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Chapter 0

Introduction

The study of real phenomenons leads, very often, to the analysis of functions not

easily usable, that because of their complicated analytic expressions which are too complex

to evaluate efficiently or because of the functions studied are known only in a number of

data points. From that the necessity of approximate a function with a simpler mathematical

expression taking account of its known values and minimizing the remainder. Interpolation

is a method of approximating a given function using data that are available at a distribution

of data points. The data can be consist, for example, of the function values or some of its

derivatives. The general approach is to construct an interpolating function, the interpolant,

which fits the available data perfectly. Among the different classes of functions in which find

the interpolants, the polynomial one is the most studied because of its known characteris-

tics. In the following, at first we deal with the problem from a general point of view, that

is in an arbitrary linear space of finite dimension, then we focus our study on two different

polynomial interpolation problems of which we examine some applications. In Chapter 1 we
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consider interpolation, remainder theory, convergence theorems for interpolatory processes

and some classic problems of finite interpolation. We also present a number of basic defini-

tions and elementary properties that will be of use in the later chapters. In Chapter 2 we

introduce the sequences of Appell polynomials for which we provides an algebraic approach

with the aim of giving a unifying theory for all classis of Appell polynomials and a their

very natural generalization. We establish the equivalence of the new approach with the

previous characterizations through a circular theorem. Moreover, we give general proper-

ties of Appell polynomials by employing basic tools of linear algebra and we consider their

expansion in Fourier series. We also propose an efficient and stable Gaussian algorithm

for the computation of the coefficients for particular sequences of Appell polynomials and

consider classic examples, in particular Bernoulli, Euler, normalized Hermite and Laguerre

polynomials and their possible generalizations not studied in the literature so far. Finally,

the proposed algebraic approach allows the solution, expressed by a determinantal form us-

ing a basis of Appell polynomials, of a remarkable new general linear interpolation problem.

In Chapter 3 we examine this interpolation problem related to the Appell polynomials and

we provide an explicit solution of it and a study of the remainder. Moreover, we consider

classic examples, in particular Taylor, Bernoulli, Euler, normalized Hermite and Laguerre

polynomials and their possible generalizations. We also present certain numerical examples

to test the method proposed. In Chapter 4 we consider series related to particular inter-

polation problems, as Bernoulli and Lidstone, and we prove that, for real entire functions

of exponential type, these expansions coincide with the known Fourier series. In Chapter

5 we introduce a new interpolation problem of Birkhoff kind. Birkhoff, or lacunary, in-
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terpolation appears whenever observation gives scattered or irregular information about a

function and its derivatives. Lacunary interpolation differs radically from the more familiar

of Lagrange and Hermite interpolation for which the interpolation polynomial always exists,

is unique, and can be given by an explicit formula. In particular our study deals with an

interpolation problem in which the data are the function values at boundary points of a

given interval [a, b] and its second derivative at n − 1 internal points of the interval [a, b].

We provide an explicit solution of the interpolation problem considered and an estimation

error. Moreover, we study the convergence of the method and we give the examples of

equidistant interpolation points and Chebyshev points. Finally, as application of this inter-

polation problem, we consider a new class of interpolatory type quadrature formulae, called

extended Gauss-Birkhoff quadratures with respect to a weight function w.

In Chapter 6 we examine a boundary value problem related to the interpolatory

problem proposed in the previous chapter. We provide a general procedure to determine

collocation methods for this problem and we give an a-priori estimation error. We also

propose a numerical algorithm for the calculation and, finally, present certain numerical

examples to compare the method proposed with the Matlab build-in function bvp4c.
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Chapter 1

Interpolation

In this chapter we present a number of basic definitions, main theorems and ele-

mentary properties from interpolation theory that will be of use in the later chapters.

1.1 General problem of finite interpolation

The general problem of finite interpolation ([21]) is the following:

Let X be a linear space of dimension n and let L1, L2, ..., Ln be n given linear

functionals defined on X. For a given set of values ω1, ω2, ..., ωn, find, if it exists, an

element x ∈ X such that

Li(x) = ωi, i = 0, ..., n. (1.1)

For the solution we consider the following

Lemma 1 Let X have dimension n. If x1, x2, ..., xn are independent in X and L1, L2, ..., Ln

are independent in the dual space X∗ then

|Li(xj)| 6= 0. (1.2)
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Conversely, if either x1, x2, ..., xn or L1, L2, ..., Ln are independent and (1.2) holds then the

other set is also independent.

Proof. Suppose that |Li(xj)| = 0. Then also |Lj(xi)| = 0. The linear system




a1L1(x1) + a2L2(x1) + ... + anLn(x1) = 0

...
...

a1L1(xn) + a2L2(xn) + ... + anLn(xn) = 0

would have a nontrivial solution a1, a2, ..., an.

The property of linearity of functional Li implies that

(a1L1 + a2L2 + ... + anLn)(xi) = 0, i = 1, ...., n.

Since x1, x2, ..., xn form a basis for X,

(a1L1 + a2L2 + ... + anLn)(x) = 0, x ∈ X,

and hence a1L1 + a2L2 + ... + anLn = 0.

Therefore, L1, L2, ..., Ln are dependents contrary to our assumption.

To show the converse, we may trace the argument backwards.

Theorem 2 Let a linear space X have dimension n and let L1, L2, ..., Ln be n elements of

X∗. The interpolation problem (1.1) possesses a solution for arbitrary values ω1, ω2, ..., ωn

if and only if the Li are independent in X∗. The solution will be unique.

Proof. Let x1, x2, ..., xn be a basis for X. If L1, L2, ..., Ln are independent, then,

by lemma 1,
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|Li(xj)| 6= 0.

Hence the system

Li(a1x1 + a2x2 + ... + anxn) = ωi, i = 1, 2, ...n

or

a1Li(x1) + a2Li(x2) + ... + anLi(xn) = ωi (1.3)

possesses a solution a1, a2, ..., an and the element

a1x1 + a2x2 + ... + anxn

solves the interpolation problem (1.1).

Conversely, if the problem has a solution for arbitrary ωi, then the system (1.3)

has a solution for arbitrary ωi. By a known theorem of linear algebra, this implies that

|Li(xj)| 6= 0

and hence by 1, the Li are independent.

The determinant |Li(xj)| is a generalized Gram determinant and its nonvanishing

is synonymous with the possibility of solution of the interpolation problem.

We may speak of independent systems of functionals as having the ”interpolation

property”.

1.2 Systems possessing the ”interpolation property”

We study, now, some spaces and functionals for which the interpolation problem

can be solved.
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Example 3 (Interpolation at discrete points)

X = Pn. L0(f) = f(z0), L1(f) = f(z1), ..., Ln(f) = f(zn).

We assume that zi 6= zj , i 6= j.

Example 4 (Taylor Interpolation)

X = Pn. L0(f) = f(z0), L1(f) = f ′(z0), ..., Ln(f) = f (n)(z0).

Example 5 (Abel-Gontscharoff Interpolation)

X = Pn. L0(f) = f(z0), L1(f) = f ′(z1), ..., Ln(f) = f (n)(zn).

Example 6 (Lidstone Interpolation)

X = P2n+1. L1(f) = f(z0), L2(f) = f(z1)

L3(f) = f ′′(z0), L4(f) = f ′′(z1)

...
...

L2n+1(f) = f (2n)(z0), L2n+2(f) = f (2n)(z1), (z0 6= z1).

Example 7 (Lidstone of Second Type Interpolation)

X = P2n+1. L1(f) = f ′(z0), L2(f) = f ′(z1)

L3(f) = f ′′′(z0), L4(f) = f ′′′(z1)

...
...

L2n+1(f) = f (2n+1)(z0), L2n+2(f) = f (2n+1)(z1), (z0 6= z1).
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Example 8 (Simple Hermite or Osculatory Interpolation)

X = P2n−1. L1(f) = f(z1), L2(f) = f ′(z1)

L3(f) = f(z2), L4(f) = f ′(z2)

...
...

L2n−1(f) = f(zn), L2n(f) = f ′(zn), (zi 6= zj , i 6= j).

Example 9 (Full Hermite Interpolation)

X = Pn. To avoid indexing difficulties, we list the functional information employed

without using the symbol L.

f(z0), f ′(z0), ..., f (m0)(z0)

f(z1), f ′(z1), ..., f (m1)(z1)

...

f(zn), f ′(zn), ..., f (mn)(zn)

(zi 6= zj , N = m0 + m1 + ... + mn + n).

Example 10 (Generalized Taylor Interpolation)

X consists of the linear combination of the n + 1 linearly independent functions

ϕ0(z), ϕ1(z), ..., ϕn(z)

that are analytic at z0.

L0(f) = f(z0), L1(f) = f ′(z0), ...., Ln(f) = f (n)(z0).
∣∣∣ϕ(j)

i (z0)
∣∣∣ 6= 0.

Example 11 (Trigonometric Interpolation)
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A linear combination of 1, cosx, ..., cosnx, sinx, ..., sinnx is known as a trigono-

metric polynomial of degree ≤ n. The corresponding linear space will be designate by Tn. It

has dimension 2n + 1.

X = Tn. L0(f) = f(x0), L1(f) = f ′(x0), ..., L2n(f) = f (2n)(x0),

−π ≤ x0 < x1 < . . . < x2n < π.

Example 12 (Fourier Series)

X = Tn. L2k(f) =
∫ π
−π f(x) cos kxdx, k = 0, 1, ..., n.

L2k−1(f) =
∫ π
−π f(x) sin kxdx, k = 1, ..., n.

Before demonstrating that these functionals are independent over the respective

spaces, a few remarks are in order. Ex. 3 is, of course, Theorem 2. Exs. 3, 4, 8 are special

cases of Ex. 9 . Ex. 4, is a special case of Ex. 10 if we select ϕk(z) = zk.

To show that the interpolation problem formed from these examples has a solution

it suffices to show that det(Li(xj)) does not vanish, or to apply the following

Theorem 13 (Alternative Theorem) Consider the system of n linear equations in n

unknowns x1, x2, ..., xn

n∑

J=1

aijxj = bi (i = 1, 2, ...n) (1.4)

the homogeneous system
n∑

J=1

aijxj = 0 (i = 1, 2, ...n) (1.5)

possesses a non-trivial solution if and only if |A| = |aij | = 0. If for a fixed A = (aij) there

are solutions to the non-homogeneous system (1.4) for every selection of the quantities bi,

then |A| 6= 0 and the homogeneous system has only the trivial solution.
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Solution 14 (Example 4) We show that if p ∈ PN and satisfies

p(z0), p′(z0), ..., p(m0)(z0) = 0

p(z1), p′(z1), ..., p(m1)(z1) = 0

...

p(zn), p′(zn), ..., p(mn)(zn) = 0

(1.6)

where N = m0 + m1 + ... + mn + n, then p must vanish identically. By the Factorization

Theorem, if p satisfies all conditions of (1.6) with the exception of the last, i.e., p(mn)(zn) =

0, then we must have

p(z) = A(z)(z − z0)m0+1(z − z1)m1+1...(z − zn−1)mn−1+1(z − zn)mn ,

A(z) = polinomial.

By examining the degree of this product, it appears that A = constant. Since, moreover,

p(mn)(zn) = A(mn)!(zn − z0)m0+1(zn − z1)m1+1...(zn − zn−1)mn−1+1 = 0

and zi 6= zj , i 6= j, we have A = 0 and therefore p ≡ 0. The homogeneous interpolation

problem has the zero solution only and hence the nonhomogeneous problem possesses a

unique solution.

Solution 15 (Example 5) The generalized Gram determinant is
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 z0 z2
0 · · · zn

0

0 1 2z1 · · · nzn−1
1

0 0 2 · · · n(n− 1)zn−2
2

...
...

0 0 0 · · · n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1!2! · · ·n! 6= 0.
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Solution 16 (Example 6) Let p ∈ P2n+1. If p(2j)(z0) = 0 for j = 0, 1, ..., n, then

p(z) = a1(z − z0) + a3(z − z0)3 + ... + a2n+1(z − z0)2n+1.

If now, p(2n)(z1) = 0 then a2n+1 = 0 e p(2j)(z1) = 0, j = n − 1, n − 2, ...0 implies, by

recurrence, that the remaining coefficients are 0. The homogeneous interpolation problem

has the zero solution only and hence the nonhomogeneous problem has a solution and it is

unique.

Solution 17 (Example 7) With the same techniques used for the Ex. 6 we can prove that

the homogeneous interpolation problem has the zero solution only and hence the nonhomo-

geneous problem has a solution and it is unique.

Solution 18 (Example 10) No proof is required, for condition (1.2) has been built into

the hypothesis. In this example the crucial determinant reduces to the Wronskian of the

functions φ0, ..., φn and we postulate that it does not vanish at z0.

Solution 19 (Example 11) The generalized Gram determinant is

G =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 cos x0 sinx0 cos 2x0 sin 2x0 · · · cosnx0 sinnx0

1 cos x1 sinx1 cos 2x1 sin 2x1 · · · cosnx1 sinnx1

1 cos x2n sinx2n cos 2x2n sin 2x2n · · · cosnx2n sinnx2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

To evaluate G we reduce its element to complex form. Multiply the 3rd, 5th,... columns by

ı and add them respectively to the 2nd, 4th,... columns. We obtain

G =
∣∣∣∣ 1 eıxj sinxj e2ıxj sin 2xj · · · enıxj sinnxj

∣∣∣∣ .
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Multiply the 3rd, 5th,... columns by −2ı and to them add the 2nd, 4th,... columns respec-

tively:

(−2ı)(n)G =
∣∣∣∣ 1 eıxj e−ıxj e2ıxj e−2ıxj · · · enıxj e−nıxj

∣∣∣∣ .

Interchange the columns:

(−1)n(n+1)(−2ı)(n)G =
∣∣∣∣ e−nıxj e−(n−1)ıxj · · · 1 · · · e(n−1)ıxj enıxj

∣∣∣∣ .

Multiply the j − th row by enıxj , j = 0, ...., 2n:

enı(x0+x1+···+x2n)(−1)n(n+1)(−2ı)(n)G =
∣∣∣∣ 1 eıxj e2ıxj · · · enıxj

∣∣∣∣ .

The determinant in the last line is a Vandermonde. Hence,

enı(x0+x1+···+x2n)(−1)n(n+1)(−2ı)(n)G =
2n∏

j>k

(eıxj − eıxk).

In view of the conditions on the xj , eıxj 6= eıxk , j 6= k and so G 6= 0.

Solution 20 (Example 12) In view of the orthogonality of the sines and cosines, the

crucial determinant has positive quantities on the main diagonal and 0’s elsewhere and

hence does not vanish.

1.3 Representation of the solution of the interpolation prob-

lem in linear spaces

Theorem 21 Let X be a linear space of dimension n. Let L1, L2, ...Ln be n indepen-

dent functional in X∗. Then, there are determined uniquely n independent elements of X,

x∗1, x
∗
2, ..., x

∗
n, such that

Li(x∗j ) = δij , i = 1, 2, ..., n (1.7)
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where with δij we denoted the Kronecker symbol

δij =





0 se i 6= j

1 se i = j

.

For any x ∈ X we have

x =
n∑

i=1

Li(x)x∗i . (1.8)

For every choice of ω1, ω2, ..., ωn, the element

x =
n∑

i=1

ωix
∗
i (1.9)

is the unique solution of the interpolation problem

Li(x) = ωi, i = 1, 2, ..., n. (1.10)

Proof. Let x1, x2, ..., xn be a basis for X. By Lemma 1, |Li(xj)| 6= 0. If we set

x∗i = aj1x1 + . . . + ajnxn, j = 1, ..., n, then this determinant condition guarantees that

the system (1.7) can be solved for aji to produce a set of elements x∗1, x
∗
2, ..., x

∗
n ∈ X. By

Theorem 2 the solution to the interpolation problem (1.7) is unique, for each j, and by

Lemma 1 the x∗i are independent. To prove the (1.8) denote

y =
n∑

i=1

Li(x)x∗i

and for the property of linearity of functionals Lj we have

Lj(y) =
n∑

i=1

Li(x)Lj(x∗i ).

Hence, by (1.7), Lj(y) = Lj(x), j = 1, 2, ..., n. Again, since the interpolation with n

condition Li is unique, y=x and this establishes (1.8). Equation (1.9) is established similarly.
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We will say that the elements x∗i ∈ X and the functionals Li are biorthonormal

if they satisfy the (1.7). For a given set of independent functional, we can always find a

related biorthonormal set of polynomials.

The solution of the interpolation problem (1.10) can be given in determinantal

form.

Theorem 22 Let the hypotheses of Theorem 21 hold and let x1, x2, ..., xn be a basis for X.

If ω1, ω2, ..., ωn are arbitrary numbers then the element

x = − 1
G

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 x1 x2 · · · xn

ω1 L1(x1) L1(x2) · · · L1(xn)

...
...

...
...

ωn Ln(x1) Ln(x2) · · · Ln(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (1.11)

where G = |Li(xj)|, satisfies Li(x) = ωi, i = 1, 2, ..., n.

Proof. It is clear that x is a linear combination of x1, x2, ..., xn and hence is in

X. Furthermore, we have

Li(x) = − 1
G

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 Li(x1) Li(x2) · · · Li(xn)

ω1 L1(x1) L1(x2) · · · L1(xn)

...
...

ωi Li(x1) Li(x2) · · · Li(xn)

...
...

ωn Ln(x1) Ln(x2) · · · Ln(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (1.12)
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Expand this determinant by minors of the 1st column. The minor of each nonzero element,

with the exception of ωi, is zero, for it contains two identical rows. The cofactor of ωi is

−G. Hence, Li(x) = ωi, i = 1, 2, ..., n.

Example 23 (Taylor Interpolation)

The polynomials
zn

n!
, n = 0, 1, ..., and the functionals Ln(f) = f (n)(0), n = 0, 1, ...,

are biorthonormal, for Li(
zj

j!
) = δij .

Example 24 (Osculatory Interpolation)

Set ω(z) = (z − z1)(z − z2) · · · (z − zn), lk(z) =
ω(z)

(z − zk)ω′(zk)
.

The polynomials
[
1− ω′′(zk)

ω′(zk)
(z − zk)

]
l2k(z), (z − zk)l2k(z) of degree 2n− 1 and the func-

tionals

Lk(f) = f(zk), Mk(f) = f ′(zk), k = 1, 2, ...n

are biorthonormal. The resulting expansion of type (1.9) , is therefore,

p2n−1(z) =
n∑

k=1

ωk

[
1− ω′′(zk)

ω′(zk)
(z − zk)

]
l2k(z) +

n∑

k=1

ω′k(z − zk)l2k(z),

and produces the unique element of P2n−1 which solves the”osculatory” interpolation prob-

lem.

p(zk) = ωk

p′(zk) = ω′k

k = 1, 2, ..., n.

Example 25 (Two Point Taylor Interpolation)

Let a and b be distinct point. The polynomial

p2n−1(z) = (z − a)n
n−1∑

k=0

Bk(z − b)k

k!
+ (z − b)n

n−1∑

k=0

Ak(z − a)k

k!
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Ak =
dk

dzk

[
f(z)

(z − b)n

]

z=a

Bk =
dk

dzk

[
f(z)

(z − a)n

]

z=b

is the unique solution in P2n−1 of the interpolation problem

p2n−1(a) = f(a), p′2n−1(a) = f ′(a), ..., p(n−1)
2n−1 (a) = f (n−1)(a)

p2n−1(b) = f(b), p′2n−1(b) = f ′(b), ..., p(n−1)
2n−1 (b) = f (n−1)(b).

Example 26 (General Hermite Interpolation)

Let z1, z2, ..., zn be n distinct points, α1, α2, ..., αn be n integers ≥ 1 and

N = α1 + α2 + ... + αn − 1. Set

ωz =
n∏

i=1

(z − zi)αi

and

lik(z) = ωz
(z − zi)k−αi

k!
d(αi−k−1)

dz(αi−k−1)

[
(z − zi)αi

ω(z)

]

z=zi

pN (z) =
n∑

i=1

rili0(z) +
n∑

i=1

r′ili1(z) + ... +
n∑

i=1

r
(αi−1)
i liαi−1(z)

is the unique member of Pn for which

pN (z1) = r1, p
′
N (z1) = r′1, ..., p

(αi−1)
N (z1) = r

(αi−1)
1

...
...

pN (zn) = rn, p′N (zn) = r′n, ..., p
(αn−1)
N (zn) = r

(αn−1)
n .

