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Introduction 

The analysis of censored data is a research stream of statistics science that 

attracted a great interest in the last decades. The term “censored data” indicates a 

uncertain measure known only through its upper and a lower bound. In particular, 

censored data are highly frequent in longitudinal studies, where the data to be 

collected consist in the times of occurrence of a particular event. Whether such 

event does not occur before the end of the study, one can only assert that the end 

of the study represents a lower bound for the actual time – to – event. 

 

Recently, several Support Vector Machine (SVM) models were devised in order 

to deal with censored data. SVM consist in a class of Mathematical Programming 

models able to solve classification, regression and data description problems .In 

particular, the majority of SVM models can be stated and solved as Convex 

Quadratic Programming problems. 

 

Beside SVM for censored data, in the last years other SVM models were 

introduced, able to automatically determine the best kernel function for the 

problem under study. Kernel functions can be thought as parameters of SVM 

models, that usually are chosen “a priori”. The performances of SVM models 

almost totally depend by the choice of the kernel function most suitable for the 

problem under analysis.  

 

Summarizing, the current scientific literature offers both SVM models for 

dealing with censored data and SVM model able to automatically determine the 

best kernel to be used. An unique SVM model able to contemporary deal with 

censored data and to automatically select the best kernel is still missing. 

 

Thus, the present thesis work consists in: 

1. formulating the MKL – CT model, i.e. Multiple Kernel Learning for 

Censored Target. Such model unifies the characteristics of SVM model 
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for censored data and the features of MKL – SVM models for the 

automation of kernel selection procedure; 

2. adapting MKL solving algorithms to the resolution of MKL – CT model; 

3. modifying open source codes in order to solve the optimization problem 

underlying the MKL – CT approach; 

4. evaluating the effective validity of MKL – CT model through a wide 

experimentation carried out on simulated and “real world” data 

 

It is worthwhile to underline the heavy role played by Operations Research and 

Optimization methods in the present thesis. In fact the MKL –CT model consists 

in a Quadratically Constrained Quadratic Programming model, that can be 

formulated as a Semi Infinite Linear Programming problem. Meanwhile, the 

solution of the final MKL – CT model can be obtained by using an “ad hoc” exact 

solving algorithm, belonging to the class of “exchange methods”. 

In synthesis, even if this thesis is mainly oriented to the Machine Learning 

research field, the methods and models used during this work come from the latest 

developments of Optimization science. 

 

Chapters are organized as following: 

1. the first chapter introduces the main concepts related to censored data, 

and describes some of the methods used in order to analyze this type of 

data, including the SVM models for censored target; 

2. the second chapter briefly outlines the SVM models able to automatic 

select the kernel function, with particular regard to MKL methods; 

3. MKL – CT model and solving algorithm are deeply described in the 

third chapter; 

4. last chapter describes the experimentation performed and critically 

analyzes the obtained results. 
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1. Analysis of censored data 

1.1. Introduction 

Statistical modelling of time to event processes is a widely studied research field, 

with practical applications in many areas, including medicine, bioinformatics, 

actuarial sciences and reliability analysis. 

For examples, numerous medical studies are carried out by registering the 

individual time – to – event of the subjects belonging to a selected population; the 

event under study can be the arising of specific symptoms, the development of an 

infection, or death. The aim of these studies generally is to analyze the effect of 

some factors (e.g. treatment, age) on the time to occurrence of the studied event. 

If the event occurred in all subjects, many methods of regression analysis would 

be applicable. However, usually at the end of follow-up period some of the 

individuals have not experienced any event, and thus their actual time – to – event 

is censored, i.e. we only know that the event was not experienced until the limit of 

the follow up period. This type of censored data are defined survival data, and 

requires specific strategies in order to be analyzed; in particular, it is necessary to 

take in account the partial information provided by the censored times to event. 

Survival data are also known as right censored data: the history of some 

subjects is not known after a certain time point, i.e., on the right side of an 

imaginary time line.  

Other two types of censored data exist: when for some subjects it is only known 

that the event occurred before a certain time point, the data are defined left 

censored; when the censored times to event are known to lie between two time 

points, the data are said to be interval censored. 

We can compactly model the three types of censored data using a mathematical 

formulation: 

 

Let define a dataset D as a set of m tuples >< iii ulx ,, , where each 
ix  represents 

the i
th subject under study. The generic ix  can be indicated as subject, case or 

instance, and it is composed by n variables (called also attributes, features or 
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covariates), i.e. >=< n

i

j

iiii xxxxx ,...,,...,, 21 . The values il  and iu represent 

respectively the lower bound and the upper bound of the time to event iy  of the 

generic ith subject. 

 

Given this formulation, we can easily represent left, right and interval censored 

cases, as well as the cases with a known time to event: 

• left censored cases are characterized by −∞=il ; 

• right censored cases by +∞=iu ; 

• interval censored are represented allowing ii lu > ; 

• cases with known time to event have ii lu = . 

Other formalization could be adopted in order to represented censored data;  we 

chose the above given formulation because it is highly intuitive and it will allow 

an easier explication of some concepts in the following chapters. 

Moreover, it should be noted that the adopted formalization is not able to 

represent some more complex information, such as time varying variables, 

presence of multiple events, censored covariates. However, these kind of data 

(and the respective methods of analysis) will be not considered during the present 

thesis. 

 Instead, the main aim of the algorithms and methods presented in the rest of this 

work can be described with the following proposition: 

 

Proposition 1: Given a dataset D, find a function RRf
n →:  able to represent 

the relationship between the set of variable x  and the time to event y , i.e. 

)(xfy = . The time to event y  is known only through its lower and upper bound, 

respectively l  and u . 
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1.2. Statistical approaches for the analysis of censored 

data 

Over the last decades, censored data analysis received increasing interest by the 

statistical community. Several parametric and semi parametric algorithms were 

developed in order to modelling time to event on a set of covariate, even in 

presence of censored data: one of the first and most notable technique is the semi 

parametric Cox regression model [1]. More recently, other methodologies were 

developed, including parametric survival models [2], accelerated failure time 

models [3], spline based extensions [4], fractional polynomials [5] and Bayesian 

methods [6]. 

Among the afore cited techniques, Cox regression and parametric survival 

models deserve a more detailed explication, for their wide use in the analysis of 

censored data. 

Cox regression models were originally developed for survival data, and in their 

original form they can deal only with right censored cases. Cox regression lies on 

the definition of the survival function ( ) )Pr( tTtS >= , that is the probability of 

surviving after the time t. The hazard function, defined as ( ) ( )tStSth ')( −= , 

express the risk of experiencing the event at time t. 

In his famous work [1], Sir Cox proposed to model the hazard function with the 

following formula: 

 

xb
T

ethxth ⋅= )(),( 0  

 

where )(0 th  is a baseline hazard function, common to all the subjects, and the 

terms xbT

e  takes in account the influences of a set of covariates x , representing 

the particular status of each subject. 

The points of strength of Cox models are: 

1. the estimation procedure of parameters vector b is based on the 

maximization of the log likelihood and is able to exploit the information 

carried out by the censored cases; 
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2. the baseline hazard function must not be estimated in order to calculate 

the value of the parameters vector b. 

On the other hand, Cox models assume that the hazard ratio between two subject 

will be constant over the time, i.e. the ratio between the hazards of subject A and 

subject b will remain the same independently by the time. Of course this 

assumption represent a limitation for the Cox models. 

Parametric survival models assume that the survival function of a population can 

be modelled with a given parametric distribution. Some of the most used 

distributions are shown in Table 1. Survival functions are unconditional, in the 

sense that they do not take in account the vector of covariates characterizing the 

different subjects. Then, survival functions must be turned in conditional models, 

by replacing one of the free parameters with a (suitably transformed) linear 

predictor. The linear predictor is simply the inner product of a parameters vector b 

and the vector x of the covariates under study. 

 

Table 1: Survival distributions for parametric survival models. The cumulative normal 

distribution )(zφ  is defined as ∫ ∞−
Ν=

z

dz γγφ )1,0;()( . 

Distribution S(t) 

Weibull )exp( γλ t⋅−  

Exponential )exp( t⋅−λ  

Log – Normal ))ln((1 t⋅− λφ  

Log – Logistic 1)1( −⋅+ γλ t  

 

1.3. Machine learning approaches for the analysis of 

censored data 

Various algorithm aimed to deal directly with censored data were developed in 

the context of the machine learning community.  

Generally speaking, Machine Learning algorithms for survival analysis mainly 

consist in previously existent algorithms specifically modified or re – formulated 

in order to take in account censored samples. Among the various works present in 

the literature, it is worthwhile to report the following examples: Regression tree 
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for censored data [7], Artificial Neural Networks [8], Survival Ensemble  and 

Survival Random Forest [9], Supervised PCA [10] and SVM like algorithms [11, 

12, 13]. Moreover, there exist also some examples of statistical techniques 

hybridized with machine learning elements, such as Kernel Cox regression model 

[12] and Kernel accelerated time survival analysis [14].  

Even if not limited to the above list, machine learning techniques able to deal 

with censored data remains relatively few, and moreover free software 

implementations are very rare. Exceptions are Survival Random Forest and 

Hierachichal Mixture of Experts (HME) models, both available for the R software 

in their respective packages “randomSurvivalForest”1 and “hme”2. 

The following paragraphs will deeper explain some of the techniques afore 

mentioned, with particular emphasis on SVCR and Random Survival Forest 

(RSF). SVCR has been successively used during the experimental tests.  

 

1.3.1. Data pre processing approaches 

Several strategies based on data manipulation have been proposed in order to let 

machine learning algorithms deal with survival/censored datasets. This 

approaches are mainly concerning on right censored data. 

The simplest method considers survival for a fixed time period, and 

consequently gives a binary classification problem [15]. Censored observations 

are removed and biases are introduced. It is clear that this approach is rather basic 

and does not really deal with the problem of censoring. 

A second approach is based on multiple replications of each subject [15]. 

According to this method, each instance ix  is replicated several times, with two 

more attributes added to each replica:  

1. an increasing “time stamp” 1+n

ix ; 

2. a class attribute classy  indicating whether the event occurred or not at the 

time 1+n

ix  

                                                
1 http://cran.r-project.org 
2 http://www.maths.bris.ac.uk/~maxle/software.html 
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The converted dataset can be processed using the standard algorithm for 

classification problems. This approach has been widely used in the field of neural 

network, and several publications testify its effectiveness [16 – 19]. Nevertheless, 

the replication of the original instances can produce scalability problems, due to 

the dimensions reached by the converted dataset. 

The third approach consists in the imputation of censored outcome using the 

information carried by the uncensored cases. This method require a hierarchical 

structure of regression models: one or more models are firstly trained on the basis 

of the uncensored instances in order to estimate the times to event for the censored 

cases. Then, the final model is trained utilizing all the cases, using the estimated 

times to event for the censored cases [20]. 

