
Models and Methods for the
Constrained Shortest Path
Problem and its variants

PhD thesis in

Operational Research - MAT/09

Coordinator Supervisor

Prof. Lucio Grandinetti Prof.ssa Francesca Guerriero

Candidate

Luigi Di Puglia Pugliese

November 2010

Modelli e Metodi per il Problema
del Cammino Minimo Vincolato e

sue varianti

Tesi di dottorato in

Ricerca Operativa - MAT/09

Coordinatore Supervisore

Prof. Lucio Grandinetti Prof.ssa Francesca Guerriero

Candidato

Luigi Di Puglia Pugliese

Novembre 2010

II

Summary in Italian

Il lavoro di tesi sintetizza i risultati piú importanti delle attivitá di
ricerca svolte durante i tre anni del corso di dottorato in Ricerca
Operativa. Tali attivitá hanno riguardato la definizione di modelli
e metodi innovativi per il problema del cammino minimo vincolato
(Constrained Shortest Path Problem, cSPP).

Tale problema modella diverse applicazioni reali ed inoltre, i vin-
coli possono essere di varia natura. Ad esempio, il percorso puó es-
sere vincolato ad includere specifici nodi, o é necessario includere un
certo numero di nodi, oppure ancora includere nodi solo se all’interno
di una pre-specificata copertura. Altre applicazioni ricadono nella
gestione della rete ferroviaria e nei sistemi di gestione degli aeromo-
bili militari. Inoltre, il cSPP si presenta anche come sotto problema
quando approcci a generazione di colonna vengono utilizzati per risol-
vere alcuni ben noti problemi come la pianificazione del personale di
bordo, problemi di routing di aeromobili a lungo raggio e problemi di
instradamento dei veicoli con vincoli aggiuntivi (Constrained Vehicle
Routing Problem).

Sulla base delle considerazioni precedenti, in questo lavoro sono
state studiate le seguenti varianti del problema:

• il cammino minimo con vincoli sulle risorse (resource constrained
shortest path problem, RCSPP);

• il cammino minimo con cammini probiti (shortets path problem
with forbidden path, SPPFP);

III

IV

• il cammino di minimo costo per unitá di tempo di tipo elementare
con vincoli di finestre temporali (linear fractional elementary short-
est path problem with time windows, LFESPPT W);

• il cammino minimo di tipo elementare con vincoli sulle risorse (re-
source constrained elementary shortest path problem,RCESPP);

• il cammino minimo multi obiettivo con metriche di varia natura
e vincoli di tipo soft;

• il cammini minimo in presenza di cicli negativi.

Per ogni problema sono stati definiti approcci innovativi di soluzione,
sono state analizzate le proprietá teoriche dei metodi proposti e sono
state validate le loro prestazioni in termini di efficienza ed efficacia
mediante una articolata fase sperimentale.

Il presente lavoro é organizzato in 9 capitoli. Nel seguito viene
riportata una breve descrizione del contenuto di ogni capitolo. Una
introduzione al presente lavoro é data nel capitolo 1. Nel capitolo 2
viene affrontato il RCSPP . In particolare, un innovativo metodo di
risoluzione é proposto. Inoltre, procedure per la determinazione di
lower e upper bounds sul valore ottimo di funzione obiettivo sono def-
inite. In questo lavoro é stata introdotta una nuova formulazione per
il RCSPP . Tale formulazione si basa sul concetto di reference point
(punto di riferimento). In altre parole, la soluzione ottima é determi-
nata massimizzando una “achievement scalarizing function”. Questo
tipo di funzioni misurano la distanza di una soluzione da un punto
di riferimento. Variando il punto di riferimento, varia la soluzione ot-
tenuta. Nel lavoro svolto é stata considerata come misura di distanza
dal punto di riferimento la metrica di Chebichef. Partendo dalla for-
mulazione proposta, é stato definito un approccio di risoluzione che
iterativamente esplora diverse aree dello spazio di ricerca. La dimen-
sione di tali aree e la loro dislocazione spaziale é definita dal punto di
riferimento.

V

Sia il modello matematico che il metodo di risoluzione sono stati
studiati dal punto di vista teorico. Risultati sulla correttezza del mod-
ello e sulla convergenza all’ottimo del metodo sono stati ricavati ed
esposti.

La strategia di risoluzione é stata implementata in ambiente java
e testata su reti benchmark presenti nella letteratura. La parte speri-
mentale é stata condotta per valutare sia il comportamento dell’approccio
proposto e sia l’efficienza dello stesso rispetto allo stato dell’arte. In-
fatti, nella fase computazionale sono stati considerati anche i metodi
piú efficienti apparsi recentemente in letteratura. In particolare, sono
stati vagliati sia l’approccio risolutivo basato sulla programmazione
dinamica ([22]), sia la strategia di risoluzione basata su metodi per la
determinazione dei k cammini minimi ([125]).

I risultati ottenuti sono molto promettenti. Il metodo risolutivo
proposto risulta essere piú efficiente dei due algoritmi considerati. In-
oltre, i modelli ed i metodi sviluppati per determinare valori di upper
bounds, migliorano i risultati ottenuti in [22] e forniscono la soluzione
ottima per tutte le reti considerate in [125].

I capitoli 3 e 4 sono dedicati al SPPFP . Di tale problema é stata
analizzata sia la variante elementare che quella non elementare. É utile
osservare che in entrambi i casi il problema é definito su grafi orientati
con costi non negativi. La necessitá di dover affrontare anche il caso
elementare (ESPFP) deriva dal fatto che la soluzione del SPPFP
puó contenere dei cicli. Tali cicli sono presenti nel cammino ottimo
al fine di interrompere la sequenza d’archi proibita ed ottenere una
soluzione ammissibile. Nel capitolo 3 si presentano i risultati ottenuto
nella fase di studio relativa al SPPFP . Il primo lavoro sul SPPFP é
apparso in letteratura nel 2005 ([138]). Gli autori ne hanno dato una
descrizione formale ma non hanno sviluppato alcun modello matem-
atico per la sua rappresentazione. Nello stesso articolo viene proposto
un approccio risolutivo basato sulla modifica del grafo originario, ef-
fettuata considerando l’intero insieme dei cammini proibiti. Sul nuovo

VI

grafo basta applicare un qualsiasi algoritmo del cammino minimo per
determinare una soluzione che non contiene alcun cammino proibito.
É utile osservare che l’approccio proposto in [138] é un algoritmo poli-
nomiale. Un ulteriore contributo, é stato dato in [30] in cui gli autori
propongono delle piccole modifiche all’algoritmo proposto in [138] che
permettono di ottenere un certo margine di guadagno in termini com-
putazionali. L’approccio proposto, invece, é di tipo pseudo polinomi-
ale e si basa sulla formulazione dinamica del problema. In particolare,
é stato esteso l’algoritmo di Desrochers [50] al caso preso in esame e di-
verse versioni sono state definite. Lo studio computazionale ha messo
in evidenza che in pratica gli approcci proposti risultano essere piú
efficienti dell’algoritmo polinomiale ([138]) e della versione migliorata
([30]). Inoltre, le versioni definite risultano piú efficienti dell’algoritmo
di base proposto da Desrochers ([50]).

La versione elementare del problema del cammino minimo con
cammini proibiti non é stata studiata nella letteratura scientifica. Tale
problema é stato approfondito ed i risultati sono riportati nel capitolo
4. In particolare, é stato sviluppato un modello matematico per la
rappresentazione del problema e sono stati definiti due approcci di
risoluzione: un metodo di Branch e Bound ed un approccio di pro-
grammazione dinamica. Nel primo metodo di soluzione il problema
viene rilassato eliminando i vincoli sui cammini proibiti in modo da
risolvere un classico problema del cammino minimo. Ad ogni sot-
toproblema viene (o vengono) inserito (o inseriti) il (o i) vincolo (o
vincoli) violato (o violati) nella soluzione inammissibile del problema
padre, grazie ad appropriate strategie di branching. Tale strategia di
risoluzione é stata definita per il caso singola origine singola desti-
nazione. Successivamente l’approccio di risoluzione é stato esteso al
caso singola origine a tutte le altre destinazioni generalizzando i risul-
tati teorici ottenuti dallo studio del primo problema. Inoltre, al fine
di migliorare le performance dell’algoritmo proposto é stata definita
una procedura euristica che consente di costruire una soluzione am-
missibile che viene utilizzata per inizializzare il metodo e sono stati in-

VII

trodotti lower bounds con lo scopo di individuare nodi dell’albero non
promettenti. Il secondo approccio di risoluzione si basa sulle program-
mazione dinamica. In particolare, metodi a correzione di contrassegno
sono stati definiti con diverse strategie di estrazione sia di nodi che di
etichette. Gli approcci proposti consentono di risolvere il caso singola
origine e tutte le destinazioni e di conseguenza anche il caso a sin-
gola destinazione. La fase di test é stata condotta in maniera tale da
considerare due casi limite: 1) tutti i vincoli rendono inammissibile la
soluzione del rilassato; 2) una porzione ridotta di vincoli rende inam-
missibile il problema rilassato. Dai risultati ottenuti si evince che per
il primo caso, il secondo metodo risulta essere nettamente superiore in
termini di efficienza computazionale. Per il secondo set di istanze, la
bontá degli algoritmi dipende dalle dimensioni delle reti. In partico-
lare, per reti di piccola dimensione, l’approccio basato sul metodo del
branch and bound risulta piú veloce del metodo basato sulla program-
mazione dinamica. Per le istanze con numero di nodi maggiore di 400
e numero di archi maggiore di 5000, il secondo metodo di soluzione é
piú efficiente.

Nel capitolo 5 viene presentato il lavoro svolto relativamente al
LFESPPT W . Tale problema é definito su grafi con informazione sia
sul costo che sul tempo di attraversamento degli archi. L’obiettivo é
la minimizzazione del costo per unitá di tempo da un nodo origine
ad un nodo destinazione. É evidente che la definizione della funzione
obiettivo implica la possibilitá di ottenere una soluzione ciclica.

Inoltre, ad ogni nodo della rete é associata una finestra temporale
che indica il lasso di tempo in cui tale nodo puó essere visitato. I vincoli
di finestra temporale sono di tipo hard, in altre parole non é ammessa
alcuna attesa ed inoltre non é possibile visitare il nodo se il tempo di
arrivo allo stesso supera il tempo massimo ammissibile di servizio.

Il problema é stato formulato con un modello di programmazione
lineare binaria. L’approccio di risoluzione proposto si basa sullo schema
algoritmico a correzione di contrassegno, in cui un insieme di etichette

VIII

multi dimensionali é associato a ciascun nodo della rete. Sono stati
sviluppati metodi di tipo forward e bi-direzionale, che considerano di-
verse strategie di estrazione sia di etichette che di nodi. Accanto al
ben noto criterio di dominanza paretiana, che in questo contesto é
stato opportunamente modificato, si é definito un nuovo criterio di
dominanza. Tale criterio é applicabile solo dopo l’esecuzione di una
innovativa strategia di preprocessamento.

É utile osservare che la letteratura scientifica non aveva ancora
considerato tale problema. La fase di test é stata condotta con lo
scopo di valutare le diverse versioni e l’efficienza dei criteri specifici
di dominanza introdotti per il LFESPPT W . I risultati sono stati
collezionati sia su reti random, cicliche ed acicliche e sia sulle reti
benchmark di Solomon.

Per quanto riguarda il RCESPP , nela capitolo 6 viene riportata
una dettagliata analisi dello stato dell’arte, enfatizzando le strategie
di risoluzione. Due sono i contributi di tale lavoro. In primo luogo
viene proposto un algoritmo prototipo dal quale é possibile derivare
i metodi al momento piú efficienti per la risoluzione del RCESPP .
Inoltre, per la prima volta, vengono analizzati e comparati i metodi
piú efficienti proposti nella letteratura scientifica per la risoluzione del
RCESPP . Le strategie di risoluzione sono apparse nello stesso pe-
riodo e si basano su concetti simili. Il lavoro é stato anche quello
di analizzare i punti in comune degli algoritmi e di evidenziarne gli
aspetti connotativi di ciascuno. É utile osservare, che i metodi di
risoluzione sono stati testati dai rispettivi autori su reti differenti. Nel
lavoro presentato in questa tesi, la fase di test é stata unificata e gli
algoritmi sono stati implementati utilizzando le stesse strutture dati.
In questo modo é stato possibile fare un confronto su un piú ampio
set di problemi test. I risultati ottenuti mostrano una non dominanza
fra gli algoritmi. Inoltre, interessanti considerazioni sono state rica-
vate in merito allo sforzo computazionale degli algoritmi rispetto alla
variazione della regione ammissibile.

IX

Nel capitolo 7 si presentano i risultati ottenuti relativamente alla
linea di ricerca che ha riguardato l’analisi multi obiettivo e la definizione
di algoritmi di instradamento vincolato su reti di telecomunicazione.
Il problema che si é risolto é quello di determinare la soluzione che
piú si avvicina ai desideri del “decision maker” nel caso in cui impor-
tanti parametri che caratterizzano le reti di telecomunicazione quali
costo, ritardo, jitter, bandwidth, packet loss ed error rate sono con-
siderati. In particolare, ciascuno di questi parametri, non necessari-
amente di tipo additivo, é vincolato a mantenersi in un determinato
intervallo/range, che il decisore esprime come preferenze. É utile os-
servare che tale problema non é mai stato affrontato nella letteratura
scientifica, nonostante risulta essere di elevata importanza pratica.
Infatti la definizione dello stesso é stata possibile grazie alla visita
effettuata al National Institute of Telecommunication di Varsavia. Il
problema é stato formulato considerando il concetto di reference point.
In tale modo si é potuto modellare i range per ciascun criterio come
vincoli di tipo soft. In altre parole, se una soluzione tale per cui ciascun
criterio rientri nel range specificato dal “decision maker” non esiste,
il metodo restituisce una soluzione tale per cui ciascun criterio sia il
piú vicino possibile all’intervallo dato. Il modello matematico é risolto
attraverso un approccio risolutivo che fornisce la soluzione ottima al
problema, ovvero la soluzione che piú si avvicina alle preferenze del
decision maker. In particolare, l’ottimalitá della soluzione ammissi-
bile, determinata attraverso un algoritmo a correzione di contrassegno
viene valutata attraverso uno schema di branching che assicura una
esplorazione esaustiva dello spazio di ricerca. Sono state analizzate le
proprietá teoriche del metodo proposto. Inoltre, una estesa fase com-
putazionale é stata condotta con lo scopo di valutare le performance
dell’algoritmo proposto rispetto a diversi scenari. In altre parole, sono
state considerate sia reti random, sia reti complete e sia reti a griglia.
Inoltre, diverse istanze sono state ricavate simulando diverse scelte del
decision maker. I risultati mostrano come l’approccio proposto risolve
tutte le istanze generate in tempi ragionevoli e le prestazioni dello

X

stesso dipendono molto dall’ampiezza del range definito per ciascun
criterio.

Nel capitolo 8 il problema del cammino minimo elementare é con-
siderato. Cicli di costo negativo sono presenti nel grafo. L’obiettivo é
di determinare i cammini di costo minimo aciclici da un nodo sorgente
a tutti gli altri nodi del grafo. Per tale problema é stato sviluppato
un modello matematico che é costituito dai vincoli di conservazione
del flusso classici della rappresentazione matemetica del problema non
vincolato ed i vincoli di eliminazione dei sotto cicli. Tre differenti
strategie di risoluzione sono state definite. L’idea alla base dei metodi
proposti é la determinazione del minor numero di cammini che é nec-
essario determinare per ciascun nodo al fine di ottenere i cammini
minimi aciclici per tutti i nodi del grafo. Il primo approccio consider-
ato si basa sulla formulazione dinamica del problema. In particolare,
ulteriori risorse fittizie vengono aggiunte ai nodi dai queli si generano
i cicli di costo negativo. Le risorse fittizie mentengono traccia della
visita del nodo a cui sono associate lungo un qualsiasi cammino. Il
secondo metodo si basa sulla determinazione dei primi k cammini min-
imi. In tale contesto il valore di k differisce da nodo a nodo ed inoltre
tale parametro é una variabile. L’ultimo approccio é un metodo di
Branch e Bound. Tale strategia di risoluzione si basa sulla determi-
nazione di upper bounds. Ogni qualvolta un ciclo di costo negativo
viene individuato, un certo insieme di sotto grafi viene generato at-
traverso appropriate strategie di branching. In tali sotto grafi il ciclo
individuato viene eliminato.

I metodi proposti sono stati analizzati dal punto di vista teorico e
sono stati comparati considerando la complessitá computazionale nel
caso peggiore.

Nel capitolo 9 vengono riportate le conclusioni del lavoro.

Contents

I Introduction 3

1 Introduction 5

1.1 Motivation . 5

1.2 Goals . 7

1.3 Contribution . 7

1.4 Organization of the thesis 8

II Constrained Shortest Path 11

2 Reference point based solution approach for the re-
sources constrained shortest path problem 13

2.1 Introduction . 14

2.2 Problem formulation 19

2.3 Proposed solution approach 23

2.3.1 Upper and Lower bounds 27

2.4 Numerical experiments 29

2.4.1 Test Problems 30

2.4.2 Computational results 31

2.4.3 Final remarks 41

XI

CONTENTS XII

2.5 Conclusions and future work 41

3 Dynamic programming approaches to solve the short-
est path problem with forbidden paths 45

3.1 Introduction . 46

3.2 Problem definition . 50

3.3 Solution approach . 51

3.3.1 State selection method 57

3.3.2 Node selection method 59

3.4 Computational Experiments and Discussion 63

3.4.1 Test Problems 64

3.4.2 Test Codes . 66

3.4.3 Computational Results on sprand Networks . . 68

3.4.4 Computational Results on Complete Networks . 74

3.4.5 Comparison with the state-of-art algorithms . . 78

3.5 Conclusions . 80

4 Shortest path problem with forbidden paths: the ele-
mentary version 93

4.1 Introduction . 94

4.2 Modelling the ESPFP 97

4.3 Solution Approaches for the ESPFP 99

4.3.1 Branch & Bound Approaches 99

4.3.2 Dynamic Programming Approaches 110

4.4 Computational Experiments 122

4.4.1 Test Problems 123

4.4.2 Numerical Results of Branch & Bound Methods 125

XIII CONTENTS

4.4.3 Numerical Results of Dynamic Programming Ap-
proaches . 133

4.4.4 Comparison . 134

4.5 Conclusions . 140

5 Multi-dimensional labelling approaches to solve the lin-
ear fractional elementary shortest path problem with
time windows 143

5.1 Introduction . 144

5.2 Mathematical formulation 148

5.3 The proposed solution approaches 151

5.3.1 Label fathoming rules 153

5.4 Label selection methods 158

5.4.1 Forward label selection method 158

5.4.2 Backward label selection method 159

5.4.3 Bi-directional label selection method 162

5.4.4 Label selection strategies 169

5.5 Node selection methods 174

5.5.1 Froward node selection method 175

5.5.2 Backward node selection method 176

5.5.3 Bi-directional node selection method 176

5.5.4 Node selection strategies 177

5.6 Computational experiments 181

5.6.1 Numerical results 183

5.7 Conclusions . 192

6 A computational study of the resolution methods for

CONTENTS XIV

the resource constrained elementary shortest path prob-
lem 211

6.1 Introduction . 212

6.2 State of the art . 214

6.3 Problem definition and notation 219

6.4 Prototype framework 222

6.5 The decremental state-space relaxation 223

6.6 The general state-space augmenting algorithms 226

6.7 Algorithm comparison 228

6.8 Computational experiments 231

6.8.1 Test problems 231

6.8.2 Results on set S1 233

6.8.3 Results on set S2 239

6.9 Conclusion and final remark 245

7 Modelling and solving a multi-criteria path problem
with multiple metrics and soft constraints 247

7.1 Introduction . 248

7.2 Problem formulation 252

7.3 Solution Approach . 257

7.3.1 Branch and Bound approach 259

7.4 Computational experiments 264

7.4.1 Test problems 265

7.4.2 Experimental results 267

7.5 Conclusions . 270

8 Solution Approaches for the Elementary Shortest Path

1 Chapter 0

Problem 277

8.1 Introduction . 278

8.2 Notations and Definitions 281

8.3 Proposed Solution Approaches 286

8.3.1 Dynamic Multi-dimensional Labeling Approach 286

8.3.2 Labeling Approach based on the k Shortest Path
Method . 292

8.3.3 Branch and Bound 294

8.3.4 Theoretical comparison 297

8.4 Conclusions . 298

III Conclusions 301

9 Conclusions 303

CONTENTS 2

Part I

Introduction

3

Chapter 1

Introduction

In this thesis we present the main results achieved in the three years
of the PhD program. The research activities have been focused in
developing and designing innovative models and methods for the Con-
strained Shortest Path Problem (cSPP , for short).

1.1 Motivation

The cSPP is an extension of the Shortest Path Problem (SPP , for
short) in which the optimal path is constrained to respect some fea-
sibility criterion. While the former is easy to solve, the introduction
of further constraints makes the SPP a NP -hard problem. Despite
to its theoretical complexity and for its practical importance, many
studies have been carried out in order to efficiently solve the cSPP .
Indeed, the SPP and its constrained counterpart are used to model
several real-life applications. Several constrained versions of the basic
SPP exist. For example, the path may be constrained to include spe-
cific nodes, or be constrained to include a specific number of nodes, or
include nodes within a pre-specified covering distance of every node
in the network.

Another type of constraint is that establishes an upper limit on
the sum of some other arc cost. This problem is known as Weight-

5

1.1. Motivation 6

Constrained Shortest Path Problem (WCSPP , for short). It is im-
portant to point out that when more than one of such a constraints
are included, the scientific literature refers to the problem as Resource
Constrained Shortest Path Problem (RCSPP , for short).

The WCSPP and the RCSPP apply to a number of real-world
situations, i.e. railroad management, military aircraft management
systems, routing in road networks. The WCSPP and the RCSPP
also arise in practice when column-generation approaches are used to
solve some well-known problems like dated crew scheduling, day-of-
operations rescheduling activities, or long-haul aircraft routing prob-
lems.

When the column-generation approach is used to solve the Vehicle
Routing Problem with additional Constraints, the pricing problem is
formulated as a RCSPP . In this case, the most common constraints
are related to the capacity of the vehicles and to specific requests of the
costomer, that is time windows can be associated with each node and
refer to the time renge in which the related constumers can be served.
However, in the pricing problem the arc costs may be negative and
the graph can contain cycles. In this case, the aim is to determine the
optimal path with no repeated nodes. This means that an elementary
and feasible path with minimum cost must be found. The scientific
literature refers to this problem as Resource Constrained Elementary
Shortest Path Problem (RCESPP , for short).

The SPP with forbidden path (SPPFP , for short) have been
appeared quite recently in the scintific literature. Also this instance
of the cSPP arises when a column-generation approach is used to
solve more difficult problems. In this case, the optimal path does not
include specific sequences of arcs, that is forbidden paths.

7 Chapter 1

1.2 Goals

The scientific literature provides several solution approaches to solve
the different instances of the cSPP . The most common strategies used
to optimally solve the problems are: 1) the dinaming programming
approach; 2) methods based on path ranking and 3) those based on
branch-and-bound scheme. It is worth observing that in most cases
the aforementioned strategies are used to close the duality gap ob-
tained by solving a relaxation of the problem. The constraints are
relaxed in Lagreangian objective function. This technique allows to
treat the cSPP as a SPP , thus efficient methods are available to
solve the Lagreangian relaxation. It is important to point out that
the Lagreangian relaxation is useful only if no negative cost cycles are
present. When the arc costs are not constrained in sign, others types
of relaxation are used.

The main aim of this thesis is the definition, the design, the imple-
mentation and to computationally test innovative models and methods
for different instances of the cSPP .

1.3 Contribution

In this thesis we propose innovative models and methods to addres
the following instances: 1) the Resource Constrained Shortest Path
Problem; 2) the Shortest Path Problem with Forbidden Paths; 3)
the Elementary version of the Shortest Path Problem with Forbid-
den Paths (ESPFP , for short); 4) the Linear Franctional Elemen-
tary Shortest Path Problem with Time Windows (LFESPPT W , for
short); 5) the Multi-criteria Path Problem with multiple metrics and
Soft Constraints (MPPSC, for short); 6) the Elementary Shortest
Path Problem (ESPP , for short).

The methods defined for the aforementioned instances are based
both on the dynamic programming and branch-and-bound strategies.

1.4. Organization of the thesis 8

The behaviour of the proposed solution approaches has been evaluated
on a wide range of test problems both taken from the literature and
generated by ourself. The tests have been carried out in an intensive,
appropriate and extensive computational phase and the innovative
models and methods have been compared with the best solution ap-
proaches present in the scientific literature to addres the considered
instances of the cSPP .

It is worth observing that in this thesis we have also investigated
instances that are not yet studied in the scientific literature. We refer
to the Elementary version of the SPPFP , the LFESPPT W , the
MPPSC and the ESPP .

In addition, a detailed study on the RCESPP is presented and
it is focused on the resolution approaches proposed in the scientific
literature. In particular, for the first time a computational study has
been carried out in order to empirically evaluate the behaviour of the
strategies that turn out to be the most efficient to solve the RCESPP .

1.4 Organization of the thesis

The thesis is organized as follows.

In chapter 2 the results achieved on the studies devoted to the
RCSPP are presented. An innovative strategy based on the Reference
Point Method is defined. Upper and lower bounds for the RCSPP are
proposed. The results are very encouraging. The proposed method
turn out to be competitive with the state of the art approaches and
the obtained lower and upper bounds are better than those proposed
in the scientific literature.

Chapter 3 and 4 are devoted to the SPPFP and its elemen-
tary counterpart, respectively. For the first problem, dynamic pro-
gramming approaches have been defined and they are based on the
Desrochers’ algorithm. The computational analysis suggests that the

9 Chapter 1

proposed versions outperform the naive counterpart and the state of
the art strategies, based on graph modification, result less efficient
than the proposed dynamic programming methods. In chapter 4 the
Elementary SPPFP , that is ESPFP is addressed. It is important
to point out that this study represent the first attempt to define solu-
tion approaches for the ESPFP . Two strategies have been proposed:
1) dynamic programming approach and 2) branch-and-bound scheme.
Different versions of dynamic programming approach have been de-
signed. They are based on both node and state selection methods. In
addition, several selection strategies have been considered. Regard-
ing the branch-and-bound approach, also in this case several selection
strategies of the next problem, that have to be examined, have been
defined. In addition, an ad-hoc heuristic procedure is devised in order
to construct a feasible solution for initializing the proposed branch-
and-bounbd methods. The performances of the naive methods have
been improved by considering fathoming rule that makes use of ap-
propriate lower bounds.

The LFESPPT W is adderessed in chapter 5. Multi-dimensional
labelling algorithms are proposed to solve this variant of the classical
SPP . Extensive computational tests are carried out on a meaningful
number of test problems, with the goal of assessing the behaviour of
the proposed approaches. The computational study shows that the
introduction of dominance rules and the adoption of a bi-directional
search strategy allow the definition of solution approaches that turn
out to be very effective in solving the LFESPPT W .

In chapter 6, a computational study of the most efficient solution
approaches for the RCESPP is presented. In addition, a prototype
framework is proposed from which the studied solution strategies can
be derived.

The studies related to the instace with multiple metrics and soft
constraints are presented in chapter 7. We provide a description of
the problem and we propose a formulation based on the Chebichef

1.4. Organization of the thesis 10

distance. A branch-and-bound approach is devised and a computa-
tional study has been carried out on different types of networks and
scenarious.

In chapter 8 the ESPP is addressed. Three strategies have been
developed to solve the problem under investigation. The first is based
on the dynamic programming formulation, the second method deter-
mines the first k shortest paths where k is considered as a variable.
In the last approach, upper bounds are computed and the optimality
gap is closed by using a branch and bound scheme. The proposed
algorithms are theoretically evaluated.

Conclusions are given in chapter 9.

Part II

Constrained Shortest Path

11

Chapter 2

Reference point based solution
approach for the resources
constrained shortest path problem
1 2

Luigi Di Puglia Pugliese

Department of Electronics, Informatics and Systems, University of
Calabria, 87036, Rende (CS), Italy

Francesca Guerriero

Department of Electronics, Informatics and Systems, University of
Calabria, 87036, Rende (CS), Italy

Abstract

The Resources Constrained Shortest Path Problem (RCSPP) is a
variant of the classical shortest path problem of a great practical im-
portance. The aim is to find the shortest path between a given pair

1Submitted for pubblication in the journal Transportation Science.
2Work presented at the EURO XXIV, the 24th European Conference on Operational

Research, Lisbon, July 11-14, 2010

13

2.1. Introduction 14

of nodes, under additional constraints, representing upper bounds on
the consumption of resources along the path. In the scientific liter-
ature, different approaches have been defined to solve the RCSPP .
In this work we propose an innovative interactive method to address
the RCSPP , based on a novel search strategy of the criteria space.
The performance of the proposed approach is evaluated on the ba-
sis of an extensive computational study, by considering benckmark
instances. A comparison with the state-of-art approaches developed
for the RCSPP is also carried out. The computational results have
shown that the developed solution strategy is competitive with the
most efficient strategies known so far.

Keywords: constrained shortest paths; interactive method; label-
Correcting method; lower and upper bounds.

2.1 Introduction

The Resources Constrained Shortest Path Problem, in the sequel re-
ferred to as RCSPP , aims at finding the shortest path from a pre-
determined source node to a pre-determined destination node, through
a directed graph with cost and resource consumptions associated with
each arc, for which the total consumption of each resource along the
path is less than or equal to a given upper bound.

It is worth observing that, in the scientific literature, the problem,
where only one resource is considered, is often referred to as the weigth
constrained shortest path problem (WCSPP , for short).

The addition of such constraints to the classical shortest path
problem generally results in a problem that belongs to the NP-hard
class ([71], [81], [91]). Dumitrescu and Boland indicate that theWCSPP
is NP-hard even if the graph is acyclic and all resources and costs are
positive ([60]). If the direct graph does not contain negative cost cy-
cles, the problem is NP-hard in the weak sense and it can be solved

15 Chapter 2

in pseudo-polynomial time. In addition, it is polynomial solvable if
either the costs or the resource requirements are bounded ([84]). The
RCSPP also belongs to the NP-hard class and it can be solved in
pseudo-polynomial time for a fixed number of resources and if negative
cost cycles are not present.

Several real-world situations can be mathematically formulated
as a RCSPP . Zabarankin et al. [149] described an application to
military aircraft management systems, whereas Halpern and Priess
[80] presented an application of the RCSPP to railroad management.
Other application areas include the waste water management ([61]),
the quality of service routing in communications networks ([145]) and
linear curve approximation ([113]).

The RCSPP also arises in practice when column-generation ap-
proaches are used to solve some well-known problems like dated crew
scheduling, day-of-operations rescheduling activities, or long-haul air-
craft routing problems [13]. In addition, it is also a common sub-
structure in difficult optimization problems (i.e., fleet management
[7], dial-a-flight problems [63]).

A large number of exact and approximate methods have been
developed to address the RCSPP and the WCSPP . The solution
procedures can be grouped in the following main classes: 1) path
ranking methods; 2) Lagrangean relaxation methods; 3) node labeling
methods. In addition, some solution strategies have been defined by
combining the approaches belonging to the aforementioned categories.

A path ranking method to address the WCSPP has been pro-
posed in [81]. The main idea is to determine k shortest paths from
the origin node to the destination node, until a feasible path is iden-
tified. The main drawback of this approach is that a large value for k
is required, before a feasible solution of the WCSPP is found. Very
recently, Santos et al. ([125]) propose an improved solution algorithm
based on the solution of the k-shortest paths problem that outper-
forms the approaches of [81]. The main difference is related to the

2.1. Introduction 16

way in which the k shortest paths are sorted.

Many scientific contributions consider the Lagrangean relaxation
as a viable alternative to solve the RCSPP and the WCSPP . In-
deed, if the resource constraints are relaxed, the resulting subproblem
becomes an instance of the classical shortest path problem, that can
be solved repeatedly with a very limited computational effort.

The approaches based on Lagrangean relaxation rely on the so-
lution of a Lagrangean dual problem and consider different strategies
to close the duality gap. Handler and Zang in [81] presented a spe-
cialized version of the Kelley’s cutting plane to solve the Lagrangean
dual problem associated to the WCSPP and closed the duality gap
by applying the k-shortest paths algorithm of [146], with edge lengths
set to the reduced costs arising from the optimal Lagrangean dual so-
lution. An approach similar to the one considered in [81] has been
proposed by Carlyle and Wood ([26]). In this case, the duality gap is
closed by using a depth first branch-and-bound and a bisection search
is adopted to determine the optimal Lagrange multiplier.

Beasley and Christofides [16] solved the dual of the RCSPP with
subgradient optimization and applied a branch-and-bound procedure
to close the duality gap (Lagrangean dual values are used as lower
bounds at each node of the tree). Mehlhorn and Ziegelmann [105] pro-
posed a hull approach to solve a linear relaxation of the RCSPP and
considered three differet methods to close the gap between the lower
and the upper bounds: the algorithm of Hassin ([84]), the k-shortest
paths algorithm of [93] and a dynamic programming algorithm (of a
label-correcting type) that uses path ranking and prunes paths that
cannot be extended to an optimal solution.

It is worth observing that relaxation has also been used in heuris-
tic approaches. We cite, for example, the paper of Ribeiro and Mi-
noux ([118]), where a Lagrangean relaxation approach to address a
generalization of the WCSPP with upper and lower resource limits
is proposed and the paper of Avella et al. ([7]), where the resource

17 Chapter 2

constraints of the RCSPP are relaxed into an exponential penalty
function.

Starting from the pioneering works of [94] and [97], where dy-
namic programming formulations for the WCSPP have been pro-
posed, intense research activity has been carried out in the devel-
opment of node labeling solution approaches based on these formu-
lations. We cite, for example, the methods of Desrosiers et al. [53],
Desrochers and Soumis [52] and Jaumard et al. [92]. The label set-
ting algorithm of Desrochers and Soumis ([52]) seems to be the most
effective approach for the WCSPP . Dumitrescu and Boland in [60]
proposed a modified version of this algorithm which uses preprocessing
and Lagrange multiplier information. Very recently, Muhandiramge
and Boland ([111]) have defined a new preprocessing procedure for
the WCSPP in which Lagrangian relaxation technique and network
reduction steps are tightly integrated.

Addressing the RCSPP with a dynamic programming approach
is also closely related to the solution of multi-objective shortest path
problems, which have received the attention of many researchers. The
aim in these problems is to generate non dominated paths (i.e., Pareto
optimal paths). Several studies have focused on the development of
efficient solution approaches to address the multi-criteria shortest path
problem. They can be classified in four main categories. The first
group includes exact procedures such as multiple labelling methods
(e.g., [79], [103], [128]); ranking methods (e.g., [10], [36]); parametric
methods (e.g., [110]). The second group contains the approximate
procedures (e.g., [85], [135], [142]). The third class utilizes utility (or
cost) functions (e.g., [27], [107], [108]). The last group includes the
interactive methods (e.g., [40], [74], [112]).

Reference point methodology provides the theoretical foundations
for many interactive search procedures in multiple objective optimiza-
tion (for example, [143], [144]). A reference point consists of desirable
values for each objective function. In multiple objective mathematical

2.1. Introduction 18

programming, solution methods based on reference points can gener-
ate non dominated solutions using a variety of scalarizing functions
([25]) that define the distance from the reference point. The idea is
to take the desires of the decision maker into account when projecting
the reference point onto the set of non dominated solutions. In several
works the reference point methodology has been applied to find a par-
ticular non dominated solution in continuous search space (e.g., [114],
[124], [98]). In [74] the reference point method is used to define a solu-
tion approach, based on label correcting procedure, that allows to find
a properly Pareto optimal solution when solving the multi-objective
shortest path problem.

In this paper, we deal with the solution of the RCSPP and we
propose an interactive procedure, that is based on the reference point
methodology of Wierzbicki ([143], [144]). The main idea is to exploit
the solution space, by defining a sequence of reference points. To the
best of our knowledge, this work represents the first attempt to define
a reference point method to address the RCSPP . The contribution
of this paper is three fold. First of all, an innovative solution method
is defined to solve the RCSPP and new models, based on reference
point methodology, are proposed to compute upper and lower bounds
for the problem at hand. Second, theoretical aspects related to the
models and methods proposed in this paper are investigated. Finally,
a computational study is carried out with the aim of comparing the
proposed method with the state-of-art algorithms presented in the
scientific literature to address the RCSPP .

The rest of the paper is organized as follows. In Section 2, we give
a description of the problem at hand, the proposed solution method
is presented in Section 3. In Section 4, we compare computationally
the devised approach with the methods of Dumitrescu and Boland
[60] and Santos et al. ([125]), that turn out to be the most efficient
approaches to address the problem under study. Section 5 summarizes
our conclusions and discusses future work.

19 Chapter 2

2.2 Problem formulation

The RCSPP is defined on a directed graph D = (N ,A), where N =
{1, . . . , n} denotes the set of nodes, and A ⊆ N ×N the set of m arcs.
It is assumed that the directed graph D is simple, that is at most one
arc connects any two nodes. With each arc (i, j) are associated an
integer scalar cij ≥ 0, that represents the cost to traverse the arc (i, j)
and a vector wij = (w1

ij, . . . , w
p
ij) containing information about the

resources consumption along the arc (i, j). It is assumed that wk
ij ≥ 0

and integers ∀(i, j) ∈ A, k = 1, . . . , p. We use the vector q(i,j) ∈ Zp+1

to store the parameters associated with the arc (i, j).

Given two distinct nodes i and j, a path Πij from node i to
node j is a sequence of nodes Πij={i = i1, . . . , il = j}, l ≥ 2 such that
(ih, ih+1) ∈ A, for h=1, . . . , l − 1.

We refer to the cost of a path Πuv as c(Πuv), representing the
sum of the cost cij associated with the arcs that belong to Πuv, i.e.,
c(Πuv)=

∑
(i,j)∈Πuv

cij. For each resource k, k = 1, . . . , p, we indicate

with wk(Πuv) =
∑

(i,j)∈Πuv
wk
ij the quantity of the resource consumed

along the path Πuv. We define a vector q(Πuv) = c(Πuv) ∪ w(Πuv) ∈
Zp+1, where w(Πuv) = [w1(Πuv), . . . , w

p(Πuv)]
T .

The RCSPP consists in finding the least cost path in D from a
specified source node s to a destination node d, such that the con-
sumption of each resource k=1, . . . , p is less than or equal to a specific
upper bound Wk.

Let Π̄ be the set of all paths from node s to node d, the RCSPP
can be mathematically represented as follow:

2.2. Problem formulation 20

minΠ∈Π̄ c(Π)(2.1)

s.t.

wk(Π) ≤ W k, ∀k = 1, . . . , p(2.2)

In this paper, we propose a solution approach, based on interac-
tive strategy, to address the RCSPP stated above. In a multi-criteria
problem, the decision maker chooses the most satisfactory solution
among those that belong to the Pareto optimal set. In many cases,
the decision maker has some idea about the characteristics of the solu-
tion that he/she wants to achive. For example he/she could have some
preferences about the value of each criterion. An interactive method
takes into account these preferences, in order to obtain the most satis-
factory solution. This selection is implicitly determined by converting
a multi-objective problem into a parametric single-objective problem.
The selection of a particular properly Pareto optimal path is deter-
mined by the definition of the reference point (i.e., aspiration point).
Most of those methods use the maximization of an achievement scalar-
ising function (ASF , for short) in the form:

(2.3) S(q, q̄, y) = min
0≤t≤p

{yt(q̄t − qt)}+ ε

p∑
t=0

yt(q̄t − qt)

where q̄ ∈ Rp+1 is an aspiration point, yt > 0, t = 0, . . . , p, are scaling
coefficient and ε is a given small positive number. Maximization is
over all paths from the origin node s to the destination node d.

For a non attainable q̄, the vector q of the resulting properly
Pareto optimal path is the nearest, in the sense of a Chebyshev weighted
norm, to the specific aspiration point q̄. If q̄ is attainable, then the
vector q of the properly Pareto optimal path is uniformly better.

21 Chapter 2

The RCSPP can be formulated using the ASF (2.3) as follows:

(2.4) max
Π∈Π̄0

min
0≤t≤p

{
yt[q̄

opt
t − qt(Π)]

}
+ ε

p∑
t=0

yt[q̄
opt
t − qt(Π)]

where the set Π̄0 contains all the paths Πsd such that wk(Πsd) ≤ W k,
q̄opt0 = c(Πc

sd) with Πc
sd=argminΠ∈Π̄ c(Π), i.e., Πc

sd is the least cost path
and q̄optk = W k + 1, k = 1, . . . , p.

In the following, we assume that yt = 1, t = 0, . . . , p and ε =
0. The proposed formulation for the RCSPP is equivalent to (2.1) -
(2.2). This result is formally proven in the Theorem below.

Theorem 2.2.1. Problem (2.4) is equivalent to problem (2.1) - (2.2),
that is the optimal solution of (2.4) is also optimal for (2.1) - (2.2)
and viceversa.

1. Let Π∗sd be the optimal solution of problem (2.1) - (2.2), that
is wk(Π∗sd) ≤ W k,∀k = 1, . . . , p and c(Π∗sd) ≤ c(Π̄sd),∀Π̄sd ∈ Π̄0.
Thus, Π∗sd is the optimal solution of problem (2.4), that is

(2.5) S(q(Π∗sd), q̄
opt, y) ≥ S(q(Π̄sd), q̄

opt, y), ∀Π̄sd ∈ Π̄0.

2. Let Π∗sd be the optimal solution of problem (2.4), that is condition
(2.5) is satisfied. Thus, Π∗sd is the optimal solution of problem
(2.1) - (2.2), that is wk(Π∗sd) ≤ W k,∀k = 1, . . . , p and c(Π∗sd) ≤
c(Π̄sd),∀Π̄sd ∈ Π̄0.

Proof. Since equation (2.2) is satisfied by the path Π∗sd and by each
path Π̄sd ∈ Π̄0 and in addition, c(Πc

sd) ≤ c(Π̄sd), q̄
opt
k > W k, ∀k =

1, . . . , p, we have that

(2.6) q̄optk − qk(Π̄sd) > 0, k = 1, . . . , p;

2.2. Problem formulation 22

and

(2.7) q̄opt0 − q0(Π̄sd) ≤ 0.

We will prove part 1. of the Theorem by contradiction. Thus, let us
suppose (for the purposes of contradiction) that there exists a solution
Π̃sd 6= Π∗sd, such that Π̃sd ∈ Π̄0 and it is optimal for (2.4), that is

S(q(Π̃sd), q̄
opt, y) ≥ S(q(Π∗sd), q̄

opt, y) ≡ min
0≤t≤p

{
q̄optt − qt(Π̃sd)

}
≥

(2.8) min
0≤t≤p

{
q̄optt − qt(Π∗sd)

}
From equations (2.6) and (2.7), we have that

min0≤t≤p

{
q̄optt − qt(Π̃sd)

}
= c(Πc

sd)− c(Π̃sd);

and

min0≤t≤p
{
q̄optt − qt(Π∗sd)

}
= c(Πc

sd)− c(Π∗sd).

Condition (2.8) can be rewritten as follows:

(2.9) c(Πc
sd)− c(Π̃sd) ≥ c(Πc

sd)− c(Π∗sd).

From condition (2.9), we have that c(Π∗sd) ≥ c(Π̃sd), this contradicts
the optimality hypothesis of Π∗sd for problem (2.4)

We will prove part 2. of the Theorem by contradiction. Thus, let us
suppose (for the purposes of contradiction) that there exists a solution
Π̃sd 6= Π∗sd, that is optimal for problem (2.1) - (2.2), that is

wk(Π̃sd) ≤ W k,∀k = 1, . . . p;

23 Chapter 2

c(Π̃sd) ≤ c(Π̄sd),∀Π̄sd ∈ Π̄0.

We have that:

S(q(Π̃sd), q̄
opt, y) ≡ c(Πc

sd)− c(Π̃sd);

and

S(q(Π∗sd), q̄
opt, y) ≡ c(Πc

sd)− c(Π∗sd).

Since Π∗sd is the optimal solution for problem (2.4), the following con-
dition holds:

(2.10) c(Πc
sd)− c(Π∗sd) ≥ c(Πc

sd)− c(Π̃sd).

Since c(Π̃sd) ≥ c(Π∗sd), this contradicts the optimality hypothesis of
Π̃sd for problem (2.1) - (2.2).

In the next section we define the proposed solution approach to
optimality solve the RCSPP .

2.3 Proposed solution approach

In [74], the authors proposed a general label correcting scheme to
determine a path on D for which the function (2.3) is maximized. In
our case, the maximization is over a subset of paths from node s to
node d. Consequently, the label correcting method proposed in [74]
cannot be applied to the problem under consideration, since it could
identify a solution that could not be feasible.

The solution approach, proposed in this paper, uses the method
presented in [74] to exploit the Pareto front with the aim of identifying
a feasible solution with the minimum cost. The search procedure is

2.3. Proposed solution approach 24

done by applying a modification of the reference point. In particular, a
vector δ is used to perturb the current reference point q̄. A new point
in the Pareto front is determined by solving the problem reported
below:

(2.11) P (δ) max
Π∈Π̄

min
0≤t≤p

{(q̄t + δt)− qt(Π)} ;

where the vector δ is defined in such a way that q̄+δ = [UB,W 1, . . . ,W p]T

and UB is the cost of the best feasible solution determined so far. Let
SUB(δ) be a subregion of the criteria space bounded by q̄ + δ. If
SUB(δ) 6= ∅, then the optimal solution of P (δ) belongs to SUB(δ).
This result is formalized in the following theorem.

Theorem 2.3.1. If a solution exists in subregion SUB(δ), then it is
the optimal solution of problem P (δ).

Proof. Let Π̃sd be a path such that 0 ≤ c(Π̃sd) ≤ UB and w(Π̃sd) ≤ W ,
that is q(Π̃sd) ∈ SUB(δ).

We prove the theorem by contradiction. In particular, let us
suppose that a path Π̂sd, such that q(Π̂sd) /∈ SUB(δ), exists and that
Π̂sd is the optimal solution of P (δ). The following inequality holds:

(2.12) S(q(Π̂sd), q̄ + δ, y) ≥ S(q(Π̃sd), q̄ + δ, y),

that is

(2.13) min
0≤t≤p

{
(q̄t + δt)− qt(Π̂sd)

}
≥ min

0≤t≤p

{
(q̄t + δt)− qt(Π̃sd)

}
.

Since q(Π̂sd) /∈ SUB(δ), the following three situations can occur:

Case 1: c(Π̂sd) > UB and wk(Π̂sd) ≤ W k;

25 Chapter 2

Case 2: c(Π̂sd) ≤ UB and wk(Π̂sd) > W k;

Case 3: c(Π̂sd) > UB and wk(Π̂sd) > W k.

In the first situation, we have UB − q0(Π̂sd) < 0 and W k −
qk(Π̂sd) ≤≥ 0. For the second case, W k − qk(Π̂sd) < 0 for some k and
UB− q0(Π̂sd) ≤≥ 0. In the third situation, we have UB− q0(Π̂sd) < 0
and W k − qk(Π̂sd) < 0. In all the cases, the following condition holds:

(2.14) min
0≤t≤p

{
(q̄t + δt)− qt(Π̂sd)

}
= −α,with α > 0.

When we evaluate the objective function of P (δ) in Π̃sd, we have
that UB − q0(Π̃sd) ≥ 0 and W k − qk(Π̃sd) ≥ 0, ∀k = 1, . . . , p.

It is evident that:

(2.15) min
0≤t≤p

{
(q̄t + δt)− qt(Π̃sd)

}
= β, with β ≥ 0.

From (2.14) and (2.15), we have that −α ≤ β.

This contradicts condition (2.13).

Theorem 2.3.1 states that the search procedure, that makes use
of the optimal cost of P (δ), does not identify a solution belonging is
SUB(δ) only if SUB(δ) = ∅. By the definition of this subregion, it
is evident that if the solution of P (δ) does not belong to SUB(δ),
then no more improvement on the cost is possible and the following
corollary is derived.

Corollary 2.3.2. Let Π(δ) be the optimal solution of P (δ). If Π(δ) /∈
SUB(δ), then UB is the optimal solution.

Proof. If Π(δ) /∈ SUB(δ), then SUB(δ) = ∅. This means that no so-
lutions Π such that c(Π) ≤ UB exist, thus UB represents the optimal
cost.

2.3. Proposed solution approach 26

The general scheme of the proposed Interactive Search Strategy Algo-
rithm (ISSA, for short) is depicted in Algorithm 1.

Algorithm 1 ISSA
repeat

Compute the new reference point defined by δ.
Determine the path Π(δ) solving the problem P (δ).
if c(Π(δ)) < UB and wk(Π(δ)) ≤W k∀ k = 1, . . . , p then

set UB = c(Π(δ)).
end if

until UB is modified

At each iteration of ISSA, a new reference point is computed.
In the course of the algorithm, the search direction δ is defined us-
ing information related to the previous found feasible solution. It is
important to point out that at the first iteration of ISSA, an initial
feasible solution should be available. In addition, the lower the value
of such a solution, the faster ISSA. In other words, a good UB al-
lows of reducing greatly the solution space, thus ISSA is more likely
to perform fewer iterations.

Let π denote the number of possible paths from node s to a generic
node i ∈ N , the following theoretical results holds.

Lemma 2.3.3. In the worst case, the complexity of ISSA is

O
(

[UB − c(Π∗sd)]π |N |
2 p
)

.

Proof. At each iteration, the operations executed by ISSA refer to:
the computation of a new reference point that takes O (1); the op-
erations executed by the label correcting method to solve P (δ) that

are bounded by O
(
π |N |2 p

)
; the if condition that takes O (p+ 1)

and the operation executes in the if condition, that is O (1). Thus,
the operations executed at each iteration of ISSA are bounded by

O
(
π |N |2 p

)
. This bound is related to the operations executed by the

label correcting method proposed in [74] that is the same depicted in

27 Chapter 2

Section 2.3.1 without the first if of Step 2. In the worst case, there
is one arc connecting each pair of nodes. Thus, at each iteration, the
second if of Step 2 is invoked O (|N |) times and it takes O (p) op-
erations. Anytime a node is selected, the for loop is invoked. In the
worst case, a node is added to the list L π times. Since the for loop

is invoked π |N | times, the complexity is O
(
π |N |2 p

)
.

Refering to ISSA, in the worst case, the number of reference
points to be considered is [UB−c(Π∗sd)], that is all the Pareto solutions
with different cost value have to be processed. Thus, the worst case

complexity of the proposed method is O
(

[UB − c(Π∗sd)]π |N |
2 p
)

.

In the next section, we introduce a label correcting method to
obtain an initial UB, that is used to initialize ISSA. In addition, we
introduce a formulation, based on the reference point methodology,
that allows us to compute a lower bound (LB) for the RCSPP . The
proposed formulation has an useful property that allows us to check
the optimality of the obtained solution.

2.3.1 Upper and Lower bounds

The strategy developed to compute the UB, can be viewed as a mod-
ified version of the label correcting method described in [74]. The aim
is to find a feasible solution for problem (2.4), thus our modification
takes into account constraints (2.2). In particular, if a partial solution
does not satisfy constraints (2.2), then it is not taken into account. It
is evident that until a feasible partial solution is not found, the proce-
dure stores the partial solutions that are optimal if constraints (2.2)
are relaxed.

Since the optimal solution is not formed by optimal subpaths, the
proposed procedure allows to determine a suboptimal solution for the
RCSPP .

With the aim of improving the UB, we consider lower bound on

2.3. Proposed solution approach 28

the resources consumption. In other words, for each resource k, lbkj
represents the least resource path from node j to node d. In this
manner, we avoid to store partial solutions that cannot be part of the
optimal solution.

It is assumed that a label yj is associated with each node j ∈ N
and a set L stores the nodes to be processed.

The modified version of the algorithm proposed in [74], used to
find a suboptimal solution for theRCSPP , is presented in Algorithm
2.

Algorithm 2 Label correcting method for computing initial UB
Step 0 (Initialization)
Set: L = {s}; ys = 0, yi = +∞,∀i ∈ N, i 6= s.

Step 1 (Node selection)
Select from L a node i.

Step 2 (Node scan)
for all j ∈ N : (i, j) ∈ A and j 6= s do

if qt(Πsi) + wtij + lbtj ≤W t; t = 1, . . . , p then

if yj < min0≤t≤p{q̄t − [qt(Πsi) + q
(i,j)
t]} and j /∈ Πsi then

Set: yj = min0≤t≤p{q̄t − [qt(Πsi) + q
(i,j)
t]},

add j to L if j does not already belong to it.
end if

end if
end for

Step 3 (Termination check)
if L = ∅ then

STOP.
else

Go to Step 1.
end if

As mentioned above, we also propose a strategy to find a LB for
the RCSPP . In particular, a LB for the RCSPP is determined by
solving the following problem:

29 Chapter 2

(2.16) P (LB) max
Π∈Π̄

min
0≤t≤p

{q̄LBt − qt(Π)}.

where q̄LBt = [c(Πc
sd),W

1, . . . ,W p].

It is important to point out that if the optimal path Π(LB) of
problem P (LB) is feasible, then Π(LB) is the optimal solution for the
RCSPP . This theoretical result is stated in Theorem 2.3.4 below.

Theorem 2.3.4. If Π(LB) ∈ Π̄0, then Π(LB) is optimal for the
RCSPP.

Proof. Let Π∗sd be the optimal solution for the RCSSP . Let us con-
sider a generic path Πsd ∈ Π̄0. It is evident that c(Π∗sd) ≤ c(Πsd).

Evaluating (2.16) in Πsd and in Π∗sd leads to the following results:

(2.17) min
0≤t≤p

{q̄LBt − qt(Πsd)} = c(Πc
sd)− c(Πsd);

and

(2.18) min
0≤t≤p

{q̄LBt − qt(Π∗sd)} = c(Πc
sd)− c(Π∗sd).

Since c(Π∗sd) ≤ c(Πsd), it follows that the maximum is achieved in Π∗sd.

This implies that:

min0≤t≤p{q̄LBt − qt(Π
∗
sd)} > min0≤t≤p{q̄LBt − qt(Π)}, ∀Π ∈ Π̄0,Π 6=

Π∗sd.

2.4 Numerical experiments

The goal of this Section is to evaluate the numerical behaviour of the
proposed algorithm. In addition, two solution approaches proposed in

2.4. Numerical experiments 30

the scientific literature to solve the RCSPP have been considered. In
particular, the best performing version of the Modified Label-Setting
Algorithm (MLSA, for short) proposed in [60] and the solution ap-
proach based on the k-shortest paths algorithm (in the sequel refer
to as kSP) defined in [125] have been compared with the proposed
method. It is important to point out that both MLSA and kSP have
been defined to solve the RCSPP with at most one resource con-
straint. All the aforementioned algorithms have been implemented in
java language and have been tested by using an Intel(R) Core(TM) i7
CPU M 620 PC, 2.67 GHz, RAM 4.00 GB, under Microsoft 7 operat-
ing system.

2.4.1 Test Problems

The test problems used to evaluate the behaviour of the proposed
solution approach can be grouped in 3 different sets.

The first two sets refer to problems considered in [60]. In particu-
lar, the problems of the first set (referred to as D1) are those belonging
to the Problem Class 4 of [60]. They are defined on networks with a
grid structure, with randomly generated costs and weights. D1 con-
tains four test problems, characterized by a different number of nodes
(i.e., 10002, 40002, 70002, and 135002). The second set (referred to
as D2) coincides with Problem Class 3 presented in [60]. These net-
works are based on graphs constructed from digital elevation models
(DEMs). For each test problem, two different instances (i.e., class L
and M) are generated depending on the value of the bound limit on
the resource consumption. The characteristics of these problems are
given in Table 2.1.

The third set of test problems (referred to as S) contains the in-
stances considered in Santos et al. ([125]) and provided by the same
authors. The characteristics of these problems are reported in Ta-
ble 2.2. For each problem, ten instances are generated and for each

31 Chapter 2

Test Nodes Arcs Density (Arcs/Nodes)

D1 1 10002 29900 2.99

D1 2 40002 119800 2.99

D1 3 70002 209950 3.00

D1 4 135002 404850 3.00

D2 1 625 2400 3.84

D2 2 2005 9800 4.89

D2 3 5625 22200 3.95

D2 4 15625 62000 3.97

D2 5 22500 89400 3.97

D2 6 30625 121800 3.98

D2 7 40000 159200 3.98

Table 2.1: Characteristics of test problems belonging to sets D1 and D2

of them 5 different values for the bound limit are considered. Thus,
the resulting 900 instances can be viewed as grouped in five different
classes (group 1, . . ., group 5), depending on the tightness of the re-
source constraint. More details about the set of test problems can be
found in ([125]).

2.4.2 Computational results

In this Section, we evaluate the performances of ISSA and we dis-
cuss about the quality of the upper and lower bounds determined by
the strategies presented in Section 2.3.1. It is worth observing that
the optimal solution for P (LB) is determined by using the label cor-
recting method proposed in [74]. A comparison with the state-of-art
algorithms is also carried out.

Results on set S

First, let us consider the test problems belonging to the set S. The
related results are reported in Tables 2.3 and 2.4, where for each test
problem the computational times (in ms) and the number of iterations,

2.4. Numerical experiments 32

Test Nodes Arcs Density (Arcs/Nodes)

S1 10000 15000 1.50

S2 10000 25000 2.50

S3 10000 50000 5.00

S4 10000 100000 10.00

S5 10000 150000 15.00

S6 10000 200000 20.00

S7 20000 30000 1.50

S8 20000 50000 2.50

S9 20000 100000 5.00

S10 20000 200000 10.00

S11 20000 300000 15.00

S12 20000 400000 20.00

S13 40000 60000 1.50

S14 40000 100000 2.50

S15 40000 200000 5.00

S16 40000 400000 10.00

S17 40000 600000 15.00

S18 40000 800000 20.00

Table 2.2: Characteristics of test problems belonging to set S

averaged on the related instances, are reported.

ISSAUB kSP
test iter time UB time time

group 1 S1 1.00 6.24 870.49 6022.80
S2 1.00 3.12 1609.93 18802.00
S3 1.00 4.68 4201.11 27412.30
S4 1.00 37.44 7692.41 373402.20
S5 1.00 893.89 10486.39 279524.40
S6 1.00 1989.01 14618.85 14189012.60
S7 1.00 1.56 3003.02 56803.30
S8 1.00 4.68 5728.36 120598.50
S9 1.00 15.60 13434.81 439588.50

S10 1.00 173.16 28665.18 737883.90
S11 1.00 1443.01 42218.55 1547797.00
S12 1.00 8924.82 55927.92 4825502.90
S13 1.00 15.60 13370.85 89941.30
S14 1.00 15.60 22030.46 210953.40
S15 1.00 65.52 53324.26 654895.90
S16 1.00 595.40 112315.52 1654017.33
S17 1.00 8021.57 159512.58 8042442.80
S18 1.00 35516.75 212657.44 2440280.10

AVG 1.00 3207.09 42314.90 1984160.07

group 2 S1 1.00 3.12 814.33 12530.20
S2 1.00 4.68 1564.69 18253.50

continued on next page

33 Chapter 2

continued from previous page
ISSAUB kSP

test iter time UB time time
S3 1.00 31.20 3544.34 38308.40
S4 1.00 366.60 6587.92 255040.30
S5 1.00 3647.30 9820.26 511873.30
S6 1.00 6647.20 13403.61 702564.30
S7 1.00 3.12 3001.46 98912.40
S8 1.00 6.24 5645.68 267519.60
S9 1.00 76.44 12314.72 434444.00

S10 1.00 2134.09 26546.69 1176277.90
S11 1.00 11511.31 37964.40 1118095.00
S12 1.00 26311.13 51099.69 2515935.70
S13 1.00 17.16 12068.24 126038.10
S14 1.00 42.12 22022.66 276217.00
S15 1.00 636.48 48750.31 763809.70
S16 1.00 10449.47 97981.63 3574890.50
S17 1.00 54835.91 146503.66 1761081.20
S18 1.00 118368.88 203401.90 4652507.80

AVG 1.00 13060.69 39057.57 1016905.49

group 3 S1 1.00 7.80 800.29 9612.30
S2 1.00 7.80 1580.29 14855.10
S3 1.00 304.20 3464.78 56039.90
S4 1.00 2333.78 6475.60 252112.00
S5 1.00 7143.29 10350.67 2147393.20
S6 1.00 10918.51 14338.05 405596.00
S7 1.00 3.12 2998.34 143212.30
S8 1.00 32.76 5664.40 300948.80
S9 1.00 1265.17 12461.36 352407.70

S10 1.00 8567.57 25217.56 1490010.30
S11 1.00 25930.49 39560.29 812205.50
S12 1.00 42182.67 53179.18 2765203.20
S13 1.00 29.64 12467.60 170866.30
S14 1.00 435.24 22584.26 318891.30
S15 1.00 8338.25 48917.23 530171.50
S16 1.00 47382.70 94957.81 1284840.67
S17 1.00 111197.51 159156.90 1411866.60
S18 1.00 190516.22 230248.12 3113543.50

AVG 1.00 25366.48 41356.82 865543.12

group 4 S1 1.00 3.12 801.85 15498.30
S2 1.00 37.44 1627.09 16233.70
S3 1.00 893.89 3616.10 63905.60
S4 1.00 4115.31 7055.93 201423.60
S5 1.00 9389.70 11709.44 1768348.70
S6 1.00 13734.33 16314.58 711878.90
S7 1.00 9.36 2964.02 210424.90
S8 1.00 109.20 5812.60 191087.10
S9 1.00 3778.34 13141.52 492112.40

S10 1.00 15082.18 27835.26 768624.80
S11 1.00 34533.94 43647.52 941196.10
S12 1.00 52038.81 59951.18 4185858.10
S13 1.00 45.24 12756.20 234069.30
S14 1.00 1580.29 23682.51 232858.60
S15 1.00 20379.97 53882.75 598947.20
S16 1.00 74116.08 106109.28 1445965.17
S17 1.00 147461.51 183839.38 2599483.80
S18 1.00 238230.69 266471.55 6539820.70

AVG 1.00 34196.63 46734.38 1178763.16

group 5 S1 1.00 7.80 829.93 22078.00
S2 1.00 115.44 1726.93 16572.40
S3 1.00 1494.49 3820.46 16911741.30
S4 1.00 5367.99 7689.29 128524.40
S5 1.00 11193.07 13294.41 332041.30
S6 1.00 15821.62 17997.84 478472.30
S7 1.00 10.92 2962.46 847035.10
S8 1.00 319.80 6007.60 195547.40
S9 1.00 6332.08 13891.89 447496.70

S10 1.00 20476.69 29632.39 857715.50
S11 1.00 41187.38 48212.11 2771501.10
S12 1.00 60721.83 66840.19 2017669.10
S13 1.00 76.44 12909.08 880845.00
S14 1.00 2920.34 24538.96 283554.40
S15 1.00 30552.80 57612.73 584054.10
S16 1.00 97695.63 117928.96 1236643.83
S17 1.00 201572.01 233886.06 1641821.10

continued on next page

2.4. Numerical experiments 34

continued from previous page
ISSAUB kSP

test iter time UB time time
S18 1.00 271192.14 296419.06 3702571.20

AVG 1.00 42614.36 53122.24 1853104.68

Table 2.3: For groups 1, 2, 3, 4 and 5 we report the results obtained with ISSA and
kSP . In the column iter the number of iterations executed by ISSA, averaged on ten
instances for each test problem, are reported. Column time UB gives the execution time
needed to obtain the UB. The average execution times are reported in column time.