Example 27 Given the 2n + 1 points

−π ≤ x0 < x1 < · · · < x2n < π.
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Construct the functions

tj(x) =

2n∏

k=0
k 6=j

sin 1
2(x− xk)

2n∏

k=0
k 6=j

sin
1
2
(xj − xk)

, j = 0, 1, ..., 2n.

If Lj(f) = f(xj), then tj and Lj are biorthonormal. Each function tj(x) is a linear combi-

nation of 1, cosx, ..., cosnx, sinx, ..., sinnx and hence is an element of Tn.

To show this, observe that the numerator of tj is the product of 2n factors of the

form sin
1
2
(x− xk) = αe

ıx

2 + βe−
ıx

2 for appropriate constants α and β.

The product is therefore of the form
n∑

k=−n

cke
ıkx, and is a combination of the re-

quired form. The function

T (x) =
2n∑

k=0

ωktk(x) (1.13)

is therefore an element of Tn and is the unique solution of the interpolation problem

T (xk) = ωk, k = 0, 1, ..., 2n. Formula (1.13) is known as the Gauss formula of trigonometric

interpolation.

Example 28 Given n + 1 distinct points

0 ≤ x0 < x1 < · · · < xn < π.

Set

Cj(x) =

n∏

k=0
k 6=j

(cosx− cosxk)

n∏

k=0
k 6=j

(cosxj − cosxk)

, j = 0, 1, ..., n.
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Then Cj is a cosine polynomial of order ≤ n (i.e., a function of the form
n∑

k=0

ak cos kx)

for which Cj(xk) = δjk. Given n + 1 distinct values ω0, ω1, ..., ωn there is a unique cosine

polynomial of order ≤ n, C(x), for which C(xk) = ωk, k = 0, 1, ..., n. It is

C(x) =
n∑

k=0

ωkCk(x).

Example 29 Given n distinct points

0 < x1 < · · · < xn < π.

Set

Sj(x) = sinx

n∏

k=1
k 6=j

(cosx− cosxk)

n∏

k=1
k 6=j

(cosxj − cosxk)

, j = 0, 1, ..., n.

Then Sj is a sine polynomial of order ≤ n for which Sj(xk) = δjk. Given n distinct values

ω1, ..., ωn there is a unique sine polynomial of order ≤ n, S(x), for which S(xk) = ωk,

k = 1, ..., n and it is

S(x) =
n∑

k=1

ωkSk(x).

Example 30 Let z0, z1, ..., zn, be n + 1 distinct real(or complex) points. Let ω0, ω1, ..., ωm,

be a second such set of m + 1 points. Set

P (z) = (z − z0) · · · (z − zn),

Q(ω) = (ω − ω0) · · · (ω − ωm),

Pj(z) = P (z)/(z − zj),

Qk(z) = Q(z)/(ω − ωk).
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The (m + 1)(n + 1) polynomials

ljk(z, ω) =
Pj(z)Qk(ω)

Pj(zj)Qk(ωk)

satisfy

ljk(zr, ωs) = δjrδks.

Hence

p(z, ω) =
n∑

j=0

m∑

k=0

µjkljk(z, ω)

is a polynomial of degree ≤ mn which satisfies the (m + 1)(n + 1) interpolation conditions

p(zj , ωk) = µjk

j = 0, 1, ..., n

k = 0, 1, ..., m.

1.4 Representation of the remainder for polynomial interpo-

lation

Let x0, ..., xn be n + 1 distinct points. The numbers ω0, ..., ωn are frequently the

values of some function f(x) at the points xi : ωi = f(xi).

Definition 31 We shall designate the unique polynomial of class Pn that coincides with f

at x0, ..., xn by pn(f ;x).

At the points x ∈ [a, b]\{x0, ..., xn} generally we have

pn(f ;x) 6= f(x).

In order to estimate the difference between the function f(x) and the interpolation polyno-

mial pn(f ; x) we introduce the remainder

Rn(x) ≡ f(x)− pn(f ; x) (1.14)
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with x ∈ [a, b]. The following theorem provides an exact approximation of the remainder,

from which is possible to obtain a-priori estimates.

Theorem 32 Let f(x) ∈ Cn[a, b] and suppose that f (n+1)(x) exists at each point of (a, b).

If a ≤ x0 < x1 < ... < xn ≤ b, then

f(x)− pn(f ; x) =
1

(n + 1)!
ωn(x)f (n+1)(ξ) (1.15)

where min(x, x0, x1, ...xn) < ξ < max(x, x0, x1, ...xn) and ωn(x) = (x− x0)(x− x1) · · · (x−

xn). The point ξ depends upon x, x0, x1, ...xn and f .

Proof. Let x be fixed and 6= x0, x1, ...xn. Set

F (t) = Rn(f ; t)ωn(x)− ωn(t)Rn(f ; x)

where Rn(f ;x) is defined by (1.14). We can observe that F vanishes at x, and at the n + 1

points x0, x1, ..., xn, for

Rn(f ; xi) = f(xi)− pn(f ; xi) = 0.

A repeated application of Rolle’s Theorem implies that the function F (n+1)(t) must vanish

at a point ξ with

min(x, x0, x1, ...xn) < ξ < max(x, x0, x1, ...xn).

But we have

F (n+1)(t) = R(n+1)
n (f ; t)ωn(x)− ω(n+1)

n (t)Rn(f ;x) = f (n+1)(t)ωn(x)− (n + 1)!Rn(f ; x)

so that
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0 = F (n+1)(ξ) = f (n+1)(ξ)ωn(x)− (n + 1)!Rn(f ; x)

and therefore

Rn(f ; x) =
1

(n + 1)!
ωn(x)f (n+1)(ξ).

This theorem provides a qualitative analysis of the remainder for polynomial in-

terpolation. Generally the function f is not known and therefore is very complicated to

have information about the (n + 1)−th derivative of the function interpolated. Moreover

the derivative is calculated in an opportune point in (a, b) of which is guaranteed only

the existence. However, by (1.15), is possible, many times, to obtain upper bounds of the

remainder.

1.5 Peano’s Theorem and its consequence

If we examine the Cauchy remainder for polynomial interpolation (1.15) we may

note the prominent role played by the portion f (n+1)(ξ). If, for instance, f ∈ Pn, then

f (n+1) ≡ 0, and the remainder vanishes identically as it should. For a fixed x, we may

consider the remainder Rn(f ; x) = f(x)− pn(f ;x) as a linear functional which operates on

f and which annihilates all elements of Pn. Peano observed that if a linear functional has

this property, then it must also have a simple representation in terms of f (n+1).
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Let L : Cn[a, b] → R be a linear functional of the type

L(f) =
∫ b

a

[
a0(x)f(x) + a1(x)f ′(x) + ... + an(x)f (n)(x)

]
dx+

+
j0∑

i=1

bi0f(xi0) +
j1∑

i=1

bi1f
′(xi1) + ... +

jn∑

i=1

binf (n)(xin)

with ai(x) ∈ C[a, b], i = 0, ..., n and xik ∈ [a, b] ∀i, k.

Theorem 33 (Peano) Let L(p) = 0 ∀p ∈ Pn. Then, ∀f ∈ C(n+1)[a, b]

L(f) =
∫ b

a
f (n+1)(t)K(t)dt (1.16)

where

K(t) =
1
n!

Lx

[
(x− t)n

+

]
, (1.17)

and

(x− t)n
+ =





(x− t)n se x ≥ t

0 se x ≤ t

(1.18)

The notation Lx

[
(x− t)n

+

]
means that the functional L is applied to (x− t)n, considered as

a function of x.

Proof. Consider the Taylor’s Theorem with the exact remainder

f(x) = f(a) + (x− a)f ′(a) + ... +
(x− a)n

n!
+

1
n!

∫ x

a
f (n+1)(t)(x− t)ndt. (1.19)

By (1.18) we may evidently write the (1.19) as

f(x) = f(a) + (x− a)f ′(a) + ... +
(x− a)n

n!
+

1
n!

∫ b

a
f (n+1)(t)(x− t)n

+dt. (1.20)

Now apply L to both sides of this expansion and recall that L(p) = 0 when p is a polynomial

of degree ≤ n. This yields

L(f) =
1
n!

L

[∫ b

a
f (n+1)(t)(x− t)n

+dt

]
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and under hypotheses we may interchange the functional L with the integral. Hence,

L(f) =
1
n!

∫ b

a
f (n+1)(t)L

[
(x− t)n

+

]
dt.

The function K(t) is called the Peano Kernel associated with the functional L.

Corollary 34 If, in addition to the above hypotheses, the kernel K(t) does not change its

sign on [a, b], then ∀f ∈ C(n+1)[a, b],

L(f) =
f (n+1)(ξ)
(n + 1)!

L(xn+1), a ≤ ξ ≤ b. (1.21)

Proof. From (1.16) and applying the Mean Value Theorem for Integrals, we have

L(f) = f (n+1)(ξ)
∫ b

a
K(t)dt, con a ≤ ξ ≤ b. (1.22)

Insert f = xn+1 in (1.22) and obtain

L(xn+1) = (n + 1)!
∫ b

a
K(t)dt. (1.23)

Combining these yields (1.21).

We provides, now, some examples of error functionals of this type.

Example 35 (Kowalewski’s Exact Remainder for Polynomial Interpolation)

Let x0, x1, ..., xn be fixed in [a, b].

Let L(f) = Rn(f ; x) = f(x) −
n∑

k=0

f(xk)lk(x) where lk(x) =
n∏

j=0
j 6=k

x− xj

xk − xj
, k = 0, ..., n.
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Then,

K(t) =
1
n!

Lx

[
(x− t)n

+

]
=

1
n!

[
(x− t)n

+ −
n∑

k=0

(xk − t)n
+lk(x)

]
=

=
1
n!

n∑

k=0

[
(x− t)n

+ − (xk − t)n
+

]
lk(x).

The last equality follows since the polinomials lk(x) satisfy

n∑

k=0

lk(x) = 1.

Fo fixed k, we have by (1.18)

∫ b

a

[
(x− t)n

+ − (xk − t)n
+

]
f (n+1)(t)dt =

=
∫ x

a
[(x− t)n − (xk − t)n] f (n+1)(t)dt+

+
∫ x

xk

(xk − t)nf (n+1)(t)dt.

Hence,

K(t)f (n+1)(t)dt =

=
1
n!

∫ x

a
f (n+1)(t)

n∑

k=0

[(x− t)n − (xk − t)n] lk(x)dt+

+
1
n!

n∑

k=0

lk(x)
∫ x

xk

(xk − t)nf (n+1)(t)dt

Since
n∑

k=0

(xk − t)nlk(x) = pn((x− t)n; x) = (x− t)n, we have

n∑

k=0

[(x− t)n − (xk − t)n] lk(x) = (x− t)n −
n∑

k=0

(xk − t)nlk(x) = 0.
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Thus, finally,

L(f) = f(x)− pn(f ; x) =
1
n!

n∑

k=0

lk(x)
∫ x

xk

(xk − t)nf (n+1)(t)dt = (1.24)

= − 1
(n + 1)!

n∑

k=0

lk(x)(xk − x)n+1f (n+1)(ξx), f ∈ Cn+1[a, b], ξx ∈ [a, b] .

(1.25)

Example 36 (Integral Remainder for Linear Interpolation)

The case n = 1, x0 = a, x1 = b is particularly noteworthy. Then l0(x) =
x− b

a− b
,

l1(x) =
x− a

b− a
. From (1.24),

f(x)− x− b

a− b
f(a)− x− a

b− a
f(b) =

=
x− b

b− a

∫ x

a
(t− a)f ′′(t)dt +

x− a

b− a

∫ b

x
(t− b)f ′′(t)dt (1.26)

Introduce the following function defined over the square a ≤ x ≤ b, a ≤ t ≤ b

G(x, t) =





(t− a)(x− b)
b− a

t ≤ x

(x− a)(t− b)
b− a

x ≤ t.

Then we may write (1.26) in the form

R1(f ;x) =
∫ b

a
G(x, t)f ′′(t)dt.

The function G(x, t) is, for fixed x,the Peano kernel for R1(f).

Example 37 Let

x1 = x0 + h, x2 = x0 + 2h, x3 = x0 + 3h and L(f) = −f(x0) + 3f(x1)− 3f(x2) + f(x3).

(1.27)
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Observe that L(p) = 0 ∀p ∈ P2. Hence, n = 2 and

K(t) =
1
2!

L(x− t)2+.

If we write this out explicitly we find

2K(t) =





(x3 − t)2 − 3(x2 − t)2 + 3(x1 − t)2 = (t− x0)2, x0 ≤ t ≤ x1

(x3 − t)2 − 3(x2 − t)2, x1 ≤ t ≤ x2

(x3 − t)2, x2 ≤ t ≤ x3

The kernel K(t) consists of 3 parabolic arches and is of the class C1[x0, x3].

Thus, for f ∈ C3[x0, x3],

L(f) =
∫ x3

x0

K(t)f (3)(t)dt.

Note that K(t) ≥ 0. We may apply (1.21) yielding

L(f) =
f (3)(ξ)

3!
L(x3) = h3f (3)(ξ) x0 ≤ ξ ≤ x3.

Example 38 (Remainder in Trapezoidal Rule) Let

L(f) =
∫ b

a
f(x)dx− b− a

2
[f(a) + f(b)]

be the error in estimating the definite integral
∫ b

a
f(x)dx by the trapezoidal rule

b− a

2
[f(a) + f(b)] .

The rule is exact for linear function, and, in particular, for constants. If we select n = 0,

we have

Lx[(x− t)0+] =
∫ b

a
(x− t)0+dx− b− a

2
[
(a− t)0+ + (b− t)0+

]
=

=
∫ b

t
dx− b− a

2
[0 + 1] =

1
2
(a + b)− t, t > a.

Therefore

L(f) = −
∫ b

a
(t− 1

2
(a + b))f ′(t)dt. (1.28)



27

Consider, next, the extended trapezoidal rule,

L(f) =
∫ b

a
f(x)dx− b− a

n


f(a)

2
+

n−1∑

j=1

f(a + jh) +
f(b)
2


 , h =

b− a

n
.

An expression analogous to (1.28) is most conveniently obtained by adding expressions of

this form for each subinterval

L(f) = −
n−1∑

j=0

∫ a+(j+1)h

a+jh
(t− (a + (j +

1
2
)h))f ′(t)dt. (1.29)

Example 39 (Remainder in Simpson’s Rule) Let

L(f) =
∫ +1

−1
f(x)dx− 1

3
f(−1)− 4

3
f(0)− 1

3
f(1) (1.30)

be the error in estimating the definite integral
∫ 1

−1
f(x)dx by the Simpson’s rule

L(p) = 0 ∀p ∈ P3. Applying K(t) =
1
3!

L(x− t)3+ we find

K(t) =
1
3!

L(x− t)3+ =

=
∫ +1

−1
(x− t)3+dx− 1

3
(−1− t)3+ −

4
3
(−t)3+ −

1
3
(1− t)3+ =

=





1
3!

[
(1− t)4

4
− (1− t)3

3

]
= − 1

72
(1− t)3(3t + 1), 0 ≤ t ≤ 1

1
3!

[
(1− t)4

4
− 4

3
(−t)3 − 1

3
(1− t)3

]
= − 1

72
(1 + t)3(−3t + 1), −1 ≤ t ≤ 0

Note that K(t) ≤ 0 in [−1, 1], so the Corollary (1.21) is applicable:

L(f) =
f (4)(ξ)

4!
L(x4) =

f (4)(ξ)
4!

(− 4
15

) = −f (4)(ξ)
90

, − 1 ≤ ξ ≤ 1.

This leads to the following error for Simpson’s rule:

∫ +1

−1
f(x)dx =

1
3
f(−1) +

4
3
f(0) +

1
3
f(1)− f (4)(ξ)

90
, − 1 ≤ ξ ≤ 1. (1.31)
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1.6 General remainder theorem for interpolation in linear

spaces

Given an element x in a linear space X, we interpolate to x by an appropriate

linear combination of x1, ..., xn such that Li(a1x1 + ... + anxn) = Li(x), i = 1, ..., n. Let

xR = x− (a1x1 + ... + anxn). (1.32)

Then Li(xR) = 0, i = 1, 2, ..., n.

Theorem 40 Under the assumption that |Li(xj)| 6= 0, we have

xR =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x x1 · · · xn

L1(x) L1(x1) · · · L1(xn)

...
...

...
...

Ln(x) Ln(x1) · · · Ln(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

÷

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L1(x1) L1(x2) · · · L1(xn)

...
...

...
...

Ln(x1) Ln(x2) · · · Ln(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1.33)

Proof. It is clear by expanding the numerator of (1.33) by the minors of its first

row that the right hand side of (1.33) is a linear combination of x, x1, ..., xn, and that the

coefficients of x is precisely 1. Applying Li to the right hand side, we see that this row is

identical with the (i+1)− th row and hence Li(xR) = 0, i = 1, 2, ..., n. Thus, the expression

(1.33) has all the properties the remainder xR should have.
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Chapter 2

Appell polynomials

In this chapter we consider a wide class of polynomials introduced by Appell in

1880 ([3]) and we give an algebraic theory by means of determinantal forms. The new

definition proposed provides a very natural generalization related to a linear functional.

These polynomials will be the basis for the solution of a new interpolation problem that will

be introduced in chapter 3.

2.1 Introduction

In 1880 [3] P.E. Appell introduced and widely studied sequences of n-degree poly-

nomials

An (x) , n = 0, 1, ... (2.1)

satisfying the recursive relations

dAn (x)
dx

= nAn−1(x), n = 1, 2, ... (2.2)
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In particular, Appell noticed the one-to-one correspondence of the set of such sequences

{An(x)}n and the set of numerical sequences {αn}n , α0 6= 0 given by the explicit represen-

tation

An (x) = αn +
(

n

1

)
αn−1x +

(
n

2

)
αn−2x

2 + · · ·+ α0x
n, n = 0, 1, ... (2.3)

Equation (2.3), in particular, shows explicitly that for each n ≥ 1 An (x) is completely

determined by An−1 (x) and by the choice of the constant of integration αn. Furthermore

Appell provided an alternative general method to determine such sequences of polynomials,

that satisfy (2.2). In fact, given the power series:

a (h) = α0 +
h

1!
α1 +

h2

2!
α2 + · · ·+ hn

n!
αn + · · · , α0 6= 0 (2.4)

with αi i = 0, 1, ... real coefficients, a sequence of polynomials satisfying (2.2) is determined

by the power series expansion of the product a (h) ehx, i.e.:

a (h) ehx = A0 (x) +
h

1!
A1 (x) +

h2

2!
A2 (x) + · · ·+ hn

n!
An (x) + · · · (2.5)

The function a (h) is said ’generating function’ of the sequence of polynomials

An (x) .

Well known examples of sequences of polynomials verifying (2.2) or, equivalently

(2.3) and (2.5), now called Appell Sequences, are:

1. the sequences of growing powers of variable x

1, x, x2, ..., xn, ...,

as already stressed in [3];

2. the Bernoulli sequence Bn (x) ([5],[34]);
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3. the Euler sequences En (x) ([23], [34]);

4. the Hermite normalized sequences Hn (x) [6];

5. the Laguerre sequences Ln (x) [6];

Moreover, further generalizations of above polynomials have been considered ([6],

[8], [10]).

Sequences of Appell polynomials have been well studied because of their remark-

able applications in Mathematical and Numerical Analysis, as well as in Number theory, as

both classic literature ([3], [47], [49], [6] ) and more recent one ([22], [30], [20], [9], [32], [10],

[8]) testify.

In a recent work [12], a new approach to Bernoulli polynomials was given, based

on a determinantal definition. The authors, through basic tools of linear algebra, have

recovered the fundamental properties of Bernoulli polynomials; moreover the equivalence,

with a triangular theorem, of all previous approaches is given.

Now we want to propose a similar approach for more general Appell polynomials

and to establish its equivalence with previous characterizations, through a circular theorem.
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2.2 A determinantal definition

Let us consider Pn (x) , n = 0, 1, ... the sequence of polynomials of degree n defined

by




P0 (x) = 1
β0

Pn (x) = (−1)n

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · · · · xn−1 xn

β0 β1 β2 · · · · · · βn−1 βn

0 β0

(
2
1

)
β1 · · · · · · (

n−1
1

)
βn−2

(
n
1

)
βn−1

0 0 β0 · · · · · · (
n−1

2

)
βn−3

(
n
2

)
βn−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, ...