 

1.3.2. SVCR: Support Vector Regression for Censored Target 

SVCR represents one of the last attempts of adapting the well known SVM 

models to the analysis of censored target. Numerous tutorial regarding the 

standard SVM models are available for the interested readers [21]. 

Recalling the concepts expressed by Proposition 1, the main idea at the basis of 

the SVCR models is that the function )( ixf  should respect the following 

condition: 

 

iii uxfl ≤≤ )(  mi K1=  

 

that is, the estimations of times to event y  provided by the function f  should 

respect the upper and lower bounds  u  and l . 

Let suppose that the function f  consist of a simple linear combination of 

variables x , i.e. bxwxf i

T

i +⋅=)( . Then, condition (1) could be expressed with 

the following constraints: 

 

0≤−+⋅ ii

T
ubxw  Ui ∈∀  

0≤−⋅− bxwl i

T

i  Li ∈∀  

(1) 

(2) 

(3) 
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where U  is defined as { }+∞<= iuiU |  and { }−∞>= iliL | .  

Usually real world data do not follow a strict liner trend, as required by 

constraints (2) and (3); then some slack variables should be added in order to 

make such constrains generally feasible: 

 

∗≤−+⋅ iii

T
ubxw ζ  Ui ∈∀  

ii

T

i bxwl ζ≤−⋅−  Li ∈∀  

0≥iζ , 0≥∗
iζ  i∀  

 

Following the regularization theory, that is one of the main pillar of SVM 

methods, the weights w  can be uniquely determined by imposing the 

minimization of w norm [22]. Then, the final primal optimization model is the 

following: 

 









++ ∑ ∑∗

∗

i i

ii
bw

Cw ζζ
ζζ

2

,,, 2

1
min  

∗≤−+⋅ iii

T
ubxw ζ  Ui ∈∀  

ii

T

i bxwl ζ≤−⋅−  Li ∈∀  

0≥iζ , 0≥∗
iζ  i∀  

 

where C is a user defined parameter. 

Model (7) – (8) is the primal form of the SVCR optimization problem. 

Assigning dual variables ∗α  and α  to constraints (8) and (9), the following dual 

problem can be easily obtained: 

 

( )( ) ( ) ∗∗∗ Ψ+Λ−−−∑∑∗
αααααα

αα

TT

i j

jijjii xxK ,
2

1
min

,
 

0=− ∗αα T

U

T

L ee  

0,0 ≤≤ ∗
ii αα  i∀  

(5) 

(4) 

(6) 

(10) 

(8) 

(7) 

(12) 

(13) 

(6) 

(9) 

(11) 

(6) (10) 
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In constrain (12), vectors Le  and 
Ue  are defined as: 

 

[ ]


 −∞=

=
otherwise

lif
e

i

iL
1

0
 

[ ]


 +∞=

=
otherwise

uif
e

i

iU
1

0
 

 

Similarly, vectors Λ  and Ψ  are defined ad: 

 



 −∞=

=Λ
otherwisel

lif

i

i

i

0
 



 +∞=

=Ψ
otherwiseu

uif

i

i

i

0
 

 

The kernel function ( )
ji xxK ,  replaced the scalar product in the objective 

function (11) in order to allow a non linear decision function. 

Model (11) – (13) formally is equivalent to the standard dual Support Vector 

Regression model [22]. Numerous fast and scalable algorithm have been 

developed for the solution of this type of quadratic program, as for example the 

SMO algorithm [23]. The size of the problem is equal to n⋅2 , while the. 

complexity is in the order of ( )2
nO . 

A few lines should be spend in order to define the elegant properties of this 

model. Firstly, SVCR is totally non parametric, in the sense that no assumption 

are made regarding the distribution of the data or about the shape of the 

survival/hazard function. The absence of assumptions regarding data distribution 

is a great advantage of SVCR in respect of classical statistical models, as for 

example Cox regression. 

Moreover, SVCR is able to provide estimates of the time to event y for left, 

right and interval censored data, while other machine learning or statistical 

methods are ale to deal only with right censored cases. 
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Finally, SVCR optimization problem can be faced with all the efficient 

algorithms specifically developed and implemented for solving the standard SVM 

optimization problem; pre – existent codes for SVM solution can be easily 

adapted for SVCR particularities. 

 

1.3.3. Survival Regression Tree and Survival Regression Forest. 

Survival regression tree have been firstly introduced by M.R. Segal [7] for the 

analysis of right censored data. The main idea consists in recursively subdividing 

the dataset D until it is not possible to recognize two groups with significantly 

different survival functions within the final subsamples. 

The algorithm examines singularly each variable, and test whether it is possible 

to subdivide the sample in two or more subgroups with different survival 

functions; once tested every variable, the sample is subdivided following the 

variable that allows the creation of the subsamples most dissimilar. The iteration 

is repeated on each subsample until any subdivision is possible. A statistical test is 

usually used in order to assess the diversity of two survival functions.  

An evolution of such algorithm is represented by the Random Survival Forest 

(RSF) algorithm [24]. RSF algorithm merge the Breiman’s Random Forest [25] 

with the survival regression trees, trying to exploiting the advantages of both 

methods. Random Forest algorithms construct several decision trees, randomly or 

pseudo randomly choosing the nodes of each tree. When a new instance is 

presented to the Random Forest to be evaluated, each tree give an evaluation, and 

then a voting procedure is used over all the predictions. RSF use this same schema, 

adding the subdivision rule based on a statistical test for comparing two or more 

survival functions. 

A freeware implementation of RSF algorithm is freely available as a package of 

the R software 

 

1.4. Features selection and censored data. 

The selection of relevant features selection is one of the most relevant research 

area of data analysis. Countless literature is available about features selection 
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methods specifically devised for selecting the most relevant features for 

classification and regression problems. 

However, much less work has been done regarding features selection in 

presence of censored outcomes. In particular, only few algorithms have been 

specifically devised in order to directly deal with censored data. 

Univariate and wrapper features selection methods can be used also with 

censored data, choosing the appropriate statistical test (e.g. log rank test) for the 

univariate selection and a suitable performance function for the wrapper 

algorithms (for example, the C index [26]). 

Beyond univariate and wrapper methods, other features selection algorithms for 

censored dataset have been developed within the bioinformatics area. 

In bioinformatics studies, datasets are usually composed by thousands of 

variables and relatively few (hundreds) cases. Then an effective selection of the 

most relevant variables is mandatory. An extensive review of such methods has 

been written by Bøvelstad et al [27]. 
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2. Kernel Learning 

2.1. Learning the kernel matrix 

Kernel based methods gained increasing popularity over the last years. One of 

the main reasons of kernel methods success relies on the so – called “kernel trick”, 

i.e., the possibility of replacing simple dot products with a more complex, and 

usually more effective, kernel function. 

Kernel functions are not a trick merely useful in order to catch non linear trends 

present inside data; using the kernel functions, it is possible to embed domain 

specific knowledge inside general purpose data analysis algorithm, specifying a 

“similarity measure” able to incorporate the specificity of the problem under 

analysis. Then, several kernel functions have been devised and successfully 

experimented in various application field, from genetic sequences analysis to 

speech recognition [28] [29].   

However, kernel methods presents also some drawbacks. The principal issues 

consists in the need of choosing a suitable kernel function: the performance of any 

kernel based algorithm is strictly depending by the choice of the similarity 

function. Generally, machine learning algorithms present several parameters to be 

set by the user; a reasonable choice of such parameters allow the algorithm to best 

fit the data. On the other side, unwary parameters setting techniques can easily 

lead to data over fitting, so time expensive performance estimation techniques, as 

for example cross validation, must be used in order to provide unbiased estimates 

of the performance for each tested parameters configuration. 

From this point of view, the selection of the most suitable kernel can be seen as 

part of the parameters setting procedure. Moreover, it should be noted that kernels 

usually have some own parameters to be set, adding a further level to the 

parameters setting problem. When the choice of the kernel is enumeratively 

performed, the kernel selection process can be thought  as a discrete optimization 

problem: given a dataset D, a kernel based algorithm A, a set K  of kernel 

functions, { }
K

KKKK ,,, 21 K= , and a performance estimation procedure P, find 

the kernel K̂  that optimize the performance of the algorithm A on the dataset D. 
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Recently, new methods have been proposed in order to partially overcome the 

kernel selection problem, when SVM models are used. Such methods can be 

comprehensively named as Kernel Learning algorithms, since they attempt to 

contemporarily learn SVM model variables and the most suitable kernel directly 

from data. 

The advantages of such approach are evident: a direct estimation of the kernel 

metric allows to avoid time consuming kernel selection procedures. Moreover, 

from a theoretical point of view, kernel estimation should provide more suitable 

similarity function compared to the usual selection procedure based on the 

experimentation of several “a priori” chosen kernels. 

On the other hand, Kernel Learning approaches present some disadvantages: the 

computational effort required in order to train a Kernel Learning based SVM is 

usually far away more consistent than the effort required by the training of a 

standard SVM model. Moreover, known Kernel Learning algorithms can not learn 

new similarity functions without the specification of the typology of kernel to be 

learnt or without an initial set of kernels to be together combined. 

Kernel Learning approaches first appeared in 2004, with Lanckriet et al. paper 

[30], proposing a Kernel Learning approach based on Semi Definite Programming 

(SDP) [31]. Other approaches have been successively developed by Ong et al. 

[32] and by Sonnenburg et al. [33], respectively proposing Hyper Kernels and 

Multiple Kernel Learning (MKL) methods.  

The following paragraphs will introduce the main ideas of the afore mentioned 

approaches, with their respective points of strength and disadvantages. MKL 

methodology will be widely explained and discussed in the chapter 3, since the 

main results of the present thesis work are based on MKL techniques. 

 

2.2. Kernel Learning with Semi Definite Programming. 

Lanckriet et al. proposed to estimate the kernel matrix as the linear combination 

of a set K  of known kernel functions: 

∑
=

⋅=
K

k

kk KK
1

β  (14) 
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Starting from this simple idea, the authors demonstrated that Kernel Learning 

can be formulated as an SDP problem. Let recall the standard dual SVM model 

for classification tasks: 

 

( ) 0,0:2max =≥≥−⋅ yCKGe TTT ααααα
α

 

 

where y represents the labels vector ( 1±=iy ) and G(K) is defined as: 

 

( )[ ] ),( jijiij xxKyyKG ⋅⋅=  

 

Merging expression (14) and (15), it is possible to demonstrate that the final 

model can assume the form: 

 

trT

t
⋅−⋅ µα

α
2max

,
 

( ) KkKG
r

t k

T

k

K,1
1

=⋅≥ αα  

0,0 ≥≥= αα CyT  

 

that is a SDP model, where ( )kk Ktracer =  and under the adjunctive constraint 

0≥µ . 

The great advantage of SDP model (16) – (18) is its convexity, ensuring that no 

local minima might be found. On the other hand, model (16) – (18) has a 

computational complexity in the order of ( )3
mKO ⋅ , far away superior to the 

usual ( )2mO  complexity of standard SVM models.  