ISSAnoUB kSP
test iter time time

group 1 S1 1.00 811.21 6022.80
S2 1.40 1486.69 18802.00
S3 1.60 5981.08 27412.30
S4 2.50 20252.05 373402.20
S5 3.70 46895.46 279524.40
S6 3.50 54743.87 14189012.60
S7 1.00 2697.26 56803.30
S8 1.40 7508.33 120598.50
S9 1.80 22925.91 439588.50

S10 2.10 59958.98 737883.90
S11 2.20 99088.72 1547797.00
S12 3.00 170424.85 4825502.90
S13 1.10 12926.24 89941.30
S14 1.20 26624.69 210953.40
S15 2.30 137787.88 654895.90
S16 2.00 229313.67 1654017.33
S17 4.10 704360.12 8042442.80
S18 3.50 817047.44 2440280.10

AVG 2.19 134490.80 1984160.07

group 2 S1 1.10 837.73 12530.20
S2 1.50 2127.85 18253.50
S3 1.70 5642.56 38308.40
S4 2.70 18807.48 255040.30
S5 4.70 48522.55 511873.30
S6 5.30 74116.07 702564.30
S7 1.10 2648.90 98912.40
S8 1.50 7915.49 267519.60
S9 2.30 27864.90 434444.00

S10 2.70 70967.97 1176277.90
S11 3.60 146786.02 1118095.00
S12 4.10 223766.27 2515935.70
S13 1.30 15366.10 126038.10
S14 1.50 31415.48 276217.00
S15 2.60 129990.95 763809.70
S16 3.17 326962.50 3574890.50
S17 4.20 683978.58 1761081.20
S18 4.80 1065415.07 4652507.80

AVG 2.77 160174.03 1016905.49

group 3 S1 1.60 1291.69 9612.30
S2 2.10 2712.86 14855.10
S3 3.40 9648.66 56039.90
S4 4.30 25638.76 252112.00
S5 4.60 46546.02 2147393.20
S6 4.10 74371.92 405596.00
S7 1.10 2772.14 143212.30
S8 1.90 10356.91 300948.80
S9 2.90 33368.61 352407.70

S10 3.80 84131.34 1490010.30
S11 4.20 150166.56 812205.50
S12 4.10 222454.31 2765203.20
S13 1.70 15664.06 170866.30

continued on next page

35 Chapter 2

continued from previous page
ISSAnoUB kSP

test iter time time
S14 2.00 34487.14 318891.30
S15 3.10 149530.08 530171.50
S16 4.83 433997.38 1284840.67
S17 4.30 771000.62 1411866.60
S18 3.90 1084869.95 3113543.50

AVG 3.22 175167.17 865543.12

group 4 S1 1.60 1182.49 15498.30
S2 2.10 2971.82 16233.70
S3 3.40 10682.95 63905.60
S4 4.30 27412.50 201423.60
S5 4.60 48032.71 1768348.70
S6 4.10 59359.94 711878.90
S7 1.10 2903.18 210424.90
S8 1.90 10057.38 191087.10
S9 2.90 35095.55 492112.40

S10 3.80 95132.53 768624.80
S11 4.20 165761.98 941196.10
S12 4.10 216286.03 4185858.10
S13 1.70 19325.40 234069.30
S14 2.00 41018.90 232858.60
S15 3.10 149648.64 598947.20
S16 4.83 481741.49 1445965.17
S17 4.30 710601.72 2599483.80
S18 3.90 942938.68 6539820.70

AVG 3.22 167786.33 1178763.16

group 5 S1 1.60 1218.37 22078.00
S2 2.30 3279.14 16572.40
S3 3.22 10344.60 16911741.30
S4 4.00 27089.57 128524.40
S5 4.30 49065.43 332041.30
S6 3.80 60455.07 478472.30
S7 1.10 2953.10 847035.10
S8 2.10 11757.80 195547.40
S9 3.20 40844.18 447496.70

S10 3.70 98489.67 857715.50
S11 3.60 158431.50 2771501.10
S12 3.80 221405.98 2017669.10
S13 1.80 20404.93 880845.00
S14 2.00 41633.55 283554.40
S15 3.00 156231.88 584054.10
S16 3.67 365528.54 1236643.83
S17 3.50 617997.96 1641821.10
S18 3.90 1001420.34 3702571.20

AVG 3.03 160475.09 1853104.68

Table 2.4: For each group we report the results obtained with ISSA and kSP . In the
column iter the number of iterations executed by ISSA, averaged on ten instances for
each test problem, are reported. The average execution times are given in column time.

2.4.
N

u
m

erical
ex

p
erim

en
ts

36

gap LB - Opt No. Opt LB time LB

test 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

S1 7.87% 7.22% 4.49% 4.77% 3.73% 2 2 6 6 6 808.09 742.56 787.81 775.32 775.33
S2 19.42% 11.10% 4.95% 5.90% 5.29% 1 1 4 4 6 1471.09 1416.49 1483.57 1517.89 1494.49
S3 30.02% 26.22% 17.41% 12.55% 11.51% 0 0 3 4 6 3109.10 2939.06 3183.98 3235.46 3451.09
S4 32.61% 26.40% 12.88% 9.73% 2.06% 0 1 1 3 6 6386.68 5814.16 6406.96 6795.40 7300.85
S5 37.61% 34.00% 13.19% 6.19% 15.83% 0 0 3 4 7 9643.98 9258.66 10659.55 11466.07 12905.96
S6 45.68% 30.24% 17.19% 8.95% 3.00% 0 0 3 5 6 12408.32 12618.92 14787.34 15639.10 17710.79
S7 5.24% 5.24% 5.24% 4.38% 5.42% 4 4 4 4 4 2692.58 2667.62 2836.10 2703.50 2832.98
S8 7.72% 7.65% 5.92% 1.81% 3.16% 5 5 6 6 6 4977.99 5070.03 5723.68 5416.35 5801.68
S9 23.99% 12.60% 5.71% 4.75% 3.37% 1 3 5 6 7 10728.19 10960.63 12445.76 12367.76 13584.57

S10 34.04% 26.28% 14.57% 10.01% 10.56% 0 0 3 5 6 22635.75 22835.43 24390.76 26215.97 29044.27
S11 38.44% 27.93% 14.04% 9.03% 9.44% 0 0 4 6 7 33454.41 34811.62 37423.08 41806.71 47642.71
S12 38.80% 28.90% 10.78% 0.89% 2.08% 0 0 5 6 6 46443.06 48811.15 51377.37 57456.73 64639.01
S13 7.83% 5.81% 3.86% 2.07% 3.36% 3 5 5 6 6 11743.76 11971.52 11431.75 11576.83 11556.55
S14 9.60% 8.00% 4.27% 4.87% 3.96% 2 3 5 6 6 21626.42 21336.26 21127.22 21757.46 22161.50
S15 29.04% 19.80% 7.64% 4.79% 4.40% 0 0 5 6 6 46859.58 44622.53 47377.50 53693.98 58257.01
S16 28.51% 23.77% 10.12% 0.53% 1.89% 1 1 3 6 6 85322.15 85462.55 95327.01 107807.09 113436.13
S17 36.39% 25.11% 9.49% 6.46% 3.27% 0 0 4 6 9 135722.43 144218.24 166424.99 179518.15 199912.16
S18 21.63% 11.14% 4.23% 1.67% 5.75% 0 0 4 7 9 194651.81 207567.13 231711.41 267282.75 295225.65

AVG 25.25% 18.75% 9.22% 5.52% 5.45% 1.06 1.39 4.06 5.33 6.39 36149.19 37395.81 41383.66 45946.25 50429.60

Table 2.5: For each test problem we report the results averaged on ten instances. The column gap LB-Opt gives the
average percentage LB gap. The column No. Opt LB indicates the number of instances for each test problem for which the
obtained LB is the optimal solution. The average computational costs are reported in column time LB. Each group refers
to a different value of the resource limit. The higher the number of the group. the higher the value of the resource limit.

37 Chapter 2

Two different versions of ISSA have been tested: the former (re-
ferred to as ISSAUB) uses the UB, computed as described in Section
2.3.1, in the latter (ISSAnoUB, for short) the UB is initialized with
the cost of the least resource path.

When analyzing results reported in Table 2.3, one first observes
that ISSAUB executes exactly one iteration. This means that the so-
lutions found by the procedure used to obtain the initial upper bound
are optimal. In addition, it is evident that the average computational
time, on test problems S1-S18 increases when the bound limit on the
resource consumption increases. This behaviour can be justified by
observing that when an high resource limit is considered, the fathom-
ing rule that uses lower bounds on the resource consumption allows
to label a higher number of nodes than in the case in which the re-
source constraint is tight. As a consequence, the higher the resource
limit, the higher the average time to solve the test problems, that is
the time needed to find the UB plus the execution time of ISSA. In
particular, it is observed that the average computational time on the
test problems of group 1 is equal to 45521.99 and increases of 14%,
47%, 78% and 110% for groups 2, 3, 4 and 5, respectively.

As expected, ISSAnoUB executes a number of iterations greater
than one. In this case, the average computational cost is equal to
134490.80, 160174.03, 175167.17, 167786.33 and 160475.09 for groups
1, 2, 3, 4 and 5, respectively (see Table 2.4). The computational
time increases of 10%, 30%, 25% and 19% respect to the average
execution time obtained when the test problems of group 1 are solved,
for groups 2, 3, 4 and 5, respectively. This behaviour can be justified
by considering the number of iterations executed by ISSAnoUB. In
particular, the increase in the average number of iterations performed,
when the test problems of group 1 are solved, is equal to 26%, 47%,
47% and 38% for groups 2, 3, 4 and 5, respectively.

By comparing the results collected in Tables 2.3 and 2.4, it is
evident that ISSAUB is faster than ISSAnoUB. In particular, ISSAUB

2.4. Numerical experiments 38

is on average 2.34 times faster than ISSAnoUB. This behaviour is
observed for all considered groups.

As far as the comparison with the method proposed in [125] is
concerned, ISSAUB is 20.22 times faster than kSP . It is important to
point out that kSP performs also worse than ISSAnoUB. In particular,
ISSAnoUB is 8.64 times faster than kSP .

The problem P (LB) defined in Section 2.3.1 allows us to find good
lower bounds, for the test problems of set S. The higher the resource
limit, the lower the distance from the optimal solution. In particu-
lar, the average optimality gap is 25.25%, 18.75%, 9.22%, 5.52% and
5.45% for groups 1, 2, 3, 4 and 5, respectively (see Table 2.5). This
behaviour can be justified by taking into account the number of in-
stances that are optimality solved for each test problem. Indeed, the
average number of times in which the LB coincides with the optimal
solution is 1.06, 1.39, 4.06, 5.33 and 6.39 for groups 1, 2, 3, 4 and 5,
respectively. From Table 2.5, it is evident that, when a higher value
of the resource limit is considered, a label correcting method used to
solve the problem P (LB) is more likely to find the optimal solution.
This specific behaviour can be explained by observing that since the
objective function of P (LB) is of ASF type, solving the problem al-
lows to find a properly Pareto optimal solution that is nearest to the
reference point. The reference point defined for P (LB) has in the
cost component the minimum cost. When the other components have
a value too far from the resources value of the least cost path, the
solution found by the label correcting method presents resource con-
sumptions far as well from the resource components of the reference
point. Instead, when the resource components of the reference point
have an high value, the resources consumption of the properly Pareto
solution is closer to the resource components of the reference point.
Since these values are set equal to the resource limits, thus the solution
find by the label correcting method is closer to the feasible region.

In addition, the computational time increases when the resource

39 Chapter 2

limit increases. This is justified by the fact that the resource compo-
nents of the reference point increase as well. This means that a path
with an higher value of the resources consumption should be found.
It is evident that, since the resource consumption on the arcs is a vec-
tor of positive values, a longer path is found for higher values of the
references related to the resources.

Results on sets D1 and D2

A behaviour, similar to that underlined for the test problems of set
S, has been observed for sets D1 and D2. In particular, as shown in
Table 2.6 the computational time to find the LB for the L-instances of
set D2 is equal to 20495.00, while for the M-instances the average exe-
cution time is equal to 121182.69. In addition, the average optimality
gap is equal to 33.80% and 6.13% for L-instances and M-instances,
respectively. It is important to point out that the optimal solution of
P (LB) is also optimal for the related RCSPP in 1 out of 26 instances
of L type, instead, for the M-instances the LB is the optimal solution
for 6 out of 27 instances. This behaviour can be explained similarly
to what has been reported for the set S.

When we consider the sets D1, it is evident that the average
optimality gap is better than that obtained for the problems of set D2
and S, even though no test problems are optimality solved (see Table
2.6). In particular, the LB is far from the optimal solution of about
3.84% and 0.54% for the L-instances and M-instances, respectively.
Also in this case, the higher the resource limit, the better the LB’s
quality.

For problems of sets D1 and D2, an UB can be computed by the
preprocessing procedure, defined in [60]. We have used both this up-
per bound and the one obtained with the procedure defined in Section
2.3.1. We refer to ISSA with the UB obtained from the preprocess-
ing as ISSAPrepUB. Our computational results suggest that ISSAUB

2.4. Numerical experiments 40

is faster than ISSAPrepUB (see Table 2.7). In particular, the for-
mer is 2.15 and 3.28 times faster than the latter for the L-instances
and the M-instances belonging to set D2, respectively. Instead, for
the instances in the set D1, ISSAUB is 2.42 and 1.02 times faster
than ISSAPrepUB for L-instances and M-instances, respectively. This
performance can be explained by analyzing the results collected in
Table 2.6. Indeed, for the instances of set D2 we can observe an im-
provement of our UB respect to that obtained with the preprocessing
procedure equal to the 16.90% and 57.61% for L-instances and M-
instances, respectively. As a consequence, the number of iterations of
ISSAUB is less that the one executed by ISSAPrepUB. In particular,
as shown in Table 2.7, the number of iterations executed by ISSAUB

and ISSAPrepUB is on average equal to 1.93 and 7.98, respectively.

The same behavior has been observed for the instances of the
set D1. In particular, the average number of iterations executed by
ISSAUB is equal to 4.38, instead the average number of iterations per-
formed by ISSAPrepUB is equal to 8.25 (see Table 2.7). The improve-
ments on the number of iterations is less evident than that obtained
for the instances belonging to the set D2. As a matter of fact, the
average improvement of our UB respect to the upper bound obtained
with the preprocessing is of the 1.62% and 6.47% for the L-instances
and M-instances, respectivaly. In addition, as underlined for the prob-
lems in the set S, the higher the resource limit, the higher the average
computational time (see Tables 2.6 and 2.7). This is true for both sets
D1 and D2.

When comparing the computational results of ISSA with those
obtained by MLSA (see Table 2.7) it is evident that the proposed so-
lution approach outperforms MLSA. In particular, the best version of
ISSA, that is ISSAUB, is on average 14.30 and 32.33 times faster than
MLSA for problems belonging to the set D1 and D2, respectively. In
addition, the proposed method is faster than MLSA even though we
use the upper bound obtained with the preprocessing. In particular,

41 Chapter 2

ISSAPrepUB is on average 13.88 and 11.99 times faster than MLSA
for problems in the sets D1 and D2, respectively. It is important to
point out that ISSA shows worse performance than MLSA only for
the L-instances of D1, in particular, MLSA is 2.29 times faster than
ISSAUB (see Table 2.7).

2.4.3 Final remarks

The results collected from our computational studies can be summa-
rize as follows:

1) the proposed method, to obtain an upper bound for theRCSPP ,
gives a solution that improves the upper bound provided by the pre-
processing procedure ([60]), on the instances of sets D1 and D2. For
all the problems belonging to the set S, the proposed method provides
the optimal solution;

2) the model defined to find a lower bound allows us to obtain
the optimal solution for several instances of set S. The less thight the
resource constraints, the lower the optimality gap, this behaviour is
observed for all considered test problems. The best values of lower
bound are obtained for the instances belonging to the set D1;

3) the proposed solution approach to optimality solve theRCSPP
outperforms the best known algorithms. The proposed procedure be-
haves the best either when it is initialized with our upper bound or
with a worst feasible solution. An exception is observed only for the
L-instances of set D1, for which MLSA behaves slight better.

2.5 Conclusions and future work

In this paper, we have addressed the resource constrained shortest
path problem. A new solution approach, based on the reference point
methodology, has been defined. In addition, using the concept of

2.5. Conclusions and future work 42

Test % improving UB time UB gap LB - Opt time LB No. Opt LB

L-instances D1 1 1.14% 15.60 3.39% 280.80 0
D1 2 1.65% 3681.62 3.89% 144004.52 0
D1 3 1.37% 3619.22 4.12% 177653.94 0
D1 4 2.31% 21886.94 3.95% 1347302.64 0

AVG 1.62% 7300.85 3.84% 417310.48 0/4

M-instances D1 1 6.36% 3603.62 0.60% 7534.85 0
D1 2 6.41% 96923.42 0.58% 192817.24 0
D1 3 6.54% 377974.82 0.60% 607218.29 0
D1 4 6.58% 1849891.06 0.54% 3270950.97 0

AVG 6.47% 582098.23 0.58% 1019630.34 0/4

L-instances D2 1 9.62% 0.00 4.22% 7.80 1
D2 2 16.90% 15.60 5.47% 26.00 0
D2 3 15.13% 42.90 29.06% 210.60 0
D2 4 21.12% 331.50 36.97% 3989.73 0
D2 5 18.04% 717.60 50.85% 17378.51 0
D2 6 17.16% 1014.01 50.69% 18400.32 0
D2 7 20.33% 2086.51 59.36% 103452.06 0

AVG 16.90% 601.16 33.80% 20495.00 1/26

M-instances D2 1 51.96% 5.20 12.43% 26.00 2
D2 2 50.59% 182.00 0.26% 384.80 2
D2 3 39.90% 618.80 6.27% 2064.41 0
D2 4 53.29% 9297.66 3.40% 23467.75 1
D2 5 67.94% 36597.84 8.09% 85249.35 1
D2 6 66.57% 63258.41 6.80% 193774.04 0
D2 7 73.03% 243911.46 5.64% 543312.48 0

AVG 57.61% 50553.05 6.13% 121182.69 6/27

Table 2.6: The percentage improvement of our UB respect to that obtained with the
preprocessing is given in column % improving UB . In column time UB the execution
time to obtain the UB is reported. The column gap LB-Opt gives the average farness
of the LB from the optimal solution. The average computational costs are reported in
column time LB. The column No. Opt LB indicates the number of instances for each
test problem for which the obtained LB is the optimal solution.

Chebyshev distance, models and methods for finding upper and lower
bounds have been developed. The proposed methods have been tested
on benchmark test problems taken from the literature. Extensive com-
putational tests have been carried out to evaluate the behaviours of
the proposed solution approaches. In addition, a comparison with
the best known label setting algorithm ([60]) and the best known k-
shortest paths based approach ([125]) is provided.

From our computational studies, we can conclude that the pro-
posed optimal solution strategy is competitive with the state-of-art
approaches. In addition, the models and methods proposed for find-
ing upper and lower bounds allows us to obtain satisfactory results.

It is important to point out that very recently an efficient pre-
processing procedure for the RCSPP has been defined by Boland and
Muhandiramge [111]. A comparison of the quality of our upper bound

43 Chapter 2

ISSAUB ISSAPrepUB MLSA

Test iter time UB time iter time time

L-instances D1 1 3.00 15.60 2496.02 5.00 4383.63 2028.01
D1 2 7.00 3681.62 2324586.50 11.00 3794833.53 943884.05
D1 3 3.00 3619.22 1330735.33 7.00 3246427.61 975084.25
D1 4 6.00 21886.94 21926065.35 14.00 55012988.25 9260406.56

AVG 4.75 7300.85 6395970.80 9.25 15514658.25 2795350.72

M-instances D1 1 2.00 3603.62 11310.07 7.00 38547.85 426179.13
D1 2 4.00 96923.42 564333.62 8.00 1190911.63 38332066.52
D1 3 3.00 377974.82 1180053.96 7.00 2736491.54 135054262.13
D1 4 7.00 1849891.06 15635169.02 7.00 16179940.12 381672818.76

AVG 4.00 582098.23 4347716.67 7.25 5036472.78 138871331.63

L-instances D2 1 1.00 0.00 0.00 1.50 7.80 10.40
D2 2 1.00 15.60 36.40 2.67 62.40 379.60
D2 3 1.25 42.90 167.70 3.25 588.90 3662.12
D2 4 1.25 331.50 1357.21 3.25 3377.42 76927.99
D2 5 1.00 717.60 2956.22 1.50 4680.03 189810.32
D2 6 4.00 1014.01 10159.57 12.00 52131.63 324762.88
D2 7 6.25 2086.51 52603.54 10.00 92602.19 1299893.93

AVG 2.25 601.16 9611.52 4.88 21921.48 270778.18

M-instances D2 1 1.67 5.20 41.60 8.67 161.20 192.40
D2 2 1.00 182.00 270.40 4.00 759.20 9204.06
D2 3 2.33 618.80 4648.83 4.33 5168.83 78161.70
D2 4 1.00 9297.66 16270.90 10.00 152558.58 2173858.34
D2 5 1.33 36597.84 89456.17 13.00 288617.45 10772144.65
D2 6 3.00 63258.41 475636.65 17.00 964398.18 20879745.84
D2 7 1.00 243911.46 487752.73 20.50 3274936.79 20549013.32

AVG 1.62 50553.05 153439.61 11.07 669514.32 7780331.47

Table 2.7: The column iter gives the iteration executed by ISSA. The average execution
times are reported in column time. Under column Time UB, we give the computational
cost to obtain the UB.

and that obtained with the preprocessing strategy of [111] will be the
subject of future investigation.

2.5. Conclusions and future work 44

Chapter 3

Dynamic programming approaches
to solve the shortest path problem
with forbidden paths 1

Luigi Di Puglia Pugliese

Department of Electronics, Informatics and Systems, University of
Calabria, 87036, Rende (CS), Italy

Francesca Guerriero

Department of Electronics, Informatics and Systems, University of
Calabria, 87036, Rende (CS), Italy

Abstract

In this paper, the shortest path problem with forbidden paths is ad-
dressed. The problem under consideration is formulated as a particular
instance of the resource constrained shortest path problem. Different
versions of a dynamic programming based solution approach are de-
fined and implemented. The proposed algorithm can be viewed as

1Submitted for pubblication in the journal Optimization Methods & Software.

45

3.1. Introduction 46

an extension of the node selection approach proposed by Desrochers
in 1988. An extensive computational test, on a meaningful number
of random instances, is carried out with the purpose to assess the
behaviour of the developed solution approaches. A comparison with
the state-of-art method proposed to address the problem under study
is also made. The computational results are very encouraging and
highlight that the proposed algorithms turn out to be very efficient.

Keywords: shortest path problem, forbidden paths, dynamic pro-
gramming.

3.1 Introduction

The Shortest Path Problem (SPP , for short) is one of the most stud-
ied problems in network optimization ([46]; [57]; [65]). In its basic
formulation, the objective is to determine the minimum cost path
through a network from a given origin node to a destination node.
Different polynomial time solution approaches have been developed in
the scientific literature to address the SPP (e.g., see [47]; [57]; [99]).
It is worth observing that various instances of the classical SPP have
been formulated and studied. An important variant of the SPP is
the constrained shortest path problem (cSPP , for short), that has re-
ceived great attention due to its practical importance. Indeed, many
real situations can be formulated as a cSPP and, thus, various “con-
strained” versions of the basic SPP can be defined. For example, the
path should include specific nodes, or a specific number of nodes (e.g.,
see [49]), or nodes within a pre-specified “covering” distance from each
node in the network ([44]; [45]).

In general, the cSPP refers to the shortest path problem with one
additional constraint, that establishes an upper limit on the sum of
some other arc parameter (e.g., travel time) for the path ([81]). While
the SPP is easy to solve (i.e., it has a polynomial complexity bound),
the addition of this constraint generally results in problems belonging

47 Chapter 3

to the NP -hard class (e.g., see [71]). The problem of determining the
minimum cost path with a limited resource constraint has been ad-
dressed by Dumitrescu and Boland in [60], where labelling and scaling
algorithms are proposed. In order to improve the performances of the
defined solution approaches, a preprocessing procedure is also defined.
Recently, an improved approach to address the cSPP , that is based
on the solution of the k-shortest path problem (k − SPP) has been
proposed by Santos et al. in [125]. The authors introduce a new search
direction that allows the outperformance of the state-of-art algorithms
based on the k − SPP .

The cSPP in which more than one constraint is included is re-
ferred to as shortest path problem with resource constraints (SPPRC,
for short). The dynamic programming framework has been used to
develop efficient solution approaches for the SPPRC. In particular,
a label, representing the consumption of resources, is associated with
each possible partial path. Dominance rules are used to fathom un-
promising labels. In label correcting approaches, nodes are repeatedly
treated and their labels extended. This solution strategy has been
originally proposed by Desrochers ([50]) and it can be viewed as an
extension of the Bellman-Ford algorithm, taking resource constraints
into account.

It is worth observing that a label can be treated instead of a
node. In this case, the selected label is used to generate a new label
for each successor node. Dynamic programming approaches have also
been developed by Desrochers and Soumis ([52]) and by Jaumard et
al. ([92]).

Addressing the SPPRC by using a dynamic programming ap-
proach is closely related to deal with the multi-objective shortest
path problems, which have received the attention of many researchers.
In these problems the aim is to generate non-dominated paths (i.e.,
Pareto optimal paths). The methods developed in the literature usu-
ally concern multi-objective shortest path problems on graphs with

3.1. Introduction 48

non-negative lengths (see, i.e., [83] and [142]).

Another important class of solution approaches for the SPPRC
uses Lagrangian relaxation technique, by taking advantage of the ef-
fectiveness of algorithms that solve the unconstrained version of the
problem ([16]; [23]; [81]; [105]). A detailed survey devoted to the
SPPRC is provided in [150].

In this paper, we address the shortest paths problem with for-
bidden paths (in the sequel referred to as SPPFP), which has been
introduced quite recently by Villeneuve and Desaulniers ([138]). The
main aim is to find the shortest paths from an origin node to all other
nodes of a directed graph, such that no paths in the optimal solution
contain paths belonging to a given set (i.e., forbidden paths). The
SPPFP arises in all the contexts in which a SPP must be modi-
fied, to exclude a set of paths, that do not satisfy a given feasibility
criterion ([138]).

The first method appeared in the scientific literature that handles
the SPPFP , has been proposed in ([138]) and it has been defined by
combining solution techniques developed for the k − SPP ([100]) to-
gether with a method defined to solve the keyword matching problem
([2]). The main idea is to construct an enlarged graph, such that solv-
ing the shortest path problem in this graph ensures that the optimal
solution does not contain any forbidden path. The approach of Vil-
leneuve and Desaulniers ([138]) is a polynomial time algorithm where
the length of input is the size of the network and the number of arcs
in the forbidden paths.

Recently, an improved version of the solution approach proposed
in [138] has been presented in [30]. The improvement has been ob-
tained by reducing the number of node of the enlarged graph insuring
the correctness of the method. The modified solution approach of Vil-
leneuve and Desaulniers ([138]) proposed in [30] is still a polynomial
time algorithm.

49 Chapter 3

A particular instance of the SPPFP has been addressed in [78],
where a shortest path problem, in a road network with turn prohibi-
tion, is considered. In this case, the constraints are represented as a
set of forbidden paths, each of them containing only two arcs; in the
node shared by these arcs the turn is prohibited. To the best of our
knowledge no papers have been published thus far with a comprehen-
sive study of the practical behaviour of solution approaches for the
SPPFP .

In this work, we formulate the SPPFP as a variant of the SPPRC,
in which the constraints are represented by a set of paths, that can-
not be included in the path solution. It is important to point out
that, since the SPPRC belongs to the NP -hard class, each algorithm
defined to solve the SPPFP as a specific instance of the SPPRC
is inferior to the graph modification approach of Villeneuve and De-
saulniers ([138]) and the improved version ([30]) from a worst case
point of view. Indeed, the number of states grows exponentially with
the number of forbidden paths. However, as it will be shown in the
sequel, the suggested approaches outperform the original method of
Villeneuve and Desaulniers ([138]) and its improvement ([30]) in prac-
tice.

The main contribution of this paper is twofold. On the one hand,
we propose solution approaches for the SPPFP , that in contrast to
the state-of-art algorithms, work on the original graph. On the other
hand, we empirically evaluate, for the first time, solution approaches
for the SPPFP .

The rest of the paper is organized as follows. In Section 2, we
formulate the problem under consideration as a specific instance of
the SPPRC. The proposed solution approaches, based on dynamic
programming optimization, are described in Section 3. Section 4 is
devoted to the presentation of the computational results, obtained on
the basis of an extensive testing phase. Finally, concluding remarks
are given in Section 5.

3.2. Problem definition 50

3.2 Problem definition

The SPPFP is defined on a directed graph D = (N ,A), where N =
{1, . . . , n} denotes the set of nodes, and A ⊆ N ×N the set of arcs.
It is assumed that the directed graph D is simple, where one arc at
most connects any two nodes. A cost cij is associated with each arc
(i, j) ∈ A. A set of forward successor nodes FS(i) = {j|(i, j) ∈ A} is
associated with each node i ∈ N .

Given two distinct nodes o (referred to as origin node) and d

(referred to as destination node), a path from o to d is a sequence of
nodes Πod = {o = i1, . . . , il = d}, l ≥ 2 and a corresponding sequence
of l − 1 arcs such that the r − th arc in the sequence is (ir, ir+1) ∈ A
for r = 1, . . . , l − 1. Thus, each path contains at least one arc. A
path is said to be elementary, if it does not contain repeated nodes,
whereas it is said to be simple if it does not contain repeated arcs.
It is worth observing that a simple path Πoj (containing no repeated
arcs) can be a non elementary path (i.e., a node can appear more than
once). An oriented cycle is an elementary path for which the origin
and destination nodes are the same.

The cost z(Πod) of a path Πod = {o = i1, . . . , il = d} is defined as
the sum of the costs of its arcs, that is z(Πod) =

∑
(i,j)∈Πod

cij . In what
follows, we assume that every cycle in D has a non-negative cost.

Let F denote the finite set of forbidden paths in D. No assump-
tions are made about the characteristics of these paths. In what fol-
lows, ḟγ and f̈γ denote the initial arc and the final arc of the forbidden
path fγ, γ = 1, . . . , |F|, respectively. Given an arc ak = (i, j) ∈ A we
denote with ak the extreme node that is ak = j and ∀γ = 1, . . . , |F|
we define the set N (γ) = {j ∈ N|j ∈ fγ, j 6= f̈γ}.

The SPPFP consists of finding the cheapest way to connect o
to each other node j ∈ N − {o}, such that no paths in the solution
contain any forbidden path fγ, γ = 1, . . . , |F|.

51 Chapter 3

The SPPFP can be viewed as a particular instance of the SPPRC.
More specifically, it is assumed that |F| resources are available, one
for each forbidden path, and we denote the resource limit vector by
R = {R1 = nf1 − 2, . . . , R|F| = nf|F| − 2}, where nfγ represents the
number of nodes of the forbidden path fγ, γ = 1, . . . , |F|.

In addition, let wij = {w1
ij, . . . , w

|F|
ij } represent the resource con-

sumed along the arc (i, j) ∈ A, where ∀fγ ∈ F , wγ
ij = 1 if (i, j) ∈ fγ,

0 otherwise.

Given a path Πod = {o = i1, . . . , il = d} from the origin o to
the destination d, the resources consumed along Πod are stored in the
vector Wd = {w1(Πod), . . . , w

|F|(Πod)}, where for each forbidden path
fγ, γ = 1, . . . , |F|, wγ(Πod) represents the number of consecutive arcs
of fγ, starting from ḟγ, that are included in Πod.

The SPPFP is the problem of finding a path Πoj in D from o to
each other node j ∈ N−{o}, for which the costs z(Πoj) are minimized,
subject to the constraints that wγ(Πoj) ≤ Rγ for all γ = 1, . . . , |F| and
∀j ∈ N − {o}.

A feasible solution for the SPPFP can contain repeated nodes,
even if the graph does not present negative cost cycles. This situation
can be explained by taking into account the specific structure of the
constraints of the SPPFP . Indeed, the generation of a cycle allows
avoiding that the built path solution contains a specific forbidden path.
This concept is better underlined in the example of Figure 3.1.

3.3 Solution approach

Dynamic programming approaches, based on the algorithm proposed
by Desrochers ([50]), are developed to find the optimal solution for the
SPPFP . The main differences with the algorithm of Desrochers are
related to the rule for constructing a new label/state and the strat-
egy used to exploit the solution space. In particular, the resources

3.3. Solution approach 52

Figure 3.1: The set of forbidden paths contains the paths f1 =< o, 1, 4, d > and f2 =<
1, 2, 3, 5 >. With each arc (i, j) the cost cij , the resource consumption w1

ij and w2
ij are

associated and related to f1 and f2, respectively. The optimal path from node o to node
d is Π∗od = {o, 1, 2, 3, 1, 4, d}, with cost 7.

consumption of a partial solution, is not defined as the sum of the re-
sources consumed along the partial path but it depends on the number
of consecutive arcs, belonging to forbidden paths, that are included
in the path. Thus the updated rule takes into account the specific
structure of the forbidden paths. In addition, label setting approaches
based on both node and label selection strategies are developed. In or-
der to describe the devised solution methods, it is useful to introduce
the following notations and definitions.

Let sk = (zk,Wk) denote a state, associated with a path Πok

from the origin node o to the node k. In particular, zk represents
the cost of the path Πok (i.e., zk = z(Πok)), whereas Wk is the vector
containing information about the resources consumed along Πok, that
is Wk = {w1(Πok), . . . , w

|F|(Πok)}. It is worth observing that more
than one path Πok can exist to reach the node k. In what follows,
the set of states associated with each path from node o to node k is
denoted as Dk.

Since a partial path is associated with each state, in what follows
the terms “state”, “path” and “solution” are used in an interchange-
able fashion.

Definition 3.3.1. Let s1
k and s2

k be two labels associated with the node

53 Chapter 3

k, we say that z1
k dominates z2

k if the following conditions hold

z1
k ≤ z2

k;(3.1)

W 1
k ≤ W 2

k ;(3.2)

and at least one of the inequalities is strict.

Definition 3.3.2. A state is said to be efficient/non-dominated if
there is not another state that dominates it.

Definition 3.3.3. A state sk = (zk,Wk) is said to be feasible if Wk ≤
R.

Starting from the state so = (0, 0), the solution space is ex-
plored in order to obtain efficient solutions for each node. During
the course of the algorithm, a state sh is selected and a new state
sk = (zk,Wk), k ∈ FS(h), is determined on the basis of the conditions
reported below:

(3.3) zk = zh + chk

wγ(Πok) =


wγ(Πoh) + 1 if wγ(Πoh) ≥ 1 ∧ wγ

hk = 1 ∧ Cons(Π̈oh, (h, k), fγ)

wγ(Πoh) + 1 if wγ(Πoh) = 0 ∧ wγ
hk = 1 ∧ ḟγ ≡ (h, k)

0 if wγ(Πoh) ≥ 1 ∧ wγ
hk = 1 ∧ !Cons(Π̈oh, (h, k), fγ)

0 if wγ(Πoh) ≥ 0 ∧ wγ
hk = 0

,

(3.4) γ = 1, . . . , |F|

where the function Cons(Π̈oh, (h, k), fγ) returns true if the arc (h, k)
follows immediately the last arc of the path Πoh (i.e.: Π̈oh) in the
forbidden path fγ, false otherwise. The newly created state is then

3.3. Solution approach 54

added to the set Dk only if it is feasible, that is Wk ≤ R, and effi-
cient. To better explain the condition (3.4), let us consider the net-
work of Figure 3.2. We assume that F = {f}, with f =< 3, 1, 4 >,
and we consider the two paths Π1 = {o, 1, 2, 3, 1, 4, 5, 1, d} and Π2 =
{o, 1, 4, 5, 1, 2, 3, 1, d}. It is easy to verify that path Π1 is infeasible,
while path Π2 is feasible.

Figure 3.2: Simple Graph Example. Associated with each arc (i, j) ∈ A are the cost cij
and the resource consumption w1

ij . The resource limit is R1 = 1.

When the partial solution Π̌1 = {o, 1, 2, 3} is extended to the arc
(3, 1), since w1(Π̌1) = 0, w1

31 = 1 and (3, 1) = ḟ , the resource consump-
tion is set equal to one, that is w1(Π̌1 ∪ (3, 1)) = 1. The extension of
the new built sub-path Π̌1∪ (3, 1) to the arc (1, 4), generates the state
s4 = (z4,W4) = (19, 2), because the first condition of (3.4) holds, that
is w1(Π̌1∪(3, 1)) ≥ 1, w1

14 = 1 and Cons((3, 1); (1, 4); f) = true. Since
the state s4 is associated with an infeasible path (i.e.: W4 = 2 > 1 =
R1), thus it is not added to the set D4.

Let us consider the path Π2. When we extend the partial path
Π̌2 = {o, 1} to the arc (1, 4), the resource consumption is not updated
even if arc (1, 4) belongs to f . This is ensured by the condition f 6≡
(1, 4). The resource consumption remains equal to zero until the sub-
path Π̌

′

2 = {o, 1, 4, 5, 1, 2, 3} is extended to the arc (3, 1). Since f ≡
(3, 1), w1(Π̌

′

2 ∪ (3, 1)) = 1, when the sub-path Π̌
′

2 ∪ (3, 1) is extended
to the arc (1, d), the consumption of resource is set equal to zero.

For the sake of comprehension and for a better explanation of the
main ideas of the basic solution approach, in Figure 3.3 we illustrate

55 Chapter 3

the states associated with each node, when considering the instance
depicted in Figure 3.1.

Figure 3.3: Associated with each node i ∈ N , are the states related to the instance of
Figure 3.1. In particular, the dominated states are reported in bold, while the italics
represent the infeasible states. All the other states, that is the feasible and efficient one,
are stored in the set Di.

It is worth observing that during the search process, it may occur
that some paths have a resource consumption equal to zero. In this
case, when we compare a new state with an existing one, on the basis
of the conditions given in Definition 1, the condition on the resources
is satisfied as equality. Thus the dominance is related only to the
cost, that is the state with the minimum cost is the only efficient
state. The aforementioned considerations are formally stated in the
following lemma.

Lemma 3.3.4. Let I be the set that contains all nodes that do not
belong to any forbidden path, that is I = {i ∈ N|i /∈ f, ∀f ∈ F}, and
let J denote the set containing the destination nodes of all forbidden
paths that do not belong to N (γ), γ = 1, . . . , |F|, that is J = {j ∈
N|∃fγ ∈ F , f̈γ = j, j /∈ N (γ), γ = 1, . . . , |F|}. We show that each node
k ∈ I ∪ J , is associated with exactly one state.

Proof. For each node k ∈ J , a state sk exists only if it is feasible,
that is Wk ≤ R. Since k ∈ J , from conditions of (3.4), we have that
Wk = {0, . . . , 0}, thus all the states associated with nodes k have a

3.3. Solution approach 56

resource consumption equal to zero. The efficient one is that with a
minimum cost.

Let us now consider the set I. For each node k ∈ I, wγ
hk =

0, γ = 1, . . . , |F|, (h, k) ∈ A. Thus, from the fourth condition of (3.4),
each state sk associated with the node k, is characterized by Wk =
{0, . . . , 0}. Also, in this case the efficient state is that with minimum
cost.

It is possible to show that after applying the dominance test of
Definition 3.3.1, the set Dk,∀k ∈ N is an efficient/non-dominated set,
that is, it contains only non-dominated and feasible states.

For each node j ∈ N , the value zj = minsj∈Dj
zj represents the

cost of the shortest path, without forbidden paths, from node o to
node j.

With the aim of reducing the number of generated states, a
bounding procedure has been devised. In particular, upper bound
(UB) and lower bound (LB) on the cost are introduced to prune those
states that do not have the potential to generate optimal solutions. In
particular, a LBij is associated with each pair of nodes i, j ∈ N and it
represents the least cost of the path from node i to node j. The UBj

is associated with each node j ∈ N and it denotes the cost of the best
feasible solution from node o to node j, found so far.

A state sk = (zk,Wk) is generated only if ∃j ∈ N|zk + LBkj ≤
UBj. In addition, the UBj are updated whenever a better feasible
solution is generated during the search process.

In order to initialize the UBj, feasible initial solutions are ob-
tained by applying the heuristic strategy reported in [75]. Briefly, the
procedure is divided into two main steps. In the former step, the orig-
inal graph is modified by deleting one arc for each forbidden path. In
the latter, the shortest paths are calculated in the modified graph.

The solution approaches developed to address the SPPFP have
been defined by considering different state selection and node selection

57 Chapter 3

strategies. In the first case, at each iteration, a state is selected and
a new state is determined, extending the one selected, for each of its
successor nodes. In the node-selection method, at each iteration, a
node h is selected and all the states associated with it that have not
yet extended, are used to update the set of states of the successor
nodes.

3.3.1 State selection method

The state selection method (SSM, for short) maintains a candidate
list L, storing all the states with the potential to determine a new
state for at least one node. At each iteration, a state sξh is selected
and processed. Starting from the selected state, efficient and feasible
states are generated and stored. The steps of the proposed algorithm
are depicted in Algorithm 3.

It is possible to show that SSM determines the set of all efficient
and feasible solutions associated with each node.

Proposition 3.3.5.

1. At the end of each iteration, the following conditions hold:

(a) Do = {s1
o} = {(0, 0)};

(b) ∀j ∈ N , if Dj 6= ∅ [i.e.: Dj = {s1
j , s

2
j , . . . , s

l
j}] and j 6= o,

then sξj , ξ = 1, . . . , l is a state related to a feasible path from
node o to node j and Dj is an efficient set.

2. Upon termination of the algorithm, if Dj 6= ∅, j ∈ N and j 6= o,
then Dj contains the states of all efficient and feasible paths from
node o to node j.

Proof.

3.3. Solution approach 58

Algorithm 3 SSM scheme
Step 0 (Initialization Phase)
Set: Do = {s1

o}, s1
o = (0, 0), Dk = ∅, ∀k ∈ N − {o}, L = {s1

o}.

Step 1 (State Selection)
if L = ∅ then

STOP
else

Select and delete from L a state sξh.
end if

Step 2 (State Scan)
for all k ∈ FS(h), k 6= 0 do

Compute W k on the basis of the condition (3.4).

if W k ≤W and ∃j ∈ N|zξh + chk + LBkj ≤ UBj then
Set: zk = zξh + chk.
if sk = (zk,W k) is not dominated by the states belonging to Dk then

Set: s
|Dk|+1
k = (zk,W k); Dk = Dk ∪ {s

|Dk|+1
k }.

L = L ∪ s|Dk|+1
k .

Delete from Dk and L all the states that are dominated by s
|Dk|+1
k .

if UBk > zk then
Set: UBk = zk.

end if
end if

end if
end for
Go to Step 1.

1. Condition 1a holds because, initially, Do = {s1
o} = {(0, 0)} and,

by the rules of the algorithm, Do cannot change.

We prove condition 1b by induction on the iteration count. In-
deed, initially, condition 1b holds, since node o is the only node
for which set Do is nonempty. Suppose that 1b holds for some
node j at the beginning of some iteration.

Let sξi be the state removed from L.

If i = o, it occurs only at the first iteration and ξ = 1. At the end
of this iteration, we have Dj = {s1

j} for all successor nodes j of
o such that the corresponding path Πoj is feasible and s1

j has the

59 Chapter 3

potential to generate an optimal path for at least one node (i.e.:
∃k ∈ N|z1

j + LBjk ≤ UBk). Dj = ∅ for all other nodes j 6= o,
j /∈ FS(i). Thus, the set of states has the required property.

If i 6= o, then sξi is the state associated with some feasible and
potential optimal path Πξ

oi starting from o and ending with i
which is not dominated by the other paths in Di, by the induction
hypothesis. If the set Dj changes, for some node j, such that
j ∈ FS(i), as a result of the iteration, a new state s̄j = (z̄j, W̄j)
such that W̄j ≤ R and ∃k ∈ N|z̄1

j + LBjk ≤ UBk is obtained
for node j. The created state is related to the feasible path Πoj

consisting of path Πξ
oi followed by the arc (i, j). Finally, note

that, by the rules of the algorithm, the newly created label is
added to Dj only if it is an efficient label. This completes the
induction proof of 1b.

2. Using part 1b, we have that, at each iteration, ∀j ∈ N such that
Dj 6= ∅, Dj is an efficient set. Thus, the property mentioned
is also satisfied when the algorithm terminates. In addition, the
way in which the candidate list L is updated and the termina-
tion condition (i.e., the algorithm terminates when there are no
more states left to be scanned) guarantees that all the states with
the potential to determine a new state for at least one node are
scanned during the execution of the algorithm.

3.3.2 Node selection method

The node selection approach (NSM, for short) maintains a candidate
list L, containing the nodes to be processed. At each iteration a node
h is selected and efficient and feasible states are generated from the
states belonging to Dh that have not yet extended to the successor
nodes of h, in the previous iterations. In Algorithm 4, we present the
steps of the proposed NSM.

3.3. Solution approach 60

Algorithm 4 NSM scheme
Step 0 (Initialization Phase)
Set: Do = {s1

o}, s1
o = (0, 0), Dk = ∅, ∀k ∈ N − {o}, L = {o}.

Step 1 (Node Selection)
if L = ∅ then

STOP
else

Select and delete from L a node h.
end if

Step 2 (Node Process)
for all k ∈ FS(h), k 6= o do

for all sξh ∈ Dh not yet extended do
Compute W k on the basis of the condition (3.4).

if W k ≤W and ∃j ∈ N|zξh + chk + LBkj ≤ UBj then
Set: zk = zξh + chk.
if sk = (zk,W k) is not dominated by the states belonging to Dk then

Set: s
|Dk|+1
k = (zk,W k); Dk = Dk ∪ {s

|Dk|+1
k }.

L = L ∪ s|Dk|+1
k .

Delete from Dk and L all the states that are dominated by s
|Dk|+1
k .

if UBk > zk then
Set: UBk = zk.

end if
end if

end if
end for

end for
Go to Step 1.

On the basis of the operations executed by NSM, the following
proposition can be demonstrated.

Proposition 3.3.6.

1. At the end of each iteration, the following conditions hold:

(a) Do = {s1
o} = {(0, 0)};

(b) ∀j ∈ N , if Dj 6= ∅ [i.e.: Dj = {s1
j , s

2
j , . . . , s

l
j}] and j 6= o,

then sξj , ξ = 1, . . . , l is a state related to a feasible path from

61 Chapter 3

node o to node j and Dj is an efficient set.

2. Upon termination of the algorithm, if Dj 6= ∅, j ∈ N and j 6= o,
then Dj contains the states of all efficient and feasible paths from
node o to node j.

Proof.

1. The proof of condition 1a is identical to the corresponding part
of Proposition 1.

We prove condition 1b by induction on the iteration count. Ini-
tially, condition 1b holds, since node o is the only node for which
the set Do is nonempty. Suppose that 1b holds for some node j
at the start of some iteration at which the node removed from L

is i. The following alternative situations can occur:

• i = o. This situation happens only at the first iteration and
at the end of the iteration we have

Dj =


s1
j = (z1

j , w
1
j), if w1

j ≤ R,∃k ∈ N|z1
j + LBjk ≤ UBk

and j ∈ FS(i)

∅, otherwise

Thus, the set of labels Dj has the required property.

• i 6= o. In this case, Di 6= ∅ by the rules of the algorithm,
and it contains the states of some paths Πl

oi, l = 1, . . . , |Di|,
starting from node o and ending at node i. In addition, we
have that Di is an efficient set, by the induction hypothe-
sis. If by using the states belonging to Di, a new set D̄j is
obtained, for some node j, such that j ∈ FS(i), as a result
of the iteration, D̄j is set to Dj ∪ {s̄1

j , . . . , s̄
m
j }, m ≤ |Di|,

where s̄lj, l = 1, . . . ,m is not dominated by the labels already
belonging to Dj and the corresponding path Πl

oj, consisting

3.3. Solution approach 62

of Πl
oi followed by the arc (i, j), is feasible and has the poten-

tial to determine optimal solutions. In addition, by the rules
of the algorithm, the states dominated by the newly created
states s̄lj, l = 1, . . . ,m are deleted from Dj.

Thus, property 1b holds at the end of the iteration, complet-
ing the induction proof.

2. The proof is identical to the corresponding part of Proposition
3.3.5.

It is important to point out that the algorithm proposed by
Desrochers in [50] can be easily derived from the NSM scheme (see
Algorithm 4). In particular, it is sufficient to adopt the Bellman-Ford
strategy to select, at each iteration, the node h to be processed (Step
1), to extend all the labels associated with node h and to eliminate
the pruning rule (Step 2) when a new state is determined.

As far as the complexity analysis of the proposed solution ap-
proaches is concerned, the following theoretical results can be derived.

Proposition 3.3.7. Given the directed graph D(N ,A) and let k de-
note the number of efficient and feasible paths, that reach each node
j ∈ N starting from node o, the computational cost of the proposed
SSM and NSM when applied to D(N ,A) is O(k2|A| |F|), in the
worst case.

Proof. Both methods execute the same number of operations. In par-
ticular, it is easy to verify that the number of states/nodes to be ex-
plored can never be greater than k |N |. Thus, the for-loop (Step 2)

is performed k |N | times and requires the execution of |A||N | iterations.
At each iteration, the calculation of the amount of resource consumed
takes O(4 |F|), while verifying label dominance takes O(k |F|), in the
worst case. The feasibility check requires O(|F|) whereas O(|N |) op-
erations are required by the pruning rule. Finally, adding/replacing a

63 Chapter 3

label in the set D(.) takes O(1), whereas the computational cost for
adding an element into L is O(1). Thus, the computational cost of

the for-loop is equal to O(|A||N | ×max(5 |F| ; k |F| ; |N |))= O(|A||N |k |F|).
On the basis of the previous considerations, it is evident that the
worst case computational complexity of the proposed approaches is
O(k2|A| |F|).

3.4 Computational Experiments and Discussion

In this section we report, discuss and compare the results of the com-
putational experiments carried out with our implementation of SSM
and NSM.

The computational experiments were designed to study the per-
formance of these two methods relative to each other as well as the
dependence of performance on network topology and number of for-
bidden paths. The implemented algorithms have been also compared
with (1) the algorithm of Desrochers ([50]), that represents the start-
ing point for the development of the methods presented here; (2) an
enhanced version of the same approach, that uses the pruning rule; (3)
the algorithm of Villeneuve and Desaulniers ([138]) (VD, for short) and
the solution approach proposed in [30] (EVD, for short) that represent
the state-of-art approaches to address the problem under investigation.

The solution approaches have been implemented in java language
and have been tested by using an Intel(R) Core(TM) i7 CPU M 620
PC, 2.67 GHz, RAM 4.00 GB, under Microsoft 7 operating system.

It is worth observing that the codes implementing VD and EVD
have been provided by the authors of [30]).

3.4. Computational Experiments and Discussion 64

3.4.1 Test Problems

The computational experiments were conducted on three sets of test
problems. The first set (i.e., sprand networks) contains 16 test prob-
lems (R1−R16) with different size and density, defined as the number
of arcs over the number of nodes. These instances have been generated
by using the public domain SPRAND generator ([29]). In addition,
we have considered a set of 4 complete networks (i.e., C1 − C4) built
by using the Compligen generator of Bertsekas ([20]).

The characteristics of the sprand networks are reported in Table
3.1 where the number of nodes, the number of arcs and the density
values are highlighted, whereas in Table 3.2, the number of nodes and
the number of arcs of the complete networks are given. The costs have
been randomly generated from the interval [0, 10] in the case of sprand
networks and from the range [0, 100] for the complete networks.

Test Nodes Arcs Density

R1 100 5000 50
R2 200 5000 25
R3 500 5000 10
R4 1000 5000 5
R5 200 10000 50
R6 400 10000 25
R7 1000 10000 10
R8 2000 10000 5
R9 400 20000 50
R10 800 20000 25
R11 2000 20000 10
R12 4000 20000 5
R13 600 30000 50
R14 1200 30000 25
R15 3000 30000 10
R16 6000 30000 5

Table 3.1: Characteristics of the sprand networks.

For each network, several instances have been created by setting
the total number of forbidden paths (i.e., |F|) equal to 20, 60, 100, 250
and 500 for networks R1-R16 and to 20, 40, 60, 80 and 100 in the case

65 Chapter 3

Test Nodes Arcs

C1 150 22350
C2 180 32220
C3 200 39800
C4 250 62250

Table 3.2: Characteristics of the complete networks.

of tests C1-C4, respectively. For each instance, we have considered six
different problems, characterized by a different length (i.e., number of
nodes) of the forbidden paths. In particular, forbidden paths with 5,
6, 7, 8, 9 and 10 nodes have been generated.

In what follows, we use the notation test|F| to represent a test
problem. Indeed, R250

1 refers to the fully random network R1, with
250 forbidden paths.

We underline that the forbidden paths have been generated in
such a way that all of them are included in the optimal solution of
the problem without the forbidden paths restriction. All these paths
produce violated forbidden constraints in the SPPFP relaxation and,
as a consequence, a large number of states has many positive resources
consumption (for counting arcs of forbidden paths). In this manner we
are sure to evaluate the proposed algorithms on meaningful instances.

In addition, it is worth observing that if a small fraction of for-
bidden path constraints is binding, a simple algorithm based either on
VD or on EVD could outperform the proposed methods. In particu-
lar, the shortest paths on the original graph are determined. For all
forbidden paths that make the determined optimal solution infeasible,
the enlarged network using either VD or EVD is constructed and the
shortest paths are re-computed. This procedure is repeated until for
each node the shortest path is a feasible path for the SPPFP , thus
the optimal solution is obtained. Of course, the approach outlined
above turns out to be very inefficient for the test problems considered
here.

In order to compare the proposed solution approaches with the

3.4. Computational Experiments and Discussion 66

state-of-art algorithms, another set of test problems (i.e. N1−N9) has
been considered. In particular, the instances tested in [30] have been
taken into account in the computational test. The characteristics (i.e.,
nodes, arcs and density) of these test problems (referred in the sequel
as fully random networks) are reported in Table 3.3.

Test Nodes Arcs Density

N1 100 1000 10
N2 100 5000 50
N3 100 9000 90
N4 300 9000 30
N5 300 45000 150
N6 300 81000 270
N7 500 25000 50
N8 500 125000 250
N9 500 225000 450

Table 3.3: Characteristics of the fully random networks.

For each network Ni, i = 1, . . . , 9, six different instances have been
created, by letting the number of forbidden paths equal to 250, 500
and 1000 and by considering forbidden paths with 10 and 20 nodes .

3.4.2 Test Codes

In our testing, we compared the following twelve codes:

SSM− ESs − nP This code implements the SSM scheme, in which
the state, to be processed at each iteration, is selected by following
a Dijkstra-Like rule (ESs, for short). More specifically, at each
iteration of SSM, the chosen state sξh is the one with the smallest

cost, that is sξh = argminsh∈L zh.

SSM− ESs − P This code differs from the previous one only in the
use of the pruning strategy. In this version, the information re-
lated to the UBs and LBs are taken into account to eliminate
unpromising states.

67 Chapter 3

SSM− FIFO − nP Same as SSM − ESs − nP , except that the
state to be processed is selected following the Bellman-Ford rule
(FIFO, for short).

SSM− FIFO − P Same as SSM − FIFO − nP , except that the
pruning strategy is used to fathom unpromising states.

NSM− ESn − nP This code implements theNSM scheme. A node
is selected by adopting the Dijkstra-Like rule (ESn, for short),
described in what follows. For each node the smallest cost c(h)
among all the states belonging to Dh is determined, that is c(h) =
minsh∈Dh

{zh}. The node h̄ satisfying the condition h̄ = argminh∈L{c(h)}
is selected.

NSM− ESn − P The ESn selection strategy is followed to select,
at each iteration of NSM, the node to be processed and the
pruning rule is applied to fathom unpromising nodes.

NSM− FIFO − nP This code is aNSM, based on the FIFO node
selection strategy. Since the pruning rule is not applied, all the
possible feasible states are generated and explored.

NSM− FIFO − P An enhanced version of NSM− FIFO − nP ,
that considers the pruning rule.

D This code implements the Desrochers’ algorithm.

D − P An enhanced version of D, that considers the pruning rule.

VD This code implements the procedure defined by Villeneuve and
Desaulniers ([138]).

EVD This code implements the algorithm proposed in [30].

A detailed accounting of the collected computational results is
given in Tables A.1 - A.10 of Appendix A, where the number of iter-
ations and the execution times (in ms) are given.

3.4. Computational Experiments and Discussion 68

It is important to observe that in the case of SSMs, an iteration
corresponds to the execution of the scanning of a state, whereas for
the NSMs an iteration corresponds to the processing of a node.

3.4.3 Computational Results on sprand Networks

A first phase of the experimental tests has been carried out to investi-
gate the influence of the selection strategies on the computational cost.
A significant observation that can be made from the results reported
in Tables A.1-A.5 of Appendix A is that ES is on average 2 times
faster than FIFO. In particular, the average execution time is equal
to 14691.52 when the Dijkstra-like selection rule is adopted, whereas
it increases to 29916.95 when the Bellman-Ford strategy is applied.
This behaviour can be explained by taking into account the number
of iterations executed by the compared algorithms. Indeed, the ap-
proaches based on FIFO execute, on average, a number of iterations
3.43 times greater than those performed by the remaining codes. The
improvement is more evident for the SSMs, in which the use of the
ESs allows us to reduce the computational effort by 56.22%, whereas
in the case of NSMs an execution time reduction of 44.43% is ob-
served. On the basis of the considerations reported above, in what
follows we restrict our attention to the ES versions, that is the ESs
and the ESn for SSM and NSM, respectively.

The computational results collected underlined that the perfor-
mances of the implemented algorithms seem to be strongly affected
by the number of forbidden paths. This behaviour is highlighted in
Figure 3.4, where we report the average execution time as a function
of the number of forbidden paths, obtained with SSM − ESs and
NSM − ESn.

This trend is also underlined by the results reported in Tables
3.4 and 3.5, where the percentage increasing of the execution time in
respect of that obtained when solving the instances with 20 forbidden

69 Chapter 3

Figure 3.4: Trend of the average execution time with respect to the number of forbidden
paths for sprand networks.

paths is shown. For both versions, the worsening of time resolution can
be explained by taking into account the number of iterations executed
by the methods. In particular, the higher the number of forbidden
paths, the higher the number of iterations executed (see Tables 3.4
and 3.5).

|F| time % increasing iter % increasing

20 3112.30 0.00% 10410.42 0.00%
60 3826.98 22.96% 10705.49 2.83%

100 3869.47 24.33% 11078.99 6.42%
250 4825.87 55.06% 11705.95 12.44%
500 7234.63 132.45% 12378.31 18.90%

AVG 4573.85 11255.83

Table 3.4: Average execution time, average number of iterations, percentage worsening
in time and number of iterations obtained with SSM − ESs on sprand networks.

|F| time % increasing iter % increasing

20 1834.72 0.00% 1480.99 0.00%
60 1964.96 7.10% 1485.94 0.33%

100 2201.40 19.99% 1489.63 0.58%
250 2636.01 43.67% 1505.93 1.68%
500 3185.35 73.61% 1542.25 4.14%

AVG 2364.49 1500.95

Table 3.5: Average execution time, average number of iterations, percentage worsening
in time and number of iterations obtained with NSM − ESn on sprand networks.

3.4. Computational Experiments and Discussion 70

Figure 3.5: Trend of the average execution time as a function of the number of nodes for
NSM − ESn.

Figure 3.6: Trend of the average execution time as a function of the number of nodes for
SSM − ESs.

71 Chapter 3

Figures 3.5 and 3.6 can be used to analyze the influence of the
network structure on the computational performance of the proposed
solution approaches. In particular, for each set of test problems with
the same number of arcs, the average execution time as a function of
the number of nodes is plotted.

The computational results collected for NSM, clearly underline
a strong relation between the execution time and the structure of the
network (see Figure 3.5). In particular the higher the number of nodes,
the higher the computational cost. This behaviour can be justified by
considering the number of iterations performed by NSM reported in
Table 3.6. Indeed, the higher the number of nodes, the higher the
number of iterations.

NSM− ESn − P NSM− ESn − nP AVG
#arcs #nodes time iter time iter time iter

5000 100 23.92 118.63 81.12 123.87 52.52 121.25
200 45.76 223.23 82.68 230.8 64.22 227.02
500 157.56 568.23 196.56 573.83 177.06 571.03

1000 510.64 1049.63 518.44 1049.63 514.54 1049.63

10000 200 56.16 215.37 140.4 224.3 98.28 219.83
400 152.36 444.3 214.24 450 183.3 447.15

1000 502.84 1058 580.84 1064.73 541.84 1061.37
2000 2037.89 2048.33 2072.21 2048.33 2055.05 2048.33

20000 400 223.08 423.37 326.56 434.3 274.82 428.83
800 535.08 836.2 619.84 841.53 577.46 838.87

2000 2157.49 2034.77 2538.66 2040.4 2348.07 2037.58
4000 8320.05 4043.97 8374.65 4044.2 8347.35 4044.08

30000 600 484.12 622.1 552.76 624.5 518.44 623.3
1200 1227.73 1235.13 1088.37 1249.9 1158.05 1242.52
3000 5358.63 3032.9 5487.6 3037.37 5423.11 3035.13
6000 14601.69 6019.07 16393.63 6019.37 15497.66 6019.22

Table 3.6: Average execution time, average number of iterations, obtained with NSM −
ESn on sprand networks.

A different trend is observed for SSMs, as shown in Figure.
3.6. Indeed, in this case, the average execution time seems not to
be strongly related to the structure of the network. A possible expla-
nation for this behaviour derives from considering the data collected

3.4. Computational Experiments and Discussion 72

in Table 3.7. In particular, for SSM− ESn − nP we have that the
higher the density, the higher the computational cost. This specific
performance is mainly due to the cost per iteration, that, in this case,
is related to the scanning of a state. Table 3.7 highlights that the
higher the number of nodes, the higher the number of iterations and
the lower the cost per iteration. In particular, at each iteration, a
label is selected and extended for all successor nodes. It is worth ob-
serving that the lower the density, the lower the cardinality of the
forward star. Thus, a lower number of states should be evaluated for
each iteration and thus the cost per iteration decreases. The trend is
inverted when SSM−ESs−P is considered. This behaviour can be
justified by taking into account the computational overhead required
to execute the pruning rule.

SSM− ESs − P SSM− ESs − nP AVG
#arcs #nodes time iter time iter time iter

5000 100 68.64 842.67 757.12 4003.53 412.88 2423.10
200 120.64 1551.07 834.09 5685.87 477.36 3618.47
500 204.36 2359.13 481.00 5196.03 342.68 3777.58

1000 299.00 3485.03 383.76 5326.80 341.38 4405.92

10000 200 243.88 1686.03 2387.34 9014.73 1315.61 5350.38
400 430.04 2743.47 2205.85 9879.50 1317.95 6311.48

1000 777.92 4631.53 1594.85 10226.97 1186.39 7429.25
2000 728.52 4702.87 1304.69 10337.10 1016.61 7519.98

20000 400 1075.89 3557.63 8166.13 18944.93 4621.01 11251.28
800 1735.77 5352.33 7054.89 19930.90 4395.33 12641.62

2000 3698.78 10156.63 5793.88 20242.93 4746.33 15199.78
4000 4282.23 12522.30 5244.75 20335.67 4763.49 16428.98

30000 600 2837.14 6132.07 21042.97 29014.87 11940.06 17573.47
1200 4037.83 8251.80 18845.44 29923.13 11441.63 19087.47
3000 9414.14 16680.70 16542.35 30230.43 12978.24 23455.57
6000 8594.10 16904.50 15175.26 30333.43 11884.68 23618.97

Table 3.7: Average execution time, average number of iterations, obtained with SSM −
ESs on sprand networks.

The computational results show that the higher the number of
nodes, the higher the computational time. In other words, the pro-
posed solution approaches seem to work better on networks with high

73 Chapter 3

density value. Indeed, for SSM − ESs, the average execution time,
grouped by the density, is equal to 1568, 20, 2658.91, 6515.12 and
9680.07 for networks with density values equal to 50, 25, 10 and 5,
respectively. A similar trend is observed for the NSM − ESn (i.e.,
average execution time of 196.82, 490.23, 2044.13 and 5094.06 for in-
creasing density values). This performance can be justified by con-
sidering the effect of the fathoming rule. In particular, the lower the
number of nodes, the higher the number of fathomed states. To graphi-
cally represent this specific behaviour, we report in the following figure
(Figure 3.7) the percentage of fathomed states over the total states as
a function of the density.

Figure 3.7: The percentage of fathomed states over the total states as a function of the
density.

From Figure 3.7, it is evident that the proposed rule is useful to
fathom unpromising states. In particular, the average reduction ratio
in the number of fathomed states for SSM − ESs (NSM − ESn) is
about 97.39%, 95.46%, 89.38% and 81.58% (84.13%, 78.98%, 57.95%
and 16.22%) for networks with density values equal to 50, 25, 10 and
5, respectively.

In addition, it seems that the fathoming rule is more effective for
SSM. Indeed, on average SSM − ESs − P is 2.79 times faster than
SSM −ESs− nP , whereas in the case of NSM, the version without

3.4. Computational Experiments and Discussion 74

the fathoming rule performs on average a number of iterations very
close to that executed by NSM −ESn−P (i.e., 1503.57 and 1498.33,
respectively). Consequently, the reduction in the execution times is
very limited (2454.29 and 2274.69 ms, for NSM − ESn − nP and
NSM − ESn − P , respectively).

It is important to point out thatNSM−FIFO−nP outperforms
its counterpart based on the fathoming strategy. Indeed, NSM −
FIFO−nP is on average 2.32 times faster than NSM−FIFO−P .

This behavior has also been observed for the Desrochers’ algo-
rithm (i.e., D), which outperforms its counterpart based on the fath-
oming strategy. Indeed, D is on average 1.99 times faster than D−P
(see Table A.6).

The computational results, collected on the sprand networks,
clearly underline that NSM− ESn − P and SSM − ESs − P show
comparable performance and NSM − ESn − P performs the best.
In addition, the Desrochers’ algorithm (i.e., D) behaves on average
slightly worse than NSM−ESn−P . Indeed, the latter is 1.32 times
faster than D.

3.4.4 Computational Results on Complete Networks

In this section, we evaluate the behaviour of the proposed approaches
on the set of complete networks. The related computational results are
reported in Table A.7 of Appendix A, where, for each test problem,
the execution times and the number of iterations required by each
algorithm are reported.

