ ∂f(yk + td(ρ)). Consequently the inequality g(t)T d(ρ) > m1v(ρ) holds

in some interval (t̄, t̂).
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Remark 2.1.2 When the stopping criterion at step 2 is met, the following condi-

tions hold:

v(ρ)− w(ρ) ≥ −δ; (2.1.2)

µ(ρ) = 0; (2.1.3)

ak
j ≤ ε ∀ j : λj(ρ) > 0. (2.1.4)

Hence, by equations (1.2.2), we have

−δ ≤ v(ρ)− w(ρ) = −1
ρ
‖G+λ(ρ)−G−µ(ρ)‖2 − λ(ρ)T αk

+ + µ(ρ)T αk
−

From (2.1.3) and nonnegativity of αk
+, we have

1
ρ‖G+λ(ρ)‖2 ≤ δ (2.1.5)

which in turn, taking into account (2.1.4) and δ ≤ η2

ρ
, implies both g∗

4
= G+λ(ρ) ∈

∂G
ε f(y∗k) and ‖g∗‖ ≤ η.

3 Convergence

In this section we prove the termination of the algorithm at a point satisfying an

approximate stationarity condition. In particular we prove that, for any given ε > 0

and η > 0, it is possible to set the input parameters so that, after a finite number of

“main iteration” executions, the algorithm stops at a point y∗k satisfying the condition

‖g∗‖ ≤ η , with g∗ ∈ ∂G
ε f(y∗k) .

3.1 Termination of the “Main Iteration”

We start proving the following:

Lemma 3.1.1 The kth “main iteration” algorithm cannot loop infinitely many

times without entering step 2.
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Proof. Suppose that the algorithm loops infinitely many times (i.e. the descent test

at step 3 is never satisfied) without entering step 2. We index by i all the quantities

referred to the ith passage through steps 1-5.

We observe that the case c) at step 5 cannot occur infinitely many times. In

fact, whenever α̂i < −σ, the parameter ρi is increased and consequently there exists

an index ı̂ such that α̂i ≥ −σ for all i > ı̂ (see Lemma 1.3.3). Thus only cases a)

or b) can occur infinitely many times and, taking into account Remark 2.1.1, the

condition di(ρi)T ĝi − α̂i > m1vi(ρi) is met infinitely many times too. Letting ı̄ index

the last passage through case c) at step 5, we note that ρi remains constant for all

i ≥ ı̄. Consequently the sequence {zi(ρi)}, for i ≥ ı̄, is monotonically nondecreasing,

bounded from above, and hence convergent. Moreover, the condition ρi ≥ ρmin

implies, by Lemma 1.3.2, ‖di(ρi)‖ ≤ 2L1

ρmin
, hence {di(ρi)} belongs to a compact set

and there exists a convergent subsequence, say {di(ρi)}i∈I′ . Thus the subsequence

{vi(ρi)− wi(ρi)}i∈I′ is convergent. Furthermore, we have

−δ > vi(ρi) ≥ gT
k di(ρi) ≥ − 2L2

1

ρmin
,

hence {vi(ρi)}i∈I′ is bounded and consequently there exist two convergent subse-

quences {vi(ρi)}i∈I′′⊂I′ and {wi(ρi)}i∈I′′⊂I′ . Now let t and s be two successive indices

in I ′′ and let v̄ = lim
i∈I′′

vi(ρi), then we have:

dt(ρ)T ĝt − α̂t ≥ m1vt(ρt)

ds(ρ)T ĝt − α̂t ≤ vs(ρs),

that is vs(ρs) −m1vt(ρt) ≥ (ds(ρs) − dt(ρt))T ĝt, which implies v̄ ≥ 0. Observe that

v̄ ≥ 0 contradicts the hypothesis that the algorithm never enters step 2. In fact, in

this case, we would have:

vi(ρi) < wi(ρi)− δ < −δ ∀ i,

which, taking into account vi(ρi) → v̄, would imply v̄ ≤ −δ.