Moreover, the authors experimented their model only within the limits of a 

transduction setting, and they did not provide a version of the model for the 

induction tasks. 

 

(15) 

(16) 

(17) 

(18) 
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2.3. Hyper Kernels. 

The approach developed by Ong et al. is conceptually different from the work of 

Lanckriet et al., but the final model is again formulated as an SDP problem.  

The main idea of the Hyper Kernel approach consists in minimizing the 

regularized risk with respect to both function f  and the kernel function K . 

Let recall the standard primal SVM model for classification task: 

 

∑
=

+
m

i

i
bw

Cw
1

2

, 2

1
min ζ  

mibxwy iii

T

i K1,0,1)( =≥−≥+⋅ ζζ  

 

where 1±=iy  represents the label assigned to each case. The term w
2

1
 is the 

regularization term, ensuring the required properties of robustness and uniqueness 

of the function f . The term ∑
=

m

i

iC
1

ζ  represents the loss function, that is, the 

admitted inaccuracy of the function f  with respect to the training data. 

Recognizing that the function f  could assume multiple form, and that the loss 

function could be generally represented as a function ( )fyxl ii ,, , then the model 

(19) – (20) can be rewritten as: 

 

( )∑
=

⋅+
m

i

ii
f

fyxlCf
1

2
,,

2

1
min  

 

The idea of the Hyper Kernel approach simply consists in adding an adjunctive 

terms K to model (21), in order to minimize also the regularized risk related to 

the choice of the kernel function: 
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where 1C  is an user defined parameters. The introduction of the term K  

require the definition of a Hyper Kernel function, able to provide the dot product 

of two kernel functions as calculated in some Reproducing Hilbert Space. 

Starting from model (22), it is possible to demonstrate that the final model 

assumes the shape of a SDP model. The final model is convex, and ensure the 

existence of a unique global minima. 

However, also Hyper Kernel approach presents multiple disadvantages. In 

particular, the SDP models require the definition of more than 2
m variables, where 

m  is the number of training instance, leading to scalability problems. Moreover, 

the Hyper Kernel approach does not eliminate the problem of choosing a suitabl 

kernl problem, because such approach requires an “a priori” definition of a Hyper 

Kernel function, so the problem of choosing a suitable kernel is only moved to a 

higher level. Lastly, Ong et al. justified their work as a solution able to effectively 

deal with the presence of attributes with different variances/scale factors; however, 

such types of issues can be more easily resolved by using a pre processing step, as 

normalization or standardization of the variables. So, the practical usefulness of 

such approach could be questionable. 

 

2.4. Multiple Kernel Learning. 

The MKL approach start from the same idea of Kernel Learning with SDP: the 

kernel function is defined as the linear combination of a set of already known 

kernel functions, as modelled in the expression (14). 

The difference between the two methods consists in the final optimization model 

used in order to resolve the SVM model once the linear combination of kernel is 

embedded inside the standard Support Vector Machine model. 

In order to develop their model, Sonnenburg et al. started from the classical 

primal SVM model for classification problem, modifying the regularization term: 
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The dual version of model (23) – (26) can be written as: 
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It should be noted that a different kernel 
kK  has been defined for each 

kw . 

Moreover, the left side of inequality (28) is the objective function of a standard 

SVM model; let assume 
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Interestingly, the dual version of model (26) – (28) can be written as the 

following: 

 

θmax  

( ) 0,0|
1

=≤≤ℜ∈∀≥⋅∑
=

αααθαβ Tn

K

k

kk yCS  

kk
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k
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The model (30) – (32) deserves some adjunctive explications. Firstly, it should 

be noted that the model is linear with respect to θ  and β ; however, line (31) 

potentially defines infinite linear constraints, because it should be considered one 

(24) 

(25) 

(26) 

(27) 

(28) 

(30) 

(31) 

(32) 

(29) 
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constraint for each admissible values of the vector nℜ∈α . So expressions (30) – 

(32)  define a Semi Infinite Linear Program (SILP) [34] model. 

Compared with SDP and Hyper Kernel methods, MKL presents several 

advantages. In particular, it should be noted that: 

 

1. MKL allows for effective Kernel selection. MKL provides vector β  at 

the end of the optimization process; the β  coefficients can be interpreted 

as the relative importance of each kernel, i.e., kernel functions more 

influencing on the solution will have a greater weight. Then, MKL can 

be used as a tool for kernel selection, in the sense that irrelevant kernel 

will not enter in the solution because their respective kβ  will be zero. 

This particularity is considerably useful during the practical usage of 

SVM methods. In fact, MKL allows to contemporary experiment several 

kernels, avoiding the need of singularly test each kernel function. In 

some sense, with MKL it is possible to pass from an enumerative, 

discrete search of the best kernel to a search in the continuous space of 

kernels combination. 

2. MKL allows the merge of heterogeneous data. Let re – write the line 

(24) in the following way: 

nibxwy

K

k

ik

T

ki K11)(
1

=−≥













+Φ∑

=

ξ  

where kΦ  is a projection among the attributes of ix , i.e. each kΦ  

selected a different subset of variables. Model (30) – (32) is not modified 

by this change;  however, with such modification each kernel is applied 

only to a subset of dataset attributes. Let suppose that data under study 

are composed both by clinical and genetic information; in such a case, 

projections kΦ will subdivide the two typologies of data, allowing the 

contemporary experimentation of different kernels on clinical and 

genetic data. Under this respect, the coefficient β  indicate the relative 

importance of each attributes subset, allowing an interpretation of the 

SVM models. Bigger β  values will indicate a greater importance of the 

(33) 
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respective attributes subset, and conversely a very small β  value will 

indicate a irrelevant set of attributes.  

3. Effective and scalable algorithm have been developed for the solution of 

model (30) – (32), and efficient implementation of such methods are 

public available. This point will be largely discussed in the next chapter. 

 

For sake of clarity, it should be underlined that properties at point 1) and 2) are 

common to MKL and SDP approach, while the Hyper Kernel approach seems not 

able to perform kernel selection or features relevance analysis.  
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3. Multiple Kernel Learning for Censored Target. 

3.1. Merging Support Vector Machine for Censored Target 

with Multiple Kernel Learning. 

In previous chapters two important research areas were introduced and 

discussed: the analysis of censored data and the Multiple Kernel Learning 

techniques. 

Both research areas address relevant problems: the analysis of censored data 

allows a complete utilization of the information/knowledge hidden in 

censored/truncated dataset; on the other hand, MKL methods greatly improve the 

already effective and efficient kernel based methods.  

In particular, it is worth while to remind that MKL can be used both for 

automatic kernel selection and for the effective analysis of heterogeneous data 

(see chapter 2). 

 

However, the current literature does not report any attempt to merge this two 

distinct fields: that is, there is not any machine learning technique able to analyze 

censored data exploiting the advantages of MKL techniques. Let call this 

hypothetic technique “CT – MKL”. 

 

It cold be stated that maybe there is not the need of creating a technique able to 

merge MKL and censored data analysis. Instead, it is easy to demonstrate that 

several “real world” problems could be faced in a much more effective way by an 

hypothetic CT – MKL technique. 

Let have a practical example in order to better explain the need of creating a 

bridge between censored data analysis and MKL. 

In the last decades, genetics studies focused on discovering the causes of 

complex phenotypes: questions like “which are the genetics characteristics 

responsible of mental skills?” or “which is the role of genetic predisposition in the 

process of ageing?” have been largely debated among biology and bioinformatics 

community. 
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However, the genetic component influencing the development of complex 

phenotypes rarely is preponderant with respect to other factors, like for example 

the characteristics of the ambient where the subjects under study grew and live, 

the alimentary diet, education, and so on. 

Usually, in order to have a global picture of the causes of a particular complex 

phenotype, heterogeneous data must be collected, registering both genetics and 

not genetics information. Then all the information should be together examined, 

in order to take in account the possible interactions among the various factors. 

Moreover, some complex phenotypes can be represented as an event occurring 

during the time; the most clear example is life duration, also known as life 

expectation. Usually, studies carried out on expectation of life must face the 

problem of censored data, due to subjects early dropping out from the study. 

 

Synthesizing, the study of interactions among genetics characteristics, not 

genetics factors and life expectations is a typical problem that could gain great 

advantages from a technique able to merge MKL and censored data analysis; in 

fact, the presence of various factors suggest the use of a technique able to deal 

with heterogeneous data, like MKL; on the other side, the occurrence of censored 

cases need the application of a technique able to deal with censored data. 

 

Moreover, it should be reminded that MKL can be used as an automatic kernel 

selection procedure; then, each kernel based methods able to deal with censored 

data could obtain advantages by MKL techniques, at least in terms of time savings 

during the parameters optimization phase. 

 

Once explained that it is necessary to create a CT – MKL technique, it must be 

decided how to realize such ideas. A very straightforward solution would be 

merging MKL techniques with one of the SVM models able to deal with censored 

data.  As pointed out in the brief literature review given in Chapter 1, SVCR 

presents several advantages with respect to other SVM implementation for 

censored data, i.e. the possibility of deal with right, left and interval censored  data, 

and the possibility of using highly efficient optimization algorithms. 
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Then, the most natural choice in order to create a CT – MKL  algorithm seems 

to be the fusion between the SVCR model and MKL techniques. 

 

The objective is obtaining a model with the advantages of both SVCR and MKL 

techniques, in particular: 

1. the ability of dealing with right, left and interval censored data; 

2. the possibility of effectively treating heterogeneous data; 

3. the ability of performing automatic kernels selection; 

4. fast and effective algorithm for the solution of the underlying 

optimization problem. 

 

The following paragraphs will introduce the CT – MKL model in detail, 

together with the optimization algorithm and the implementation strategies 

adopted in order to realize the software code. 

 

3.2. CT – MKL: optimization model. 

In this paragraph we will derive the optimization model of CT – MKL technique. 

Let recall the primal SVCR model as given in paragraph 1.3.2: 
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ii
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T
ubxw ζ  Ui ∈∀  

ii

T

i bxwl ζ≤−⋅−  Li ∈∀  

Lii ∈∀≥ 0ζ , Uii ∈∀≥∗ 0ζ   

 

With respect to model (34) – (37), we introduce a slightly modification, by 

setting up a further user defined parameter ε ; the modified model have the 

following form: 

 

(35) 

(34) 

(37) 

(36) 
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
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ε  introduction produces two different effects. Firstly, model (38) – (41) is more 

easily resolvable, because ε  relaxes the constraints (39) and (40). 

Secondly, the introduction of ε  allows the use of the so – called “ε  insensitive 

loss function”, i.e. the estimations )(xf  of times to event y  are required to be 

comprised in the interval [ ]εε +− ul ; . In other world, high values of ε  will 

provide a function )(xf  able to better reproduce the general trends of the data, 

while low ε  values will generate a regression function more faithful to the 

training data. 