As far as the influence of the selection rules on the computational
effort is concerned, a behaviour similar to that obtained in the case
of sprand networks has been observed. Indeed, ES is on average 4.75
times faster than FIFO.

Also in this case, the improvement is more evident for the SSMs,

75 Chapter 3

in which the use of the ESs determines an average reduction in the
computational time of 78.92%, whereas in the case of NSMs an ex-
ecution time reduction of 51.69% is observed. Given the superiority
of the Dijkstra-like selection strategy over the FIFO rule, in what
follows we concentrate our attention on the computational results ob-
tained with the former (i.e., ES).

The experimental results obtained by testing the proposed ap-
proaches on this second set of test problems also underline that, as
expected, the execution times increase with the cardinality of the set
F . This behaviour is depicted in Figure 3.8, where the average execu-
tion time as a function of the number of forbidden paths is reported.

Figure 3.8: Average execution time as a function of the number of forbidden paths on
complete networks.

The influence of the cardinality of the set F on the computational
overhead is also underlined by the results reported in Tables 3.8-3.9,
where the percentage increasing of the computational effort in respect
of that obtained when solving instances with 20 forbidden paths is
given. From the results reported in these Tables, it is evident that the
worsening of the execution time is mainly due to the increase in the
number of iterations.

Another important observation that can be drawn from the re-
sults reported in Table A.7 of Appendix A, is that the introduction
of the fathoming rule allows an impressive reduction of the computa-
tional cost to be obtained. Indeed, the versions based on the pruning
strategy are on average 48.89 times faster than the versions that do

3.4. Computational Experiments and Discussion 76

|F| time % increasing iter % increasing
20 17296.29 0.00% 20278.46 0.00%
40 25624.79 48.15% 20288.96 0.05%
60 26799.02 54.94% 20298.06 0.10%
80 26923.82 55.66% 20311.06 0.16%

100 27506.55 59.03% 20325.25 0.23%
AVG 24830.09 20300.36

Table 3.8: Average execution time, average number of iterations, percentage worsening
in time and number of iterations obtained with SSM − ESn on complete networks.

|F| time % increasing iter % increasing
20 181.68 0.00% 206.81 0.00%
40 237.25 30.59% 211.48 2.26%
60 297.70 63.86% 215.21 4.06%
80 361.40 98.93% 219.10 5.94%

100 425.43 134.17% 223.08 7.87%
AVG 300.69 215.14

Table 3.9: Average execution time, average number of iterations, percentage worsening
in time and number of iterations obtained with NSM − ESn on complete networks.

not consider this technique.

Similarly to what was observed for the sprand networks, the fath-
oming rule is more effective for the SSMs than the NSMs. Indeed,
the number of iterations executed by SSM−ESs − P is 29.83 times
lower than that performed by SSM−ESs − nP and the average ex-
ecution time of the former is 71.66 times lower than the latter. In
addition, NSM − ESn − nP and NSM − ESn − P show similar
performance.

The good performance obtained by applying the fathoming rule
can be explained by considering the quality of the upper bounds. As
shown in Table 3.10, the number of improved upper bound values
during the search process is very limited. This result suggests that for
a large number of nodes, the heuristic procedure provides the optimal
solution.

In what follows, we concentrate our attention on the most efficient

77 Chapter 3

SSM− ESs NSM− ESn
#imp p.s. f.s. #imp p.s. f.s.

C20
1 14.50 4629.00 172109.83 5.67 2289.00 61309.17

C40
1 19.83 4657.33 172652.67 6.50 2329.33 62162.83

C60
1 69.33 4811.00 178285.17 13.33 2734.67 69033.67

C80
1 104.50 5050.00 188650.00 24.33 3352.50 78349.17

C100
1 123.33 5235.50 195740.67 33.50 3925.67 86194.50
C20

2 1.50 3406.17 193076.17 1.50 1738.50 75142.00
C40

2 8.50 3540.00 200699.00 0.83 2132.50 85517.83
C60

2 12.17 3564.33 201181.83 2.67 2223.50 88977.00
C80

2 15.33 3579.17 201704.00 3.50 2267.33 90424.83
C100

2 21.17 3660.50 207708.67 5.00 2539.17 97551.67
C20

3 3.17 7862.83 344599.33 1.00 3177.67 108594.00
C40

3 4.67 7906.17 345683.67 2.33 3326.50 113320.67
C60

3 4.67 7945.33 346440.50 2.33 3409.83 115625.33
C80

3 5.83 7978.67 347136.83 3.00 3521.33 118465.67
C100

3 6.00 7994.33 347519.17 3.17 3548.83 119267.33
C20

4 0.50 4803.83 366164.67 0.17 1721.33 102070.17
C40

4 1.50 4826.17 366972.33 0.17 1745.33 103166.67
C60

4 2.17 4845.17 367783.33 0.17 1760.67 104188.83
C80

4 2.17 4861.33 368431.17 0.17 1819.83 107283.67
C100

4 2.83 4881.50 369241.00 0.33 1860.50 109318.00

Table 3.10: Information about the effectiveness of the fathoming rule on sprand networks.
#imp represents the times in which the upper bound is updated; p.s. represents the
number of states that pass the fathoming test; f.s. indicates the number of states that do
not pass the fathoming test.

versions, i.e., those based on the pruning rule.

The computational results obtained by testing NSM−ESn−P
and SSM−ESs−P on complete networks (Table A.7 of the Appendix
A) demonstrate clearly that NSM−ESn−P is on average 2.09 times
faster than SSM− ESs − P .

The solution approach proposed by Desrochers, that is D behaves
worse than the best performing version of the proposed solution ap-
proaches. In particular, NSM− ESn − P is 5.51 times faster than
Desrochers’ algorithm. This behaviour is justified by the number of
iterations executed by the two versions. Indeed, D executes a number

3.4. Computational Experiments and Discussion 78

of iterations 2.84 times higher than that executed byNSM−ESn−P .

It is important to point out that the Desrochers’ algorithm with
the pruning, that is D−P outperforms the original methods (i.e., D).
Indeed, the former is 3.22 times faster than the latter. This behaviour
can be related to the number of iterations executed by the methods.
Indeed, D performs, on average, a number of iterations 1.50 times
higher than that executed by D − P (see Table A.8).

3.4.5 Comparison with the state-of-art algorithms

In this section, the best performing version of the proposed approaches
(i.e., NSM−ESn−P) is compared with both the algorithm proposed
by Villeneuve and Desaulnirs, that is VD ([138]) and the improved
version, that is EVD proposed in [30].

It is important to point out that both VD and EVD are con-
structive algorithms. In other words, set F is used to define a graph,
by applying the method proposed in [2]. The obtained graph is then
connected to the network by using the technique defined in [100] for
solving the k−SPP . In the enlarged graph, the shortest path problem
from node o to the other nodes is solved.

The computational results obtained by testing VD and EVD on
sprand, complete and fully random networks are reported in Tables
A.9, A.10 and A.11 of Appendix A, where the execution time needed
to construct the enlarged graph and that required to solve the shortest
path problem are given.

As far as the comparison of the proposed solution approaches
with the state-of-art algorithms, let us separately consider the three
sets of test problems.

The computational results obtained by testing VD and EVD on
the first set of instances (see Table A.9 of Appendix A) underline
that the best performing proposed solution approach, that is NSM−

79 Chapter 3

ESn − P , outperforms both VD and EVD. In particular, NSM −
ESn − P is on average 2.86 and 2.83 times faster than VD and EVD,
respectively. In adition, it is worth observing that the performance of
EVD and VD are the same. In particular, the average computational
cost is equal to 6448.06 and 6507.07 for EVD and VD, respectively.

On complete networks (see Table A.10 of Appendix A) , the pro-
posed solution approach outperforms both VD and EVD. In partic-
ular, VD and EVD are 35.47 and 35.13 times slower than NSM −
ESn − P . This specific behaviour can be explained by observing that
the introduction of the pruning strategy is very effective in fathoming
unpromising states when complete networks are considered. Also in
this case, VD and EVD behave very similar. Indeed, the latter is only
1.01 times faster the the former.

The results collected on the third set of test problems (see Tables
A.11 of the Appendix A) clearly underline that the proposed solution
approach behaves the best. In particularNSM−ESn−P is 62.14 and
78.19 times faster than EVD and VD, respectively. This behaviour is
justified by taken into account the number of iterations executed by
the proposed solution approach. As shown in Table A.11, the number
of iterastions is very closed to the number of nodes of the networks.
This result suggests that the heuristic procedure provides a good upper
bound for the considered test problems.

The bad performances of the state-of-art algorithms can be at-
tributed to the computational effort required to build the enlarged
graph, while the shortest paths are computed with a minimal com-
putational effort. Indeed, the incidence of the time to compute the
shortest path over the total time required by EVD [and VD] is about
1.93% [and 2.54%], 1.72% [and 2.36%] and 4.14% [and 6.32%] for
sprand, complete and fully random networks, respectively.

On the contrary, the proposed solution approaches work directly
on the original graph and only requires finding the efficient paths for
each node. As a matter of the fact, also when only the time for

3.5. Conclusions 80

building the enlarged graph is considered, the proposed solution ap-
proach bahaves the best for all the three sets of test problems. Indeed,
NSM− ESn − P is 2.78 [2.79], 34.53 [34.67] and 59.56 [73.24] times
faster than EVD [VD] for the first, the second and the third set of test
problems, respectively.

On the basis of the computational results collected, it is evident
that despite the pseudo-polynomial time complexity of the proposed
solution approaches, they have very efficient implementation in prac-
tice. We remark that both VD and EVD has a polynomial complexity.
It is worth observing that the good behaviour of the proposed solu-
tion approaches is mainly related to the specific characteristic of the
SPPFP . Indeed, the result of lemma 3.3.4 suggests that a limited
number of efficient paths are associated with each node.

3.5 Conclusions

In this paper, solution methodologies to address the shortest path
problem with forbidden paths have been proposed. The developed
algorithms are based on the paradigm of the dynamic programming
optimization and can be viewed as modified versions of the Desrochers’
algorithm ([50]), for the constrained shortest path. A pruning strat-
egy has been defined with the goal to speed-up the search of the opti-
mal solution. With this aim, upper bounds have been determined by
developing a well-tailored heuristic procedure. In addition, we have
considered both the node and state extension rule and two types of se-
lection strategies. Indeed, a Dijkstra-like and the Bellman-Ford rules
have been implemented to select, at each iteration, the node/state to
be processed.

The solution approaches presented in this paper have been eval-
uated numerically on three sets of networks. The first one consists of
sprand networks, with different size and density. Also complete net-
works have been considered and they represent the second set of test

81 Chapter 3

problems. The third set contains the fully random networks taken
from the literature ([30]). A comparison with the state-of-art algo-
rithm to solve the problem under consideration and with Desrochers’
approach has also been made.

On the basis of the obtained results and their analysis, the fol-
lowing conclusions can be drawn:

1) the version that uses the node extension rule with a Dijkstra
like selection strategy and the pruning behaves the best;

2) the best performing version is faster than Desrochers’ algo-
rithm;

3) the pruning strategy allows a considerable reduction in the
computational cost to be obtained. The introduction of the fathoming
rule allows us to individuate a large number of unpromising states,
especially for networks with high density value;

4) the proposed solution approach is very efficient in solving the
shortest path problem with a forbidden path and outperforms the poli-
nomial algorithms which appeared quite recently in scientific literature
to address the problem at hand.

Finally, it is worth observing that in this paper we have addressed
the non-elementary variant of the shortest path problem with forbid-
den paths. It could be interesting to investigate the elementary coun-
terpart. This represents the subject of current investigation.

Appendix 82

Appendix A - Computational results

S
S
M
−
E
S
s
−
P

S
S
M
−
E
S
s
−
n
P

S
S
M
−
F
I
F
O
−
P

S
S
M
−
F
I
F
O
−
n
P

N
S
M
−
E
S
n
−
P

N
S
M
−
E
S
n
−
n
P

N
S
M
−
F
I
F
O
−
P

N
S
M
−
F
I
F
O
−
n
P

R20
1 Time 59.80 582.40 57.20 1050.41 15.60 23.40 18.20 23.40

iter 621.00 3980.67 822.67 8265.67 111.00 119.83 186.17 208.17

R20
2 Time 75.40 1183.01 88.40 800.81 23.40 20.80 41.60 33.80

iter 1077.83 8953.00 1359.50 13052.67 211.17 220.33 424.33 519.33

R20
3 Time 104.00 335.40 208.00 1099.81 83.20 101.40 174.20 106.60

iter 1450.50 4995.00 3208.67 22089.33 514.50 526.00 1536.83 2069.83

R20
4 Time 208.00 267.80 733.20 1274.01 317.20 304.20 1198.61 278.20

iter 2829.50 5037.50 11948.50 29413.00 1020.33 1020.33 5195.83 5256.00

R20
5 Time 153.40 1183.01 166.40 2893.82 36.40 33.80 49.40 54.60

iter 1142.50 8953.00 1315.17 20109.67 209.17 216.33 330.00 459.67

R20
6 Time 197.60 1216.81 234.00 3541.22 80.60 78.00 104.00 119.60

iter 1402.83 9743.00 1746.00 29432.17 411.17 419.33 699.83 1209.67

R20
7 Time 442.00 1055.61 769.61 4552.63 361.40 314.60 652.60 403.00

iter 3105.33 9997.67 6153.00 46859.17 1020.50 1025.00 2991.83 4494.33

R20
8 Time 540.80 1008.81 2581.82 5046.63 1424.81 1593.81 3372.22 1159.61

iter 3827.17 10044.00 21480.33 62812.67 2024.00 2024.00 10332.33 11625.83

R20
9 Time 616.20 4856.83 683.80 13088.48 158.60 104.00 215.80 156.00

iter 2238.83 18819.17 2593.17 47889.33 408.67 425.83 715.00 983.83

R20
10 Time 1149.21 4807.43 1245.41 16445.11 395.20 280.80 709.80 413.40

iter 4005.50 19754.00 4769.50 72313.67 813.17 821.33 1894.00 2761.33

R20
11 Time 2087.81 4518.83 2940.62 19697.73 1716.01 1846.01 3390.42 1630.21

iter 6859.83 20004.00 11463.17 105411.50 2021.00 2024.00 7137.83 10201.50

R20
12 Time 3226.62 4750.23 6981.04 23857.75 5181.83 7092.85 10358.47 5083.03

iter 10536.00 20036.17 29638.83 146418.33 4015.33 4016.50 18918.83 27591.17

R20
13 Time 1557.41 11398.47 1648.41 34289.02 353.60 213.20 517.40 348.40

iter 3635.50 28862.00 4181.17 83259.83 606.17 614.33 1105.17 1723.17

R20
14 Time 2688.42 11944.48 3359.22 42593.47 956.81 577.20 1788.81 930.81

iter 5980.17 29744.67 8070.83 115804.67 1218.33 1238.50 3103.67 4558.17

R20
15 Time 5525.04 10800.47 8759.46 47338.50 4565.63 4609.83 10088.06 3809.02

iter 12124.33 29995.00 22847.50 164412.83 3019.67 3027.33 11770.83 15491.83

R20
16 Time 5694.04 15358.30 13473.29 54015.35 11112.47 14734.29 20781.93 10059.46

iter 13335.83 30041.83 38194.67 183127.33 6013.83 6014.83 25936.83 35517.50
AVG Time 1520.36 4704.24 2745.62 16974.05 1673.92 1995.51 3341.35 1538.07

iter 4635.79 16185.04 10612.04 71916.99 1477.38 1484.61 5767.46 7791.96

Table A.1: Execution time in ms and number of iterationson sprand networks with |F| =
20.

83 Appendix

S
S
M
−
E
S
s
−
P

S
S
M
−
E
S
s
−
n
P

S
S
M
−
F
I
F
O
−
P

S
S
M
−
F
I
F
O
−
n
P

N
S
M
−
E
S
n
−
P

N
S
M
−
E
S
n
−
n
P

N
S
M
−
F
I
F
O
−
P

N
S
M
−
F
I
F
O
−
n
P

R60
1 Time 70.20 382.20 88.40 855.41 18.20 46.80 23.40 36.40

iter 881.83 4006.00 1292.17 8287.00 119.17 124.50 205.50 210.83

R60
2 Time 80.60 421.20 124.80 1027.01 31.20 33.80 52.00 65.00

iter 1181.00 4813.67 1783.00 13107.83 213.50 224.67 449.83 508.83

R60
3 Time 148.20 345.80 314.60 1289.61 117.00 124.80 241.80 174.20

iter 1847.83 5051.83 4688.50 22281.50 536.67 540.00 1649.83 1992.33

R60
4 Time 231.40 306.80 829.41 1281.81 356.20 353.60 1128.41 374.40

iter 3027.50 5108.83 13327.50 29710.67 1026.33 1026.33 5365.83 5407.67

R60
5 Time 215.80 1505.41 301.60 3642.62 49.40 59.80 78.00 122.20

iter 1547.83 8986.67 2348.50 20137.50 213.00 220.33 392.83 464.17

R60
6 Time 338.00 1536.61 338.00 4206.83 114.40 101.40 184.60 189.80

iter 2305.83 9777.33 2538.33 29493.67 423.33 428.33 950.67 1240.00

R60
7 Time 561.60 1232.41 1105.01 5077.83 408.20 379.60 933.41 543.40

iter 3717.67 10047.83 8623.50 47020.83 1026.83 1033.17 3564.67 4535.33

R60
8 Time 574.60 1125.81 2722.22 5452.24 1469.01 1682.21 3497.02 1396.21

iter 3994.17 10120.83 22441.67 63102.33 2028.00 2028.00 10479.17 11792.17

R60
9 Time 730.60 5629.04 998.41 16907.91 179.40 163.80 351.00 270.40

iter 2606.67 18858.83 3782.50 47892.17 412.17 426.50 853.83 982.00

R60
10 Time 1302.61 5452.24 1627.61 21335.74 405.60 353.60 780.01 616.20

iter 4338.17 19796.00 6154.67 72301.83 813.17 821.33 1947.17 2823.33

R60
11 Time 3278.62 4786.63 4409.63 21301.94 2129.41 2051.41 4877.63 2033.21

iter 9991.50 20065.33 17143.00 105675.17 2023.67 2024.00 8483.50 10366.33

R60
12 Time 3832.42 4326.43 10322.07 25069.36 6510.44 7482.85 17006.71 5548.44

iter 12258.33 20111.00 42805.67 146839.50 4023.17 4023.17 23720.83 27806.50

R60
13 Time 2576.62 17729.51 2745.62 55369.96 426.40 273.00 803.41 517.40

iter 5837.00 28901.67 6899.17 83314.50 611.83 616.33 1341.50 1640.50

R60
14 Time 3361.82 17342.11 4739.83 63697.81 1190.81 722.80 2522.02 1281.81

iter 7443.83 29788.17 11486.00 115917.50 1221.67 1238.50 3587.00 4623.17

R60
15 Time 5735.64 17089.91 8990.86 59293.38 4583.83 4685.23 10171.27 4282.23

iter 12398.50 30048.00 23353.00 164653.00 3021.83 3031.83 11899.50 15662.00

R60
16 Time 5834.44 14378.09 14107.69 60039.58 11206.07 15168.50 20909.33 10467.67

iter 13605.83 30110.17 40244.00 183389.67 6013.83 6014.83 26850.50 35689.33
AVG Time 1804.57 5849.39 3360.36 21615.56 1824.72 2105.20 3972.50 1744.94

iter 5436.47 15974.51 13056.95 72070.29 1483.01 1488.86 6358.89 7859.03

Table A.2: Execution time in ms and number of iterations on sprand networks with
|F| = 60.

Appendix 84

S
S
M
−
E
S
s
−
P

S
S
M
−
E
S
s
−
n
P

S
S
M
−
F
I
F
O
−
P

S
S
M
−
F
I
F
O
−
n
P

N
S
M
−
E
S
n
−
P

N
S
M
−
E
S
n
−
n
P

N
S
M
−
F
I
F
O
−
P

N
S
M
−
F
I
F
O
−
n
P

R100
1 Time 83.20 494.00 91.00 1099.81 18.20 72.80 23.40 54.60

iter 903.50 4010.00 1355.50 8289.00 121.00 125.00 203.33 208.83

R100
2 Time 114.40 540.80 158.60 1242.81 39.00 46.80 59.80 93.60

iter 1529.17 4855.17 2280.33 13159.50 219.83 228.67 456.67 516.33

R100
3 Time 153.40 374.40 400.40 1372.81 124.80 132.60 304.20 244.40

iter 2016.00 5107.33 6063.50 22436.17 536.17 540.67 1788.83 2074.17

R100
4 Time 249.60 330.20 865.81 1479.41 403.00 418.60 1258.41 475.80

iter 3144.17 5175.00 13488.83 29988.67 1034.83 1034.83 5499.67 5552.67

R100
5 Time 241.80 1778.41 317.20 4201.63 49.40 98.80 88.40 171.60

iter 1698.83 9014.17 2392.33 20153.33 217.33 224.17 396.17 473.17

R100
6 Time 421.20 1648.41 483.60 4641.03 130.00 132.60 260.00 267.80

iter 2800.50 9820.83 3701.50 29560.67 426.50 431.50 1066.33 1255.00

R100
7 Time 600.60 1352.01 1146.61 5324.83 418.60 395.20 990.61 728.00

iter 3895.00 10105.33 8798.17 47200.83 1027.83 1033.83 3661.17 4651.00

R100
8 Time 624.00 1170.01 3062.82 5616.04 1885.01 1830.41 4173.03 1640.61

iter 4275.33 10189.50 24648.00 63429.50 2035.33 2035.33 11191.17 11986.33

R100
9 Time 865.81 6159.44 1211.61 18756.52 197.60 213.20 314.60 366.60

iter 3064.67 18896.00 4571.83 47923.50 420.33 430.00 802.00 928.17

R100
10 Time 1398.81 6086.64 1656.21 21863.54 413.40 426.40 832.01 821.61

iter 4698.17 19839.00 6217.50 72388.33 813.17 821.33 2001.67 2881.00

R100
11 Time 3447.62 4885.43 4565.63 21587.94 2171.01 2184.01 5202.63 2402.42

iter 10330.17 20125.50 17546.50 105895.00 2023.67 2024.00 8583.83 10498.67

R100
12 Time 3900.03 4459.03 15779.50 24650.76 9035.06 7659.65 29598.59 6086.64

iter 12482.83 20181.50 61086.67 147221.83 4031.00 4031.00 27927.67 28026.67

R100
13 Time 2652.02 17214.71 2945.82 53352.34 434.20 377.00 819.01 696.80

iter 5837.00 28941.83 6923.50 83348.83 612.00 616.83 1363.17 1664.17

R100
14 Time 3413.82 16114.90 4880.23 53968.55 1209.01 839.81 2639.02 1575.61

iter 7532.33 29829.33 11566.50 115985.17 1229.33 1244.67 3509.50 4549.50

R100
15 Time 8985.66 14521.09 11593.47 56547.76 5457.44 4986.83 15433.70 4706.03

iter 17681.17 30103.00 29723.83 164930.00 3030.83 3032.83 14242.67 15847.67

R100
16 Time 7407.45 12134.28 18857.92 50869.33 13083.28 15561.10 27781.18 11200.87

iter 16266.17 30179.17 53216.67 183684.00 6017.33 6016.83 29899.67 35876.17
AVG Time 2159.96 5578.99 4251.03 20410.94 2191.81 2210.99 5611.16 1970.81

iter 6134.69 16023.29 15848.82 72224.65 1487.28 1491.97 7037.09 7936.84

Table A.3: Execution time in ms and number of iterations on sprand networks with
|F| = 100.

85 Appendix

S
S
M
−
E
S
s
−
P

S
S
M
−
E
S
s
−
n
P

S
S
M
−
F
I
F
O
−
P

S
S
M
−
F
I
F
O
−
n
P

N
S
M
−
E
S
n
−
P

N
S
M
−
E
S
n
−
n
P

N
S
M
−
F
I
F
O
−
P

N
S
M
−
F
I
F
O
−
n
P

R250
1 Time 65.00 832.01 93.60 1856.41 33.80 117.00 28.60 130.00

iter 903.50 4010.50 1355.50 8289.00 121.00 125.00 202.83 208.33

R250
2 Time 156.00 780.01 236.60 1978.61 57.20 109.20 98.80 187.20

iter 1983.67 4903.67 2991.50 13206.50 235.83 240.00 437.33 473.00

R250
3 Time 247.00 527.80 527.80 2069.61 176.80 241.80 462.80 551.20

iter 2839.00 5304.50 7020.33 23062.17 567.33 572.17 2016.33 2268.83

R250
4 Time 327.60 418.60 1102.41 1939.61 590.20 616.20 1807.01 964.61

iter 3829.50 5430.83 15787.33 30965.67 1056.33 1056.33 5988.00 6021.17

R250
5 Time 301.60 2774.22 405.60 6448.04 65.00 192.40 106.60 371.80

iter 2020.50 9059.83 3013.83 20157.50 218.67 230.33 380.00 445.17

R250
6 Time 517.40 2290.61 764.41 6653.44 171.60 260.00 327.60 548.60

iter 3260.33 9987.50 5400.50 29899.50 466.67 475.00 1025.33 1154.83

R250
7 Time 951.61 1700.41 1508.01 6801.64 483.60 611.00 1586.01 1445.61

iter 5599.17 10322.83 11020.67 47859.50 1034.83 1042.00 4336.67 5037.00

R250
8 Time 777.41 1339.01 5519.84 6635.24 2321.81 2282.81 6289.44 2527.22

iter 4973.00 10452.33 38132.50 64595.83 2057.33 2057.33 12469.17 12532.67

R250
9 Time 1258.41 8632.06 1682.21 22009.14 234.00 416.00 403.00 761.81

iter 4282.17 19049.83 6123.00 48069.67 434.67 441.67 795.83 913.17

R250
10 Time 1768.01 7545.25 2306.21 25532.16 538.20 751.40 1292.21 1697.81

iter 5633.83 19996.17 8388.50 72761.50 839.17 840.00 2434.67 3010.33

R250
11 Time 4079.43 6068.44 6026.84 25628.36 2288.01 2800.22 5863.04 3809.02

iter 11800.83 20333.33 22755.50 106665.50 2047.17 2057.00 8798.00 10528.83

R250
12 Time 4425.23 5127.23 20040.93 26985.57 9770.86 8689.26 31800.80 8218.65

iter 13107.67 20451.00 73686.33 148706.33 4058.67 4058.67 28720.67 28872.83

R250
13 Time 3458.02 23756.35 3468.42 51516.73 595.40 722.80 1237.61 1502.81

iter 7372.83 29084.33 8395.67 83572.67 629.33 625.33 1584.33 1733.50

R250
14 Time 4547.43 19471.52 5132.43 56266.96 1245.41 1292.21 2992.62 3359.22

iter 9567.33 29994.33 12295.33 116363.17 1234.83 1251.00 3700.00 4771.33

R250
15 Time 10678.27 15810.70 13486.29 54881.15 5886.44 5831.84 17165.31 6892.64

iter 18747.50 30320.33 34050.00 165756.83 3035.17 3037.17 14788.33 16348.50

R250
16 Time 9575.86 14219.49 42419.27 53770.94 17942.72 17017.11 52356.54 13699.49

iter 19513.83 30454.50 92384.00 184845.67 6021.83 6021.83 36476.50 36651.67
AVG Time 2695.89 6955.86 6545.05 21935.85 2650.07 2621.95 7738.62 2916.73

iter 7214.67 16197.24 21425.03 72798.56 1503.68 1508.18 7759.63 8185.70

Table A.4: Execution time in ms and number of iterations on sprand networks with
|F| = 250.

Appendix 86

S
S
M
−
E
S
s
−
P

S
S
M
−
E
S
s
−
n
P

S
S
M
−
F
I
F
O
−
P

S
S
M
−
F
I
F
O
−
n
P

N
S
M
−
E
S
n
−
P

N
S
M
−
E
S
n
−
n
P

N
S
M
−
F
I
F
O
−
P

N
S
M
−
F
I
F
O
−
n
P

R500
1 Time 65.00 1495.01 106.60 3143.42 33.80 145.60 44.20 249.60

iter 903.50 4010.50 1355.50 8289.00 121.00 125.00 202.83 208.33

R500
2 Time 176.80 1245.41 249.60 3252.62 78.00 202.80 124.80 366.60

iter 1983.67 4903.83 2991.83 13206.83 235.83 240.33 437.67 473.83

R500
3 Time 369.20 821.61 725.40 3468.42 286.00 382.20 559.00 886.61

iter 3642.33 5521.50 8588.17 23699.67 686.50 690.33 1747.17 1930.67

R500
4 Time 478.40 595.40 1648.41 2779.42 886.61 899.61 2706.62 2152.81

iter 4594.50 5881.83 18688.17 32886.50 1110.33 1110.33 6921.17 6974.83

R500
5 Time 306.80 4695.63 447.20 10582.07 80.60 317.20 140.40 694.20

iter 2020.50 9060.00 3013.83 20157.50 218.67 230.33 380.17 445.33

R500
6 Time 676.00 4336.83 1092.01 10080.26 265.20 499.20 507.00 977.61

iter 3947.83 10068.83 7072.50 30029.50 493.83 495.83 1032.67 1100.50

R500
7 Time 1333.81 2633.82 2301.01 9731.86 842.41 1203.81 2459.62 2847.02

iter 6840.50 10661.17 15242.67 48839.33 1180.00 1189.67 5017.33 5357.83

R500
8 Time 1125.81 1879.81 7508.85 9573.26 3088.82 2971.82 8444.85 4443.43

iter 6444.67 10878.83 40713.17 66656.50 2097.00 2097.00 13496.00 13588.17

R500
9 Time 1908.41 15553.30 2225.61 37471.44 345.80 735.80 543.40 1362.41

iter 5595.83 19100.83 7793.17 48108.17 441.00 447.50 765.00 853.50

R500
10 Time 3060.22 11382.87 4737.23 41423.47 923.01 1287.01 2386.81 3107.02

iter 8086.00 20269.33 15796.83 73207.00 902.33 903.67 2792.33 2951.33

R500
11 Time 5600.44 8710.06 6687.24 39684.05 2483.02 3811.62 7251.45 6726.24

iter 11800.83 20686.50 24359.67 108011.83 2058.33 2073.00 9580.33 11332.50

R500
12 Time 6026.84 7560.85 25441.16 39910.26 11102.07 10948.67 37653.44 12617.88

iter 14226.67 20898.67 80136.67 151245.67 4091.67 4091.67 30406.33 30648.33

R500
13 Time 3941.63 35115.83 5194.83 93447.20 611.00 1177.81 1268.81 2545.42

iter 7978.00 29284.50 12073.67 83814.17 651.17 649.67 1386.67 1533.83

R500
14 Time 6177.64 29354.19 6479.24 101733.45 1536.61 2009.81 4357.63 5829.24

iter 10735.33 30259.17 15223.67 116957.83 1271.50 1276.83 4119.83 4895.00

R500
15 Time 16146.10 24489.56 20280.13 92490.39 6299.84 7324.25 21104.34 10883.67

iter 22452.00 30685.83 47851.50 167219.17 3057.00 3057.67 16004.00 17078.33

R500
16 Time 14458.69 19786.13 48680.11 74604.88 19663.93 19487.13 56173.36 18090.92

iter 21800.83 30881.50 94777.33 186770.33 6028.50 6028.50 37768.17 37993.83
AVG Time 3865.74 10603.52 8362.79 35836.03 3032.92 3337.77 9107.86 4611.29

iter 8315.81 16440.80 24729.90 73693.69 1540.29 1544.21 8253.60 8585.39

Table A.5: Execution time in ms and number of iterations on sprand networks with
|F| = 500.

87
A

p
p

en
d
ix

test D D − P test D D − P test D D − P test D D − P test D D − P
R20

1 Time 31.20 23.40 R60
1 93.60 26.00 R100

1 114.40 31.20 R250
1 150.80 41.60 R500

1 296.40 52.00
iter 208.17 186.17 212.60 205.50 208.83 203.33 208.33 202.83 208.33 202.83

R20
2 Time 39.00 41.60 R60

2 75.40 54.60 R100
2 106.60 57.20 R250

2 215.80 93.60 R500
2 439.40 124.80

iter 519.33 424.33 508.83 449.83 516.33 456.67 473.00 437.33 473.83 437.67

R20
3 Time 122.20 174.20 R60

3 197.60 247.00 R100
3 296.40 309.40 R250

3 707.20 496.60 R500
3 1151.81 621.40

iter 2069.83 1536.83 1992.33 1649.83 2074.17 1788.83 2268.83 2016.33 1930.67 1747.17

R20
4 Time 293.80 1136.21 R60

4 418.60 1154.41 R100
4 587.60 1268.81 R250

4 1266.21 1835.61 R500
4 3101.82 3151.22

iter 5256.00 5195.83 5407.67 5365.83 5552.67 5499.67 6021.17 5988.00 6974.83 6921.17

R20
5 Time 57.20 52.00 R60

5 135.20 85.80 R100
5 197.60 98.80 R250

5 426.40 117.00 R500
5 826.81 143.00

iter 459.67 330.00 464.17 392.83 473.17 396.17 445.17 380.00 445.33 380.17

R20
6 Time 135.20 106.60 R60

6 215.80 192.40 R100
6 309.40 265.20 R250

6 650.00 332.80 R500
6 1167.41 535.60

iter 1209.67 699.83 1240.00 950.67 1255.00 1066.33 1154.83 1025.33 1100.50 1032.67

R20
7 Time 418.60 631.80 R60

7 639.60 936.01 R100
7 873.61 1014.01 R250

7 1840.81 1648.41 R500
7 3871.42 2652.02

iter 4494.33 2991.83 4535.33 3564.67 4651.00 3661.17 5037.00 4336.67 5357.83 5017.33

R20
8 Time 1219.41 3351.42 R60

8 1476.81 3489.22 R100
8 1783.61 4123.63 R250

8 3211.02 6510.44 R500
8 6323.24 8889.46

iter 11625.83 10332.33 11792.17 10479.17 11986.33 11191.17 12532.67 12469.17 13588.17 13496.00

R20
9 Time 184.60 218.40 R60

9 312.00 345.80 R100
9 418.60 330.20 R250

9 878.81 400.40 R500
9 1601.61 559.00

iter 983.83 715.00 982.00 853.83 928.17 802.00 913.17 795.83 853.50 765.00

R20
10 Time 452.40 715.01 R60

10 702.00 772.20 R100
10 969.81 800.81 R250

10 2155.41 1302.61 R500
10 4108.03 2542.82

iter 2761.33 1894.00 2823.33 1947.17 2881.00 2001.67 3010.33 2434.67 2951.33 2792.33

R20
11 Time 1773.21 3434.62 R60

11 2311.42 4893.23 R100
11 2808.02 5054.43 R250

11 4810.03 5868.24 R500
11 9170.26 7259.25

iter 10201.50 7137.83 10366.33 8483.50 10498.67 8583.83 10528.83 8798.00 11332.50 9580.33

R20
12 Time 5153.23 10379.27 R60

12 5933.24 16894.91 R100
12 6718.44 29666.19 R250

12 9947.66 31397.80 R500
12 17006.71 38009.64

iter 27591.17 18918.83 27806.50 23720.83 28026.67 27927.67 28872.83 28720.67 30648.33 30406.33

R20
13 Time 382.20 507.00 R60

13 600.60 787.81 R100
13 832.01 829.41 R250

13 1861.61 1281.81 R500
13 3073.22 1305.21

iter 1723.17 1105.17 1640.50 1341.50 1664.17 1363.17 1733.50 1584.33 1533.83 1386.67

R20
14 Time 1021.81 1804.41 R60

14 1495.01 2516.82 R100
14 1882.41 2477.82 R250

14 3894.82 2844.42 R500
14 7490.65 4061.23

iter 4558.17 3103.67 4623.17 3587.00 4549.50 3509.50 4771.33 3700.00 4895.00 4119.83

R20
15 Time 3772.62 9432.86 R60

15 4469.43 9737.06 R100
15 5184.43 14859.10 R250

15 8239.45 16502.31 R500
15 14175.29 20859.93

iter 15491.83 11770.83 15662.00 11899.50 15847.67 14242.67 16348.50 14788.33 17078.33 16004.00

R20
16 Time 9950.26 20646.73 R60

16 10896.67 20664.93 R100
16 11666.27 27461.38 R250

16 15202.30 52889.54 R500
16 21928.54 58287.17

iter 35517.50 25936.83 35689.33 26850.50 35876.17 29899.67 36651.67 36476.50 37993.83 37768.17
AVG Time 1562.93 3290.97 AVG 1873.31 3924.89 AVG 2171.83 5540.47 AVG 3466.15 7722.70 AVG 5983.29 9315.86

iter 7791.96 5767.46 7859.14 6358.89 7936.84 7037.09 8185.70 7759.63 8585.39 8253.60

Table A.6: Execution time in ms and number of iterations for D and D − P on sprand networks.

88

S
S
M
−
E
S
s
−
P

S
S
M
−
E
S
s
−
n
P

S
S
M
−
F
I
F
O
−
P

S
S
M
−
F
I
F
O
−
n
P

N
S
M
−
E
S
n
−
P

N
S
M
−
E
S
n
−
n
P

N
S
M
−
F
I
F
O
−
P

N
S
M
−
F
I
F
O
−
n
P

C20
1 Time 374.40 8122.45 631.80 34403.42 101.40 111.80 213.20 187.20

iter 1186.17 22374.17 2004.67 65410.83 162.00 163.50 363.83 479.83

C40
1 Time 374.40 11018.87 629.20 32963.01 101.40 156.00 205.40 304.20

iter 1190.00 22378.00 2013.00 65492.50 163.50 168.33 364.33 480.17

C60
1 Time 382.20 15155.50 668.20 48141.91 109.20 210.60 228.80 457.60

iter 1228.83 22388.67 2117.17 65836.83 170.83 171.33 367.83 488.17

C80
1 Time 405.60 13223.68 722.80 55086.55 124.80 262.60 254.80 600.60

iter 1300.00 22402.83 2288.33 65962.67 178.33 175.67 376.00 496.67

C100
1 Time 423.80 12019.88 780.01 60811.79 145.60 358.80 273.00 738.40

iter 1348.83 22415.83 2437.33 65985.50 184.67 184.33 386.00 503.50

C20
2 Time 491.40 16211.10 722.81 59761.38 145.60 148.20 239.20 317.20

iter 1097.67 32233.67 1631.67 95939.50 189.00 191.17 364.17 604.67

C40
2 Time 520.00 30251.19 782.60 99916.04 161.20 247.00 306.80 525.20

iter 1141.00 32248.67 1761.00 95999.67 195.83 198.50 385.83 618.83

C60
2 Time 522.60 32630.21 798.21 147597.75 169.00 351.00 301.60 785.21

iter 1143.83 32254.50 1780.83 96612.00 198.17 207.17 395.33 630.00

C80
2 Time 499.20 29780.59 806.01 139860.10 171.60 429.00 296.40 967.21

iter 1146.83 32257.50 1787.33 96680.17 199.33 209.33 398.33 627.33

C100
2 Time 543.40 25656.96 819.01 122556.99 184.60 553.80 327.60 1167.41

iter 1180.83 32264.50 1809.67 96785.83 204.17 213.33 409.50 631.00

C20
3 Time 988.01 30048.39 1627.61 86835.36 223.60 184.60 442.00 351.00

iter 1771.17 39814.17 2953.33 110732.00 214.67 215.50 456.00 596.00

C40
3 Time 980.21 47234.50 1638.01 167363.07 234.00 288.60 447.20 574.60

iter 1776.83 39819.83 2970.00 111007.33 218.83 222.17 462.50 598.83

C60
3 Time 988.01 48063.91 1664.01 234680.10 247.00 418.60 457.60 813.81

iter 1780.83 39823.83 2990.67 111446.00 220.50 225.00 467.83 604.00

C80
3 Time 1001.01 46600.10 1658.81 226893.05 244.40 546.00 465.40 1034.81

iter 1784.50 39827.50 2999.50 111584.50 223.50 229.67 472.83 607.17

C100
3 Time 1014.01 43147.28 1677.01 223559.83 254.80 655.20 475.80 1266.21

iter 1786.50 39829.50 3010.67 111853.50 224.33 233.17 475.50 609.50

C20
4 Time 1279.21 80855.32 1528.81 267466.31 283.40 254.80 358.80 590.20

iter 1489.83 62260.83 1777.17 147753.83 253.67 265.00 351.83 670.50

C40
4 Time 1297.41 113321.73 1534.01 533630.02 280.80 429.00 366.60 912.61

iter 1493.17 62264.17 1781.83 147759.17 254.17 270.50 354.33 673.00

C60
4 Time 1310.41 120999.58 1518.41 698499.68 286.00 590.20 377.00 1263.61

iter 1496.50 62267.50 1787.00 147847.33 255.00 273.67 356.00 674.00

C80
4 Time 1310.41 121571.58 1518.41 667465.88 301.60 811.21 379.60 1593.81

iter 1499.17 62270.17 1793.83 147978.83 257.83 279.17 359.83 676.83

C100
4 Time 1302.61 131282.64 1526.21 724936.65 301.60 949.01 387.40 1931.81

iter 1502.50 62273.50 1799.50 148109.17 260.00 280.67 362.83 678.50
AVG Time 773.98 44521.73 1143.46 205657.49 198.42 368.79 337.73 760.57

iter 1412.94 37968.38 2194.77 103094.65 208.97 215.68 398.46 593.25

Table A.7: Execution time in ms and number of iterations on complete networks.

89

D D − P
C20

1 Time 369.20 210.60
iter 479.83 363.83

C40
1 Time 426.40 208.00

iter 480.17 364.33

C60
1 Time 587.60 223.60

iter 488.17 367.83

C80
1 Time 793.01 241.80

iter 496.67 376.00

C100
1 Time 990.61 270.40

iter 503.50 386.00

C20
2 Time 421.20 236.60

iter 604.67 364.17

C40
2 Time 738.40 280.80

iter 618.83 385.83

C60
2 Time 1040.01 291.20

iter 630.00 395.33

C80
2 Time 1318.21 304.20

iter 627.33 398.33

C100
2 Time 1609.41 330.20

iter 631.00 409.50

C20
3 Time 517.40 439.40

iter 596.00 456.00

C40
3 Time 829.41 452.40

iter 598.83 462.50

C60
3 Time 1068.61 475.80

iter 604.00 467.83

C80
3 Time 1365.01 462.80

iter 607.17 472.83

C100
3 Time 1656.21 473.20

iter 609.50 475.50

C20
4 Time 735.80 392.60

iter 670.50 351.83

C40
4 Time 1159.61 364.00

iter 673.00 354.33

C60
4 Time 1596.41 364.00

iter 674.00 356.00

C80
4 Time 2095.61 379.60

iter 676.83 359.83

C100
4 Time 2537.62 382.20

iter 678.50 362.83
AVG Time 1092.79 339.17

iter 593.25 396.53

Table A.8: Execution time in ms and number of iterations for D and D−P on complete
networks.

90
test EVD VD test EVD VD test EVD VD test EVD VD test EVD VD
R20

1 cons 5602.21 5597.38 R60
1 5616.74 5630.57 R100

1 5646.54 5656.25 R250
1 5675.59 5706.99 R500

1 5774.44 5805.41
sp 8.09 12.71 15.95 17.33 15.07 24.80 16.90 37.81 22.35 67.27

R20
2 cons 5573.16 5574.84 R60

2 5600.06 5610.18 R100
2 5658.41 5674.12 R250

2 5687.26 5724.80 R500
2 5786.38 5823.55

sp 8.04 11.71 12.05 20.72 23.45 36.08 25.14 54.33 33.47 96.70

R20
3 cons 5600.32 5596.07 R60

3 5606.27 5609.32 R100
3 5618.97 5623.52 R250

3 5698.09 5726.82 R500
3 5869.13 5919.28

sp 16.34 20.79 15.94 19.11 20.66 28.73 31.15 67.00 49.61 118.69

R20
4 cons 5624.73 5623.89 R60

4 5638.83 5638.86 R100
4 5647.89 5652.71 R250

4 5727.25 5743.98 R500
4 5913.44 5937.00

sp 22.15 23.68 24.13 27.11 24.88 39.07 43.08 67.25 66.27 124.12

R20
5 cons 5635.30 5639.84 R60

5 5699.81 5716.72 R100
5 5795.05 5826.59 R250

5 5864.79 5925.76 R500
5 5996.08 6067.92

sp 14.66 17.47 19.08 47.40 30.70 56.46 53.46 77.49 55.65 94.35

R20
6 cons 5650.06 5649.02 R60

6 5693.80 5697.76 R100
6 5740.88 5727.65 R250

6 5858.29 5908.13 R500
6 6038.03 6103.38

sp 16.07 20.23 21.95 30.36 29.49 50.26 44.64 75.41 56.13 137.12

R20
7 cons 5738.89 5736.11 R60

7 5756.82 5759.36 R100
7 5778.20 5769.79 R250

7 5860.86 5881.75 R500
7 6071.35 6107.50

sp 31.87 55.42 42.12 39.24 44.59 52.31 60.07 107.45 83.62 185.25

R20
8 cons 5912.73 5905.47 R60

8 5902.71 5905.32 R100
8 5936.88 5926.18 R250

8 5995.99 5996.25 R500
8 6230.18 6245.62

sp 102.06 99.37 109.53 119.84 118.52 163.57 125.39 166.84 185.34 245.06

R20
9 cons 5819.24 5827.03 R60

9 5910.01 5920.42 R100
9 5967.62 5993.42 R250

9 6271.68 6354.90 R500
9 6615.10 6788.48

sp 29.58 31.44 39.39 65.02 42.17 57.83 70.47 135.67 100.20 224.34

R20
10 cons 5949.06 5954.40 R60

10 5977.81 5972.60 R100
10 6006.78 6009.14 R250

10 6188.61 6209.15 R500
10 6526.12 6632.76

sp 39.73 44.78 50.09 68.26 50.03 73.34 94.09 161.70 130.46 260.54

R20
11 cons 6321.15 6323.81 R60

11 6331.72 6328.43 R100
11 6352.36 6359.92 R250

11 6420.05 6432.52 R500
11 6659.34 6742.22

sp 111.72 109.98 104.39 120.25 125.27 138.76 117.31 195.24 177.10 270.85

R20
12 cons 6906.40 6903.58 R60

12 6961.01 6953.37 R100
12 6937.38 6929.36 R250

12 7108.93 7101.29 R500
12 7246.70 7262.48

sp 372.29 325.60 385.10 367.18 351.46 393.41 397.94 489.02 437.26 569.90

R20
13 cons 6113.50 6105.35 R60

13 6165.31 6170.33 R100
13 6266.11 6279.20 R250

13 6513.68 6607.35 R500
13 7038.76 7176.92

sp 47.40 55.25 60.10 83.71 70.80 96.55 111.82 203.17 184.95 361.94

R20
14 cons 6389.37 6387.83 R60

14 6385.93 6380.82 R100
14 6417.09 6427.59 R250

14 6586.30 6583.40 R500
14 7036.18 7108.97

sp 79.35 83.09 78.60 83.80 86.36 104.65 120.02 201.04 190.23 340.72

R20
15 cons 7267.52 7257.05 R60

15 7265.00 7252.03 R100
15 7194.80 7171.30 R250

15 7384.54 7387.39 R500
15 7696.73 7715.18

sp 166.92 161.86 169.71 161.45 164.06 166.93 205.93 268.24 236.70 379.88

R20
16 cons 9025.19 9017.37 R60

16 8850.76 8835.18 R100
16 8986.43 8983.50 R250

16 8939.02 8934.19 R500
16 9173.76 9194.15

sp 580.41 660.94 577.78 689.43 580.36 700.09 601.24 754.36 671.03 803.64
AVG 6195.55 6193.69 AVG 6210.16 6211.33 AVG 6246.96 6250.64 AVG 6361.31 6389.04 AVG 6604.48 6664.43

102.92 108.40 107.87 122.51 111.12 136.43 132.42 191.38 167.52 267.52

Table A.9: Average execution time for EVD and VD on sprand networks. In the rows cons we report the time to construct
the anlarged graph, wherease the time needed to compute the shortest path is reported in rows sp.

91 Chapter 3

EVD VD
C20

1 cons 6042.90 6055.91
sp 62.71 68.22

C40
1 cons 6118.24 6128.56

sp 73.48 88.99

C60
1 cons 6225.25 6267.93

sp 68.12 102.17

C80
1 cons 6330.00 6348.94

sp 78.90 109.12

C100
1 cons 6406.58 6449.33

sp 93.13 123.72

C20
2 cons 6329.22 6349.24

sp 93.95 115.42

C40
2 cons 6440.55 6440.99

sp 96.59 140.61

C60
2 cons 6576.31 6630.63

sp 101.78 159.23

C80
2 cons 6747.59 6799.16

sp 112.36 187.79

C100
2 cons 6887.94 6960.69

sp 138.19 197.74

C20
3 cons 6607.07 6609.44

sp 112.27 143.49

C40
3 cons 6737.13 6745.34

sp 112.24 154.03

C60
3 cons 6832.94 6841.10

sp 109.82 153.51

C80
3 cons 6958.14 7017.74

sp 112.41 158.85

C100
3 cons 7085.43 7103.48

sp 117.56 187.87

C20
4 cons 7205.22 7236.52

sp 151.31 161.64

C40
4 cons 7602.76 7610.32

sp 177.20 203.54

C60
4 cons 7738.50 7756.33

sp 177.03 224.01

C80
4 cons 8006.01 8008.81

sp 192.51 247.42

C100
4 cons 8156.76 8227.06

sp 198.02 258.03
AVG 6851.73 6879.38

118.98 159.27

Table A.10: Average execution time for EVD and VD on complete networks.

3.5. Conclusions 92

NSM− ESn − P EVD VD
N250

1 time 7.88 cons 5820.90 5828.80
iter 117.60 sp 27.33 76.64

N500
1 time 63.24 cons 6004.00 6071.83

iter 144.32 sp 51.17 119.17

N1000
1 time 429.55 cons 6557.44 6743.04

iter 211.70 sp 212.78 242.66

N250
2 time 23.95 cons 6478.86 6707.73

iter 102.46 sp 110.05 276.69

N500
2 time 15.75 cons 7370.59 8356.27

iter 107.50 sp 267.10 593.76

N1000
2 time 23.43 cons 9654.96 11996.37

iter 109.90 sp 622.17 1123.28

N250
3 time 23.54 cons 7670.38 8234.57

iter 101.63 sp 234.80 597.12

N500
3 time 23.47 cons 9644.98 11906.09

iter 104.67 sp 468.82 940.47

N1000
3 time 39.87 cons 14230.95 22282.86

iter 106.02 sp 1114.77 2077.98

N250
4 time 86.71 cons 6352.99 6445.78

iter 307.28 sp 100.13 256.79

N500
4 time 102.08 cons 6937.41 7132.54

iter 305.76 sp 205.48 535.07

N1000
4 time 180.12 cons 7967.14 8641.46

iter 315.94 sp 438.37 1133.55

N250
5 time 273.53 cons 11468.26 11954.20

iter 300.96 sp 501.63 983.04

N500
5 time 289.04 cons 16011.61 18601.57

iter 302.82 sp 1002.70 1883.75

N1000
5 time 328.55 cons 25661.02 34755.77

iter 303.72 sp 1944.67 3685.40

N250
6 time 398.70 cons 21207.10 22849.30

iter 300.10 sp 902.52 1794.93

N500
6 time 452.82 cons 33474.80 42353.68

iter 301.91 sp 1573.56 3111.10

N1000
6 time 476.56 cons 59650.47 95068.25

iter 301.42 sp 3473.21 7732.88

N250
7 time 320.57 cons 7690.71 7754.17

iter 504.34 sp 273.85 610.12

N500
7 time 351.06 cons 8860.48 9432.68

iter 508.22 sp 430.93 948.14

N1000
7 time 437.56 cons 11550.40 13197.09

iter 510.76 sp 1174.27 2324.04

N250
8 time 1123.38 cons 27676.10 28849.34

iter 500.77 sp 1223.12 2171.86

N500
8 time 1201.21 cons 42825.22 47351.98

iter 500.36 sp 2177.33 3868.60

N1000
8 time 1319.21 cons 70658.80 90047.00

iter 501.02 sp 3848.15 7456.45

N250
9 time 1927.10 cons 68704.37 71807.87

iter 500.01 sp 2175.06 3790.31

N500
9 time 1888.16 cons 129045.98 130781.89

iter 500.22 sp 3884.84 8598.41

N1000
9 time 2106.15 cons 199622.89 283897.13

iter 500.07 sp 7356.37 11865.42
AVG 515.30 AVG 30696.25 37742.57

310.06 1325.75 2548.06

Table A.11: Results collected on fully random networks. For NSM−ESn−P we report
the computational time and the number of iterations, wherease for EVD and VD the time
neede to construct the enlarged graph and that to compute the shortest path are given.

Chapter 4

Shortest path problem with
forbidden paths: the elementary
version 1

Luigi Di Puglia Pugliese

Department of Electronics, Informatics and Systems, University of
Calabria, 87036, Rende (CS), Italy

Francesca Guerriero

Department of Electronics, Informatics and Systems, University of
Calabria, 87036, Rende (CS), Italy

Abstract

This paper addresses the elementary shortest path problem with for-
bidden paths. The main aim is to find the shortest paths from a single
origin node to every other node of a directed graph, such that the so-
lution does not contain any path, belonging to a given set (i.e., the
forbidden set). It is imposed that no cycle can be included in the
solution.

1Submitted for pubblication in the journal European Journal of Operational Research.

93

4.1. Introduction 94

The problem at hand is formulated as a particular instance of
the shortest path problem with resource constraints and two different
solution approaches are defined and implemented. The former is a
Branch & Bound based algorithm, the latter is a dynamic program-
ming approach. Different versions of the proposed solution strategies
are developed and tested on a large set of test problems.

Keywords: combinatorial optimization; shortest paths; forbidden
paths; branch and bound approach; dynamic programming approach.

4.1 Introduction

The shortest path problem with forbidden paths (in the sequel referred
to as SPFP) has been introduced quite recently by Villeneuve and
Desaulniers ([138]). It can be viewed as a variant of the constrained
shortest path problem, in which the constraints are represented by a
set of paths, that cannot be included in the solution.

The SPFP is defined on a directed graph D = (N ,A), where
N = {1, . . . , n} denotes the set of nodes, and A ⊆ N ×N the set of
arcs. It is assumed that the directed graph D is simple, that is no pair
of nodes is connected by more than one arc.

A scalar cost cij is associated with each arc (i, j) ∈ A. Given
two distinct nodes o (referred to as origin node) and d (referred to
as destination node), a path from node o to node d is a sequence of
nodes Πod= {o = i1, . . . , iq = d}, q ≥ 2 and a corresponding sequence
of q − 1 arcs such that the h-th arc in the sequence is (ih, ih+1) ∈ A
for h = 1, . . . , q − 1. Thus, each path contains at least one arc. Since
the directed graph is assumed to be simple, the sequence of nodes is
sufficient to specify any path in D. A path is said to be elementary,
if it does not contain repeated nodes. An oriented cycle is a path for
which the origin and destination nodes are the same. A digraph D is
said to be d-connected if a path from node o to node d exists in D.

95 Chapter 4

The cost z(Πod) of a path Πod = {o = i1, . . . , iq = d} is defined
as the sum of the costs of its arcs, that is z(Πod) =

∑q−1
h=1 cih,ih+1

. This
path is said to be shortest/least-cost if it has minimum cost over all
paths with the same origin and destination nodes. In the sequel, we
assume that every oriented cycle in D has a non-negative cost. The
forward star of node i (referred to as FS(i)) contains all the successor
nodes of i, that is FS(i) = {j : (i, j) ∈ A}.

Let F be a finite set of (forbidden) paths in D. No assumptions
are made about the characteristics of these paths. The SPFP consists
of finding the least-cost path from node o to each other node v ∈
N − {o}, such that no paths in the solution contain any forbidden
path π ∈ F.

The SPFP arises in all the contexts in which a shortest path
must be modified, to exclude a set of paths, that do not satisfy a given
feasibility criterion ([138]). In [138] a method, that combines solution
techniques developed for the k shortest path problem ([100]) together
with a method defined to solve the keyword matching problem ([2]),
is proposed. The main idea is to build an enlarged graph, such that
solving the shortest paths problem in this graph ensures that every
path does not contain any forbidden path. Therefore, also the least-
cost path in this new graph is feasible. It is allowed that the optimal
paths contain repeated nodes. The SPFP ’s model can also be used
to represent turn prohibitions in road networks. In this specific case,
each forbidden path contains only two arcs and in the node shared
by these arcs, a turn is prohibited. The shortest path problem with
turn prohibition has been addressed recently in [78], where a labeling
algorithm has been proposed. It is important to point out that also
in this case a node can appear more than once in the optimal path.

It is worth observing that a feasible solution for the SPFP can
contain repeated nodes, even if the graph does not present negative
cost cycles. Indeed, the generation of a cycle allows to avoid that the
built path solution contains a specific forbidden path (see Figure 4.1).

4.1. Introduction 96

In this paper, we address the elementary version of the SPFP
(referred to as ESPFP). In particular, it is required that the optimal
solution does not contain repeated nodes. To address the ESPFP ,
two types of solution approaches, that operate on the original graph,
are developed and tested. The former is of a Branch & Bound (B&B)
type and it does not require that all the paths belonging to F are
taken into account simultaneously. Indeed, the computational cost of
this approach depends on the number of forbidden paths belonging
to the optimal solution of the relaxed problem, in which the con-
straints, related to the forbidden paths, are not taken into account.
The latter can be viewed as an extension of the dynamic program-
ming approach proposed by Desrochers ([50]), to address the resource
constrained shortest path problem, in which innovative node/label se-
lection strategies are introduced.

The contribution of this paper is threefold. First of all, we ad-
dress the elementary version of the SPFP , that has not previously
been considered in the scientific literature and, as mentioned in [138],
seems to be of a different nature than the non elementary counterpart.
Secondly, we give a mathematical formulation of the problem under
study. Finally, solution approaches are defined and evaluated empir-
ically. It is important to point out that the proposed methods are
defined for solving the ESPFP in directed graphs with non-negative
cost oriented cycles.

The paper is organized as follows. In the next Section we provide
the mathematical formulation of the ESPFP . Section 3 presents the
solution approaches developed to solve the problem at hand. The
behaviors of the proposed approaches are evaluated on a large set
of test problems. The related computational results are reported in
Section 4. Finally, Section 5 gives the conclusions of our work.

97 Chapter 4

Figure 4.1: The cost cij is associated with each arc (i, j). The set of forbidden paths
contains only one path π =< o, 1, 4, d >. The optimal path from node o to node d is
Π∗od = {o, 1, 2, 3, 1, 4, d}, with cost 7.

4.2 Modelling the ESPFP

The ESPFP can be formulated as a particular instance of the resource
constrained shortest path problem ([90]), as follows.

It is assumed that |F| resources are available, one for each for-
bidden path, and we denote the resource limit vector by W = {W1 =
nπ1 − 2, . . . ,W|F| = nπ|F| − 2}, where nπk represents the number of
nodes of the forbidden path πk, k = 1, . . . , |F|.

In addition, let wij = {w1
ij, . . . , w

|F|
ij } represent the resource con-

sumed along the arc (i, j) ∈ A, where ∀πk ∈ F, wk
ij = 1 if (i, j) ∈ πk,

0 otherwise.

Given a path Πod = {o = i1, . . . , il = d} from the origin o
to the destination d, the resource consumed along Πod is w(Πod) =
{w1(Πod), . . . , w

|F|(Πod)}, where wk(Πod) =
∑

(i,j)∈Πod
wk
ij, k = 1, . . . |F|.

From a mathematical standpoint, the single-source single-destination
ESPFP (refered to as ESPFPod) can be represented by using the

4.2. Modelling the ESPFP 98

zero-one integer programming formulation, reported below:

min
∑

(i,j)∈A

cijxij(4.1)

s.t. ∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji =


1 if i = o

−1 if i = d

0 otherwise

(4.2)

∀i ∈ N∑
(i,j)∈A

wk
ijxij ≤ Wk, ∀πk ∈ F(4.3)

xij ∈ {0, 1} ∀(i, j) ∈ A(4.4)

It is worth observing that, given the assumption on the oriented
cycle cost and since it is not required to impose a lower limit on the
resources consumed on the path chosen, the optimal solution of the
mathematical model introduced above is an elementary path (for more
details, the reader is referred to Beasley and Christofides [16]).

In order to give the mathematical formulation of the single-source
all-destination version of the problem (i.e.: ESPFP), let Φ(i),∀i ∈
N−{o} be the set of all possible elementary paths Πφ

oi, φ = 1, . . . , |Φ(i)|
from node o to node i in the directed graph D and let xφoi, i ∈ N −{o},
φ = 1, . . . , |Φ(i)| denote the binary variable indicating whether or not
a path is selected. The ESPFP can be represented mathematically
as follows:

99 Chapter 4

min
∑

i∈N−{o}

z(Πφ
oi)x

φ
oi(4.5)

s.t.
|Φ(i)|∑
φ=1

xφoi = 1, ∀i ∈ N − {o}(4.6)

wk(Πφ
oi)x

φ
oi ≤ Wk, ∀πk ∈ F,∀i ∈ N − {o}(4.7)

xφoi ∈ {0, 1} ∀i ∈ N − {o}, φ = 1, . . . , |Φ(i)|(4.8)

where constraints (4.6) ensure that for each node i ∈ N −{o}, exactly
one path is selected from the set Φ(i), constraints (4.7) impose that for
each node i ∈ N − {o}, the chosen path Πφ

oi ∈ Φ(i) does not contain
any forbidden path. Finally, constraints (4.8) define the domain of the
decision variables.

It is important to observe that the mathematical model reported
above can be adopted to represent the single-source single-destination
version of the ESPFP , indeed, it is required to consider only the set
Φ(d).

4.3 Solution Approaches for the ESPFP

In this Section, we provide a description of the methods proposed
to address the problem under consideration. First, the B&B type
approaches are presented, whereas in Section 4.3.2, the algorithms
based on the dynamic programming are described.

4.3.1 Branch & Bound Approaches

In order to present the B&B approaches to solve the ESPFP , we first
address the single-origin single-destination version of the problem (i.e.,

4.3. Solution Approaches for the ESPFP 100

ESPFPod). The proposed approach relies on the solution of a relax-
ation of ESPFPod (referred to as ESPFPodR), obtained by deleting the
constraints (4.3). It is easy to verify that ESPFPodR reduces to the
classical single-origin single-destination shortest path problem, that
can be solved by applying any of the well-known methods, proposed
in the scientific literature to solve this kind of problem ([20]).

If the optimal solution ΠR of ESPFPodR does not contain any
forbidden path then it is also optimal for ESPFPod.

On the contrary, ΠR is not feasible and it contains at least one
forbidden path. In this case, a set of problems are determined, starting
from ESPFPodR by adding the violated constraints.

Branching Rule

In order to describe the branching procedure, let V be the set of arcs
belonging to the forbidden paths, let U denote the remaining arcs and
let B be the set given by the union of V and U (i.e., B = V ∪U). The
generic relaxed problem ESPFPodR is defined on the directed graph
D̄ = (N ,B). At the first iteration, we set B ≡ A.

If the optimal path ΠR in D̄ = (N ,B) is not feasible for ESPFPod,
because it contains at least one forbidden path, a set of problems
(i.e., directed graphs D̄δ) are determined starting from ESPFPodR (i.e.,
D̄ = (N ,B)).

Assuming that only the s − th forbidden path πs is included in
ΠR, nπs − 1 problems are generated during the branching phase. Let
(iδ, jδ)

s be the δ − th arc of the forbidden path πs. The problems
that are generated during the branching phase are defined on directed
graphs, taking the following generic form D̄δ(N ,B − {(iδ, jδ)s}), δ =
1, . . . , nπs−1. In other words, the directed graphs D̄δ, δ = 1, . . . , nπs−1
are determined by removing from D̄ = (N ,B), the δ−th arc belonging
to πs. In this case nπs − 1 subproblems are generated; each of them is
obtained by deleting, from the directed graph of the father node, one

101 Chapter 4

a time, the arcs belonging to πs.

Let us now assume that l > 1 forbidden paths make infeasible
the optimal path ΠR determined on the directed graph D̄(N ,B) and
let F̄ = {π1, π2, . . . , πl} denote the set containing these paths. In this
case, the directed graph D̄(N ,B) is decomposed in δ =

∑l
i=1(nπi − 1)

subgraphs D̄δ(N , B̄δ), where B̄δ = B − {(ih, jh)µ}, µ = 1, 2, . . . , l and
h = 1, 2, . . . , nπµ − 1.

It is important to point out that, if the forbidden paths belonging
to F̄ share some arcs, the number of subproblems that are determined
starting from D̄(N ,B) is strictly less than δ. Consequently, δ repre-
sents an upper bound on the maximum number of subproblems that
can be generated at each iteration of the proposed B&B method. A
graphical representation of the proposed branching rule is depicted in
Figure 4.2.

Figure 4.2: Graphical representation of the branching rule. For each node of the B&B tree
we report in bold the forbidden paths that make infeasible the related relaxed problem,
while in italic the set of arcs that define the problem associated with each node.