¤

Now we can prove finite termination of the kth “main iteration”.
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Lemma 3.1.2 If the kth “main iteration” does not terminate with satisfaction of

the sufficient decrease condition at step 3, then the stopping condition is met after a

finite number of passages through step 2.

Proof. Assume that the sufficient decrease condition at step 3 of the “main it-

eration” is never satisfied. If we assume also that the stopping condition is never

satisfied, by Lemma 3.1.1 we have that step 2 is entered infinitely many times and

the parameter ρ grows indefinitely.

Let ı̃ be an index such that ρı̃ ≥ 2L1

ε
and, consequently, all points newly generated

by the algorithm for i ≥ ı̃ are characterized by a distance from the stability center

ak
j ≤ ε (Lemma 1.3.2). We observe also that (see the proof of Lemma 3.1.1), for

sufficiently large values of ρ, only modifications of I+
k can occur. Thus, taking into

account the reset of I−k and the deletion of elements of I+
k , for sufficiently large values

of ρ, we have I−k = ∅ and ak
j ≤ ε for all j ∈ I+

k . Thus, the stopping condition is met

after a finite number of passages through step 2.

¤

Remark 3.1.1 The proofs of the previous lemmas ensure also that the value of

the proximity parameter ρ cannot become arbitrarily large.

3.2 Convergence of the Algorithm

Now we are ready to prove the overall finiteness of the algorithm.

Theorem 3.2.1 For any ε > 0 and η > 0, the algorithm stops in a finite number

of “main iterations” at a stability center y∗k satisfying the approximate stationarity

condition

‖g∗‖ ≤ η, with g∗ ∈ ∂G
ε f(y∗k). (3.2.1)

Proof. We prove, by contradiction, that the stopping criterion is satisfied in a

finite number of “main iterations”. Suppose in fact that an infinite number of main

iterations occurs. Then the descent condition at step 3 is verified infinitely many

times. Let yk be the stability center at the kth main iteration and v(k) and δ(k) be,

respectively, the values of v(ρ) and δ for which the descent condition at step 3 has
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been fulfilled. Then

f(yk+1) ≤ f(yk) + m1v
(k)

and, after k main iterations,

f(yk) ≤ f(y1)− km1δ
(k) ≤ f(y1)− km1

η2

ρmax
,

where ρmax is any upper bound on the proximity parameter ρ (see Remark 3.1.1)

Passing to the limit we have

lim
k→∞

f(yk)− f(y1) ≤ −∞,

which is a contradiction, since f is bounded from below by hypothesis.

¤

4 Implementation

It is worth noting that the algorithm described in §2 can produce a bundle whose size

can grow indefinitely. Thus, to make the method implementable, it is important to

introduce bounded storage for the bundle. Of course it is necessary as well to show

that convergence properties proved in §3 are retained under such hypothesis.

To tackle the problem we introduce an aggregation technique scheme (see Chap-

ter II). In particular let (d(ρ), v(ρ), w(ρ)) and (λ(ρ), µ(ρ)) be, respectively, the solu-

tion of (QPρ) and (DPρ) at step 1 of the “main iteration”. If we define the aggregate

quantities

gp
4
= G+λ(ρ) , αp

4
= λ(ρ)T αk

+

and, in case µ(ρ) 6= 0,

gm
4
= G−µ(ρ) , αm

4
= µ(ρ)T αk

−,
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it is easy to verify that the aggregate problem QP a
ρ

QP a
ρ





min
v,w,d

1
2
ρ‖d‖2 + v − w

v ≥ gT
p d− αp

v ≥ gT
j d− αk

j j ∈ Ī+
k

w ≤ gT
md− αm

w ≤ gT
j d− αk

j j ∈ Ī−k

has the same optimal solution (d(ρ), v(ρ), w(ρ)) as (QPρ), where Ī+
k and Ī−k are arbi-

trary subsets of I+
k and I−k respectively. Of course, in case I−k = ∅ or µ(ρ) = 0, the

formulation of the aggregate problem does not contain the constraint w ≤ gT
md− αm

and (d(ρ), v(ρ), 0) is still optimal.