Once redefined the primal model of SVCR, let merge the MKL model (23) – 

(26) with model (38) – (41): 
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Note that kw  can be written as kkk ww '⋅= β , under the further constraints 

∑
=

=
K

k

k

1

1β  and kk ∀≥ 0β . For sake of simplicity, thereafter ikx  will be used 

instead of ( )ik xΦ ; moreover, index k  will range from 1 to K , unless otherwise 

(39) 

(38) 

(41) 

(40) 

(43) 

(42) 

(44) 

(45) 
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specified. In their paper [35], Bach et al. derived a dual version of problem (42) – 

(45) by treating the primal model as a Second Order Cone Programming (SOCP) 

optimization problem. 

Let define the following cone constraint: { }kk

K

kkk twtwCone ≤ℜ∈=
+

|),(
1

; 

problem (42) – (45) can be now written as: 
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Note that δ≤≤∑∑
k

k

k

k tw , then model (46) – (51) and model (42) – (45) are 

equivalent. Taking in account that constraint (50) is self dual, the Lagrangian 

function of problem (46) – (51) can be written as: 
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Let derive the Lagrangian function (52) with respect to variables δ , t , b , ζ , 

∗ζ , w : 
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Replacing expressions (56) – (61) in model (46) – (51), we obtain: 
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Model (62) – (67) can be further simplified by unifying constraints (63) – (65):  

 

 

(56) 

(57) 

(58) 

(59) 

(61) 

(60) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 



Multiple Kernel Learning for Censored Target 

 27 

( ) ( )∑∑
∈∈

∗ −⋅++⋅−−
Li

ii

Ui

ii lu εαεαγ 2

2

1
min  

( ) kx
m

i

ikii ∀≤⋅−∑
=

∗ γαα
1

 

∑ ∑
∈ ∈

∗ =−
Ui Li

ii 0αα  

miCii K1,0 =≤≤ ∗αα  

 

We can substitute 2γ  with γ  and transport part of the objective function in the 

constraints (65): 
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Now, let apply the “kernel trick” to model (72) – (75): 
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In order to simplify the notation, thereafter constraints (77) will be rewritten as: 

 

kSk ∀≤∗ γαα ),(  

 

where ),( ∗ααkS  replaces the left side of constraints (77).  
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After the last transformation, it is easy to recognize that model (76) – (79) could 

be formulated as a min – max problem; in fact the model try to minimize γ , while 

γ  is greater then the maximum of ),( ∗ααkS .  

In order to exploit the underlying min – max nature of model (76) – (79), let’s 

derive its dual version: 
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where kk ∀≥ 0β . Setting the derivative of (81) to zero, it is possible to obtain 

the following min – max problem: 
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Model (82) – (84) need to be further transformed in order to be solved; 

interesting, this model can be easily transformed in a Semi Infinite Linear 

Program (SILP): 
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It should be noted that problem (85) – (88) is linear with respect to variables θ  

and β . Unfortunately, infinite linear constraints should considered in order to 

find a solution; in fact there is a linear constraints for each possible configuration 

of variables ∗αα ,  respecting the constraints  
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It must be noted that model (85) – (88) is formally equivalent to the model 

obtained by Sonnenburg et al. [33]. Using the results reported in [33], we can state 

that: 

 

Proposition 2: model (85) – (88) has a solution because the corresponding 

primal (38) – (41) is feasible and bounded [36]. Note that problem (38) – (41) is a 

convex quadratic problem with an unique finite minimum, provided that 

ilu ii ∀≥  and moreover that elements of vectors u  and l  are finite. 

  

Proposition 3: there is no duality gap because the cone M  defined as  
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is a closed set [36] [34]. 

 

Regarding the Proposition 3, it must be noted that Sonnenburg et al. stated that 

the cone M  is closed when the ε  – insensitive loss function is used. The loss 

function used in model (38) – (41) and the ε  – insensitive loss function produce 

formally equivalent dual SVM model, i.e. formally equivalent ( )∗αα ,kS . Thus, 

the closeness of cone M  for the ε  – insensitive loss function implies the 

closeness  of cone M  for model (85) – (88). 

 

(89) 
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3.3. CT – MKL: solving algorithm. 

SILP problems can be effectively solved by using “exchange methods” 

algorithms. Such class of algorithms are known to converge [34] even if  the 

convergence rates are not known. In the particular case of CT – MKL model, the 

adoption of exchange methods leads to a simple solution strategy, that can be 

synthesized as: 

1. solve problem (85) – (88) considering a limited set of constraints 

(“restricted master problem” solution); 

2. update the set of constraints adding a new, yet unsatisfied constraint. 

Stop if not unsatisfied constraints exists. 

 

The principal issues of this strategy is the generation of the new constraint(s). 

Depending on adopted constraints generation procedure, two solving algorithms 

can be defined, the “wrapper algorithm” and the “chunking algorithm”, both 

proposed in [33]. 

 

3.3.1. The wrapper algorithm 

The wrapper algorithm is the simplest implementation of the solution strategy 

based on the exchange methods. Model (85) – (88) is subdivided into an inner and 

an outer sub problem. The two sub problems are alternatively resolved, using the 

output of the first sub problem as input for the second one, and vice versa.  

In particular, the “restricted master problem” constitutes the outer loop. During 

the outer loop, model (85) – (88) is resolved as a simple linear program, by using 

the commercial solver CPLEX. Once determined the optimal ∗β  and ∗θ , they can 

be used in the inner loop in order to check the existence of a unsatisfied constraint.  

 

The determination of an unsatisfied constraint can be easily performed; 

constraint (88) becomes, with β  fixed to ∗β : 
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where ( ) ( )∑ ⋅=
k

jkikkkji xxKxxK ,, β . Model (90) – (91) is the dual version of 

SVCR model, and then it is easily resolvable with any decomposition technique 

specifically developed for SVM models.  

Once obtained the optimal value ∗ν , a violated constraint can be found if 

∗∗ < θν , and then the unsatisfied constraint can be added to the restricted master 

problem. The pseudocode of the algorithm is reported below; MKLε  is a user 

defined convergence criterion, while ν  and Ω  were defined in lines (89) – (90). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A further consideration about the wrapper algorithm. When the optimum is 
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when the equality hold; the parameter MKLε  allows the main loop to break when 

t
S  and tθ  are “sufficiently” similar. 

 

3.3.2. The chunking algorithm 

Even if the wrapper algorithm is very easy to implement, there is the possibility 

of defining a more complex algorithm, i.e. the chunking algorithm, that is 

theoretically much faster.  

The wrapper algorithm optimizes the α  variables at each iteration, even if the 

β  variables are not yet optimal, and this procedure is unnecessary costly. 

The idea of the chunking algorithm is to improve β  variables immediately after 

the improvement of α  variables. In other word, the main loop of chunking 

algorithm cyclically repeats two steps: 

1. slightly improve the values of α  variables. If the solution is 

optimal, stop. 

2. slightly improve the values of β  variables using the new α  found 

at step one. Go back to step one. 

In some sense, the chunking algorithm optimize both sets of variables a step at 

the time. In order to implement the chunking algorithm, we need (a) an algorithm 

able to iteratively optimize the α  variables, and (b) an efficient procedure able to 

recomputed β  once the new α values are available. 

Luckily, the state of the art algorithms for the solution of SVM models 

(SVMLight, LibSVM) are based on iterative decomposition techniques [37] [38], 

and so precondition (a) is easily satisfied. Regarding precondition (b), the new 

values of β  variables can be easily computed using the linear program already 

used in the wrapper algorithm. 

So, let suppose that a Decomposition Technique DT  is used in order to resolve 

the SVM models; DT iteratively optimizes the α  variables through a finite 

sequence of iterations. Given DT, the pseudo code of chunking algorithm can be 

described as below. Symbols ν  and Ω  were defined in lines (89) – (90). 

 

 



Multiple Kernel Learning for Censored Target 

 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evidently, the chunking algorithm is rather similar to the wrapper algorithm; the 

main difference consists in the use of intermediate α  values. Moreover, 

optimality is directly checked on problem ν
α Ω∈
min , and then the termination of the 

algorithm depends by the optimality conditions of the used DT. 

Finally, it is worthwhile to note that chunking algorithm is extremely modular, 

as well as the wrapper algorithm. In fact, both the chunking and the wrapper 

algorithm are composed by a first algorithm (DT), that iteratively optimize the 

SVM model,  and by a second algorithm (e.g. the well known simplex method) 

that optimizes the LP problem reported at the fourth point.  

initialization 
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,,1 110 βθ  

main loop: 

K,2,1=tfor  

1) Check optimality condition for the problem ν
α Ω∈
min ; if optimal, then stop. 

2) Execute one DT iteration on problem ν
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min ; let tα  be the results of this 

single iteration. 
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forend  

Algorithm 2: chunking algorithm 
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The modularity of the wrapper/chunking algorithm allows a very easy and fast 

extension of MKL algorithm to different SVM models. For example, once 

implemented the MKL version of SVM classification model, it is sufficient to 

substitute the DT procedure with another decomposition technique in order to 

obtain the MKL version of SVM regression model, the MKL version of One class 

SVM models, and so on. 

 

3.4. CT – MKL: implementation. 

MKL version of SVM model for classification and regression are fully 

implemented within the open source software suite SHOGUN3. 

SHOGUN is a learning toolbox mainly focused on kernel methods and 

especially on large scale Support Vector Machine models. It is written in C++ 

programming language, meantime providing interfaces for Matlab, Python, 

Octave and R. 

The main feature of the SHOGUN toolbox consists in the implementation of 

Multiple Kernel Learning algorithms, i.e. SHOGUN allows the user to train SVM 

classification or regression models using the MKL chunking algorithm (see 

Algorithm 2: chunking algorithm). In particular, the toolbox employs SVMLight  as 

DT, and  the commercial software CPLEX as linear solver. 

As stated in paragraph 3.3.2, the chunking algorithm can be easily adapted in 

order to solve new SVM models, like SVCR. In fact, it is sufficient to utilize a DT 

able to solve the new SVM model. So, in order to implement the CT – MKL 

algorithm, it is sufficient to modify the SVMLight code contained in the SHOGUN 

toolbox, allowing SVMLight to optimize SVCR models. 

So, let focus on the modifications performed on SVMLight code in order to solve 

the SVCR optimization problem. 

SVMLight is able to deal with either classification and regression SVM models. 

Actually, SVMLight inner operation relies on the optimize_convergence function; 

both classification and regression models are optimized by this function, after 

their specification in a standard primal form.  

                                                
3website: http://www.shogun-toolbox.org/ 
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The trick used in order to let SVMLigth deal with SVCR models consists in 

providing treating SVCR models as regression models. This trick is applicable 

because: 

1. SVCR model is formally reducible to a standard SVM regression model; 

2. the function optimize_convergence is able to optimize a wide range of 

SVM models, including  the models that follow this template: 
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where P  and Q  are two generic subsets of the instances set, 
iC  are cost 

parameters, and ℜ∈ii qp ,  are generic quantities assigned to each instance. 