It is easy to verify that the proposed branching rule allows to elim-
inate the infeasible path that was optimal for the ESPFPodR without
eliminating any feasible solutions. Indeed, the created subproblems
are defined in such a way that every feasible path is feasible for at
least one subproblem and the current infeasible solution is not feasi-
ble for any of the relaxed problems.

4.3. Solution Approaches for the ESPFP 102

Upper Bounds for the ESPFPod

As for any B&B algorithm, the availability of a good upper bound
can accelerate the search of the optimal solution. In order to compute
a good quality upper bound for the ESPFPod, a heuristic procedure
has been defined.

The proposed approach can be viewed as characterized by the
execution of two main phases.

In the first phase, a directed graph D̄ = (N , Ā) is determined by
adequately modifying the original directed graphD = (N ,A), whereas
during the second phase the classical single-origin single-destination
shortest path problem is solved in D̄ = (N , Ā). Let Π̄od be the optimal
path obtained as output of the second phase of the proposed heuristic
procedure. We denote as UBd = z(Π̄od) the upper bound on the
optimal solution of the ESPFPod.

In particular, in the first phase, the set of arcs A is replaced by
the set Ā ⊂ A, that is defined in such a way that at least one arc of
each of the forbidden paths does not belong to Ā. This is obtained,
by deleting from the set A one of the arcs belonging to each forbidden
path πr, ∀πr ∈ F .

Let F̂ represent the set of forbidden paths F ordered by increasing
values of the number of arcs of the paths, that is nπl−1 ≤ nπl+1

−1, l =
1, . . . , |F |−1, the main operations executed by the developed heuristic
to compute an initial upper bound for the ESPFPod are depicted in
Algorithm 5.

It is worth observing that, in the modified directed graph D̄, a
path from node o to node d could not exist. This situation occurs
when D̄ is not d-connected; in this case, z(Π̄od) = +∞. However,
it is possible to show that D̄ does not contain any of the forbidden
paths belonging to F . Consequently, if D̄ is d-connected then the cost
of the solution determined during the second phase of Algorithm 5
represents a valid upper bound for the problem under consideration.

103 Chapter 4

Algorithm 5 Two phase heuristic procedure for computing an initial UB
Step 0 (Initialization)
Set Ā ≡ A; UBd = +∞.

Step 1 (Network Reduction)
repeat

Select the path πµ at the top of F̂ .
Select an arc (iδ, jδ) ∈ πµ
Set Ā = Ā − {(iδ, jδ)}
Set F̂ = F̂ − {πµ}
Set F̂ = F̂ − {πl : πl ∈ F̂ , (iδ, jδ) ∈ πl}

until F̂ = ∅

Step 2 (Shortest Path Computation)
Solve the single-origin single-destination shortest path problem in the directed graph
D̄ = (N , Ā) obtaining the optimal path Π̄od.
Set UBd = z(Π̄od).

In particular, the following theoretical results hold.

Theorem 4.3.1. Step 1 of Algorithm 5 provides a directed graph that
does not contain any forbidden path.

Proof. We will prove this theorem by contradiction. Thus, we assume
(for the purposes of contradiction) that the directed graph D̄ deter-
mined by the proposed heuristic procedure, contains at least a forbid-
den path. In other words, it is assumed that there exists at least a for-
bidden path πµ ∈ F such that the arc sequence Sµ = {(ih, ih+1) ∈ πµ},
h = 1, . . . , nπµ − 1 belongs to D̄. It is important to observe, that this
situation occurs only if ∀(i, j) ∈ Sµ, (i, j) ∈ Ā. From the operations
executed by the procedure, it is evident that for each forbidden path
πµ ∈ F at least one arc (i, j) ∈ πµis removed from the set A and
thus it does not belong to Ā. Consequently, only a subsequence of the
arcs of the forbidden path πµ can belong to Ā. This contradicts the
assumption.

4.3. Solution Approaches for the ESPFP 104

Search Strategy

The strategy for selecting the next subproblem to investigate deter-
mines how the B&B algorithm should proceed through the search
tree. The order, in which the nodes are processed, determined by the
search strategy, can have a significant effect on the behaviour of the
algorithm.

In the proposed approach, in addition to the breath first search
(BFS, for short) strategy, in which all nodes at one level of the search
tree are processed before any node at a higher level, and the depth first
search (DFS, for short) strategy, where the node with largest level in
the search tree is chosen for the exploration, a best first search (BeFS,
for shorts) strategy has been defined, which solves the most promising
subproblem first.

For the BeFS, at each node is associated a label, that represents
the cost of the solution of the father problem. In particular, let {SP s

c },
s ≤ δ denote the set of subproblems obtained by applying a branching
rule to the candidate problem Pc and let z(ΠPRc) be the cost of the
optimal solution of the relaxed problem PRc associated to Pc. To
each problem SP s

c is associated the label E(SP s
c) = z(ΠPRc). Let L

be the set containing the problem to be solved. At each iteration, the
subproblem P̃t selected from L is the one for which the minimum label
value is obtained, that is P̃t = arg min {E(Pc)|Pc ∈ L}.

It is worth observing that the minimum can be achieved for more
than one subproblem. In this case, all the subproblems with the mini-
mum label value, i.e., those belonging to the set H = {Pc ∈ L|E(Pc) =
Emin}, where Emin = min{E(Pc)|Pc ∈ L} are chosen and solved. It is
important to point out that, if |H| > 1 then different strategies can be
used to select the subproblem to be solved. In particular, two different
selection rules have been considered, that is the FIFO and the LIFO
approach.

The proposed method to address the ESPFPod is formally stated

105 Chapter 4

in Algorithm 6.

Algorithm 6 B&B for the ESPFPod
STEP 0 (Initialization)
Set B = A, L = {P0 ≡ D(N ,B)}, z = UBd.

STEP 1 (Problem selection)
Select and delete from L a problem Pc, by applying a search strategy.

STEP 2 (Problem solution)
Solve the relaxed problem PRc associated to Pc.
Let ΠPRc denote the corresponding optimal solution.

STEP 3 (Feasibility Check and Branching)
if ΠPRc is unfeasible then

if z(ΠPRc) < z then
Generate the set of subproblems, by applying the proposed branching rule.
Add each subproblem to L, if it does not already belong to it.

end if
Go to Step 4.

else
if z(ΠPRc) < z then

Set z = z(ΠPRc).
Go to Step 4.

end if
end if

STEP 4 (Termination check)
if L = ∅ then

STOP. z is the optimal solution.
else

Go to Step 1.
end if

In order to apply the BeFS strategy, the operations executed by
this approach have to be slightly modified as follows. At Step 0, the
set E, containing the label associated to the candidate subproblems,
requires to be initialized. Indeed, we set E(P0) = 0 and E = {E(P0)}.
At Step 2, the subproblem Pc to be solved is selected on the basis of
the BeFS strategy. Finally, at Step 4, the label E(SP s

c) = z∗(PRc)
is associated to each new generated subproblem SP s

c , s ≤ δ and it is

4.3. Solution Approaches for the ESPFP 106

inserted in the set E.

It is worth observing that the label associated to each candidate
subproblem represents a lower bound on the optimal cost and thus
it can be used to fathom B&B nodes. In particular, at Step 2, the
chosen subproblem Pc is discarded if E(Pc) ≥ z. In other words, the
subtree routed at the node corresponding to the relaxed problem PRc

is not explored.

Solving the ESPFP

In this Section, the B&B approach developed to solve the ESPFP is
described.

It is worth observing that the easiest way to address the ESPFP
is to solve |N |−1 distinct ESPFPod, for which a different destination
node d (i.e., d ∈ N−{o}) is considered. This naive approach turns out
to be very inefficient. Thus, the proposed solution procedure considers
all the paths simultaneously and it can be viewed as a generalization
of the B&B approach presented in the previous Sections.

Let T ∗ denote the shortest-path tree on the digraph D = (N ,B)
and let Π∗oi be the shortest path from node o to node i in T ∗, ∀i ∈ N .
It is worth observing that the shortest-path tree T ∗ can be computed
using any of the well-known label-correcting methods proposed in the
scientific literature to address the single-origin all-destination shortest
path problem. If at least a path Π∗oi contains a forbidden path πµ, the
branching rule is applied generating a set of subproblems, defined on
the digraphs D̄ = (N , B̄). Let T̄ be the solution on D̄ = (N , B̄) and
let Π̄oi denote the shortest path from node o to node i in T̄ . Since
B̄ ⊂ B, the following inequality holds:

(4.9) z(Π̄oi) ≥ z(Π∗oi), ∀i ∈ N .

Consequently, if Π∗oi is feasible, it represents the optimal path from

107 Chapter 4

o to i, thus it is not required to find a path from o to i in the digraph
D̄. On the other hand, if Π∗oi is infeasible and z(Π∗oi) ≥ zi, where zi
represents the cost of the best feasible path from o to i determined so
far, by using condition (4.9) we have also that z(Π̄oi) ≥ zi, thus it is
not necessary to consider the node i in the subsequent iterations. In
other words, given the digraph D̄, it is required to solve the shortest
paths problem from o to a subset of nodes N̄ ⊂ N , defined as N̄ =
N − {i ∈ N|i 6= o and Π∗oi is feasible } −{i ∈ N|i 6= o and Π∗oi is
infeasible and Π∗oi ≥ zi} .

For this reason, in what follows we use the notation [D̄c = (N , B̄c); N̄ c]
to represent a candidate problem Pc. Indeed, the relaxed problem PRc

consists of finding the shortest paths from the single origin node o to
all the nodes belonging to N̄ c in the digraph D̄c = (N , B̄c).

Given a candidate problem Pc, the subproblems SP c
s , s ≤ δ are

defined by using a strategy similar to that defined in the previous
Section for the ESPFPod. In particular, let F̄ c be the set containing
all the forbidden paths belonging to the optimal paths Π∗oi, i ∈ N̄ c.
We assume that |F̄ c| = l. The proposed branching rule allows us to
define δ =

∑l
i=1 (nπi − 1) subproblems D̄c,δ = (N, B̄c,δ), where B̄c,δ =

B̄c − {(ig, jg)µ}, µ = 1, 2, . . . , l and g = 1, 2, . . . , nπµ. If the forbidden
paths belonging to F̄ c share some arcs, the number of subproblems
that are determined starting from D̄c = (N , B̄c) is strictly less than δ.

The proposed method to address the ESPFP is formally stated
in Algorithm 7.

It is important to point out that also in this case, by using a
two phases heuristic approach similar to the one described in Section
4.3.1, it is possible to determine an upper bound for the ESPFP . In
particular, let gri(i) and gro(i) denote the number of ingoing and out-
going arcs of node i, the Step 1 is modified as reported in Algorithm
8, whereas in the Step 2, the shortest path problem from the origin
node o to all other nodes is solved on the digraph obtained from Step
1. For each node i ∈ N , a path Π̄oi is determined and the related cost

4.3. Solution Approaches for the ESPFP 108

Algorithm 7 B&B for the ESPFP
Step 0 (Initialization Phase)
Set L = {P0 ≡ [D0(N ,B ≡ A); N̄ 0]};
Set zj = UBj ,∀i ∈ N − {o}; zo = 0.

Step 1 (Problem selection)
Select and remove from L a candidate problem Pc ≡ [Dc = (N̄ , Āc); N̄ c], by applying a
search strategy.

Step 2 (Problem solution)
Solve the relaxed problem PRc;
Let T ∗c denote the optimal solution of PRc and let z∗j (PRc) be the cost of the optimal

path Πc
oj in T ∗c from node o to node j, ∀j ∈ N̄ c.

Step 3 (Feasibility check and Branching)
Set F̄ c = ∅.
for all j ∈ N̄ c do

if Πc
oj is infeasible then

if z∗j (Πc
oj) < zj then

Set F̄ c = F̄ c ∪ {fµ}, where fµ makes unfeasible Πc
oj .

end if
else

if z∗j (Πc
oj) < zj then

Set zj = z∗j (Πc
oj)

end if
end if

end for
if F̄ c 6= ∅ then

By applying the proposed branching rule, let generate a set of subproblems {SP cs }, s ≤
δ.
Add a subproblem SP cs to L if it does not already belong to L.

end if
Go to Step 1.

Step 4 (Termination check)
if L = ∅ then

STOP. zj is the cost of the optimal path from node o to node j, ∀j ∈ N .
else

Go to Step 1.
end if

is used to define an upper bound on the optimal solution of ESPFP .

109 Chapter 4

In particular, z(Π̄oi) is used to initialize the upper bound for each node
i, that is UBi = z(Π̄oi).

Algorithm 8 Step 1 of the heuristic procedure for computing an initial UB for
ESPFP

Step 1 (Network reduction)
repeat

Select the path πµ at the top of F̂ .
Select an arc (iδ, jδ) ∈ πµ such that

in the case of iδ = o, gro(iδ) > 1 and gri(jδ) > 1
in the case of iδ 6= o, gri(jδ) > 1

if Such an arc does not exist then
STOP The problem is infeasible

else
Set Ā = Ā − {(iδ, jδ)}
Set F̂ = F̂ − {πµ}
Set F̂ = F̂ − {πl : πl ∈ F̂ , (iδ, jδ) ∈ πl}
Set gri(jδ) = gri(jδ)− 1 and gro(iδ) = gro(iδ)− 1

end if
until F̂ = ∅

It is worth observing that the proposed heuristic checks also the
feasibility of the problem. In other words, if the STOP condition
(see Algorithm 8) is verified, then the problem is infeasible. On the
other hand, if the STOP condition is not verified, then the digraph
D̄ = (N , Ā) is connected, that is for each node i ∈ N −{o}, gri(i) > 1
and gro(o) > 1. Thus, the Step 2 provides a feasible solution for the
ESPFP .

All the search strategies and the fathoming rule defined for the
ESPFPod have been extended to the single-origin all-destination ver-
sion of the problem. More specifically, in order to fathom unpromising
nodes, a vector E(SP c) ∈ R|N |, whose generic element E(SP c)j is de-
fined as E(SP c)j = z∗j (PRc) is associated to each subproblem SP c.
As a consequence, a problem Pc, belonging to L, is discarded only if
for all j ∈ N̄ c, the condition E(Pc)j ≥ zj holds. In addition, in the
BeFS strategy, the problem to be solved is determined on the basis
of the value e(Pc) = maxj∈N{E(Pc)j}.

4.3. Solution Approaches for the ESPFP 110

Let O(α) be the complexity of the algorithm used to solve the re-
laxed problems and let m denote the average number of arcs belonging

to the forbidden paths (i.e.: m =
∑
π∈F nπ−1

|F |), the following theoretical
results hold.

Lemma 4.3.2. In the worst case, the complexity of the proposed B&B
approach is O

(
αmlogm(m|F |+1)

)
.

Proof. In the worst case, each problem of each level of the B&B tree
could be infeasible, because at least one constraint of type (4.3) is not
satisfied. This means that for each problem, the branching procedure
must be executed. Let r denote the maximum number of levels of the
B&B tree. The maximum number of problems generated and solved
is mr. The total number of arcs that belong to the forbidden paths
is an upper bound on the number of problems generated and solved,
that is mr ≤ (m |F |+1). In the worst case, we have mr = (m |F |+1).
From this relation, it is possible to derive the number of levels that is
r = logm(m |F |+ 1). Thus, the maximum number of nodes is equal to
mlogm(m|F |+1). Since O(α) represents the computational complexity of
the approach used to solve each of the relaxed problems, we have that
the complexity of the proposed method is equal to O

(
αmlogm(m|F |+1)

)
.

4.3.2 Dynamic Programming Approaches

Dynamic programming approaches, that can be viewed as an extension
of the algorithm proposed by Desrochers ([50]), are developed to find
the optimal solution of the ESPFP .

In order to describe the proposed solution methods, it is useful
to introduce the following notations and definitions.

Let lj = (zj, wj) be a label, representing a path from node o to
node j. In particular, zj = z(Πoj) represents the cost of the path,
whereas wj is the vector containing information about the resources

111 Chapter 4

consumed along Πoj, that is wj = w(Πoj). It is worth observing that
more than one path Πoj may exist to reach node j, starting from node
o. This means that several labels lξj = (zξj , w

ξ
j), can be associated

with each node j and they are stored in the set D(j). In particular,
lξj = (zξj , w

ξ
j), ξ = 1, . . . , |D(j)| stores information related to the ξ− th

path Πξ
oj from node o to node j. Since each label is associated with

a partial path, in what follows the terms “label” and “solution” are
used in an interchangeable way.

Definition 4.3.3. Let lξj and lζj be two labels associated with the node

j, we say that lξj dominates lζj if the following conditions hold

zξj ≤ zζj ;(4.10)

wξ
j ≤ wζ

j ;(4.11)

and at least one of the inequalities is strict.

Definition 4.3.4. Two labels lξj and lζj associated with the same node

j are said to be equivalant if zξj = zζj and wξ
j = wζ

j .

Definition 4.3.5. A solution is efficient if it is not equivalent to each
other solutions and does not exist another solution that dominates it.

Definition 4.3.6. The ξ − th label lξj = (zξj , w
ξ
j), associated with the

node j is referred to as a feasible solution if and only if wk(Πξ
oj) ≤ Wk,

k = 1, . . . , |F |.

Starting from the label lo = (0, 0), associated with the origin
node o, the solution space is explored in order to obtain efficient and
feasible solutions for each node. At the end of the algorithm, the set
D(j),∀j ∈ N is an efficient set, that is it contains efficient and feasible
solutions. During the course of the algorithm, a label lξj = (zξj , w

ξ
j)

is generated starting from a label lζi = (zζi , w
ζ
i), using the following

updating rules:

zξj = zζi + cij.(4.12)

wk(Πξ
oj) = wk(Πζ

oi) + wk
ij, k = 1, . . . |F | .(4.13)

4.3. Solution Approaches for the ESPFP 112

A new label is created only if it is feasible (see Definition 4.3.6).

For each node j ∈ N , z∗j = z(Π∗oj) = minlξj∈D(j){z
ξ
j} represents

the value of the optimal path, without forbidden paths, from node o
to node j.

It is important to point out that all the labels associated with
paths that contain a cycle of length zero are discarded. For the sake
of semplicity and without loss of generality, let us suppose that a
cycle cyc =< i, . . . , i > at node i exists. Let Π̌oi be a path, without
cycles, from node o to node i and let Π̂oi = Π̌oi ∪ cyc be a path
that contains the cycle cyc. It is easy to verify that z(Π̂oi) = z(Π̌oi)
and w(Π̂oi) ≥ w(Π̌oi). Thus the label associated with path Π̂oi is
either dominated by (wk(Π̂oi) > wk(Π̌oi), for some k = 1, . . . , |F |)
or equivalent to (wk(Π̂oi) = wk(Π̌oi), ∀k) the label associated with
path Π̌oi. Since, from Definition 4.3.5, the label associated with the
path Π̂oi is not efficient, it is discarded. As a consequence, only paths
without cycles are determined by the proposed methods.

The solution approaches developed to address the ESPFP have
been defined by considering different label and node selection strate-
gies. In the first case, at each iteration, a label, associated with a node
i is selected and a new label is determined, extending the former, for
each j ∈ FS(i). In a node selection method, at each iteration, a node
i is selected and all the labels associated with it are used to updated
the set of labels of the successor nodes of i.

In what follows, we describe the proposed label selection (LSM
for short) and node selection methods (refered to as NSM). The
developped approaches mantain a candidate list L that, in the case
of LSM, stores all the labels with the potential to determine a new
label for at least one node. In the case of NSM, the list L contains
the node to be processed.

The strategy used to select, at each iteration, the label/node to
be treated influences the efficiency of the defined approaches. In this

113 Chapter 4

Algorithm 9 LSM scheme
Step 0 (Initialization phase)
Set D(o) = {l1o}; l1o = (0, 0);D(j) = ∅,∀j ∈ N − {o};L = {l1o}.

Step 1 (Label selection)

Select and remove from L a label lζi = (zζi , w
ζ
i).

Step 2 (Label scanning)
for all j ∈ FS(i), j 6= o do

Compute w̄j by using condition (4.13).
if the newly created label is feasible then

Set z̄j = zξi + cij
if (z̄j , w̄j) is dominated by some label belonging to D(j) then

Go to Step 1.
else

Set l
|D(j)|+1
j = (z̄j , w̄j);D(j) = D(j) ∪ {l|D(j)|+1

j };L = L ∪ {l|D(j)|+1
j }.

Remove from D(j) and L all the labels that are dominated by l
|D(j)|+1
j .

end if
end if

end for
Go to Step 1.

Step 4 (Termination check)
if L = ∅ then

STOP.
else

Go to Step 1.
end if

work we consider classical selection strategies, that is the Bellman-
Ford rule (BF , for short) in which the list L is organized as a FIFO
queue and the LIFO strategy in which the list L is managed as a
stack, that is a label/node is selected from and added to the top of L.

Other selection strategies have been considered that are special-
ized for both LSM and NSM. In the next Sections we provide a
detailed description of the proposed rules.

Label Selection Method

4.3. Solution Approaches for the ESPFP 114

At each iteration of LSM, a label lζi is selected to be treated.
Efficient and feasible labels are generated and stored.

The steps of the proposed algorithm are depicted in Algorithm 9.
It is possible to show that at the end of the algorithm the set of all
efficient and feasible solutions is available at each node.

Proposition 4.3.7.

1. At the end of each iteration, the following conditions holds:

(a) D(o) = {l1o} = {(0, 0)};
(b) ∀j ∈ N , if D(j) 6= ∅ [i.e.: D(j) = {l1j , l2j , . . . , llj}] and j 6= o,

then lξj , ξ = 1, . . . , l is a label related to a feasible path from
node o to node j and D(j) is an efficient set.

2. Upon termination of the algorithm, if D(j) 6= ∅, j ∈ N and j 6= o,
then D(j) contains the labels of all efficient and feasible paths
from node o to node j.

Proof. 1. Condition 1a holds because, initially, D(o) = {l1o} = {(0, 0)}
and, by the rules of the algorithm, D(o) cannot change.

We prove condition 1b by induction on the iteration count. In-
deed, initially, condition 1b holds, since node o is the only node
for which the set D(o) is nonempty. Suppose that 1b holds for
some node j at the beginning of some iteration.

Let lζi be the label removed from L.

If i = o, it happens only at the first iteration and ζ = 1. At the
end of this iteration, we have D(j) = l1j for all successor nodes j
of o such that the corresponding path Πoj is feasible, D(j) = ∅
for all other nodes j 6= o, j /∈ FS(i). Thus, the set of labels has
the required property.

If i 6= o, then lζi is the label of some feasible path Πζ
oi starting

from o and ending to i that is not dominated by the other paths

115 Chapter 4

in D(i), by the induction hypothesis. If the set D(j) changes, for
some node j, such that j ∈ FS(i), as a result of the iteration,
a new feasible label l̄j = (z̄j, w̄j) is obtained for node j. The
created label is related to the feasible path Πoj consisting of path
Πζ
oi followed by the arc (i, j). Finally, note that, by the rules of

the algorithm, the newly created label is added to D(j) only if it
is an efficient label. This completes the induction proof of 1b.

2. Using part 1b, we have that, at each iteration, ∀j ∈ N such that
D(j) 6= ∅, D(j) is an efficient set. Thus, the property mentioned
is also satisfied when the algorithm terminates. In addition, the
way in which the candidate list L is updated and the termina-
tion condition (i.e., the algorithm terminates when there are no
more labels left to be scanned) guarantee that all the labels with
the potential to determine a new label for at least one node are
scanned during the execution of the algorithm.

In what follows, we report a description of the strategies used to
select at each iteration the label to be treated and to manage the list
L.

DP This strategy can be viewed as an extension of the D’Esopo Pape
approach [115]. At each iteration, the label at the top of L is
selected. In addition, a label is inserted at the bottom of the
list L if it represents the first label of the corresponding node,
otherwise it is inserted at the top.

SLF The label at the top of L is extracted, whereas a label is inserted
in the list L by following the Small Label First rule. In particular,
let lξi be the label at the top of L and let lζj denote the label to
be inserted, SLF executes the following operations:

if zξj ≤ zζi then

Insert lξj at the top of L.

4.3. Solution Approaches for the ESPFP 116

else

Insert lξj at the bottom of L.

end if

LLL This is the Large Label Last (i.e. LLL) strategy, described in
what follows. Let lζi be the label at the top of L and let s =∑

l
ξ
j
∈L

zξj

|L| , LLL executes the operations reported below:

repeat

Move lζi to the bottom of L.

until zζi ≤ s

Select the label at the top of L.

SLS The selected label lζi is the one for which the following condition

is satisfied lζi = argminlξj∈L

{
zξj

}
.

LLL− SLF This rule is a hybrid strategy, that has been defined com-
bining the selection strategy LLL with the insertion rule SLF .

Node Selection Method

In the NSM, at each iteration a node i is selected and efficient
and feasible labels are generated from the labels belonging to D(i)
that are not yet extended. In Algorithm 10, we present the steps of
the proposed NSM. Also in this case, it is possible to show that at
the end of the algorithm the set of efficient solutions are available at
each node.

Proposition 4.3.8.

1. At the end of each iteration, the following conditions holds:

(a) D(o) = {l1o} = {(0, 0)};

117 Chapter 4

Algorithm 10 NSM scheme
Step 0 (Initialization phase)
Set D(o) = {l1o}; l1o = (0, 0);D(j) = ∅,∀j ∈ N − {o};L = {o}.

Step 1 (Node selection)
Select and delate from L a node i.

Step 2 (Node processing)
for all j ∈ FS(i), j 6= o do

for all lζi ∈ D(i) not yet extended do
Compute w̄j by using condition (4.13).
if the newly created labels is feasible then

Set z̄j = zξi + cij
if (z̄j , w̄j) is dominated by some label belonging to D(j) then

Go to Step 1.
else

Set l
|D(j)|+1
j = (z̄j , w̄j);D(j) = D(j) ∪ {l|D(j)|+1

j }.
Remove from D(j) all the labels that are dominated by l

|D(j)|+1
j .

Add j to L if it does not already belong to it.
end if

end if
end for

end for
Go to Step 1.

Step 3 (Termination check)
if L = ∅ then

STOP.
else

Go to Step 1.
end if

(b) ∀j ∈ N , if D(j) 6= ∅ [i.e.: D(j) = {l1j , l2j , . . . , llj}] and j 6= o,

then lξj , ξ = 1, . . . , l is a label related to a feasible path from
node o to node j and D(j) is an efficient set.

2. Upon termination of the algorithm, if D(j) 6= ∅, j ∈ N and j 6= o,
then D(j) contains the labels of all efficient and feasible paths
from node o to node j.

Proof. 1. The proof of condition 1a is identical to the corresponding

4.3. Solution Approaches for the ESPFP 118

part of Proposition 1.

We prove condition 1b by induction on the iteration count. Ini-
tially, condition 1b holds, since node o is the only node for which
the set D(o) is nonempty. Suppose that 1b holds for some node
j at the start of some iteration at which the node removed from
L is i. The following alternative situations can occur:

• i = o. This situation happens only at the first iteration and
at the end of the iteration we have

D(j) =

{
l1j = (z1

j , w
1
j), if w1

j ≤ W and j ∈ FS(i)

∅, otherwise

Thus, the set of labels D(j) has the required property.

• i 6= o. In this case, D(i) 6= ∅ by the rules of the algo-
rithm, and it contains the labels of some paths Πζ

oi, ζ =
1, . . . , |D(i)|, starting from node o and ending to node i.
In addition, we have that D(i) is an efficient set, by the
induction hypothesis. If by using the labels belonging to
D(i), a new set D̄(j) is obtained, for some node j, such
that j ∈ FS(i), as a result of the iteration, D̄(j) is set to
D(j) ∪ {l̄1j , . . . , l̄mj }, m ≤ |D(i)|, where l̄ξj , ξ = 1, . . . ,m is
not dominated by the labels already belonging to D(j) and
the corresponding path Πξ

oj, consisting of Πζ
oi followed by the

arc (i, j), is feasible. In addition, by the rules of the al-
gorithm, the labels dominated (if they exist) by the labels
l̄ξj , ξ = 1, . . . ,m are deleted from D(j).

Thus, property 1b holds at the end of the iteration, complet-
ing the induction proof.

2. The proof is identical to the proof of Proposition 4.3.7.

119 Chapter 4

The strategies used to select, at each iteration, the node to be
treated are described in what follows.

DP This strategy resembles the one proposed in [115]. In particular,
the node at the top of L is selected. In addition, a node i is
added to the bottom of L if it is considered not labeled (i.e., at
the previous iteration D(i) = ∅) otherwise it is inserted at the
top.

SALF A node is inserted into the list L by following the Small Av-
erage Label First rule. Let i be the node at the top of L and let
j be the node to be inserted, the operations executed by SALF
rule are described in what follows:

if σξj ≤ σζi then

Insert j at the top of L.

else

Insert j at the bottom of L.

end if The node extracted is that one at the top of L.

LALL This is the Large Average Label Last strategy, described in

what follows. Let i be the node at the top of L and let s =
∑
j∈L σj
|L| ,

where σj =

∑
l
ξ
j
∈D(j)

zξj

|D(j)| , LALL executes the operations reported
below:

repeat

Move i to the bottom of L.

until σi ≤ s

Select the node at the top of L.

SALS The selected node i is the one for which the following condition
is satisfied i = argminj∈L {σj}.

4.3. Solution Approaches for the ESPFP 120

LALL− SALF This rule is a hybrid strategy, that has been defined
combining the selection strategy LALL with the insertion rule
SALF .

Complexity Analysis

In this Section, we investigate the theoretical complexity of the pro-
posed approaches.

Given the directed graph D(N ,A), the labels generated can never
be more than k|N |, where k denotes the number of efficient and fea-
sible paths, that reach each node j ∈ N starting from node o. It is
worth observing that the value of k may differ per node. In the case
of LSM, the list L can contain at most k|N | elements. On the other
hand, a number of |N | elements can be stored into list L in the case
of NSM. As far as the computational complexity of the aforemen-
tioned selection strategies is concerned, we have that, for BF , DP
and SLF strategies, selecting an element from L takes O(1). Adding
a new element takes O(1) for BF strategy, while in the case of DP
and SLF strategies a further operation is required to determine the
position where the element should be added.

For the LIFO, LLL and SLS, the selection strategies differ in
the way the element is selected from L, while adding an element takes
O(1). The LIFO strategy takes O(1) to add the elements, LLL takes

O(|L|2) while O(|L|2) operations are needed to select an element with
the SLS strategy.

Let O(β) [O(γ)] be the complexity for selecting [adding] an ele-
ment from [to] the list L of a given selection [insertion] strategy, the
following theoretical results hold.

Lemma 4.3.9. The computational cost of the proposed LSM and
NSM when applied to D(N ,A) is O(k2|A| |F |+k|N | β), in the worst
case.

121 Chapter 4

Proof. Both methods execute the same number of operations. The
for-loop is performed k |N | times and requires the execution of |A||N |
iterations. At each iteration, calculating the amount of resource con-
sumed takes O(|F |), while verifying label dominance takes O(k |F |),
in the worst case. Finally, adding/replacing a label in the set D(.)
takes O(1), whereas the computational cost for adding an element
into L is O(γ). Thus, the computational cost of the for-loop is equal

to O(|A||N | × max(|F | ; k |F | ; γ))= O(|A||N |k |F |). As far as the compu-
tational cost of the selection strategy is concerned, we have that an
element is selected at most k |N | times and the computational cost
of each insertion is O(β). On the basis of the previous considera-
tions, it is evident that the worst case computational complexity of
the proposed approaches is O(k2|A| |F |+ k|N | β).

As mentioned in [137], a precise expression for k is difficult to
find. However, kmax = be(|N | − 2)!c represents an upper bound on k,
that is on the total number of paths between a source and destination
in D(N ,A) ([136]).

The dynamic programming algorithms for the ESPFP explore
the solutions space that, in this case, is represented by efficient and
feasible labels. Consequently, the number of labels generated strongly
influences the performances of these approaches.

It is possible to show that the number of efficient solutions is
upper bounded by a value that is exponential with the number of
resources taken into account. In particular, let C be the set of all fea-
sible solutions and let r be the number of resources. When all weights
wi, i = 1 . . . r and the costs associated with each arc are independent
variables, the following result holds:

Lemma 4.3.10. The expected number of efficient solutions in the set
C is upper bounded by (ln C)r−1.

Proof. For the proof of this lemma, the reader is referred to [12] and
[18].

4.4. Computational Experiments 122

It is evident that in our case r = |F | + 1, thus an upper bound
on the dimension of the states space is (ln C)|F |.

4.4 Computational Experiments

An extensive computational phase has been carried out with the goal
of assessing the performance of the proposed B&B and dynamic pro-
gramming methods to address the ESPFPod and the ESPFP .

The approaches, described in the previous Sections, have been
coded in Java and have been tested by using an Intel(R) Core(TM) i7
CPU M 620 PC, 2.67 GHz, RAM 4.00 GB, under Microsoft 7 operating
system.

Considering the B&B approach, different search strategies have
been implemented and the use of heuristic information in the search
process has been also considered. Indeed, three different versions of
each method have been implemented: a naive version (i.e., nv), in
which no heuristic information are considered and two enhanced ver-
sions (i.e., 1st and 2nd) in which upper and lower bounds on the optimal
path length are taken into account. In particular, in the 1st enhanced
version a lower bound is used to fathom unpromising nodes, whereas
the 2nd version uses both lower and upper bounds to prune some un-
promising branches, during the searching process.

It is worth observing that in the case of the BeFS strategy, two
different rules can be adopted to select the problem to be solved at
each iteration, that is the LIFO (referred in the sequel to as BeFSLF)
and the FIFO (referred in the sequel to as BeFSFF) strategy. In what
follows, we shall refer to each implemented algorithm as search strat-
egy.version. The notation BFS.1st represents the first enhanced ver-
sion of the proposed B&B approach, that uses the breath first search
strategy, whereas with BeFSFF .nv, we indicate the naive B&B ap-
proach, that considers the best first search, based on the FIFO selec-

123 Chapter 4

tion strategy.

Regarding the dynamic programming approaches, we have con-
sidered both node and label extension rule, to explore the state space.
In addition, several node/label selection strategies have been defined
to individuate the most promising node/label to be selected. In the
sequel, each of the proposed approaches will be referred to as exten-
tion rule.selection strategy. Thus, at each iteration of the algorithm
LSM.BF a label, chosen by following the BF selection strategy, is
processed.

4.4.1 Test Problems

As far as the choice of the test problems is concerned, random networks
of varying size and density (defined as the ratio between the number
of arcs and the number of nodes) have been considered. In particular,
the developed approaches have been tested on fully random networks
(R1 − R9), generated by using the public domain Netgen generator
([95]). To avoid negative cost cycles, the shortest path problem on each
generated instance is solved, by using the Bellman Ford algorithm. If
a cycle with negative cost is detected, the cost of each arc belonging
to the cycle is updated, using the pseudo random generator of the
Netgen code. The Bellman Ford algorithm is executed on the modified
network, until no cycle with negative cost is found.

The characteristics of the networks are given in Table 4.1, in which
for each test problem the number of nodes, the number of arcs and the
density value are reported. The arc costs have been chosen according
to a uniform distribution from the range [−100, 100]. Starting from
R1−R9, two sets of instances have been generated. They differ in the
number of forbidden paths |F | and in the strategy used to generate
them. In particular, for the first set, three different values of |F | have
been considered, 250, 500 and 750.

The forbidden paths have been generated randomly on the basis of

4.4. Computational Experiments 124

Test Nodes Arcs Density

R1 50 500 10
R2 400 1000 2.5
R3 100 2000 20
R4 200 2000 10
R5 100 5000 50
R6 2000 10000 5
R7 2500 10000 4
R8 1500 20000 13.33
R9 1000 30000 30

Table 4.1: Characteristics of the Fully Random Networks

a two-step procedure. In the first step, the number of nodes belonging
to each path is determined, whereas the generation of the path is
carried out in the second step. More specifically, in Step 1, for each
path πµ the number of nodes nπµ is randomly generated according to
a uniform distribution from the range [2, 10]. In the Step 2, for each
path πµ, the origin node o is chosen randomly in the interval [1, |N |];
starting from o, nπµ − 1 consecutive arcs are randomly selected.

In what follows, we use the notation test|F | to represent each test
problem. Indeed, R1250 refers to the fully random problem R1, with
250 forbidden paths.

Since the computational overhead of the B&B approaches de-
pends on the number of the B&B nodes explored during the search
process and, consequently, on the number of violated forbidden paths
constraints in the relaxed problem, a second set of 48 test problems
has been generated. In particular, for each random network, we have
considered 8 different values of |F |, that is |F | = 1, . . . , 8. In this
case, the forbidden paths have been generated in such a way all of
them are included in the solution of the shortest path problem with-
out restrictions. For each problem size ten different instances have
been generated.

The choice of these two sets of test problems is motivated by the

125 Chapter 4

goal of investigating the behavior of the proposed solution approaches
in two limit cases: 1) a few number of forbidden paths is included into
the optimal solution of the relaxed problem; 2) all the forbidden paths
constrains are violated.

The experimentations can be viewed as divided in two main phases.
In the former, the behaviors of the B&B methods and the dynamic
programming based algorithms are evaluated, by considering the first
set of test problems, in which the forbidden paths are generated ran-
domly; the related results are reported in Sections 4.4.2 and 4.4.3,
respectively. In the latter, a comparison of the performances of the
two different classes of solution approaches is carried out (see Section
4.4.4). In this Section, the numerical results obtained on the second
set of test problems are also presented and discussed.

4.4.2 Numerical Results of Branch & Bound Methods

In this Section, the computational results obtained with the proposed
B&B methods are presented and discussed. In the implemented algo-
rithms, a label correcting method based on the SLF rule is used to
solve the relaxed problems associated with the B&B nodes.

The results obtained when solving the ESPFPod on the first set
of test problems are given in Table 4.2, where for each network, the
number of B&B nodes explored during the search and the execution
time (in milliseconds) averaged on the related ten instances are re-
ported. The best results obtained are highlighted in bold.

The numerical results clearly underline that the best performance
is achieved with the second enhanced versions of the B&B approach.
Indeed, the use of heuristic information (i.e., lower and upper bounds)
allows to prune unpromising branches, resulting in improved perfor-
mance. In particular, the average execution time of the 2nd enhanced
versions is equal to 1816.72 milliseconds and the average number of
explored nodes is equal to 19.35, whereas when only a lower bound

4.4. Computational Experiments 126

is used to fathom unpromising nodes the average computational cost
increases to 1821.92 and the average number of solved candidate prob-
lems is equal to 20.83. The naive versions show the worst performance.
Indeed, the average computational cost is equal to 1969.78 and the
average number of explored problems is equal to 21.49. As far the
comparison of the search strategies is concerned, the results under-
line that, for the naive versions, DFS outperforms BFS (i.e., it is
observed an average percentage reduction in the computational cost
and in the number of explored nodes of the 14.66% and 1.66%, re-
spectively), whereas in the case of the enhanced versions, they show
comparable performance.

Table 4.2 also underlines that the best performance are achieved
by the BeFS search strategy, based on the LIFO selection strategy;
the naive version, that follows the breath first search strategy, shows
the worst performance. In particular, BeFSLF .2

nd is on average 1.19
times faster than BFS.nv and solves a number of candidate problems
that is 1.15 times less.

127
C

h
ap

ter
4

4.4.
C

om
p
u
tation

al
E

x
p

erim
en

ts
128

T
e
st

R
e
s
u
lt
s

B
F
S
.n
v

D
F
S
.n
v

B
F
S
.1

s
t

B
e
F
S
F

F
.1

s
t

D
F
S
.1

s
t

B
e
F
S
L
F
.1

s
t

B
F
S
.2

n
d

B
e
F
S
F

F
.2

n
d

D
F
S
.2

n
d

B
e
F
S
L
F
.2

n
d

R1250 B&B nodes 6.20 6.00 5.80 5.80 6.00 5.80 5.80 5.80 6.00 5.80
time 4.70 6.20 4.70 3.20 6.20 4.60 4.70 6.40 4.70 3.20

R1500 B&B nodes 6.40 6.30 6.30 6.30 6.30 6.30 6.30 6.30 6.30 6.30
time 4.60 7.70 6.20 4.70 9.40 6.20 4.60 7.70 3.20 1.50

R1750 B&B nodes 12.20 11.80 11.80 11.80 11.80 11.80 11.80 11.80 11.80 11.80
time 10.90 9.40 10.90 10.90 11.00 10.90 6.30 11.00 12.40 10.90

R2250 B&B nodes 11.30 11.20 10.90 10.90 11.20 10.90 10.90 10.90 11.20 10.90
time 53.10 53.00 51.50 56.20 53.10 49.90 51.70 51.50 54.60 53.10

R2500 B&B nodes 23.80 24.70 23.80 23.50 24.70 23.50 23.50 23.50 24.70 23.50
time 129.40 131.00 129.50 131.00 127.90 123.20 117.20 115.50 117.00 110.80

R2750 B&B nodes 36.90 39.00 34.50 34.50 38.80 34.50 34.50 34.50 37.50 34.50
time 228.70 220.00 196.50 174.70 221.50 193.50 176.30 169.90 180.90 174.70

R3250 B&B nodes 9.70 9.40 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30
time 31.60 28.80 29.60 30.10 30.00 30.10 28.30 28.00 28.00 27.60

R3500 B&B nodes 21.10 21.10 20.00 20.00 21.00 19.80 20.00 20.00 21.00 19.80
time 71.10 66.50 66.40 66.50 66.90 64.90 62.90 62.20 64.10 69.30

R3750 B&B nodes 28.00 30.40 27.70 27.70 30.40 27.70 27.70 27.70 30.40 27.70
time 112.60 121.50 113.10 114.00 121.40 112.40 90.40 91.40 98.90 94.00

R4250 B&B nodes 15.70 16.00 15.30 15.30 15.80 15.20 15.10 15.10 15.70 15.10
time 118.20 111.80 107.40 120.00 111.40 107.30 90.30 89.60 94.60 95.10

R4500 B&B nodes 47.20 42.10 43.70 43.10 42.00 42.30 43.10 43.10 42.00 42.30
time 311.20 278.20 292.00 323.30 278.80 281.30 272.10 272.20 265.30 266.70

R4750 B&B nodes 49.00 49.00 49.00 49.00 49.00 49.00 49.00 49.00 49.00 49.00
time 304.00 304.00 309.00 301.00 299.00 295.00 298.00 295.00 302.00 294.00

R5250 B&B nodes 6.70 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10
time 41.20 34.70 35.10 35.20 39.80 37.90 34.80 32.80 32.50 32.70

R5500 B&B nodes 60.00 56.60 55.40 56.00 55.80 59.40 51.50 9.10 9.10 9.10
time 28.60 29.20 27.40 27.40 29.20 27.40 27.40 44.40 44.50 44.50

R5750 B&B nodes 11.40 29.20 27.40 27.40 29.20 27.40 27.40 27.40 29.20 27.40
time 164.90 180.40 169.90 177.90 183.10 170.10 140.10 141.10 149.80 143.20

R6250 B&B nodes 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50
time 2311.30 2159.20 2184.20 2264.90 2255.90 2259.00 2213.70 2302.50 2269.90 2264.90

R6500 B&B nodes 29.50 29.80 29.50 29.50 29.80 29.50 29.50 29.50 29.80 29.50
time 5403.90 5222.80 5251.10 5403.40 5378.90 5408.60 5322.80 5438.10 5497.40 5403.40

R6750 B&B nodes 49.30 36.10 36.70 36.70 35.70 35.70 35.50 35.50 35.50 35.50
time 9216.50 6236.80 6487.90 6375.80 6303.80 6385.20 6321.20 6458.30 6397.50 6375.80

R7250 B&B nodes 10.90 11.20 10.90 10.90 11.20 10.90 10.90 10.90 11.20 10.90
time 2419.60 2330.60 2277.70 2338.40 2402.50 2319.80 2339.90 2380.60 2449.10 2254.20

R7500 B&B nodes 26.20 25.30 25.60 25.30 25.30 25.30 25.30 25.30 25.30 25.30
time 5717.50 5226.00 5247.80 5379.10 5322.70 5375.70 5307.30 5492.80 5447.40 5176.10

R7750 B&B nodes 52.90 46.30 47.40 46.50 45.90 45.60 46.40 46.40 45.80 45.50
time 11322.60 9292.90 9550.40 9506.90 9475.60 9492.60 9588.00 9779.70 9602.60 9260.20

R8250 B&B nodes 8.60 8.30 8.30 8.30 8.30 8.30 8.30 8.30 8.30 8.30
time 2709.80 2533.30 2553.70 2625.50 2606.70 2639.70 2599.00 2678.60 2672.00 2539.60

R8500 B&B nodes 11.30 11.00 9.30 9.30 10.80 9.30 9.20 9.20 10.70 9.20
time 3614.50 3434.90 2865.70 2914.10 3377.30 2970.40 2911.10 2990.70 3429.30 2868.90

R8750 B&B nodes 20.40 22.10 19.50 19.50 22.10 19.50 19.50 19.50 22.10 19.50
time 6475.40 6782.80 6158.80 6056.00 6905.80 6076.40 6040.40 6236.90 7061.10 5928.20

R9250 B&B nodes 4.00 4.30 3.80 3.80 4.10 3.80 3.60 3.60 3.90 3.60
time 1257.10 1305.60 1216.80 1107.60 1280.70 1178.00 1116.90 1176.20 1226.20 1107.60

continued on next page

129
C

h
ap

ter
4

continued from previous page

T
e
st

R
e
s
u
lt
s

B
F
S
.n
v

D
F
S
.n
v

B
F
S
.1

s
t

B
e
F
S
F

F
.1

s
t

D
F
S
.1

s
t

B
e
F
S
L
F
.1

s
t

B
F
S
.2

n
d

B
e
F
S
F

F
.2

n
d

D
F
S
.2

n
d

B
e
F
S
L
F
.2

n
d

R9500 B&B nodes 4.80 4.80 4.20 4.20 4.80 4.20 4.10 4.10 4.70 4.10
time 1623.90 1558.40 1452.40 1368.30 1589.90 1391.70 1394.50 1387.00 1583.50 1368.30

R9750 B&B nodes 10.00 6.10 7.20 6.00 5.50 5.80 5.60 5.30 5.30 5.30
time 3129.20 1886.40 2313.40 1656.90 1750.50 1834.70 1764.40 1689.60 1738.00 1656.90

Average nodes 21.67 21.32 20.77 20.67 21.20 20.68 20.42 18.84 19.39 18.77
Average time 2104.30 1835.26 1818.86 1799.00 1860.70 1809.13 1789.79 1830.73 1882.46 1763.90

Table 4.2: Computational results obtained when solving ESPFPod with B&B approaches on the first set of test
problems.

4.4.
C

om
p
u
tation

al
E

x
p

erim
en

ts
130

131
C

h
ap

ter
4

T
e
st

R
e
s
u
lt
s

B
F
S
.n
v

D
F
S
.n
v

B
F
S
.1

s
t

B
e
F
S
F

F
.1

s
t

D
F
S
.1

s
t

B
e
F
S
L
F
.1

s
t

B
F
S
.2

n
d

B
e
F
S
F

F
.2

n
d

D
F
S
.2

n
d

B
e
F
S
L
F
.2

n
d

R1250 B&B nodes 25.00 24.20 24.10 25.10 24.20 24.20 13.50 13.50 13.50 13.50
time 31.10 37.40 37.20 34.30 37.50 34.20 15.60 14.10 16.60 18.60

R1500 B&B nodes 33.00 32.90 32.70 43.00 32.90 32.90 21.80 21.80 22.00 22.00
time 51.50 46.70 55.50 48.40 48.30 51.50 24.90 28.20 24.40 26.40

R1750 B&B nodes 57.30 66.70 56.90 64.40 66.70 64.70 12.70 12.70 12.70 12.70
time 84.20 68.70 78.60 76.60 70.10 76.40 20.30 20.10 18.20 18.00

R2250 B&B nodes 45.50 45.50 45.50 45.50 45.50 45.50 45.50 45.50 45.50 45.50
time 617.70 622.90 597.70 605.30 600.70 586.70 480.60 502.30 454.30 458.20

R2500 B&B nodes 125.50 125.20 125.50 125.50 125.20 125.20 125.20 125.20 125.20 125.20
time 2037.50 2012.30 2072.40 2076.30 2109.10 1903.40 1829.90 1812.70 1693.20 1754.60

R2750 B&B nodes 327.00 328.20 326.70 327.00 328.20 330.90 326.70 327.00 328.20 330.90
time 6829.80 7095.10 6962.10 6988.80 7263.50 6464.80 6829.80 6766.00 6180.30 6808.00

R3250 B&B nodes 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20
time 70.50 68.50 74.20 72.80 69.20 70.80 48.10 47.90 48.30 46.30

R3500 B&B nodes 29.90 28.00 29.90 28.70 28.00 28.00 29.90 28.70 28.00 28.00
time 214.70 198.30 214.20 204.90 200.20 199.60 171.50 162.70 158.20 155.00

R3750 B&B nodes 267.60 218.30 267.60 193.80 218.30 218.30 240.60 166.80 190.10 190.10
time 1651.70 1380.30 1568.60 1278.90 1382.40 1397.00 1108.90 796.90 952.70 889.10

R4250 B&B nodes 205.14 98.86 205.14 226.29 98.86 107.71 185.43 206.57 177.25 81.14
time 7918.71 2697.71 7916.00 8381.57 2573.71 3006.57 7677.71 8234.00 3194.50 2563.57

R4500 B&B nodes 765.33 550.56 644.44 575.11 550.56 550.56 607.11 523.11 436.33 436.33
time 29252.11 14623.33 15660.89 13503.22 14300.00 14399.56 14933.33 12223.11 10767.00 10817.00

R4750 B&B nodes 1712.00 912.00 1712.00 1691.00 912.00 952.00 1239.00 307.00 912.00 952.00
time 13159.00 5931.00 13067.00 12834.00 5925.00 5952.00 6145.00 1420.00 5004.00 5283.00

R5250 B&B nodes 10.00 10.00 10.00 10.00 10.00 10.00 7.20 7.20 7.20 7.20
time 74.80 72.40 71.80 71.90 71.80 72.10 41.00 37.70 38.70 37.90

R5500 B&B nodes 16.10 15.80 15.90 15.90 15.80 15.80 15.80 15.80 15.80 15.80
time 156.20 154.30 149.70 149.70 155.30 148.40 108.70 105.90 113.20 109.00

R5750 B&B nodes 265.50 96.30 91.80 67.20 96.30 96.30 91.80 67.20 96.30 96.30
time 4159.80 967.50 999.30 642.50 964.80 965.70 887.00 592.20 938.60 912.20

R6250 B&B nodes 53.40 53.10 53.10 53.40 53.10 53.10 53.10 53.40 53.10 53.10
time 9644.00 9634.60 9717.90 9754.70 9790.70 9174.30 9122.70 9007.50 8456.90 8700.80

R6500 B&B nodes 228.00 228.00 228.00 228.00 228.00 228.00 228.00 228.00 228.00 228.00
time 45892.20 42748.70 45449.00 46501.90 44071.80 41917.20 46280.50 45505.40 39946.60 41185.30

R6750 B&B nodes 729.30 723.60 727.50 703.50 723.60 723.60 727.50 703.50 723.60 723.60
time 262090.10 260438.40 252863.70 262251.90 273453.20 244444.70 262428.30 258647.40 235439.30 261816.50

R7250 B&B nodes 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80
time 14673.40 12780.10 14002.80 14534.70 13570.50 13267.90 13621.70 13249.00 11829.10 12049.80

R7500 B&B nodes 214.40 214.40 214.40 214.40 214.40 214.40 214.40 214.40 214.40 214.40
time 54116.70 47754.30 51842.00 53874.50 50508.40 48403.80 53176.00 50768.40 44503.90 47494.60

R7750 B&B nodes 582.00 591.90 582.00 598.20 591.70 591.60 582.00 598.20 582.00 582.00
time 298611.30 273213.30 292979.30 293511.30 284193.40 262815.10 293227.60 286659.80 260004.10 281291.80

R8250 B&B nodes 47.60 51.50 47.60 47.60 51.50 51.50 47.60 47.60 52.40 52.40
time 17990.10 15921.40 21933.80 17891.80 16408.00 15707.80 17397.30 17088.30 15065.00 15694.40

R8500 B&B nodes 102.70 102.70 102.70 104.60 102.70 102.70 88.90 90.70 88.90 88.90
time 47843.70 41728.70 56546.80 45461.60 45171.40 42311.80 27711.90 27126.90 23123.80 23134.90

R8750 B&B nodes 249.10 226.50 245.20 247.30 226.50 227.70 218.20 219.20 209.80 209.80
time 78821.50 72143.90 84862.50 77948.90 74139.30 69787.00 76162.50 74836.60 63354.60 66756.00

R9250 B&B nodes 49.30 49.30 49.30 49.30 49.30 49.30 49.30 49.30 49.30 49.30
time 10036.90 10118.30 10416.90 10461.40 10631.40 9966.90 10165.00 10063.40 9617.40 9933.60

continued on next page

4.4.
C

om
p
u
tation

al
E

x
p

erim
en

ts
132

continued from previous page

T
e
st

R
e
s
u
lt
s

B
F
S
.n
v

D
F
S
.n
v

B
F
S
.1

s
t

B
e
F
S
F

F
.1

s
t

D
F
S
.1

s
t

B
e
F
S
L
F
.1

s
t

B
F
S
.2

n
d

B
e
F
S
F

F
.2

n
d

D
F
S
.2

n
d

B
e
F
S
L
F
.2

n
d

R9500 B&B nodes 116.40 91.20 112.50 106.00 91.20 92.10 86.40 87.60 69.90 71.10
time 20339.10 25814.60 21622.20 21054.30 26036.50 21919.80 15829.60 15322.40 17086.70 18096.90

R9750 B&B nodes 111.10 104.20 105.20 110.90 104.00 104.00 103.60 103.60 102.10 102.00
time 29498.00 28080.10 31667.80 30398.40 30794.50 29554.40 31184.40 29861.50 27994.80 28827.70

Average nodes 238.45 187.37 226.88 221.17 187.35 189.26 201.16 160.50 179.76 177.83
Average time 35402.46 32457.51 34941.85 34467.21 33871.88 31281.46 33208.51 32255.57 29112.01 31291.82

Table 4.3: Computational results obtained when solving ESPFP with B&B approaches on the first set of test
problems.

133 Chapter 4

Table 4.3 provides statistics on the solution process of the pro-
posed B&B approaches, when solving ESPFP on the first set of test
problems. Similarly to that done for the ESPFPod, for each test prob-
lem and for each method, we report the average computational cost
and the average number of B&B nodes explored during the search
process.

The results collected underline that the LIFO search strategy out-
performs the FIFO counterpart for both the enhanced and the naive
versions. In particular, DFS.nv, DFS.1st and DFS.2nd are 1.09, 1.03
and 1.14 times faster than BFS.nv, BFS.1st and BFS.2nd, respec-
tively. This behaviour can be justified by considering the number of
B&B nodes explored, that for DFS.nv, DFS.1st and DFS.2nd is 1.27,
1.21 and 1.11 times greater than that obtained by BFS.nv, BFS.1st

and BFS.2nd, respectively.

Referring to the enhanced versions, the computational results
demonstrate that for both the versions, BeFSLF [BeFSFF] and DFS
[BFS] show comparable performances.

From Table 4.3, it is evident that also in this case, the use of
heuristic information allows to cut-off unpromising candidate prob-
lems. In general, the enhanced versions outperform the naive counter-
parts. Indeed, the average execution time of the best performing 2nd

enhanced version (i.e., DFS.2nd) is 29112.01 milliseconds, whereas the
average computational cost of the naive versions is about 22929.98 mil-
liseconds. This behaviour can be explained by comparing the number
of problems solved by the two versions of each algorithm: the average
percentage reduction in the number of nodes explored by DFS.2nd

with the respect to the naive versions is of 34.09%.

4.4.3 Numerical Results of Dynamic Programming Approaches

The computational experiments have been carried out with the aim
of assessing the performance of the proposed dynamic programming

4.4. Computational Experiments 134

approaches and individuating the most efficient version, when solv-
ing the considered test problems. The related numerical results are
reported in Tables 4.4 and 4.5, in which for each network and for
each algorithm the number of iterations and the execution time (in
milliseconds) averaged on the corresponding ten instances are given.
Also in this case, the best results in terms of computational effort are
highlihted in bold.

As shown in Table 4.4, the best selection strategy, based on la-
bel extension, is BF . The average computational cost of LSM.BF
is equal to 1657.71 milliseconds with 4263.48 iterations, on average.
LSM.DP shows the worst performances and it is 14.20 times slower
than LSM.BF ; the number of iteration executed by LSM.BF is
13.39 times less that that performed by LSM.DP .

Considering the node selection methods, NSM.LALL behaves
the best, while the worst performances are shown by NSM.LIFO.
In particular, NSM.LIFO is, on average, 37.35 times slower than
NSM.LALL. This behaviour can be justified considering the number
of iterations executed by NSM.LALL that is 23.55 times less than
that performed by NSM.LIFO.

Comparing the best selection strategy of each extension rule,
LSM.BF and NSM.LALL show similar performance. Indeed, the
former is 1.04 times faster than the latter.

4.4.4 Comparison

The goal of this Section is to provide a comparison of the performances
of the two classes of solution approaches defined to solve the problem
under study.

It is worth observing that the dynamic programming approaches
solve both the single-origin single-destination (i.e., ESPFPod) and the
single-origin all-destination
(i.e., ESPFP) versions of the problem, within the same computa-

135 Chapter 4

T
e
st

R
e
s
u
lt
s

L
S
M

.B
F

L
S
M

.D
P

L
S
M

.S
L
F

L
S
M

.L
I
F
O

L
S
M

.L
L
L

L
S
M

.S
L
S

L
S
M

.L
L
L
-S
L
F

R1250 iter 153.50 635.80 152.30 613.50 138.80 133.50 139.30
time 6.30 65.60 8.50 58.90 7.80 6.00 6.70

R1500 iter 183.00 712.20 181.00 687.90 162.60 157.20 164.80
time 9.40 138.90 10.60 127.30 9.70 11.30 10.40

R1750 iter 189.40 558.10 188.10 531.90 169.80 163.10 172.80
time 20.30 75.00 19.10 70.50 16.50 17.80 18.40

R2250 iter 4864.00 12654.40 4772.60 12429.20 4736.60 4726.10 4732.90
time 857.30 3302.40 844.70 3223.00 834.30 851.40 850.40

R2500 iter 8526.40 18627.10 8404.20 18371.70 8358.80 8333.30 8341.70
time 4601.90 15400.30 4694.50 15304.40 4669.10 4673.40 4624.60

R2750 iter 11627.90 26617.30 11478.90 26361.80 11410.10 11394.70 11403.10
time 11160.50 44257.10 10695.90 43600.80 10701.20 10413.40 10470.70

R3250 iter 1294.60 7145.00 1186.20 7105.50 1039.20 847.70 1011.60
time 519.00 930.75 614.00 885.50 475.90 443.70 539.10

R3500 iter 718.30 1333.23 664.20 1325.86 616.90 553.20 609.70
time 95.00 173.67 99.60 165.23 89.00 106.70 93.30

R3750 iter 1900.29 12337.42 1801.29 12269.22 1739.00 1641.29 1718.57
time 778.14 1607.15 756.86 1529.01 806.43 1349.86 783.86

R4250 iter 1405.30 1005.16 1186.30 999.60 1113.00 875.90 1038.50
time 79.60 130.94 71.10 124.57 70.20 77.50 66.20

R4500 iter 11077.50 148254.89 10501.50 147435.29 9902.38 8693.63 9598.13
time 6859.38 19312.56 8662.75 18373.65 10594.38 15871.25 11788.63

R4750 iter 13334.67 216446.15 13379.67 215249.56 12654.00 11535.33 12316.33
time 9603.67 28195.56 13303.17 26824.78 15576.67 24571.17 15456.67

R5250 iter 373.10 6024.00 343.90 5961.13 304.90 265.20 302.50
time 62.40 2212.63 59.60 2152.88 53.60 56.50 55.00

R5500 iter 420.60 9776.10 387.20 9715.60 344.30 299.40 340.90
time 108.90 8931.30 107.10 9047.60 91.00 96.40 95.00

R5750 iter 1780.40 6781.29 1673.50 6718.71 1574.90 1377.90 1546.10
time 1815.70 3812.14 1859.80 3639.86 1864.50 3387.40 2021.40

R6250 iter 3974.90 22954.80 3561.10 22780.50 3239.80 3074.40 3187.00
time 293.40 1748.70 222.60 1326.60 206.80 201.30 204.10

R6500 iter 4334.90 59331.11 3876.00 59117.44 3584.30 3366.60 3492.30
time 393.20 15311.33 294.50 14955.00 296.00 290.80 276.20

R6750 iter 5858.60 175538.90 5327.90 175295.60 4823.90 4594.00 4777.60
time 638.00 175833.10 533.60 176574.10 519.30 540.30 536.90

R7250 iter 5348.60 70091.00 4849.10 69834.50 4452.80 4309.80 4412.10
time 324.60 6307.50 279.00 5221.30 289.10 350.00 270.20

R7500 iter 7754.40 148732.20 7108.40 148402.00 6471.20 6249.10 6405.10
time 606.90 35616.90 557.10 34151.30 542.00 560.30 552.70

R7750 iter 9442.30 389962.60 8661.30 389609.50 7998.60 7768.50 7941.10
time 915.90 199805.20 844.00 203575.90 811.70 817.30 854.90

R8250 iter 3617.50 27198.90 3261.60 27055.40 2964.70 2503.70 2844.60
time 527.10 3746.60 482.10 3379.20 446.70 369.60 429.60

R8500 iter 3791.20 34616.50 3482.20 34476.90 3095.50 2629.30 3009.40
time 694.00 6123.80 641.30 5849.70 569.70 490.40 568.00

R8750 iter 4197.30 69766.90 3813.70 69630.50 3395.70 2855.50 3311.60
time 906.30 34172.50 851.50 34272.90 735.90 678.40 765.40

R9250 iter 2717.80 19709.60 2581.70 19592.70 2324.50 1800.80 2270.40
time 655.30 4626.40 657.50 4386.70 562.20 459.30 573.00

R9500 iter 2867.30 26087.00 2609.50 25970.90 2439.10 1848.20 2319.20
time 900.10 8230.20 850.50 7839.10 765.10 617.90 756.10

R9750 iter 3360.10 28309.10 3234.80 28180.00 2908.50 2364.20 2863.90
time 1325.90 15456.50 1341.90 14406.60 1139.20 1045.40 1174.60

Average iter 4263.48 57081.73 4024.75 56878.61 3776.44 3494.87 3713.75
Average time 1657.71 23537.95 1828.25 23372.83 1953.48 2531.66 1994.15

Table 4.4: Computational results obtained when solving ESPFP with LSM on
the first set of test problems.

.

tional time.