(2.6)

where β0, β1, ..., βn ∈ R, β0 6= 0.

Then we have

Theorem 41 The following relation holds

P ′
n (x) = nPn−1 (x) n = 1, 2, ... (2.7)

Proof. Using the properties of linearity we can differentiate the determinant (2.6),

expand the resulting determinant with respect to the first column and recognize the factor

Pn−1 (x) after multiplication of the i-th row by i − 1 i = 2, ..., n and the j-th column by

1
j j = 1, ..., n.
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Theorem 42 With the previous notations we have

Pn (x) = αn +
(

n

1

)
αn−1x +

(
n

2

)
αn−2x

2 + · · ·+ α0x
n, n = 0, 1, ... (2.8)

where

α0 =
1
β0

, (2.9)

αi =
(−1)i

(β0)
i+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 β2 · · · · · · βi−1 βi

β0

(
2
1

)
β1 · · · · · · (

i−1
1

)
βi−2

(
i
1

)
βi−1

0 β0 · · · · · · (
i−1
2

)
βi−3

(
i
2

)
βi−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · 0 β0

(
i

i−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, i = 1, 2, ..., n

(2.10)

Proof. Expanding the determinant Pn (x) with respect to the first row we obtain

Pn(x) =
(−1)n

(β0)n+1

n∑

j=0

(−1)jxj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
j+1

j

)
β1

(
j+2

j

)
β2 · · · · · · (

n−1
j

)
βn−j−1

(
n
j

)
βn−j

β0

(
j+2
j+1

)
β1 · · · · · · (

n−1
j+1

)
βn−j−2

(
n

j+1

)
βn−j−1

0 β0 · · · · · · (
n−1
j+2

)
βn−j−3

(
n

j+2

)
βn−j−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · 0 β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

After multiplication of the i− th column by
(
j+i
j

)
, i = 1, ..., n− j and k− th row by 1

(j+k−1
j ) ,



34

k = 2, ..., n we have

Pn(x) =
n∑

j=0

(−1)n−j

(β0)n−j+1

(
n

j

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 β2 · · · · · · βi−1 βi

β0

(
2
1

)
β1 · · · · · · (

i−1
1

)
βi−2

(
i
1

)
βi−1

0 β0 · · · · · · (
i−1
2

)
βi−3

(
i
2

)
βi−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · 0 β0

(
i

i−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xj .

that proves the thesis.

Corollary 43 For the polynomials Pn (x) we have

Pn (x) =
n∑

j=0

(
n

j

)
Pn−j (0)xj , n = 0, 1, ... (2.11)

Proof. Taking into account

Pi (0) = αi, i = 0, 1, ..., n, (2.12)

relation (2.11) is a consequence of (2.8).

For computation we can observe that αn is a n-order determinant of a particular

upper Hessemberg form and it’s known that the algorithm of Gaussian elimination without

pivoting for computing the determinant of an upper Hessemberg matrix is stable [31, p.

27].

Theorem 44 For the coefficients αi in (2.8) the following relations hold

α0 =
1
β0

, (2.13)

αi = − 1
β0

i−1∑

k=0

(
i

k

)
βi−kαk, i = 1, 2, ..., n. (2.14)
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Proof. Set αi = (−1)i (β0)
i+1 αi for i = 1, 2, ..., n. From (2.9) αi is a determinant

of an upper Hessemberg matrix of order i and for that ([12]) we have

αi =
i−1∑

k=0

(−1)i−k−1 hk+1,iqk (i) αk, (2.15)

where

hl,m =





βm for l = 1,

(
m

l−1

)
βm−l+1 for 1 < l ≤ m + 1,

0 for l > m + 1,

l, m = 1, 2, ..., i, (2.16)

and

qk (i) =
i∏

j=k+2

hj,j−1 = (β0)
i−k−1 , k = 0, 1, ..., i− 2, (2.17)

qi−1 (i) = 1. (2.18)

By virtue of the previous setting, (2.15) implies

αi =
i−2∑

k=0

(−1)i−k−1

(
i

k

)
βi−k (β0)

i−k−1 αk +
(

i

i− 1

)
β1αi−1 =

= (−1)i (β0)
i+1

(
− 1

β0

i−1∑

k=0

(
i

k

)
βi−k

1

(−1)k (β0)
k+1

αk

)
=

= (−1)i (β0)
i+1

(
− 1

β0

i−1∑

k=0

(
i

k

)
βi−kαk

)

and the proof is concluded.

Theorem 45 Let Pn (x) be the sequence of Appell polynomials with generating function

a (h) as in (2.4) and (2.5). If β0, β1, ..., βn, with β0 6= 0, are the coefficients of Taylor series
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expansion of function 1
a(h) we have

P0 (x) =
1
β0

(2.19)

Pn (x) =
(−1)n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · · · · xn−1 xn

β0 β1 β2 · · · · · · βn−1 βn

0 β0

(
2
1

)
β1 · · · · · · (

n−1
1

)
βn−2

(
n
1

)
βn−1

0 0 β0 · · · · · · (
n−1

2

)
βn−3

(
n
2

)
βn−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, ...

(2.20)

Proof. Let Pn (x) be the sequence of Appell polynomials with generating function

a (h) i.e.

a(h) = α0 +
h

1!
α1 +

h2

2!
α2 + · · ·+ hn

n!
αn + · · · (2.21)

and

a(h)ehx =
∞∑

n=0

Pn (x)
hn

n!
. (2.22)

Let b (h) be such that a (h) b (h) = 1. We can write b (h) as its Taylor series expansion (in

h) at the origin that is

b (h) = β0 +
h

1!
β1 +

h2

2!
β2 + · · ·+ hn

n!
βn + · · · (2.23)

Then, according to the Cauchy-product rules, we find

a (h) b (h) =
∞∑

n=0

n∑

k=0

(
n

k

)
αkβn−k

hn

n!
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by which

n∑

k=0

(
n

k

)
αkβn−k =





1 for n = 0,

0 for n > 0.

Hence 



β0 = 1
α0

,

βn = − 1
α0

(
n∑

k=1

(
n
k

)
αkβn−k

)
, n = 1, 2, ...

(2.24)

Let us multiply both hand sides of equation (2.22) for 1
a(h) and, in the same equation,

replace functions ehx and
1

a (h)
by their Taylor series expansion at the origin; then (2.22)

becomes
∞∑

n=0

xnhn

n!
=

∞∑

n=0

Pn (x)
hn

n!

∞∑

n=0

hn

n!
βn. (2.25)

By multiplying the series on the left hand side of (2.25) according to the Cauchy-product

rules, previous equality leads to the following system of infinite equations in the unknown

Pn (x) , n = 0, 1, ...





P0 (x) β0 = 1,

P0 (x) β1 + P1 (x) β0 = x,

P0 (x) β2 +
(
2
1

)
P1 (x) β1 + P2 (x) β0 = x2,

...

P0 (x) βn +
(
n
1

)
P1 (x) βn−1 + ... + Pn (x) β0 = xn,

...

(2.26)

The special form of the previous system (lower triangular) allows us to work out the un-
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known Pn (x) operating with the first n + 1 equations, only by applying the Cramer rule:

Pn (x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 0 0 · · · 0 1

β1 β0 0 · · · 0 x

β2

(
2
1

)
β1 β0 · · · 0 x2

...
. . .

...

βn−1

(
n−1

1

)
βn−2 · · · · · · β0 xi−1

βn

(
n
1

)
βn−1 · · · · · · (

n
n−1

)
β1 xi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 0 0 · · · 0 0

β1 β0 0 · · · 0 0

β2

(
2
1

)
β1 β0 · · · 0 0

...
. . .

...

βn−1

(
n−1

1

)
βn−2 · · · · · · β0 0

βn

(
n
1

)
βn−1 · · · · · · (

n
n−1

)
β1 β0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

=
1

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 0 0 · · · 0 1

β1 β0 0 · · · 0 x

β2

(
2
1

)
β1 β0 · · · 0 x2

...
. . .

...

βn−1

(
n−1

1

)
βn−2 · · · · · · β0 xi−1

βn

(
n
1

)
βn−1 · · · · · · (

n
n−1

)
β1 xi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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By transposition of the previous, we have

Pn (x) =
1

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 β1 β2 · · · βn−1 βn

0 β0

(
2
1

)
β1 · · · (

n−1
1

)
βn−2

(
n
1

)
βn−1

0 0 β0
...

...
. . .

...

0 0 0 · · · β0

(
n

n−1

)
β1

1 x x2 · · · xn−1 xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, ... (2.27)

that is exactly (2.19) after n circular row exchanges: more precisely, the i-th row moves to

the (i + 1)-th position for i = 1, . . . , n− 1, the n-th row goes to the first position.

Theorems 41, 42 and 45 concur to assert the validity of following

Theorem 46 (Circular [16]) For Appell polynomials we have

(2.2 and 2.3) −→ (2.4 and 2.5)

↖ ↙

(2.6)

(2.28)

Proof.

(2.2 and 2.3)⇒(2.4 and 2.5): Follows from Appell proof [3].

(2.4 and 2.5)⇒(2.6): Follows from Theorem 45.

(2.6)⇒(2.2 and 2.3): Follows from Theorems 41 and 42.

Therefore we can give, now, the following
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Definition 47 The Appell polynomial of degree n, denoted by An (x), is defined by

A0 (x) =
1
β0

(2.29)

An (x) =
(−1)n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · · · · xn−1 xn

β0 β1 β2 · · · · · · βn−1 βn

0 β0

(
2
1

)
β1 · · · · · · (

n−1
1

)
βn−2

(
n
1

)
βn−1

0 0 β0 · · · · · · (
n−1

2

)
βn−3

(
n
2

)
βn−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, ...

(2.30)

where β0, β1, ..., βn ∈ R, β0 6= 0.

2.3 General properties of Appell polynomials

By tools of elementary algebra we can prove the general properties of Appell

polynomials.

Theorem 48 (Recurrence) For Appell sequence An (x) we have

An(x) =
1
β0

(
xn −

n−1∑

k=0

(
n

k

)
βn−kAk (x)

)
, n = 1, 2, ... (2.31)

Proof. Set A−1(x) = 1 and An(x) = (−1)n (β0)
n+1 An(x) for each n ≥ 0. From

(2.30) An (x) is a determinant of an upper Hessemberg matrix of order n + 1 and for that
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([12]) we have

An(x) =
n∑

k=0

(−1)n−kqk(n + 1)hk+1,n+1Ak−1(x), (2.32)

where

hi,j =





xj−1 se i = 1,
(

j − 1
i− 2

)
βj−i+1 se 1 < i ≤ j + 1,

0 se i > j + 1,

i, j = 1, 2, ..., n + 1, (2.33)

and

qk(n + 1) =
n+1∏

j=k+2

hj,j−1 = (β0)
n−k , k = 0, 1, ..., n− 1,

qn(n + 1) = 1.

By virtue of previous setting, (2.32) implies

An(x) = (−1)n (β0)
n xn +

n∑

k=1

(−1)n−k (β0)
n−k

(
n

k − 1

)
βn−k+1Ak−1(x) =

= (−1)n (β0)
n xn +

n−1∑

k=0

(−1)n−k−1 (β0)
n−k−1

(
n

k

)
βn−kAk(x) =

= (−1)n (β0)
n+1

(
xn

β0
− 1

β0

n−1∑

k=0

(
n

k

)
βn−k

(−1)k

(β0)
k+1

Ak(x)

)
=

= (−1)n (β0)
n+1

(
xn

β0
− 1

β0

n−1∑

k=0

(
n

k

)
βn−kAk(x)

)

and the proof is concluded.

Corollary 49 If An(x) is an Appell polynomial then

xn =
n∑

k=0

(
n

k

)
βn−kAk (x) , n = 0, 1, ... (2.34)



42

Proof. The result follows from (2.31).

Let’s consider two sequences of Appell polynomials

An (x) , Bn (x) n = 0, 1, ...

and indicate with (AB)n (x) the polynomial that is obtained replacing in An (x) powers

x0, x1, ..., xn, respectively, with the polynomials B0 (x) , B1 (x) , ..., Bn (x) . The following

theorem can be proven.

Theorem 50 The sequences

i) λAn (x) + µBn (x) , λ, µ ∈ R,

ii) (AB)n (x)

are sequences of Appell polynomials again.

Proof.

i) follow from the property of linearity of determinant.

ii) by definition we have

(AB)n (x) =
(−1)n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0 (x) B1 (x) B2 (x) · · · · · · Bn−1 (x) Bn (x)

β0 β1 β2 · · · · · · βn−1 βn

0 β0

(
2
1

)
β1 · · · · · · (

n−1
1

)
βn−2

(
n
1

)
βn−1

0 0 β0 · · · · · · (
n−1

2

)
βn−3

(
n
2

)
βn−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Expanding the determinant (AB)n (x) with respect to the first row we obtain

(AB)n (x) =
(−1)n

(β0)
n+1

n∑

j=0

(−1)j (β0)
j

(
n

j

)
αn−jBj (x)

=
n∑

j=0

(−1)n−j

(β0)
n−j+1

(
n

j

)
αn−jBj (x) , (2.35)

where

α0 = 1,

αi =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 β2 · · · · · · βi−1 βi

β0

(
2
1

)
β1 · · · · · · (

i−1
1

)
βi−2

(
i
1

)
βi−1

0 β0 · · · · · · (
i−1
2

)
βi−3

(
i
2

)
βi−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · 0 β0

(
i

i−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, i = 1, 2, ..., n.

We observe that

Ai (0) =
(−1)i

(β0)
i+1

αi, i = 1, 2, ..., n

and hence (2.35) becomes

(AB)n (x) =
n∑

j=0

(
n

j

)
An−j (0)Bj (x) . (2.36)

Differentiating both hand sides of (2.36) and since Bj (x) is a sequence of Appell
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polynomials, we deduce

((AB)n (x))′ =
n∑

j=0

(
n

j

)
An−j (0) B′

j (x) =

=
n∑

j=1

j

(
n

j

)
An−j (0)Bj−1 (x)

= n

n∑

j=1

(
n− 1
j − 1

)
An−j (0)Bj−1 (x) =

= n
n−1∑

j=0

(
n− 1

j

)
An−1−j (0)Bj (x) =

= n (AB)n−1 (x) .

Theorem 51 [45, p. 27] For Appell polynomials An (x) we have

An (x + y) =
n∑

i=0

(
n

i

)
Ai (x) yn−i, n = 0, 1, ... (2.37)

Proof. Starting by the definition in (2.30) and using the identity

(x + y)i =
i∑

k=0

(
i

k

)
ykxi−k, (2.38)
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we infer

An (x + y) =
(−1)n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 (x + y)1 · · · (x + y)n−1 (x + y)n

β0 β1 · · · βn−1 βn

0
. . .

...

...
. . .

...

0 · · · · · · β0 β1

(
n

n−1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∑

i=0

(−1)n yi

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0
(
i
i

) · · · (
n−1

i

)
xn−1−i

(
n
i

)
xn−i

β0 β1 · · · βi−1 βi · · · βn−1 βn

0 β0 · · · βi−2

(
i−1
1

)
βi−1

(
i
1

) · · · βn−2

(
n−1

1

)
βn−1

(
n
1

)

...
. . . . . .

...

...
. . . β0 β1

(
i

i−1

) · · · βn−i+1

(
n

i−1

)

... 0 β0 · · · βn−i

(
n
i

)

... 0
. . .

...

0 · · · · · · · · · · · · 0 β0 β1

(
n

n−1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

=
n∑

i=0

yi (−1)n−i

(β0)
n−i+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
i
i

) (
i+1

i

)
x1

(
i+2

i

)
x2 · · · (

n−1
i

)
xn−i−1

(
n
i

)
xn−i

β0 β1

(
i+1

i

)
β2

(
i+2

i

) · · · βn−i−1

(
n−1

i

)
βn−i

(
n
i

)

0 β0 β1

(
i+2
i+1

) · · · βn−i−2

(
n−1
i+1

)
βn−i−1

(
n

i+1

)

... β0
...

...
. . .

...

0 · · · · · · 0 β0 β1

(
n

n−1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.



46

We divide, now, each j−th column, j = 2, ..., n− i + 1, for
(
i+j−1

i

)
and multiply each h−th

row, h = 3, ..., n− i + 1, for
(
i+h−2

i

)
. Thus we finally obtain

An (x + y) =

=
n∑

i=0

(
i+1

i

) · · · (n
i

)
(
i+1

i

) · · · (n−1
i

)yi (−1)n−i

(β0)
n−i+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 x2 · · · xn−i−1 xn−i

β0 β1 β2 · · · βn−i−1 βn−i

0 β0 β1

(
2
1

) · · · βn−i−2

(
n−i−1

1

)
βn−i−1

(
n−i
1

)

... β0
...

...
. . .

...

0 ... ... 0 β0 β1

(
n−i

n−i−1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

=
n∑

i=0

(
n

i

)
An−i (x) yi =

n∑

i=0

(
n

i

)
Ai (x) yn−i.

Corollary 52 (Forward difference) For Appell polynomials An (x) we have

∆An (x) ≡ An (x + 1)−An (x) =
n−1∑

i=0

(
n

i

)
Ai (x) , n = 0, 1, ... (2.39)

Proof. The desired result follows from (2.37) with y = 1.

Corollary 53 (Multiplication Theorem) For Appell polynomials An (x) we have

An (mx) =
n∑

i=0

(
n

i

)
Ai (x) (m− 1)n−i xn−i,

n = 0, 1, ...,

m = 1, 2, ...

(2.40)

Proof. The desired result follows from (2.37) with y = x (m− 1).
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Theorem 54 (Symmetry) For Appell polynomials An (x) the following relation holds

(An (h− x) = (−1)n An (x)) ⇔ (An (h)= (−1)nAn (0)) ,
h ∈ R

n = 0, 1, ...

(2.41)

Proof.

⇒) Follows from the hypothesis with x = 0

⇐) Using (2.37) we find

An (h− x) =
n∑

i=0

(
n

i

)
Ai (h) (−x)n−i =

= (−1)n
n∑

i=0

(
n

i

)
Ai (h) (−1)i xn−i =

= (−1)n
n∑

i=0

(
n

i

)
An−i (h) (−1) n−ix

i
.

Therefore, using the assumptions and (2.11), we have

An (h− x) = (−1)n
n∑

i=0

(
n

i

)
An−i (0)xi =

= (−1)n An (x) .

Lemma 55 For the numbers α2n+1 and β2n+1 we have

(α2n+1 = 0) ⇐⇒ (β2n+1 = 0) , n = 0, 1, ... (2.42)

Proof. As in (2.24), we know that




β0 = 1
α0

,

βn = − 1
α0

(
n∑

k=1

(
n
k

)
αkβn−k

)
, n = 1, 2, ...
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Hence



β1 = − 1
α0

α1β0,

β2n+1 = − 1
α0

(
2n+1

1

)
α1β2n−

− 1
α0

(
n∑

k=1

[(
2n+1

2k

)
α2kβ2(n−k)+1 +

(
2n+1
2k+1

)
α2k+1β2(n−k)

])
, n = 1, 2, ...

and

α2n+1 = 0, n = 0, 1, ... ⇒

⇒





β1 = 0

β2n+1 = − 1
α0

n∑
k=1

(
2n+1

2k

)
α2kβ2(n−k)+1, n = 1, 2, ...

⇒

⇒ β2n+1 = 0, n = 0, 1, ...

In the same way, again from (2.24), we have




α0 = 1
β0

αn = − 1
β0

(
n−1∑
k=0

(
n
k

)
αkβn−k

)
, n = 1, 2, ...

As a consequence




α1 = − 1
β0

α0β1,

α2n+1 = − 1
β0

(
n−1∑
k=0

[(
2n+1

2k

)
α2kβ2(n−k)+1 +

(
2n+1
2k+1

)
α2k+1β2(n−k)

])
−

− 1
β0

(
2n+1
2n

)
α2nβ1, n = 1, 2, ...

and

β2n+1 = 0, n = 0, 1, ... ⇒

⇒





α1 = 0,

α2n+1 = − 1
β0

n−1∑
k=0

(
2n+1
2k+1

)
α2k+1β2(n−k), n = 1, 2, ...