P  and Q can be overlapping.  

 

It is easy to recognize that both regression SVM and SVCR model can be 

reduced to model (92) – (95). Moreover, it should be noted that the function 

optimize_convergence actually optimizes the dual, kernelized version of model 

(92) – (95). Let examine the code used by the file SVML_ligth.ccp in order to 

standardize SVM regression model before submitting the optimization problem to 

the function optimize_convergence: 

 

SVR_ligth.cpp code: 

…. 

// set up regression problem in standard form 

docs=new INT[2*totdoc]; 

label=new INT[2*totdoc]; 

c = new double[2*totdoc]; 

 

(93) 

(92) 

(95) 

(94) 
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for(i=0;i<totdoc;i++) {    

          docs[i]=i; 

          j=2*totdoc-1-i; 

          label[i]=+1; 

          c[i]=labels->get_label(i); 

          docs[j]=j; 

          label[j]=-1; 

          c[j] = labels->get_label(i); 

} 

totdoc*=2; 

… 

 

It is worthwhile to note that the standardization of the problem require the 

duplication of the instances, i.e., each instance of the original dataset is duplicated 

before calling optimize_convergence. The SVR_light.cpp code produce the 

following primal SVM regression model: 
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Now, let examine the code of the modified SVML_ligth.ccp file: 

 

Modified SVR_light.cpp code: 

… 

// set up regression problem in standard form 

docs=new INT[2*totdoc]; 

label=new INT[2*totdoc]; 

c = new double[2*totdoc]; 

(97) 

(96) 

(99) 

(98) 
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for(i=0;i<totdoc;i++) {    

          docs[i]=i; 

          j=2*totdoc-1-i; 

          label[i]=+1; 

          c[i]=labels_low[i]; 

          docs[j]=j; 

          label[j]=-1; 

          c[j] = labels_up[i]; 

} 

totdoc*=2; 

… 

 

The modified SVR_light.cpp code produces the following primal SVCR model: 
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It is easy to recognize as models (96) – (99) and  (100) – (103) are equivalent, 

and moreover that both models are reducible to problem (92) – (95). 

Regarding model (100) – (103), each iu , il  must be specified, even if they take 

infinite values (remind that right censored data are characterized by +∞=iu , 

while left censored data by −∞=il ). The representation of infinites values within 

a C++ computer program could be achieved by using the function 

std::numeric_limits<double>::max() included in the library “limits”; however, the 

use of infinite values can cause numerical problems during the optimization  

procedures. 

(100) 

(101) 

(102) 

(103) 



Multiple Kernel Learning for Censored Target 

 38 

Therefore, 
iu  and 

il  that should be set to ∞±  are instead set to a very high/low 

value Τ± . Whether Τ  is sufficiently large, then the solution of the model is not 

affected by the substitution. 
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4. Experimentation. 

4.1. Experiments Organization. 

Theoretical properties of new algorithms/methodologies must be practically 

demonstrated through extensive experimentations. 

The first step of each experimental phase is the definition of investigation 

objectives. In other words, it is necessary to exactly define which are the 

properties/capabilities that we want to check, and the experimentation protocol 

used in order to perform the analysis.  

In the previous chapters we stated that, from a theoretical point of view,  the 

MKL – CT algorithm should provide numerous advantages. The two principal 

applications of MKL – CT can be described as: 

1. Automatic kernel selection 

one of the most notable problem related to the use of kernel methods 

consists in the selection of a suitable kernel. This problem holds also 

when kernel methods are applied to survival analysis. The MKL – CT 

approach can be used in order to choose the best kernel (or the best 

combination of kernels) among a pre defined set of kernel functions. 

2. Resolving problems involving heterogeneous data. 

In several context the data to be analyzed are heterogeneous, that is, 

variables under study can be grouped in clusters. Each cluster has a 

proper origin, nature and semantic. MKL –CT allows a separate 

treatment of variables, i.e. different kernels can be applied to each group 

of variables. The kernels are then linearly weighted, and the weights are 

automatically chosen by the algorithm. Interestingly, kernel weights can 

be also used in order to judge the relevance of each variables group. 

 

The present chapter reports the experimentations conduced in order to 

demonstrate the effective validity of MKL – CT algorithm when applied to 

automatic kernel selection problems and to the analysis of heterogeneous data. 

Moreover, other MKL – CT properties have been experimented and discussed.  
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Computational results are organized in four subsection: 

1. Heterogeneous survival data: effects of the interaction among genetic 

and physiological factors in the ageing process. 

In this subsection a survival dataset including both genetic and 

physiological – clinical data is analyzed. The objective of the 

experimentation is to demonstrate the usefulness of MKL – CT for the 

analysis of heterogeneous data. 

2. CT – MKL on left, right, double and interval censored data. 

Four synthetic dataset were prepared and analyzed. Each dataset 

respectively presents left, right, double and interval censored outcomes. 

Objectives of these experimentations are the demonstration that MKL – 

CT algorithm can work on all types of censored data and the evaluation 

of MKL – CT performances for kernel selection problems. 

3. CT – MKL applied on real survival datasets  

In this subsection, four public survival datasets coming from “real 

world” studies are analyzed, in order to assess the validity of MKL – CT 

algorithm for kernel selection on real data. 

4. Comparison of MKL – CT and SVCR algorithms in terms of time spent 

during the training phase  

Finally, MKL – CT training times are reported and compared with the 

training times of SVCR. 

 

Even if the four subsections have diverse objectives and use different datasets,  

the experiments present some common elements. 

Firstly, for each dataset we used the same experimentation protocol (i.e. dataset 

subdivision in training and test set, number of cross validation etc.). The 

experimentation protocol is illustrated in the subparagraph 4.1.1. 

Moreover, MKL – CT algorithm performances were always compared to the 

results of two other algorithms:  

1. SVCR, i.e., a “single kernel” SVM model able to deal with censored data, 

see paragraph 1.3.2 and model (38) – (41) in paragraph 3.2 

2. Parametric Survival Models (PSM, paragraph 1.2). 
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In particular, the utilization of SVCR models allowed the comparison of the 

automatic kernel selection procedure performed by MKL – CT  with respect to the 

enumerative kernel selection method carried out for the SVCR models. 

Parametric survival models were used for comparing MKL –CT algorithm with 

the “classical” statistics methods for survival analysis. 

Finally, all the results were evaluated through two performance measures: the 

Average Absolute Error (AAE) and the Rank Score (RS). Both AAE and RS are 

largely discussed in the subparagraph 4.1.2. 

 

4.1.1. Experimentation protocol 

Each dataset was analyzed with the following protocol: 

1. Pre – processing: missing values (whether present) were simply 

substituted by mean values. Each dataset was subdivided into a training 

and a test set, with a ratio between the number of training and test 

instances depending by the size of the entire dataset. Training set values 

where successively normalize in the interval [0;1], while the test set was 

normalized according with the max/min values of training set attributes. 

Finally, training set was subdivided in five fold, each fold roughly 

containing the same ratio of censored and uncensored cases with respect 

to other folds. 

2. Training phase: MKL – CT algorithm, SVCR and PSM were 

experimented on each dataset. For each algorithm, the learning 

parameters were optimized on the training set through a cross validation 

procedure, using the subdivision in five folds carried out in the pre – 

processing phase. Among all the possible parameters configurations, the 

setting with the minimum AAE was chosen.  

PSM presents only one parameter, i.e. its parametric function, chosen 

among Gaussian, Normal, Log – Normal, Weibull, Logistic, Log – 

Logistic and Exponential functions.  
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MKL – CT and SVCR needed the definition of C and ε  parameters (see 

model (38) – (41) in paragraph 3.2 and Table 2), beyond the choice of 

the kernel function. Used kernels are summarized in Table 3.  

It is essential to note that SVCR models need to enumeratively evaluate 

each single kernel; so, given five possible values for the C parameter, 

three values for the ε  parameter, and the seventeen kernel summarized 

in Table 2, the SVCR algorithm required 255 cross validation 

procedures for each dataset. On the other hand, MKL – CT is able to 

automatically detect the best combination of kernel to be used, then the 

only parameters to be chosen are the C and ε  parameters, for a total of 

15 different configuration to be tested trough cross validation. This 

difference between the two algorithms brings to a dramatic dissimilarity 

in terms of total time spent during the training phase. 

3. Test phase: once determined the best parameters set, for each dataset and 

for each algorithm a final model on the training set were produced; the 

final model was evaluated on the test set using AAE and RS measures 

 

It is worth while to note that the afore described experimental protocol should 

provide unbiased estimation of the real performance of the tested algorithm, due 

to the combined use of the cross validation procedure and independent test sets.  

 

Table 2: values of parameters ε  and C 

Parameter Values 

C [0.01, 0.1, 1, 10, 100] 

ε  [0.01, 0.1, 1] 
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Table 3: Kernel configurations 

Kernel Name Formula Parameters 

Gaussian ( )












 −
−=

γ

2

exp,
ji
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xx
xxK  γ  = [0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50,100]  

Polynomial ( )
g

n

k

k

j

k

ijiP dxxxxK 







+⋅= ∑

=1

,  

d  = [1, 0] 

g  = [2, 3] 

Normalized4 = [true, false] 

 

4.1.2. Performance measure 

Performances evaluation is one of the main research streams in the Machine 

Learning field. The raison of the need of good performance measures is quite 

obvious; model selection is almost exclusively performed by comparing models 

performances, so it is necessary to define robust and reliable methods for 

measuring the validity of each model. 

Censored data show several difficulties during the performance evaluation phase. 

Usually, for a generic censored instance 
ix , we don’t know its real outcome 

iy , 

but only its upper and lower bounds iu  and il . However, a generic predictive 

algorithm will directly provide an estimation of 
iy , i.e. 

iŷ . The problem consists 

in estimating the closeness between iy  and iŷ  by using only iŷ , iu  and il . 

In order to overcome such problem, we used two different performance 

measures, namely the Absolute Average Error (AAE) and the Rank Score (RS) 

[11] 

The AAE takes in account the cases when the estimated label iŷ  lays out of the 

interval [ il ; iu ]. In other words, when iŷ  belongs to the interval [ il ; iu ] the 

predictions is correct (or, equivalently, the error is equal to zero). Otherwise, the 

error is equal to the difference between iŷ  and iu  (whether iŷ  > iu ) or between 
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iŷ  and 
il  (whether 

iŷ  < 
il ). More formally, the absolute error 

iAE  for the 

generic ith predictions can be calculated as: 

 

( ) ( )( )iiiii uyylAE −−= ˆ,0max,ˆ,0maxmax  

 

The final AAE is obtained by averaging the single iAE  on all the test instances. 