4.4. Computational Experiments 136

T
e
st

R
e
s
u
lt
s

N
S
M

.B
F

N
S
M

.D
P

N
S
M

.S
A
L
F

N
S
M

.L
I
F
O

N
S
M

.L
A
L
L

N
S
M

.S
A
L
S

N
S
M

.L
A
L
L
-S
A
L
F

R1250 iter 82.10 154.40 92.50 400.10 81.10 82.10 83.50
time 8.70 12.10 7.80 60.30 8.20 5.50 7.60

R1500 iter 86.30 172.70 93.60 382.20 86.70 89.20 87.00
time 11.00 18.00 12.90 75.80 10.40 11.10 11.60

R1750 iter 90.00 170.80 98.50 404.60 86.40 90.20 90.00
time 23.60 27.90 23.20 79.10 18.20 19.20 20.20

R2250 iter 1830.20 3392.40 1342.40 11158.60 1376.70 1284.20 1319.10
time 938.20 1534.20 818.00 4304.20 825.80 816.00 810.90

R2500 iter 2363.10 4525.90 1655.00 16033.30 1684.90 1555.00 1593.50
time 4816.30 7521.40 4638.10 20110.50 4782.10 4680.90 4578.70

R2750 iter 2782.70 6409.40 1860.80 22568.90 1899.00 1780.10 1775.10
time 10946.00 17004.40 10505.90 57565.50 10374.50 10358.50 10268.30

R3250 iter 268.50 9056.70 284.50 3414.67 254.10 247.10 252.30
time 505.50 65690.50 432.10 884.83 515.20 620.70 649.30

R3500 iter 295.80 640.90 313.10 2185.00 287.90 273.00 276.90
time 121.80 294.20 125.00 473.00 108.00 109.70 109.50

R3750 iter 373.14 1159.86 404.86 473.94 419.29 392.14 410.00
time 1012.14 2919.86 1090.14 2189.32 937.43 916.14 975.00

R4250 iter 612.10 2064.80 606.50 46.03 530.90 517.40 519.80
time 90.90 366.70 93.70 212.64 71.20 69.10 70.90

R4500 iter 990.38 13014.88 1063.75 7435.28 1082.71 1250.00 1161.50
time 6835.63 91327.13 8926.13 34346.92 2709.86 6848.75 6517.38

R4750 iter 1109.67 15150.33 1218.67 11985.93 1345.83 1569.67 1364.17
time 11550.83 138709.17 11958.67 55368.42 11628.67 12960.17 11738.50

R5250 iter 258.20 430.80 254.80 2468.22 219.80 216.60 223.50
time 70.10 159.90 79.70 1837.78 62.60 62.30 65.80

R5500 iter 266.50 447.40 262.10 2943.30 223.30 213.50 235.10
time 131.20 219.20 147.40 5555.60 107.50 106.00 110.30

R5750 iter 327.00 1104.60 346.10 5604.17 347.10 365.70 401.60
time 2110.50 6835.00 3017.90 707637.33 2288.60 2544.20 2311.60

R6250 iter 3306.70 9957.30 3221.70 22686.50 2795.30 2636.50 2761.70
time 370.80 1574.00 358.20 1238.20 298.50 280.40 296.40

R6500 iter 3370.60 11214.10 3469.30 56848.56 2872.60 2730.80 2919.00
time 487.00 2207.30 471.60 20586.11 394.30 362.70 393.70

R6750 iter 4108.10 13553.40 4082.10 166591.70 3418.30 3260.10 3440.70
time 810.30 3091.60 773.60 252163.00 639.30 595.00 643.90

R7250 iter 4403.70 14508.70 4299.90 69168.00 3717.50 3582.00 3720.00
time 492.70 2825.50 447.60 5544.20 403.70 381.10 395.00

R7500 iter 5572.70 28992.00 5458.50 144954.90 4735.90 4623.00 4777.50
time 915.90 8810.10 838.00 46162.50 753.20 712.20 713.60

R7750 iter 6311.80 74453.60 6156.50 370544.30 5641.50 5519.70 5609.30
time 1326.20 113664.00 1247.70 291413.10 1124.50 1092.40 1096.20

R8250 iter 2827.70 7640.40 2787.40 26696.90 2500.00 2279.90 2466.50
time 653.80 1641.80 667.20 3058.90 574.30 521.20 593.80

R8500 iter 2849.50 8377.20 2839.50 33454.90 2545.10 2313.70 2522.10
time 819.70 2132.00 821.00 6369.00 730.50 690.10 716.20

R8750 iter 2983.20 9263.60 2959.50 63764.70 2637.80 2385.00 2602.50
time 1022.20 2700.70 1026.50 46201.20 887.00 838.90 888.20

R9250 iter 2186.90 5269.60 2189.10 19147.80 2088.40 1885.40 2100.70
time 698.60 1541.20 705.70 3951.90 646.10 584.70 621.40

R9500 iter 2227.80 5782.30 2233.10 24410.60 2083.10 1926.50 2064.50
time 941.40 2141.70 958.50 8130.00 842.30 818.50 864.30

R9750 iter 2379.90 5893.40 2335.70 26210.30 2253.10 2133.30 2264.70
time 1386.70 2827.00 1331.00 18853.90 1285.60 1261.10 1312.10

Average iter 2009.79 9363.02 1923.31 41184.57 1748.68 1674.14 1742.31
Average time 1818.43 17696.17 1908.27 59050.86 1593.61 1787.65 1732.61

Table 4.5: Computational results obtained when solving ESPFP with NSM on
the first set of test problems.

.

137 Chapter 4

First of all we focus on ESPFPod. The results collected under-
line that the best version of the B&B approach, that is BeFSLF .2

nd

shows similar performance to that achieved by both the best version
of LSM and NSM (i.e., LSM.BF and NSM.LALL). In partic-
ular, BeFSLF .2

nd is 1.06 and 1.10 times slower than LSM.BF and
NSM.LALL, respectively.

It is worth observing that for the test problems R1 − R5, the
B&B approach behaves always the best. Indeed, the dynamic pro-
gramming based solution approaches are 22.84 times slower than the
B&B solution methods (see Tables 4.2 - 4.5).

Regarding the ESPFP , both the best versions of LSM and
NSM outperform the best version of the B&B approach. In par-
ticular, DFS.2nd is 17.86 and 18.26 times slower than LSM.BF and
NSM.LALL, respectively. However, it is important to point out that
7 out of 15 instances related to the test problems R1−R5 are solved by
the B&B solution approaches faster than the dynamic programming
approaches. Indeed, on the instances related to the test problems
R1−R5 the latter are 1.26 times slower than the former.

The computational results on the second set of instances are re-
ported in Table 4.7.

The collected data emphasize the superiority, in terms of com-
putational efficiency, of the dynamic programming approaches on the
second set of test problems. The best performing version of both LSM
(i.e.: LSM.BF) and NSM (i.e.: NSM.LALL) outperform the best
version of the B&B solution approach for both the single-source single-
destination and single-source all-destination versions of the problem.
In particular, LSM.BF [NSM.LALL] is 238.09 [160.54] and 6465.73
[4359.85] time faster than BeFSLF.2nd and DFS.2nd, when solving
the ESPFPod and the single-source all-destination version, respec-
tively. In addition, the higher the number of violated constraints re-
lated to the forbidden path, the higher the speed up. Indeed, when
ESPFPod [ESPFP] is solved, LSM.BF is 5.86, 11.53, 23.73, 44.83,

4.4. Computational Experiments 138

|F | ESPFPod ESPFP
2 181.71 % 249.56 %
3 507.67 % 986.14 %
4 1285.84 % 3091.45 %
5 3107.37 % 9242.48 %
6 6871.09 % 25404.13 %
7 12781.45 % 72393.27 %
8 27960.47 % 147537.59 %

Table 4.6: Percentage increase of the explored B&B nodes with respect to the
instances with only one violated constrain.

101.92, 191.95, 378.22 and 754.72 [4.56, 14.24, 46.02, 146.96, 495.12,
1881.61, 11115.59 and 25552.46] times faster than the B&B solution
strategy when 1, 2, 3, 4, 5, 6, 7 and 8 forbidden paths are considered,
respectively. The same behavior is observed for NSM.LALL.

The bad performances of the B&B method can be justified by
observing that the higher the number of violated constrains, the dra-
matically higher the explored B&B nodes. In Table 4.6, the percent-
age increase of the explored B&B nodes with respect to the instances
with only one violated constrain are reported.

.

test results LSM.BF NSM.LALL B&B best

ESPFPod ESPFP

R11 iter / B&B nodes 66.20 67.90 2.80 2.80
time 1.80 3.30 1.70 2.10

R12 iter / B&B nodes 67.60 68.30 5.50 5.70
time 0.80 1.50 3.50 2.90

R13 iter / B&B nodes 68.20 68.10 8.20 8.10
time 0.80 1.00 4.70 4.70

R14 iter / B&B nodes 69.00 68.20 8.50 9.30
time 0.70 0.90 4.90 5.00

R15 iter / B&B nodes 69.00 68.10 10.00 14.10
time 0.80 1.10 4.40 9.70

R16 iter / B&B nodes 69.20 68.80 13.00 28.90
time 0.60 1.00 5.70 18.50

R17 iter / B&B nodes 73.10 70.50 24.70 83.20
time 0.70 1.00 10.50 48.70

R18 iter / B&B nodes 72.20 69.40 24.70 98.80
time 1.00 1.00 10.70 81.50

R21 iter / B&B nodes 437.80 429.60 4.00 4.00
time 4.00 6.20 17.80 11.30

R22 iter / B&B nodes 513.40 472.30 11.90 15.20
time 5.10 7.00 49.90 39.10

R23 iter / B&B nodes 644.00 553.90 37.30 54.80
time 6.00 8.40 142.70 145.00

R24 iter / B&B nodes 740.10 602.30 91.30 176.00
time 7.20 10.70 311.80 596.60

R25 iter / B&B nodes 809.80 641.80 230.80 564.20
continued on next page

139 Chapter 4

continued from previous page
test results LSM.BF NSM.LALL B&B best

ESPFPod ESPFP
time 9.00 13.10 759.00 2308.70

R26 iter / B&B nodes 871.40 674.10 528.70 1364.20
time 8.80 12.80 1756.00 7522.10

R27 iter / B&B nodes 976.60 728.30 1001.00 3523.00
time 10.90 14.00 3596.50 34571.80

R28 iter / B&B nodes 1017.30 746.20 2308.60 9880.10
time 11.40 14.70 9909.30 346104.50

R31 iter / B&B nodes 217.00 161.00 4.00 4.00
time 7.00 8.00 13.00 16.00

R32 iter / B&B nodes 296.00 187.00 13.00 13.00
time 8.00 8.00 43.00 40.00

R33 iter / B&B nodes 298.00 183.00 31.00 47.00
time 10.00 7.00 93.00 138.00

R34 iter / B&B nodes 386.00 208.00 94.00 146.00
time 9.00 10.00 279.00 284.00

R35 iter / B&B nodes 370.00 199.00 148.00 358.00
time 10.00 8.00 424.00 794.00

R36 iter / B&B nodes 454.00 222.00 445.00 1023.00
time 12.00 11.00 1299.00 2914.00

R37 iter / B&B nodes 454.00 224.00 445.00 1177.00
time 11.00 11.00 1309.00 3046.00

R38 iter / B&B nodes 466.00 228.00 1147.00 2251.00
time 14.00 12.00 3002.00 7208.00

R41 iter / B&B nodes 434.00 306.00 4.00 4.00
time 9.00 12.00 22.00 25.00

R42 iter / B&B nodes 759.00 373.00 13.00 16.00
time 17.00 21.00 69.00 129.00

R43 iter / B&B nodes 718.00 362.00 22.00 40.00
time 17.00 19.00 118.00 425.00

R44 iter / B&B nodes 712.00 362.00 31.00 88.00
time 16.00 19.00 167.00 911.00

R45 iter / B&B nodes 1016.00 427.00 94.00 250.00
time 26.00 28.00 505.00 2074.00

R46 iter / B&B nodes 1096.00 454.00 166.00 718.00
time 29.00 28.00 899.00 6310.00

R47 iter / B&B nodes 1098.00 426.00 277.00 1876.00
time 30.00 28.00 1498.00 21739.00

R48 iter / B&B nodes 1065.00 431.00 337.00 3956.00
time 28.00 27.00 1832.00 60310.00

R51 iter / B&B nodes 179.00 150.00 4.00 4.00
time 9.00 8.00 12.00 12.00

R52 iter / B&B nodes 208.00 156.00 13.00 16.00
time 12.00 10.00 53.00 75.00

R53 iter / B&B nodes 206.00 157.00 13.00 40.00
time 10.00 11.00 54.00 154.00

R54 iter / B&B nodes 231.00 163.00 33.00 40.00
time 11.00 12.00 139.00 151.00

R55 iter / B&B nodes 227.00 166.00 83.00 72.00
time 11.00 11.00 346.00 258.00

R56 iter / B&B nodes 223.00 162.00 83.00 84.00
time 12.00 11.00 351.00 351.00

R57 iter / B&B nodes 270.00 187.00 83.00 84.00
time 16.00 14.00 348.00 359.00

R58 iter / B&B nodes 268.00 189.00 83.00 84.00
time 16.00 13.00 347.00 347.00

R61 iter / B&B nodes 2493.40 2391.40 4.00 4.00
time 123.60 213.50 743.20 734.10

R62 iter / B&B nodes 3013.60 2639.90 10.90 14.20
time 155.00 247.00 1969.00 2347.00

R63 iter / B&B nodes 3133.30 2681.60 32.50 59.50
time 156.70 253.80 5867.20 10174.00

R64 iter / B&B nodes 3782.80 3018.20 94.90 234.10
time 193.60 302.20 16448.60 43624.10

R65 iter / B&B nodes 4027.10 3127.30 218.20 778.60
time 210.40 330.20 37306.80 184269.20

R66 iter / B&B nodes 5030.10 3691.00 550.30 2520.00
time 274.10 425.50 91033.50 1072904.30

R67 iter / B&B nodes 5442.00 3880.80 1238.80 9056.80
time 306.10 460.30 202573.50 8316057.80

R68 iter / B&B nodes 6232.90 4292.50 2790.40 15125.00
time 355.60 535.90 447846.10 13730303.75

R71 iter / B&B nodes 2950.00 2877.30 4.00 4.00
continued on next page

4.5. Conclusions 140

continued from previous page
test results LSM.BF NSM.LALL B&B best

ESPFPod ESPFP
time 138.30 228.30 949.90 710.90

R72 iter / B&B nodes 3457.90 3198.80 11.80 15.50
time 167.20 280.30 2690.80 3739.20

R73 iter / B&B nodes 4367.70 3702.50 26.70 55.20
time 218.40 352.00 5984.20 14774.10

R74 iter / B&B nodes 5056.50 4081.10 56.40 177.80
time 250.70 421.70 12374.00 53257.00

R75 iter / B&B nodes 5256.10 4167.10 131.80 576.40
time 273.50 444.00 28301.50 227924.50

R76 iter / B&B nodes 5539.60 4326.50 294.70 1584.90
time 288.60 460.90 65518.80 857666.90

R77 iter / B&B nodes 6336.40 4790.70 711.40 5737.60
time 335.60 539.70 152955.00 6108179.90

R78 iter / B&B nodes 7114.30 5162.70 1425.10 11895.14
time 399.00 618.80 297430.00 20885448.29

R81 iter / B&B nodes 2054.00 2114.50 3.40 3.40
time 206.90 384.70 1282.60 855.70

R82 iter / B&B nodes 2479.60 2308.60 7.30 9.20
time 265.70 437.10 2659.00 2581.90

R83 iter / B&B nodes 2600.40 2413.10 13.30 24.40
time 274.00 459.40 4824.50 8831.10

R84 iter / B&B nodes 2719.60 2458.90 20.50 77.00
time 289.90 472.70 7314.60 23928.60

R85 iter / B&B nodes 2731.80 2459.20 48.10 176.50
time 297.60 464.50 17076.80 62527.90

R86 iter / B&B nodes 2866.90 2510.60 81.70 455.00
time 321.00 480.30 29140.20 221263.00

R87 iter / B&B nodes 2924.40 2528.50 124.30 987.00
time 329.60 495.50 44003.80 599944.40

R88 iter / B&B nodes 2976.40 2541.90 255.10 2822.60
time 337.60 498.30 80733.40 3042016.10

R91 iter / B&B nodes 1350.20 1578.30 3.70 3.70
time 212.90 336.10 1132.50 879.90

R92 iter / B&B nodes 1628.50 1745.20 9.10 13.70
time 259.40 382.60 2725.10 3726.30

R93 iter / B&B nodes 1780.00 1811.40 22.00 39.20
time 300.20 401.20 6480.20 11054.60

R94 iter / B&B nodes 1860.40 1853.70 40.20 133.70
time 312.90 412.70 11870.00 37574.80

R95 iter / B&B nodes 1952.70 1910.70 123.40 377.30
time 344.50 421.60 35831.70 105456.10

R96 iter / B&B nodes 2025.70 1962.00 200.80 867.90
time 349.60 438.00 58707.70 269048.00

R97 iter / B&B nodes 2292.40 2136.00 465.00 2050.60
time 400.40 475.90 138454.70 925843.40

R98 iter / B&B nodes 2313.60 2133.30 1141.60 3936.50
time 405.00 484.60 341991.60 1984222.40

Average iter / B&B nodes 1777.86 1444.11 251.92 1222.78
Average time 127.41 188.94 30333.77 823769.60

Table 4.7: Comparison among the proposed solution approaches

4.5 Conclusions

In this paper, the elementary shortest path problem with forbidden
paths has been addressed. The problem under study has been formu-
lated as a specific instance of the resource constrained shortest path
problem.

The single-origin single-destination and the single-origin all-destination

141 Chapter 4

versions of the problem have been handled and B&B and dynamic
programming based solution approaches have been defined and im-
plemented. Different versions of the two types of solution approaches
have been developed.

Regarding to the B&B method, a naive and two enhanced ver-
sions have been defined. Both node and label selection versions of a
dynamic programming based algorithm have been considered. In ad-
dition, several rules have been implemented to select, at each iteration,
the label/node to be processed.

An extensive computational study has been carried out on a va-
riety of network instances with the goal of assessing the behavior of
the proposed solution procedures. With this aim, two groups of in-
stances have been considered. The first one is characterized by a set
of forbidden paths randomly generated , the second one is generated
in such a way that all the forbidden paths are present as subsequence
of the optimal solution of the relaxed problems (i.e., B&B node).

The collected numerical results underline that the performance
of the proposed solution approaches is influenced by both the number
of the additional constraints and the dimension of the problems that
have to be solved.

For the test problems, in which the set of forbidden paths is ran-
domly generated, the best performing versions of label and node se-
lection methods outperform, on average, the best version of the B&B
based solution approaches. This is observed for both the single-source
single-destination and the single-source all-destination versions of the
considered problem. However, it is worth observing that the B&B ap-
proach outperforms the dynamic programming based solution meth-
ods for the test problems of small size, i.e., low number of nodes and
arcs.

The results, obtained on the instances of the second group, under-
line that the dynamic programming based methods remarkable out-

4.5. Conclusions 142

perform the best version of the B&B solution approaches.

In conclusion, the B&B strategies developed to solve the elemen-
tary shortest path problem with forbidden paths could be competitive
with the dynamic programming solution approaches only if the num-
ber of violated constrains is very limited respect to the total number
of forbidden paths and when the number of nodes and the number
of arcs of the considered problem is not too high, i.e., networks with
a number of nodes and a number of arcs less than or equal to 400
and to 5000, respectively. In addition, when the number of violated
constrains increases, the computational cost of the B&B methods in-
creases dramatically and they behave very poorly. On the contrary,
the dynamic programming approaches seem to be very effective in
solving the problem under study.

Chapter 5

Multi-dimensional labelling
approaches to solve the linear
fractional elementary shortest
path problem with time windows 1

Luigi Di Puglia Pugliese

Department of Electronics, Informatics and Systems, University of
Calabria, 87036, Rende (CS), Italy

Francesca Guerriero

Department of Electronics, Informatics and Systems, University of
Calabria, 87036, Rende (CS), Italy

Abstract

This paper investigates the linear fractional shortest path problem
with time windows. For the specific problem, an elementary path
with a minimum cost/time ratio is sought in a directed graph, where

1Accepted for pubblication in the journal Optimization Methods & Software, DOI:
10.1080/10556780903483364

143

5.1. Introduction 144

two parameters (i.e. cost and time) are associated with each arc and
a time window is associated with each node. Indeed, a valid path
must satisfy the time window constraints, which are assumed to be of
the hard type. Multi-dimensional labelling algorithms are proposed
to solve this variant of the classical shortest path problem. Extensive
computational tests are carried out on a meaningful number of test
problems, with the goal of assessing the behaviour of the proposed
approaches. The computational study shows that the introduction of
dominance rules and the adoption of a bi-directional search strategy
allow the definition of solution approaches that turn out to be very
effective in solving the problem under consideration.

Keywords: shortest path problem; time window constraints; bi-
criteria network; fractional objective function; multiple labelling ap-
proaches.

5.1 Introduction

The classical shortest path problem has been defined as a single-
objective problem, in which the main objective is to optimize a single
criterion, such as the total cost and the travel time [6].

However, in many real applications, arising in the design and
management of different types of network (i.e. transportation, trans-
mission, and communication networks), the complexity of the social
and economic environment requires the explicit and simultaneous con-
sideration of multiple and conflicting objectives ([6], [14], [33], [41],
[42]).

In this framework, unless a well-defined utility function exists, it
is not possible to identify a single optimal solution, but rather dif-
ferent paths exist (i.e. Pareto-optimal paths), which can be consid-
ered as best solutions in the sense that no improvement in any crite-
rion is possible without sacrificing at least one of the other criteria.

145 Chapter 5

Consequently, the decision-maker should be able to get a satisfactory
compromise solution from the Pareto-optimal solution set. While the
single objective shortest path problem has a polynomial complexity
bound [20], its multi-criteria counterpart is classified as NP-complete
[71]. Despite its theoretical complexity and given its practical im-
portance, several studies have focused on the development of efficient
solution approaches to address the multi-criteria shortest path prob-
lem. They can be classified into four groups. The first group includes
exact procedures such as multiple labelling methods ([24], [35], [79],
[103], [128]), ranking methods ([10], [36]) and parametric methods
([110]). The second group contains the approximate procedures ([82],
[85], [134], [135], [142]). The third group of solution approaches uti-
lizes the utility (or cost) functions ([27], [56], [107], [108]). The last
group includes the interactive methods ([39], [40], [43], [74], [112]).

A review of the scientific literature underlines that, when only
two attributes are taken into account, the main goal is generally to
find a path for which the ratio of the two criteria is minimized. For
example, in the work of Ahuja [3], the ratio of cost and reliability (i.e.
the product of the reliabilities of the arcs in that path) is considered,
whereas the papers of Martins [102] and Fox [67] address the minimum
cost/time ratio path problem. The minimum cost/capacity ratio path
problem has been studied in [101], and Sherali et al. [126] present
a discrete fractional programming formulation to determine a path
through a bi-attribute network, where each arc has a probability of
accident and its consequence (cost) in order to minimize the risk of
low probabilityhigh consequence accidents in transporting hazardous
materials.

Recently, the general problem of identifying an optimal elemen-
tary path between a pair of nodes that minimizes the ratio of two
linear functions has been studied by Soroush ([129], [130]).

In particular, in [129], an exact solution approach is proposed.
The algorithm is based on an equivalent network model where a clas-

5.1. Introduction 146

sical (single attribute) shortest path problem is repeatedly solved in
order to get the solution for the bi-attribute shortest path problem.
In [130], the author equivalently formulates the problem as a bi-
attribute rational path problem and develops some path preference
structures and elimination techniques to discard, from further consid-
eration, those bi-attribute paths that cannot be a candidate for the
optimal path.

The problem addressed here is the linear fractional elementary
shortest path problem with time windows (LFESPPT W , for short).
This is an optimal path problem, defined through a bi-criteria net-
work, with a fractional objective function and involving time window
restrictions at the nodes. It is assumed that either arrivals and de-
partures from each node are allowed only in time instants belonging
to the corresponding time window and this constraint should not be
violated under any circumstance. Indeed, the time window constraints
are of the hard type.

Originally introduced by Roan and Lee [122], it consists of finding
a path between a pair of nodes such that the cost per unit time is
minimized and the time window constraints are satisfied. It is also
required that no cycles can be a part of any solution.

The LFESPPT W is strongly related to the family of the ele-
mentary shortest path problem with resource constraints (ESPPRC).
Different solution approaches have been published in the scientific lit-
erature to address the ESPPRC. We cite, for example, the work
of Feillet et al. [64], in which a label correcting algorithm based on
a node selection strategy, has been proposed to solve the ESPPRC
in general graphs even if they contain negative cost cycles. In [64],
the authors introduce the definition of unreachable nodes by consid-
ering the situation in which the triangle inequality holds for all the
resources. They observe that sometimes it is possible to identify these
kinds of nodes that cannot be visited in any feasible extension of a
given state because of the resource limitation. Righini and Salani

147 Chapter 5

[120] proposed a method alternative to the dynamic programming ap-
proach to solve the ESPPRC. In particular, the authors consider a
statespace relaxation and a branch and bound scheme is defined to
close the gap between the upper and lower bound. Successively, the
same authors developed a bi-directional dynamic programming ap-
proach, based on different dominance and bounding rules, to handle
the ESPPRC ([119]). In all the aforementioned works, the strategy
of considering a further dummy node resource, originally proposed by
Beasley and Christofides ([16]), is adopted to avoid that the generated
paths contain cycles. This idea has been considered also in [96], where
a statespace relaxation of a dynamic programming algorithm for the
SPPRC with node resources, where node resources are included only
for some nodes, is proposed. The solution approaches presented in [96]
have been tested computationally in [22], where the non-elementary
version of the problem is solved iteratively until an elementary path
is found and used. An extension of the concept of unreachable nodes
presented in [64] is adapted to the case in which, for each considered
resource, the triangle inequality is not satisfied. Indeed, they defined a
node j as an unreachable node from a generic state, corresponding to
node i, by considering a lower bound on the consumption of resource
from node i to node j. Several alternative approaches to augmenting
the node resources are defined and evaluated experimentally.

In this paper, we present optimal approaches to address the
LFESPPT W , that follows the solution strategies proposed to solve
the ESPPRC in [64] and [119]. They are developed on the basis of
the different label selection and node selection strategies, defined in
such a way that the most promising node/label is selected at each
iteration ([19]). In order to develop efficient solution approaches, a
bi-directional search strategy that resembles the approach presented
in [119] and some innovative dominance rules tailored to the prob-
lem under study, are also exploited. It is worth observing that, with
reference to the classification of the procedures for the multi-criteria
shortest path problem given above, the proposed approaches can be

5.2. Mathematical formulation 148

classified as belonging to the first group (i.e. exact procedures).

Our work has been motivated by various reasons. First of all, the
current literature on the LFESPPT W indicates that scant attention
has been given to the development of efficient approaches to deal with
this problem. The only works that address the LFESPPT W are
concerned with label-correcting methods (optimal and heuristic) based
on the label selection strategy ([122]). These methods, in the choice
of the label to be examined, do not take into account its value but
instead they follow a breadth-first search of the network (i.e. FIFO
label selection strategy); in addition, no dominance criteria are used
to cut off unpromising labels ([64], [119]). On the other hand, to
the best of our knowledge, the idea to select at each iteration a node
instead of a label has not been considered. In addition, computational
experiments have been carried out only on acyclic networks ([122]).

The rest of the present paper is organized as follows. In Sec-
tion 5.2, we give the mathematical formulation of the LFESPPT W .
Section 5.3 presents the basic elements of the proposed solution ap-
proaches. The label selection methods developed to address the prob-
lem under investigation are presented in Section 5.4, whereas Section
5.5 is devoted to the description of the proposed node selection ap-
proaches. The effectiveness of the developed algorithms is tested on
a large set of test problems and the related computational results are
discussed in Section 5.6. Some concluding remarks are given in Section
5.7. The paper ends with a detailed account of the numerical results
reported in Appendix 1 and with graphical representations of the steps
executed by the proposed solution approaches, given in Appendix 2.

5.2 Mathematical formulation

The LFESPPT W is defined on a directed graph G = (N ,A), where
A is the set of m arcs and N is the set of n nodes, including an origin
node s and a destination node d.

149 Chapter 5

For each node i ∈ N , we denote by FS(i) = {j : (i, j) ∈ A} and
BS(i) = {j : (j, i) ∈ A} the forward star and backward star of the
node, respectively. Each arc (i, j) ∈ A has two parameters associated
with it: a non-negative duration dij, which is the time required to
travel from node i to node j, and a non-negative costij . Each node
i ∈ N has a non-negative duration di, a non-negative cost ci and a
time window[ai, bi] associated with it. It is assumed that the time
window constraints are of the hard type.

It is worth observing that it is not possible to wait at the start
node otherwise a path could be cheaper by starting later or it could be
the only feasible path. Thus, leaving from node s is allowed only at a
time instant equal to zero. In other words, we impose that as = bs = 0.
In what follows, for each arc (i, j) ∈ A, tij denotes the time needed to
traverse the arc dij plus the duration di of node i (i.e., tij = dij + di),
whereas cij represents the cost of traversing the arc costij plus the cost
ci associated with the node i (i.e., cij = costij + ci).

Given the presence of the time window constraints, each node
i ∈ N must be visited within its time window [ai, bi]. Consequently,
if node i is reached at the earliest possible time ai, the node j may be
visited before the end of its own time window and if node i is reached
at the latest possible time bi, then node j may be visited after the
start of its own time window. Thus, an arc (i, j) is included into the
set A only if it is feasible, that is, if the conditions ai + tij ≤ bj and
bi + tij ≥ aj are satisfied. Given two distinct nodes i and j, a path πij
from node i to node j is a sequence of nodes πij = {i = i1, . . . , i1 = j},
l ≥ 2 such that (ik, ik+1) ∈ A, for k = 1, . . . , l−1. A path is elementary
if it has no repeated occurrences of any node. A cycle C is a path
with no repeated nodes, except the initial and terminal nodes that
coincide, i.e., i1 ≡ il. In what follows, we assume that the nodes
visited along the path are all distinct, i.e., the path is elementary. A
path πij from node i to node j is evaluated by the objective function
f(πij) =

∑
{(u,v)∈πij} cij/

∑
{(u,v)∈πij} tij . Given the origin node s and

5.2. Mathematical formulation 150

the destination node d, the main aim of the LFESPPT W is to find
an elementary path from s to d, for which the cost per unit time is
minimized and the time window constraints, at each visited node, is
satisfied.

The LFESPPT W can be mathematically formulated as follows.

min

∑
(i,j)∈A cijxij∑
(i,j)∈A tijxij

(5.1)

s.t. ∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji =


1 if i = o

−1 if i = d

0 otherwise

(5.2)

∀i ∈ N
xij(Ti + tij − Tj) = 0, ∀(i, j) ∈ A(5.3)

ai ≤ Ti ≤ bi, ∀(i, j) ∈ A(5.4)

xij ∈ {0, 1}, ∀(i, j) ∈ A(5.5)

where Ti,∀i ∈ N , represents the time of a feasible path from the origin
node s to node i.

The mathematical model introduced above ensures that no wait-
ing is allowed at each node and the nodes are visited in their time
window. It is important to observe that if waiting at the nodes was
allowed, then it would be possible to leave each node i ∈ N at the
time bi. In this situation, one could arrive to node d at a certain
instant of time and wait up to bd. This means that all the feasible
solutions of the problem could be characterized by T = bd, that is, the
maximum time to arrive to node d. In this case, the problem could
be addressed as a classical shortest path problem with time windows,
and the related value of the fractional objective function would be the
ratio between the least cost and T . On the contrary, in the problem
under consideration, it is assumed that waiting at nodes is not allowed

151 Chapter 5

and all the paths from node s to node i, ∀i ∈ N , that arrive to i either
before ai or after bi are discarded. In other words, the departure time
to node i is equal to the arrival time plus the duration of node i.

Since finding an elementary shortest path with time windows is
a strongly NP -hard problem [[28],[59]], an obvious complexity result
is reported in what follows.

Proposition 5.2.1. LFESPPT W, in general cases, belongs to the
NP -hard class of problems.

5.3 The proposed solution approaches

In the dynamic programming approaches proposed to solve the LFE-
SPPTW, a set of labels is associated with each node, since many
feasible paths may exist starting from s to every other node.

The hth label associated with node i, i ∈ N takes the following
basic form, y

(h)
i = (S

(h)
i , C

(h)
i , T

(h)
i), and represents the main charac-

teristics of the h− th path π
(h)
si from s to i.

In particular, the vector S
(h)
i ∈ Zn is used to store the number

of times in which each node is visited along the path π
(h)
si ([16], [64],

[119], [120]). In our problem, feasible paths are not allowed to contain
cycles, thus each element of S has to be less than or equal to one.

C
(h)
i represents the total cost of the path πhsi (i.e., C

(h)
i =

∑
(i,j)∈π(h)

si
cij),

whereas T
(h)
i denotes the total time associated with π

(h)
si , that is,

T
(h)
i =

∑
(i,j)∈π(h)

si
tij. It is worth observing that, depending on the

specific version of the considered solution approach, additional infor-
mation has to be stored in the labels associated with each node. This
aspect will be better discussed in the following sections.

On the basis of the definitions introduced above, it is evident
that the h − th path π

(h)
si from s to i associated with label y

(h)
i =

5.3. The proposed solution approaches 152

(S
(h)
i , C

(h)
i , T

(h)
i) is feasible only if the following conditions are satisfied:

{
S

(h)
i [j] = 0, 1, j = 1, . . . , n

ai ≤ Ti ≤ bi.
(5.6)

In addition, when a feasible path π
(h)
si is extended along the arc

(i, j) ∈ A to the path π
(k)
sj , the newly created label y

(k)
j = (s

(k)
j , C

(k)
j , T

(k)
j)

is determined on the basis of the following updating rules:

S
(k)
j [j] =

{
S

(h)
i + 1 if nl = j

S
(h)
i if nl 6= j

, nl = 1, . . . , n;

C
(k)
j = C

(h)
i + cij; T

(k)
j = T

(h)
i + tij.

The labels associated with each node are determined iteratively
during the execution of the algorithm and are stored in the set D(i) =

{y(1)
i , . . . , y

(l)
i }, ∀i ∈ N .

The solution approaches developed to address the LFESPPT W
can be viewed as an extension of the node selection and label selection
procedures developed in [76] for solving the multi-criteria shortest path
problem. In the first case, at each iteration, a node i is selected and
all the labels associated with it are used to update the set of labels of
the nodes adjacent to i. In a label selection method, at each iteration,
a label is selected and a new label is determined for each adjacent
node j. Different versions of these two procedures can be defined by
considering different node and label selection strategies. In addition,
depending on the way the labels are extended, we can define three
different variants of the label selection and node selection procedures:
the forward variant, where the labels are extended forward from the
source node; the backward variant, in which the labels are extended

153 Chapter 5

backward from the destination node; and the bi-directional variant,
where the labels are iteratively extended forward from node s and
backward from node d.

5.3.1 Label fathoming rules

The effectiveness of the proposed labelling approaches strongly de-
pends on the possibility of fathoming labels/paths that cannot lead to
an optimal solution. In order to achieve this goal, three different rules
have been developed: a lower bound rule and two dominance rules.

The first one resembles the idea proposed in [22]. Indeed, in order
to reduce the number of generated labels, a lower bound is used to
fathom partial paths that do not allow the determination of a complete
feasible path from the origin node s to the destination node d. In
particular, for each pair of nodes i, j ∈ N , the lower bound LBij

represents the value of the minimum time path from i to j. LBij is
also used to identify the unreachable nodes, as described in [22] and
to update coherently the vector S.

Two dominance rules have also been introduced to cut off un-
promising labels. The first dominance test deals with the well-known
concepts of Pareto optimality when tailored for the LFESPPTW and
can be stated as follows.

Definition 5.3.1. Let π
(1)
si and π

(2)
si be two different paths from node

s to node i with associated labels y
(1)
i = (S

(1)
i , C

(1)
i , T

(1)
i) and y

(2)
i =

(S
(2)
i , C

(2)
i , T

(2)
i). Then the former dominates the latter if T

(1)
i = T

(2)
i ,

C
(1)
i < C

(2)
i and S

(1)
i < S

(2)
i

The definition of the equivalence between labels is given in what
follows.

Definition 5.3.2. Let π
(1)
si and π

(2)
si be two different paths from node

s to node i with associated labels y
(1)
i = (S

(1)
i , C

(1)
i , T

(1)
i) and y

(2)
i =

5.3. The proposed solution approaches 154

(S
(2)
i , C

(2)
i , T

(2)
i). Then π

(1)
si is equivalent to π

(2)
si if T

(1)
i = T

(2)
i and

C
(1)
i = C

(2)
i .

In the proposed approaches, no equivalent labels are generated.

The paper of Ioachin et al. [88] has served as a departure point for
designing the second dominance rule proposed here, which exploits the
specific structure of the objective function and is valid only for acyclic
networks. The main idea is reported in the following.

Assume that two labels y
(h)
i and y

(k)
i are associated with a generic

node i and they verify the following relation f(π
(h)
si) ≥ f(π

(k)
si). The

question is: ‘Is it possible to find a condition that guarantees that,
by extending these labels to a node j ∈ FS(i), we obtain two paths

π
(h)
sj and π

(k)
sj for which the relation f(π

(h)
sj) ≥ f(π

(k)
sj) is also satisfied’?

In the affirmative case, by applying iteratively the reasoning outlined
above, it is possible to conclude that the aforementioned relations must
hold also for the successors of node j and so on. Consequently, if, when
starting from node i it is possible to reach the destination node d by
a feasible path, then we obtain the paths from s to d by extending
iteratively the two paths y

(h)
i and y

(k)
i that satisfy the relation f(π

(h)
sd) ≥

f(π
(k)
sd) and, thus, the path y

(h)
i can be discarded because an equivalent

or an alternative path from s to d with a smaller objective function
value can be determined starting from the partial path y

(k)
i .

The conditions that guarantee the satisfaction of the relations
introduced above are formally stated in the following theorem.

Theorem 5.3.3. Let y
(1)
i , y

(2)
i ∈ D(i) be two different labels associated

with node i such that

(5.7)
C

(1)
i

T
(1)
i

≤ C
(2)
i

T
(2)
i

Assume the extension of these labels to node j ∈ FS(i). It is possible

155 Chapter 5

to show that

(5.8)
C

(1)
i + cij

T
(1)
i + tij

≤ C
(2)
i + cij

T
(2)
i + tij

only if C
(1)
i − C

(2)
i ≤ 0 and T

(2)
i − T

(1)
i ≤ 0.

Proof. Condition (5.8) can be rewritten as follows:

(C
(1)
i + cij)(T

(2)
i + tij) ≤ (C

(2)
i + cij)(T

(1)
i + tij);

C
(1)
i T

(2)
i + tijC

(1)
i + cijT

(2)
i + cijtij ≤

≤ C
(2)
i T

(1)
i + tijC

(2)
i + cijT

(1)
i + cijtij;

C
(1)
i T

(2)
i − C

(2)
i T

(1)
i + tij(C

(1)
i − C

(2)
i) + cij(T

(2)
i − T

(1)
i) ≤ 0.(5.9)

Condition (5.7) implies that C
(1)
i T

(2)
i −C

(2)
i T

(1)
i ≤ 0. Being tij ≥ 0 and

cij ≥ 0, (5.9) is valid only if the following is satisfied:

C
(1)
i − C

(2)
i ≤ 0; T

(2)
i − T

(1)
i ≤ 0.

Assume the extension of the labels y
(1)
i , y

(2)
i ∈ D(i) along a generic

feasible path πid from node i to the destination node d. Condition
(5.9) assumes the following form:

(5.10)

C
(1)
i T

(2)
i −C

(2)
i T

(1)
i +

∑
(i,j)∈πid

tij(C
(1)
i − C

(2)
i)+

∑
(i,j)∈πid

cij(T
(2)
i − T

(1)
i) ≤ 0.

Similarly to the previous case, since
∑

(i,j)∈πid tij ≥ 0 and
∑

(i,j)∈πid cij ≥
0, the condition (5.10) is valid only if C

(1)
i −C

(2)
i ≤ 0 and T

(2)
i −T

(1)
i ≤

0.

5.3. The proposed solution approaches 156

In Theorem 5.3.3, a generic feasible path πid starting from node i
and ending at node d is assumed to exist. This means that two labels
can be compared only if a feasible sequence of arcs, that completes the
corresponding partial paths, exists for both the labels y

(1)
i , y

(2)
i ∈ D(i).

For each node i ∈ N it is possible to define a new time window [a
′

i, b
′

i]
in which it is possible to leave, and we are sure that at least one
feasible extension up to the destination node d exists for both labels.

It is important to point out that a procedure to reduce the width
of the time windows has also been proposed in [51]. The authors
compute a new time window for each node with a smaller feasible range
than the original one; this leads to an improvement in the performance
of the algorithm without compromising the optimality of the solution
determined. The procedure removes, for each node, the time instants
for which no feasible paths to the destination node exist.

The goal of the pre-processing strategy proposed here is different.
Indeed, for each node i ∈ N , the new defined range [a

′

i, b
′

i] is deter-
mined in such a way that all the labels belonging to it can be used
to determine complete feasible paths reaching the destination node by
considering all the possible arc sequences that begin at node i. In ad-
dition, nothing can be said for the labels that are not included in this
interval, and thus these labels cannot be considered when applying
the second dominance rule.

To compute [a
′

i, b
′

i], a backward pre-processing procedure has been
devised. In particular, starting from node d, the new time windows are
defined by letting: a

′

d = ad; b
′

d = bd; a
′

i = 0, b
′

i = +∞, ∀i ∈ N − {d};
a
′

i = max{ai; a
′

i; maxj:(i,j)∈A a
′

j−tij} and a
′

i = min{bi; b
′

i; minj:(i,j)∈A b
′

j−
tij}.

This procedure does not ensure that b
′

i ≥ a
′

i. If b
′

i < a
′

i we impose
that b

′

i = a
′

i = 0. In the case in which b
′

i ≥ bi and a
′

i ≤ ai we assume
that [a

′

i; b
′

i] ≡ [ai; bi].

The pre-processing strategy outlined above is valid only for acyclic

157 Chapter 5

networks. Indeed, the recursive nature of the procedure itself prevents
us from applying it to cyclic networks. Indeed, the interval [a

′

i; b
′

i]
cannot be correctly defined, since the presence of a cycle implies that
the values of a

′

i and b
′

i tend to zero. In addition, it can be applied only
in the forward version of the proposed labelling approaches, in which
the labels are extended forward from the source node.

When the labels are extended backward from the destination
node, the new time windows are determined by applying a forward
pre-processing procedure, which requires the execution of the follow-
ing operations: a

′

s = as; b
′

s = bs; a
′

j = 0, b
′

j = +∞, ∀j ∈ N − {o};
a
′

j = max{a′j; maxi:(i,j)∈A a
′

i + tij} and b
′

j = min{b′j; mini:(i,j)∈A b
′

i + tij}.
The theoretical results stated in Theorem 5.3.3 suggest a new

dominance criterion that is valid only for acyclic networks. For this
reason, the dummy node resources are not considered, and thus only
the time and the cost values are used to compare two different paths
ending at the same node.

Definition 5.3.4. Let π
(1)
si and π

(2)
si be two different paths from node s

to node i with associated labels y
(1)
i = (C

(1)
i , T

(1)
i) and y

(2)
i = (C

(2)
i , T

(2)
i),

where T
(1)
i) and T

(2)
i) ∈ [a

′

i; b
′

i]. Then π
(1)
si (or (C

(1)
i , T

(1)
i)) dominates

π
(2)
si (or (C

(2)
i , T

(2)
i)) if and only if f(π

(1)
si) ≤ f(π

(2)
si), C

(1)
i − C

(2)
i ≤ 0,

T
(2)
i − T

(1)
i ≤ 0.

It is evident from Definition 5.3.4, that the second dominance cri-
terion can compare also two equivalent labels. In this case, the latter
is discarded. Of course, this does not influence the correctness of the
related approach and is coherent with the aim of not generating equiv-
alent paths. In addition, this second rule contains the first dominance
criterion as a special case, stated in Definition 5.3.1.

5.4. Label selection methods 158

5.4 Label selection methods

In a label selection approach, at each iteration a label is selected and
processed. The main step is represented by the scanning of a label,
with the aim to create new labels. In particular, scanning the label
y

(k)
i associated with node i involves the examination of all the adjacent

nodes j of i (i.e. either j ∈ FS(i) or j ∈ BS(i)) and the determina-
tion of a new label ȳj. The new label is then compared to all the
existing labels of node j, that is, the labels belonging to D(j). If ȳj
is not dominated, then it is added to D(j) and all the labels in D(j)
dominated by ȳj are discarded.

In the following sections, we provide a detailed description of
the forward version (referred to as Forward Label Selection Method
(FLSM), in which the labels are extended forward from the source
node of the backward version (referred to as Backward Label Selection
Method (BLSM), where the labels are extended backward from the
destination node, and of the bi-directional variant (referred to as the
Bi-Directional Label Selection Method (BDLSM), where the labels
are iteratively extended forward from node s and backward from node
d.

5.4.1 Forward label selection method

The FLSM maintains a candidate list L, storing all the labels with
the potential to determine a new label for at least one node. At each
iteration, a label y

(k)
i is selected and a new label is determined for

all successors of node i. The algorithm terminates when the list L is
found to be empty, that is, there are no more labels to be scanned. In
the proposed approach, the lower bound rule is applied. Consequently,
when a label y

(k)
i is selected, a new label y

(h)
j for the adjacent node

j is determined only if the conditions S
(k)
i [j] = 0, aj ≤ T

(k)
i + tij ≤

bj and T
(k)
i + tij + LBjd ≤ bd are satisfied. In addition, the lower

159 Chapter 5

bound is used to identify the unreachable nodes, that is, the nodes
that cannot be reached, starting from the newly created partial path
y

(h)
j . In particular, a node v ∈ N is unreachable from j if T

(k)
i +

tij + LBjv > bv. In order to keep trace of these nodes, the vector S

is updated coherently. In particular, we set S
(h)
j [v] = 1,∀v ∈ {N :

T
(k)
i + tij +LBjv > bv}. The main operations executed by the FLSM

can be formally stated as described in Algorithm 11.

Algorithm 11 FLSM Scheme
Step 0 (Initialization phase)

Set: D(s) = {y(1)s }, with S
(1)
s [s] = 1, S

(1)
s [h] = 0 ∀h ∈ N − {s}, T (1)

s = C
(1)
s = 0;L = {y(1)s }.

Step 1 (Label selection)
if L = ∅ then

STOP.
else

Select a label y
(m)
i = (S

(m)
i , C

(m)
i , T

(m)
i) of L and delate it from L.

end if

Step 2 (Label scan)
for all j ∈ FS(i) do

if S
(m)
i [j] = 0 AND aj ≤ T

(m)
i + tij ≤ bj AND T

(m)
i + tij + LBjd ≤ bd then

Set: T̄j = T
(m)
i + tij ; C̄j = C

(m)
i + cij ;

S̄j [w] = S
(m)
i [w], ∀w ∈ N − {{j} ∪ {l : T̄j + LBjl > bl}}.

S̄j [v] = 1, ∀v ∈ N , v 6= w.
if (S̄j , C̄j , T̄j) is dominated by some label belonging to D(j) then

Go to Step 1.
else

Set: y
(|D(j)|+1)
j = (S̄j , C̄j , T̄j);D(j) = D(j) ∪ {y(|D(j)|+1)

j };L = L ∪ {y(|D(j)|+1)
j }.

Remove from D(j) and L all the label that are dominated by y
(|D(j)|+1)
j .

end if
end if

end for
Go to Step 1.

5.4.2 Backward label selection method

In the BLSM, the research process starts from the destination node
d and paths ending at node s are determined. Also in this version
of the algorithm, a list L of candidate labels is considered. At each
iteration, a label y

(h)
j is selected and a new label y

(k)
i is obtained for

all predecessors i of node j. The algorithm terminates when the list
L is found to be empty.

5.4. Label selection methods 160

As mentioned in Section 5.2, it is possible to leave from node s
only at time zero. Thus, a backward path is feasible only if it ends up
in s at time zero. On the other hand, node d can be reached at each
instant time belonging to [ad, bd]. Consequently, an initial label, for
each time unit at the ending time window [ad, bd] is associated with
the destination node d and the value of the corresponding time instant
is added to the related label.

Indeed, in the initialization phase, a set of bd − ad + 1 labels are
associated with node d and the generic k − th label y

(k)
d takes the

following form y
(k)
d = (S

(k)
d , C

(k)
d , T

(k)
d , t

(k)
d), with S

(k)
d [d] = 1, S

(k)
d [h] =

0,∀h ∈ N−{d}, T (k)
d = t

(k)
d , C

(k)
d = 0, t

(k)
d = k−1, k = 1, . . . , bd−ad+1.

Each label y
(k)
d is a candidate to represent a path that starts at node

s at time zero and arrives at node d attime bd − t(k)
d .

It is important to point out that it is possible to reduce the num-
ber of initial labels associated with node d, since node d should be
reached at least at the time t = max{ad; mini∈BS(d){ai + tid}} and at
most at the time t = min{bd; maxi∈BS(d){bi + tid}}.

The main step of the BLSM is represented by the extension of
the label y

(h)
j . The newly created label y

(k)
i = (S

(k)
i , C

(k)
i , T

(k)
i , t

(k)
i), i ∈

BS(j), is determined by setting: S
(k)
i [t] = S

(h)
j [t], t ∈ N−{j}, S(k)

i [j] =

1;T
(k)
i = T

(h)
j + tij;C

(k)
i = C

(h)
j + cij; t

(k)
i = t

(h)
j .

When a complete path π
(w)
ds , with relative label y

(w)
s = (S

(w)
s , C

(w)
s , T

(w)
s , t

(w)
s),

at node s is found, the time needed to reach node d starting from node
s at time 0 is equal to T

(w)
s − t(w)

s .

It is important to point out that, for each arc (i, j) ∈ A, the label

y
(h)
j is extended to node i only if the following conditions are satisfied

[119].

{
T − bi ≤ Tj + tij ≤ T − ai
Sj[i] = 0

(5.11)

161 Chapter 5

where the parameter T represents the maximum time in which
a feasible path can arrive to node d and the node is served. For this
reason, we have T = bd [119]. The value Tj + tij represents the feasible
arrival time to node i starting from node d, across node j.

It is possible to show that conditions (5.11) and the feasibility
conditions (5.6), introduced for the FLSM, are equivalent. Indeed,
the following theoretical results hold.

Lemma 5.4.1. The feasibility conditions (5.11) defined for the BLSM
are equivalent to the feasibility conditions (5.6) introduced for the
FLSM.

Proof. Let us consider the two inequalities:

Tj + tij ≤ T − ai,(5.12)

T − bi ≤ Tj + tij.(5.13)

Developing the inequality given in (5.12) we have

Tj + tij − T ≤ ai;

−T + (Tj + tij) ≤ −ai;
T − (Tj + tij) ≥ ai.

On the other hand, developing the inequality given in (5.13) we have
the following:

− bi ≤ −T + Tj + tij;

bi ≥ T − (Tj + tij);

where T − (Tj + tij) represents the arrival time to node i starting from
node s at time zero.

5.4. Label selection methods 162

Let Ti denote the arrival time to node i starting from node s at
time zero, we have that

ai ≤ Ti ≤ bi ≡ T − bi ≤ Tj + tij ≤ T − ai.

This completes the proof of the Lemma.

The results of Lemma 5.4.1 allow us to use the conditions (5.11)
as a feasibility check for the labels generated by the backward proce-
dure. The lower bound rule introduced for the FLSM has also been
extended to the backward counterpart. The main operations executed
by the BLSM are reported in Algorithm 12.

Algorithm 12 BLSM Scheme
Step 0 (Initialization phase)

Set: D(d) = {y(1)d , y
(2)
d , . . . , y

(bd−ad+1)
d }, with S

(k)
d [d] = 1, S

(k)
d [h] = 0 ∀h ∈ N − {d}, T (k)

d = t
(k)
d , C

(d)
d =

0, t
(k)
d = k − 1, k = 1, . . . , bd − ad + 1;L = {y(1)d , y

(2)
d , . . . , y

(bd−ad+1)
d }.

Step 1 (Label selection)
if L = ∅ then

STOP.
else

Select a label y
(m)
j = (S

(m)
j , C

(m)
j , T

(m)
j , t

(m)
j) of L and delate it from L.

end if

Step 2 (Label scan)
for all i ∈ BS(j) do

if S
(m)
j [i] = 0 AND T − bi ≤ T

(m)
j + tij ≤ T − ai AND T

(m)
j + tij + LBsi ≤ bd then

Set: T̄i = T
(m)
j + tij ; C̄i = C

(m)
j + cij ; t̄i = t

(m)
j ;

S̄i[w] = S
(m)
j [w],∀w ∈ N − {{i} ∪ {l : T̄i + LBli > T − al}}.

S̄i[v] = 1, ∀v ∈ N , v 6= w.
if (S̄i, C̄i, T̄i, t̄i) is dominated by some label belonging to D(i) then

Go to Step 1.
else

Set: y
(|D(i)|+1)
i = (S̄i, C̄i, T̄i, t̄i);D(i) = D(i) ∪ {y(|D(i)|+1)

i };L = L ∪ {y(|D(i)|+1)
i }.

Remove from D(i) and L all the label that are dominated by y
(|D(i)|+1)
i .

end if
end if

end for
Go to Step 1.

5.4.3 Bi-directional label selection method

A bi-directional approach, in which the labels are extended both for-
ward from the source node to its successors and backward from the des-
tination node to its predecessors, can outperform the FLSM outlined

163 Chapter 5

above [119]. For this reason, we developed a bounded bi-directional
approach for the LFESPPT W , which resembles the approach pro-
posed by Righini and Salani for solving the ESPPRC [119]. As the
procedure presented in [119], the proposed method can be viewed as
characterized by the execution of three main steps. In the first step,
the labels are extended forward from the source node without creating
labels with the time component greater than half of the maximum al-
lowed time. In the second step, similarly to the operations executed in
the first step, the labels are extended backward from the destination
node d. In the third and last phase, pairs of forward and backward
labels, associated with the same node, are joined together to obtain a
path from node s to node d. Infeasible paths are discarded.

The bi-directional version uses two lists of candidate labels, that
is Lfw and Lbw, in which the most promising labels determined during
the forward and the backward phase, respectively, are stored. In ad-
dition, for each node i ∈ N , the labels set D(i) is viewed as the union
of two sets, that is D(i) = Dfw(i) ∪ Dbw(i), where Dfw(i) contains
the labels generated during the forward phase (i.e. forward labels)
and Dbw(i) those determined during the backward step (i.e. backward
labels). The algorithm terminates when the set Lfw ∪Lbw is found to
be empty. At this point, the optimal path is obtained by executing
the JOIN procedure, whose aim is to obtain a complete path from
node s to node d by merging two partial paths. The related path must
be feasible so as to satisfy the time-window constraints and it has to
be an elementary path.

In particular, let π
(h)
si be the partial feasible path correspond-

ing to the label y
(h)
i ∈ Dfw(i), h = 1, . . . , |Dfw(i)| and let π

(k)
id be

the partial feasible path associated with the label y
(k)
i ∈ Dbw(i), k =

1, . . . , |Dbw(i)|. For each node i ∈ N , it is possible to generate com-

plete feasible paths π
(w)
sd = π

(h)
si ∪π

(k)
id , h = 1, . . . , |Dfw(i)|; k = 1, . . . , |Dbw(i)|,

only if these complete paths are feasible (i.e. satisfy time window con-
straints and do not contain repeated nodes).

5.4. Label selection methods 164

For each node i, the value T
(k)
i of the k − th label y

(k)
i ∈ Dbw(i),

determined during the backward phase, represents the arrival time
to node i starting from node d. Consequently, on the basis of the
conditions (5.11), these labels represent the partial paths, starting

from d at time T − t(k)
i = bd − t(k)

i .

The JOIN between two partial paths π
(h)
si and π

(k)
id associated with

the labels y
(h)
i ∈ Dfw(i) and y

(k)
i ∈ Dbw(i), respectively, generates a

feasible path π
(w)
sd = π

(h)
si ∪ π

(k)
id only if the following conditions are

satisfied:

T
(h)
i = T − T (k)

i ;(5.14)

S
(h)
i [t] + S

(k)
i [t] ≤ 1 ∀t ∈ N , t 6∈ {unrN (h)

i ∪ unrN
(k)
i };(5.15)

where unrN
(h)
i and unrN

(k)
i represent the sets of unreachable nodes

associated with the label y
(h)
i and y

(k)
i , respectively.

It is worth observing that in conditions (5.15), the unreachable
nodes are not taken into account. This guarantees that no feasible
solution is lost. It is possible to show that the JOIN procedure de-
termines feasible paths. Indeed, the following result holds.

Theorem 5.4.2. The JOIN procedure generates feasible paths.

Proof. First of all, it is worth observing that, given the labels y
(h)
i ∈

Dfw(i) and y
(k)
i ∈ Dbw(i), corresponding to the paths π

(h)
si and π

(k)
id , re-

spectively, the quantity T
(h)
i + T

(k)
i − t

(k)
i represents the time required

to reach node d, starting from node s at time zero, along the path
obtained by merging the paths π

(h)
si and π

(k)
id . Consequently, in order

to ensure that the corresponding path is feasible (i.e. the time win-

dow constraints are fulfilled), the condition T
(h)
i + T

(k)
i − t

(k)
i ≤ T ,

where T represents the latest arrival time to node d, must be satis-
fied. On the basis of (5.14), we can rewrite the previous condition as

165 Chapter 5

T − t(k)
i ≤ T . Since t

(k)
i ≥ 0, T − t(k)

i ≤ T is always satisfied. This jus-
tifies the equality (5.14). Besides the satisfaction of the time window
constraints, the obtained path must be elementary. In otherwords, the
conditions S

(h)
i [t] + S

(k)
i [t] ≤ 1 ∀t ∈ N , t 6∈ {unrN (h)

i ∪ unrN
(k)
i } have

to be met. Then the relations (5.15). This completes the proof of the
Theorem.

To reduce the number of labels generated and to stop the exten-
sion of forward and backward paths while ensuring that the optimal
solution will be found, bounding is used. The main idea is that we can
stop extending a path in one direction when we have the guarantee
that the remaining part of the path will be generated in the other
direction and therefore no optimal solution will be lost.

It is worth observing that, without bounding, the bi-directional
algorithm determines twice as many labels compared with either the
forward or the backward versions. The bounding technique used for
fathoming unpromising labels considers the time as a critical resource
[119]. In particular, a label is extended only if the corresponding time
is less than or equal to Tmax/2, where Tmax represents the maximum
arrival time to node d (i.e., Tmax = bd). The rationale of this defi-
nition can be understood by taking into account that the condition
T

(h)
i + T

(k)
i − t

(k)
i ≤ T with y

(h)
i ∈ Dfw(i) and y

(k)
i ∈ Dbw(i), where T

denotes the maximum arrival time at node d (i.e., T ≡ Tmax), should

be satisfied. The value T
(w)
i = T

(h)
i + T

(k)
i − t

(k)
i represents the time

required to reach node d starting from node s at time 0.

It is evident that the time window constraint associated with
node d is satisfied only if T

(w)
i ≤ Tmax. Consequently, the conditions

T
(h)
i ≤ Tmax/2 and T

(k)
i −t

(k)
i ≤ Tmax/2 should be satisfied. In addition,

in order to reduce the number of generated labels, by guaranteeing that
the optimal path is found, it is possible to reduce the set of nodes to
be considered when a label is selected.

In particular, in the forward phase [or backward phase], when a

5.4. Label selection methods 166

label y
(m)
i [or y

(m)
j] is chosen and processed, a subset F̃S(i) [or B̃S(j)]

of the adjacent nodes, belonging to the forward [or backward] star is
considered. Indeed, for each arc (i, j) ∈ A, the following conditions
must be satisfied:

∀y(m)
i ∈ Dfw(i) ∃ y(h)

j ← y
(m)
i ⊕ (i, j) ∈ Dfw(j)

↔ 6 ∃ y(k)
i ∈ D

bw(j) : y
(k)
i ← y

(n)
j 	 (i, j), ∀y(n)

j ∈ D
bw(j).(5.16)

where ⊕ represents the operator that extends forward the label y
(m)
i

along the arc (i, j) and 	 is the operator that extends backward the

label y
(n)
j along the arc (i, j).

The subsets F̃S(i) and B̃S(i) are defined as follows:

F̃S(i) = {j : (i, j) ∈ A, 6 ∃yi ∈ Dbw(i) : yi ← yj 	 (i, j)}
B̃S(i) = {k : (k, i) ∈ A, 6 ∃yi ∈ Dfw(i) : yi ← yk ⊕ (i, j)}

Indeed, the set F̃S(i) [or B̃S(i)] does not contain the node j [or the

node k] if the set Dbw(i) [or Dfw(i)] contains at least a label y
(m)
i ←

y
(h)
j 	 (i, j) [or y

(m)
i ← y

(h)
k ⊕ (k, i)].

The following theoretical results hold.

Theorem 5.4.3. Replacing, for each node i ∈ N , the set FS(i) [or
BS(i)] with the set F̃S(i) [or B̃S(i)] does not compromise the deter-
mination of the optimal solution.

(1) The paths generated by the JOIN procedure, based on conditions
(5.16) are all different.

(2) Using the conditions (5.16), all feasible paths from s to d are de-
termined.

Proof. (1) Suppose that the JOIN procedure is applied to a generic

node i. For each y
(m)
i ∈ Dfw(i) and y

(l)
i ∈ Dbw(i), if conditions (5.14)-

167 Chapter 5

(5.15) are verified, the JOIN procedure generates a complete path

π
(w)
sd = π

(m)
si ∪ π

(l)
id with the associated label y

(w)
d = (S

(w)
d , C

(w)
d , T

(w)
d) =

(S
(m)
i ∪S

(l)
i , C

(m)
i +C

(l)
i , T

(m)
i +T

(l)
i − t

(l)
i). If we assume the satisfaction

of the conditions y
(m)
i ← y

(r)
k ⊕ (k, i) and y

(l)
i ← y

(n)
j 	 (i, j), then we

have that y
(m)
i = (S

(m)
i , C

(r)
k + cki, T

(r)
k + tki) and y

(l)
i = (S

(l)
i , C

(n)
j +

cij, T
(n)
j + tij, t

(l)
i), t

(l)
i ≡ t

(n)
j .

The following two situations should be considered:

Case 1.1 Conditions (5.16) are applied.

Case 1.2 Conditions (5.16) are not taken into account.

Case 1.1 In this case, nodes j and k do not belong to the set
F̃S(i) and B̃S(i), respectively.

First let us consider the node k. In this case, no extensions back-
ward from node i to node k are admitted. This means that no labels
associated with node k are generated by the labels of node i. When
we apply the JOIN procedure at node k, in the feasible solutions,
node i does not appear as a successor of node k, but, instead, the fea-
sible paths with all nodes h ∈ F̃S(k) as successors of k are generated.
When we apply the JOIN procedure to the node i, the feasible paths
with node k as a successor (in the backward direction) of i are gen-
erated. This means that, if conditions (5.16) are applied, the feasible
paths πsd = {s = i1, . . . , in−1 = k, in = h, . . . , il = d} with l ≤ 2,
k ∈ N − sd and n = 2, ..., l − 1, if they exist, are generated by the
JOIN withh ∈ FS(k), and these paths are all distinct. The same
considerations can be made for node j.

Case 1.2 In this second case, for node k, the label y
(s)
k ← y

(l)
i 	

(k, i) is determined and takes the following form, y
(s)
k = (S

(s)
k , C

(l)
i +

cki, T
(l)
i + tki, t

(s)
k). The JOIN procedure is then applied to node k

and, since y
(r)
k ∈ Dfw(k) and y

(s)
k ∈ Dbw(k), if conditions (5.14)-(5.15)

5.4. Label selection methods 168

are verified, the union between the two labels is allowed and a path
π

(v)
sq = π

(r)
sk ∪ π

(s)
kq , with the associated label y

(v)
q = (S

(v)
q , C

(v)
q , T

(v)
q) =

(S
(r)
k ∪ S

(s)
k , C

(r)
k + C

(s)
k , T

(r)
k + T

(s)
k − t

(s)
k), is determined, where:

S
(v)
d [nl] =

{
0 if(S

(r)
k [nl] = 0 ∧ S(s)

k [nl] = 0)

1 if(S
(r)
k [nl] = 1 ∨ S(s)

k [nl] = 1)
nl = . . . , n.

We know that C
(s)
k = C

(l)
i +cki and T

(s)
k = T (l)i+tki, thus y

(v)
q = (S

(r)
k ∪

S
(s)
k , C

(r)
k +C

(l)
i +cki, T

(r)
k +T

(l)
i +tki−t(l)i). In addition, C

(m)
i = C

(r)
k +cki

and T
(m)
i = T

(r)
k + tki. On the basis of the previous considerations, it is

evident that the label associated with the path π
(v)
sd takes the following

form y
(v)
d = (S

(r)
k ∪ S

(s)
k , C

(m)
i + C

(l)
i , T

(m)
i + T

(l)
i − t

(l)
i). We know that

S
(r)
k = S

(m)
i − {i} and S

(s)
k = S

(l)
i ∪ {k}; in addition, since i ∈ S

(l)
i

,we have that S
(m)
i − {i} ∪ S(l)

i ∪ {k} ≡ S
(m)
i ∪ S(l)

i . Consequently, the

condition π
(w)
sd ≡ π

(v)
sd is valid. In other words, the JOIN procedure,

which does not consider conditions (5.16), generates equal paths.

(2) Consider a generic arc (i, j) ∈ A. Let y
(h)
i ∈ Dfw(i), h =

1, . . . , |Dfw(i)| be the labels associated with node i determined during

the forward phase and let y
(k)
j ∈ Dbw(j), k = 1, . . . , |Dbw(j)| be the

labels associated with node j determined during the backward phase.
Assume that j ∈ F̃S(i) and i ∈ B̃S(j). At a generic iteration of

the algorithm, the label y
(h)
i is extracted from Lfw. Such a label is

extended to node j because j ∈ F̃S(i) and the label y
(l)
j ← y

(h)
i ⊕ (i, j)

is added to the set Dfw(j). All the labels y
(k)
j ∈ Dbw(j) are not

extended to node i, because the set B̃S(j) is adequately updated (i.e.,

i 6∈ B̃S(j)). For this reason, no label y
(n)
i ← y

(k)
j 	(i, j) will be present

in Dbw(i), thus node j will always belong to the set F̃S(i) because the
condition 6 ∃yi ∈ Dbw(i) : yi ← yj 	 (i, j) is verified at each iteration of
the algorithm. Consequently, all the labels yi generated on the course
of the algorithm are extended to j. This means that no potential

169 Chapter 5

feasible solution will be lost. This happens for all arcs (m,n) ∈ A.
Thus we can say that at the end of the algorithm, each node will be
associated with all the labels that share the node. Thus, when the
JOIN procedure is executed, all feasible paths are generated. This
completes the proof.

The general scheme of the BDLSM, that uses the lower bound
rule is outlined in Algorithm 13.