⇒

⇒ α2n+1 = 0, n = 0, 1, ...
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Theorem 56 For Appell polynomials An (x) the following relation holds

(An (−x) = (−1)n An (x)) ⇐⇒ (β2n+1 = 0) , n = 0, 1, ... (2.43)

Proof. By Theorem 54 with h = 0 and Lemma 55, we find

(An (−x) = (−1)n An (x)) ⇐⇒ (An (0) = (−1)n An (0))

⇐⇒ (A2n+1 (0) = 0) ⇐⇒ (α2n+1 = 0) ⇐⇒ (β2n+1 = 0) .

Theorem 57 For each n ≥ 1 it is true that

∫ x

0
An (x) dx =

1
n + 1

[An+1 (x)−An+1 (0)] (2.44)

and
∫ 1

0
An (x) dx =

1
n + 1

n∑

i=0

(
n + 1

i

)
Ai (0) . (2.45)

Proof. Equality (2.44) follows from (2.7). Moreover, for x = 1 we find

∫ 1

0
An (x) dx =

1
n + 1

[An+1 (1)−An+1 (0)] (2.46)

and, using (2.37) with x = 0 and y = 1, we obtain

An+1 (1) =
n+1∑

i=0

(
n + 1

i

)
Ai (0) , (2.47)

so, by (2.47), relation(2.46) becomes

∫ 1

0
An (x) dx =

1
n + 1

[
n+1∑

i=0

(
n + 1

i

)
Ai (0)−An+1 (0)

]
=

=
1

n + 1

n∑

i=0

(
n + 1

i

)
Ai (0) .
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2.4 Fourier series expansion of Appell polynomials

We consider, now, the Fourier expansion of Appell polynomials.

Theorem 58 The Appell polynomials of even index have the following Fourier expansion

on the interval [0,1]

A2n(x) =
1

2n + 1
[A2n+1(1)−A2n+1(0)] +

∞∑

k=1

ak cos 2πkx + bk sin 2πkx (2.48)

with

ak =
n−1∑

i=0

(−1)i 2

[
A2(n−i)−1(1)−A2(n−i)−1(0)

]

(2πk)2(i+1)

(2n)!
(2(n− i)− 1)!

, k = 1, 2, ..., (2.49)

bk =
n∑

i=0

(−1)i+1 2

[
A2(n−i)(1)−A2(n−i)(0)

]

(2πk)2i+1

(2n)!
(2(n− i))!

, k = 1, 2, ... (2.50)

Proof. Let us consider the Fourier expansion of Appell polynomial of even index

A2n(x), n ≥ 1 on the interval [0,1]

A2n(x) =
1
2
a0 +

∞∑

k=1

ak cos 2πkx +
∞∑

k=1

bk sin 2πkx (2.51)

where

ak = 2
∫ 1

0
A2n(x) cos 2πkxdx, k = 0, 1, ... (2.52)

bk = 2
∫ 1

0
A2n(x) sin 2πkxdx, k = 1, 2, ... (2.53)

From (2.52), for k=0 we have

a0 = 2
∫ 1

0
A2n(x)dx =

2
2n + 1

[A2n+1(1)−A2n+1(0)] .

For k>0, by integration by part,

1
2
ak =

∫ 1

0
A2n(x) cos 2πkxdx =

[
sin 2πkx

2πk
A2n(x)

]1

0

− 2n

∫ 1

0

sin 2πkx

2πk
A2n−1(x)dx
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The quantity in brackets is equal to zero, and the integral at second member, after an other

integration by part, becomes

1
2
ak =

∫ 1

0
A2n(x) cos 2πkxdx =

=
2n

(2πk)2
[A2n(1)−A2n(0)]− (2n) (2n− 1)

(2πk)2

∫ 1

0
cos 2πkxA2n−2(x)dx.

After further integrations by part, finally, we obtain

1
2
ak =

∫ 1

0
A2n(x) cos 2πkxdx =

=
n−1∑

i=0

(−1)i

[
A2(n−i)−1(1)−A2(n−i)−1(0)

]

(2πk)2(i+1)

(2n)!
(2(n− i)− 1)!

+

+ (−1)n (2n)!
(2πk)2n

∫ 1

0
A0(x) cos 2πkxdx

the integral at second member is equal to zero and so we have

1
2
ak =

n−1∑

i=0

(−1)i

[
A2(n−i)−1(1)−A2(n−i)−1(0)

]

(2πk)2(i+1)

(2n)!
(2(n− i)− 1)!

. (2.54)

With the same techniques we can expand the coefficients bk

1
2
bk =

∫ 1

0
f(x) sin 2πkxdx =

[
−cos 2πkx

2πk
A2n(x)

]1

0

+ 2n

∫ 1

0

cos 2πkx

2πk
A2n−1(x)dx =

= − 1
2πk

[A2n(1)−A2n(0)] +
2n

2πk

∫ 1

0
A2n−1(x) cos 2πkxdx.

By a second integration by part we obtain

1
2
bk = − 1

2πk
[A2n(1)−A2n(0)] +

+
2n

(2πk)2
[A2n−1(x) sin 2πkx]10 −

(2n) (2n− 1)
(2πk)2

∫ 1

0
A2n−2(x) sin 2πkxdx.
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At second member the second term is equal to zero. And the integral at second member,

after an other integration by part, becomes

1
2
bk =

∫ 1

0
A2n(x) sin 2πkxdx =

=
n−1∑

i=0

(−1)i+1

[
A2(n−i)(1)−A2(n−i)(0)

]

(2πk)2i+1

(2n)!
(2(n− i))!

+

+ (−1)n (2n)!
(2πk)2n

∫ 1

0
A0(x) sin 2πkxdx =

=
n−1∑

i=0

(−1)i+1

[
A2(n−i)(1)−A2(n−i)(0)

]

(2πk)2i+1

(2n)!
(2(n− i))!

+

+ (−1)n+1 (2n)!
[A0(1)−A0(0)]

(2πk)2n+1 .

Hence,

1
2
bk =

n∑

i=0

(−1)i+1

[
A2(n−i)(1)−A2(n−i)(0)

]

(2πk)2i+1

(2n)!
(2(n− i))!

. (2.55)

With the same techniques we can expand the Appell polynomials of odd index,

for which the following theorem holds.

Theorem 59 The Appell polynomials of odd index have the following Fourier expansion

on the interval [0,1]

A2n−1(x) =
1
2n

[A2n(1)−A2n(0)] +
∞∑

k=1

ak cos 2πkx + bk sin 2πkx (2.56)

with

ak =
n−1∑

i=0

(−1)i 2

[
A2(n−1−i)(1)−A2(n−1−i)(0)

]

(2πk)2(i+1)

(2n− 1)!
(2(n− 1− i))!

, k = 1, 2, ..., (2.57)

bk =
n−1∑

i=0

(−1)i+1 2

[
A2(n−i)−1(1)−A2(n−i)−1(0)

]

(2πk)2i+1

(2n− 1)!
(2(n− i)− 1)!

, k = 1, 2, ... (2.58)
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Proof. For the expansion of the coefficients we proceed in the same way of even

degree. After further integrations by part, we have

a0 = 2
∫ 1

0
A2n−1(x)dx =

2
2n

[A2n(1)−A2n(0)] ,

1
2
ak =

∫ 1

0
A2n−1(x) cos 2πkxdx =

n−1∑

i=0

(−1)i

[
A2(n−1−i)(1)−A2(n−1−i)(0)

]

(2πk)2(i+1)

(2n− 1)!
(2(n− 1− i))!

,

1
2
bk =

∫ 1

0
A2n−1(x) sin 2πkxdx =

n−1∑

i=0

(−1)i+1

[
A2(n−i)−1(1)−A2(n−i)−1(0)

]

(2πk)2i+1

(2n− 1)!
(2(n− i)− 1)!

.

2.5 Examples

In this section we consider classic examples, in particular Bernoulli, Euler, Hermite

and Laguerre polynomials and their possible generalizations not studied in the literature so

far.

2.5.1 Bernoulli polynomials

Placing 



β0 = 1,

βi = 1
i+1 , i = 1, ..., n,

(2.59)

in (2.29) and (2.30), the resulting Appell polynomial is known as Bernoulli polynomial [5].

The determinantal form of this polynomial has been considered in [12] and the fundamental

properties have been also obtained by employing basic tools of linear algebra.

Moreover the following identity can be derived.
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Theorem 60 For Bernoulli polynomials Bn (x) we have

mn−1
m−1∑

i=0

Bn

(
x +

i

m

)
=

n∑

i=0

(
n

i

)
Bi (x) (m− 1)n−i xn−i,

n = 0, 1, ...,

m = 1, 2, ...

(2.60)

Proof. It is known [1] that

Bn (mx) = mn−1
m−1∑

i=0

Bn

(
x +

i

m

)
,

n = 0, 1, ...,

m = 1, 2, ...

(2.61)

and hence from (2.40) and (2.61) the proof is concluded.

Fourier series of Bernoulli polynomials

In the case of Bernoulli polynomials, for which we have

B2i−1(0) =





−1
2 for i = 1

0 for i = 2, 3, ...

B2i−1(1) = −B2i−1(0)

B2i(1) = B2i(0)

the Fourier expansion is the following

B2n(x) =
∞∑

k=1

(−1)n−1 2
[B1(1)−B1(0)]

(2πk)2n (2n)! cos 2πkx = (2.62)

=
∞∑

k=1

(−1)n−1 2 (2n)!
(2πk)2n cos 2πkx (2.63)

B2n−1(x) =
∞∑

k=1

(−1)n 2
[B1(1)−B1(0)]

(2πk)2n−1 (2n− 1)! sin 2πkx = (2.64)

=
∞∑

k=1

(−1)n 2 (2n− 1)!

(2πk)2n sin 2πkx (2.65)
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2.5.2 Generalized Bernoulli polynomials

By direct inspection of (2.59) we deduce

βi =
∫ 1

0
xidx, i = 0, .., n. (2.66)

Analogously, we can consider the weighed coefficients

βw
i =

∫ 1

0
w (x) xidx, i = 0, .., n, (2.67)

where w (x) is a general weight function.

In particular by taking the classical Jacobi weight, w(x) = (1− x)α xβ, α, β > −1,

we obtain

βw
i =

Γ (α + 1) Γ (β + i + 1)
Γ (α + β + i + 2)

, i = 0, ..., n (2.68)

The relative Appell polynomials, called now Bernoulli-Jacobi, are not considered

in the literature to our knowledge, except for the case α = β = 0 for which we find again

the Bernoulli polynomials. For the case α = β = −1
2 it is useful to normalize by setting

βw
i =

1
π

Γ (α + 1)Γ (β + i + 1)
Γ (α + β + i + 2)

, i = 0, ..., n. (2.69)

2.5.3 Hermite normalized polynomials

Assuming




β0 = 1,

βi = 1√
π

∫ +∞
−∞ e−x2

xidx =





0 for i odd

(i−1)(i−3)·····3·1
2

i
2

for i even
, i = 1, ..., n,

(2.70)
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in (2.29) and (2.30), the related Appell polynomials coincide with the well-known Hermite

normalized polynomials [6].

It’s known [49] that Hermite normalized polynomials are the only ones which are,

at the same time, orthogonal and Appell polynomials.

The Hessemberg determinantal form does not seem to be known in literature.

2.5.4 Generalized Hermite polynomials

Assuming

βi =
1√
π

∫ +∞

−∞
e−|x|

α

xidx =





0 for i odd

2
α
√

π
Γ

(
i+1
α

)
for i even

,
i = 0, ..., n,

α > 0
(2.71)

in (2.29) and (2.30), we obtain a wider class of Appell polynomials.

2.5.5 Generalized Laguerre polynomials

Placing

βi =
∫ +∞

0
e−sxxidx =

1
si+1

Γ (i + 1) =
i!

si+1
, s > 0, i = 0, ..., n, (2.72)

in (2.29) and (2.30), we obtain a new class of Appell polynomials, called now Appell-

Laguerre, that does not seem to be known in literature, except for the case s = 1 [6].

2.5.6 Euler polynomials

Placing 



β0 = 1,

βi = 1
2 , i = 1, ..., n,

(2.73)
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in (2.29) and (2.30), the resulting Appell polynomials are known as Euler polynomials [23].

The determinantal form seems new. In fact we have

E0 (x) = 1, (2.74)

En (x) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · · · · xn−1 xn

1 1
2

1
2 · · · · · · 1

2
1
2

0 1 1
2

(
2
1

) · · · · · · 1
2

(
n−1

1

)
1
2

(
n
1

)

0 0 1 · · · · · · 1
2

(
n−1

2

)
1
2

(
n
2

)

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 1 1
2

(
n

n−1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, ...

(2.75)

Concerning Euler polynomials, all the properties proved in general for Appell polynomials

hold. In particular we have the following result.

Theorem 61 For Euler polynomials En (x) we have

En (x) = xn − 1
2n

n−1∑

k=0

(
n

k

)
Ek(x), n = 1, 2, ... (2.76)

Proof. The claimed thesis follows from (2.31).
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Theorem 62 For Euler polynomials En (x) we have

n∑

i=0

(
n

i

)
Ei (x) (m− 1)n−i xn−i =

=





mn
m−1∑
i=0

(−1)i En

(
x + i

m

)
,

n = 0, 1, ...,

m = 1, 3, ...,

− 2
n+1mn

m−1∑
i=0

(−1)i Bn+1

(
x + i

m

)
,

n = 0, 1, ...,

m = 2, 4, ...

(2.77)

Proof. In literature [1] it is known that

En (mx) =





mn
m−1∑
i=0

(−1)i En

(
x + i

m

)
,

n = 0, 1, ...,

m = 1, 3, ...,

− 2
n+1mn

m−1∑
i=0

(−1)i Bn+1

(
x + i

m

)
,

n = 0, 1, ...,

m = 2, 4, ...

(2.78)

and therefore, from (2.40) and (2.78), we desired result follows.

Fourier series of Euler polynomials

Concerning Euler polynomials, for which we have

E2i(0) = E2i(1) =





1 for i = 0

0 for i = 1, 2, ...

E2i−1(1) = −E2i−1(0)

the Fourier expansion is the following
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E2n−1(x) =
∞∑

k=1

n−1∑

i=0

(−1)i+1 2

[
E2(n−i)−1(1)−E2(n−i)−1(0)

]

(2πk)2i+1

(2n− 1)!
(2(n− i)− 1)!

sin 2πkx =

=
∞∑

k=1

n−1∑

i=0

(−1)i 4

[
E2(n−i)−1(0)

]

(2πk)2i+1

(2n− 1)!
(2(n− i)− 1)!

sin 2πkx

E2n(x) =
1

2n + 1
[E2n+1(1)− E2n+1(0)]+

+
∞∑

k=1

n−1∑

i=0

(−1)i 2

[
E2(n−i)−1(1)− E2(n−i)−1(0)

]

(2πk)2(i+1)

(2n)!
(2(n− i)− 1)!

cos 2πkx

= − 2
2n + 1

E2n+1(0) +
∞∑

k=1

n−1∑

i=0

(−1)i+1 4

[
E2(n−i)−1(0)

]

(2πk)2(i+1)

(2n)!
(2(n− i)− 1)!

cos 2πkx.

2.5.7 Generalized Euler polynomials

From (2.73) we can write

βi = Mxi, i = 0, ..., n, (2.79)

where Mf = f(1)+f(0)
2 . In a similar way, we can consider the weighed coefficients

βw
i = Mwxi, i = 0, ..., n, (2.80)

where Mwf = w1f(1)+w2f(0)
w1+w2

, w1, w2 > 0, i.e:




βw
0 = 1,

βw
i = w1

w1+w2
, i = 1, ..., n.

(2.81)

2.6 Numerical examples

In this section we provide explicitly same classes of Appell polynomials, by using

an ad hoc Mathematica code based on the new definition.



60

By the choice of the coefficients βi in definition (2.30) we can compute the relative

Appell polynomial

An(x) = c0 + c1x + ... + cnxn. (2.82)

2.6.1 Bernoulli-Jacobi/Tchebichev polynomials

Placing in (2.69) α = β = −1
2 we have

c0 c1 c2 c3 c4 c5 c6 c7 c8

n = 0 1

n = 1 −1
2 1

n = 2 1
8 −1 1

n = 3 1
16

3
8 −3

2 1

n = 4 − 7
128

1
4

3
4 −2 1

n = 5 − 13
256 − 35

128
5
8

5
4 −5

2 1

n = 6 71
1024 − 39

128 −105
128

5
4

15
8 −3 1

n = 7 187
2048

497
1024 −273

256 −245
128

35
16

21
8 −7

2 1

n = 8 − 5479
32768

187
256

497
256 −91

32 −245
64

7
2

7
2 −4 1
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2.6.2 Generalized Laguerre polynomials

Setting in (2.72) s = 1 we have the normalized Appel-Laguerre polynomials [6]

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

n = 0 1

n = 1 −1 1

n = 2 0 −2 1

n = 3 0 0 −3 1

n = 4 0 0 0 −4 1

n = 5 0 0 0 0 −5 1

n = 6 0 0 0 0 0 −6 1

n = 7 0 0 0 0 0 0 −7 1

n = 8 0 0 0 0 0 0 0 −8 1

n = 9 0 0 0 0 0 0 0 0 −9 1

n = 10 0 0 0 0 0 0 0 0 0 −10 1
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2.6.3 Generalized Euler polynomials

Placing in (2.81) w1 = 1
2 , w2 = 1

3 we find

c0 c1 c2 c3 c4 c5 c6 c7 c8

n = 0 1

n = 1 −3
5 1

n = 2 3
25 −6

5 1

n = 3 33
125

9
25 −9

5 1

n = 4 −141
625

132
125

18
25 −12

5 1

n = 5 −267
625 −141

125
66
25

6
5 −3 1

n = 6 2751
3125 −1602

625 −423
125

132
25

9
5 −18

5 1

n = 7 20109
15625

19257
3125 −5607

625 −987
125

231
25

63
25 −21

5 1

n = 8 −448761
78125

160872
15625

77028
3125 −14952

625 −1974
125

1848
125

84
25 −24

5 1
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Chapter 3

Appell interpolation problem

The algebraic approach proposed in chapter 2 allows the solution, expressed by a

determinantal form, using a basis of Appell polynomials, of a remarkable general linear

interpolation problem.

3.1 The Appell interpolation problem

Let us consider the linear space X = Cn[a, b] and let Pn be the space of polynomials

of degree ≤ n. Let L0 be a linear functional defined on Pn, such that L0(1) 6= 0.

Reminding the determinantal definition of Appell polynomials (2.29, 2.30) we pro-

vides now the following
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Definition 63 The sequence of polynomials defined by

AL0
0 (x) =

1
β0

,

AL0
n (x) =

(−1)n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · · · · xn−1 xn

β0 β1 β2 · · · · · · βn−1 βn

0 β0

(
2
1

)
β1 · · · · · · (

n−1
1

)
βn−2

(
n
1

)
βn−1

0 0 β0 · · · · · · (
n−1

2

)
βn−3

(
n
2

)
βn−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, ... (3.1)

with βi = L0(xi), i = 0, ..., n, is called sequence of Appell polynomials related to the func-

tional L0.

Problem 64 Let L0 be a given linear functional defined on Pn such that L0(1) 6= 0. For a

given set of values ω0, ω1, ..., ωn ∈ R there exists a unique polynomial Pn(x) of degree ≤ n

such that
L0

(
P

(i)
n

)

i!
= ωi, i = 0, 1, ...n? (3.2)

The answer is provided by the following

Theorem 65 For every choice of ω0, ω1, ..., ωn ∈ R the polynomial of degree ≤ n

Pn(x) =
n∑

i=0

ωiA
L0
i (x),

where the AL0
i (x) are the Appell polynomials related to the functional L0 defined by (3.1),

is the unique solution of the interpolation problem (3.2).
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Proof. Let us define n linear functionals Li, i = 1, ...n on Pn such that

Li

(
xj

)
=

L0

((
xj

)(i)
)

i!
i = 1, ...n, j = 0, ..., n. (3.3)

By Lemma 1 and Theorem 2, the problem (3.2) possesses a unique solution if and only if

G =
∣∣Li(xj)

∣∣ 6= 0, i, j = 0, 1, ..., n. (3.4)

Since,

Li

(
xj

)
=





L0

(
(xj)(i)

)

i! =
(
j
i

)
L0

(
xj−i

)
j = i, i + 1, ...