Now suppose that at a certain execution of the “main iteration”, the quadratic

program (QPρ) (or (DPρ)) is solved, and the corresponding optimal dual vector

(λ(ρ), µ(ρ)) is calculated. If we calculate also the quantities gp, αp, gm, αm, it is

possible to construct the aggregate problem (QP a
ρ ) by inserting the aggregated con-

straints into (QPρ) and deleting part of its bundle elements. Thus, the new quadratic

program can be obtained by inserting the new constraint, corresponding to the new

bundle element calculated at step 5 of the “main iteration”, into the aggregated prob-

lem (QP a
ρ ). Of course, such an aggregation task will only be carried out each time a

given maximal bundle dimension is reached.

The aggregation mechanism does not impair convergence. Indeed the key argu-

ment is that the monotonicity of the sequence {zi(ρi)}, necessary in the proof of

Lemma 3.1.1, is still guaranteed.

The algorithm, equipped with the aggregation scheme, has been implemented in

double precision Fortran-77 under the Windows XP system.
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5 Numerical Examples

Our code, called NCNS, has been tested on a set of 25 problems [20] available on the

web at the URL http://www.cs.cas.cz/˜luksan/test.html. All test problems, except

the Rosenbrock problem, are nonsmooth.

The input parameters have been set as follows: ε = 10−2, η = 10−4, σ = 10−2,

m1 = 0.2, m2 = 1.2, ρmin = 10−2‖g(x1)‖, R = 6. In table 5.0.1 we report the

computational results in terms of the number Nf of function evaluations. By f∗

and f we indicate, respectively, the minimum value of the objective function and the

function value reached by the algorithm when the stopping criterion is met.

At each iteration we solve the dual program (DPρ), by using the subroutine

DQPROG provided by the IMSL library and based on M.J.D. Powell’s implemen-

tation of the Goldfarb and Idnani [13] dual quadratic programming algorithm.

We compare the results provided by our code NCNS with NCVX [10] and the

variable metric algorithms VN [21] and VMNC [41]. The performance of our algorithm

seems comparable with those of the considered methods.
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Appendix: Background

Material

A - Linear Algebra and Set Theory

Definition A.1 (Linear subspace)[2] A linear subspace in Rn is a nonempty subset

of Rn which is closed with respect to addition of vectors and multiplication by reals.

A linear combination of elements x1, . . . , xk in Rn is a element of the form

k∑

i=1

λixi , λi ∈ R .

A collection x1, . . . , xk of n-dimensional vectors is called linearly independent, if

no nontrivial linear combination of the vectors is zero. A collection x1, . . . , xk linearly

independent is called a basis of a linear subspace C and k is said to be the dimension

of C, if every vector from C is a linear combination of the vectors x1, . . . , xk.

Definition A.2 (Affine subspace)[2] An affine subspace in Rn is a set of the form

C = a + B = {a + x : x ∈ B} ,

where B is a linear subspace in Rn and a is a vector from Rn.

An affine combination of elements x1, . . . , xk in Rn is a element of the form

k∑

i=1

λixi ,
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where the coefficients λi satisfy
k∑

i=1

λi = 1 .

A collection x1, . . . , xk of n-dimensional vectors is called affinely independent, if

no nontrivial linear combination of the vectors with zero sum of coefficients is zero,

i.e.

k∑

i=1

λixi = 0,

k∑

i=1

λi = 0

⇒ λi = 0, ∀ i = 1, . . . , k

The affine dimension of an affine subspace C = a+B is the dimension of the linear

subspace B.

Definition A.3 (Affine hull) [2] Let C a subset of Rn. The affine hull of a set C,

denoted as aff C, is the smallest affine subspace containing C.

A convex combination of elements x1, . . . , xk in Rn is a element of the form

k∑

i=1

λixi ,

where the coefficients λi satisfy
k∑

i=1

λi = 1 and λi ≥ 0, i = 1, . . . , k.

Definition A.4 (Convex set) [35] A subset C of Rn is said to be convex if

(1− λ)x + λy ∈ C

whenever x, y ∈ C and λ ∈ (0, 1).