Interestingly, this measure can be used for any type of censored data, since AAE 

does not require any condition about the interval [ il ; iu ]. Unfortunately, censored 

data bring only limited information, and so the AAE can give only a limited help 

for evaluating the performance of a predictive algorithm. For example, let us 

considering the case of a right censored instance, i.e. the case +∞=iu . In this 

case, all the predictions laying in the interval [ il ; ∞+ ] will be equally correct, 

including those predictions that are unreasonable with respect to the problem 

under analysis.  

Even if there are not known methods able to overcome such problem, we can 

contemporarily use another performance measure, in order to judge the 

predictions quality under multiple perspectives. Of course, this second 

performance measure should provide information not redundant with respect to 

the AAE. 

Thus, we decided to use the Rank Score metric. RS is based on the same 

principles of the Area Under the Curve (AUC) measure. In order to introduce the 

RS, let us give two important definitions: 

1. two instances ix  and jx  are comparable if their respective intervals 

[ il ; iu ] and [ jl ; ju ] are not overlapping. 

2. two predictions iŷ  and jŷ  are swapped if their intervals are not 

overlapping and if one of the following conditions holds: 
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In practice, when comparability holds it is possible to give an order to the 

intervals. Meantime, two predictions are swapped when they are in the opposite 

order with respect to their respective interval.  

Now, we can define the RS metric as: 

 

eCaomparabl

SwappedComparable
RS

#

## −
=  

 

The RS metric ranges between 0 and 1; a value of 0.5 would mean random 

guess, while 1 means perfect ordering. It is worth while to note that RS shows the 

same characteristic of the already cited AUC metric. 

 

4.2. Heterogeneous survival data: effect of the interaction 

among genetic and physiological factors for the ageing 

process. 

In this section we analyze the effective advantages offered by the MKL – CT 

algorithm for the analysis of heterogeneous data. In particular, our objective is to 

determine whether the weighted combination of a set of kernel functions (as 

provided by the MKL – CT algorithm) is actually more effective than the use of a 

single kernel. 

 

4.2.1. Carolei dataset Description 

The Department of Cell Biology of the University of Calabria carried out an 

extensive monitoring of the healthy status of the elderly population in Calabria 

(Southern Italy). In this frame, a consistent number of phenotypic and genetic data 

associated to the rate and the quality of aging have been collected. Here and 

thereafter, this dataset will be named “Carolei dataset”. 

Carolei dataset includes 69–99 years old subjects (125 subjects, 45 males and 80 

females; median ages 80 and 81 years respectively). All the subjects were born in 

Calabria (southern Italy) and their ancestry in the region had been ascertained up 



Experimentation 

 46 

to the grandparents generation. The sample had been recruited in the frame of a 

study carried out in the municipality of Carolei in order to evaluate the quality of 

aging of the elderly people living in this municipality. In this study, phenotypic 

information were collected by using the ECHA questionnaires 

(http://biologia.unical.it/echa/results.htm). Vital status at 36 months after the visit 

was traced for 104 subjects (83.2%) of the sample through the register of the 

population of this municipality. All the subjects had given informed consent for 

studies on aging. 

 

Anthropometric and geriatric measures 

The physical examination included the record of height, weight, knee-to-floor 

height and waist and hip circumferences. Cognitive function was assessed by Mini 

Mental State Examination (MMSE) test [39]. Since the test is affected by age and 

educational status, the scores were normalized for these variables. Hand Grip 

strength was measured by using a handheld dynamometer (SMEDLEY’s 

dynamometer) while the subject was sitting with the arm close to his/her body. 

The test was repeated three times with the stronger hand. The maximum of these 

values was used in the analysis, after normalization for age, sex and height. 

Depression was assessed by the short form (15 items) of the Geriatric Depression 

Scale (GDS) [40]. Functional activity was assessed by using a modification of the 

Katz Index of ADL [41] and IADL index. The assessment was based on what the 

subject was able to do at the time of the visit. Health status was ascertained by 

medical visit carried out by a geriatrician, who also conducted a structured 

interview including questions on common diseases occurred in the past. 

 

DNA analysis  

DNA was prepared from blood buffy-coats according to standard procedures and 

stored at –20°C until use. APOE genotyping (alleles e2, e3, e4) was carried out 

according to the protocol described in [42]. SSADH genotyping (alleles C and T) 

was carried out according to the protocol described in [43]. 
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Final dataset 

The final Carolei dataset includes 104 subjects, described by 32 features (see 

Table 4). This dataset is a typical example of right censored survival data, i.e., the 

event under study is “death”, and the registered outcome consists of both time – to 

– event and censored status. Over 104 subjects, only 21 subject died during the 

observational period; the remaining samples are censored. 

Moreover, it should be noted that the dataset is evidently composed by two 

diverse groups of attributes: the first eighteen attributes describe the physiological 

status, while the remaining attributes are evidently related to the genetic profile of 

the subjects. Thus, the Carolei samples can be classified as “heterogeneous data”. 

 

Table 4: Carolei dataset description 

Attribute Name Attribute Description Values 

Age Age Real 

Sex Sex Binary 

Height height Real 

Weight weight Real 

ADL Activities of Daily Living Real 

IADL Instrumental Activities of Daily Living Real 

MMSE Minimal Mental State Examination Real 

HG 
Hand Grip (corrected for age and education 
level) 

Real 

GDS Geriatric Depression Scale Real 

SRHS Self Reported Health Status Real 

diabetes Presence of Diabetes Binary 

hypertension Presence of Hypertension Binary 

AP Presence of Angina Pectoris Binary 

HF Presence of Heart Failure Binary 

IHR Presence of Irregular Heart Rhythm Binary 

Heart Attack Previous Heart Attack Binary 

stroke Previous Stroke Binary 

cancer Presence of Cancer Binary 
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APOE_a22 Genotype a22 for SNP APOE Binary 

APOE_a33 Genotype a33 for SNP APOE Binary 

APOE_a23 Genotype a23 for SNP APOE Binary 

APOE_a34 Genotype a34 for SNP APOE Binary 

mtDNA_K Genotype K for mtDNA Binary 

mtDNA_T Genotype T for mtDNA Binary 

mtDNA_H Genotype H for mtDNA Binary 

mtDNA_U Genotype U for mtDNA Binary 

mtDNA_W Genotype W for mtDNA Binary 

mtDNA_X Genotype X for mtDNA Binary 

mtDNA_J Genotype J for mtDNA Binary 

mtDNA_OTHERS Other genotypes for mtDNA Binary 

SSADH_a12 Genotype a12 for SNP SSADH Binary 

SSADH_a11 Genotype a11 for SNP SSADH Binary 

Time to event 
Days from the visit to death or to the end of 
follow up 

Real 

Censored Censored status Binary 

 

4.2.2. Experiments on Carolei dataset 

The experiments performed on the Carolei dataset slightly differ from the  

experimentation protocol described in paragraph 4.1.1. The main differences 

regard the application of MKL – CT algorithm. As explained in paragraph 2.4, the 

MKL approach allows the application of each kernel to a diverse subset of 

attributes. Then, in order to separately treat the two attributes subgroups present in 

the Carolei dataset, we applied one sets of kernel functions to the physiological 

attributes group (variables 1 – 18) and another set of kernel functions to the 

genetic attributes group (variables 19 – 33). 

Both kernel functions sets were composed by a series of Gaussian kernels, (see 

Table 3). Polynomial kernels were not used, neither for the MKL – CT algorithm 

neither for the SVCR models. 

Moreover, we repeated the training phase twice, once using the cross validation 

procedure and then using the Leave – One – Out  (LOO) method. We preferred to 
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also use the LOO performances estimation procedure because the size of the 

dataset is particular small, and the results provided by the cross validation could 

still be biased. Finally, it must be reported that the Carolei training test was 

composed by eighty – two samples (sixteen uncensored), while the test set 

counted twenty – two cases (five uncensored). 

The results related to the Carolei dataset are reported in the following tables: 

 

Table 5: Carolei dataset, results obtained using the cross validation procedure 

 MKL – CT SVCR PSM 

AAE on training set 208,3594 208,3591 1957,7797 

RS on training set 0,5323 0,6454 0,3427 

AAE on test set 299,0423 299,2000 777,2715 

RS on test set 0,6842 NA
5
 0,6315 

 

 

Table 6: Carolei dataset, results obtained using the LOO procedure 

 MKL – CT SVCR PSM 

AAE on training set 211,6524 211,3852 1570,3545 

RS on training set 0,0621 0,0510 0,4625 

AAE on test set 298,9073 298,0151 777,2715 

RS on test set 0,6842 0,4632 0,6315 

 

The tables of results indicates that both the MKL – CT algorithm and the SVCR 

models have comparable results, while PSM provided larger errors. However, it is 

interesting to analyze the kernels selected by the two kernel methods. 

 

The SVCR algorithm selected a Gaussian kernel with 01.0=γ  (C = 0.1, ε =0.1) 

using the cross validation procedure, and a Gaussian kernel with 50=γ  (C = 10, 

ε = 0.01) by using the LOO method. 

 

The MKL – CT algorithm selected the same kernel combination by using the 

cross validation procedure and the LOO method. In particular, MKL – CT 

                                                
5 RS not calculable because all predictions were identical 



Experimentation 

 50 

selected only a Gaussian kernel with 01.0=γ  (C = 0.01, ε = 1). That is, the 

weight of the selected kernel was one while other kernels weights were zeros. The 

selected kernel belonged to the set of kernels applied to the subgroups of 

attributes describing the genetic profiles of the subjects.  

In other words, the MKL – CT approach provided results equivalent to SVCR 

results models by using only a part of the entire dataset, specifically by using the 

subgroup of genetic attributes. 

From this point of view, the MKL – CT performed a feature selection procedure, 

in the sense that kernels assigned to the irrelevant features received null weights.  

 

4.3. CT – MKL on left, right, double and interval censored 

data. 

In the present section we demonstrate that the MKL – CT algorithm is able to 

deal with left, right, double and interval censored data. In order to achieve such 

objective, we used a public regression dataset, namely the Fried dataset6. 

The uncensored outcome of the Fried dataset was modified in order to became 

censored; in particular, we censored the Fried dataset outcome four times, 

respectively creating a left censored, a right censored, an interval censored and a 

double censored dataset.  

In other words, we analyzed Fried dataset four times, each time manipulating 

the outcome in order to have a different type of censored outcome. 

We chose to modify a regression dataset because, as far as we know, there are 

not public datasets with interval or double censored outcomes. Moreover, the 

available left censored public datasets are usually composed by only a few 

covariates, and with a limited number of samples. 

Finally, the use of the same set of covariates with different censored outcomes 

allowed us to analyze the effect of different censoring mechanisms on the 

performance of the used algorithms. 