L0

(
(xj)(i)

)

i! = L0 (0) = 0 j = 0, ..., i− 1
, i = 1, 2, ...,

setting

L0 (1) = β0 6= 0,

L0

(
xj

)
= βj , j = 1, 2, ... βj ∈ R,

we have

G =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 β1 β2 · · · · · · βn−1 βn

0 β0

(
2
1

)
β1 · · · · · · (

n−1
1

)
βn−2

(
n
1

)
βn−1

0 0 β0 · · · · · · (
n−1

2

)
βn−3

(
n
2

)
βn−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (β0)
n+1 . (3.5)

By the representation theorem 21 we can calculate the solution of the interpolation problem
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(3.2)

Pn(x) = − 1
G

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 x0 x1 x2 ... ... xn

ω0 L0(x0) L0(x1) L0(x2) ... ... L0(xn)

ω1 L1(x0) L1(x1) L1(x2) ... ... L1(xn)

...
...

ωn Ln(x0) Ln(x1) Ln(x2) ... ... Ln(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (3.6)

= − 1
(β0)

n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 x1 x2 · · · xn−1 xn

ω0 β0 β1 β2 · · · βn−1 βn

ω1 0 β0

(
2
1

)
β1 · · · (

n−1
1

)
βn−2

(
n
1

)
βn−1

ω2 0 0 β0 · · · (
n−1

2

)
βn−3

(
n
2

)
βn−2

...
...

. . .
...

...

ωn−1 0 · · · · · · · · · β0

(
n

n−1

)
β1

ωn 0 · · · · · · · · · 0 β0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.7)
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We expand the determinant in (3.7) by the minors of its first row

Pn(x) =
n∑

i=0

(−1)i

(β0)
n+1 ωi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 ... xi−1 xi xi+1 ... ... xn

β0 β1 ... βi−1 βi βi+1 ... ... βn

0 β0 ...
(
i−1
1

)
βi−2

(
i
1

)
βi−1

(
i+1
1

)
βi ... ...

(
n
1

)
βn−1

...
. . .

...

0 ... ... β0

(
i

i−1

)
β1

(
i+1
i−1

)
β2 ... ...

(
n

i−1

)
βn−i+1

0 ... ... 0 0 β0 ... ...
(

n
i+1

)
βn−i−1

...
. . .

...

...
. . .

(
n

n−1

)
β1

0 ... ... ... ... ... ... ... β0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

We keep on expanding the determinants in the last one by the minors of last row for n− i

times. Finally we obtain

Pn(x) =
n∑

i=0

ωi
(−1)i

(β0)
i+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · · · · xn−1 xn

β0 β1 β2 · · · · · · βn−1 βn

0 β0

(
2
1

)
β1 · · · · · · (

n−1
1

)
βn−2

(
n
1

)
βn−1

0 0 β0 · · · · · · (
n−1

2

)
βn−3

(
n
2

)
βn−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

=
n∑

i=0

ωiA
L0
i (x).

Theorem 66 Let L0 be a linear functional defined on X such that L0(1) 6= 0. The polyno-
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mial

Pn(f, x) =
n∑

i=0

L0

(
f (i)

)

i!
AL0

i (x) (3.8)

is the unique element of Pn that satisfy the conditions

L0

(
(Pn(f, x))(i)

)
= L0

(
f (i)

)
, i = 0, 1, ..., n (3.9)

Proof. It follows by previous theorem setting

ωi =
L0

(
f (i)

)

i!
, i = 0, 1, ..., n.

We can, now, provides the following

Definition 67 Let L0 be a linear functional defined on X such that L0(1) 6= 0. The

polynomial

Pn(L0f, x) =
n∑

i=0

L0

(
f (i)

)

i!
AL0

i (x) (3.10)

is called Appell interpolation polynomial related to the function f and to the functional L0.

3.2 The remainder

In order to estimate the difference between the function f(x) and the interpolation

polynomial Pn(L0f, x) we introduce the remainder

Rn(f, x) = f(x)− Pn(L0f, x), x ∈ [a, b] (3.11)

Observe that if f ∈ Pn the remainder identically vanishes. In fact, the following

theorem hold.
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Theorem 68 The Appell interpolation problem has degree of exactness n, i.e.:

Pn(xj , x) = xj j = 0, 1, ...., n (3.12)

Proof. By definition (67) we have

Pn(xj , x) =
n∑

i=0

L0

((
xj

)(i)
)

i!
AL0

i (x) =

=
j−1∑

i=0

Li

(
xj

)
AL0

i (x) + Lj

(
xj

)
AL0

j (x) +
n∑

i=j+1

Li

(
xj

)
AL0

i (x) =

=
j−1∑

i=0

(
j

i

)
βj−iA

L0
i (x) + β0A

L0
j (x) ,

and by the recurrence formula (2.31),

Pn(xj , x) =
j−1∑

i=0

(
j

i

)
βj−iA

L0
i (x) + β0

1
β0

(
xj −

j−1∑

i=0

(
j

i

)
βj−iA

L0
i (x)

)
= xj

For a fixed x we may consider the remainder Rn(f, x) as a linear functional which

operates on f and which annihilates all elements of Pn. By Peano’s Theorem ([21, p. 69]),

if a linear functional has this property, then it must also have a simple representation in

terms of f (n+1).

Theorem 69 Let f ∈ Cn+1 [a, b] , and Pn(L0f, x) be the related Appell interpolation poly-

nomial, then

∀x ∈ [a, b] , Rn(f, x) = f (x)− Pn(L0f, x) (3.13)

with

Rn(f, x) =
1
n!

∫ x

a
(x− t)n f (n+1) (t) dt− 1

n!

n∑

i=0

(
n

i

)
AL0

i (x)
∫ b

a
L0

(
(x− t)n−i

+

)
f (n+1) (t) dt.

(3.14)
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Proof. The remainder

Rn(f, x) = f(x)− Pn(L0f, x)

is a linear functional that, by the (3.12), vanishes for polynomials degree ≤ n. By applying

the Peano’s Theorem we have

Kn (x, t) =
1
n!

Rn

[
(x− t)n

+

]
=

1
n!

(
(x− t)n

+ −
n∑

i=0

(
n

i

)
L0

(
(x− t)n−i

+

)
AL0

i (x)

)
,

and, hence,

Rn(f, x) =
∫ b

a
Kn (x, t) f (n+1) (t) dt =

=
1
n!

∫ b

a
(x− t)n

+ f (n+1) (t) dt− 1
n!

n∑

i=0

(
n

i

)
AL0

i (x)
∫ b

a
L0

(
(x− t)n−i

+

)
f (n+1) (t) dt =

=
1
n!

∫ x

a
(x− t)n f (n+1) (t) dt− 1

n!

n∑

i=0

(
n

i

)
AL0

i (x)
∫ b

a
L0

(
(x− t)n−i

+

)
f (n+1) (t) dt.

3.3 Examples

In the following we provides some examples of Appell interpolation polynomials

related to a given functional.
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3.3.1 The Taylor interpolation polynomial

Let f ∈ Cn [a, b] and L0 (f) = f (x0) , x0 ∈ [a, b]. Assigned βj = L0

(
xj

)
= (x0)

j ,

j = 0, 1, ... the sequence of Appell polynomials related to the functional L0 is given by

AL0
0 (x) = 1,

AL0
n (x) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · · · · xn−1 xn

1 x0 (x0)
2 · · · · · · (x0)

n−1 (x0)
n

0 1
(
2
1

)
x0 · · · · · · (

n−1
1

)
(x0)

n−2 (
n
1

)
(x0)

n−1

0 0 1 · · · · · · (
n−1

2

)
(x0)

n−3 (
n
2

)
(x0)

n−2

...
. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 1
(

n
n−1

)
x0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (x− x0)n,

n = 1, 2, ... (3.15)

where in the last one, because of

d

dxi

(
AL0

n (x)
)

= (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · i! · · · i!
(

n− 1
i

)
xn−1−i i!

(
n

i

)
xn−i

1 x0 · · · (x0)
i · · · (x0)

n−1 (x0)
n

0 1 · · · (
i
1

)
(x0)

i−1 · · · (
n−1

1

)
(x0)

n−2 (
n
1

)
(x0)

n−1

...
. . .

...
...

... 1 · · ·
(

n− 1
i

)
(x0)

n−1−i

(
n

i

)
(x0)

n−i

...
. . .

...
...

0 · · · · · · 0 1
(

n
n−1

)
x0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

i = 1, ..., n− 1, (3.16)
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it is clear that AL0
n (x) and its derivatives to order n − 1 vanish in x0. Therefore, x0 is

a zero of multiplicity n for the polynomial AL0
n (x) of degree n. Moreover, expanding the

determinant by the minors of its first row we have that the leading coefficient is precisely 1

and, finally, AL0
n (x) = (x− x0)n.

Reminding that L0

(
f (i)

)
= f (i) (x0) , i = 1, ...n, the Appell interpolation poly-

nomial related to the function f is

Tn(f, x) =
n∑

i=0

f (i) (x0)
i!

(x− x0)i, (3.17)

known as Taylor polynomial centered at x0.

The remainder

Theorem 70 Let f ∈ Cn+1[a, b], then ∀x ∈ [a, b]

Rn(f, x) = f(x)− Tn(f, x) = − 1
n!

n∑

i=0

(
n

i

)
(x− x0)i

∫ x0

x
(x0 − t)n−if (n+1)(t)dt (3.18)

Proof. By Peano’s Theorem,

Rn(f, x) =
∫ b

a
Kn (x, t) f (n+1) (t) dt (3.19)

where

Kn (x, t) =
1
n!

Rn

[
(x− t)n

+

]
, (3.20)

because of

((x− t)n
+)(i) =

n!(x− t)n−i
+

(n− i)!
(3.21)

we have

Kn (x, t) =
1
n!

(
(x− t)n

+ −
n∑

i=0

(
n

i

)
(x0 − t)n−i

+ (x− x0)i

)
.
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To fix ideas, set x < x0,

Rn(f, x) =
∫ b

a
Kn (x, t) f (n+1) (t) dt = (3.22)

=
1
n!

∫ b

a
(x− t)n

+ f (n+1) (t) dt− 1
n!

n∑

i=0

(
n

i

)
(x− x0)i

∫ b

a
(x0 − t)n−i

+ f (n+1) (t) dt =

(3.23)

=
1
n!

∫ x

a
(x− t)n f (n+1) (t) dt− 1

n!

n∑

i=0

(
n

i

)
(x− x0)i

∫ x

a
(x0 − t)n−if (n+1) (t) dt−

(3.24)

− 1
n!

n∑

i=0

(
n

i

)
(x− x0)i

∫ x0

x
(x0 − t)n−if (n+1) (t) dt (3.25)

and from the exactness, we have

(x− t)n =
n∑

i=0

(
n

i

)
(x0 − t)n−i(x− x0)i

from which the thesis follows.

Corollary 71 ([1]) Let f ∈ Cn+1[a, b], then ∀x ∈ [a, b]

Rn(f, x) = f(x)− Tn(f, x) =
f (n+1)(ξ) (x− x0)

n+1

(n + 1)!
, ξ ∈ [x, x0]

Proof. Because of (x0 − t) > 0 in the interval (x, x0) we have

Rn(f, x) = − 1
n!

n∑

i=0

(
n

i

)
(x− x0)if (n+1)(ξ)

∫ x0

x
(x0 − t)n−idt =

= − 1
n!

f (n+1)(ξ)
n∑

i=0

(
n

i

)
(x− x0)i (−1)n−i+1 (x− x0)

n−i+1

n− i + 1
=

=
1
n!

f (n+1)(ξ)(x− x0)n+1
n∑

i=0

(
n

i

)
(−1)n−i

n− i + 1

From
n∑

i=0

(
n

i

)
(−1)n−i

n− i + 1
=

1
n + 1
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finally,

Rn(f, x) =
f (n+1)(ξ)(x− x0)n+1

(n + 1)!
, ξ ∈ [x, x0]

3.3.2 The Bernoulli interpolation polynomial

Let f ∈ Cn [0, 1] and L0 (f) =
∫ 1
0 f (x) dx. Setting βj = L0

(
xj

)
= 1

j+1 , j = 0, 1, ...

the Appell polynomials related to the functional L0 coincide with the Bernoulli polynomials

Bi (x) . From L0

(
f (i)

)
= f (i−1) (1) − f (i−1) (0) , i = 1, ...n, the Bernoulli interpolation

polynomial related to the function f is

Bn(f, x) =
∫ 1

0
f (x) dx +

n∑

i=1

f (i−1) (1)− f (i−1) (0)
i!

Bi (x) (3.26)

The remainder

Theorem 72 Let f ∈ Cn+1[0, 1], then ∀x ∈ [0, 1]

f(x)−Bn(f, x) =
1
n!

n∑

i=0

Bi(x)
n− i + 1

(
n

i

)∫ 1

0
Gi(x, t)f (n+1)(t)dt (3.27)

where

Gi(x, t) =





(−1)n−itn−i+1 0 ≤ t ≤ x

−(1− t)n−i+1 x ≤ t ≤ 1
(3.28)

Proof. By Peano’s Theorem,

Rn(f, x) =
∫ 1

0
f (n+1)(t)K(t)dt (3.29)

with

K(t) =
1
n!

Rnx [(x− t)n
+]. (3.30)
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Because of

((x− t)n
+)(i−1)

i!
=

(
n
i

)

n− i + 1
(x− t)n−i+1

+ (3.31)

we have

K(t) =
1
n!

Rnx [(x− t)n
+] = (3.32)

=
1
n!

[(x− t)n
+ −

∫ 1

0
(x− t)n

+dx +
n∑

i=1

Bi(x)
n− i + 1

(
n

i

)
[(1− t)n−i+1

+ − (−t)n−i+1
+ ]] =

=
1
n!

[(x− t)n
+ −

(1− t)n+1
+

n + 1
−

n∑

i=1

Bi(x)
n− i + 1

(
n

i

)
[(1− t)n−i+1

+ − (−t)n−i+1
+ ]] (3.33)

that is

K(t) =





1
n!

[
(x− t)n − (1− t)n+1

n + 1
−

n∑

i=1

Bi(x)
n− i + 1

(
n

i

)
(1− t)n−i+1

]
se 0 ≤ t ≤ x

− 1
n!

[
−(1− t)n+1

n + 1
−

n∑

i=1

Bi(x)
n− i + 1

(
n

i

)
(1− t)n−i+1

]
se x ≤ t ≤ 1

(3.34)

Since, moreover,

(x− t)n =
∫ 1

0
(x− t)ndx +

n∑

i=1

Bi(x)
n− i + 1

(
n

i

)
[(1− t)n−i+1 − (−t)n−i+1] =

= (1− t)n−i+1 − (−t)n−i+1 +
n∑

i=1

Bi(x)
n− i + 1

(
n

i

)
[(1− t)n−i+1 − (−t)n−i+1] =

=
n∑

i=0

Bi(x)
n− i + 1

(
n

i

)
[(1− t)n−i+1 − (−t)n−i+1]

and, replacing the last one in the (3.34), we have

K(t) =





1
n!

n∑

i=0

Bi(x)
n− i + 1

(
n

i

)
[(−1)n−itn−i+1] se 0 ≤ t ≤ x

1
n!

n∑

i=0

Bi(x)
n− i + 1

(
n

i

)
[(1− t)n−i+1] se x ≤ t ≤ 1

(3.35)

from which the thesis follows.
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3.3.3 The Bernoulli generalized interpolation polynomial

Let f ∈ Cn [0, 1], w(x) be a general weight function and Lw
0 (f) =

∫ 1
0 w(x)f (x) dx.

Setting βw
j = Lw

0

(
xj

)
, j = 0, 1, ... the Appell polynomials related to the functional Lw

0 coin-

cide with the Bernoulli generalized polynomials Bw
i (x) . Since Lw

0

(
f (i)

)
=

∫ 1
0 w(x)f (i) (x) dx,

i = 1, ...n, the Bernoulli generalized interpolation polynomial related to the function f is

Bw
n (f, x) =

n∑

i=0

1
i!

Bw
i (x)

∫ 1

0
w(x)f (i) (x) dx = (3.36)

=
∫ 1

0
w(x)f (x) dx +

n∑

i=0

1
i!

Bw
i (x)

∫ 1

0
w(x)f (i) (x) dx (3.37)

The remainder

Theorem 73 Let f ∈ Cn+1[0, 1], then ∀x ∈ [0, 1]

Rn(f, x)= f(x)−Bw
n (f, x) =

∫ 1

0
f (n+1)(t)K(t)dt =

=
1
n!

(∫ 1

0
(x− t)n

+f (n+1)(t)dt−
n∑

i=0

1
i!

Bw
i (x)

∫ 1

0

(∫ 1

0
w(x)

(
(x− t)n

+

)(i)
dx

)
f (n+1)(t)dt

)
=

=
1
n!

(∫ x

0
(x− t)nf (n+1)(t)dt−

n∑

i=0

1
i!

Bw
i (x)

∫ 1

0

(∫ 1

0
w(x)

n!(x−t)n−i
+

(n−i)! dx

)
f (n+1)(t)dt

)
=

=
1
n!

(∫ x

0
(x− t)nf (n+1)(t)dt−

n∑

i=0

(
n

i

)
Bw

i (x)
∫ 1

0

(∫ 1

0
w(x)(x− t)n−i

+ dx

)
f (n+1)(t)dt

)
.

Consider, for example, w(x) =
1√

x(1− x)
. We have

Bw
n (f, x) =

n∑

i=0

Bw
i (x)
i!

∫ 1

0

f (i) (x)√
x(1− x)

dx = (3.38)

=
∫ 1

0

f (x)√
x(1− x)

dx +
n∑

i=1

Bw
i (x)
i!

∫ 1

0

f (i) (x)√
x(1− x)

dx (3.39)

and, hence,

Rn(f, x) =
1
n!

(∫ x

0
(x− t)nf (n+1)(t)dt−

n∑

i=0

(
n

i

)
Bw

i (x)
∫ 1

0

(∫ 1

0

(x− t)n
+ − i√

x(1− x)
dx

)
f (n+1)(t)dt

)
.
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3.3.4 The Euler interpolation polynomial

Let f ∈ Cn [0, 1] and L0 (f) =
f (0) + f (1)

2
. Setting β0 = L0 (1) = 1, βj =

L0

(
xj

)
= 1

2 , j = 0, 1, ... the Appell polynomials related to the functional L0 coincide with

the Euler polynomials Ei (x) . Reminding that L0

(
f (i)

)
=

f (i) (0) + f (i) (1)
2

, i = 1, ...n,

the Euler interpolation polynomial related to the function f is

En(f, x) =
n∑

i=0

f (i) (0) + f (i) (1)
2i!

Ei (x) = (3.40)

=
f (0) + f (1)

2
+

n∑

i=0

f (i) (0) + f (i) (1)
2i!

Ei (x) (3.41)

The remainder

Theorem 74 Let f ∈ Cn+1[0, 1], then ∀x ∈ [0, 1]

f(x)−En(f, x) =
1
n!

n∑

i=0

Ei(x)
2

(
n

i

) ∫ 1

0
Gi(x, t)f (n+1)(t)dt (3.42)

where

Gi(x, t) =





(−1)n−itn−i 0 ≤ t ≤ x

−(1− t)n−i x ≤ t ≤ 1
(3.43)

Proof. By Peano’s Theorem,

Rn(f, x) = f(x)−En(f, x) =
∫ 1

0
f (n+1)(t)K(t)dt

with

K(t) =
1
n!

Rnx [(x− t)n
+]. (3.44)

Because of

((x− t)n
+)(i) =

n!(x− t)n−i
+

(n− i)!
(3.45)
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we have

K(t) =
1
n!

Rnx [(x− t)n
+] =

=
1
n!

[(x− t)n
+ −

n∑

i=0

Ei(x)
2i!

[
n!(1− t)n−i

+

(n− i)!
+

n!(−t)n−i
+

(n− i)!
]] =

=
1
n!

[(x− t)n
+ −

n∑

i=0

Ei(x)
1
2

(
n

i

)
[(1− t)n−i

+ + (−t)n−i
+ ]] (3.46)

that is

K(t) =





1
n!