Definition A.5 (Convex hull) [2] Let C a subset of Rn. The convex hull of the

set C, denoted as co C, is the smallest convex set containing C.

A set C ⊂ Rn is called closed, it it contains limits of all converging sequences of

elements of C, namely
{

xi ∈ C, x = lim
i→∞

xi

}

⇒ x ∈ C .
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Convex set Convex set

Fig. A.1: Convex sets.

Definition A.6 (Closure) [2] Let C a nonempty subset of Rn. The closure of set

C, denoted as clC, is the smallest closed set containing C.

The closed convex hull of a nonempty set C ⊂ Rn, denoted as co C, is the

intersection of all closed convex set containing C.

A set is called countable if it is the range of some sequence and finite if it is the

range of some finite sequences (see, e.g., [14]).

Definition A.7 (Dense sets) [36] C is a dense subset of Rn, if for every ε > 0,

for every x ∈ Rn there exists y ∈ C such that ‖x− y‖ < ε. If clC = Rn, C is a dense

subset of Rn.

Definition A.8 (Interior) [2] Let C a nonempty subset of Rn. A point x ∈ C is

an interior point for C, if some neighborhood of the point is contained in C, i.e. there

exists r > 0 such that

B(n)
r (x) ⊂ C ,

where B
(n)
r (x) is the ball of radius r centered at x.

The interior of C, indicated as intC, is the set of all interior points of C.

Definition A.9 (Relative interior) [2] Let C a nonempty subset of Rn. A point

x ∈ C is a relative interior for C, if C contains the intersection of a small enough

ball centered at x with aff C, i.e. there exists r > 0 such that

Ur(x̄)
4
= B(n)

r (x) ∩ aff C ⊂ C .
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x

y

ri C = (x, y)
4
= {λx + (1− λ)y : λ ∈ (0, 1)}

int C = ∅

C = [x, y]
4
= {λx + (1− λ)y : λ ∈ [0, 1]}

Fig. A.2: Relative interior.

The relative interior of C, indicated as riC, is the set of all relative interior points

of C.

If affine hull of C coincides with Rn, then the relative interior of C is the interior

of C. Else intC = ∅.
Finally we define the boundary ∂ C (or relative boundary ∂riC) of C the set

clC \ intC (or cl C \ ri C) .

B - Measure Theory

Definition B.1 (σ-Algebra) [14] Let S be the whole space. An σ-algebra C is a class

of subsets of S such that

1. S, ∅ ∈ C,

2. {Cn}n∈N, Cn ∈ C ⇒ ⋃∞
n=1 Cn ∈ C ,

3. C ∈ C ⇒ S \ C ∈ C.

A rectangle in Rn is a set of the form

R
4
= {x ∈ Rn : ai < xi < bi, i = 1, . . . , n}
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and its volume v(R) is given by

(b1 − a1) · · · (bn − an)

Definition B.2 (Lebesgue measure) [40] The Lebesgue measure of a set C ⊂ Rn

is the number

λn(C)
4
= inf

∑

k

v(Rk) ,

where {Rk} is a sequence of rectangles covering C and the inf is taken over all.

Let λn be the Lebesgue measure. Then a set C ⊂ Rn is called Lebesgue measur-

able, if for every set B ⊂ Rn we have

λn(B) = λn(B ∩ C) + λn(B \ C)

and the class of Lebesgue measurable sets is a σ-Algebra.

There exist nonmeasurable sets (see, e.g., [36]) in the sense of Lebesgue measure.

Definition B.3 (Measure) [40] Let C be a σ-algebra and let µ : C → R+∪{+∞} be

a set function. Then µ is a measure, if it is countably additive and such that µ(∅) = 0,

i.e.

µ(∅) = 0 (B.1a)

{Cn}n∈N ∈ C, Ci ∩ Cj = ∅ i 6= j ⇒ µ(
∞⋃

n=1

Cn) =
∞∑

n=1

µ(Cn) (B.1b)

Let Ln be the class of Lebesgue measurable sets. Then Lebesgue measure λn is a

measure on the measurable space (Rn,Ln).