5.4.4 Label selection strategies

Several variants of the label selection methods described in the previ-
ous sections have been devised, by considering different label selection
policies. It is important to point out that the order in which the labels
are selected does not affect the correctness of the proposed methods,
but the strategy used to select the label to be processed can influ-
ence their efficiency. We have extended the label selection strategies
proposed in [76] and [28], to the problem under consideration.

SLLFC

Let ytop = (Stop, Ctop, Ttop) be the top label of L

Let y
(ξ)
j =

(
S

(ξ)
j , C

(ξ)
j , T

(ξ)
j

)
be a label to be added to L

If C
(ξ)
j ≤ Ctop Then

Insert y
(ξ)
j at the top of L

Else

insert y
(ξ)
j at the bottom of L

End If

The first label selection policy considered is a modified version of the
small lexicographic label first (SLLF, for short) method of [76], in

5.4. Label selection methods 170

Algorithm 13 BDLSM Scheme
Step 0 (Initialization phase)
Set:
Dfw(s) = {y(1)s }, with S

(1)
s [s] = 1, S

(1)
s [h] = 0 ∀h ∈ N − {s}, T (1)

s = C
(1)
s = 0;Lfw = {y(1)s }.

Dbw(d) = {y(1)d , y
(2)
d , . . . , y

(bd−ad+1)
d }, with S

(k)
d [d] = 1, S

(k)
d [h] = 0 ∀h ∈ N − {d}, T (k)

d = t
(k)
d , C

(d)
d = 0, t

(k)
d =

k − 1, k = 1, . . . , bd − ad + 1;Lbw = {y(1)d , y
(2)
d , . . . , y

(bd−ad+1)
d }.

Step 1 (Termination check)
if Lfw ∪ Lbw = ∅ then

STOP. execute the JOIN procedure in order to determine the optimal path.
end if

Step 2 (Label scan)
Forward Phase
if Lfw 6= ∅ then

Select a label y
(m)
i = (S

(m)
i , C

(m)
i , T

(m)
i) of Lfw and delate it from Lfw.

for all j ∈ F̃ S(i) do

if S
(m)
i [j] = 0 AND aj ≤ T

(m)
i + tij ≤ bj AND T

(m)
i < Tmax

2
AND T

(m)
i + tij + LBjd ≤ bd then

Set: T̄j = T
(m)
i + tij ; C̄j = C

(m)
i + cij ;

S̄j [w] = S
(m)
i [w],∀w ∈ N − {{j} ∪ {l : T̄j + LBjl > bl}}.

S̄j [v] = 1, ∀v ∈ N , v 6= w.
if (S̄j , C̄j , T̄j) is dominated by some label belonging to Dfw(j) then

Go to Step 1.
else

Set: y
(|Dfw(j)|+1)
j = (S̄j , C̄j , T̄j);D

fw(j) = Dfw(j) ∪ {y(|D(j)|+1)
j };Lfw = Lfw ∪ {y(|D

fw(j)|+1)
j }.

Remove from Dfw(j) and Lfw all the label that are dominated by y
(|Dfw(j)|+1)
j .

end if
end if

end for
end if
Backrward Phase
if Lbw 6= ∅ then

Select a label y
(m)
j = (S

(m)
j , C

(m)
j , T

(m)
j , t

(m)
j) of Lbw and delate it from Lbw.

for all i ∈ B̃S(j) do

if S
(m)
j [i] = 0 AND T − bi ≤ T

(m)
j + tij ≤ T − ai AND T

(m)
j − t(m)

j < Tmax
2

AND T
(m)
j + tij +LBsi ≤ bd

then
Set: T̄i = T

(m)
j + tij ; C̄i = C

(m)
j + cij ; t̄i = t

(m)
j ;

S̄i[w] = S
(m)
j [w], ∀w ∈ N − {{i} ∪ {l : T̄i + LBli > T − al}}.

S̄i[v] = 1, ∀v ∈ N , v 6= w.
if (S̄i, C̄i, T̄i, t̄i) is dominated by some label belonging to Dbw(i) then

Go to Step 1.
else

Set: y
(|Dbw(i)|+1)
i = (S̄i, C̄i, T̄i, t̄i);D

bw(i) = Dbw(i)∪{y(|D
bw(i)|+1)

i };Lbw = Lbw ∪{y(|D
bw(i)|+1)

i }.

Remove from Dbw(i) and Lbw all the label that are dominated by y
(|Dbw(i)|+1)
i .

end if
end if

end for
end if
Go to Step 1.

which at each iteration the label removed is the top label of L, whereas
a new label entering in L is added on the basis of the following rule.

171 Chapter 5

In addition to the rule described above, that considers the value
of the cost C

(ξ)
j associated to the ξ path π

(ξ)
sj from node s to node j, two

other insertion strategies have been defined by considering the other
parameters associated to π

(ξ)
sj , that is the total time T

(ξ)
j and the cost

per unit time R
(ξ)
j =

C
(ξ)
j

T
(ξ)
j

.

The related rules are reported in the followings and they are re-
ferred to as SLLF T and SLLFR, respectively.

SLLFT

Let ytop = (Stop, Ctop, Ttop) be the top label
of L
Let y

(ξ)
j =

(
S

(ξ)
j , C

(ξ)
j , T

(ξ)
j

)
be a label to

be added to L
If T

(ξ)
j ≥ Ttop Then

Insert y
(ξ)
j at the top of L

Else
insert y

(ξ)
j at the bottom of L

End If

SLLFR

Let ytop = (Stop, Ctop, Ttop) be the top label
of L
Let y

(ξ)
j =

(
S

(ξ)
j , C

(ξ)
j , T

(ξ)
j

)
be a label to

be added to L
If R

(ξ)
j ≤ Rtop Then

Insert y
(ξ)
j at the top of L

Else
insert y

(ξ)
j at the bottom of L

End If

Label setting like approaches have also been considered. In this
case, at each iteration the label existing L is the one with the smallest
value of the cost, or the smallest value of the cost per unit time or
the greatest value of the time. In what follows, the related versions
are referred to as LSC , LSR and LST , respectively. In order to effi-
ciently extract the label to be processed at each iteration, the list L
is maintained partially ordered in a binary heap. Of course, in LSC

each label is placed in the heap on the basis of the value of the cost,
in LSR the insertion in the heap is done on the basis of the value of
the cost per unit time, whereas in LST the labels are ordered on the
basis of the value of the time.

We have also extended the threshold strategy proposed by Chen
and Powell ([28]), for the shortest path problem with time windows
constraints. In particular, in the original approach, the list of candi-

5.4. Label selection methods 172

date labels L is partitioned in three sub-lists Q1, Q2 and Q3. At any
time, the labels in Q1 are all lexicographically less than those in Q2

that are lexicographically less than the ones belonging to Q3 ([28]).

In our case, the Pareto efficiency cannot be applied because of
the particular structure of the objective function. Besides the domi-
nance rules are applied only for the labels of the same node and not
for the labels belonging to L. Consequently, in order to extend the
threshold strategy ([28]) to the problem addressed here, the definition
of a pseudo dominance criterion has been introduced.

Given a generic m-th label y
(m)
j =

(
S

(m)
j , C

(m)

j
, T

(m)
j

)
of node j,

a dummy label ÿ
(m)
j =

(
s

(m)
j , R

(m)
j

)
associated with y

(m)
j is defined

as follows ÿ
(m)
j =

(
s

(m)
j , f

(
y

(m)
j

))
, where s

(m)
j = −

∑n
k=1 S

(m)
j [k] and

R
(m)
j =

C
(m)
j

T
(m)
j

. The term s
(m)
j represents the number of nodes that

belong to the m-th partial path from node s to node j, while R
(m)
j is

the value of the objective function.

In this case, we want to maximize the function
∑n

k=1 S
(m)
j [k], since

we assume that a longer cheaper (in terms of cost per unit time) path
is more promising than a path with the same value of the objective
function, but with a fewer number of visited nodes.

In order to apply to the dummy labels, introduced above, the
well-know Pareto dominance criterion, the value

∑n
k=1 S

(m)
j [k] must

be minimized. For this reason, s
(m)
j is a negative quantity. Let ÿ1 and

ÿ2 be two labels we say that ÿ1 dominates ÿ2 if ÿ1
1 = ÿ2

1 and ÿ1
2 ≤ ÿ2

2

and at least one inequality is strict.

It is important to point out that the introduced criterion cannot
be used to fathom labels, but it has been introduced only to implement
the threshold strategy.

At each iteration of the threshold method, the label to be scanned

173 Chapter 5

is selected on the basis of the strategy reported in what follows.

Threshold Selection Strategy

if Q1 6= ∅ then

Extract the label y at the bottom of Q1.

STOP.

end if

if Q1 = ∅ then

if Q2 6= ∅ then

Transfer all the labels from Q2 to Q1 and set Q2 = ∅.
Extract the label y at the bottom of Q1.

STOP.

end if

if Q2 = ∅ then

if Q3 = ∅ then

the label selection method terminates.

if Q3 6= ∅ then

Update the threshold label ythres

Transfer in Q1 all the labels y belonging to Q3 such that the
corresponding labels ÿ are lexicographically less or equal to ythres and
delete them from Q3.

Extract the label y at the bottom of Q1.

STOP.

end if

end if

A generic label to be added to the candidate list is inserted to

5.5. Node selection methods 174

either Q2 or Q3 sub-lists on the basis of the following strategy.

Threshold Insertion Strategy

if ÿ is lexicographically less or equal to ythres then

Insert y at the bottom of Q2

else

Insert y at the bottom of Q3

end if

The behaviour of the threshold algorithm strongly depends on
the strategy used to update the threshold. In our approach, we have
followed the updating procedure described in [28].

5.5 Node selection methods

In a node selection approach, at each iteration a node is selected and
all the labels associated with the chosen node are evaluated. The main
step is represented by the node processing, with the aim to create new
labels. In particular, processing a node i involves the examination of
all the adjacent nodes j of i (i.e., either j ∈ FS (i) or j ∈ BS (i)) and
the determination of a new set of labels for each node j, by using all
the labels belonging to D (i).

It is worth observing that also in this case, it is possible to define
different node selection methods, depending on the way the labels
associated to the selected node are extended. In particular, a forward
(referred to as Forward Node Selection Method, FNSM for short), a
backward (referred to as Backward Node Selection Method, BNSM
for short), and a bi-directional (referred to as Bi-Directional Node
Selection Method, BDNSM for short) versions have been defined.

175 Chapter 5

5.5.1 Froward node selection method

The proposed FNSM maintains a set of candidate nodes L and, at
each iteration, a node i belonging to L is selected. The node i is then
processed, that is the set of label D(i) associated with i is used to
create a new set of labels for each successors of node i. The algorithm
terminates when the list L is found empty, that is to say there are no
more nodes left to be processed. The main operations executed by the
FNSM, considering the lower bound rule, are reported in Algorithm
14.

Algorithm 14 FNSM Scheme
Step 0 (Initialization phase)

Set: D(s) = {y(1)s }, with S
(1)
s [s] = 1, S

(1)
s [h] = 0 ∀h ∈ N − {s}, T (1)

s = C
(1)
s = 0;L = {s}.

Step 1 (Label selection)
if L = ∅ then

STOP.
else

Select a node i of L and delate it from L.
end if

Step 2 (Label scan)
for all j ∈ FS(i) do

for all labels y
(m)
i = (S

(m)
i , C

(m)
i , T

(m)
i) do

if S
(m)
i [j] = 0 AND aj ≤ T

(m)
i + tij ≤ bj AND T

(m)
i + tij + LBjd ≤ bd then

Set: T̄j = T
(m)
i + tij ; C̄j = C

(m)
i + cij ;

S̄j [w] = S
(m)
i [w], ∀w ∈ N − {{j} ∪ {l : T̄j + LBjl > bl}}.

S̄j [v] = 1, ∀v ∈ N , v 6= w.
if (S̄j , C̄j , T̄j) is dominated by some label belonging to D(j) then

Go to Step 1.
else

Set: y
(|D(j)|+1)
j = (S̄j , C̄j , T̄j);D(j) = D(j) ∪ {y(|D(j)|+1)

j }.
Remove from D(j) all the label that are dominated by y

(|D(j)|+1)
j .

Add j to L if it does not already belong to it
end if

end if
end for

end for
Go to Step 1.

It is evident that the sets D(j), j ∈ N are updated in such a way
that they are undominated sets at all times, that is they contain only
efficient labels.

5.5. Node selection methods 176

5.5.2 Backward node selection method

In the proposed BNSM, when a node i is selected from the candidate
list L, all the labels belonging to D(i) are used to determine a new
set of labels for each predecessors of node i. The algorithm terminates
when the list L is found empty. The scheme of the BNSM is reported
in Algorithm 15.

Algorithm 15 BNSM Scheme
Step 0 (Initialization phase)

Set: D(d) = {y(1)d , y
(2)
d , . . . , y

(bd−ad+1)
d }, with S

(k)
d [d] = 1, S

(k)
d [h] = 0 ∀h ∈ N − {d}, T (k)

d = t
(k)
d , C

(d)
d =

0, t
(k)
d = k − 1, k = 1, . . . , bd − ad + 1;L = {d}.

Step 1 (Label selection)
if L = ∅ then

STOP.
else

Select a node j of L and delate it from L.
end if

Step 2 (Label scan)
for all i ∈ BS(j) do

for all labels y
(m)
j = (S

(m)
j , C

(m)
j , T

(m)
j , t

(m)
j) ∈ D(j) do

if S
(m)
j [i] = 0 AND T − bi ≤ T

(m)
j + tij ≤ T − ai AND T

(m)
j + tij + LBsi ≤ bd then

Set: T̄i = T
(m)
j + tij ; C̄i = C

(m)
j + cij ; t̄i = t

(m)
j ;

S̄i[w] = S
(m)
j [w],∀w ∈ N − {{i} ∪ {l : T̄i + LBli > T − al}}.

S̄i[v] = 1, ∀v ∈ N , v 6= w.
if (S̄i, C̄i, T̄i, t̄i) is dominated by some label belonging to D(i) then

Go to Step 1.
else

Set: y
(|D(i)|+1)
i = (S̄i, C̄i, T̄i, t̄i);D(i) = D(i) ∪ {y(|D(i)|+1)

i }.
Remove from D(i) all the label that are dominated by y

(|D(i)|+1)
i .

Add i to L if it does not already belong to it.
end if

end if
end for

end for
Go to Step 1.

5.5.3 Bi-directional node selection method

Similarly to the label selection counterpart, the proposed BDNSM
to address the LFESPPT W can be viewed as characterized by the
execution of three main steps: the forward, the backward and the join
steps.

177 Chapter 5

The method maintains two list of candidate nodes, that is Lfw

and Lbw, in which the nodes, for which at least a new label has been
determined during either the forward or the backward phase, respec-
tively, are stored.

For each node i ∈ N the labels set is viewed as the union of two
sets, that is D (i) = Dfw(i)∪Dbw(i), where Dfw(i) contains the labels
generated during the forward phase (i.e., forward labels) and Dbw(i)
those determined during the backward step (i.e., backward labels).
The algorithm terminates when the set Lfw ∪ Lbw is found empty.
At this point, the optimal path is obtained by executing the JOIN
procedure, described in Section 5.4.3. It is worth observing that all
the bounding rules introduced in the case of the BDLSM apply to
the approach presented in this section. The steps of the proposed
BDNSM are reported in Algorithm 16.

The sets F̃S(i) and B̃S(j) have been defined in Section 5.4.3.

5.5.4 Node selection strategies

The efficiency of the node selection methods described in the previous
section depends on the strategy used to select, at each iteration, the
node belonging to L [or Lbw and Lfw], to be processed.

It is worth observing that very efficient versions can be obtained,
when acyclic networks are considered. Indeed, in this case it is possible
to scan the nodes by following their topological order. In what follows,
the related approach is denoted as Topological Order Strategy (T OS,
for short).

For general networks, three different node selection strategies
have been defined.

The first one has been obtained by extending the small average
label selection strategy (SALS, for short) developed for the multicri-
teria shortest path problem in [76] to the LFESPPT W .

5.5. Node selection methods 178

Algorithm 16 BDNSM Scheme
Step 0 (Initialization phase)
Set:
Dfw(s) = {y(1)s }, with S

(1)
s [s] = 1, S

(1)
s [h] = 0 ∀h ∈ N − {s}, T (1)

s = C
(1)
s = 0;Lfw = {s}.

Dbw(d) = {y(1)d , y
(2)
d , . . . , y

(bd−ad+1)
d }, with S

(k)
d [d] = 1, S

(k)
d [h] = 0 ∀h ∈ N − {d}, T (k)

d = t
(k)
d , C

(d)
d = 0, t

(k)
d =

k − 1, k = 1, . . . , bd − ad + 1;Lbw = {d}.

Step 1 (Termination check)
if Lfw ∪ Lbw = ∅ then

STOP. execute the JOIN procedure in order to determine the optimal path.
end if

Step 2 (Label scan)
Forward Phase
if Lfw 6= ∅ then

Select a node i belongingto Lfw and delate it from Lfw.
for all j ∈ F̃ S(i) do

for all y
(m)
i = (S

(m)
i , C

(m)
i , T

(m)
i) ∈ Dfw(i) do

if S
(m)
i [j] = 0 AND aj ≤ T

(m)
i + tij ≤ bj AND T

(m)
i < Tmax

2
AND T

(m)
i + tij + LBjd ≤ bd then

Set: T̄j = T
(m)
i + tij ; C̄j = C

(m)
i + cij ;

S̄j [w] = S
(m)
i [w],∀w ∈ N − {{j} ∪ {l : T̄j + LBjl > bl}}.

S̄j [v] = 1, ∀v ∈ N , v 6= w.
if (S̄j , C̄j , T̄j) is dominated by some label belonging to Dfw(j) then

Go to Step 1.
else

Set: y
(|Dfw(j)|+1)
j = (S̄j , C̄j , T̄j);D

fw(j) = Dfw(j) ∪ {y(|D(j)|+1)
j }.

Remove from Dfw(j) all the label that are dominated by y
(|Dfw(j)|+1)
j .

Add j to Lfw if it does not already belong to it.
end if

end if
end for

end for
end if
Backrward Phase
if Lbw 6= ∅ then

Select and delate a node j belonging to Lbw.
for all i ∈ B̃S(j) do

for all y
(m)
j = (S

(m)
j , C

(m)
j , T

(m)
j , t

(m)
j) ∈ Dbw(j) do

if S
(m)
j [i] = 0 AND T−bi ≤ T

(m)
j +tij ≤ T−ai AND T

(m)
j −t(m)

j < Tmax
2

AND T
(m)
j +tij+LBsi ≤ bd

then
Set: T̄i = T

(m)
j + tij ; C̄i = C

(m)
j + cij ; t̄i = t

(m)
j ;

S̄i[w] = S
(m)
j [w], ∀w ∈ N − {{i} ∪ {l : T̄i + LBli > T − al}}.

S̄i[v] = 1, ∀v ∈ N , v 6= w.
if (S̄i, C̄i, T̄i, t̄i) is dominated by some label belonging to Dbw(i) then

Go to Step 1.
else

Set: y
(|Dbw(i)|+1)
i = (S̄i, C̄i, T̄i, t̄i);D

bw(i) = Dbw(i) ∪ {y(|D
bw(i)|+1)

i }.

Remove from Dbw(i) all the label that are dominated by y
(|Dbw(i)|+1)
i .

Add i to Lbw if it does not already belong to it.
end if

end if
end for

end for
end if
Go to Step 1.

179 Chapter 5

The main idea is to select, at each iteration, the node i belonging
to L for which the best average value label σi inD (i) is obtained. Since
each label is characterized by the time and the cost and σi is defined
as the sum of the values of the labels associated to i divided by the
cardinality |D (i)| of D (i), σi can be determined by considering the
time (the corresponding value is denoted by σ T

i) the cost (denoted
as σ c

i) or the cost per unit time (indicated as σ R
i). In the sequel,

the corresponding strategies are referred to as SALST , SALSC and
SALSR respectively.

The generic scheme of the SALS rules can be summarized as
follows.

SALS
Step.1 For all nodes j ∈ L determine

σTj =

∑|D(j)|
k=1 T

(k)
j

|D (j)|

[
or σCj =

∑|D(j)|
k=1 C

(k)
j

|D (j)|

][
or σRj =

∑|D(j)|
k=1 R

(k)
j

|D (j)|

]

Step.2 Remove from L a node i such that the following condition is
satisfied:

i = arg max
{
σTj : j ∈ L

} [
or i = arg min

{
σCj : j ∈ L

}][
or i = arg min

{
σRj : j ∈ L

}]
In order to extract the node i in an efficient way, the list L is

maintained partially ordered in a binary heap. Indeed, each node i is
placed in the heap on the basis of the value of σ T

i (σ c
i or σ R

i).

In addition to the selection rules described above, another policy
has been introduced where the node i is selected on the basis of the
best value of the labels belonging to D (i). The corresponding rule
is defined best label selection strategy (BLS, for short) and it can
be defined by considering the time, the cost or the cost per unit time.

5.5. Node selection methods 180

The related methods, which will be referred to herein as BLST , BLSC
and BLSR, respectively, are reported in what follows.

BLS
Step.1 For all nodes j ∈ L determine

σTj = maxk=1,...,|D(j)| T
(k)
j ,

[
or σTj = mink=1,...,|D(j)|C

(k)
j

]
,[

or σRj = mink=1,...,|D(j)|R
(k)
j

]
Step.2 Remove from L a node i such that the following condition is
satisfied:

i = arg max
{
σTj : j ∈ L

} [
or i = arg min

{
σCj : j ∈ L

}][
or i = arg min

{
σRj : j ∈ L

}]
We have considered also an extension of the small average label

first strategy (SALF , for short) proposed in [76]. More specifically,
the value σ T

i (σ c
i or σ R

i). associated with a node i is used to insert
it into list L, whereas, at each iteration, the removed node is always
the top node of L. The corresponding strategies will be subsequently
referred to as SALFT , SALFC and SALFR, respectively.

In these approaches, a node j is added to L on the basis of the
following insertion rule.

SALF
Let j be a node to be added to L

Let i be the top node of L

If σTj ≥ σTi
[
or σCj ≤ σCi

] [
or σRj ≤ σRi

]
Then

Insert j at the top of L

Else

Insert j at the bottom of L

181 Chapter 5

End If

5.6 Computational experiments

The main goal of this section is to analyze the numerical behaviour
of the proposed multi-dimensional labelling approaches to address the
LFESPPT W when different label and node selection strategies are
used. The influence of the proposed dominance rules on the compu-
tational cost is also investigated.

The considered solution approaches have been implemented in
java language and have been tested by using an Intel(R) Core(TM)2QUAD
CPU Q6600 PC, 1.39 GHz, RAM 4 GB, under the Microsoft Vista op-
erating system. All the label and node selection methods described in
the previous sections have been tested. Indeed, three different ver-
sions of each method have been considered: a naive version (i.e.,
1st), in which no dominance checks are applied and two enhanced
versions in which, respectively, only the first dominance check (i.e.,
2nd) and the second dominance rule is applied (i.e., 3rd), respectively.
In what follows, we shall refer to each implemented algorithm as
approach.selection strategy.version. Thus the algorithm FLSM.SLLF .1st
denotes the naive version of the FLSM, that uses the SLLF selection
strategy.

As far as the choice of the test problems is concerned, we have con-
sidered three classes of instances of varying size and density (defined
as the ratio between the number of arcs and the number of nodes).

In particular, fully random (i.e., SpRand networks), acyclic ran-
dom (i.e., SpAcyc networks) and complete graphs (i.e., Solomon’s net-
works) have been considered. For the first two sets of test problems,
the arc times and costs are chosen according to a uniform distribution
from the range [0, 100].

The time windows have been determined as follows. For each node

5.6. Computational experiments 182

i ∈ N , the centre of the associated time window is set equal to the
minimum time T required to reach node i starting from node s. A con-
stant AVG is used to define the interval [ai; bi] as

[
T − AV G

2 ;T + AV G
2

]
.

The SpRand and the SpAcyc networks have been generated by
using a modified version of the public domain SPRAND and SPACYC
generators ([29]). As these codes generate, for each arc (i, j) only the
parameter cij, representing the cost, the modification entails using
the SPRAND and SPACYC pseudo-random number generator to also
generate the time parameters tij, associated to each arc, from a spec-
ified range. The characteristics of the test problems are reported in
Table 5.1, where for each network, the number of nodes, the number
of arcs and the density value are highlighted.

The SpRand networks (R1 −R15) are generated by first creating
a Hamiltonian cycle and then adding arcs with distinct random end
points. In the SpAcyc networks (AR1−AR15), the nodes are numbered
from 1 to |N |, and there is a path of arcs (i, i+ 1) , 1 ≤ i ≤ |N |.
Additional arcs are generated by picking two distinct nodes at random
and creating an arc from the lower to the higher numbered node.

It is worth observing that when acyclic networks are considered,
the dummy resource associated to each node is not taken into account,
since all the paths do not contain repeated nodes.

The computational experiments have been carried out by consid-
ering, for each test problem, four different values for the parameter
AVG, that is 40, 60, 80 and 100. In the following, we shall refer to
the test problem by using the notation test.time windows structure.
Thus, problem R1.I is problem R1 for which the time windows have
been defined by setting AVG=40. In all the experiments, we set the
origin node s = 1 and the destinations node d = |N |.

The third set of test problems have been derived from the well-
known Solomon’s data-set of the vehicle routing problem with time
windows, in which the vehicle capacity is not taken into account.

183 Chapter 5

Test Nodes Arcs Density
AR1 −R1 2500 30000 12
AR2 −R2 2000 30000 15
AR3 −R3 1500 30000 20
AR4 −R4 1000 30000 30
AR5 −R5 500 30000 60
AR6 −R6 2500 50000 20
AR7 −R7 2000 50000 25
AR8 −R8 1500 50000 33
AR9 −R9 1000 50000 50
AR10 −R10 500 50000 100
AR11 −R11 2500 60000 24
AR12 −R12 2000 60000 30
AR13 −R13 1500 60000 40
AR14 −R14 1000 60000 60
AR15 −R15 500 60000 120

Table 5.1: Characteristics of the SpRand and SpAcyc Networks.

These instances and a description of their characteristics are available
at http://web.cba.neu.edu/˜msolomon/problems.htm. The problems
with 100 nodes have been considered. The times for travelling from
one node to the others are set equal to the corresponding distance,
while the costs are generated randomly according to a uniform distri-
bution from the range [0, 100]. This data-set is divided into clustered
(i.e., c101 − c109), random (i.e., r101 − r112) and random-clustered
(i.e., rc101 − rc108) categories, according to the displacement of the
nodes. Instances belonging to the same data-set have the nodes lo-
cated in the same way, the instances differ only for the width of the
time windows.

5.6.1 Numerical results

The performances of the proposed methods have been evaluated by
considering the CPU times (in milliseconds), the number of discarded
labels, when the dominance criteria are applied and the number of
iterations, averaged over thirty different runs. It is worth observing

5.6. Computational experiments 184

that in the case of label selection methods, an iteration corresponds to
the execution of the scanning of a label, whereas for the node selection
methods an iteration corresponds to the processing of a node. For the
bi-directional counterparts, an iteration corresponds to the execution
of both the forward and the backward phases. A detailed accounting
of the experimental results is reported in [54]. They underline that it
is not a trivial task to choose the parameter, among time, cost and cost
per unit time, for selecting the node/label to be processed that always
allows the achievement of the best performance. Thus, in what follows
we consider the best results, in terms of computational cost, obtained
by applying the implemented algorithms. The related results are given
in the Appendix A. The main aim of the experimental phase is to
evaluate the impact of the proposed dominance rules as well as that
the node/label selection strategies on the computational cost required
by the proposed approaches to solve the LFESPPT W . In order to
individuate the best performing node and label-selection strategies,
computational experiments have been carried out by considering only
the first two sets of test problems (i.e., SpRand and SpAcyc networks).
The versions, which result the most efficient, have been then applied
to the Solomon’s networks. The related results are presented in what
follows.

Numerical results on SpRand and SpAcyc networks

In this section, we present the computational results obtained by ap-
plying the proposed solution approaches to the SpRand and the SpA-
cyc networks.

Dominance rules evaluation. A first set of experiments has been car-
ried out with the goal of evaluating how the use of the proposed dom-
inance rules may affect the computational cost. It is worth observing
that, for the SpRand networks it is possible to consider only the first
dominance criterion, whereas for the SpAcyc networks the proposed

185 Chapter 5

second rule, that includes the first one as special case, has been ap-
plied.

The results obtained when solving the SpRand networks are re-
ported in Tables A.1 and A.2 of the Appendix A; those related to the
Acyclic networks are given instead in Tables A.3-A.6 of the Appendix
A, where for each AVG value, we report the percentage improvement,
in the execution time and in the number of iterations, observed by
applying the dominance rules as compared to the naive version of the
proposed approaches. The number of discarded labels is also given.
It is important to point out that some of the proposed approaches
run out of memory when solving R15.IV . Consequently, the values
reported in Tables A.1 and A.2 of the Appendix A have been deter-
mined without taking into account the results obtained on this test
problem.

The computational results collected show that the introduction
of the dominance criteria allows the cut-off of unpromising labels and
thus a reduction in the number of iterations and in the computational
cost is observed.

More specifically, in the case of the SpRand networks, the re-
sults related to the FNSMs (see Table A.1) underline an average
percentage reduction in the number of iterations of 24.72%, 32.60%,
33.51% and 27.18% for AVG= 40, 60, 80 and 100, respectively. A
similar trend has been observed in the reduction of the computa-
tional cost (i.e., a percentage reduction of 64.03%, 57.87%, 50.34%
and 46.21%, for AVG= 40, 60, 80 and 100, respectively). In the
case of the BDNSMs (see Table A.1), for which even the number
of labels generated by the naive approach is lower than those deter-
mined by the forward counterpart, the advantage of applying the first
dominance rule is less evident. In addition, the average number of
discarded labels is equal to 61000.74 and 23173.28 for the FNSMs
and the BDNSMs, respectively; whereas the average percentage re-
duction in the number of iterations [and in the computational time]

5.6. Computational experiments 186

is of 29.50 % and 19.89% [54.61% and 48.04%], for the FNSMs and
the bidirectional counterparts, respectively.

As the results of Table A.2 underline, a trend similar to that ob-
tained for the node selection methods is also observed for the label
selection approaches. In particular, the introduction of the domi-
nance rule in the FNSMs allows an average percentage reduction
of the 91.77% and 91.01% in the number of iterations and in the com-
putational cost, respectively, whereas in the case of the bidirectional
counterparts, the average percentage reduction in the iterations and in
the computational overhead is more modest and it is equal to 56.00%
and 55.82%, respectively. In addition, the number of discarded labels
is equal to 67472.07 and 8571.69, for the forward and the bi-directional
versions, respectively.

Tables A.3 and A.4 display the computational results obtained by
the node selection methods (forward and bi-directional) when solving
the SpAcyc networks. As expected, the gain of using the second dom-
inance criterion is greater than the one observed when the first rule is
applied.

Indeed, for the FNSMs, when the first rule is adopted, the
average percentage reduction in the number of iterations and in the
execution time is equal to 25.26% and 69.70%, respectively. The gain
increases to 27.52% and 71.01% when the second rule is applied. A
similar trend is observed for the bi-directional counterparts (see Table
A.4).

Tables A.5 and A.6 provide statistics on the influence of domi-
nance rules in the solution process of the label selection methods when
solving the SpAcyc networks. These results underline a trend similar
to that obtained with the node selection methods.

Indeed, for the forward versions (see Table A.5), the average per-
centage reduction in the number of iterations [in the computational
cost] is 91.80 % and 92.62% [92.31% and 93.00%] when the first dom-

187 Chapter 5

inance rule and the second dominance criterion are applied, respec-
tively.

On the other hand, as the results of Table A.6 show, the gain
obtained with the bi-directional version of the label selection methods
is less impressive. Indeed, the application of the first criterion allows,
on average, a percentage reduction in the number of iterations and
in the execution time of the 58.48% and 58.63%, respectively. The
average percentage improvement in the number of iterations and in the
computational cost increases, respectively, to the 61.41% and 61.39%
when the second dominance rule is applied.

Node selection methods results. The results collected on the node se-
lection methods are summarized in Tables A.7 and A.8 of Appendix
A. For each instance and for each method, we give the computational
cost (in milliseconds) and the number of iterations that were obtained
by applying the best performing version of the related approach, when
solving the SpRand and the SpAcyc networks, respectively.

The computational results of Table A.7 show that, in the case of
the SpRand networks all the forward versions fail to solve the test
R15.IV . On the other hand, the bi-directional counterpart allows
the determination of the optimal solution for all the considered net-
works and BDNSM.SALS.2nd shows the best behaviour when solving
R15.IV . In order to compare the forward and the bi-directional ver-
sions, the results obtained on R15.IV have not been considered. Table
A.7 underlines that the bi-directional algorithms with bounding out-
perform the forward counterparts. Indeed, the forward versions are
on average 1015.53 times slower than the bi-directional versions. This
behaviour can be explained by taking into account the reduction in
the number of iterations. In particular, the number of iterations re-
quired by the FNSMs is on average 8.96 times greater than that of
the bi-directional ones.

As far as the numerical comparison among the BDNSMs is con-

5.6. Computational experiments 188

cerned, a significant observation is that SALS is on average the fastest
followed by SALF and BLS, when solving the SpRand networks.
More specifically, BDNSM.SALS.2nd is 2.09 and 3.42 times faster
than BDNSM.SALF .2nd and BDNSM.BLS.2nd, respectively.

The computational results collected on the SpAcyc networks are
reported in Table A.8 of Appendix A. By comparing the numerical
results of the forward versions with those related to the bi-directional
counterparts, a trend similar to that obtained for the SpRand networks
is observed. Indeed, without considering the T OS method for which
a bi-directional counterpart has not been defined, the bi-directional
approaches dominate the forward ones. In particular, the formers are
on average 1.22 times faster than the latter and require 2.10 times less
iterations.

Table A.8 underlines also that FNSM.T OS.3rd is on average
the fastest among the node selection methods, requiring on average
1500.00 iterations and a computational cost of 226.74 milliseconds.
The second best node selection approach is BDNSM.SALF .3rd fol-
lowed by BDNSM.SALS.3rd and then BDNSM.BLS.3rd. In par-
ticular, BDNSM.SALF .3rd is on average 1.46 and 2.06 times faster
than BDNSM.SALS.3rd and BDNSM.BLS.3rd, respectively. This
behaviour can be explained by taking into account the number of it-
erations performed by the methods (see Table A.8).

Label selection methods results. Tables A.9 and A.10 of Appendix
A provide statistics on the solution process of the forward and bi-
directional label selection approaches, when solving the SpRand and
SpAcyc networks, respectively. Similarly to that done for the node
selection methods, for each test problem and for each method, we
report the computational cost and the number of iterations of the
best performing version of the related approach.

The results collected clearly underline that the forward versions
remarkably outperform the bi-directional counterparts with the sole

189 Chapter 5

exception of T HR, for which the trend is inverted. Indeed, BDLSM.T HR.2nd
is 30.59 times faster than the FLSM.T HR.2nd. It is worth noting
that the T HR approaches fail to solve R15.IV . The average execu-
tion time of the FLSMs when solving the SpRand networks, without
considering the T HR strategy, is about 963.72 milliseconds, whereas
the average computational cost of the bi-directional versions is equal
to 7382.26 milliseconds (see Table A.9). This behaviour can be ex-
plained by comparing the number of iterations executed by the two
versions of each algorithm: the average number of iterations of the
bi-directional versions is about 1.63 times greater than that of the
forward counterparts.

A similar trend is observed for the SpAcyc networks, for which
the BDLSMs is 10.23 times slower than the FLSMs with a number
of iteration 1.10 greater than those required by the FLSMs. As far
as the numerical comparison among the label selection methods is con-
cerned the computational results of Tables A.9 underline that FIFO,
SLLS and LS show comparable performance when solving SpRand
networks. Indeed, in all the considered test problems LS behaves the
best, followed by SLLF and FIFO. The T HR is very inefficient to
solve the problem on random networks. However, the improvement is
very slight overall as reflected by the insignificant change in the num-
ber of iterations. Also for SpAcyc networks, the computational results
of Tables A.10 underline that they show comparable performance. In-
deed, in all the considered test problems T HR is the most efficient
selection strategy, followed by LS, SLLF and FIFO.

The performance of the proposed label selection methods has been
compared with the approach proposed by J. Roan and C. Lee in [122],
referred to as RLA, that represents the only approach proposed in the
scientific literature to address the problem under study. The numerical
results obtained when testing RLA, on the considered problems, are
reported in Table A.11, in which the execution time (in milliseconds)
and the number of iterations are presented.

5.6. Computational experiments 190

The results show that, the proposed label correcting methods
always outperform the RLA and they are substantially faster than
the RLA. Indeed, the best performing label selection method is on
average 173.12 and 58.86 times faster thanRLA in solving the SpAcyc
and SpRand networks, respectively.

Comparison and discassion. The main aim of this section is to make a
comparison among the proposed node selection and the label selection
methods, when solving the first two sets of considered test problems.

The computational results obtained by testing the LFESPPT W
on random networks (see Tables A.7 and A.9 of the Appendix A),
indicate that the node selection approaches are on average 3.31 times
faster than the label selection methods.

On the acyclic networks, the BDLSM.FIFO.3rd shows the worst
performance. In addition, the computational results demonstrate clearly
that FNSM.T OS.3rd is the fastest approach. This conclusion agrees
with the numerical experience for the classical shortest path problem
in acyclic graphs, for which the topological node selection approach is
always superior.

As shown in Tables A.10 and A.8 of Appendix A, the speedup fac-
tor seems to increase with the window width. Indeed, FNSM.T OS.3rd
is 5.26, 12.81, 24.45 and 45.27 times faster than BDLSM.FIFO.3rd
for AVG=40, 60, 80 and 100 respectively. This behaviour can be ex-
plained by observing that larger time windows determine a greater
number of labels associate with each node. Thus in a node selection
method, we have a larger cost for iteration. For this reason, a node se-
lection strategy could show better performance than a label selection
approach only if a small number of iterations is executed; this con-
dition is surely satisfied by the T OS approach, in which each node
is processed exactly once and this issue also explains the reason for
which the remaining node selection methods show a worse performance
compared to the label selection approaches.

191 Chapter 5

We remark that the bidirectional versions outperform the for-
ward counterparts only when considering the node selection strategy.
Indeed, the forward versions are the most efficient considering the la-
bel selection strategy. This behaviour is seen for both SpRand and
SpAcyc networks.

The FLSMs are on average 7.66 and 10.23 times faster than
the BDLSMs, when solving the SpRand and SpAcyc networks, re-
spectively. On the other hand, the FNSMs are on average 259.51
and 1.22 times slower than the BDNSMs, when solving the SpRand
and SpAcyc networks, respectively. The results explain that the bi-
directional approach is efficient only with a node selection strategy.
When a label selection strategy is used, the fathoming rule introduced
by the bi-directional approach does not suffice to guarantee an efficient
behaviour.

Computational results on Solomon’s instances

The best performing versions of the proposed label and node selec-
tion approaches have been applied to the Solomon’s networks. In
particular, the computational experiments have been carried out by
considering the LS and the SALS forward and bi-directional strate-
gies (i.e., FLSM.LS.2nd, BDLSM.LS.2nd, FNSM.SALS.2nd and
BDNSM.SALS.2nd) that, on the basis of the numerical results pre-
sented in the previous sections, turneded out to be the most efficient
approaches to solve the LFESPPT W . The related results are re-
ported in Tables A.12 and A.13 of Appendix A.

The computational results collected on the label selection meth-
ods underline that in three cases (i.e., c103, c104 and c109) FLSM.LS.2nd
runs out of memory, whereas BDLSM.LS.2nd is not able to solve
only the problem c104. On the remaining instances, a behaviour sim-
ilar to the one obtained for the SpRand networks is observed. In-
deed, FLSM.LS.2nd outperforms the bidirectional counterpart, even

5.7. Conclusions 192

though the gain obtained is limited (i.e., FLSM.LS.2nd is 1.20times
faster than BDLSM.LS.2nd).

As far as the performance of the node selection methods is con-
cerned, Table A.13 underlines that BDNSM.SALS.2nd solves all the
considered complete networks, whereas the forward counterpart fails
to solve the problems c103 and c104. On the remaining networks,
BDNSM.SALS.2nd outperforms FNSM.SALS.2nd. In particular,
the former is on average 3.19 times faster and requires 1.20 times less
iterations. This behaviour is consistent with the one observed by Righ-
ini et al. [119], where a node selection approach is proposed to solve
the elementary shortest path problem with time windows and vehicle
capacity constraints.

Tables A.12 and A.13 indicate that also on this set of test prob-
lems the node selection approaches outperform the label selection
methods. In particular, on the Solomon’s networks, the best per-
forming node selection method (i.e., BDNSM.SALS.2nd) turns out
to be 5.82 times faster than the most efficient label selection approach
(i.e., FLSM.LS.2nd).

5.7 Conclusions

In this paper we have focused on the solution of the elementary lin-
ear fractional shortest path problem with time windows. We have
presented multi-dimensional labelling approaches to address the prob-
lem under consideration, defined by using different label selection and
node selection strategies, on the basis of which the most promising
node/label is selected at each iteration. In order to define efficient
solution approaches, a bi-directional search strategy and some dom-
inance rules, well tailored to the problem at hand, have also been
exploited.

In order to assess the behaviour of the proposed approaches, ex-

193 Chapter 5

tensive computational experiments have been carried out on a set of
randomly generated networks, with varying size and density. The
label selection methods have been compared with the state of art ap-
proach to address the problem under study, i.e. the label correcting
method in which the candidate list of labels is accessed by a FIFO
policy proposed by Roan and Lee in 2003 [122].

The experimental results have shown that: 1) the introduction of
the proposed dominance rules allow the cut-off of unpromising paths
and thus an improvement in the execution time is obtained; 2) the
bi-directional versions of the proposed approaches are faster than the
forward counterparts only with node selection strategy; 3) the pro-
posed label selection approaches turn out to be better in terms of
execution time than the FIFO algorithm of Roan and Lee; 4) for ran-
dom networks, the node selection methods are generally faster than
the label selection approaches; 5) for acyclic networks, the topologi-
cal order node selection approach is the best performing method; 6)
for Solomon’s networks the node selection strategy is more efficient
than the label selection approach and the bi-directional node selection
method outperforms the forward counterpart.

In conclusion, it is worth observing that in this paper we have
addressed the linear fractional shortest path problem with hard time
windows constraints. It could be interesting to investigate the case in
which soft time window constraints are associated to the nodes. This
represents the subject of current investigation.

Achnowledgements

The authors wish to acknowledge the contribution of Dr Simona Be-
nigno in the development of an earlier version of the paper. They also
wish to thank the anonymous referees for their constructive sugges-
tions and comments.

Appendix 194

Appendix A - Computational Results

FNSM BDNSM
SALS BLS SALF SALS BLS SALF

AVG=40 Time 55.69% 89.04% 47.37% 31.38% 23.31% 24.18%
Dom 12181.41 12168.1 9494.04 2614.7 2596.59 2864.27
Iter. 15.22% 56.30% 2.65% 16.80% 15.91% 0.75%

AVG=60 Time 46.17% 84.32% 43.11% 35.37% 41.73% 38.94%
Dom 36560.6 37072.51 28832.67 10016.3 10385.64 9964.54
Iter. 37.25% 55.96% 4.59% 11.89% 31.96% 15.09%

AVG=80 Time 38.89% 78.08% 34.04% 70.41% 75.40% 77.41%
Dom 84012.76 86734.59 66412.98 24472.45 27625.55 24174.09
Iter. 37.35% 55.12% 8.05% 13.09% 39.91% 35.35%

AVG=100 Time 33.48% 75.77% 29.38% 43.01% 56.98% 58.33%
Dom 128399.82 129571.69 100561.69 53751.02 57635.87 51978.36
Iter. 29.30% 47.93% 4.32% 48.27% 1.10% 8.52%

Table A.1: Computational Results obtained with the node selection methods on the
SpRand networks.

FLSM BDLSM
FIFO SLLF LS THR FIFO SLLF LS THR

AVG=40 Time 87.14% 86.58% 85.39% 84.80% 45.07% 43.96% 25.79% 46.33%
Dom 8577.25 9083.29 12261.26 8608.54 1424.34 1421.93 1253.02 1395.43
Iter. 84.75% 84.01% 85.02% 84.24% 41.65% 41.73% 24.12% 44.92%

AVG=60 Time 94.25% 94.01% 93.55% 93.27% 64.44% 63.70% 51.73% 65.87%
Dom 25989.25 27781.44 39216.56 25744.51 4814.45 4831.27 4294.89 4966.03
Iter. 92.71% 92.97% 93.53% 93.00% 63.16% 63.16% 50.84% 63.76%

AVG=80 Time 93.13% 93.30% 93.24% 93.05% 63.87% 62.55% 53.70% 81.38%
Dom 59718.71 63961.79 97281.19 58913.69 11681.61 11740.36 12649.73 11670.65
Iter. 92.53% 92.90% 93.36% 93.11% 65.29% 63.38% 54.59% 77.95%

AVG=100 Time 94.45% 94.68% 94.54% 92.89% 61.85% 60.70% 47.40% 57.59%
Dom 136051.41 146532.26 234346.76 125485.26 12568.8 12596.21 12574.92 27263.42
Iter. 93.64% 93.27% 93.86% 93.19% 62.71% 61.72% 50.36% 55.79%

Table A.2: Computational Results obtained with the label selection methods on the
SpRand networks.

FNSM
SALS BLS SALF T OS

2nd 3rd 2nd 3rd 2nd 3rd 2nd 3rd

AVG=40 Time 55.97% 58.95% 88.65% 88.69% 46.19% 50.75% 26.96% 28.00%
Dom 12058.43 12460.56 12046.49 12447.88 9389.92 9774.86 7595.13 7935.29
Iter. 14.14% 16.91% 56.34% 59.98% 2.33% 7.48% 0.00% 0.00%

AVG=60 Time 77.29% 77.98% 94.67% 94.34% 66.51% 68.82% 47.20% 47.58%
Dom 36355.97 36757.51 36869.03 37271.04 28661.97 29012.42 23001.17 23341.08
Iter. 19.34% 21.72% 73.61% 74.68% 6.34% 10.82% 0.00% 0.00%

AVG=80 Time 82.03% 82.89% 95.82% 95.62% 71.16% 72.25% 45.01% 46.98%
Dom 83639.29 84150.17 86366.56 86873.34 66079.86 66529.5 51182.96 51608.35
Iter. 26.46% 27.27% 79.85% 80.17% 7.02% 10.81% 0.00% 0.00%

AVG=100 Time 88.03% 89.44% 95.77% 96.38% 79.15% 79.98% 54.81% 57.55%
Dom 167724.18 168559.43 175439.88 176280.39 127089.21 127767.31 106399.52 107170.95
Iter. 23.84% 33.04% 84.91% 84.71% 10.00% 12.73% 0.00% 0.00%

Table A.3: Computational Results obtained with the forward node selection methods on
the SpAcyc networks.

195 Appendix

BDNSM
SALS BLS SALF

2nd 3rd 2nd 3rd 2nd 3rd

AVG=40 Time 1.13% 4.05% 14.68% 17.66% 16.77% 18.59%
Dom 2276 2549.59 2327.42 2577.51 2640.81 2905.97
Iter. 1.79% 18.78% 2.37% 16.21% 0.39% 2.92%

AVG=60 Time 2.42% 10.68% 34.17% 39.90% 25.99% 27.06%
Dom 8021.75 9749.05 8514.94 10624.74 8645.17 10059.9
Iter. 6.88% 30.47% 6.62% 30.75% 1.02% 1.96%

AVG=80 Time 25.02% 28.29% 75.68% 77.78% 54.02% 55.06%
Dom 22397.14 24392.58 23798.41 27198.08 22180.29 24441.48
Iter. 4.72% 36.68% 6.69% 13.84% 8.14% 9.37%

AVG=100 Time 29.00% 31.00% 77.61% 79.78% 58.27% 59.65%
Dom 47850.74 52182.2 51823.37 59364.96 51236.06 57169.43
Iter. 9.09% 42.64% 6.52% 15.46% 6.91% 8.75%

Table A.4: Computational Results obtained with the bi-directional node selection meth-
ods on the SpAcyc networks.

FLSM
FIFO SLLF LS THR

2nd 3rd 2nd 3rd 2nd 3rd 2nd 3rd

AVG=40 Time 86.40% 88.41% 86.71% 88.52% 85.43% 87.84% 85.51% 86.86%
Dom 8575.56 8815.94 9081.75 9319.59 12259.51 12497.62 8606.69 8863.75
Iter. 84.13% 86.52% 84.40% 86.63% 84.86% 87.71% 84.48% 86.76%

AVG=60 Time 92.91% 93.12% 92.61% 92.53% 91.38% 92.15% 92.62% 93.43%
Dom 23362.76 23457.19 24906.84 24989.79 34351.69 34428.63 25740.44 25848.21
Iter. 90.90% 91.39% 91.26% 92.34% 91.58% 92.45% 93.27% 93.43%

AVG=80 Time 95.55% 96.33% 96.03% 95.62% 95.53% 95.51% 95.32% 95.24%
Dom 59583.36 59737.61 63818.54 63981.95 97101.85 97301.14 58798.72 58934.77
Iter. 95.06% 95.76% 95.25% 95.62% 95.65% 95.76% 95.79% 95.17%

AVG=100 Time 96.12% 96.16% 95.63% 95.68% 95.30% 96.00% 93.93% 94.59%
Dom 114943.62 121980.34 123128.4 131690.04 193935.2 213144.08 124982.16 125577.03
Iter. 95.24% 95.85% 95.01% 95.89% 96.07% 95.33% 95.86% 95.36%

Table A.5: Computational Results obtained with the forward label selection methods on
the SpAcyc networks.

BDLSM
FIFO SLLF LS THR

2nd 3rd 2nd 3rd 2nd 3rd 2nd 3rd

AVG=40 Time 46.24% 50.87% 45.63% 51.02% 27.33% 34.28% 46.17% 50.79%
Dom 1363.53 1550.43 1361.36 1562.64 1184.59 1326.16 1354.48 1540.99
Iter. 45.65% 50.46% 44.30% 49.64% 26.43% 33.78% 45.26% 50.05%

AVG=60 Time 64.90% 67.56% 64.29% 66.74% 53.28% 56.12% 65.94% 68.27%
Dom 4774.98 5025.03 4791.87 5010.57 4255.34 4150.03 4926.76 5011.9
Iter. 63.49% 66.24% 62.94% 65.46% 51.61% 54.29% 63.70% 67.55%

AVG=80 Time 61.84% 64.58% 61.28% 63.86% 51.15% 53.11% 65.06% 66.88%
Dom 11641.14 11864.59 11700.36 11984.39 12610.72 12962.48 11626.55 11936.23
Iter. 62.54% 64.22% 61.72% 64.10% 51.54% 53.73% 62.81% 65.04%

AVG=100 Time 73.02% 74.09% 72.44% 72.80% 62.79% 64.20% 76.64% 77.08%
Dom 26910.17 28268.01 27353.37 28536.7 27952.43 32265.27 27228.44 28431.11
Iter. 76.28% 76.56% 74.90% 76.53% 67.34% 68.78% 75.24% 76.19%

Table A.6: Computational Results obtained with the forward label selection methods on
the SpAcyc networks.

A
p
p

en
d
ix

196
FNSM BDNSM

SALS BLS SALF SALS BLS SALF
CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter.

R1.I 2.54 6.50 2.50 6.71 3.36 6.80 2.42 7.07 2.11 7.61 2.17 7.45
R2.I 2.99 22.65 2.51 22.62 2.80 23.52 4.54 15.88 4.87 15.53 5.90 15.80
R3.I 1.28 9.32 1.21 9.91 1.59 9.48 2.30 8.59 2.80 8.29 2.47 8.15
R4.I 5.59 62.60 5.89 63.12 5.47 61.18 14.12 49.60 14.59 50.94 13.44 49.24
R5.I 6.26 52.10 7.72 61.32 5.79 55.02 13.31 41.98 12.18 41.91 14.23 40.55
R6.I 6.82 32.10 5.70 32.93 5.95 32.52 10.67 29.57 10.76 29.99 11.86 29.54
R7.I 3.20 19.82 3.03 19.39 4.06 18.38 8.53 20.70 10.94 19.40 7.48 20.94
R8.I 11.36 68.75 10.48 71.75 13.06 76.84 24.41 49.40 24.33 50.37 23.87 50.14
R9.I 13.34 73.68 14.86 76.60 13.20 74.40 28.46 62.75 27.77 62.25 25.55 65.57
R10.I 562.72 975.87 1023.95 2867.34 515.37 843.41 440.67 682.73 482.91 809.00 374.70 595.34
R11.I 1.75 3.64 1.56 3.58 1.65 3.68 2.42 4.44 2.61 4.96 3.57 4.27
R12.I 10.18 57.82 11.95 60.50 10.84 58.48 24.11 56.35 23.07 56.02 24.24 59.65
R13.I 7.10 41.89 8.91 42.39 6.40 40.29 16.83 36.91 15.49 36.76 15.85 36.59
R14.I 84.68 367.03 101.49 463.98 67.74 313.45 124.95 213.22 129.72 230.86 116.57 225.77
R15.I 1564.99 1500.43 2940.62 4673.72 1448.74 1178.22 695.55 766.99 790.61 977.60 598.57 695.48
R1.II 2.21 20.44 2.54 20.70 2.71 19.73 4.72 15.76 5.49 15.12 4.88 15.97
R2.II 1.67 21.59 2.14 21.28 2.26 22.23 5.85 20.01 5.31 20.36 4.98 20.68
R3.II 8.19 68.42 7.04 69.67 7.07 68.01 16.21 58.97 17.65 59.24 17.50 54.12
R4.II 10.55 98.68 12.32 111.36 9.68 95.83 25.71 80.34 25.22 80.66 25.96 91.71
R5.II 184.44 759.85 289.65 1593.47 159.04 669.03 275.92 571.03 244.72 569.15 227.15 458.07
R6.II 9.09 56.03 10.90 63.40 8.45 53.22 17.67 37.49 16.65 37.66 16.76 36.08
R7.II 5.59 33.69 6.27 34.44 5.51 33.82 14.87 30.73 13.26 30.69 14.14 30.09
R8.II 14.74 79.75 12.73 81.34 12.56 75.16 23.72 52.65 24.80 53.21 23.00 52.53
R9.II 84.79 394.01 110.51 556.35 76.16 399.56 138.43 255.75 139.54 272.49 131.50 265.45
R10.II 2897.92 1442.01 6683.67 6769.88 2857.26 1232.00 1330.27 1351.01 1766.97 2450.52 1290.42 1215.73
R11.II 19.82 113.20 23.67 123.42 22.34 111.69 38.16 73.52 38.28 73.63 36.85 74.84
R12.II 48.40 234.18 55.87 261.71 47.95 237.28 97.12 191.29 96.27 193.57 88.61 182.07
R13.II 30.82 149.25 33.52 164.49 31.99 151.38 65.23 126.17 64.63 130.16 61.32 123.16
R14.II 68.58 300.29 81.89 374.66 63.78 290.31 110.99 178.93 111.90 177.81 101.02 173.85
R15.II 95313.91 5297.87 222074.81 43150.34 91000.83 2103.36 2687.98 1872.40 4022.58 3142.01 2736.99 1145.62
R1.III 9.66 87.48 9.49 88.32 10.92 98.78 17.76 52.57 18.86 51.43 17.46 54.47
R2.III 2.69 25.75 2.28 24.39 2.23 25.02 5.90 15.53 5.36 15.17 5.64 15.56
R3.III 6.87 61.27 6.27 64.58 6.09 60.96 16.51 57.94 17.51 57.20 15.69 58.36
R4.III 4.62 45.97 4.09 46.57 4.31 44.06 13.17 45.44 13.91 45.72 13.17 46.53
R5.III 299.83 885.00 543.40 2356.78 271.79 756.48 327.30 572.17 363.62 708.87 273.60 487.56
R6.III 11.87 69.60 11.79 69.28 10.95 67.86 19.92 50.17 19.27 50.01 18.97 47.53
R7.III 19.64 112.70 20.67 116.91 17.33 99.84 38.97 81.99 38.47 80.37 34.94 81.58
R8.III 200.56 821.89 294.53 1345.86 170.55 748.98 314.42 501.24 306.91 520.15 272.79 469.94
R9.III 510.70 1365.53 1011.79 3402.10 439.35 1150.89 708.37 1013.38 620.50 918.56 528.51 787.33
R10.III 4241.05 2210.31 7701.28 8739.44 4014.56 1414.49 1427.09 1112.32 1982.81 1838.06 1348.38 904.13
R11.III 56.25 261.15 65.42 307.42 51.06 245.21 115.30 202.11 114.24 209.49 105.06 199.67
R12.III 15.97 74.34 15.34 75.15 14.02 75.54 31.31 66.17 32.52 66.63 33.24 68.25
R13.III 59.50 273.10 84.17 395.17 57.78 269.55 109.07 212.29 109.89 213.05 103.68 198.36
R14.III 1294.17 2039.33 2447.81 5926.37 1147.11 1672.09 1257.74 1198.58 1346.15 1462.83 1109.97 1046.59
R15.III 28134845.75 13180.36 45271709.66 184644.54 27380407.28 3242.37 12328.20 2893.64 22312.75 8223.46 15713.71 1600.88
R1.IV 0.94 49.49 7.75 53.97 0.24 55.80 11.14 37.85 11.62 37.46 12.15 37.88
R2.IV 16.65 122.53 19.17 152.80 0.17 119.82 44.35 119.99 40.80 124.01 36.45 117.43
R3.IV 16.60 38.29 6.89 38.28 0.85 39.31 7.10 30.37 10.18 30.75 10.87 31.37

continued on next page

197
A

p
p

en
d
ix

continued from previous page
FNSM BDNSM

SALS BLS SALF SALS BLS SALF
CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter.

R4.IV 31.90 174.15 30.26 217.79 31.47 175.85 44.70 129.83 45.40 127.93 42.46 122.42
R5.IV 26582.40 4456.12 38682.40 24714.32 24913.37 2340.49 2659.99 1528.32 4262.63 2703.46 2422.26 1204.58
R6.IV 16.78 124.04 27.24 127.57 16.60 120.25 39.17 82.62 37.27 81.27 34.91 80.25
R7.IV 250.96 871.51 343.31 1392.43 187.75 781.61 406.66 622.61 416.25 674.02 338.07 586.70
R8.IV 78.96 320.09 78.68 360.64 63.53 302.14 110.65 210.36 110.44 211.44 102.81 202.70
R9.IV 1467.62 1896.63 2806.62 5459.58 1311.91 1639.90 1093.78 950.59 1291.45 1291.32 929.92 921.38
R10.IV 19013078.61 20899.72 32497687.87 384996.11 17835216.84 3960.57 12142.90 3854.02 20622.97 10258.33 25258.82 1883.90
R11.IV 31.30 137.94 47.60 172.21 36.38 145.22 53.22 105.17 56.81 104.78 52.81 106.30
R12.IV 141.94 576.61 218.70 796.42 142.90 524.13 218.80 357.71 218.82 359.69 210.66 368.45
R13.IV 530.15 1379.78 842.06 2492.69 447.26 1181.03 697.39 802.59 729.32 943.00 644.36 777.96
R14.IV 5913.74 3338.79 10717.24 13627.42 5460.25 2289.71 2783.92 2018.15 3500.23 3053.23 2271.08 1317.44
R15.IV OoM OoM OoM OoM OoM OoM 59409.95 4519.60 284574.01 22035.16 156973.66 2285.45

Table A.7: Computational Results obtained with the node selection methods on the SpRand networks OoM indicates out of
memory.

A
p
p

en
d
ix

198
.

FNSM BDNSM
SALS BLS SALF T OS SALS BLS SALF

CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter.

AR1.I 1.75 11.66 2.67 11.32 3.51 11.74 227.01 2499.00 4.97 7.02 3.87 7.38 2.37 7.15
AR2.I 3.98 22.94 2.31 22.30 1.69 23.79 183.35 1999.00 3.85 15.91 4.69 15.56 6.18 15.88
AR3.I 1.87 9.74 0.28 9.90 2.38 9.98 136.29 1499.00 3.76 8.29 1.84 8.89 2.42 8.86
AR4.I 4.46 62.54 7.25 63.73 15.21 61.46 89.96 999.00 12.54 49.17 12.85 49.93 11.01 52.61
AR5.I 8.62 53.70 8.78 61.10 9.77 55.88 46.88 499.00 13.64 41.05 11.37 41.04 11.17 40.71
AR6.I 3.13 32.42 5.68 32.05 8.97 32.44 376.74 2499.00 11.76 29.28 11.38 29.68 11.21 29.23
AR7.I 2.66 19.19 1.09 19.76 6.54 18.93 301.59 1999.00 8.60 20.74 5.18 19.30 7.91 20.28
AR8.I 13.51 67.33 10.82 69.99 24.49 74.03 225.19 1499.00 24.06 49.82 23.76 50.15 21.87 50.62
AR9.I 15.61 73.56 15.41 76.92 22.97 74.58 152.90 999.00 23.65 60.12 28.37 60.83 22.36 64.23
AR10.I 318.57 1220.55 434.20 1775.78 353.93 832.39 87.70 499.00 423.57 800.25 439.18 912.07 398.28 670.83
AR11.I 0.56 3.79 0.34 3.61 1.76 3.42 450.72 2499.00 2.13 4.94 3.91 4.12 3.53 4.80
AR12.I 13.39 55.88 11.79 57.20 16.65 56.06 361.35 1999.00 22.58 56.59 22.45 56.33 22.38 59.47
AR13.I 8.75 40.40 7.94 41.14 15.21 40.13 274.08 1499.00 15.59 37.09 15.96 37.38 15.24 37.12
AR14.I 86.13 364.86 95.39 404.62 114.54 309.64 186.12 999.00 117.96 219.62 117.49 223.85 110.43 220.88
AR15.I 533.99 1741.22 668.67 2239.27 608.88 1169.83 107.47 499.00 581.67 969.66 619.25 1080.45 528.24 830.46
AR1.II 2.70 18.50 1.09 18.88 1.86 17.47 226.88 2499.00 6.71 17.01 4.15 17.65 8.55 17.24
AR2.II 1.97 21.04 3.41 21.89 3.91 22.27 178.57 1999.00 5.21 20.78 4.37 20.32 5.49 20.54
AR3.II 10.33 64.77 9.98 66.80 13.51 69.77 138.27 1499.00 15.66 59.24 13.56 60.62 14.28 56.52
AR4.II 13.83 97.86 13.13 109.42 20.08 99.15 91.62 999.00 21.04 79.78 24.16 79.27 23.82 88.30
AR5.II 153.85 919.84 194.47 1273.43 179.80 704.42 51.37 499.00 208.32 464.74 206.00 483.91 190.53 425.29
AR6.II 8.96 56.40 13.77 60.37 15.27 53.79 375.87 2499.00 14.63 37.49 16.07 37.05 15.65 36.27
AR7.II 4.89 33.88 7.64 34.25 11.97 33.82 301.95 1999.00 13.93 30.07 13.98 30.52 12.65 30.90
AR8.II 15.65 79.42 14.40 80.66 19.50 75.64 226.07 1499.00 24.04 52.99 23.91 52.88 22.15 52.41
AR9.II 86.58 406.85 108.08 519.45 131.40 402.27 155.83 999.00 129.84 248.48 126.28 251.38 121.82 254.96
AR10.II 636.36 2169.16 916.65 3391.43 658.55 1297.02 101.90 499.00 946.12 1362.50 1034.62 1502.46 832.82 1037.13
AR11.II 24.49 116.19 26.70 123.37 40.89 118.36 450.80 2499.00 37.49 75.11 36.43 73.38 36.30 74.95
AR12.II 53.24 238.58 58.43 259.43 88.63 245.44 364.85 1999.00 90.62 187.75 88.73 190.00 84.20 180.54
AR13.II 32.34 152.88 37.84 161.75 58.48 152.59 273.15 1499.00 59.41 126.39 61.76 128.37 59.88 124.04
AR14.II 74.71 313.59 85.33 360.58 108.88 288.36 185.99 999.00 109.18 192.51 108.94 197.13 103.31 184.83
AR15.II 2617.43 7896.97 3453.25 11167.66 1755.55 2245.93 144.78 499.00 2033.49 3283.27 2317.82 4288.49 1372.12 1579.12
AR1.III 3.56 32.14 5.94 32.37 5.39 31.13 225.63 2499.00 8.93 28.67 9.27 28.99 6.56 27.35
AR2.III 2.86 25.60 5.58 24.33 8.49 25.92 182.49 1999.00 4.80 15.58 6.33 15.96 5.52 15.87
AR3.III 6.73 61.82 6.56 64.50 12.05 60.13 137.89 1499.00 14.33 54.28 13.53 54.91 14.02 55.38
AR4.III 4.10 45.46 6.99 46.84 9.99 44.71 93.55 999.00 11.79 45.84 12.55 45.88 10.79 46.21
AR5.III 194.42 1051.59 265.15 1572.48 222.66 750.77 53.04 499.00 291.89 649.16 304.68 783.40 237.04 540.51
AR6.III 12.84 68.92 13.19 68.69 16.77 67.94 376.34 2499.00 18.19 50.07 18.03 50.37 16.00 47.65
AR7.III 21.98 112.86 22.18 116.48 29.68 101.75 303.18 1999.00 36.27 79.74 35.89 79.22 33.35 81.44
AR8.III 209.08 907.85 253.82 1153.05 264.15 760.42 230.35 1499.00 273.67 467.38 266.74 456.03 252.95 444.45
AR9.III 421.34 1637.98 567.32 2338.67 471.09 1169.86 161.45 999.00 564.00 892.41 490.65 749.08 447.63 708.35
AR10.III 845.78 2769.52 1223.77 4398.79 801.89 1394.55 103.99 499.00 891.57 1170.34 1045.40 1501.93 776.27 964.86
AR11.III 62.18 261.80 68.52 289.29 85.19 246.34 451.47 2499.00 116.67 214.80 112.23 213.50 102.49 204.08
AR12.III 17.89 73.63 15.51 73.62 28.14 75.28 362.99 1999.00 29.82 66.03 30.52 66.61 28.37 67.92
AR13.III 64.15 276.60 79.12 351.74 97.70 268.58 275.38 1499.00 101.04 200.35 104.91 201.99 97.70 199.21
AR14.III 855.16 2579.08 1190.46 3942.17 903.40 1765.21 200.86 999.00 978.66 1153.12 983.74 1310.44 877.89 997.04
AR15.III 6836.08 18041.88 9736.39 26768.17 4168.88 2682.51 223.87 499.00 5451.25 8039.26 6453.43 11072.07 3082.08 1982.18
AR1.IV 14.08 129.33 18.89 143.55 23.12 129.47 225.58 2499.00 29.45 96.43 28.94 96.56 30.99 101.28
AR2.IV 15.33 123.07 15.97 141.66 21.76 122.03 179.11 1999.00 32.43 117.87 34.35 122.18 30.39 114.66
AR3.IV 4.62 38.47 4.95 38.73 3.47 39.63 134.76 1499.00 9.37 30.41 5.15 30.29 9.14 31.32

continued on next page

199
A

p
p

en
d
ix

continued from previous page
FNSM BDNSM

SALS BLS SALF T OS SALS BLS SALF
CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter.