[
(x− t)n −

n∑

i=0

Ei(x)
1
2

(
n

i

)
(1− t)n−i

]
se 0 ≤ t ≤ x

− 1
n!

n∑

i=0

Ei(x)
1
2

(
n

i

)
(1− t)n−i se x ≤ t ≤ 1

(3.47)

Reminding that

Li((x− t)n) =
1
2

(
n

i

)
[(1− t)n−i + (−t)n−i]

and, moreover,
n∑

i=0

Ei(x)Li((x− t)n) = En((x− t)n, x) = (x− t)n

we have

(x− t)n =
n∑

i=0

Ei(x)
1
2

(
n

i

)
[(1− t)n−i + (−t)n−i] =

=
n∑

i=0

Ei(x)
1
2

(
n

i

)
(1− t)n−i +

n∑

i=0

Ei(x)
1
2

(
n

i

)
(−t)n−i.

Replacing the last one in the (3.47) we obtain

K(t) =





1
n!

n∑

i=0

Ei(x)
1
2

(
n

i

)
(−1)n−itn−i se 0 ≤ t ≤ x

− 1
n!

n∑

i=0

Ei(x)
1
2

(
n

i

)
(1− t)n−i se x ≤ t ≤ 1

(3.48)

from which the thesis follows.
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3.3.5 The Euler generalized interpolation polynomial

Let f ∈ Cn [0, 1] and Lw
0 (f) =

n∑
k=0

wkf
(

k
n

)

n∑
k=0

wk

, wk ∈ R, wk ≥ 0. Setting βw
0 =

Lw
0 (1) = 1, βw

j = Lw
0

(
xj

)
=

n∑
k=0

wk

(
k
n

)j

n∑
k=0

wk

, j = 0, 1, ... the Appell polynomials related

to the functional Lw
0 coincide with the Euler generalized polynomials Ew

i (x) . Reminding

that Lw
0

(
f (i)

)
=

n∑
k=0

wkf
(i)

(
k
n

)

n∑
k=0

wk

, i = 1, ...n, the Euler generalized interpolation polynomial

related to the function f is

Ew
n (f, x) =

n∑

i=0

n∑
k=0

wkf
(i)

(
k
n

)

i!
n∑

k=0

wk

Ew
i (x) (3.49)

In particular, for n = 1 we have Lw
0 (f) =

w1f (1) + w2f (0)
w1 + w2

and βw
j = Lw

0

(
xj

)
=

w1

w1 + w2
, j = 0, 1, .... The Appell polynomials related to the functional Lw

0 coincide with the

Euler generalized polynomials Ew
i (x) . Reminding that Lw

0

(
f (i)

)
=

w1f
(i) (1) + w2f

(i) (0)
w1 + w2

,

i = 1, ...n, the Euler generalized interpolation polynomial related to the function f is

Ew
n (f, x) =

n∑

i=0

w1f
(i) (1) + w2f

(i) (0)
(w1 + w2) i!

Ew
i (x) (3.50)

The remainder

Theorem 75 Let f ∈ Cn+1[0, 1], then ∀x ∈ [0, 1],

f(x)−Ew
n (f, x) =

1
n!

n∑

i=0

Ew
i (x)

w1

(w1 + w2)

(
n

i

)∫ 1

0
Gw

i (x, t)f (n+1)(t)dt (3.51)
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where

Gw
i (x, t) =





(−t)n−i 0 ≤ t ≤ x

−(1− t)n−i x ≤ t ≤ 1
(3.52)

Proof. By Peano’s Theorem,

Rn(f, x) = f(x)−Ew
n (f, x) =

∫ 1

0
f (n+1)(t)K(t)dt (3.53)

with

K(t) =
1
n!

Rnx [(x− t)n
+]. (3.54)

Because of

((x− t)n
+)(i) =

n!(x− t)n−i
+

(n− i)!
(3.55)

we have

K(t) =
1
n!

Rnx [(x− t)n
+] =

=
1
n!

[(x− t)n
+ −

n∑

i=0

Ew
i (x)

(w1 + w2) i!
[
w1n!(1− t)n−i

+

(n− i)!
+

w2n!(−t)n−i
+

(n− i)!
]] =

=
1
n!

[(x− t)n
+ −

n∑

i=0

Ew
i (x)

1
(w1 + w2)

(
n

i

)
[w1(1− t)n−i

+ + w2(−t)n−i
+ ]] (3.56)

that is

K(t) =





1
n!

[
(x− t)n −

n∑

i=0

Ew
i (x)

w1

(w1 + w2)

(
n

i

)
(1− t)n−i

]
se 0 ≤ t ≤ x

− 1
n!

n∑

i=0

Ew
i (x)

w1

(w1 + w2)

(
n

i

)
(1− t)n−i se x ≤ t ≤ 1

(3.57)

Reminding that

Lw
i ((x− t)n) =

w1

(w1 + w2)

(
n

i

)
[(1− t)n−i + (−t)n−i]
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and, moreover,

n∑

i=0

Ew
i (x)Lw

i ((x− t)n) = Ew
n ((x− t)n, x) = (x− t)n

we have

(x− t)n =
n∑

i=0

Ew
i (x)

w1

(w1 + w2)

(
n

i

)
[(1− t)n−i + (−t)n−i] =

=
n∑

i=0

Ew
i (x)

w1

(w1 + w2)

(
n

i

)
(1− t)n−i +

n∑

i=0

Ew
i (x)

w1

(w1 + w2)

(
n

i

)
(−t)n−i.

Replacing the last one in the (3.57) we obtain

K(t) =





1
n!

n∑

i=0

Ew
i (x)

w1

(w1 + w2)

(
n

i

)
(−t)n−i se 0 ≤ t ≤ x

− 1
n!

n∑

i=0

Ew
i (x)

w1

(w1 + w2)

(
n

i

)
(1− t)n−i se x ≤ t ≤ 1

(3.58)

from which the thesis follows.

3.3.6 The Hermite normalized interpolation polynomial

Let f ∈ Cn (R) and L0 (f) = 1√
π

∫ +∞
−∞ e−x2

f (x) dx. Setting βj = L0

(
xj

)
,

j = 0, 1, ... the Appell polynomials related to the functional L0 coincide with the Her-

mite normalized polynomials Hi (x) . Since L0

(
f (i)

)
= 1√

π

∫ +∞
−∞ e−x2

f (i) (x) dx, i = 1, ...n,

the Hermite normalized interpolation polynomial related to the function f is

Hn(f, x) =
1√
π

n∑

i=0

1
i!

Hi (x)
∫ +∞

−∞
e−x2

f (i) (x) dx (3.59)
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The remainder

Theorem 76 Let f ∈ Cn+1 (R) , then ∀x ∈ R,

Rn(f, x)= f(x)−Bw
n (f, x) =

∫ +∞
−∞ f (n+1)(t)K(t)dt =

= 1
n!

(∫ +∞
−∞ (x− t)n

+f (n+1)(t)dt− 1√
π

n∑
i=0

1
i!Hi (x)

∫ +∞
−∞

(∫ +∞
−∞ e−x2 (

(x− t)n
+

)(i)
dx

)
f (n+1)(t)dt

)
=

= 1
n!

(∫ +∞
−∞ (x− t)n

+f (n+1)(t)dt− 1√
π

n∑
i=0

1
i!Hi (x)

∫ +∞
−∞

(∫ +∞
−∞ e−x2 n!(x−t)n−i

+

(n−i)! dx

)
f (n+1)(t)dt

)
=

= 1
n!

(∫ x
−∞(x− t)nf (n+1)(t)dt− 1√

π

n∑
i=0

(
n
i

)
Hi (x)

∫ +∞
−∞

(∫ +∞
−∞ e−x2

(x− t)n−i
+ dx

)
f (n+1)(t)dt

)
.

3.3.7 The Hermite generalized interpolation polynomial

Let f ∈ Cn (R), α > 0 and Lw
0 (f) = 1√

π

∫ +∞
−∞ e−|x|

α
f (x) dx. Setting βw

j =

Lw
0

(
xj

)
, j = 0, 1, ... the Appell polynomials related to the functional Lw

0 coincide with

the Hermite generalized polynomials Hw
i (x) . Since Lw

0

(
f (i)

)
= 1√

π

∫ +∞
−∞ e−|x|

α
f (i) (x) dx,

i = 1, ...n, the Hermite generalized interpolation polynomial related to the function f is

Hw
n (f, x) =

1√
π

n∑

i=0

1
i!

Hw
i (x)

∫ +∞

−∞
e−|x|

α

f (i) (x) dx (3.60)

The remainder

Theorem 77 Let f ∈ Cn+1 (R) , then ∀x ∈ R,

Rn(f, x) = f(x)−Bw
n (f, x) =

∫ +∞
−∞ f (n+1)(t)K(t)dt =

= 1
n!

(∫ +∞
−∞ (x− t)n

+f (n+1)(t)dt− 1√
π

n∑
i=0

1
i!H

w
i (x)

∫ +∞
−∞

(∫ +∞
−∞ e−|x|

α

((x− t)n
+)(i)dx

)
f (n+1)(t)dt

)
=

= 1
n!

(∫ +∞
−∞ (x− t)n

+f (n+1)(t)dt− 1√
π

n∑
i=0

1
i!H

w
i (x)

∫ +∞
−∞

(∫ +∞
−∞ e−|x|

α n!(x−t)n−i
+

(n−i)! dx

)
f (n+1)(t)dt

)
=

= 1
n!

(∫ x
−∞(x− t)nf (n+1)(t)dt− 1√

π

n∑
i=0

(
n
i

)
Hw

i (x)
∫ +∞
−∞

(∫ +∞
−∞ e−|x|

α

(x− t)n−i
+ dx

)
f (n+1)(t)dt

)
.
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3.3.8 The Laguerre generalized interpolation polynomial

Let f ∈ Cn (R+), s > 0 and Lw
0 (f) =

∫ +∞
0 e−sxf (x) dx. Setting βw

j = Lw
0

(
xj

)
,

j = 0, 1, ... the Appell polynomials related to the functional Lw
0 coincide with the Laguerre

generalized polynomials Law
i (x) . Since Lw

0

(
f (i)

)
=

∫ +∞
0 e−sxf (i) (x) dx, i = 1, ...n, the

Laguerre generalized interpolation polynomial related to the function f is

Law
n (f, x) =

n∑

i=0

1
i!

Law
i (x)

∫ +∞

0
e−sxf (i) (x) dx (3.61)

The remainder

Theorem 78 Let f ∈ Cn+1 (R+) , then ∀x ∈ [0, +∞),

Rn(f, x)= f(x)−Bw
n (f, x) =

∫ +∞
0 f (n+1)(t)K(t)dt =

= 1
n!

(∫ +∞
0 (x− t)n

+f (n+1)(t)dt−
n∑

i=0

1
i!Law

i (x)
∫ +∞
0

(∫ +∞
0 e−sx

(
(x− t)n

+

)(i)
dx

)
f (n+1)(t)dt

)
=

= 1
n!

(∫ +∞
0 (x− t)n

+f (n+1)(t)dt−
n∑

i=0

1
i!Law

i (x)
∫ +∞
0

(∫ +∞
0 e−sx n!(x−t)n−i

+

(n−i)! dx

)
f (n+1)(t)dt

)
=

= 1
n!

(∫ x
0 (x− t)nf (n+1)(t)dt−

n∑
i=0

(
n
i

)
Law

i (x)
∫ +∞
0

(∫ +∞
0 e−sx(x− t)n−i

+ dx
)

f (n+1)(t)dt

)
.

3.4 Numerical examples

Now we consider certain interpolation test problems and report the numerical

results obtained by using an ad hoc ”Mathematica” code. In particular, we compare the

error committed approximating a given function with the interpolation Appell polynomials

studied in the previous section.

Example 79 Let us consider the function

f(x) =
√

e
x
2 , x ∈ [0, 1]. (3.62)
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(c) Hermite interpolation

Figure 3.1: Interpolation error of function (3.62).

The error in the interpolation of the function (3.62) is plotted in Figure 3.1.

In the case of Bernoulli interpolation (solid line) and Bernoulli generalized inter-

polation with α = β = −1
2 (dashed line) we obtain an error less than or equal to the requested

tolerance ε = 10−6 for n = 4. To obtain an error of the same order with Euler interpolation

(solid line) and Euler generalized interpolation with w1 = 1
2 , w2 = 1

3 (dashed line) we need

an interpolation polynomial of degree n = 5. In the case of Hermite interpolation (solid line)

and Hermite generalized interpolation with α = 3 (dashed line) we obtain an error less than

or equal to the same requested tolerance, respectively, for n = 6 and n = 5.

Example 80 Let be

f(x) = ln(x2 + 10), x ∈ [0, 1]. (3.63)

The error in the interpolation of the function (3.63) is plotted in Figure 3.2.

In the case of Bernoulli interpolation (solid line) and Bernoulli generalized in-

terpolation with α = β = −1
2 (dashed line) we obtain an error less than or equal to the

requested tolerance ε = 10−4 for n = 4. To obtain an error of the same order with Euler

interpolation (solid line) and Euler generalized interpolation with w1 = 10, w2 = 1
5 (dashed



85

0.2 0.4 0.6 0.8 1
-0.00002

0.00002

0.00004

0.00006

0.00008

(a) Bernoulli interpolation

0.2 0.4 0.6 0.8 1
-0.00002

0.00002

0.00004

0.00006

0.00008

0.0001

(b) Euler interpolation
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(c) Laguerre interpolation

Figure 3.2: Interpolation error of function (3.63).
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(a) Bernoulli interpolation
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(b) Euler interpolation
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(c) Hermite interpolation

Figure 3.3: Interpolation error of function (3.64).

line) we need an interpolation polynomial, respectively, of degree n = 7 and n = 5. In the

case of Laguerre generalized interpolation with s = 3 (solid line) we obtain an error less

than or equal to the same requested tolerance for n = 6.

Example 81 Let be

f(x) = 10 cos(x) +
sin2(x)

10
, x ∈ [0, 1]. (3.64)

The error in the interpolation of the function (3.64) is plotted in Figure 3.3.

In the case of Bernoulli interpolation (solid line) and Bernoulli generalized inter-

polation with α = −1
2 , β = 1 (dashed line) we obtain an error less than or equal to the

requested tolerance ε = 10−4 for n = 6. To obtain an error of the same order with Euler
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interpolation (solid line) and Euler generalized interpolation with w1 = 1, w2 = 1
100 (dashed

line) we need an interpolation polynomial, respectively, of degree n = 13 and n = 6. In

the case of Hermite interpolation (solid line) and Hermite generalized interpolation with

α = 4 (dashed line) we obtain an error less than or equal to the same requested tolerance,

respectively, for n = 10 and n = 6.
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Chapter 4

Bernoulli, Lidstone and Fourier

series for real entire functions of

exponential type

In this chapter we consider the series expansion of the interpolation Bernoulli

polynomial in order to investigate its convergence. In this analysis we also take into account

the Lidstone ([6]) and Lidstone of second type ([13]) series expansions since they have

interesting analogies with Bernoulli series.

4.1 Introduction

A problem of fundamental interest in classical analysis is to study the representabil-

ity of analytic function f(z) as a series
∑

cnpn(z) where {pn} is a prescribed sequence of

functions, and the connections between the function f and the coefficients {cn}. There is
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a wide literature on the subject: see [6], [11], [25], [26], [27], and references therein. Now

we will prove that the Bernoulli, Lidstone ([6]) and Lidstone of second type ([13]) series

coincide with the Fourier series, for real entire functions of exponential type.

4.2 Preliminary and known results

The Bernoulli polynomials {Bn(x)} can be expanded in the Fourier series in [0, 1]

(2.63, 2.65):

B2n−1 (x) = (−1)n 2(2n− 1)!
(2π)2n−1

∞∑

k=1

sin 2πkx

k2n−1
, n > 1, (4.1)

B2n (x) = (−1)n−1 2(2n)!
(2π)2n

∞∑

k=1

cos 2πkx

k2n
, n > 1. (4.2)

As we shall always deal with functions defined in [0, 1], in all the sequel we will

simply say ”uniformly” instead of ”uniformly in [0, 1]”.

The two following theorems can be found in ([6, p. 29]) and in [6, p. 14] respec-

tively. These theorems involve entire functions f in C of exponential type τ , i. e.:

|f(z)| ≤ Ceτ |z|, for each z ∈ C (4.3)

where C > 0 and τ > 0 are two constants.

Theorem 82 (Bernoulli series) Any entire function of exponential type less than 2π has

the convergent expansion

f(x) =
∫ 1

0
f(x)dx +

∞∑

n=1

[
f (n−1)(1)− f (n−1)(0)

] Bn(x)
n!

, ∀x ∈ [0, 1]. (4.4)
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Parallel there are the Lidstone polynomials introduced in ([38]) by




Λ0 (x) = x,

Λn (x) =
∫ 1
0 Gn (x, t) tdt, n ≥ 1,

(4.5)

where

G1 (x, t) =





(x− 1)t, 0 ≤ t < x ≤ 1,

(t− 1)x, 0 ≤ x < t ≤ 1,

(4.6)

Gn (x, t) =
∫ 1

0
G1 (x, t) Gn−1 (y, t) dy, n = 2, ... (4.7)

Other definitions are possible ([19]) but here we prefer the expansion ([52], [51])

sinhxt

sinhx
=

∞∑

n=1

Λn (x)
t2n

(2n)!
, (4.8)

where the series converges uniformly. There is also the Fourier expansion ([52], [51])

Λn (x) = (−1)n 2
π2n+1

∞∑

k=1

(−1)k+1

k2n+1
sin kπx, n ≥ 1, (4.9)

uniformly.

Theorem 83 (Lidstone first type series) Any entire function f(x) of exponential type

less than π has a convergent Lidstone representation

f(x) =
∞∑

n=0

f (2n)(0)Λn(1− x) +
∞∑

n=0

f (2n)(1)Λn(x), ∀x ∈ [0, 1]. (4.10)

Recently a new class of polynomials, called Lidstone polynomials of second type,

was introduced in ([13]) by means of the recursion formulae:




υ0 (x) = 1,

υ′′n (x) = υn−1 (x) , n ≥ 1,

υ′n (1) = υ′n (0) = 0, n ≥ 1.

(4.11)
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For these polynomials it has been proved in ([13]) that

υn (x) =
22n

(2n)!
B2n

(
1 + x

2

)
, (4.12)

then applying (4.2) we get the Fourier expansion

υn (x) = (−1)n−1 2
π2n

∞∑

k=1

(−1)k

k2n
cosπkx. (4.13)

Using the same method as in ([13]) it is possible to prove the following theorem:

Theorem 84 (Lidstone second type series) Any real entire function f(x) of exponen-

tial type less than π has the absolutely and uniformly convergent expansion

f(x) =
∫ 1

0
f(x)dx +

∞∑

n=1

[
f (2n−1)(1)υn(x)− f (2n−1)(0)υn(1− x)

]
. (4.14)

4.3 Equivalence of Bernoulli and Lidstone series with Fourier

series

In order to make our results independent of the theory of entire functions of ex-

ponential type we may introduce the class of functions denoted by M(h), h > 0, as follows:

Definition 85 A real entire function f(x) belongs to the class M(h), h > 0 if there exists

a positive number p < h such that

f (n)(0) = O(pn), n →∞. (4.15)

Concerning this class of functions we have the following result:

Lemma 86 ([51]) If f(x) belongs to M(h) then there exists a positive number p < h such

that

f (n)(x) = O(pn), ∀x ∈ [0, 1]. (4.16)
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We note explicitly that if f(x) belongs to the class M(h) then it is of exponential

type less than h.

Then we have the following theorem:

Theorem 87 If f(x) belongs to M(2π) we have

f(x) =
∫ 1

0
f(x)dx +

∞∑

k=1

ak cos 2πkx +
∞∑

k=1

bk sin 2πkx, ∀x ∈ [0, 1], (4.17)

where

ak = 2
∞∑

n=1

(−1)n−1

(2kπ)2n

[
f (2n−1)(1)− f (2n−1)(0)

]
, (4.18)

bk = 2
∞∑

n=1

(−1)n

(2kπ)2n−1

[
f (2n−2)(1)− f (2n−2)(0)

]
. (4.19)

Proof. We set

∆f (k) = f (k) (1)− f (k) (0) , k = 0, 1, ...