 

                                                
6 http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html 
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4.3.1. Fried dataset Description 

Fried dataset is composed by ten synthetic variables, 1021 ,, zzz K ; the values of 

each variable were randomly sampled from an uniform distribution. All variables 

range in the interval [0;1]. Beyond the ten covariates, Fried dataset includes also a 

deterministically generated outcome y : 

 

( ) ( ) ( )1,05105.020sin10 54

2

321 σπ +⋅+⋅+−⋅+⋅⋅⋅= zzzzzy  

 

where ( )1,0σ  is a normal distributed noise, with mean zero and standard 

deviation one. The total number of samples was 40768, from which we randomly 

sampled 1004 instances, subdivided between the training set (512 cases) and the 

test set (492 cases). The outcome of the training set were successively censored in 

four different way, as described below; test set outcomes were not modified. For 

each censoring mechanism, approximately 25% of training cases were randomly 

selected in order to be censored. 

 

Left censoring mechanism: 

For the generic ith selected case: 

 

a. 001.0−=il  

b. ( )[ ] iii
i

ii randuuuu ⋅−+= max  

 

where irand  is a random value in the interval [0;1] sampled by a uniform 

distribution. Note that 001.0−=il  is equivalent to −∞=il  for this dataset, 

because iy  is expected to be strictly positive. Meanwhile, iu  is modified by 

adding a random value, without exceeding the limit of ( )i
i

umax . 
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Right censoring mechanism: 

For the generic ith selected case: 

 

a. 
iii lrandl ⋅=  

b. ( )i
i

i uu max10 ⋅=  

 

Note that each 
iu  is set to a very big value, while each 

il  is decremented by a 

random factor. 

 

Double censoring mechanism: 

Approximately half of the selected instances was submitted to the left censoring 

mechanism, while the other half was submitted to the right censoring mechanism. 

 

Interval censoring mechanism: 

For the generic ith selected case: 

 

a. ( )[ ] iii
i

ii randuuuu ⋅−+= max  

b. iii lrandl ⋅=  

 

After the application of the censoring mechanisms, we obtained four distinct 

datasets, namely Fried_left, Fried_rigth, Fried_double and Fried_censored 

datasets. 

 

4.3.2. Experiments on Fried datasets 

The experiments on  Fried datasets followed the experimentation protocol 

described in paragraph 4.1.1.  

Following tables reassume analysis results. Performance are reported in terms of 

AAE and RS metrics; for the SVCR and MKL – CT algorithms chosen kernels are 

reported. In particular, for the MKL – CT algorithm only the kernels with non 

zero weight are reported. 
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Table 7: results on Fried_left dataset 

 MKL – CT SVCR PSM 

AAE on training set 1,07577 1,06218 1,5836 

RS on training set 0,8904 0,8891 0,8382 

AAE on test set 1,3001 1,2979 1,8696 

RS on test set 0,88859 0,88734 0,8308 

 

 

 

Table 8: kernel chosen by the MKL – CT and by the SCVCR algorithms (Fried_left dataset). 

MKL – CT 

Kernel name Kernel parameters Kernel weigth 

Gaussian γ  = 0.01 0.31665 

Gaussian γ  = 0.1 0.30733 

Polynomial 

d  = 1 

g  = 3 

Normalized= false 

0.37602 

SVCR 

Kernel name Kernel parameters Kernel weigth 

Gaussian γ  = 5 1 
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Table 9: results on Fried_right dataset 

 MKL – CT SVCR PSM 

AAE on training set 1,07527 1,05014 1,6134 

RS on training set 0,8929 0,8929 0,8321 

AAE on test set 1,2935 1,3439 1,8777 

RS on test set 0,88964 0,88673 0,8303 

 

 

Table 10: kernel chosen by the MKL – CT and by the SCVCR algorithms (Fried_right 

dataset). 

MKL – CT 

Kernel name Kernel parameters Kernel weigth 

Gaussian γ  = 0.01 0.17742 

Gaussian γ  = 0.1 0.43116 

Polynomial 

d  = 1 

g  = 3 

Normalized= false 

0.39142 

SVCR 

Kernel name Kernel parameters Kernel weigth 

Polynomial 

d  = 1 

g  = 3 

Normalized= false 

1 
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Table 11: results on Fried_double dataset 

 MKL – CT SVCR PSM 

AAE on training set 1,0678 1,02013 1,5990 

RS on training set 0,891 0,8952 0,8361 

AAE on test set 1,3084 1,3143 1,8751 

RS on test set 0,8872 0,88635 0,8294 

 

  

Table 12: kernel chosen by the MKL – CT and by the SCVCR algorithms (Fried_double 

dataset). 

MKL – CT 

Kernel name Kernel parameters Kernel weigth 

Gaussian γ  = 0.01 0.079276 

Gaussian γ  = 0.1 0.54662 

Polynomial 

d  = 1 

g  = 3 

Normalized= false 

0.3741 

SVCR 

Kernel name Kernel parameters Kernel weigth 

Gaussian γ  = 5 1 
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Table 13: results on Fried_interval dataset 

 MKL – CT SVCR PSM 

AAE on training set 1,07685 1,04481 1,6365 

RS on training set 0,894 0,8931 0,8384 

AAE on test set 1,299 1,2759 1,8753 

RS on test set 0,88978 0,89074 0,8301 

 

 

Table 14: kernel chosen by the MKL – CT and by the SCVCR algorithms (Fried_interval 

dataset). 

MKL – CT 

Kernel name Kernel parameters Kernel weigth 

Gaussian γ  = 0.01 0.20297 

Gaussian γ  = 0.1 0.41946 

Polynomial 
d  = 1 
g  = 3 

Normalized= false 

0.37756 

SVCR 

Kernel name Kernel parameters Kernel weigth 

Gaussian γ  = 5 1 

 

This results demonstrate that the MKL – CT algorithm and the SVCR models 

are quite similar in terms of results. In fact, looking at the results on the test set, 

we note that the MKL – CT algorithm shows better performances for the 

Freid_right, Freid_double, and Freid_left datasets (for the last one, only in terms 

of RS score). However, the SVCR model is slightly better for the Freid_interval 

dataset. Moreover, it should be noted that MKL – CT shows better results on the 

test set with respect to SVCR even if the results obtained through cross validation 

procedure seem to be favourable to the SVCR algorithm. So, we can state that 

MKL – CT algorithm sometimes shows a superior generalization capability with 

respect to SVCR models. Finally, it should be noted that PSM always present 

worse performances with respect to the other two methods. 
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4.4. CT – MKL applied on real survival datasets. 

The experiments presented in the paragraph 4.3 already demonstrated the utility 

of CT – MKL algorithm for solving the problem of automatic kernel selection, 

even dealing with different types of censored outcomes. 

In this section we will analyze the performance of MKL – CT algorithm when 

used for analyze “real world” survival dataset. In particular, we want to determine 

if the automatic kernel selection featured by the MKL – CT algorithm is superior 

with respect to SVCR enumerative kernel selection procedure.  

Thus, we selected four survival datasets, publicly available from the statistical 

software R7: Bfeed, Pneumon, Std8 and Nwtco9 datasets. All these dataset were 

collected during real medical studies. We applied the experimentation protocol 

described in paragraph 4.1.1 to each selected dataset; the results of related 

analysis are reported in the following paragraphs. 

 

4.4.1. Experiments on Bfeed dataset 

The Bfeed dataset is aimed to study whether mothers are able to complete the 

breast feeding of their children. Covariates describe the socio/economic status of 

the mothers, while the outcome is measured as the length of breast feeding period 

(weeks). Associated to each sample there is a censoring indicator that can assume 

the values ‘breast feeding completed’ (not censored) or ‘completion of breast 

feeding period not observed’ (censored). 

The total number of samples is nine hundreds twenty seven; the training set 

counts five hundreds samples, the test set the reaming ones. Relatively few 

instances are censored: the training set contains twenty two censored cases, the 

test set thirteen.  

The following tables contains a descriptions of dataset variables and the results 

of the experimentation. 

 

 

                                                
7 www.r-project.org 
8 The first three datasets are available in the R package ‘KMSurv’ 
9 The last dataset is available in the R package ‘Survival’ 
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Table 15: Bfeed dataset description 

Attribute Name Attribute Description Values 

Race Race of mother (1=white, 2=black, 3=other) Real 

Poverty Mother in poverty (1=yes, 0=no) Binary 

Smoke Mother smoked at birth of child (1=yes, 0=no) Binary 

Alcohol 
Mother used alcohol at birth of child (1=yes, 
0=no) 

Binary 

Age Age of mother at birth of child Real 

YBirth Year of birth Real 

YSchool Education level of the mother (years of school) Real 

Pc3mth Prenatal care after 3rd month (1=yes, 0=no) Binary 

Duration Duration of breast feeding, weeks Real 

Delta Indicator of completed breast feeding Binary 

 

 

Table 16: results on Bfeed dataset 

 MKL – CT SVCR PSM 

AAE on training set 11,36431 11,25862 11,2548 

RS on training set 0,5514 0,5487 0,5485 

AAE on test set 11,9239 11,8811 11,6722 

RS on test set 0,51653 0,51921 0,5301 

 

 

Table 17: kernel chosen by the MKL – CT and by the SCVCR algorithms (BFeed dataset). 

MKL – CT 

Kernel name Kernel parameters Kernel weigth 

Polynomial 
d  = 1 
g  = 3 

Normalized= false 

1 

SVCR 

Kernel name Kernel parameters Kernel weigth 

Polynomial 
d  = 1 
g  = 3 

Normalized= false 

1 
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Interestingly, best results were obtained by using the PSM approach (log – 

logistic parametric function). We can argue that data distribution can be 

effectively represented by a “simple” parametric approach; in such cases, the 

application of a more complex, non parametric approach (like SVCR or MKL – 

CT) often deals to worse results, as demonstrated by the obtained performances. 

 

4.4.2. Experiments on Nwtco dataset 

The Nwtco dataset collect data from an observational study about survival time 

of cancer patients. The training set counts one thousand samples, while the test set 

three thousands twenty eight cases, for a total of four thousands twenty eight 

samples. The number of censored cases is particularly elevated: 85% in the 

training set and approximately the same percentage (86%) in the test set. 

 

Table 18: Nwtco dataset description 

Attribute Name Attribute Description Values 

Instit Histology from local institution Binary 

Histol Histology from central lab Binary 

Stage Disease stage Discrete 

Study Study Discrete 

Age Age in months Real 

Edrel Time for relapse Real 

Rel Indicator for relapse Binary 

 

 

Table 19: results on Nwtco dataset 

 MKL – CT SVCR PSM 

AAE on training set 531,1934 530,6985 848,1591 

RS on training set 0,6411 0,6418 0,6792 

AAE on test set 458,681 459,2626 724,2196 

RS on test set 0,66614 0,6654 0,6941 
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Table 20: kernel chosen by the MKL – CT and by the SCVCR algorithms (Nwtco dataset). 