AR4.IV 24.18 183.77 25.59 217.96 35.37 176.17 93.01 999.00 40.94 128.63 40.19 124.68 38.39 121.10
AR5.IV 1613.82 7842.65 2069.00 11010.41 1274.49 2452.52 89.79 499.00 1508.60 2712.07 1568.16 3532.78 1155.36 1588.99
AR6.IV 25.59 126.97 27.94 127.74 34.34 120.96 375.72 2499.00 36.00 81.12 34.49 81.51 33.08 82.12
AR7.IV 204.64 898.75 253.07 1176.24 259.51 793.17 306.13 1999.00 371.00 631.07 368.31 640.70 304.68 577.16
AR8.IV 65.28 322.19 70.27 351.64 94.71 305.08 228.45 1499.00 106.76 206.72 104.19 211.04 96.28 202.77
AR9.IV 728.77 2529.25 1013.92 3716.17 801.71 1769.29 170.05 999.00 919.45 1077.65 964.91 1229.64 763.12 1087.27
AR10.IV 8562.58 24680.46 12181.97 38837.02 5097.71 3120.96 241.59 499.00 6759.80 12075.35 8442.29 17011.97 4028.56 2664.40
AR11.IV 31.56 141.87 38.13 166.07 50.09 145.44 451.17 2499.00 49.88 103.35 49.68 103.07 48.20 105.10
AR12.IV 145.78 600.10 169.60 712.12 198.93 531.40 364.26 1999.00 200.83 340.72 197.77 338.44 195.61 356.39
AR13.IV 440.65 1529.76 575.73 2090.06 522.50 1171.10 281.26 1499.00 601.43 740.81 610.99 796.73 570.63 742.36
AR14.IV 1719.51 4518.16 2487.80 7285.00 1653.21 2444.48 217.36 999.00 1888.02 2081.56 2141.00 2866.52 1590.53 1555.14
AR15.IV 18150.07 42892.13 25975.18 64696.32 9908.05 3155.04 388.75 499.00 13853.29 18573.54 19881.86 31502.95 7078.72 2592.98

Table A.8: Computational Results obtained with the node selection methods on the SpAcyc networks.

A
p
p

en
d
ix

200
.

FLSM BDLSM
FIFO SLLF LS THR FIFO SLLF LS THR

CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter.

R1.I 1.66 6.72 2.69 6.45 2.56 6.71 0.44 6.61 80.58 94.06 79.89 94.40 79.66 94.97 80.19 94.08
R2.I 3.30 26.43 3.19 26.13 4.53 26.40 0.84 26.12 147.09 172.95 153.01 172.57 149.01 172.34 146.65 172.37
R3.I 1.90 9.76 1.77 9.48 1.51 9.30 0.22 9.33 78.29 90.43 81.01 90.18 78.10 90.96 77.69 90.98
R4.I 10.60 69.29 10.53 69.89 10.80 69.38 16.97 70.02 302.13 340.28 343.25 382.70 352.03 398.93 266.45 311.38
R5.I 11.03 71.00 11.19 71.05 11.99 71.33 15.56 74.01 187.88 201.98 189.68 193.07 181.29 193.84 128.68 143.65
R6.I 7.32 34.48 8.56 34.05 9.17 34.13 15.51 34.66 395.39 279.01 395.17 279.30 395.05 279.99 393.14 283.61
R7.I 4.87 19.37 4.73 19.43 5.17 19.02 0.75 19.54 285.79 200.47 287.20 200.23 284.74 200.82 282.89 200.55
R8.I 19.92 85.11 19.10 85.04 19.01 85.58 16.28 89.07 480.55 328.19 505.26 346.48 489.64 335.45 420.96 298.49
R9.I 21.14 86.46 21.54 86.35 21.20 86.97 16.45 88.81 560.63 380.68 529.06 359.74 528.33 359.75 517.12 365.48
R10.I 588.07 2119.28 592.87 2126.71 601.14 2119.05 1685.36 6261.87 5694.55 3608.18 5559.57 3513.90 4974.66 3108.70 8282.79 5725.02
R11.I 0.79 3.46 0.68 3.64 1.76 3.24 0.01 3.05 145.68 86.97 144.00 86.94 144.09 86.40 144.70 86.65
R12.I 19.86 69.73 19.95 69.89 20.05 69.69 15.39 71.66 702.88 411.90 704.57 411.77 705.48 411.34 708.64 423.86
R13.I 12.18 45.29 12.24 45.54 14.66 45.98 15.21 45.94 316.46 179.66 310.14 175.51 314.15 179.85 212.27 125.79
R14.I 129.38 442.63 131.08 444.50 126.42 442.33 172.35 661.40 2019.45 1133.91 2021.32 1127.65 1701.23 946.84 2018.75 1185.40
R15.I 950.91 2865.59 960.63 2884.31 971.98 2865.15 4352.23 12462.33 8286.88 4363.77 8663.89 4548.24 7396.80 3860.25 13150.64 7597.63
R1.II 2.50 20.25 2.71 20.17 3.97 20.78 16.56 20.35 240.76 281.11 239.12 281.35 241.29 281.73 236.20 281.13
R2.II 3.04 22.69 3.52 22.77 2.82 22.90 0.45 22.08 256.92 298.48 258.38 298.67 256.34 298.99 254.13 298.76
R3.II 10.03 74.25 11.71 75.27 11.64 74.27 15.64 76.79 523.33 607.49 523.38 607.06 524.83 607.60 424.14 503.23
R4.II 18.33 126.14 18.27 126.84 18.66 126.21 16.48 129.69 446.55 506.88 456.75 514.97 447.01 502.93 458.41 538.85
R5.II 264.70 1580.93 265.67 1586.25 270.37 1580.95 452.13 2939.30 2955.77 3184.31 2891.31 3115.23 2673.05 2844.92 3295.34 3784.41
R6.II 16.22 72.23 16.52 72.59 16.09 72.73 15.89 74.86 346.21 238.34 347.16 238.01 346.76 238.85 252.32 182.46
R7.II 9.20 39.73 9.83 39.13 9.71 39.57 0.14 39.34 494.46 345.51 494.24 345.86 491.08 345.82 189.36 134.92
R8.II 21.99 87.71 20.81 87.40 22.50 87.56 16.37 92.27 463.33 317.99 480.44 330.43 515.51 355.63 339.17 239.35
R9.II 169.58 670.99 169.42 670.04 170.04 670.25 203.07 852.97 2295.63 1545.47 2396.15 1619.24 2039.49 1361.61 2248.86 1582.63
R10.II 1217.63 4088.44 1215.88 4103.29 1259.78 4088.65 6770.63 19650.06 13853.72 8899.83 13719.05 8815.73 13581.79 8591.84 21014.32 14340.53
R11.II 36.33 134.43 37.79 134.59 36.71 134.19 31.59 141.41 915.90 532.02 923.17 537.86 948.12 550.39 850.48 509.92
R12.II 87.28 303.89 87.37 305.03 85.66 303.28 94.78 340.57 2724.71 1585.14 2624.64 1530.82 2414.36 1404.63 2151.20 1286.83
R13.II 59.19 205.57 60.80 208.81 57.24 205.62 47.12 220.23 1472.96 847.87 1391.76 799.17 1485.54 851.91 1440.22 853.82
R14.II 137.32 450.97 137.84 450.32 136.48 450.69 156.25 552.26 2109.12 1185.19 2110.60 1185.03 1811.34 1003.10 1826.99 1074.31
R15.II 3160.42 9164.04 3180.85 9213.02 3389.32 9164.85 165173.75 121638.28 24339.81 12783.16 24226.99 12741.00 21308.95 11035.25 69723.85 40079.70
R1.III 18.62 130.36 19.10 130.51 18.34 130.68 16.50 130.41 641.96 745.40 640.48 745.16 640.00 745.18 627.91 745.54
R2.III 3.39 26.11 3.65 26.65 3.12 26.98 0.37 26.06 132.03 153.99 185.09 215.97 185.46 215.09 131.63 153.72
R3.III 10.16 70.80 10.25 70.26 10.65 70.97 0.96 71.59 581.26 672.32 586.41 672.50 633.13 733.28 500.09 592.96
R4.III 7.74 48.39 7.10 48.96 6.57 48.41 16.56 48.03 313.39 354.53 313.80 354.18 314.70 354.86 241.75 277.11
R5.III 375.64 2243.26 375.36 2249.61 389.74 2243.42 827.07 5296.35 3985.29 4276.52 3857.15 4130.29 3377.71 3557.64 4386.32 5061.84
R6.III 16.42 69.82 15.82 69.87 16.49 69.66 32.33 72.67 575.76 403.57 576.36 403.22 595.22 416.73 225.57 160.35
R7.III 33.15 142.34 33.45 142.72 34.42 142.04 31.61 152.63 1131.32 791.98 1076.12 753.97 974.10 680.33 774.86 558.76
R8.III 381.99 1576.94 382.86 1579.80 384.31 1576.65 515.10 2302.36 5581.99 3807.52 5699.24 3895.76 4532.08 3047.27 4516.48 3220.18
R9.III 705.15 2776.34 707.96 2788.06 720.45 2776.24 1482.59 6023.20 8206.65 5518.01 8842.31 5966.96 7300.70 4857.81 8547.54 6061.38
R10.III 1548.85 5538.27 1555.80 5565.12 1645.33 5538.59 8752.48 23810.91 14970.49 9590.91 15291.44 9807.61 13168.97 8294.98 23425.93 16185.07
R11.III 112.69 400.32 112.43 400.90 111.40 400.50 124.93 425.39 3512.00 2064.38 3828.94 2254.96 3153.38 1843.80 3196.30 1917.74
R12.III 24.51 85.18 24.35 85.90 23.70 85.30 15.53 89.65 878.21 516.69 883.65 516.80 886.80 516.80 551.17 327.01
R13.III 124.99 430.71 125.74 431.67 122.27 430.85 156.35 570.33 2295.19 1320.49 2527.66 1460.76 2309.09 1323.43 2153.74 1281.88
R14.III 1358.22 4418.71 1365.98 4433.72 1407.85 4418.77 3463.24 11012.83 16838.03 9430.14 16502.24 9215.14 15101.85 8318.22 19568.37 11573.86
R15.III 7997.50 21426.95 8218.84 21591.44 9647.89 21426.59 12358679.68 912772.33 57779.48 29963.18 57797.37 30058.77 53029.66 26677.65 314894.58 170976.28
R1.IV 8.56 61.87 8.51 61.34 8.09 61.24 16.83 61.36 483.68 564.11 494.55 580.92 476.52 556.49 474.11 565.00
R2.IV 27.08 195.74 27.40 195.24 27.24 195.31 47.59 216.84 1620.58 1889.04 1621.16 1889.61 1633.79 1889.68 1902.41 2255.10
R3.IV 7.04 53.13 7.22 53.01 8.71 53.67 0.77 54.19 367.11 423.36 366.81 423.25 366.10 423.18 219.43 259.94

continued on next page

201
A

p
p

en
d
ix

continued from previous page
FLSM BDLSM

FIFO SLLF LS THR FIFO SLLF LS THR
CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter.

R4.IV 40.07 270.75 40.13 270.14 41.41 270.40 47.90 290.99 857.89 965.08 871.86 986.66 822.95 920.19 733.77 858.38
R5.IV 1817.30 9940.90 1838.00 9984.52 2046.02 9940.96 35272.60 61206.46 15521.88 16514.00 15567.89 16533.68 13523.88 13857.31 24519.29 28025.67
R6.IV 38.48 162.26 38.79 163.70 37.96 162.12 47.11 168.99 1164.75 819.17 1171.88 819.35 1163.57 817.13 1090.62 783.33
R7.IV 329.04 1401.88 331.16 1408.51 332.53 1401.97 453.91 1995.59 7525.21 5240.00 7088.61 4928.58 7409.84 5116.40 8484.38 6087.46
R8.IV 106.74 440.37 106.66 440.63 106.51 440.38 156.83 482.24 2387.98 1646.68 2432.58 1679.58 2074.83 1415.41 1747.31 1242.16
R9.IV 1273.94 4955.72 1281.12 4981.86 1335.41 4955.36 3510.94 12489.77 13502.48 8973.70 13219.94 8774.02 12341.06 8070.60 14527.47 10273.61
R10.IV 8607.82 26365.68 8906.02 26603.92 10857.65 26365.65 36388732.73 1574784.19 61302.16 37532.40 62215.77 38196.46 54733.69 32150.37 972851.92 448350.66
R11.IV 49.23 179.66 49.89 179.70 49.79 179.62 47.79 193.79 1788.42 1050.29 1790.78 1050.31 1790.05 1050.27 1745.75 1045.28
R12.IV 236.14 827.58 236.97 829.81 235.99 827.19 281.99 1088.83 5059.51 2929.50 5048.41 2925.12 3674.15 2096.14 3946.90 2361.16
R13.IV 784.86 2679.73 786.10 2687.19 798.01 2679.70 1170.32 4183.32 12855.93 7360.32 12841.46 7358.96 9744.19 5488.01 13262.54 7904.79
R14.IV 2737.04 8904.86 2757.27 8945.47 2953.32 8904.77 13322.41 32828.50 31597.72 17642.74 30578.20 17052.86 26134.11 14213.89 40716.31 24078.43
R15.IV 17807.97 41502.67 18791.16 42018.93 24075.49 41502.94 OoM OoM 111076.74 55845.38 109012.31 54990.51 106302.28 51010.87 OoM OoM

Table A.9: Computational Results obtained with the label selection methods on the SpRand networks OoM indicates out of
memory.

A
p
p

en
d
ix

202
.

FLSM BDLSM
FIFO SLLF LS THR FIFO SLLF LS THR

CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter.

AR1.I 0.20 11.96 2.41 11.21 2.92 11.45 2.91 11.60 85.31 99.71 91.85 107.54 93.08 107.46 89.08 107.88
AR2.I 3.33 26.35 4.09 26.26 2.57 25.04 1.31 26.07 148.99 172.23 146.78 172.67 151.98 172.76 144.31 172.36
AR3.I 1.54 9.36 1.93 9.09 0.98 9.92 2.87 9.70 78.27 90.51 78.46 90.92 78.58 90.07 76.17 90.88
AR4.I 10.41 69.04 10.36 69.45 12.97 69.47 12.35 69.77 298.67 338.36 324.36 372.81 344.57 384.48 259.32 301.38
AR5.I 11.63 70.24 9.03 69.68 11.09 69.41 9.56 70.99 187.52 201.54 178.27 193.62 191.39 193.04 176.29 199.27
AR6.I 6.78 33.35 6.97 33.01 7.39 33.76 8.37 33.21 394.74 279.23 393.93 279.14 400.26 279.31 388.86 279.63
AR7.I 6.57 19.87 3.14 19.90 4.82 19.64 6.89 19.21 284.95 200.31 284.95 200.48 288.89 200.72 280.08 200.72
AR8.I 19.77 80.15 18.38 81.05 17.23 79.07 17.47 82.90 527.11 361.47 532.29 365.63 541.27 359.97 461.08 328.50
AR9.I 19.27 83.29 21.62 83.89 22.67 83.73 20.45 83.67 548.33 377.84 525.76 360.78 542.22 359.04 518.39 366.52
AR10.I 427.87 1536.13 412.23 1474.76 400.99 1409.40 373.21 1575.20 4690.46 2953.15 4551.58 2864.50 4441.17 2566.33 4268.76 2912.10
AR11.I 1.39 3.55 1.31 3.82 2.21 3.21 0.43 3.93 143.74 86.15 145.81 86.39 145.20 86.02 144.11 86.49
AR12.I 18.12 65.11 19.43 65.01 17.75 65.85 17.21 65.22 702.25 411.11 700.64 410.57 713.23 410.56 690.19 411.49
AR13.I 11.51 42.25 9.60 42.63 12.18 42.06 10.52 42.03 322.94 184.77 321.41 184.57 334.98 184.07 250.38 148.66
AR14.I 116.01 407.49 118.17 405.84 147.13 399.68 109.88 405.47 1872.90 1048.27 1857.65 1040.89 1678.48 878.93 1795.20 1055.79
AR15.I 647.14 1946.65 649.44 1940.28 603.27 1779.51 545.67 1912.07 6562.64 3446.94 6442.20 3382.69 6129.55 2943.76 6050.22 3450.73
AR1.II 3.40 20.21 3.57 20.61 5.77 20.03 1.21 20.79 304.22 360.17 304.70 360.76 309.09 360.29 290.13 347.17
AR2.II 2.97 22.89 5.56 22.49 4.84 22.10 2.97 22.33 254.37 298.86 258.62 298.98 256.94 298.35 253.64 298.40
AR3.II 10.02 70.14 11.58 68.23 10.48 64.84 10.83 66.34 558.84 649.17 550.46 644.22 556.27 640.53 520.32 619.19
AR4.II 18.79 119.08 17.64 121.18 18.00 117.77 17.83 117.22 468.39 533.33 471.58 535.31 472.90 521.98 465.84 546.51
AR5.II 205.49 1236.13 202.43 1222.96 203.22 1191.90 179.83 1253.98 2663.55 2845.79 2578.67 2762.26 2481.48 2488.05 2445.35 2783.33
AR6.II 13.46 58.75 13.70 57.39 12.69 57.85 12.39 57.47 523.65 364.82 520.27 363.36 532.22 362.86 510.92 365.01
AR7.II 7.98 39.33 9.81 39.48 6.81 39.81 7.36 39.51 492.84 345.20 491.69 345.31 499.27 345.12 482.95 344.59
AR8.II 17.37 82.88 18.28 80.08 17.99 80.69 19.57 81.11 461.55 317.56 479.54 330.69 519.87 346.80 347.05 246.02
AR9.II 153.81 612.07 148.76 602.78 151.00 593.03 137.68 611.46 2187.81 1472.83 2278.02 1538.06 2063.25 1313.53 1980.08 1393.93
AR10.II 823.58 2781.48 818.85 2762.53 771.79 2556.36 676.36 2761.98 10352.75 6555.85 10182.00 6452.11 10339.32 6156.81 9719.16 6595.28
AR11.II 35.72 126.82 34.31 125.78 34.56 125.80 33.07 126.76 930.19 541.31 930.91 541.91 966.52 545.39 903.37 541.93
AR12.II 75.13 275.06 70.15 262.43 73.35 260.73 69.81 270.61 2769.84 1619.72 2727.26 1595.80 2668.69 1525.60 2613.66 1561.99
AR13.II 55.48 190.47 56.07 196.71 54.40 189.04 49.01 192.12 1423.57 820.28 1353.34 778.18 1476.10 823.62 1331.94 791.97
AR14.II 123.16 411.53 123.27 413.14 123.05 407.26 111.36 410.67 2041.46 1148.18 2039.06 1147.70 1848.00 971.22 1728.48 1016.58
AR15.II 1802.42 5174.11 1798.11 5156.48 1598.07 4483.17 1523.43 5119.58 16307.94 8480.25 16046.86 8349.74 15254.51 7242.78 15492.24 8777.65
AR1.III 6.24 33.01 3.09 33.28 5.33 33.58 3.63 33.95 418.40 495.04 420.35 495.91 423.23 495.26 415.54 495.24
AR2.III 4.28 26.52 3.80 26.50 4.68 26.38 3.32 26.68 131.58 153.25 185.83 215.68 189.58 215.76 127.99 153.78
AR3.III 9.91 69.51 10.48 69.10 10.09 69.07 10.32 69.40 541.26 627.16 543.75 629.85 591.60 679.86 581.47 689.94
AR4.III 4.91 48.50 5.78 48.72 6.88 48.85 6.42 48.95 311.66 353.25 311.82 353.70 316.67 353.75 302.83 352.08
AR5.III 290.00 1743.75 288.52 1726.29 288.13 1668.53 249.21 1755.95 3492.37 3729.31 3342.81 3557.26 3223.92 3169.54 3219.34 3668.34
AR6.III 15.00 69.32 15.70 69.08 15.21 68.64 15.94 69.17 575.47 403.83 574.85 403.93 610.76 416.03 373.62 267.36
AR7.III 31.87 141.25 31.69 138.61 31.59 138.30 31.60 141.91 1128.13 791.53 1076.37 753.44 1000.95 680.12 936.49 670.96
AR8.III 338.21 1420.28 331.22 1391.33 328.04 1357.28 311.57 1406.85 5237.44 3563.31 5011.48 3408.97 4648.71 2956.71 4628.11 3291.05
AR9.III 589.29 2343.63 582.57 2319.33 570.50 2224.61 529.73 2342.19 7447.68 4993.65 7934.39 5324.09 6645.33 4126.74 6502.09 4588.81
AR10.III 1014.57 3645.35 1009.10 3600.36 927.82 3195.89 855.90 3555.85 10233.01 6476.52 10165.44 6433.80 9426.97 5506.59 9387.79 6409.03
AR11.III 92.56 333.77 92.76 333.74 92.01 328.81 87.60 334.92 4062.15 2392.40 4137.88 2438.89 4099.27 2368.49 3740.40 2243.25
AR12.III 25.85 85.39 24.66 85.31 26.54 85.96 21.86 85.63 868.19 508.43 866.21 508.74 888.28 508.44 841.94 502.93
AR13.III 114.82 395.36 113.76 393.97 114.83 391.16 103.24 396.99 2193.97 1260.77 2377.57 1372.68 2237.80 1238.53 1987.93 1182.75
AR14.III 1094.19 3570.52 1071.37 3488.71 1047.62 3316.98 968.95 3537.41 13779.11 7647.39 13256.27 7352.20 13595.34 7018.43 12374.64 7273.64
AR15.III 3688.85 9720.08 3668.31 9590.77 3078.34 7860.20 3092.62 9547.09 32097.60 16423.60 31495.45 16160.21 29109.02 13663.01 28992.04 16172.28
AR1.IV 22.50 155.49 21.69 154.90 19.59 153.73 20.00 155.68 1097.81 1287.36 1243.27 1462.85 1308.35 1512.62 1050.17 1255.44
AR2.IV 24.40 176.77 25.82 169.85 23.64 169.83 23.66 176.42 1472.08 1720.68 1451.40 1696.69 1466.97 1692.21 1445.26 1719.11
AR3.IV 7.11 53.13 5.38 53.63 8.28 53.19 7.73 53.38 360.59 420.66 362.24 420.93 365.50 420.33 263.66 311.42

continued on next page

203
A

p
p

en
d
ix

continued from previous page
FLSM BDLSM

FIFO SLLF LS THR FIFO SLLF LS THR
CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter. CPU # Iter.

AR4.IV 36.68 261.40 36.32 258.12 38.02 257.06 34.60 261.57 828.92 936.10 859.20 970.26 841.65 913.93 778.20 911.18
AR5.IV 1207.91 6564.78 1191.62 6445.90 1160.66 5914.02 1010.76 6532.18 11376.86 11824.28 11383.51 11832.68 10578.51 9965.59 9840.27 11056.95
AR6.IV 36.89 157.55 37.64 158.07 35.29 156.20 35.76 159.17 1418.60 1004.16 1420.14 1004.63 1447.40 1004.02 1389.12 1001.56
AR7.IV 297.03 1280.23 295.10 1275.75 293.04 1240.13 280.17 1284.47 7844.85 5457.92 7797.91 5425.37 8153.88 5499.65 7250.21 5187.12
AR8.IV 97.11 409.07 96.16 405.50 96.91 401.85 91.73 407.31 2350.40 1620.98 2369.69 1633.08 2057.82 1347.84 1919.58 1366.71
AR9.IV 1008.44 3947.47 989.29 3859.10 957.84 3605.01 898.38 3914.38 12163.88 8063.15 11937.26 7911.09 11573.60 7069.93 10427.63 7347.47
AR10.IV 3887.01 11708.90 3823.15 11522.22 3240.88 9387.75 3315.71 11641.05 34474.81 20889.41 33735.96 20525.44 29965.77 16652.34 29681.65 19642.82
AR11.IV 75.55 176.43 76.03 176.07 47.38 173.07 46.11 177.00 1784.52 1047.29 1784.22 1047.42 1818.42 1047.77 1735.46 1040.30
AR12.IV 219.84 780.07 224.60 785.41 216.61 764.90 207.37 781.40 4674.92 2703.47 4645.76 2685.85 3645.05 1978.63 4142.64 2474.73
AR13.IV 677.65 2347.41 673.87 2326.70 659.77 2240.79 628.82 2343.08 12042.73 6873.51 11860.66 6770.43 9902.52 5288.08 10443.47 6205.09
AR14.IV 1999.66 6482.39 1954.94 6341.80 1901.13 5899.03 1792.64 6445.77 24902.30 13769.00 23884.36 13205.50 23138.77 11789.90 21948.59 12875.82
AR15.IV 6743.37 15636.20 6728.91 15795.50 5231.67 12058.31 5426.29 14746.04 52598.95 26053.09 51682.02 25726.70 47254.85 21598.11 47207.39 25646.87

Table A.10: Computational Results obtained with the label selection methods on the SpRand networks OoM indicates out
of memory.

Appendix 204

RLA RLA
CPU # Iter. CPU # Iter.

R1.I 1942.38 7316 AR1.I 1250.03 5491
R2.I 920.69 6289 AR2.I 1422.33 6289
R3.I 905 6234 AR3.I 1265.89 6234
R4.I 1685.97 8964 AR4.I 1875.67 8964
R5.I 2871.92 19420 AR5.I 4110.38 19420
R6.I 2447.79 10129 AR6.I 3453.34 10129
R7.I 2917.62 11826 AR7.I 3984.89 11826
R8.I 3946.21 13889 AR8.I 4735.49 13889
R9.I 7300.85 20638 AR9.I 7141.39 20638
R10.I 12569.05 298053 AR10.I 114750.67 298053
R11.I 3095.92 10899 AR11.I 4391.38 10899
R12.I 4264.64 14775 AR12.I 5938.46 14775
R13.I 4509.75 15629 AR13.I 6313.01 15629
R14.I 13448.37 46128 AR14.I 18906.64 46128
R15.I 16345.49 463594 AR15.I 222937.61 463594
R1.II 1451.35 9531 AR1.II 1860.03 9249
R2.II 1373.22 9504 AR2.II 1372.1 9504
R3.II 2427.51 14999 AR3.II 3292.98 14999
R4.II 3447.93 23434 AR4.II 3151.91 23434
R5.II 16754.67 161154 AR5.II 24838.74 161154
R6.II 4898.86 16164 AR6.II 4495.99 16164
R7.II 4556.05 18896 AR7.II 4118.9 18896
R8.II 8627.75 35658 AR8.II 7815.4 35658
R9.II 26255.2 104927 AR9.II 23978.46 104927
R10.II 28849.2 1515351 AR10.II 26973.79 26004
R11.II 10828 26004 AR11.II 7238.23 27665
R12.II 11313 27665 AR12.II 16708.79 62787
R13.II 25938.48 62787 AR13.II 70637.12 243752
R14.II 34265.07 243752 AR14.II 70637.93 243752
R15.II 39909.61 2449748 AR15.II 132941.97 2449748
R1.III 2247.16 14941 AR1.III 3281.05 16196
R2.III 2168.37 14916 AR2.III 3016.02 14916
R3.III 2933.3 20092 AR3.III 4078.9 20092
R4.III 8658.63 57095 AR4.III 12016.9 57095
R5.III 21431.76 252628 AR5.III 94717.91 392638
R6.III 13813.24 39181 AR6.III 14703.03 39181
R7.III 17031.08 49314 AR7.III 18312.63 49314
R8.III 39453.53 111077 AR8.III 42234.65 111077
R9.III 110781.39 286352 AR9.III 117406.11 286352
R10.III 182693.16 2375496 AR10.III 186618.16 4135482
R11.III 25890.79 62447 AR11.III 27859.34 62447
R12.III 49063.62 116787 AR12.III 52703.77 116787
R13.III 73563.22 170375 AR13.III 78953.81 170375
R14.III 166110.05 382111 AR14.III 333792.74 661431
R15.III 145279.9 3840277 AR15.III 265010.09 10341540
R1.IV 2808.9 18541 R1.IV 4726.67 23541
R2.IV 3837.71 26159 AR2.IV 4344.63 21681
R3.IV 6973.63 46613 AR3.IV 5875.02 29204
R4.IV 18420.13 115993 AR4.IV 21514.43 102953
R5.IV 51775.43 313499 AR5.IV 136442.69 570714
R6.IV 19516.48 80196 AR6.IV 21180.31 56951
R7.IV 22308.32 94986 AR7.IV 26379.77 71680
R8.IV 49303.2 282283 AR8.IV 60839.19 161455
R9.IV 138439.96 355348 AR9.IV 169126.67 416223
R10.IV 123138.68 2947867 AR10.IV 217712.76 6011076
R11.IV 32354.48 104441 AR11.IV 40132.12 90769
R12.IV 61312.76 264009 AR12.IV 75919.83 169754
R13.IV 142360.74 466005 AR13.IV 113733.68 247646
R14.IV 321457.65 743334 AR14.IV 480835.53 961414
R15.IV 280651.2 7470630 AR15.IV 736773.45 15031811

Table A.11: Computational Results obtained with the RLA on the SpRand and SpAcyc
networks.

205 Appendix

FLSM.LS.2nd BDLSM.LS.2nd

CPU # Iter. CPU # Iter.
c101 5460.05 32674.75 9679.47 11663.61
c102 309146.08 478896.86 145755.35 96187.22
c103 OoM OoM 382925.23 195931.81
c104 OoM OoM OoM OoM
c105 33648.1 94287.8 31001.15 28907.62
c106 29129.85 123739.07 46001.04 50838.25
c107 52428.12 220173.65 68367 63260.7
c108 92783.15 311397.05 113612.74 103431.48
c109 OoM OoM 305340.95 213659.72
r101 156.64 515.15 421.47 559.57
r102 8455.55 22851.55 15423.74 7597.23
r103 11622.44 47300.09 24978.1 19758.9
r104 28231.73 95857.26 46537.32 30136.8
r105 952.04 7491.93 2657.57 4221.89
r106 6583.13 36850.3 17803.82 19639.21
r107 14992.43 60743.4 36893.64 31808.55
r108 26482.12 91481.4 62811.77 49833.94
r109 3837.81 25057.76 12778.19 18576.96
r110 8923.16 45480.46 24961.34 27107.28
r111 10359.26 49042.03 29707.94 37699.89
r112 13541.28 55778.46 35331.74 33416.56
rc101 1997.61 9139.39 4453.5 7243.95
rc102 13541.36 34840.77 18362.14 20625.86
rc103 16879.79 69133.27 43455.47 34090.49
rc104 30279.82 101443.22 69654.97 50543.55
rc105 2979.09 20556.18 8534.16 10404.88
rc106 3697.9 24511.32 16834.66 25995.53
rc107 9282.86 48633.74 24988.39 25791.3
rc108 14898.69 65198.16 36419.68 33466.73

Table A.12: Computational Results obtained with the label selection methods on the
Solomon’s Networks OoM indicates out of memory.

FNSM.SALS.2nd BDNSM.SALS.2nd

CPU # Iter. CPU # Iter.
c101 874.73 546.64 453.7 219.39
c102 257712.37 942.93 10187.82 495.94
c103 OoM OoM 34820.78 684.99
c104 OoM OoM 85348.74 998.18
c105 11481.98 725.16 1685.88 352.73
c106 7113.6 747.54 3401 376.94
c107 7628.86 750.69 3884.27 416.81
c108 19624.35 903.63 9328.59 666.59
c109 77828.58 1233.04 28611.45 838.35
r101 110.35 166.97 351.75 227.13
r102 4774.02 571.99 3518.54 550.38
r103 16193.56 674.52 3650.39 622.27
r104 12917.17 848.8 9298.71 773.63
r105 312.65 484.8 515.31 443.44
r106 2995.03 697.52 2512.88 639.71
r107 7457.73 877.99 5834.43 789.47
r108 14352.89 1017.72 12059.26 830.79
r109 1591.24 632.29 2121.13 635.98
r110 3947.38 817.79 4758.79 838.76
r111 4727.87 757.23 5085.84 719.78
r112 8237.64 1212.33 8845.71 1056.62
rc101 312.83 442.48 546.69 431.74
rc102 2979.82 626.97 2902.37 644.36
rc103 8050.04 912.25 7082.35 939.75
rc104 15554.45 1059.13 13494.43 1026.39
rc105 1139.22 517.61 1435.79 484.18
rc106 1732.32 799.75 2403.67 775.86
rc107 4165.86 818 5008.6 711.6
rc108 7551.04 1233.37 8377.76 924.09

Table A.13: Computational Results obtained with the node selection methods on the
Solomon’s Networks OoM indicates out of memory.

Appendix B - Algorithms illustrations

In what follows, we illustrate the operations executed by the proposed
node selection and label selection approaches during the first iteration,

5.7. Conclusions 206

by considering the network reported in Figure B.1. It is assumed that
the origin node is s = 1 and the destination node is d = 7.

Figure B.1: Problem data. Time window shown next to each node. Cost/time shown
next to each arc.

For each pair of nodes i and j, Table B.1 gives the value of the
lower bound LBij, used to identify the unreachable nodes.

From To
1 2 3 4 5 6 7

1 - 5 6 3 7 5 15
2 - - - 9 13 11 21
3 - 14 - 8 12 10 20
4 - 6 - - 4 2 12
5 - 11 - 20 - 7 11
6 - 4 - 13 17 - 10

Table B.1: Lower bound values for each pair of nodes - indicates that a path connecting
the considered nodes does not exist.

In Figures B.2-B.7 the labels, after the first iteration of the pro-
posed approaches, are shown next to the nodes. They take the follow-
ing form [(S), C, T, t] where S is the vector of dummy node resources,
C is the cost, T is the time and t is the departure time from the des-
tination node; this last value is present only in the labels generated
during the backward phase. In the bi-directional algorithms the labels
reported in bold are those generated during the forward phase.

207 Chapter 5

Figure B.2: At the initialisation phase the label at node 1 is created and it is added into
set L, This label is selected and removed from L and the possibility to extend it to node
2, 3 and 4 is evaluated. The only generated label is that of node 4, while the potential
labels for node 2 and 3 have node 7 as an unreachable node. For this reason they are not
stored.

Figure B.3: In the BLSM six labels are created at node 7 each of them starting to
different feasible instant time and they are included into set L. The first label, starting at
instant zero (that has the possibility to represents a path from node 1 to node 7 with a
value of T equals to 20), is selected and removed from L. One label to each node 4, 5 and
6 is generated and stored, respectively. All these new labels have the possibility to reach
node 1.

5.7. Conclusions 208

Figure B.4: One forward label and six backward labels are created at node 1 and 7,
respectively. First, from the set Lfw the label is selected and a new label is generated and
stored only for node 4. The motivation are that explained in Figure B.2. In the second
phase, a label is selected from the top of Lbw and labels are generated for node 4, 5 and 6.

Figure B.5: In the FNSM a label for node 1 is created and the node is added into the
list L. Node 1 is selected and removed from L. The label at node 1 is extended to node
2, 3 and 4. Only the label associated with node 4 is stored, because the labels for nodes
2 and 3, generated starting from the label associated with the selected node, do not have
the potential to reach node 7 in its time window.

209 Chapter 5

Figure B.6: Node 7 is added to the list L and for each feasible instant time, a label is
created for node 7. This node is selected and removed from L. All the labels belonging
to Dbw(7) are extended to nodes 4, 5 and 6. The labels generated for nodes 4 and 6
are all stored, while for node 5 only the first three labels are considered, since the labels
generated from those that start from node 7 at instant time 3, 4 and 5 have node 1 as an
unreachable node.

5.7. Conclusions 210

Figure B.7: One forward label and six backward labels are created at node 1 and 7,
respectively. In the forward phase, from the set Lfw node 1 is selected and a new label is
generated and stored only for node 4. In the backward phase, the node 7 is selected and
removed from Lbw. The labels at node 7 are used to generate the sets of labels for node
4, 5 and 6, respectively. Also in this case for node 5 only three labels are stored.

Chapter 6

A computational study of the
resolution methods for the
resource constrained elementary
shortest path problem

Luigi Di Puglia Pugliese

Department of Electronics, Informatics and Systems, University of
Calabria, 87036, Rende (CS), Italy

Francesca Guerriero

Department of Electronics, Informatics and Systems, University of
Calabria, 87036, Rende (CS), Italy

Abstract

We present the results of a computational investigation of solution ap-
proaches for the resource constrained elementary shortest path prob-
lem (RCESPP). In particular, the best known algorithms were tested
on several problem instances taken from the literature. The main aims
are to provide a detailed state of the art and to evaluate methods that

211

6.1. Introduction 212

turn out to be the most promising for solving the problem. This work
represents the first attempt to computationally compare solution ap-
proaches for the RCESPP .

Keywords: resource constraints; elementary shortest path; dynamic
programming.

6.1 Introduction

The Resource Constrained Elementary Shortest Path Problem (RCESPP)
is to find the least cost path from a source node to a destination node,
for which the resources consumed along this path must satisfy feasi-
bility criteria.

The RCESPP arises when the Vehicle Routing Problem (VRP),
with additional constraints, is solved via column generation and branch
and price methods. In practice, the additional constraints to the clas-
sical VRP are related to the capacity of the vehicles and to the specific
requirements of the customers/nodes. The latter case usually refers
to the service time, i.e. a time window is associated with each cas-
tomer/node. It is important to point out that both soft and hard
time windows constraints can be considered. In the former case, the
visiting of a node is allowed also out the time window and a penalty
cost is paied (see the work of Qureshi et al. [117]). In the latter case,
the service time must fall within the time windows. Refering to the
aforementioned constraints, in the scientific literature three main in-
stances of the constrained VRP were defined: the Capacitad VRP
(shortly CVRP , see Toth and Vigo [133]); the VRP with Distribution
and Collection (shortly VRPDC, see Dell’Amico et al. [48]); the Ca-
pacited VRP with Time Windows (shortly CVRPT W , see Cordeau
et al. [37]). When the aforementioned problems are solved via branch
and price method, the pricing problem requires to find a RCESPP on
a graph with positive cost on the arcs and non-negative prizes on the
nodes. The cost of the path is given by the sum of the cost on the arcs

213 Chapter 6

traversed minus the sum of the prizes on the visited nodes. The prizes
can be taken into account considering the cost on the arcs computed
by subtracting from the original cost the prize on the tail node. It is
evident that in this case the cost of the path is only the sum of the
cost on the arcs that belong to the path. In addition, since the prizes
are non-negative values, the cost on the arcs can be negative.

Another class of problems that is solved via column generation
method is represented by the short-haul aircraft rotation problems
([13]). Also in this case, the pricing problem is mathematically for-
mulated as the RCESPP .

Since the RCESPP is defined on general graphs and the costs
are not constrained in sign, it is necessary to impose that the opti-
mal solution must be elementary, that is a node cannot appear more
than once in the optimal path. The RCESPP has been proven to be
strongly NP-hard by Dror in [59].

The scientific literature provides several optimal solution approaches.
Tipically, the proposed methods are based on the dynamic program-
ming formulation of the problem. The main differences concern the
way in which the constrain related to the elementarity of the optimal
path is taken into account.

To the best of our knowledge, the most efficient solution ap-
proaches to solve the RCESPP are those based on the idea of Kohl
[96]. The scientific literature provides two algorithms based on this
concept, that is the solution approach proposed by Boland et al. [22]
and the method of Righini and Salani [120]. It is important to point
out that the two algorithms have been tested on different sets of in-
stances and they have been developed and published in the same time
period. The main aim of this work is to compare the two algorithms
on the same set of test problems and to provide a comprehensive com-
putational study to prove the practical behaviours of both methods.
In addition, the considered algorithms can be viewed as derived from a
unique framework. In this paper, we formalize the prototype method

6.2. State of the art 214

from which the solution approaches studied in this work can be de-
rived.

The outline of this paper is given as follows: in the next Section
we review the solution approaches proposed in the scientific literature
to address the RCESPP . In Section 6.3 we give the formal definition
of the RCESPP . The prototype framework is presented in Section
6.4. A description of the method proposed in [120] is given in Section
6.5 while in Section 6.6 we describe in detail the solution approach
developed in [22]. Comments about the efficiency of the methods are
given in Section 6.7. Section 6.8 is devoted to the empirical compar-
ison of the performance of the considered solution approaches. Final
remarks and conclusions are given in Section 6.9.

6.2 State of the art

In the last ten years, the RCESPP have been well studied. Several
optimal solution approaches based on dynamic programming formu-
lation have been developed starting to the seminal work of Beasley
and Christofides ([16]). Before this work, several papers addressed
the problem by solving a relaxation, that is the Resource Constrained
Shortest Path Problem (RCSPP), with the aim to eliminate only cy-
cles of length two. All these works used the procedure of eliminating
cycles of length two proposed in the context of the shortest path prob-
lem, that was addressed first by Houck et al. [86] and Christofides et
al. [32].

A wide number of papers have tackled the RCSPP and several
efficient algorithms have been proposed. Briefly, we can classified these
approaches in three main groups: 1) solution approaches based on
the k-shortest path ([125], [81], [105]); 2) those based on dynamic
formulation ([94], [97], [53], [52], [50], [92], [60]); 3) methods that close
the duality gap obtained with the Lagrangian relaxation (Handler and
Zang [81], Beasley and Christofides [16]). Works that appear in more

215 Chapter 6

than one group propose solution approaches that combine different
methods.

In the work of Beasley and Christofides [16], for the first time
the idea to optimality solve the RCESPP via dynamic programming
procedures was introduced. The authors gave an integer programming
formulation for the RCESPP considering either lower and upper lim-
its on the consumption of resources. In addition, no arcs can appear
more than once in the optimal solution. The authors used the same
formulation to model also the non elementary counterpart. However,
they pointed out that the latter formulation allows to reach an ele-
mentary path if the graph does not contains negative cost cycles and
the lower limits on the consumption of resources equals zero. On the
other hand, it is necessary to impose that the solution is elementary.
Beasley and Christofides discussed on the possibility to define a dy-
namic programming recursion that is able to solve both models. It
is important to point out that if either the graph contains negative
cost cycles or the lower limits are not trivial, then the solution found
cannot be elementary. To apply dynamic programming procedure for
optimally solving the RCESPP , the authors proposed to consider fur-
ther resources, one for each node and the lower and upper limits are set
to zero and one, respectively. In other words, the RCESPP is treated
as theRCSPP with additional (node) resources. Since the state-space
increases drastically with respect to the number of resources, the same
authors underlined that the dynamic programming recursion could be
not efficient, thus they discarded this formulation for the RCESPP
and did not conduct any computational tests.

The idea of associating extra resources with each node was later
studied by Kohl in [96]. The author proposed a solution approach
that repeatedly solves a relaxation of the state-space of the dynamic
programming algorithm related to the RCSPP with the additional
node resources introduced by Beasley and Christofides in [16]. Kohl
suggested to introduce additional resources only for some nodes. This

6.2. State of the art 216

yields a relaxation of the RCESPP , which could be solved to obtain
an optimal path which may contain repeated nodes. An extra resource
is added for each node that appears more than once in the optimal
solution obtained so far. The problem defined on the new state-space
is re-solved, until the optimal solution does not contain cycles. In
addition, the author proposed an acceleration of this method. In par-
ticular, he observed that two or more nodes cannot be part of the
same path becouse of the resource limitation. In this case, only one
resource is introduced that is associated with this set of nodes. In
other words, if a node of this set is part of a sub-path, the consump-
tion of the additional resource is set equal to one and no other node
belongs to the set can be reached from this sub-path. As in the case
of Beasley and Christofides, the idea was not implemented and no
numerical experiments were conducted.

Fifteen years later the work of Beasley and Christofides ([16]),
Feillet et al. in [64] gave computational studies related to the idea of
additional node resources as proposed in [16]. The authors extended
the label correcting algorithms proposed in [50] associating with each
node extended labels. In particular, each label is characterized by the
cost and the resources consumption as in [50] and by n binary extra
resources. It is important to point out that a label associated with
node i corresponds to a path from node s to node i. The consumption
of the additional resources is set equal to zero and the corresponding
label is updated when the node is visited. In other words, the addi-
tional resources have a consumption equal to one for each node that
belongs to the path associated with the label. On the other hand, the
availability of such resources equals zero. Feillet et al. extended the
concept of dominance relation on the newly defined label. In partic-
ular, a label cannot be dominated by one that has a higher number
of visited nodes. With these considerations, the label correcting algo-
rithm proposed by Desrochers ([50]) can be trivially extended, that is
the new definition of label ensures that all efficient solutions related to
elementary paths are found, thus the minimun feasible path from the

217 Chapter 6

source node to the destination node is obtained as well. The same au-
thors underlined that the size of the state-space increases drastically,
and one is likely to generate and to keep many more labels during
the algorithm. With the aim of reducing the number of generated
labels, the authors introduced the concept of unreachable nodes. For
a given label, the binary additional resources are set to one also for
the nodes that cannot be reached from the sub-path associated with
the label, because of resource limitations. With this modification, the
dominance relation becomes sharper and it is more likely to fathom
unpromising sub-paths. It is important to point out that the concept
of unreachable nodes introduced in [64] resembles the acceleration idea
of Kohl ([96]). The difference is that Kohl used this concept to reduce
the state-space while in Feillet et al. ([64]) the unreachable nodes are
introduced to accelerate the method from the point of view of the
running time.

For the first time Boland et al. in [22] implemented and numeri-
cally tested methods based on the idea of Kohl ([96]). The authors de-
fined an algorithm called General State-Space Augmenting Algorithm
(GSSAA, for short) that repeatedly solves a RCSPP with extra node
resources using a general label setting algorithm (GLSA, for short).
The GSSAA terminated when the GLSA returns an elementary path.
On the other hand, further (node) resources are introduced. The au-
thors proposed many strategies to increase the resources at each step
of the GSSAA. These strategies differ in how the repeated nodes
in the optimal solution of the GLSA are chosen for adding the ex-
tra resource. Boland et al. [[22]] used the concept of dominance and
unreachable nodes introduced by Feillet et al. in [64] to solve the
relaxed RCSPP with additional resources. The authors tested their
methods on randomly generated networks after a preprocessing stage.
In particular, their preprocessing is divided in two main phases. In
the first phase, the procedure of Aneja et al. ([5]) is runned with the
aim of reducing the size of the networks, in the second phase the least
resource path for each resource and for each pair of node is computed.

6.2. State of the art 218

The output of the second phase is used to identify the unreachable
nodes.

Righini and Salani in [119] proposed an enhanced version of the
dynamic programming algorithm proposed by Feillet et al. ([64]).
Their method takes advantages by the bi-directional seach. In partic-
ular, the label are extended both in forward and in backward starting
from the source node and the destination node, respectively. When
there are no more labels to be scanned, the optimal path is deter-
mined by joining forward and backward paths. The authors proposed
bounding criteria with the aim to stop the extention of a label in one
direction when it is guarantee that the remaining part of the path will
be generated in the other direction. The authors tested their method
on Solomon’s instances and they concluded that the use of a bounding
bi-directional search outperforms the mono-directional counterpart.
Two year later the same authors in [120] applied the bi-directional
search strategy to solve a relaxation of the RCESPP . In their work
they considered three different solution approaches: exact dynamic
programming, branch-and-bound based on state-space relaxation and
decremental state-space relaxation (DSSR, for short). The first ap-
proach is the same proposed in [119], in the second case lower bounds,
that is the optimal solutions of the relaxed RCESPP , computed with
the dynamic programming that uses the bounding bi-directional search
are exploited in a branch-and-bound framework. The DSSR works
as the GSSAA proposed by Boland et al. in [22]. The main dif-
ference concerns the dynamic programming algorithm used to solve
iteratively the relaxed problem. The authors concluded that the last
approach is faster than both exact dynamic programming and the
branch-and-bound algorithms. Also in this case the tests were con-
ducted on complete networks taken from the benchmark instances of
Solomon.

It is worth observing that Righini and Salani make use of the
DSSR to solve also the orienteering problem with time windows

219 Chapter 6

([121]). In their work, the authors consider the strategies proposed
by Boland et al. in [22] to increment the set of critical nodes. The
computational results underlined that no strategy dominates the oth-
ers on the Solomon’s banchmark instances. In addition, the authors
introduce ad hoc heuristics for the orienteering problem with the aim
of a priory identify some critical nodes in order to initialize the related
set. They conclude that the initialization of the set of critical nodes
rather than an initial empty set, accelerate the seach of the optimal
solution.

6.3 Problem definition and notation

The RCESPP is defined on a graph G = (N ,A), where N is the set
of n nodes and A represents the set of m ≤ |N ×N| arcs. With each
arc (i, j) ∈ A is associated a cost cij and a resource vector wij ∈ RR

+.
In particular, cij represents the cost to traverse the arc (i, j) ∈ A,
while wr

ij is the consumption of resource r, r = 1, . . . , R along the arc
(i, j) ∈ A. It is important to point out that resources consumed to the
nodes instead to the arcs can be easily considered as arcs resources.
In particular, it is sufficient to set the resources consumption of each
ingoing arc of a given node i equal to the resources consumption as-
sociated with i.

Given two distinct nodes s (referred to as source node) and d
(referred to as destination node), a path from s to d is a sequence of
nodes Πsd = {s = i1, . . . , il = d}, l ≥ 2 and a corresponding sequence
of l − 1 arcs such that the k-th arc in the sequence is (ik, ik+1) ∈ A
for k = 1, . . . , l − 1. Thus, each path contains at least one arc. A
path is said to be elementary if it does not contain repeated nodes.
An oriented cycle is an elementary path for which the source and
destination nodes are the same.

Since, ∀(i, j) ∈ A the cost cij is not constrained in sign the graph
can contain negative cost cycles. The aim is to find the least cost path

6.3. Problem definition and notation 220

from s to d, considering constraints on the resources consumption. In
particular, for each node i and for each resource r = 1, . . . , R upper
limits W r

i and lower limits W r
i are given, that is the resources con-

sumed along a path from s to i must be less than or equal to the upper
limit W r

i and must be greather than or equal to the lower limit W r
i .

In addition, a feasible path cannot contain repeated nodes that is the
path must be elementary.

Let Πsd be a path from node s to node d. We define withN(Πsd) =
{i0 = s, i1, . . . , il = d}, l ≥ 1 and A(Πsd) = {(iv, iv+1), v = 0, . . . , l−1}
the set of nodes and the set of arcs that belong to Πsd, respectively.
The cost of the path Π is c(Π) =

∑
(i,j)∈A(Π) cij and the resource con-

sumed along Π is w(Π) = {w1(Π), . . . , wR(Π)}. Depending on the
nature of the resource, the value wr(Π) of each resource r = 1, . . . , R
for the given path Π can be defined in different way. The optimal
solution is the feasible path with minimum cost.

The RCESPP can be mathematically formulated as follows.

minΠsd∈Π̄ c(Πsd)(6.1)

s.t.

W r
i ≤ wr(Πsi) ≤ W r

i , ∀r = 1, . . . , R,(6.2)

i ∈ N − {s}, Πsi ∈ Π̄,

where Π̄ is the set of all elemetary paths in G from node s to each
other node i ∈ N − {s}.

The general formulation of the problem reported above takes into
account both time windows and capacity constraints. In the first case,
the lower limit of node i represents the earliest arrival time to the node,
that is ai while the latest arrival time to node i, that is bi is viewed
as the upper limit W r

i . In the case of capacity constraints, the lower
limits W r

i is set equal to zero, while the upper limit equals the capacity

221 Chapter 6

of the vehicle.

When the RCESPP is solved by a dynamic programming proce-
dure, Hi labels yhi = (Shi ,W

h
i , C

h
i), h = 1, . . . , Hi are associated with

each node i ∈ N . Each label yhi contains the characteristics of the
h − st path Πh

si from node s to node i, that is W h
i = w(Πh

si) and
Ch
i = c(Πh

si). The vector Shi ∈ Rn, stores the consumption of re-
source at node up, p = 1, . . . , n. In particular, for each node up, if
up ∈ N(Πh

si) then Shi [p] = 1, otherwise Shi [p] = 0. In a dynamic pro-
gramming algorithm, labels are extended to generate feasible labels.
This recursion is run until no more labels can be extended. The la-
bel with the minimum cost associated with the destination node d is
the optimal solution. Different Resource Extension Functions (REFs)
can be defined, depending on the nature of the resources. For a de-
tailed description and classification of REFs the reader is refered to
the work of Irnich ([89]).

Since solving the RCESPP means to find a feasible path with
minimum cost and since with each path is associated a label, in what
follows the terms “solution”, “path” and “label” are used in unter-
changeable fashion.

Definition 6.3.1. Let y1
i and y2

i be two labels associated with node i.
We say that label y1

i dominates y2
i if S1

i ≤ S2
i , W 1

i ≤ W 2
i , C1

i ≤ C2
i

and at least one inequality is strictly.

Definition 6.3.2. A solution is said to be efficient if other solutions,
that dominate it, do not exist.

Definition 6.3.3. A path Πsi from node s to node i is said to be
feasible if Wu ≤ Wu ≤ Wu, for all u ∈ N(Πsi).

Definition 6.3.4. Let MΠ(j) be the multiplicity of node j in path Π,
that is MΠ(j) = |{v : 0 ≤ v ≤ |N(Π)|, iv = j}|. The path Π is said to
be an elementary path if MΠ(j) = 1, for all j ∈ N(Π).

We denote with D(i) the set of all efficient solutions associated
with node i and with FS(i) and BS(i) the successor nodes and the

6.4. Prototype framework 222

predecessor nodes of node i, respectively. In formal terms, we have
that FS(i) = {j : (i, j) ∈ A} and BS(i) = {u : (u, i) ∈ A}.

6.4 Prototype framework

Following the idea of Kohl ([96]), a dynamic programming algorithm is
used to solve the relaxedRCSPP with additional node resources, that
is a resource is considered only for a set of nodes that represent the
so-called critical nodes. When the dynamic programming algorithm
is executed, multiple visit at the critical nodes is avoided, that is
MΠh

si
(j) ≤ 1, ∀i ∈ N, h = 1, . . . , Hi and j = critical node, whereas the

other nodes can appear more than once in the path. This behaviour
is obtained replacing the binary vector S with a binary vector Ŝ. It is
evident that the size of Ŝ is restricted only to the critical nodes.

Let Π∗
Ŝ

be the optimal solution of the RCSPP with additional

node resources restricted to Ŝ. If Π∗
Ŝ

is not an elementary path, then
the repeated nodes of the optimal path are marked as critical nodes
and the dynamic programming algorithm is applied again. The pro-
cedure is iterated until the optimal solution of the relaxed problem is
an elementary path. Let P∗ be the set of path Πh

sd associated with all
efficient labels yhd ∈ D(d). The idea of Incremental Node Resources
(INR for short) proposed by Kohl is formalized in Algorithm 17.

It is important to point out that both the GSSAA proposed by
Boland et al. [22] and the DSSR presented by Righini and Salani
[120] can be derived from the prototype INR framework. The main
differences are related to the Step 1 and to the way in which the set
Ŝ is updated at each iteration. These issues are better explained is
Section 6.7.

For the sake of completeness, in the next Sections the DSSR and
the GSSAA algorithm are described in details.

223 Chapter 6

Algorithm 17 INR framework
Step 0 (Initialization)
Set: Ŝ = ∅; Π∗

Ŝ
= ∅.

Step 1 (Relaxed problem solution)
Solve the RCSPP with resources node restricted to Ŝ obtaining P∗.

Step 2 (Optimality check)
if Π∗

Ŝ
is not an elementary path then

Update set Ŝ,
go to Step 1.

else
STOP,
Π∗
Ŝ

is the optimal solution for RCESPP.
end if

6.5 The decremental state-space relaxation

The DSSR, proposed by Righini and Salani in [120], can be viewed
as a compromise between the exact dynamic programming approach,
where S ∈ Rn and the state-space relaxation. The former approach
resemble the idea of Feillet et al ([64]), while the latter has been pro-
posed by Righini and Salani in [120]. In particular, a label correcting
method is used to find the set of feasible and efficient solutions from
node s to node d, by considering label (σ,W,C) instead of (S,W,C),
where σ =

∑
p=1,...,|N | S[p] represents the length of the path associated

with the label, that is the number of nodes visited, excluding s. It
is evident that since σ does not keep information about the set of al-
ready visited nodes, cycles are not forbidden. As a conseguence, it is
ensured that the path is feasible but it could be not elementary.

When all nodes are critical, the DSSR is equivalent to the ex-
act dynamic programming; when Ŝ is empty it is equivalent to the
algorithm with state-space relaxation.

The DSSR iteratively solves the RCSPP with a specific set of
critical nodes. If Π∗

Ŝ
contains cycles, then each node j ∈ Π∗

Ŝ
such that

6.5. The decremental state-space relaxation 224

MΠ∗
Ŝ
(j) ≥ 2 is marked as critical node and the RCSPP is resolved.

The algorithm terminates when Π∗
Ŝ

is an elementary path.

The authors proposed a modified version of the label correcting al-
gorithm introduced in [119], that makes use of a bounded bi-directional
seach to iteratively solve the RCSPP , in the proposed DSSR. Their
method is characterized by the execution of three main steps: the
first step extends the labels in forward manner, in the second step
the labels are extended in backward and in the last step forward and
backward labels are joined together with the aim of producing feasible
paths from node s to node d. A list L stores all the nodes for which at
least one label associated with it has the potential to generate feasible
paths. At each iteration, a node i is selected from the list L and all
the labels that are not yet extended are used to generate new labels
for each successor node in the first step while in the second step labels
are extended to the predecessor nodes of node i.

For the sake of completness, in what follows we report the idea of
bounded bi-directional seach proposed by Righini and Salani in [119].

The main idea is to extend labels from node s to its successors
and from node d to its predecessors. In addition, with the bound-
ing procedure shorter paths should be generated and duplicated path
should be avoided. Both forward and backward labels are associated
with each node. To store these two types of labels, the set D(i) is
divided into two distinct sets, that is Dfw(i) and Dbw(i), respectively.
Each label yhi ∈ Dfw(i), h = 1, . . . , Hi represents a path from node
s to node i, while labels yki ∈ Dbw(i), k = 1, . . . , Ki are associated
with paths from node d to node i. In [119] two bounding strategies
are developed. The first considers lower bound on the number of arcs
that can be part of a feasible solution, the second strategy is based on
the resources consumption. The latter is more efficient than the for-
mer. The bounding strategy based on resources consumption is used
to stop the extension of a label (both forward and backward) if the
consumption of a critical resource r̂, whose consumption is monotone

225 Chapter 6

along the paths, is greater than half of the upper limit W r̂
d associated

with node d .

The DSSR iteratively uses the bounding bi-directional search to
solve a relaxation of the RCESPP , in which the condition related to
the elementary path is considered only for the set of current critical
nodes. At each iteration of theDSSR, the current set of critical nodes,
that is Ŝ, is updated. In particular, the set Ψ is used to increment Ŝ.
In other words, to the set Ŝ are added the nodes that belong to the Ψ.
The former set is composed by the nodes that are present more than
once in the current optimal path. In formal terms, Ψ = {j : MΠ∗

Ŝ
(j) ≥

2}, thus Ŝ = Ŝ ∪Ψ.

In Algorithm 18, we report the pseudo-code of the bounded bi-
directional search for a given set Ŝ proposed by Righini and Salani in
[120] using the notation introduced in this work.

The function Extendfw(yi, j) [or Extendbw(yi, v)] generates the
label yj [or yv] by extending the label yi along arc (i, j) [or (v, i)]
following theREF for each resource r = 1, . . . , R and the consumption
of the additional resource at node j [or node v] is set equal to one. To
improve the performances of DSSR, the authors used the technique
to avoid cycles of length two proposed by Desrocher et al. in [51]. In
addition, they make use of the concept of unreachable nodes proposed
by Feillet et al. in [64]. In particular, given a label yi, if for some j ∈ Ŝ
and for some resource r = 1, . . . , R the condition wr(Πsi) + wr

ij > W r
j

[or wr(Πid) + wr
ji > W r

j] holds, then the additional node resource is

set equal to one, that is Ŝi[p] = 1 such that up ≡ j. The value wr
ij,

represents the least resource path from node i to node j, ∀r = 1, . . . , R.
It is important to point out that if for resource r the triangle inequality
holds, then wr

ij ≡ wr
ij.

6.6. The general state-space augmenting algorithms 226

Algorithm 18 Bi-directional search algorithm
Step 0 (Initialization)

Set: y1s = (Ŝ1
s ,W

1
s , C

1
s) with C1

s = 0, W 1
s = (0, . . . , 0), Dfw(s) = y1s , Dfw(i) = ∅ ∀i ∈ N − {s};

Set: y1d = (Ŝ1
d ,W

1
d , C

1
d) with C1

d = 0, W 1
d = (0, . . . , 0), Dbw(d) = y1d, Dbw(i) = ∅ ∀i ∈ N − {d}

Set: L = {s, d}

Step 1 (Node selection)
Select a node i from set L.

Step 2 (Forward extention)

for all yhi = (Ŝhi ,W
h
i , C

h
i) ∈ Dfw(i) do

if wr̂(Πhsi) < W r̂
d /2 then

for all j ∈ FS(i) and j 6= critical node or j = critical node and Shi [p] 6= 0 for p|up ≡ j do

yj ← Extendfw(yhi , j);

if yj is not dominated by any label in Dfw(j) then
Set: Dfw(j) = Dfw(j) ∪ {yj},
remove from Dfw(j) all labels that are dominated by yj ,
add node j to the list L if it does not already belongs to it.

end if
end for

end if
end for

Step 3 (Backward extention)

for all yki = (Ŝki ,W
k
i , C

k
i) ∈ Dbw(i) do

if wr̂(Πkid) < W r̂
d /2 then

for all v ∈ BS(i) and v 6= critical node or v = critical node and Ski [p] 6= 0 for p|up ≡ v do

yv ← Extendbw(yki , v);

if yv is not dominated by any label in Dbw(v) then
Set: Dbw(v) = Dbw(v) ∪ {yv},
remove from Dbw(v) all labels that are dominated by yv ,
add node v to the list L if it does not already belongs to it.

end if
end for

end if
end for

Step 4 (Termination check)
if L = ∅ then

STOP. Go to Step 5
else

Go to Step 1
end if

Step 5 (Join forward and backward paths)
Determine the set P∗ by joining forward and backward paths.
return P∗.

6.6 The general state-space augmenting algorithms

In this section, we provide a description of GSSAA. Our description
here is different from that provided in [22], although the algorithm is
the same. This description uses terminology and concepts similar to
DSSR to help clarify the similarities and differences between the two

227 Chapter 6

algorithms.

The basic idea of GSSAA is the same behind DSSR. Also in
GSSAA, at each iteration the set of critical nodes is updated, that
is Ŝ = Ŝ ∪ Ψ. However, the set Ψ is defined in different ways. In
particular, the authors proposed four different strategies to construct
the set Ψ.