If f(x) belongs to M(2π) by theorem 1 we have

f(x) =
∫ 1

0
f(x)dx +

∞∑

n=1

Bn(x)
∆f (n−1)

n!
=

=
∫ 1

0
f(x)dx +

∞∑

n=1

B2n(x)
∆f (2n−1)

(2n)!
+

∞∑

n=1

B2n−1(x)
∆f (2n−2)

(2n− 1)!
, ∀x ∈ [0, 1] .

Then, replacing into the last one the Bernoulli polynomials with their Fourier expansion

(4.1 and 4.2), after a few calculations and exchanging the order of summation we obtain

(4.17), (4.18), and (4.19).

It is known that the Fourier series of f(x) in [0, 1] is given by

f(x) =
a0

2
+

∞∑

k=1

ak cos 2πkx +
∞∑

k=1

bk sin 2πkx (4.20)
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where

a0 = 2
∫ 1

0
f(x)dx, (4.21)





ak = 2
∫ 1
0 f(x) cos 2πkxdx,

bk = 2
∫ 1
0 f(x) sin 2πkxdx,

k ≥ 1. (4.22)

It follows, from the uniqueness of representation by trigonometric series ([53, p.

272]), that (4.17) must be the Fourier series of f(x); therefore we have, also, the equalities

∫ 1
0 f(x) cos 2πkxdx =

∞∑
n=1

(−1)n−1

(2kπ)2n

[
f (2n−1)(1)− f (2n−1)(0)

]
,

∫ 1
0 f(x) sin 2πkxdx =

∞∑
n=1

(−1)n

(2kπ)2n−1

[
f (2n−2)(1)− f (2n−2)(0)

]
,

k ≥ 1, (4.23)

from which we obtain the equivalence between the Fourier series and Bernoulli series for

function of the class M(2π).

For Lidstone series we have, instead, the following result:

Theorem 88 If f(x) belongs to M(π) and f(1) = 0 = f(0) then

f(x) =
∞∑

k=1

bk sin kπx, ∀x ∈ [0, 1] (4.24)

with

bk = 2
∞∑

n=0

(−1)n

(kπ)2n+1

[
f (2n)(0) + (−1)k+1 f (2n)(1)

]
, k = 1, 2, .... (4.25)

Proof. If f(x) belongs to M(π) it is known (4.10) that

f(x) =
∞∑

n=0

[
f (2n)(0)Λn(1− x) + f (2n)(1)Λn(x)

]

and that the series converges uniformly. After some calculations and applying (4.9), we

have (4.24) with (4.25).
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From the uniqueness of representation by trigonometric series, (4.24) must be the

Fourier series in only sin of f(x) and therefore we have also

∫ 1

0
f(x) sinπkxdx =

∞∑

n=0

(−1)n

(kπ)2n+1

[
f (2n)(0) + (−1)k+1 f (2n)(1)

]
. (4.26)

Similarly we have

Theorem 89 If f(x) belongs to M(π) then

f(x) =
∞∑

k=0

ak cos kπx, ∀x ∈ [0, 1] (4.27)

with

a0 =
∫ 1

0
f(x)dx, (4.28)

ak = 2
∞∑

n=1

(−1)n−1

(kπ)2n

[
f (2n−1)(1) (−1)k − f (2n−1)(0)

]
, k = 1, 2, ... (4.29)

Proof. If f(x) belongs to M(π) by theorem 3 we have

f(x) =
∫ 1

0
f(x)dx +

∞∑

n=1

[
f (2n−1)(1)υn(x)− f (2n−1)(0)υn(1− x)

]
, (4.30)

uniformly. Then, replacing into the last one the Lidstone polynomials of second type with

their Fourier expansion (4.13), after a few calculations and exchanging the order of sum-

mation we obtain (4.27) with (4.28) and (4.29).

It follows, from the uniqueness of representation by trigonometric series, that (4.24)

must be the Fourier series of f(x) in only cos and therefore

∫ 1

0
f(x) cos kπxdx =

∞∑

n=1

(−1)n−1

(kπ)2n

[
f (2n−1)(1) (−1)k − f (2n−1)(0)

]
. (4.31)
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Remark 90 We note explicitly that we can prove the theorems 1, 2, 3 by integration by

part of the coefficients of the Fourier series and applying the Fourier series of Bernoulli,

Lidstone and Lidstone of second type polynomials. That gives a proof by elementary tools

of convergence of Bernoulli and Lidstone series and, to the authors’ knowledge, a more

elementary proof is not available in the literature. In this form all this is presented in [17].
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Chapter 5

A Birkhoff interpolation problem

In this chapter we introduce a new interpolation problem of Birkhoff kind and we

provide the explicit solution of it with estimation error. Moreover we study the convergence

of the method. This problem is the basis for a new general collocation method for a BVP that

we will expose in chapter 6. Furthermore, it allows us to define a new class of quadrature

formulae, called of Birkhoff and Gauss-Birkhoff type.

5.1 Introduction

Interpolation theory is concerned with reconstructing functions on the basis of

certain functional information assumed known. Now if f is a real function defined in the

interval [−1, 1] and twice differentiable on the distinct and fixed points xi ∈ (−1, 1) i =

1, ..., n− 1, n > 1 we consider the functional information

f(−1), f ′′(xi) i = 1, ..., n− 1, f(1) (5.1)

and we will reconstruct the function f.
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The interpolatory problem with data (5.1) is a Birkhoff interpolation problem, in

fact, if

−1 = x0 < x1 < ... < xn−1 < xn = 1, (5.2)

we search the polynomial of degree ≤ n, Pn(x), such that

Pn(−1) = f(−1), P ′′
n (xi) = f ′′(xi) i = 1, ..., n− 1, Pn(1) = f(1) (5.3)

and this is the Birkhoff interpolation problem with incidence matrix ([40]) E = {ei,j}

i, j = 0, ..., n defined by

e0,0 = en,0 = 1 = ei,2, , i = 1, ..., n− 1 (5.4)

and ei,j = 0 for all the other indexes i, j.

It is possible show that the incidence matrix E defined by (5.4) is regular and

therefore the interpolatory problem (5.3) has a solution for all values of f(±1), f ′′(xi) i =

1, ..., n− 1, but in the following we give a constructive and direct study for (5.3).

5.2 The solution

The interpolation problem (5.3) can be generalized, in fact:

let ωi ∈ R i = 0, ..., n and

−1 = x0 < x1 < ... < xn−1 < xn = 1, (5.5)

we search a polynomial Pn(x) of degree ≤ n such that

Pn(x0) = ω0, P ′′
n (xi) = ωi i = 1, ..., n− 1, Pn(xn) = ωn, (5.6)

then we have the following
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Theorem 91 ([14]) Let li(x) be the fundamental polynomials of Lagrange calculated on

the n− 1 points xi i = 1, ..., n− 1 and

pn,i(x) =
∫ 1

−1
G(x, t)li(t)dt i = 1, ..., n− 1 (5.7)

where

G(x, t) =





(t+1)(x−1)
2 t ≤ x

(x+1)(t−1)
2 x ≤ t

(5.8)

then the polynomial

Pn(x) =
ωn + ω0

2
+

ωn − ω0

2
x +

n−1∑

i=1

pn,i(x)ωi (5.9)

is the unique polynomial of degree ≤ n which satisfies the interpolation problem (5.6).

Proof. Observing that pn,i(x) is the solution of the boundary value problem




p′′n,i(x) = li(x)

pn,i(±1) = 0
i = 1, ..., n− 1, (5.10)

the polynomial (5.9) satisfies the interpolatory conditions (5.6). For the proof of the unique-

ness we suppose that there is a polynomial Pn of degree ≤ n such that Pn 6= Pn and satisfies

the interpolation conditions i. e.:

Pn(x0) = ω0, P
′′
n(xi) = ωi i = 1, ..., n− 1, Pn(xn) = ωn. (5.11)

Let consider the function

φn(x) = Pn(x)− Pn(x).

We know that

φ′′n(xi) = 0, i = 1, .., n− 1;



98

φ′′n(x) is a polynomial of degree ≤ n− 2 and it vanishes at n− 1 distinct points, therefore

φ′′n(x) ≡ 0 (5.12)

from which we have

φ′n(x) ≡ c, c ∈ R. (5.13)

Now, we can observe that

φn(±1) = 0

and by the Rolle’s theorem there is a point ξ ∈ (−1, 1) for which

φ′n(ξ) = 0.

From the (5.13) and the last one we obtain

φ
′
n(x) ≡ 0.

Therefore we have

φn(x) = c,

and from φn(±1) = 0, we obtain

φn(x) ≡ 0.

That is in contrast with the hypothesis Pn 6= Pn.

Remark 92 Let Qn−2(x) be the interpolation polynomial

Qn−2(x) =
n−1∑

i=1

li(x)ωi, (5.14)

the polynomial (5.9) can be written in the form

Pn(x) =
ωn + ω0

2
+

ωn − ω0

2
x +

∫ 1

−1
G(x, t)Qn−2(t)dt. (5.15)
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We can give an alternative representation of polynomials basis pn,i(x), in fact the

following theorem holds:

Theorem 93 With the notation already introduced we have

pn,i(x) = (−1)i

G

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 x3 · · · xn

1 −1 1 −1 · · · (−1)n

1 1 1 1 · · · 1

0 0 2 6x1 · · · n(n− 1)(x1)n−2

...
...

...

0 0 2 6xi−1 · · · n(n− 1) (xi−1)
n−2

0 0 2 6xi+1 · · · n(n− 1) (xi+1)
n−2

...
...

...

0 0 2 6xn−1 · · · n(n− 1) (xn−1)
n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

i = 1, ..., n− 1

(5.16)

with

G = 2 ∗ n!(n− 1)!
n−1∏

i=1
i>j

(xi − xj). (5.17)

Proof. Let be L0, L1, ..., Ln, n+1 linear functionals on the space Pn of polynomials

of degree ≤ n, defined as follows:

L0(p) = p(x0), Li(p) = p′′(xi) i = 1, ..., n− 1, Ln(p) = p(xn). (5.18)

The functionals L0, L1, ..., Ln are linear independent in P ∗
n iff G =

∣∣Lj(xi)
∣∣ 6= 0, i, j =

0, 1, ..., n [21, p. 26].



100

From (5.18) we have

G =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 1 −1 ... (−1)n−1 (−1)n

1 1 1 1 ... 1 1

0 0 2 6x1 ... (n− 1)(n− 2) (x1)
n−3 n(n− 1) (x1)

n−2

...
...

...

...
...

...

0 0 2 6xn−2 (n− 1)(n− 2) (xn−2)
n−3 n(n− 1) (xn−2)

n−2

0 0 2 6xn−1 ... (n− 1)(n− 2) (xn−1)
n−3 n(n− 1) (xn−1)

n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

= 2 ∗ n!(n− 1)!
n−1∏

i=1
i>j

(xi − xj) 6= 0.

Let be ω0, ω1, ..., ωn−1, ωn ∈ R, from a known theorem of representation [21, p. 27], with

the hypothesis G 6= 0, the polynomial

Pn(x) = ωn+ω0
2 + ωn−ω0

2 x +
n−1∑

i=1

ωi
(−1)i

G

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 x2 x3 ... xn

1 −1 1 −1 ... (−1)n

1 1 1 1 ... 1

0 0 2 6x1 ... n(n− 1) (x1)
n−2

...
...

...

0 0 2 6xi−1 ... n(n− 1) (xi−1)
n−2

0 0 2 6xi+1 ... n(n− 1) (xi+1)
n−2

...
...

...

0 0 2 6xn−1 ... n(n− 1) (xn−1)
n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.19)
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is the unique element of Pn that satisfies the interpolation conditions

L0(Pn) = ω0, Li(Pn) = ωi i = 1, ..., n− 1, Ln(Pn) = ωn. (5.20)

From the uniqueness of the solution of the problem (5.20) that is, from the definition (5.18),

equivalent to the problem (5.6), we have the result.

5.3 The remainder

We suppose, now, that

ω0 = f(−1), ωi = f ′′(xi) i = 1, ..., n− 1, ωn = f(1) (5.21)

for a real function f defined and twice differentiable in [1, 1]. Then the polynomial

Pn[f, x] =
f(1) + f(−1)

2
+

f(1)− f(−1)
2

x +
n−1∑

i=1

pn,i(x)f ′′(xi) (5.22)

is the unique polynomial of degree ≤ n that satisfies the interpolation conditions

Pn[f,−1] = f(−1), P ′′
n [f, xi] = f ′′(xi) i = 1, ..., n− 1, Pn[f, 1] = f(1). (5.23)

Therefore for z ∈ (−1, 1) we are interested to the remainder

Rn[f, z] = f(z)− Pn[f, z]. (5.24)

We have the following

Theorem 94 Let Qn−2[f ′′, x] be the interpolation polynomial of f ′′(x) in the fixed points

xi i = 1, ..., n− 1 and Tn[f ′′, z] the remainder in a fixed point z, then we have

Rn[f, z] =
∫ 1

−1
G(z, t)Tn[f ′′, t]dt (5.25)

where G(x, t) is defined in (5.8).
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Proof. The following identity holds:

f(x) =
f(1) + f(−1)

2
+

f(1)− f(−1)
2

x +
∫ 1

−1
G(x, t)f ′′(t)dt (5.26)

moreover, from definition we have that

Qn−2[f ′′, x] =
n−1∑

i=1

li(x)f ′′(xi) (5.27)

and

f ′′(x) = Qn−2[f ′′, x] + Tn[f ′′, x]. (5.28)

Putting that in (5.26) we have the result.

Remark 95 Let f(x) ∈ C2[−1, 1] and suppose that f (n+1)(x) exists at each point of (−1, 1).

In the hypothesis (5.2) we have

Rn[f, z] =
∫ 1

−1
G(z, t)

(t− x1)...(t− xn−1)
(n− 1)!

f (n+1) (ξt) dt. (5.29)

Proof. It is known [21, p. 6] that

Tn[f ′′, z] =
(z − x1)...(z − xn−1)

(n− 1)!
f (n+1) (ξz) (5.30)

where min(z, x1, ..., xn−1) < ξz < max(z, x1, ..., xn−1), i.e. the point ξz depends upon

z, x1, ..., xn−1 and f ′′. The result follows from (5.25) and (5.30).

Remark 96 (Exactness) The interpolation polynomial (5.22) has degree of exactness n,

i.e:

Rn[xk, x] = 0 k = 0, ..., n. (5.31)

Proof. It follows from (5.29).
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Remark 97 With the notation already introduced the following identity holds:

Rn[f, z] =
1

(n− 2)!

∫ 1

−1
G(z, t)

[
n−1∑

i=1

li(t)
∫ t

xi

(xi − s)n−2f (n+1)(s)ds

]
dt. (5.32)

Proof. It is known [21, p. 72] that

Tn[f ′′, z] =
1

(n− 2)!

n−1∑

i=1

li(z)
∫ z

xi

(xi − s)n−2f (n+1)(s)ds. (5.33)

The result follows from (5.25) and (5.33).

Theorem 98 (Bounds) Let
∣∣f (n+1)(x)

∣∣ ≤ Mn, then the following bound for the remainder

holds:

|Rn[f, x]| ≤ Mn

2(n− 1)!

∫ 1

−1
|(t− x1)...(t− xn−1)| dt ≤ 2n−1Mn

(n− 1)!
. (5.34)

Proof. From (5.29) we have

|Rn[f, x]| =
∣∣∣∣
∫ 1

−1
G(x, t)

(t− x1)...(t− xn−1)
(n− 1)!

f (n+1) (ξt) dt

∣∣∣∣ ≤

≤
∫ 1

−1

∣∣∣∣G(x, t)
(t− x1)...(t− xn−1)

(n− 1)!
f (n+1) (ξt)

∣∣∣∣ dt =

=
∫ 1

−1
|G(x, t)|

∣∣∣∣
(t− x1)...(t− xn−1)

(n− 1)!

∣∣∣∣
∣∣∣f (n+1) (ξt)

∣∣∣ dt ≤

≤ Mn

2(n− 1)!

∫ 1

−1
|(t− x1)...(t− xn−1)| dt ≤ 2n−1Mn

(n− 1)!
.

Remark 99 For the convergence of Pn[f, x] to f(x), with standard techniques, analogous

results to that ones obtained for Lagrange interpolation can be proven. In particular, the

convergence in mean holds.
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If the interpolation nodes are zeros of orthogonal polynomials with respect to the

weight function w(t) on the interval (a, b) we have that the relation

lim
n→∞

∫ b

a
w(t) {Pn[f, t]− f(t)}2 dt → 0

holds for every function f ∈ C2[a, b].

5.4 Examples

In order to calculate the polynomial (5.9) or (5.22) we can use the determinantal

form (5.16) of the polynomials pn,i(x) and generate them by an ad hoc ”Mathematica”

code.

Remark 100 In addition to the definition (5.7) and (5.16) we can express the polynomials

pn,i(x) in the form

pn,i(x) =
n∑

j=0

cn,i
j xn−j (5.35)

The coefficients cn,i
j can be obtained from (1.6) by double integration of the li(x) and the

coefficients an,i
j of the polynomials li(x) can be calculated with recursion using the known

values of the sums Sn,i
k = xk

1 + ... + xk
i−1 + xk

i+1 + ... + xk
n−1, k = 1, ..., n− 2. The relation

between the coefficients an,i
j and the sums Sn,i

k are known as Newton’s Identities ([50]). With

the notation until now introduced we have

cn,i
j = An,i

an,i
j

(n− j)(n− 1− j)
, j = 0, ..., n− 2, (5.36)

cn,i
n−1 = −1

2

n−2∑

j=0

cn,i
j [1− (−1)n−j ], (5.37)

cn,i
n = −1

2

n−2∑

j=0

cn,i
j [1 + (−1)n−j ]. (5.38)
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where

An,i =
1

n−1∏
j=1
j 6=i

(xi − xj)
(5.39)

and

an,i
0 = 1, (5.40)

an,i
j = −

Sj +
j−1∑
k=1

Sj−ka
n,i
k

j
, j = 1, ..., n− 2. (5.41)

This algorithm can be implemented in a symbolic language. For example, a ”Math-

ematica” code is reported in Appendix A.

Now, we consider equidistant nodes and Chebyshev of second kind nodes.

5.4.1 Equidistant nodes

Let us consider n− 1 equidistant nodes in the interval [−1, 1] defined as follows

xi = −1 +
2i

n
, i = 1, .., n− 1. (5.42)

The polynomials pn,i(x), i = 1, ..., n− 1, for n = 2, ..., 8 on the set of nodes (5.42)

can be calculated using the ”Mathematica” code reported in Appendix A.

For this set of nodes the following bound for the remainder holds:

Theorem 101 Let
∣∣f (n+1)(x)

∣∣ ≤ Mn, then

|Rn[f, x]| ≤ Mn

(
2
n

)n−1

. (5.43)

Proof. Let define

Un−1(x) = (x− x1)...(x− xn−1), (5.44)
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it’s known ([44]) that

|Un−1(x)| ≤
(

2
n

)n−1

(n− 1)!, for − 1 ≤ x ≤ 1. (5.45)

Therefore, the result follows from the last one and theorem 98.

5.4.2 Chebyshev of second kind nodes

Let us consider the zeros of the Chebyshev polynomials of the second kind of

degree n− 1 in the interval [−1, 1] defined as follows

xi = cos(
i

n
π), i = 1, .., n− 1 (5.46)

For this set of nodes the polynomials pn,i(x) defined in (5.7) or equivalently in (5.16) can

be written in the form ([18])

pn,i(x) =
1
n

sin
πi

n

[
n−1∑

k=2

Gk(x)
k

sin
kπi

n
+ (x2 − 1) sin

πi

n

]
, (5.47)

where

Gk(x) =
Tk+1(x)
k + 1

− Tk−1(x)
k − 1

+





2x
k2−1

even k

2
k2−1

odd k

(5.48)

and Tk(x) are the Chebyshev polynomials of first kind of degree k.

In fact, as proven in [18], it results that

p′′n,i(xj) = δi,j , i, j = 1, ..., n− 1, (5.49)

and then

p′′n,i(x) = li(x), i = 1, ..., n− 1, (5.50)

where li(x) is the elementary polynomials of Lagrange on the nodes x1, ..., xn−1.