MKL – CT 

Kernel name Kernel parameters Kernel weigth 

Gaussian γ  = 0.01 0.0376 

Polynomial 
d  = 1 
g  = 3 

Normalized= false 

0.9624 

SVCR 

Kernel name Kernel parameters Kernel weigth 

Polynomial 
d  = 1 

g  = 3 

Normalized= false 

1 

 

We observe that the best results were obtained with the MKL – CT algorithm. 

SVCR models are only slightly worse, while PSM performances were decisely 

poorer. Interestingly, kernels chosen by MKL – CT algorithm include the same 

kernel chosen with the SVCR; that is, the common kernel is essential for the 

formulation of  precise prediction, but it is not enough. 

 

4.4.3. Experiments on Pneumon dataset 

The Pneumon dataset collects data from a cohort of children hospitalized for the 

occurrence of pneumonia disease. The dataset presents thirteen predictors and 

three thousands four hundreds seventy cases, subdivided among training set (one 

thousand cases) and test set (the remaining samples). Also this dataset presents a 

very elevated number of censored cases: 97.8% in the training set and 98% in the 

test set. 

 

Table 21: Pneumon dataset description 

Attribute Name Attribute Description Values 

Chldage Age child had pneumonia, months Real 

Mthage Age of mother, years Binary 

Urban Urban environment for mother Binary 

Alcohol Alcohol use during pregnancy Binary 
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Smoke Smoke during pregnancy Binary 

Region Region of the country Discrete 

Poverty Mother at poverty level Binary 

Bweight Normal birthweight Binary 

Race Race of the mother Discrete 

Education Education of the mother (years of school) Real 

Nsibs Number of siblings of the child Real 

Wmonth Month the child was weaned Real 

Sfmonth Month of the child on solid food Real 

Agepn 
Time – to – event (age the child in hospital for 
pneumonia, months) 

Real 

hHospital Hospitalization for pneumonia  Binary 

 

 

Table 22: results on Pneumon dataset 

 MKL – CT SVCR PSM 

AAE on training set 0,06005 0,05885 0,1216 

RS on training set 0,8309 0,8529 0,9635 

AAE on test set 0,0752 0,0751 0,1777 

RS on test set 0,87832 0,8902 0,8630 

 

 

Table 23: kernel chosen by the MKL – CT and by the SCVCR algorithms (Pneumon dataset). 

MKL – CT 

Kernel name Kernel parameters Kernel weigth 

Polynomial 
d  = 1 
g  = 3 

Normalized= false 

0.9624 

SVCR 

Kernel name Kernel parameters Kernel weigth 

Gaussian γ  = 10 0.0376 

 

In this case, the performance of the two kernel methods are highly comparable, 

while the errors reported by PSM algorithm are clearly higher. 
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4.4.4. Experiments on Std dataset 

Std dataset is related to the study of the recurrence of a particular genitalia 

infection.  It contains eight hundreds seventy seven samples; the training set 

includes five hundreds cases, the remaining samples form the test set. The 

presence of censored case is significative: 72% of cases are censored in the 

training set, and 59% in the test set. 

 

Table 24: Std dataset description 

Attribute Name Attribute Description Values 

Race Race (W=white, B=black) Real 

Marital 
Marital status (D=divorced / separated, M=married, 
S=single) 

Discrete 

Age Age Real 

Yschool Years of schooling Real 

Iinfct 
Initial infection (1= gonorrhea, 2=chlamydia, 
3=both) 

Discrete 

Npartner Number of partners Real 

Os12m Oral sex within 12 months (1=yes, 0=no) Binary 

Os30d Oral sex within 30 days (1=yes, 0=no) Binary 

Rs12m Rectal sex within 12 months (1=yes, 0=no) Binary 

Rs30d Rectal sex within 30 days (1=yes, 0=no) Binary 

Abdpain Presence of abdominal pain (1=yes, 0=no) Binary 

Discharge Sign of discharge (1=yes, 0=no) Binary 

Dysuria Sign of dysuria (1=yes, 0=no) Binary 

Condom Condom use (1=always, 2=sometime, 3=never) Discrete 

Itch Sign of itch (1=yes, 0=no) Binary 

Lesion Sign of lesion (1=yes, 0=no) Binary 

Rash Sign of rash (1=yes, 0=no) Binary 

Lymph Sign of lymph (1=yes, 0=no) Binary 

Vagina Involvement vagina at exam (1=yes, 0=no) Binary 

Dchexam Discharge at exam (1=yes, 0=no) Binary 

Abnode Abnormal node at exam (1=yes, 0=no) Binary 
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Time Time to reinfection Real 

Rinfct Reinfection (1=yes, 0=no) Binary 

 

 

 

Table 25: results on Std dataset 

 MKL – CT SVCR PSM 

AAE on training set 205,1019 202,38124 232,0005 

RS on training set 0,5461 0,5651 0,5659 

AAE on test set 210,0401 207,5616 238,2922 

RS on test set 0,59116 0,59455 0,5563 

 

 

Table 26: kernel chosen by the MKL – CT and by the SCVCR algorithms (Std dataset). 

MKL – CT 

Kernel name Kernel parameters Kernel weigth 

Polynomial 
d  = 1 
g  = 3 

Normalized= false 

0.9624 

SVCR 

Kernel name Kernel parameters Kernel weigth 

Gaussian γ  = 10 0.0376 

 

The Std dataset is the only case where the performances of MKL – CT 

algorithm are sensibly worse than the performances of SVCR models. So, this 

case represent a precious counterexample in order to define the limits of MKL – 

CT algorithm. 

 

4.5. Comparison of MKL – CT and SVCR algorithms in 

terms of time spent during the training phase. 

Generally, training a single MKL – CT model requires more time than training a 

single SVCR model. However, as we explained in paragraph 4.1.1, the parameters 

optimization phase requires considerably less trials with the MKL – CT algorithm 
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than with the SVCR algorithm. So, we expect that MKL – CT algorithm will be 

faster than SVCR during the parameters optimization phase. Table 27 reports the 

time spent in order to optimize the parameters for each dataset. It is evident that 

the MKL – CT algorithm allowed a considerable saving of time, being up to 

twenty times faster. The only exception is given by the Std dataset; it should also 

noted that the MKL – CT algorithm provided the worst result just when applied to 

the Std dataset. Further studies are needed in order to fully understand which are 

the particularities of the Std dataset that determine the poor performances of MKL 

– CT algorithm, both in terms of training time and performances. 

 

Table 27: parameters optimization times (in seconds) 

 MKL – CT SVCR 

Bfeed 560 4794,5 

Nwtco 341,6 468,6 

Pneumon 361,3 943 

Std 2645,8 2013,7 

Freid_Left 5390,7 79954,6 

Freid_Right 5226 103841,4 

Freid_Double 5274,2 107081,3 

Freid_Interval 5346,1 107708 

 

4.6. Critical discussion of results. 

At the beginning of the experimentation phase, we planned to check the validity 

of two important features of MKL – CT algorithm: the automatic kernel selection 

procedure, and the ability of dealing with heterogeneous types of data. 

Regarding the automatic kernel selection procedure, the results indicated that the 

MKL – CT algorithm provides better results than the single kernel SVCR, even if 

not in all cases. That is, for some dataset the MKL – CT algorithm provides the 

best results (see Fried_right, Fried_double, Nwtco dataset), while for some other 

datasets the SVCR generates the best results (Fried_interval, Bfeed, Pneumon, Std 

datasets). Moreover, both algorithms give approximately the same results at least 

in one case (Fried_left dataset). 

However, it should be considered that: 
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1. even when the performance of MKL –CT algorithm are worse than the 

performances of SVCR models, the loss in terms of generalization 

capabilities is very small; 

2. the MKL – CT automatic kernel selection procedure is highly faster than 

the enumerative kernel selection procedure usually utilized with single 

kernel SVM model (like the SVCR). 

 

Then, we can state that the MKL – CT algorithm is a valid alternative to the 

SVCR models, because it is able to provide comparable results in less time. 

 

The only exception is represented by the Std dataset; MKL – CT algorithm 

provide worse results in more time, when applied to the Std dataset. Further 

researches could explain the reason of such behaviour. 

 

Regarding the ability of dealing with dataset composed by heterogeneous 

variables, we can state that the experimentation on Carolei dataset provided a 

proof of MKL – CT algorithm potential usefulness. In fact, the results of the 

analysis on Carolei dataset demonstrated that only the genetic variables were 

relevant for the problem under study. This kind of information is particularly 

relevant in the analysis of complex phenotypes, because in such analysis it is 

necessary to evaluate the weight of medical – clinical factors against the influence 

of the individual genetic profile. Of course, other dataset with heterogeneous 

covariates should be studied in order to stronger asses the effective capabilities of 

MKL – CT algorithm. 
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Conclusions 

In the present thesis work we unified two known SVM approaches, namely the 

Support Vector Regression for Censored Target and the Multiple Kernel Learning 

approach. The resulting model, MKL – CT, offers the advantages of both its 

predecessors, that is the ability o dealing with censored data and the automatic 

selection of the optimal kernel function. The implementation of MKL – CT was 

carried out by modifying an open source code of known reliability.  

The experimentation phase provided precious information about the effective 

usefulness of our model. In particular, we compared the performances of MKL – 

CT algorithm with the performances of the SVCR model (note that MKL – CT 

can be thought as the “multiple kernel” version of SVCR) and with the results of 

the Parametric Survival Models, a widely known and used class of statistical 

methods for the analysis of censored data. 

While PSM performances were almost inferior to the performance of the two 

kernel methods (with a unique, yet significative exception), the performances of 

SVCR and MKL – CT models were largely comparable. 

Thus, given a survival analysis task, we can not “a priori” state which one 

approach will ensure the best results, among SVCR and MKL – CT. 

However, there are two issues that should be considered: firstly, the time 

employed by the MKL – CT algorithm during the parameters optimization phase 

is dramatically lower than the time spent by the SVCR models for the same task. 

Secondly, even when the performances of MKL – CT algorithm are not better 

then the performances of SVCR models, the differences between the two 

approach are minimal. 

Thus, we argue that the MKL – CT algorithm is a valid alternative to the use of 

the common “single kernel” SVCR model, since it can provide comparable results 

in a lower time. This argument is valid especially when huge datasets must be 

analyzed or when several (e.g. hundreds) different kernel functions must be tested. 

Finally, it must be noted that the MKL – CT algorithm potentially offers great 

advantages for the analysis of censored dataset with heterogeneous covariates. In 

the single experiments we performed on a heterogeneous dataset, we found that 
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the MKL – CT algorithm was able to provide the same performances of SVCR 

models by using only a part of the whole dataset. In particular, the MKL – CT  

algorithm indicated that the only relevant variables were the attributes related to 

the genetic profiles. That is, the MKL – CT algorithm demonstrated that only the 

genetic variables were significative for the specific problem under study. 

Our further researches will deeper investigate the effective usefulness of MKL – 

CT algorithm for the analysis of heterogeneous datasets, with a particular regard 

to the potential applications in the study of complex phenotypes. 
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