Definition B.4 (Measure space) [14] A triple (S, C, µ), where S is the space, C
is a σ-algebra over S, and µ is a measure on the measurable space (S,C), is called a

measure space.

Definition B.5 (Lebesgue measurable functions) [40] Consider the measure space

(Rn,Ln, λn). A function f : Rn → R is said to be Lebesgue measurable, if for every

open interval I the set

{x ∈ Rn : y = f(x), y ∈ I}
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is Lebesgue measurable.

C - Lipschitzian Functions

The Lipschitz property is largely used in this thesis.

Definition C.1 (Lipschitzian functions)[40] Let f be a real-valued function de-

fined on a set C ⊂ Rn. The function f is said to be Lipschitzian on C, if there exists

a positive number L such that

|f(x)− f(y)| ≤ L‖x− y‖ ∀ x, y ∈ C

The following class of functions is very important in nonsmooth optimization.

Definition C.2 [5] Let f be a real-valued function defined on an open set C ⊂ Rn,

and let x be a point of C. The function f is said to be Lipschitzian near x, if there

exist a positive number L and a small number ε > 0 such that

|f(y)− f(z)| ≤ L‖y − z‖ ∀ y, z ∈ x + εB(n),

where B(n) is the unit ball.

Now we define the notion of locally Lipschitzian functions.

Definition C.3 (Locally Lipschitzian functions)[23] Let f be a real-valued func-

tion defined on Rn and Lipschitzian on each bounded subset of Rn. Then f is called

locally Lipschitzian.
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List of Symbols

R set of real numbers

R+ set of non negative real numbers

Rn set of n-dimensional real vectors

N set of natural numbers

Z set of integer numbers

Q set of rational numbers

(y, z) open interval: {x ∈ R : y < x < z}
[y, z] closed interval: {x ∈ R y ≤ x ≤ z}
aff C affine hull of C

co C convex hull of C

cl C closure of C

co C closed convex hull of C

intC interior of C

∂C boundary of C

ri C relative interior of C

∂riC relative boundary of C

dist(x | C) Euclidean distance from x to C

‖x‖ standard Euclidean norm of vector x

|x| absolute value of real number x

xT y standard inner product

e vector of all ones in Rn
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B
(n)
r (x) ball in Rn of radius r centered at x:

{y ∈ Rn : ‖y − x‖ ≤ r}
B(n) 4= B

(n)
1 (0) unit ball in Rn

S
(n)
r (x)

4
= ∂B

(n)
r (x) sphere in Rn of radius r centered at x

S(n) 4= S
(n)
1 (0) unit sphere in Rn

xT transpose of vector x

QT transpose of matrix Q

lim limit

lim sup superior limit

lim inf inferior limit

f : A → B f is a function on the set A into the set B

f ′+(x) right-hand-side derivative of f at x

f ′−(x) left-hand-side derivative of f at x

f ′(x) derivative of f at x

Lx : Rn → R derivative of f at x

f ′(x, d) directional derivative of f at x in the direction d

∇f(x) gradient of function f at x

f
′
(x, d) upper directional Dini derivative of f

at x in the direction d

f ′(x, d) lower directional Dini derivative of f

at x in the direction d

fo(x, d) Clarke derivative∫
f integral of f

epi f epigraph of function f

dom f effective domain of function f

σC support function of C

∂f(x) subdifferential of f at x

∂f(x) Clarke gradient of f at x

∂G
ε f(x) Goldstein ε-subdifferential of f at x

ConvRn set of proper convex functions on Rn

taking values in the extended real axis R ∪ {+∞}
ConvRn set of closed proper convex functions on Rn

taking values in the extended real axis R ∪ {+∞}
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C1 set of continuously differentiable functions on Rn

taking values in the real axis

BV[y, z] set of functions of bounded variation on [y, z]

Ln Lebesgue measurable sets on Rn

λn Lebesgue measure on Rn

In unit matrix of the order n

Argmin
x∈C

f(x) set of the minima of f over C
argmin

x∈C
f(x) minimizer of f over C

min
x∈C

f(x) minimum value of f over C
4
= definition operator

:= assignment operator

a.e. almost everywhere
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