For this set of nodes the following bound for the remainder holds:
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Theorem 102 Let
∣∣f (n+1)(x)

∣∣ ≤ Mn, then

|Rn[f, x]| ≤ Mn

2n−1(n− 1)!
. (5.51)

Proof. Let define

Ûn−1(x) = (x− x1)...(x− xn−1), (5.52)

it’s known ([41, page 17]) that

∫ 1

−1

∣∣∣Ûn−1(t)
∣∣∣ dt =

1
2n−2

. (5.53)

Therefore, the thesis follows from the last one and theorem 98.

5.5 Quadrature formulae

With the notations until now introduced we consider the identity

f(x) = Pn(f, x) + Rn[f, x] (5.54)

and, from an integration between −1 and 1, we obtain the class of quadrature formulae of

interpolatory type, which are exact for polynomials of degree ≤ n

∫ 1

−1
f(x)dx = f(−1) +

n−1∑

i=1

An,if
′′(xi) + f(1) +

∫ 1

−1
Rn[f, x] (5.55)
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where

An,i =
∫ 1

−1
pn,i(x)dx =

=





(−1)i

G

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 0 2
3 0 ... 2

n+1

1 −1 1 −1 ... 1

1 1 1 1 ... 1

0 0 2 6x1 ... n(n− 1) (x1)
n−2

...
...

0 0 2 6xi−1 ... n(n− 1) (xi−1)
n−2

0 0 2 6xi+1 ... n(n− 1) (xi+1)
n−2

...
...

0 0 2 6xn−1 ... n(n− 1) (xn−1)
n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, even n,

(−1)i

G

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 0 2
3 0 ... 0

1 −1 1 −1 ... −1

1 1 1 1 ... 1

0 0 2 6x1 ... n(n− 1) (x1)
n−2

...
...

0 0 2 6xi−1 ... n(n− 1) (xi−1)
n−2

0 0 2 6xi+1 ... n(n− 1) (xi+1)
n−2

...
...

0 0 2 6xn−1 ... n(n− 1) (xn−1)
n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, odd n,

i = 1, .., n− 1.

(5.56)
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If xi i = 1, ..., n − 1 are the zeros of the Jacobi polynomial P
(1,1)
n−1 then An,i are

given by

An,i = −wi

2
(5.57)

where ([41, page 325])

wi =
8n

n + 1
.

1

(1− x2
i )

[
d
dxP

(1,1)
n−1 (xi)

]2 , i = 1, ..., n− 1. (5.58)

In fact, if we consider the identity

∫ 1

−1
f(x)dx = f(1) + f(−1)− 1

2

∫ 1

−1
(1− t2)f ′′(t)dt, (5.59)

applying the formula of Gauss-Jacobi with α = β = 1 to the integral at second member, we

obtain

∫ 1

−1
(1− t2)f ′′(t)dt =

n−1∑

i=1

wif
′′ (xi) + Tn(f). (5.60)

where Tn(f) is the remainder term in the Gauss-Jacobi formula.

If it is the case, the quadrature formula (5.55) can be named Gauss-Birkhoff

quadrature, which is exact for all polynomials of degree at most 2n − 1. This result can

be extended to Gauss-Birkhoff quadratures with respect to the weight w on (−1, 1), for

example taking the Jacobi weight w(t) = (1 − t)α(1 + t)β, with parameters α, β > −1. In

fact, starting from Eq. (5.26), i.e.:

f(x) =
f(1) + f(−1)

2
+

f(1)− f(−1)
2

x +
∫ 1

−1
G(x, t)f ′′(t)dt (5.61)

with Green’s function

G(x, t) =





(t+1)(x−1)
2 t ≤ x

(x+1)(t−1)
2 x ≤ t

(5.62)
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multiply it by the weight function w, and integrating we get

∫ 1

−1
f(x)w(x)dx =

f(1) + f(−1)
2

µ0 +
f(1)− f(−1)

2
µ1 +

∫ 1

−1
W (t)f ′′(t)dt, (5.63)

where µk =
∫ 1
−1 xkw(x)dx, k = 0, 1 and the new weight function is given by

W (t) =
∫ 1

−1
w(x)G(x, t)dx.

Now, applying Gaussian quadrature with respect to weight W (t), i.e:

∫ 1

−1
W (t)g(t)dt =

n−1∑

i=1

Wig (xi) + Tn(g)

where xi i = 1, ..., n− 1 are the zeros of orthogonal polynomials with respect to the weight

W on (−1, 1) and the weights are given by

Wi =
∫ 1

−1
W (t)li(t)dt

in which the li(t) are the Lagrange fundamental polynomials on the nodes xi i = 1, ..., n−1,

we obtain the extended Gauss-Birkhoff quadrature with respect to the weight function w

on (−1, 1):

∫ 1

−1
f(x)w(x)dx = f(1)+f(−1)

2 µ0 + f(1)−f(−1)
2 µ1 +

n−1∑

i=1

An,if
′′ (xi) + Tn(f) (5.64)

where An,i = Wi, i = 1, ..., n− 1.

5.5.1 Examples

For equidistant nodes and w (x) ≡ 1, with n = 2 we have

∫ 1

−1
f(x)dx = f(−1)− 2f ′′(0)

3
+ f(1) +

∫ 1

−1
R2[f, x]; (5.65)
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for n = 3, ..., 8 the coefficients An,i are reported in appendix B.

For the Chebyshev of second kind nodes and w (x) ≡ 1 we have the class of

quadrature formulae

∫ 1

−1
f(x)dx = f(−1) +

n−1∑

i=1

An,if
′′(xi) + f(1) +

∫ 1

−1
Rn[f, x] (5.66)

with

An,i =
1
n

sin
πi

n




[n−1
2

]∑

k=1

4
8k3 + 12k2 + 4k

sin
(2k + 1)πi

n
− 4

3
sin

πi

n


 , (5.67)

in fact,

∫ 1

−1
Gk(x)dx =





0 even k

4
k2−4

odd k.

(5.68)

For n = 2 we obtain the formula (5.65); for n = 3, ..., 8 the coefficients An,i are reported in

appendix C.
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Chapter 6

A new collocation method for a

BVP

In this chapter, as application of the interpolation problem before exposed, we pro-

pose a new collocation method for a BVP.

6.1 The method

Let us consider the boundary value problem




y′′(x) = f(x, y(x), y′(x)) x ∈ [−1, 1] , −∞ < y, y′ < ∞

y(−1) = ya

y(1) = yb

(6.1)

We assume that f(x, z1, z2) is a real function defined and continuous on the strip S =

[−1, 1] × R2 where it has continuous derivatives which satisfy, for some positive constant
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M ,

∂f

∂z1
> 0,

∣∣∣∣
∂f

∂z2

∣∣∣∣ ≤ M.

Moreover, we assume that f satisfies a uniform Lipschitz condition in z1 e z2, which means

that there exist two nonnegative constants L and K such that, whenever (x, y1, y2) and

(x, y1, y2) are in the domain of f , the inequality

|f(x, y1, y2)− f(x, y1, y2)| ≤ L |y1 − y1|+ K |y2 − y2| .

holds. Under this hypotheses the BVP has a unique solution y(x).

Let be x1, ..., xn−1, n−1 distinct points in ]−1, 1[ . Let us consider the polynomials

pn,i(x) defined in (5.7) as

pn,i(x) =
∫ 1

−1
G(x, t)li(t)dt i = 1, ..., n− 1 (6.2)

where

G(x, t) =





(t+1)(x−1)
2 t ≤ x

(x+1)(t−1)
2 x ≤ t

(6.3)

and li(x) are the fundamental polynomials of Lagrange calculated on the points xi.

Theorem 103 ([15]) For n > 1, the polynomial of degree n, implicitly defined by

yn(x) =
yb + ya

2
+

yb − ya

2
x +

n−1∑

i=1

pn,i(x)f(xi, yn(xi), y′n(xi)) (6.4)

satisfies the relations




y′′n(xi) = f(xi, yn(xi), y′n(xi)), i = 1, ..., n− 1,

yn(−1) = ya,

yn(1) = yb,

(6.5)

i.e., it is a collocation polynomial for the problem (6.1) on the set of nodes x1, ..., xn−1.
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Proof. Follows from theorem 91 setting




ωi = f(xi, yn(xi), y′n(xi)), i = 1, ..., n− 1,

ω0 = ya,

ωn = yb.

6.2 Global error

For the estimation of the global error

y(s)(x)− y(s)
n (x), s = 0, 1, 2,

by putting

Λn = max
−1≤x≤1

n−1∑

i=1

|li(x)| (6.6)

and

R = max
−1≤x,ξx≤1

∣∣∣∣∣
y(n+1)(ξx)(x− x1) · · · (x− xn−1)

(n− 1)!

∣∣∣∣∣ (6.7)

we have the following theorem:

Theorem 104 ([18]) If y ∈ Cn+3([−1, 1]), L and K are the Lipschitz constants of func-

tion f such that 1− 2ΛnK > 0 and 1− Λn(2K + L) > 0, then

∥∥∥y(s)(x)− y(s)
n (x)

∥∥∥
∞
≤ cR

1− Λn(2K + L)
, s = 0, 1, 2, (6.8)

where

c =





1 if s = 0, 2

2 if s = 1.

(6.9)
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Remark 105 ([18]) If f does not depend on y′(x), then

∥∥∥y(s)(x)− y(s)
n (x)

∥∥∥
∞
≤ cR

1− ΛnL
. (6.10)

6.3 The numerical algorithm and numerical comparison

In order to calculate the approximate solution of problem (6.1) by (6.4) at x ∈

[−1, 1], we need the values yi = yn(xi), i = 1, ..., n − 1. To do this, we can solve the

following system:




yi =
yb + ya

2
+

yb − ya

2
xi +

n−1∑
k=1

pn,k(xi)f(xk, yk, y
′
k) i = 1, ..., n− 1

y′i =
yb − ya

2
+

n−1∑
k=1

p′n,k(xi)f(xk, yk, y
′
k) i = 1, ..., n− 1

(6.11)

Let us set

A =




pn,1(x1) · · · pn,n−1(x1) 0 · · · 0

...
...

...
...

pn,1(xn−1) · · · pn,n−1(xn−1) 0 · · · 0

0 · · · 0 p′n,1(x1) · · · p′n,n−1(x1)

...
...

...
...

0 · · · 0 p′n,1(xn−1) · · · p′n,n−1(xn−1)




,

fk = f(xk, yk, y
′
k), F (Yn) = (f1, ..., fn−1, f1, ..., fn−1)T ,

Yn = (y1, ..., yn−1, y
′
1, ..., y

′
n−1)

T , ai =
ya − yb

2
xi − ya + yb

2
,

bi =
ya − yb

2
, Cn = (a1, ..., an−1, b1, ..., bn−1)T ,

the previous system can be written in the form

AF (Yn)− Yn = Cn,
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or equivalently

Yn = G(Yn)

where

G(Z) = AF (Z)− Cn.

For the existence and uniqueness of the solution we provide the following theorem:

Theorem 106 ([18]) If ‖A‖L < 1, then the previous system has a unique solution that

can be calculated with the iterative method

Y (0)
n arbitrary,

Y (ν+1)
n = G(Y (ν)

n ), ν = 1, ...

Now we report certain numerical results for classical test problems and compare

the error committed applying our method, with n = 7, on different sets of nodes, in

particular between Chebyshev nodes of the second kind (already examined in Ref. [18])

with equidistant, Chebyshev of the first kind and Legendre nodes. We also compare these

results with the ones obtained by applying the Matlab ODE solver bvp4c.

Problem 107 Let us consider the problem




y′′ = y + 2ex

y(−1) = 0

y(1) = 2e

with the solution y(x) = (x + 1)ex.

The error in the approximation of the solution is plotted in Figure 6.1.

In the case of bvp4c (dashed line) 100 function evaluations are needed for this

problem on a mesh of 13 points; our method applied on Chebyshev second kind nodes (dotted
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(a) Equidistant nodes (b) Legendre nodes (c) Cheb I kind nodes

Figure 6.1: Error functions of problem 107.

(a) Equidistant nodes (b) Legendre nodes (c) Cheb I kind nodes

Figure 6.2: Error functions of problem 108.

line) or on one of the other three set of nodes considered (solid line) requires only 36 function

evaluations to obtain an error less than or equal to the requested tolerance ε = 10−5.

Problem 108 Let be




y′′ = yy′2 − 2(2x4 − 1)

y(−1) = 1

y(1) = 1

with the solution y(x) = x2.

For this problem our method applied on Chebyshev second kind nodes (dotted line)

or on one of the other three set of nodes considered (solid line) requires only 102 function

evaluations to obtain an error less than or equal to the requested tolerance ε = 10−7.
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(a) Equidistant nodes (b) Legendre nodes (c) Cheb I kind nodes

Figure 6.3: Error functions of problem 109.

To obtain an error of the same order (10−7) bvp4c (dashed line) requires 337 function

evaluations on a mesh of 19 points.

Problem 109 Let us consider the problem




y′′ = 2yy′

y(−1) = 1
3

y(1) = 1

with the solution y(x) =
1

2− x
.

In the case of bvp4c (dashed line) 201 function evaluations are needed for this

problem on a mesh of 13 points; our method applied on Chebyshev second kind nodes (dotted

line) or on one of the other three set of nodes considered (solid line) requires only 132

function evaluations to obtain an error less than or equal to the requested tolerance ε = 10−4.

Problem 110 Let us consider the problem




y′′ = −(1 + 0.01y2)y + 0.01 cos3 x

y(−1) = cos(−1)

y(1) = cos(1)

with the solution y(x) = cos(x).
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(a) Equidistant nodes (b) Legendre nodes (c) Cheb I kind nodes

Figure 6.4: Error functions of problem 110.

In this case bvp4c (dashed line) requires 60 function evaluations on a mesh of 13

points; our method applied on Chebyshev second kind nodes (dotted line) or on one of the

other three set of nodes considered (solid line) requires only 7 function evaluations to obtain

an error less than or equal to the requested tolerance ε = 10−6.
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Appendix A

Mathematica code for computation

of polynomials pn,i(x)

We report below an ad hoc ”Mathematica” code for the calculation of the poly-

nomials pn,i(x) defined in (5.7).

n = Input["Insert degree of polynomial pn,i(x)"];n = Input["Insert degree of polynomial pn,i(x)"];n = Input["Insert degree of polynomial pn,i(x)"];

X = {};X = {};X = {};

OPT = Input["Press 1 for equidistant nodes;OPT = Input["Press 1 for equidistant nodes;OPT = Input["Press 1 for equidistant nodes;

Press 2 for Chebyshev of second kinds nodes;Press 2 for Chebyshev of second kinds nodes;Press 2 for Chebyshev of second kinds nodes;

Press 3 for a generic set of nodes"];Press 3 for a generic set of nodes"];Press 3 for a generic set of nodes"];

For[i = 1, i ≤ n− 1, i++,For[i = 1, i ≤ n− 1, i++,For[i = 1, i ≤ n− 1, i++,

{node = Which[OPT == 1,−1 + 2∗i
n , OPT == 2,Cos[ i∗πn ],{node = Which[OPT == 1,−1 + 2∗i
n , OPT == 2,Cos[ i∗πn ],{node = Which[OPT == 1,−1 + 2∗i
n , OPT == 2, Cos[ i∗πn ],

OPT == 3, Input["Insert node"]]; X = Append[X, node]}];OPT == 3, Input["Insert node"]];X = Append[X, node]}];OPT == 3, Input["Insert node"]];X = Append[X,node]}];

A[i ]:=(
i−1∏
j=1

1
X[[i]]−X[[j]]) ∗ (

n−1∏
j=i+1

1
X[[i]]−X[[j]]);A[i ]:=(

i−1∏
j=1

1
X[[i]]−X[[j]]) ∗ (

n−1∏
j=i+1

1
X[[i]]−X[[j]]);A[i ]:=(

i−1∏
j=1

1
X[[i]]−X[[j]]) ∗ (

n−1∏
j=i+1

1
X[[i]]−X[[j]]);
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S[k , i ]:=
i−1∑
j=1

(X[[j]])k +
n−1∑

j=i+1
(X[[j]])k;S[k , i ]:=

i−1∑
j=1

(X[[j]])k +
n−1∑

j=i+1
(X[[j]])k;S[k , i ]:=

i−1∑
j=1

(X[[j]])k +
n−1∑

j=i+1
(X[[j]])k;

a[j , i ]:=Which[j == 0, 1, 0 < j ≤ n− 2,a[j , i ]:=Which[j == 0, 1, 0 < j ≤ n− 2,a[j , i ]:=Which[j == 0, 1, 0 < j ≤ n− 2,

−1
j (S[j, i] +

j−1∑
k=1

(a[k, i] ∗ S[j − k, i]))];−1
j (S[j, i] +

j−1∑
k=1

(a[k, i] ∗ S[j − k, i]))];−1
j (S[j, i] +

j−1∑
k=1

(a[k, i] ∗ S[j − k, i]))];

c[j , i ]:=Which[0 ≤ j < n− 1, A[i] ∗ a[j,i]
(n−j)(n−1−j) ,c[j , i ]:=Which[0 ≤ j < n− 1, A[i] ∗ a[j,i]
(n−j)(n−1−j) ,c[j , i ]:=Which[0 ≤ j < n− 1, A[i] ∗ a[j,i]
(n−j)(n−1−j) ,

j == n− 1,−1
2

n−2∑
k=0

(c[k, i] ∗ (1− (−1)n−k)),j == n− 1,−1
2

n−2∑
k=0

(c[k, i] ∗ (1− (−1)n−k)),j == n− 1,−1
2

n−2∑
k=0

(c[k, i] ∗ (1− (−1)n−k)),

j == n,−1
2

n−2∑
k=0

(c[k, i] ∗ (1 + (−1)n−k))];j == n,−1
2

n−2∑
k=0

(c[k, i] ∗ (1 + (−1)n−k))];j == n,−1
2

n−2∑
k=0

(c[k, i] ∗ (1 + (−1)n−k))];

Poly[i , x ]:=If[0 < i < n,Expand[
n∑

j=0
c[j, i] ∗ xn−j ]];Poly[i , x ]:=If[0 < i < n,Expand[

n∑
j=0

c[j, i] ∗ xn−j ]];Poly[i , x ]:=If[0 < i < n,Expand[
n∑

j=0
c[j, i] ∗ xn−j ]];
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Appendix B

Computation of coefficients An,i for

equidistant nodes

The coefficients An,i =
∫ 1
−1 pn,i(x)dx, for n = 3, ..., 8, for equidistant nodes are

reported below:

A3,1 = −1
3 ,

A4,1 = − 4
15 , A4,2 = − 2

15 ,

A5,1 = −1
6 , A5,2 = −1

6 ,

A6,1 = −1
7 , A6,2 = − 1

35 , A6,3 = − 34
105 ,

A7,1 = − 73
720 , A7,2 = − 1

16 , A7,3 = − 61
360 ,

A8,1 = − 184
2025 , A8,2 = 116

4725 , A8,3 = −328
945 , A8,4 = 454

2835 .

We observe that, for reason of symmetry, An,i = An,n−i, i = 1,...,n− 1.
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Appendix C

Computation of coefficients An,i for

Chebyshev of second kind nodes

The coefficients An,i =
∫ 1
−1 pn,i(x)dx, for n = 3, ..., 8, for Chebyshev of second kind

nodes are reported below:

A3,1= −1
3 ,

A4,1= − 2
15 , A4,2= −2

5 ,

A5,1= −25−7
√

5
150 , A5,2= −2+7

√
5

150 ,

A6,1= − 2
63 , A6,2= − 6

35 , A6,3= − 82
315 ,

A8,1= −26−16
√

2
315 , A8,2= − 22

315 , A8,3= −26+16
√

2
315 , A8,4= − 62

315 .

Explicit expressions for A7,i are complicated but their numerical values are:

A7,1= −0.01789750707562690, A7,2= −0.1076559342057399,

A7,3= −0.2077798920519665.
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Also for this set of nodes it results that An,i = An,n−i, i = 1, ..., n− 1.
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consiglio, un suggerimento o un aiuto, contribuendo anch’essi al raggiungimento di questo

traguardo per me molto importante.

Ringrazio la mia famiglia e gli amici che mi sono stati molto vicini in tutti questi

anni che oltre ad avermi sempre ”supportato” mi hanno più di tutto ”sopportato”. Il mio
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