In the first case (HMO), Ψ contains only one node, that is the
node with highest multiplicity in the feasible least cost path from node
s to node d. The authors precised that if more than one least cost path
exists, then the first one is selected. In addition, if more than one
nodes has the multiplicity equal to the highest one, then the first of
such node is putted in the set Ψ. The second strategy (HMOAll) uses
all nodes with the highest multiplicity in the first feasible least cost
path to construct set Ψ. When in the set Ψ are added all nodes with
multiplicity greater than one in the first feasible least cost path, we
refer to the third strategy (MOAll). In the last strategy, all feasible
paths from node s to node d are considered. Thus, all nodes with a
multiplicity greater than one are selected to be critical nodes (All).

A label setting method has been used to solve, at each itera-
tion, the RCSPP with the extra resources associated with the critical
nodes, that is with the resource vector Ŝ. In particular, the algorithm
of Desrochers et al. [51] has been modified to make use of the in-
formation obtained from preprocessing. Indeed, the authors utilized
a preprocessing procedure that can be viewed as chacterized by the
execution of two phases. In the first phase, the preprocessing strategy
proposed by Aneja et al. [5] is performed with the aim of reducing
the network size. In order to obtain lower bounds on the resources
consumption, in the second phase of the preprocessing procedure, the
shortest resource path for each pair of nodes and for each resource is
computed. The amount of resource r consumed on the least resource
path from node i to node j is defined as wr

ij, ∀i, j ∈ N, i 6= j and

r = 1, . . . , R.

6.7. Algorithm comparison 228

The performances of the label setting method were improved in-
troducing the concept of strong dominance of Feillet et al. [64]. In
other words, the resource consumption of node j ∈ Ŝ is set equal to
one if node j cannot be reached from a generic path Πsi, that is node
j is an unreachable node respect to the path Πsi. To identify this kind
of node, the lower bounds obtained in the second phase of the pre-
processing procedure are considered. Let yi be a label that refers to a
path Πsi from node s to node i. The resource consumption at node j
is updated if wr(Πsi) + wr

ij > W r
j for some resource r = 1, . . . , R. It

is important to point out that these conditions generalize the condi-
tions of unreachable node defined when the triangle inequality holds.
In this case, the least resource path from node i to node j is the arc
(i, j), thus wr

ij ≡ wr
ij.

The steps of the GLSA to solve the RCSPP with node resources
restricted to Ŝ are depicted in Algorithm 19. It is important to point
out that the notations used here differ from those in the paper of
Boland et al. [22]. However, the algorithm is the same.

6.7 Algorithm comparison

The algorithms briefly described in the previous Sections seem very
similar, however several conceptual differences can be noted. The aim
of this Section is to highlighted these aspects.

The similarity of DSSR and GSSAA is related to the idea of
relaxing the state-space of the RCSPP with node resources. The
studied algorithms represent the first attempt to implement and nu-
merically test this idea that was theoretically studied by Kohl in [96].
However, we can identify four main aspects in which the two algo-
rithms are substantially different: 1) the search procedure for finding
the optimal state; 2) the extention strategy; 3) the definition of set Ψ;
4) the test problems setting.

229 Chapter 6

Algorithm 19 General Label Setting Algorithm
Step 0 (Initialization)

Set: y1s = (Ŝ1
s ,W

1
s , C

1
s) with C1

s = 0, W 1
s = (0, . . . , 0), D(s) = y1s , D(i) = ∅ ∀i ∈ N − {s};

Set: L = {y1i }

Step 1 (Label selection)
Select the label yhi such that Wh

i is lexicographically minimal.

Step 2 (Label extention)
for all j ∈ FS(i) and j 6= critical node or j = critical node and Shi [p] 6= 0 for p|up ≡ j do

if wr(Πhsi) + wrij + wrij ≤W r
j , ∀r = 1, . . . , R then

yj ← Extendfw(yhi , j);
if yj is not dominated by any label in D(j) then

Set: D(j) = D(j) ∪ {yj},
remove from D(j) and L all labels that are dominated by yj ,
add label yj to the list L.

end if
end if

end for

Step 3 (Termination check)
if L = ∅ then

STOP,
return P∗.

else
Go to Step 1.

end if

The search procedure of the dynamic programming based ap-
proaches, used to solve the relaxed state-space of the RCSPP with
node resources, is the first main difference. The approach proposed
by Boland et al. [22] is a classical label setting algorithm with slight
modifications and the search procedure starts with an initial state
associated with node s searching for the potential optimal states fol-
lowing a forward strategy.

The approach proposed by Righini and Salani in [120] is a la-
bel correcting method that resembles the algorithm of Feillet et al.
[64]. The innovation is related to the search procedure. Indeed, the
algorithm starts with node s and node d. At each iteration a node is
selected and all labels associated with it are extended following both
forward and backward strategies.

The second main difference is related to the selection strategy. In
particular, the label setting algorithm of Boland et al. is based on a
label selection strategy. In particular, the lexicographically minimal

6.7. Algorithm comparison 230

label is selected at each iteration to be treated. The selection strategy
that is used in [120] is of node type. In particular, at each iteration
the first node entering the queue is selected.

The third difference concerns the selection of the critical nodes. It
is important to point out that Boland et al. [22] conducted a compu-
tational study considering several strategies to select at each iteration
the critical nodes. We remark that four different strategies have been
developed (see section 6.6). From their computational results, the au-
thors concluded that the first strategy to compute Ψ, that is HMO,
allows to achieve the best performances in terms of execution time.
However, HMO executes the greatest number of iterations. This is
coherent with the fact that a large number of critical resource allows
to reduce the possibility of obtaining cycles in the path. Moreover,
the performance of a dynamic programming algorithm, in terms of
execution, gets worse when the number of resources increases. Righini
and Salani selected the critical node following the procedure of Boland
et al. [22], that we have classified as third strategy (see section 6.6).

Tha last difference, between the work of Righini and Salani [120]
and the work of Boland et al. [22], is related to the computational
experiments. In particular, in [22] random generated networks are
considered, whereas, in [120] the benchmark Solomon’s instances have
been considered, In addition, Righini and Salani carried out compu-
tational test on three different instances of the RCESPP : the ele-
mentary shortest path problem with capacity constraint (ESPPC, for
short), the elementary shortest path problem with distribution and
collection (ESPPDC, for short) and the elementary shortest path
problem with capacity and time windows constraints (ESPPCT W ,
for short).

It this paper we consider the ESPPC that is handled by both
Righini and Salani ([120]) and Boland et al. ([22]).

231 Chapter 6

6.8 Computational experiments

This section describes our experimental setup and testing methodol-
ogy.

We have implemented the algorithm proposed by Boland et al.
([22]), that is the GSSAA and the DSSR defined in [120] by Righini
and Salani. The considered solution strategies have been coded in Java
and have been tested by using an intel(R) core(TM) i7 cpu M620,
2.67 GHz, ram 4.00 GB, under Microsoft 7 operating system. It is
important to point out that the two algorithms have been implemented
by using the same data structures, thus the comparison is not effected
by implementation factors.

6.8.1 Test problems

In order to evaluate and to compare the GSSAA and the DSSR, we
have considered two sets of test problems.

The first set, that is S1, contains instances derived from the
Solomon’s complete networks. The original data set proposed by
Solomon is divided into random, clustered, and random-clustered cat-
egories, according to the displacement of the customers. Instances be-
longing to the same data-set have the customers located in the same
way and with the same delivery requests; these instances differ only
for the time windows.

The instances considered in this work are those proposed in [120],
where the original Solomon’s networks have been modified by associ-
ating a price with each vertex. As described in [120], this value is
chosen randomly from the range [0, 20]. It is worth observing that the
instances considered in this paper differ from those reported in [120] for
the value of the price associated with each node. However, the struc-
ture of each network is the same. In particular, one instance taken
from each one of the three Solomon’s data-sets (namely c101, r101,

6.8. Computational experiments 232

and rc101) is considered. From each original instance, 10 RCESPP
instances with 50 nodes and 10 RCESPP instances with 100 nodes
have been derived, by choosing 10 different values for the vehicle ca-
pacity from 10 to 100. In the sequel, we refer to test nn vc to indicate
the network test with nn nodes and a vehicle capacity equal to vc.

The second set of instances, that is S2, is composed by fully ran-
dom networks generated by using the public domain SPRAND gen-
erator ([29]). The dimension of the considered networks is equal to
that considered in [22]. The characteristics of these problems are re-
ported in Table 6.1. Starting from these networks, several instances
have been generated by varying the percentage of negative arc cost.
In the sequel, with the instance R%nc

1 we refer to the problem R1 with
a percentage of negative arc cost equal to %nc. The resource limit has
been computed as described in [22].

Test Nodes Arcs Density
R1 30 345 11,50
R2 40 780 19,50
R3 50 1000 20
R4 50 1250 25
R5 50 1500 30
R6 50 2000 40
R7 50 2250 45
R8 50 2500 50
R9 60 1770 30
R10 100 4950 50
R11 100 9900 99
R12 150 16762 111,75

Table 6.1: Characteristic of the fully random networks.

It is important to point out that the preprocessing proposed in
[22] is performed only for the second set of test problems. This means
that the networks of set S1 are not reduced and, since the triangle
inequality holds, it is not necessary to compute the least resource
path for each resource.

233 Chapter 6

In addition, Righini and Salani in [121] have tested DSSR with
the strategies proposed in [22] to increment the set of critical nodes.
The authors conclude that no strategy dominates the others on the
Solomon’s instances. No computational study have been carried out
on random generated networks. For these reasons, we consider the
original algorithm presented in [120] for the comparison on Solomon’s
instances, whereas, for the instances of set S2 we consider the original
algorithn and the versions that make use of the strategies proposed by
Boland et al. in [22]. In addition, we do not consider the strategy All
for DSSR because it does not provide the entire set of non dominated
solutions.

The data collected in the computational tests are reported in
Tables 6.2-6.4. The best results obtained are highlighted in bold. For
the sake of comprehension, we separately consider the computational
results collected on the two sets of test problems.

6.8.2 Results on set S1

In this Section we evaluate and compare the behaviour of GSSAA and
DSSR in terms of computational effort (execution time) and memory
occupancy (generated labels). The results are reported in Tables 6.2
and 6.3, where the number of additional node resources, the total
number of generated labels and the time in ms are highlighted.

GSSAA DSSR
test |S| labels time |S| labels time

c101 50 01 0 1 0 0 100 234
c101 50 02 0 37 32 0 100 219
c101 50 03 0 241 1109 0 1282 21578
c101 50 04 1 2400 28937 1 3089 14875
c101 50 05 2 15319 314641 2 21710 384265
c101 50 06 3 72344 6296187 5 80896 6903280
c101 50 07 5 126535 6865219 5 147962 8330640

continued on next page

6.8. Computational experiments 234

continued from previous page

GSSAA DSSR
test |S| labels time |S| labels time

c101 50 08 7 139885 7200703 7 152345 8546790
c101 50 09 7 251249 10801625 7 262435 13478905
c101 50 10 7 258446 10802625 7 304538 15630012

r101 50 01 0 6 0 0 126 390
r101 50 02 0 14 15 0 205 641
r101 50 03 0 103 62 0 587 5110
r101 50 04 0 287 175 0 800 1828
r101 50 05 0 607 344 0 1209 4015
r101 50 06 0 1187 875 0 1708 7797
r101 50 07 3 26255 154078 3 33398 876542
r101 50 08 5 65758 2547297 5 87904 3267008
r101 50 09 5 136074 2547297 5 187602 4236785
r101 50 10 7 386701 8008094 7 517893 10983450

rc101 50 01 0 1 0 0 100 234
rc101 50 02 0 12 2 0 100 204
rc101 50 03 0 18 8 0 231 735
rc101 50 04 0 22 15 0 231 750
rc101 50 05 0 89 62 0 541 1906
rc101 50 06 2 1128 4016 2 1915 3469
rc101 50 07 5 12091 51547 5 13305 135000
rc101 50 08 5 83495 3364219 5 100234 5623983
rc101 50 09 6 104345 3899954 6 123875 6239881
rc101 50 10 7 131080 4594531 7 158730 8872034

AVG 2.57 60524.33 2249455.63 2.63 73505.03 3119085.33

Table 6.2: Computational results collected on the instances with 50 nodes. |S| indicates
the number of additional node resources at the last iteration. In the column labels the
total number of labels generated are reported, whereas the time in ms is shown in column
time.

Since the behaviour of the algorithms seems to be different con-
sidering the instances with 50 and 100 nodes, first we discuss the
computational results collected for the instances with 50 nodes.

Problems with 50 nodes. The collected data, reported in Table 6.2,
underline that, on average GSSAA is 1.39 times faster than DSSR.
This behaviour is justified by the number of generated labels. In
particular, DSSR generates a number of labels 1.21 times greater

235 Chapter 6

than those are generated by GSSAA. However, when we consider
the average execution time with respect to the vehicle capacity, some
interesting trends can be underlined. The Figure 6.1 shows the average
execution time of the two algorithms for each value of the vehicle
capacity.

Figure 6.1: Average execution time as function of vehicle capacity for the instances with
(a) 50 nodes and with (b) 100 nodes.

It is evident that for both GSSAA and DSSR, the higher the ve-
hicle capacity, the higher the computational effort. However, GSSAA
requires less time than that required by DSSR (see Figure 6.1(a)).
The only exeption can be observed for the instances with a vehicle
capacity equal to 40. In addition, as shown in Figure 6.2(a), the gain
in computational effort of GSSAA respect to DSSR increases when
the capacity of the vehicle increases as well.

It is important to point out that the previous consideration does
not allows us to claim that GSSAA is better than DSSR for a higher
vehicle capacity. Indeed, if we consider the speed-up of GSSAA with
respect to DSSR, then a decreasing trend is observed when the ca-
pacity of the vehicle increases. This behaviour is depicted in Figure
6.3(a).

Regarding the memory occupancy, from Table 6.2 it is possible to
observe that DSSR is slight worse than GSSAA. Indeed, the average
number of labels generated by the latter is 1.21 times less than that

6.8. Computational experiments 236

Figure 6.2: Difference between the computational time obtained with DSSR and GSSA
for each value of the vehicle capacity, on instances with (a) 50 nodes and with (b) 100
nodes.

Figure 6.3: Speed-up of GSSAA respet DSSR for each value of the vehicle capacity on
instances with (a) 50 and (b) 100 nodes.

generated by the former. As shown in Figure 6.4(a), it seems that the
number of labels exponentially increases with the increasing of the
vehicle capacity. This behaviour is observed for both GSSAA and
DSSR.

In addition, the higher the vehicle capacity, the higher the gap be-
tween the labels generated by GSSAA and those generated by DSSR
(see Figure 6.5(a)).

Problems with 100 nodes. Table 6.3 shows the results collected on the
instances with 100 nodes. On this set of instances GSSAA and DSSR

237 Chapter 6

Figure 6.4: Average number of generated labels as function of vehicle capacity for the
instances with (a) 50 nodes and with (b) 100 nodes.

Figure 6.5: Difference between the labels generated by DSSR and GSSAA for each value
of the vehicle capacity, on instances with (a) 50 nodes and (b) 100 nodes.

show similar performances. Indeed, the former is 1.05 times faster than
the latter. From Figure 6.1(b), it is clear that the higher the vehicle
capacity, the higher the time. In addition, it can be observed the
similarity in the computational effort. Indeed, no algorithm dominates
the other (see Figure 6.1(b)).

GSSAA DSSR
test |S| labels time |S| labels time

c101 100 01 0 1 0 0 200 3078
c101 100 02 0 11 16 0 200 3172
c101 100 03 0 64 109 0 1136 6719

continued on next page

6.8. Computational experiments 238

continued from previous page

GSSAA DSSR
test |S| labels time |S| labels time

c101 100 04 0 5372 14390 0 1136 6906
c101 100 05 0 2123 54344 0 6388 537344
c101 100 06 1 39491 3600141 1 80451 3764280
c101 100 07 1 43988 3601094 1 84922 3892357
c101 100 08 2 45677 4776547 2 92505 5038127
c101 100 09 2 50323 5202328 2 97563 5237481
c101 100 10 3 60862 5400718 3 99873 6123845

r101 100 01 0 20 31 0 120 345
r101 100 02 1 20 31 2 2654 23547
r101 100 03 2 8767 7766 3 16407 96828
r101 100 04 2 109240 2092281 2 80645 557656
r101 100 05 3 289116 4443203 3 274932 4562819
r101 100 06 3 310491 5400141 3 436278 5123822
r101 100 07 3 314413 5497875 3 444562 6129736
r101 100 08 4 327894 5967406 4 517293 6325172
r101 100 09 4 408019 7200359 4 546372 6825361
r101 100 10 4 412320 7201250 4 612930 8236218

rc101 100 01 0 15 16 0 1270 30687
rc101 100 02 2 456 625 2 2437 35719
rc101 100 03 2 1921 3235 2 3033 41289
rc101 100 04 2 4865 3516 2 3455 76539
rc101 100 05 2 9188 6219 2 5123 93745
rc101 100 06 3 13425 76251 3 78233 101237
rc101 100 07 4 43728 1247192 4 92762 2121398
rc101 100 08 4 62151 3472563 4 97247 4134827
rc101 100 09 5 87210 6156278 5 101234 6371829
rc101 100 10 6 92561 7681728 6 104726 7623962

AVG 2.17 91457.73 2636921.77 2.23 129536.23 2770868.17

Table 6.3: Computational results collected on the instances with 100 nodes. |S| indicates
the number of additional node resources at the last iteration. In the column labels the
total number of labels generated are reported, whereas the time in ms is shown in column
time.

This behaviour can be justified by considering the difference in
terms of time plotted in Figure 6.2(b). Indeed, on average, 3 out of 10
times, DSSR behaves better than GSSAA. In addition, the higher
the vehicle capacity, the higher the speed-up of the latter respect to
the former.

239 Chapter 6

When we consider the memory occupancy, DSSR generates a
number of labels that is 1.42 times higher than that generated by
GSSAA. This behaviour is clearly shown in Figure 6.4(b). The gain
in memory occupancy of GSSAA seems to increas when higher values
of vehicle capacity are considered (see Figure 6.5(b)). It is important
to observe that in 2 out of 10 cases, on average, DSSR generates a
smaller number of labels than that generated by GSSAA. Indeed, as
shown in Figure 6.5(b), the gain in memory occupancy of GSSAA is
negative for the instances with a vehicle capacity equal to 40 and 50.

6.8.3 Results on set S2

The results collected on the second set of test problems are reported
in Table 6.4, where the number of node resources at the last itera-
tion, the memory occupancy in terms of total number of generated
labels and the computational time are highlighted. Each line of the
Table represents an average result, averaged on a group of ten prob-
lems, generated using identical parameters as input to the SPRAND
generator.

It is important to point out that the two algorithms fail to solve
some instances, thus in the following we refer only to the instances
solved by both GSSAA and DSSR. The instances that are not solved
by the algorithms are highlighed in Table 6.4.

For the set S2, we have applied the strategies proposed by Boland
et al. in [22] to DSSR. In particular, we have tested HMO, in
which the first node with the highest multiplicity in the least cost
path is added to the set of critical nodes, HMOAll, where all nodes
with the highest multiplicity in the first feasible least cost path are
marked as critical nodes and MOAll that considers all the nodes with
a multiplicity greater than one in the least cost path. It is important
to point out that the strategies to increment the set S have never been
considered for DSSR when random networks are tested.

6.8. Computational experiments 240

From the data collected in Table 6.4, it is evident that the strategy
HMO dominates both the HMOAll and the MOAll. In particular,
for DSSR−HMOAll and DSSR−MOAll the cardinality of the set
S is 1.49 and 1.63 times higher than that for DSSR−HMO. This ba-
haviour makes less efficient the strategies HMOAll and MOAll than
the strategy HMO in terms of both the computational effort and the
memory occupancy. Indeed, DSSR−HMO generates a numer of la-
bels 1.21 and 1.29 times less than that generated byDSSR−HMOAll
and DSSR−MOAll, respectively. The efficiency of DSSR−HMO
is more evident regarding the time. As a matter of the fact, DSSR−
HMOAll and DSSR −MOAll are 2.12 and 2.46 times slower than
DSSR−HMO.

These results suggest that the strategy used in the original method
of Righini and Salani ([120]) is not the most efficient when the ran-
dom networks are considered. Indeed, DSSR−HMO shows the best
performance in terms of both the memory occupancy and the compu-
tational time.

Regarding the comparison with GSSAA, we consider the best
performing version of DSSR, that is that with HMO strategy.

From the data collected in Table 6.4, it is possible to observe that,
on average, GSSAA behaves the best. Indeed, DSSR−HMO is 3.36
times slower than GSSAA. This result is obtained even thougth the
labels generated by the former is 1.31 times less than that generated
by the latter.

This behaviour can be explained by considering that: 1) the
bounded bi-directinal search strategy implemented in DSSR allows to
terminate the extension of the labels obtaining a reduction of memory
occupancy; 2) in addition, the reduction of generated labels does not
suffice the computational effort to construct the paths starting from
the forward and backward sub-paths.

It is worth observing that for the networks with a number of node

241 Chapter 6

less than 60, DSSR − HMO behaves the best. Indeed, considering
the networks R1 and R2, the average number of labels generated by
GSSAA is 1.93 times higher than that generated by DSSR−HMO.
Whereas, regarding the computational effort, DSSR−HMO is 1.14
times faster than GSSAA. In Figure 6.6 the memory occupancy and
the computational effort are plotted as a function of the percentage
negative arc cost for both DSSR−HMO and GSSAA.

Figure 6.6: Average execution time and memory occupancy related to the instances with
30 and 40 nodes. The results are plotted based on the increasing order of the percentage
negative arc cost.

In Figure 6.7, we report the number of labels and the time as a
function of the density when the networks R3−R8 are considered. Also
in this case, DSSR − HMO behaves the best. Indeed, the average
number of the labels generated by DSSR−HMO is 1.56 times slower
than that generated by GSSAA. This bahaviour makes GSSAA less
efficient than DSSR−HMO in terms of computational effort. As a
matter of the fact, GSSAA is 1.25 times slower than DSSR−HMO.

Regarding the nerworks R9 − R12, GSSAA behaves the best.
Indeed, DSSR − HMO is 13.99, 96.93 and 64.30 times slower than
GSSAA for the networks with 60, 100 and 150 nodes, respectively.
This behaviour can be justified by considering the numer of generated
labels. Indeed, DSSR − HMO generates a number of labels that is
1.08, 1.46 and 2.27 times higher than that generated by GSSAA for
the networks with 60, 100 and 150 nodes, respectively.

6.8. Computational experiments 242

Figure 6.7: Average execution time and memory occupancy related to the instances with
50 nodes. The results are plotted based on the increasing order of the density.

243
C

h
ap

ter
6

GSSAA DSSR−HMO DSSR−HMOAll DSSR−MOAll
test |S| labels time |S| labels time |S| labels time |S| labels time

R20
1 0,20 291,60 33,90 0,20 457,20 228,70 0,10 457,20 224,80 0,10 457,20 228,20

R25
1 0,00 260,00 22,20 0,00 454,70 195,30 0,00 454,70 208,70 0,00 454,70 195,20

R30
1 0,20 1777,40 5784,80 0,20 681,90 178,50 0,70 894,20 524,30 0,70 894,20 550,80

R35
1 1,20 6215,50 3521,40 1,20 1516,90 878,20 1,50 1765,00 1616,40 1,50 1765,00 1043,30

R40
1 2,30 9315,60 7668,90 2,30 4266,80 3280,90 2,60 3957,70 4612,50 3,10 4344,20 7103,00

R45
1 2,00 14833,40 34925,00 2,00 4919,70 5053,20 2,90 4715,20 10551,80 3,10 4968,50 12869,30

R20
2 0,30 607,80 31,30 0,30 1082,00 529,30 0,40 1120,70 573,10 0,40 1120,70 575,90

R25
2 0,50 937,50 68,50 0,50 1483,30 902,30 0,60 1537,00 1014,80 0,60 1537,00 1035,40

R30
2 1,20 4215,10 1360,70 1,20 3135,00 3301,60 1,50 2672,30 3946,20 1,50 2672,30 4187,60

R35
2 1,40 4172,60 2523,40 1,40 3152,70 3164,60 1,40 3895,80 6269,80 1,50 3763,70 6491,30

R40
2 1,70 12577,50 22562,90 1,70 6526,50 11409,50 2,90 7618,40 28770,50 3,50 12385,50 163728,50

R45
2 3,50 36156,00 63222,00 3,50 19657,50 94697,80 4,40 19038,40 126971,90 5,10 20732,90 185815,70

R15
3 0,10 541,90 35,60 0,10 884,10 584,50 0,10 884,10 575,50 0,10 884,10 600,50

R20
3 0,00 511,50 30,10 0,00 1009,20 703,80 0,00 1009,20 704,40 0,00 1009,20 731,80

R35
3 0,70 2710,50 267,00 0,70 3283,50 4374,10 1,40 3609,70 7475,00 1,60 3781,70 9427,70

R40
3 1,10 4907,30 637,70 1,10 5748,70 9843,30 2,00 6433,50 18737,40 2,10 6252,00 20157,90

R15
4 0,20 622,50 43,00 0,20 1109,20 955,10 0,20 1109,20 952,80 0,20 1109,20 968,40

R20
4 0,30 952,00 79,70 0,30 1646,10 1528,30 0,30 1646,10 1509,30 0,30 1646,10 1569,20

R30
4 0,90 4586,80 1816,60 0,90 4492,90 8638,10 1,30 5395,60 34321,20 1,30 5127,70 35427,00

R35
4 1,00 5401,40 1299,90 1,00 4965,30 10854,10 1,40 5915,80 20726,90 1,40 5915,80 21864,00

R15
5 0,10 630,30 54,60 0,10 1324,50 1343,70 0,20 1392,90 1744,00 0,20 1392,90 1769,90

R20
5 0,30 996,20 81,50 0,30 1897,40 2235,50 0,80 2352,60 3814,00 0,50 2053,60 3114,60

R30
5 1,00 4708,80 975,60 1,00 4636,80 9112,20 1,20 5049,60 15402,90 1,20 5049,60 15991,70

R35
5 1,30 9860,50 4219,40 1,30 10179,90 50512,10 1,90 13258,00 258539,90 2,40 18014,10 829145,20

R15
6 0,10 719,30 62,90 0,10 1569,30 2184,50 0,30 1820,10 4125,60 0,30 1820,10 4198,80

R20
6 0,20 1170,00 123,70 0,20 2119,30 3479,30 0,40 2395,50 6730,30 0,40 2395,50 7025,40

R30
6 1,60 9627,80 4170,40 1,60 10449,10 58069,70 2,30 18525,00 626134,40 3,00 23430,10 1145063,80

R35
6 1,70 16875,10 8071,00 1,70 18463,20 140004,20 3,20 27184,60 4840194,40 3,30 27626,90 1980628,30

R15
7 0,10 1076,10 206,00 0,10 1729,40 2554,30 0,10 1729,40 2464,20 0,10 1729,40 2479,70

R20
7 0,40 1545,00 154,50 0,40 2646,20 4880,50 0,60 2902,00 6399,30 0,60 2902,00 6532,70

R35
7 2, 33(1) 52005,89 131765,11 2, 33(1) 37028,50 756213,50 3,20 37099,00 1400885,20 4,50 63496,90 5190308,90

R40
7 3,10 101057,10 1825406,60 3,10 33962,20 654231,60 3,70 56592,60 3787754,80 4, 00(1) 43436,67 2062697,89

R15
8 0,10 882,80 90,80 0,10 1809,40 2873,30 0,20 1932,50 3418,70 0,20 1932,50 3510,00

R20
8 0,30 1484,80 214,20 0,30 2496,60 6428,40 0,30 2661,20 9033,30 0,40 2858,70 24054,10

R30
8 1,60 13677,40 17459,40 1,60 14798,30 163701,40 2,70 24177,10 972578,00 2,90 25243,40 1051669,80

R35
8 1,90 58807,30 1789888,00 1,90 21462,20 1144418,40 3,30 33920,70 2199813,60 3,30 32724,10 2302600,30

R15
9 0,00 711,40 78,70 0,00 1435,60 2130,10 0,00 1435,60 2016,00 0,00 1435,60 2047,00

R20
9 0,00 814,50 78,00 0,00 1659,80 2653,50 0,00 1659,80 2504,70 0,00 1659,80 2553,70

R35
9 1,60 11865,30 5668,90 1,60 11218,10 59711,60 2,60 19013,80 592731,30 2,80 19490,00 654381,80

R40
9 1,20 12327,50 3889,30 1,20 13511,10 71380,30 2,90 19198,90 511790,10 2,90 19198,90 562595,20

R15
10 0,00 1774,70 527,30 0,00 3662,10 27850,90 0,00 3662,10 26736,70 0,00 3662,10 27619,40

R30
10 0,50 11204,30 7665,50 0,50 14648,30 234059,80 1,20 22325,60 2089621,00 1,20 22325,60 2005496,90

R15
11 0,30 3971,10 2462,20 0,30 7542,50 124602,00 0,40 7883,50 148169,60 0,40 7883,50 392332,60

R30
11 1,30 47408,60 92688,70 1, 43(3) 67937,00 9630138,14 2, 33(4) 53652,33 10824854,67 2, 33(4) 53652,33 14379777,33

R15
12 0,00 3381,00 4626,50 0,00 7664,40 297489,70 0,00 7664,40 294641,40 0,00 7664,40 302337,80

R30
12 1, 22(1) 144943,44 14789133,33

AVG 0,89 10670,59 89923,63 0,89 8140,54 302523,55 1,32 9858,19 642275,23 1,45 10531,12 742988,97

Table 6.4: Computational results collected on the instances of set S2. |S| indicates the number of additional node resources
at the last iteration. In the column labels the total number of labels generated are reported, whereas the time in ms is shown

6.8.
C

om
p
u
tation

al
ex

p
erim

en
ts

244
in column time. The superscript indicate the number of instances that are not solved by the algorithm. The entry OoM
indicates that no problems are solved.

245 Chapter 6

6.9 Conclusion and final remark

In this paper we have conducted a computational analysis of the two
best known algorithms for the resource constrained elementary short-
est path problem.

The algorithms considered in this work are the general state-space
augmenting algorithm (GSSAA, for short) proposed by Boland et
al. in [22] and the algorithm of Righini and Salani ([120]), namely
decremental state-space relaxation (DSSR, for short). To the best
of our knowledge, these algorithms turn out to be the most efficient
methods to solve the problem.

This work has been motivated by several considerations that we
summarize in what follows. 1) The problem at hand is one of the most
important in network optimization. Indeed, the resource constrained
elementary shortest path arises as sub-problem in column generation
approach to solve more complicated problems, such as the vehicle
routing problem with additional constraints and the short-haul aircraft
rotation problem. 2) The scientific literature provides two resolution
methods that are based on the same idea but that differ for some
critical aspects. These issues have been described in detail in this
work. 3) GSSAA and DSSR appeared in the scientific literature in
the same period in two different papers. Thus, the computational
exeperiments were conducted on different test problems.

In this paper, we have discussed about the similarity of the two
algorithms and we have highlighted the differences related to critical
aspects in terms of efficiency. For the computational studies, we have
considered the instances proposed by the authors for testing their al-
gorithm. Thus, we have unified the computational setting and the
comparison between the GSSAA and the DSSR have been done on
the same data-set. In this way, we have studied the behaviour of each
algorithm not only on the test problems considered originally by the
authors, but also on the instances considered by the others.

6.9. Conclusion and final remark 246

The test problems have been grouped in two sets containing the
instances considered in [120] and those used by Boland et al. ([22]).

Our computational study suggests the following final results:

1) on the first set of test problems, that is that considered in [120],
GSSAA and DSSR show similar performances. However, GSSAA
behaves, on average, sligth better than DSSR;

2) for the second set of test problems, on average, GSSAA be-
haves the best. In addition, some instances are not solved by both
GSSAA and DSSR. However, for the networks with a number of
nodes less than 60, DSSR outperforms GSSAA. The speed-up of
GSSAA for the instances with a number of node from 60 to 150 is
greater than the speed-up of DSSR for the networks with a number
of nodes less than 60. This results justifies the best performance of
GSSAA in the average case.

Chapter 7

Modelling and solving a
multi-criteria path problem with
multiple metrics and soft
constraints 1

Luigi Di Puglia Pugliese

Department of Electronics, Informatics and Systems, University of
Calabria, 87036, Rende (CS), Italy

Janusz Granat

Institute of Control and Computation Engineering, University of Tech-
nology, Warsaw and National Institute of Telecommunications, Sza-
chowa 1, Warsaw, Poland

Francesca Guerriero

Department of Electronics, Informatics and Systems, University of
Calabria, 87036, Rende (CS), Italy

1Work presented at the EURO XXIII, the 23rd European Conference on Operational
Research, Bonn, July 5-8, 2009

247

7.1. Introduction 248

Abstract

A particular instance of the multi-criteria path problem is addressed
in this work. In the considered problem it is assumed, that for each
criterion, a lower and an upper bound are given. The problem is
to find a path for which each criterion is the closest possible to the
bounds. These constraints are taken into account by defining a specific
objective function, using the concept of Chebychev distance. To solve
the considered problem, a branch-and-bound method is developed.
Extensive computational tests have been carried out on a meaningful
number of random instances, with the purpose to assess the behaviour
of the proposed approach in terms of robustness and efficiency.

Keywords: multiple criteria analysis; efficient paths; reference point
method; branch and bound approach.

7.1 Introduction

The classical shortest path problem has been defined as a single-
criterion problem, in which the main aim is to optimize a single ob-
jective, such as the total cost, the travel time ([20]).

However, in many real applications, arising in the design and
management of different types of networks (i.e. transportation, trans-
mission and communication networks), the complexity of the social
and economic environment requires the explicit and simultaneous con-
sideration of multiple and conflicting objectives (see e.g., [6], [14], [33],
[41], [42]).

In this framework, unless a well-defined utility function exists, it
is not possible to identify a single optimal solution, but rather different
paths exist (i.e., Pareto-optimal paths) which can be considered as best
solutions, in the sense that no improvement in any criterion is possible
without sacrifice on at least one of the other criterion. Consequently,
the decision maker should be able to get from the Pareto-optimal

249 Chapter 7

solution set a satisfactory compromise solution. While the single-
criterion shortest path problem has a polynomial complexity bound
([20]), its multi-criteria counterpart is classified asNP -complete ([71]).
Despite its theoretical complexity and given its practical importance,
most studies have focused on the development of efficient solution ap-
proaches to address the multi-criteria shortest path problem. We cite
[79], [103] and [128] where exact procedures such as multiple labelling
methods have been proposed. Ranking methods to address the multi-
criteria shortest path problem have been described in [10] and in [36],
while parametric methods have been proposed in [110]. Approximate
procedures have also been developed (see e.g., [85], [135], [142]). Other
methods make use of utility (or cost) functions (e.g., [56], [108]). In-
teractive methods have been considered in [39], [40], [43], [74] and in
[110].

In many real-life applications, objectives of different nature need
to be optimized. For instances, when the time/cost is considered, the
objective function is of additive type. When the objective represents a
probability, then a multiplicative objective function has to be consid-
ered. In addition, in some real-life applications, criterion of bottleneck
type occurs, that is bandwidth in the telecommunication field or ma-
chines capacity in the problems related to industrial production. It is
worth observing that the multiplicative criteria can be transformed in
additive type ([1], [139]). The multi-criteria shortest path with multi-
ple metrics is a NP -complete problem only if at least two criteria are
of additive type. Indeed, a special case, that is the bi-criteria shortest
path problem where a criterion is of additive type and the other is
a bottleneck criterion is proven to be easy to solve. The theoretical
results on the complexity of the multi-criteria shortest path problem
with multiple metrics are given in [137] and [139]. The scientific lit-
erature provides several works that address the multi-criteria shortest
path problem when metric of additive and bottleneck types are taken
into account simultaneously. In [116], the shortest path problem with
two bottleneck and one additive criteria is addressed. Other solution

7.1. Introduction 250

approaches for the multi-criteria shortest path problem have been pro-
posed in [11], [34], [140] and [141].

Nowadays people are more demanding. Consequently, the com-
panies operating in services industry strive to provide high quality
services to meet the increasing needs of the customers. In this con-
text, it is important to provide high level of quality of services (QoS).
This is true especially in the telecommunication industry.

It is important to observe, that the solution approaches proposed
in the scientific literature to address the multi-criteria optimization
problems arising in the telecommunication field, generally adopt one
of the following strategy: 1) the different criteria are aggregate into
a single objective function; 2) one metric to be optimized is chosen
and upper bounds for the other metrics are imposed. For example,
in the Interior Gateway Routing Protocol (IGRP) algorithm a com-
bination (vector) of metrics is considered. In particular, the multi-
attribute utility theory is used in [8] to address the routing problem
in the telecommunication context. The authors make use of utility
function that combines the criteria in such a way that the desires of
the decision maker are achieved. Whereas, in the Open Shortest Path
First (OSPF) routing algorithm, the cost is the single optimization
criterion, but delay, throughput and connectivity are considered as
additional constraints. Algorithms for solving routing problems that
consider more than one criterion with constraints are defined in [21],
[123], [147], [148].

The multi-criteria framework is used also to model several prob-
lems in the fields of transportation planning. In recent years there
has been an increase in research on multi-criteria shortest path prob-
lem with multiple metrics, with goals of relevant interest, like the
minimization of cost, time, risk and unreliability. For a review of
multi-criteria shortest path problem the reader is referred to [42].

In this work we address the problem to find an efficient solution
in a multi-criteria networks where constraints on each criterion are

251 Chapter 7

introduced. The goal is to find a solution for which each criterion is the
closest possible to a specific value. The aspiration values represent the
middle of a reference ranges defined by a lower and an upper bounds.
In other words, it is assumed that the decision maker has specific idea
about the solution that he/she wants to achieve.

The problem of finding the shortest paths for which each cri-
terion belong to a specified range has been addressed in [34]. The
proposed method allows to find the first k shortest paths and uses a
reference point approach, where the paths in a specific priority region
are ranked by non-decreasing order of a Chebyshev metric. In order
to list paths according with this objective function a labelling algo-
rithm is proposed. The solution approach provides a set of solutions
that belong to a specified region (i.e., the region is defined by a lower
and an upper bound for each criterion). If no solution exists in the
specified region, the lower and upper bounds are modified to explore
other decision spaces. A pruning procedure has been devised in order
to reduce the number of generated labels. This procedure works only
when the k − st solution is found.

The aim of our work is to provide a solution approach that allows
us to find exactly one solution that satisfies the reference values for
each criterion. A branch-and-bound based approach is developed to
optimality solve the problem under investigation.

The paper is organized as follows. In Section 7.2 we describe
the problem and we give its mathematical formulation. The proposed
solution approach is presented in Section 7.3. The effectiveness of
the developed algorithm is tested on a large set of test problems and
the related computational results are discussed in Section 7.4, while
conclusions are given in Section 7.5.

7.2. Problem formulation 252

7.2 Problem formulation

Let G = (N,A) be a directed graph, where N = {1, . . . , n} is a finite
set of nodes and A ⊆ N × N is a finite set of m arcs. Each arc is
denoted by an ordered pair (i, j), where i ∈ N and j ∈ N . A path
πij between the two distinct nodes i ∈ N and j ∈ N is defined as the
sequence of nodes πij = {i = i0, i1, . . . , il−1, il = j} l ≥ 2 such that
(ih, ih+1) ∈ A, h = 0, .., l − 1. The path is called elementary when no
node is repeated in the sequence. When the nodes are repeated in the
sequence we call it a non-elementary path.

With each arc (i, j) ∈ A, is associated a p-dimensional vector

of criteria q(i,j) =
(
q

(i,j)
1 , q

(i,j)
2 , . . . , q

(i,j)
p

)
, each of them representing

a given metric.

A path πst from the origin node s ∈ N to the destination node
t ∈ N is evaluated by the p-dimensional vector of criteria qπst =(
qπst1 , qπst2 , . . . , qπstp

)
. Depending on the nature of the metric, the value

qπstk of each criterion k = 1, . . . , p for the given path πst from s ∈ N to
t ∈ N can be defined in different way.

In what follows, we report a brief description of the most used
metrics.

Additive metrics : in this case the value qπstk of the k -th criterion

over the path πst is the sum of q
(i,j)
k on each arc in the path, that is

qπstk =
∑

(i,j)∈πst q
(i,j)
k . Examples of additive metrics include cost, delay,

jitter.

Multiplicative metrics : these are metrics for which the value qπstk

of the criterion k on the path πst is the product of q
(i,j)
k on each arc be-

longing to πst, that is qπstk =
∏

(i,j)∈πst q
(i,j)
k . Examples of multiplicative

metrics include packet loss and error rate.

Bottleneck/concave metrics : the value of the k -th criterion qπstk

over the path πst is the value of the criterion on the bottleneck arc

253 Chapter 7

in the path, where the bottleneck arc is the arc in the path with
the minimum value of the criterion, that is qπstk = min(i,j)∈πst q

(i,j)
k .

Examples of bottleneck metrics include bandwidth.

It is worth observing that multiplicative metrics can be trans-
formed in additive metrics ([1], [139]), for this reason in what follows
we focus only on the additive and bottleneck type. It is important to
point out that in this work we consider at least two metrics of additive
type.

For each criterion k = 1, . . . , p an upper bound Cu
k and a lower

bound C l
k are given. It is worth observing that the upper and lower

bounds are viewed as references given by the decision maker. He/She
is satisfied by the solution whether the metrics achieve a value that
is the middle of the range defined by the reference bounds. In other
words, given a set of solution vector, the most satisfactory for the
decision maker respect to his/her references is that belonging to the
bound ranges and each component of such solution vector is the closest
possible to the middle of the related range.

In this paper we formulate the aforementioned problem using a
reference point concept, with the aim of optimizing the choice of the
decision maker respect to his/her desires.

A reference point consists of desirable values for each objective
function. In multiple objective mathematical programming, solution
methods based on reference points can generate non dominated solu-
tions using a variety of scalarizing functions ([106], [25]) that define
the distance from the reference point. The idea is to take the de-
sires of the decision maker into account when projecting the reference
point onto the set of non dominated solutions. The procedures, to
solve the problem formulated using the concept of reference point, are
commonly referred to as reference point method.

We formulate the problem under consideration using the scalar-
izing function defined by Wierzbicki [143], see also [144]. In what

7.2. Problem formulation 254

follows, we briefly present some definitions related to the reference
point method and we describe the property of the scalarizing function
proposed in [143].

The reference point method is an interactive procedure that, given
a set of controlling parameter q, allows reaching an efficient solution.
The selection of a particular efficient path is determined by the defini-
tion of the reference point (aspiration point). Most of those methods
use the maximization of an Achievement Scalarizing Function (ASF).
The ASF used in this work assumes the following form ([143]):

(7.1) S (qπij , q, w) = min
1≤k≤p

{
wk(qk − q

πij
k)
}

+ ε

p∑
k=1

wk(qk − q
πij
k)

where qπij ∈ Rp is the vector of criteria related to the path from
node i to node j, q ∈ Rp is an aspiration point (reference point),
wk > 0, k = 1, . . . , p, are scaling coefficients and ε is a given small
positive number. Maximization is over all feasible paths from the
origin node s to the destination node t. Maximization of (7.1) for all
paths from s to t generates a properly efficient path with the trade-off
coefficients smaller than (1 + 1/ε).

For a non-attainable q, the resulting Pareto-optimal solution is
the nearest - in the sense of a Chebyshev weighted norm - to the spec-
ified aspiration level q. If q is attainable, then the Pareto-optimal
solution is uniformly better. The selection of efficient paths is con-
trolled by the vector q. There is a common agreement that the as-
piration point is a very good controlling parameter for examining a
Pareto-optimal set.

The scaling coefficients w should not be confused with the weights
used by some methods for conversion of a multi-criteria problem into
a single-criterion problem with a weighted sum of original criteria.
In the weighted sum methods, the weights are the main controlling

255 Chapter 7

parameters. In the reference point approaches, the scaling coefficients
are needed to provide for uniform scaling of all criteria and are not
used as controlling parameters.

The information provided by the user could be extended by spec-
ification of the reservation levels. These levels determine the values
which the user would not like to achieve. In this cases the ASF usually
takes the form:

(7.2) S
(
qπij , q, q

)
= min

1≤k≤p

{
fk

(
q
πij
k , qk, qk

)}
+ ε

p∑
k=1

fk

(
q
πij
k , qk, qk

)
.

where q, q are vectors of aspiration and reservation levels respectively,

and fk

(
q
πij
k , qk, qk

)
, k = 1, . . . , p are the corresponding Component

Achievement Functions (CAFs). Maximization of the function (7.2)
over the set of feasible paths provides a properly Pareto-optimal solu-
tion with the properties discussed above for function (7.1).

In our case the aspiration and reservation levels represent the soft
bounds. For each criterion qk, k = 1, . . . , p the decision maker prefers

that its value belongs to the range
[
qk = C l

k, qk = Cu
k

]
and that is

closest to the middle of the range. Thus, we propose the following
CAFs:

(7.3)

fk

(
q
πij
k , qk, qk

)
=


aq

πij
k − aqk if q

πij
k ≤ qk

q
πij
k − qk if qk < q

πij
k ≤

(
(qk + q

k
)/2
)

−qπijk + q
k

if
(

(qk + q
k
)/2
)
< q

πij
k ≤ q

k

−aqπijk + aq
k

if q
πij
k > q

k

; k = 1, . . . , p;

where a > 1. It is worth observing that functions (7.3) are not mono-

7.2. Problem formulation 256

tonic. We also underline that the solution should belong to a specific
region defined by the aspiration and reservation levels. In addition,
for each criterion, a solution with a value closest to the middle of the
ranges is preferred. Functions (7.3) takes into account these consider-
ations.

The multi-criteria shortest path problem with soft constraints can
be formulated as follows:

(7.4) max
πst∈Π

S
(
qπst, q, q

)
where Π is the set of all elementary paths. In the sequel we assume
that ε = 0. It is important to point out that solving problem (7.4),
a non efficient solution could be found. In other words, the corre-
sponding vector of objective functions is not Pareto-optimal. In order
to explain this situation, let us consider the network of Figure 7.1.
In the following example we suppose that all the criteria have to be
minimized.

Figure 7.1: Graph example with two additive criteria. The vectors (q
(i,j)
1 , q

(i,j)
2) repre-

sent the value of the first and the second criterion associated with the arc (i, j) ∈ A,
respectively.

The decision maker asks for a solution such that the lower and
the upper bound for the first criterion is equal to 3 and 5, respectively;
wherease for the second criterion, he/she wants a solution that belongs
to the range [8, 12]. The ASF achieves the maximum value in the

257 Chapter 7

solution characterized by qπ171 = 4 and qπ172 = 10. In Figure 7.2, we
report the criteria space and all the possible solutions from node 1 to
node 7 in the graph example. It is easy to verify that the vector (4, 10)
is associated with a non efficient solution but it fullfills the requests
of the decision maker.

Figure 7.2: Graphical representation of the vector solutions associated with all possible
solution from node 1 to node 7 in the network in Figure 7.1.

In the next section, we present the solution approach devised for
solving problem (7.4).

7.3 Solution Approach

In this section we describe the solution method defined to solve the
problem under investigation. It is worth observing that, the label
correcting approach proposed in [74] cannot be applied to solve (7.4),
since this method is based on the monotonic form of the CAFs and
this property is not satisfied in our case. Indeed, a label correcting
algorithm cannot be used to solve the problem under consideration,
since, given the non monotonicity of the CAFs, an optimal partial
path is not necessary part of the optimal solution. Let us consider the
network of Figure 7.1.

7.3. Solution Approach 258

We assume that q1 = 2, q
1

= 5, q2 = 2 and q
2

= 4. We want to
solve the problem from the origin node s = 1 to the destination node
t = 7. When the label correcting algorithm is applied, the path π17 is
determined (see Figure 7.3).

Figure 7.3: In dashed line is reported the path π17 obtained with the label correcting
algorithm. In dotted line the path π̃17 is depicted.

The path π17 is characterized by the solution vector qπ17 = [5, 6].
The ASF evaluated for π17 is equal to −3. On the network of Figure
7.1, another solution exists, that is π̃17 with a corresponding vector
[5, 3]. The built path is reported in Figure 7.3.

The value of the ASF for π̃17 is equal to 0 that is better than that
achieved for π17. It is evident that the path π̃17 represents the optimal
solution, thus the solution found by the label correcting algorithm is
sub-optimal. In order to understand better the reason why the label
correcting algorithm finds a sub-optimal solution, let us consider node
3. The value of the ASF for the path π13 is equals to −1.5, while for
the path π̃13 the ASF is equals to −3. In the course of the algorithm,
node 2 is chosen as predecessor of node 3 because the ASF is better
than the choice of node 1 as predecessor of node 3. In other words, an
optimal partial solution could not be part of the optimal solution. In
the sequel, we refer to the partial optimal solution that could not be
part of the optimal solution as local optimum.

259 Chapter 7

7.3.1 Branch and Bound approach

In order to optimality solve the problem under consideration, a branch-
and-bound (B&B, for short) based algorithm is developed. The pro-
posed approach relies on the determination of a lower bound on the
optimal solution. The lower bounds are obtained by applying the label
correcting algorithm ([74]) for solving problem (7.4). In order to eval-
uate the optimality of the solution, a set of problems are determined
and solved.

Branching rule

In order to describe the branching rule, let Pi be a generic problem
of the B&B tree defined on the directed graph Gi = (N,Ai) and let
πPi = {s = i0, i1, . . . , il−1, il = t} , l ≥ 2 such that (ij, ij+1) ∈ A, j =
0, .., l−1 be the path obtained by solving Pi. The corresponding vector

of criteria qπ
Pi =

(
qπ

Pi

1 , qπ
Pi

2 , . . . , qπ
Pi

p

)
is associated with path πPi.

From problem Pi, l − 1 sub-problems are generated. Each sub-
problem Pi+n, n = 1, . . . , l − 1 is defined on the graph Gi+n =(
N,Ai+n

)
, where Ai+n = Ai − {(in−1, in)} .

The branching rule allows us to check if local optimum diverts the
search process of the label correcting algorithm toward a non optimal
solution. In addition, the proposed strategy ensures the exploiting
of the entire solution space. These results are formally stated in the
following Theorem.

Theorem 7.3.1. The branching procedure leads to an exhaustive search
of the solutions space.

Proof. The branching procedure generates a set of problems defined on
graph Gi+n, obtained by Gi where the arc (in−1, in) is removed. This
means that from node in−1 is not possible to reach directly node in. In
the father graph Gi the label correcting algorithm has determined the

7.3. Solution Approach 260

best path from node s to node t. When the arc (in−1, in) is removed
from the graph Gi, obtaining the graph Gi+n, the search process of
the label correcting algorithm is constrained to reach node in without
passing across node in−1. A partial path π

Pi+n
sin

is obtained on the graph
Gi+n from node s to node in. The following two different cases can
occur:

Case 1. f(π
Pi+n
sin

) ≤ f(πPisin) or

Case 2. f
(
π
Pi+n
sin

)
> f(πPisin).

Case 1. Let us consider the first case.

Let πPi+n be the path generated on Gi+n and suppose that in ∈
πPi+n.

If f
(
πPi+n

)
> f(πPi) then a local optimum is found and removed,

otherwise (i.e., f(πPi+n) ≤ f(πPi)) f(πPisin) is the optimum (non local)
partial solution ending to node in.

Let us suppose that in /∈ πPi+n. We can have two situations:

(7.5) f(πPi+n) ≥ f(πPi);

(7.6) f
(
πPi+n

)
< f

(
πPi
)
.

First, we consider condition (7.5). A path πPi+n that does not
contain node in exists. Thus, this path was also in Gi (we removed
only the arc (in−1, in)). In other words, the optimal path in the graph
Gi is πPi+n. For this reason we can say that the (7.6) is not valid.

If condition (7.6) is verified, f(πPisin) is the optimum (non local)
partial solution to node in.

261 Chapter 7

Case 2. f
(
π
Pi+n
sin

)
> f(πPisin).

If f
(
πPi+n

)
> f(πPi) then we found a better solution that is

candidate to contain the optimal solution.

If f(πPi+n) ≤ f(πPi) then the label correcting algorithm solving
Pi does not fall in local optimum. In Gi+n, removing arc (in−1, in), we
impose to fall in the local optimum. In this case the problem Pi+n is
fathomed.

With the branching rule, for all node j ∈ πPi − {s} if the local
optimum is found, then a better solution is determined. This new
solution is candidate to be the optimal one. If a local optimum on
j ∈ πPi −{s} is not found and if the considered solution improves the
objective function determined so far, then it is candidate to be the
optimal solution. If the existing solution is better than the considered
one, the related problem is aborted.

In this way we have an exhaustive search of the solution space.

We said that the branching procedure allows to check if local
optimum exists on each node j ∈ πPi − {s}. From Theorem 7.3.1, we
know that if for problem Pi+n the partial path to reach node in is not
local optimum, then the branching rule is not applied. On the other
hand, a better solution is found, thus the local optimum for node in
is removed. In addition, it is necessary to evaluate the optimality of
the better solution, thus the branching rule is applied

In formal way, if f
(
πPi+n

)
> f(πPi) then the branching rule is

applied for Pi+n, otherwise, the problem Pi+n can be fathomed.

Algorithm and its properties

In this section, we formalize the B&B based solution approach devised
for solving the problem under investigation. Let z(m) be the incumbent

7.3. Solution Approach 262

at iteration m, that is the best solution determined so far and let L(m)

be the list of candidate problems to be solved at iteration m.

The steps of the proposed method are depicted in Algorithm 20.

Algorithm 20 B&B approach

Step 0 (Initialization)
L(0) = {P0}, P0 is defined on G0 = (N, A0), where A0 ≡ A; z(0) = −∞; k = 0.

Step 1 (Problem selection)
Select from L(k) a problem Pi and delete it from L(k).

Step 2 (Branching procedure)
Branch the problem Pi in n = 1, . . . , l − 1 sub-problem Pi+n defined on Gi+n =
(N, Ai+n), where Ai+n = Ai − {(in−1, in)}, (in−1, in) ∈ πPi
Solve the sub-problem.

Step 3 (Updating)
Set z(k+1) = z(k).
for all Pi+n do

if f
(
πPi+n

)
> f(πPi) then

L(k+1) = L(k) ∪ Pi+n.
if f

(
πPi+n

)
> z(k+1) then

z(k+1) = f
(
πPi+n

)
.

end if
end if

end for
k + +.
Go to Step 1.

Step 4 (Termination check)
if L(k) = ∅ then

STOP z(k) is the optimal solution.
else

Go to Step 1.
end if

The devised solution approach allows us to find the optimal solu-
tion for the multi-criteria shortest path problem with soft constraints.
In what follows, we formalize the optimality condition.

263 Chapter 7

Theorem 7.3.2. If L(M) is empty, then z(M) is the optimal solution.

Proof. Let suppose to be at iteration m. A problem Pi is selected
from L(m). All the sub-problem Pi+n are genereted and solved. Ap-
plying the bounding rule, if f

(
πPi+n

)
≤ f

(
πPi
)
, then Pi+n is fath-

omed. Wherease, if f
(
πPi+n

)
> f(πPi), then the set of candidate

problems is updated, that is L(m) = L(m−1) ∪ Pi+n). All the prob-
lems belonging to L(m) have the potential to contain the optimal so-
lution, thus z(m+1) = maxP∈L(m)

{
f
(
πP
)}

and z(m+1) > z(m). This
happens because z(m) = maxP∈L(m−1)

{
f
(
πP
)}

. Let suppose that

P̃i = argmaxP∈L(m−1)

{
f
(
πP
)}

, consequently z(m) = f
(
πP̃i
)

.

Let us consider the following two different situations.

1. P̃i is chosen at iteration m.

Let us suppose that P̃i+n′ = argmax
{
f
(
πPi+n

)
, f
(
πPi+n+1

)
,

}
.

If f
(
πP̃i+n′

)
≥ f

(
πP̃i
)

, then f
(
πP̃i+n′

)
≥ z(m). A better solution

is found, thus z(m+1) = f
(
πP̃i+n′

)
and all the problems such that

f
(
πP̃i+n

)
> f

(
πP̃i
)

are added to the list of candidate problems. On

the other hand, if f
(
πP̃i+n′

)
≤ f

(
πP̃i
)

, then all the problems P̃i+n

are fathomed and z(m+1) = z(m).

2. Pi 6= argmaxP∈L(m−1)

{
f
(
πP
)}

is chosen at iteration m.

The sub-problems Pi+n are generated and solved. Also in this
case if f

(
πPi+n

)
≤ f

(
πPi
)
n = 1, . . . , l − 1, then the sub-problem is

fathomed, otherwise if f
(
πPi+n

)
> f

(
πPi
)
n = 1, . . . , l − 1, then Pi+n

is added to the list of candidate problems and if f
(
πPi+n

)
> z(m) for

some n, then z(m+1) = f
(
πPi+n

)
.

In the two cases the incumbent is updated by the value of the
objective function of the problem that are stored in L. The problems

7.4. Computational experiments 264

that are fathomed have a less value of the objective function than that
of the father problem. We know that z = maxP∈L

{
f
(
πP
)}

, thus
z ≥ maxP∈W

{
f
(
πP
)}

where W is the set of all fathomed problems.
It is evident that, when L = ∅, z is the best value among all the
problems that belong to L(m), m = 0, . . . ,M where M is the last
iteration and z(M) ≥ maxP∈W (M)

{
f
(
πP
)}

, thus z(M) ≡ z∗.

The strategy for selecting the next sub-problem to investigate
determines how the B&B algorithm should proceed through the search
tree. The order, in which the nodes are processed, determined by the
search strategy, can have a signicante effect on the behaviour of the
algorithm.

In the proposed approach the selected sub-problem is that with
the best bound; e.g., the highest lower bound. This selection strategy
is motivated by the observation that the sub-problem with the best
lower bound has to be evaluated anyway and that is more likely to
contain the optimal solution than any other node (sub-problem in
branch tree). As shown in [87], this strategy has the characteristic
that, if other parts of B&B algorithm are not changed, the number of
sub-problems decomposed before termination is minimized.

7.4 Computational experiments

In this section we evaluate the behaviour of the proposed solution
approach in terms of robustness and efficiency. The B&B algorithm
has been coded in Java language and the tests have been carried out
by using an intel(R) core(TM) i7 cpu M620, 2.67 GHz, ram 4.00 GB,
under Microsoft 7 operating system.

265 Chapter 7

7.4.1 Test problems

The computational experiments have been conducted by considering
several scenarious. In particular, different types of networks have been
considered and we have simulated various preferences of the decisor
maker. Regarding the choise of the networks, we have considered four
sets of test problems. Random networks of varying size and density
(defined as the ratio between the number of arcs and the number of
nodes) have been considered. In particular, the developed approach
has been tested on fully random networks, generated by using the
public domain SPRAND generator ([29]). In set S1, we include the
random generated networks with a small size (R1 − R10), whereas
networks R11−R26, that have higher dimensions are included in the set
S2. The characteristics of the considered random generated networks
are reported in Tables 7.1 and 7.2.

test nodes arcs density
R1 300 2000 6.67
R2 350 2000 5.71
R3 400 2000 5.00
R4 450 2000 4.44
R5 500 2000 4.00
R6 300 3000 10.00
R7 350 3000 8.57
R8 400 3000 7.50
R9 450 3000 6.67
R10 500 3000 6.00

Table 7.1: Characteristics of the random generated networks of the set S1
.

The set S3 contains the Solomon’s complete networks. The orig-
inal data set proposed by Solomon is divided into random, clustered,
and random-clustered categories, according to the displacement of the
customers. Instances belonging to the same data-set have the cus-
tomers located in the same way and with the same delivery requests;
these instances differ only for the time windows. Since we are inter-

7.4. Computational experiments 266

test nodes arcs density
R11 100 5000 50.00
R12 200 5000 25.00
R13 500 5000 10.00
R14 1000 5000 5.00
R15 200 10000 50.00
R16 400 10000 25.00
R17 1000 10000 10.00
R18 2000 10000 5.00
R19 400 20000 50.00
R20 800 20000 25.00
R21 2000 20000 10.00
R22 4000 20000 5.00
R23 600 30000 50.00
R24 1200 30000 25.00
R25 3000 30000 10.00
R26 6000 30000 5.00

Table 7.2: Characteristics of the random generated networks of the set S2
.

ested only in the structure of the networks, thus one instance taken
from each one of the three Solomon’s data-sets is considered. In par-
ticular, we have considered the original networks with 100 nodes and
others by considering the first 50 nodes. We refer to these test prob-
lems as c101, r101 and rc101 for the networks with 100 nodes, whereas
we indicated with c51, r51 and rc51 those with 50 nodes.

In addition, we have considered the set S4 containing 7 complete
networks (i.e., C1 − C7) built by using the Compligen generator of
Bertsekas ([20]). In Table 7.3 we report the number of nodes and the
number of arcs of the considered complete networks that belong to the
set S4.

For the networks of sets S1, S2 and S4 the costs have been ran-
domly generated from the interval [0, 100]. For each network, we have
generated a set of instances varying both the middle of the range that
defines the preferences of the decisor maker and the width of the range.
In particular, qk and q

k
, ∀k = 1, . . . , q are computed as q

π∗st
k +const−γ

267 Chapter 7

test nodes arcs
C1 50 2450
C2 80 6320
C3 100 9900
C4 150 22350
C5 180 32220
C6 200 39800
C7 250 62250

Table 7.3: Characteristics of the complete networks of the set S4
.

and q
π∗st
k + const + γ, respectively. The value q

π∗st
k , ∀k, represents the

cost of the optimal path when only the criteria k is optimized; the
parameter const is a given constant; whereas the value γ is randomly
chosen according to an uniform distribution in a specific range. In this
work we consider 5 values of const, that is 150, 225, 300, 350, and 450.
In addition, we have taken into account 3 different ranges in which γ

is chosen. In particular, the ranges r1 = [100; 1000], r2 = [100; 3000]
and r3 = [100; 5000] have been considered. In what follows, we refer
to the instances generated from networks Ri with γ chosen in the j-st
range as Rrj

i , j = 1, . . . , 3.

7.4.2 Experimental results

The data collected in the computational phase are reported in Tables
A.1 - A.5 of the Appendix, where the computational time in ms, the
number of iterations executed by the B&B approach and the B&B
nodes generated are highlighted. Each line of a table represents an
average result, averaged over a group of four different instaces that
differ for the value of γ.

The computational results underline that the behaviour of the
proposed solution approach is related to the width of the range defined
by the decisor maker for each criterion. Indeed, the higher the interval,
the higher the computational cost. This behaviour is observed for the

7.4. Computational experiments 268

instances of all the considered sets. In Figure 7.4, the trends of the
computational time, of the number of iterations and of the number of
B&B nodes are plotted as a function of the range.

Figure 7.4: Time, number of iterations and number of nodes plotted as a function
of the range.

As shown in Figure 7.4, the easiest problems to be solved are
those belonging to the set S4. Indeed, the execution time of proposed
solution approach in solving the instances of sets S3 and sets S1∪S2
is 2.22 and 2.73 times slower than the times required to solve the
networks of set S4. As a matter of the fact, the number of iterations
[nodes] executed [generated] is 1.36 and 6.56 [1.62 and 10.23] times
higher than those obtained on set S4 for the sets S1 ∪ S2 and S3,
respectively. It is important to point out that the computational effort
per node is higher for the set S1 ∪ S2 than for the others sets. In
particular, the time per node is equal to 1287.52, 216.94 and 774.10
for the set S1 ∪ S2, S3 and S4, respectively.

269 Chapter 7

No relationship can be observed beetwen the behaviour of the
proposed algorithm and the value of the parameter const.

range density time iter nodes time par node

r1 50 17022.55 2.79 20.03 850.06
25 18712.56 2.29 15.73 1189.99
10 58198.23 2.40 21.01 2769.70
5 137119.49 2.36 23.16 5919.89

r2 50 19431.00 2.88 21.23 915.48
25 30989.51 3.66 28.65 1081.66
10 103865.66 4.85 45.48 2284.02
5 250836.03 9.33 89.93 2789.39

r3 50 14989.41 4.68 34.30 437.01
25 56446.56 10.88 84.26 669.89
10 155421.43 10.51 90.29 1721.41
5 685411.69 24.87 224.85 3048.30

Table 7.4: Computational effort, number of iterations, number of generated nodes
and time par node when the networks of set S2 are considered, grouped by the value
of the density.

Regarding the sets S1 and S2, we can drawn some considera-
tions related to the structure of the random generated networks. In
particular, it seems that the performance of the proposed strategy to
solve the problem at hand is influenced by the dimensions of the test
problems and by the density. Indeed, from Table 7.4 it is evident that
for the networks of the set S2, the lower the density, the higher the
computational effort. This behaviour can be justified by considering
the number of iterations and the number of nodes generated when
the instances of set S2 are solved (see Table 7.4). In addition, the
computational effort per node increases when the density descreases.

When we consider the networks of the set S1, this trend is not
observed. In others words, for the instances with a small size, that
is those belonging to the set S1, there are no relations beetwen the
behaviour of the proposed solution approach and the structure of the
network.

7.5. Conclusions 270

7.5 Conclusions

In this work we have investigated a path problem in presence of mul-
tiple metrics and preferences of the decisor maker. In particular, for
each metric, the decisor maker provides a range of values in which the
function related to the metric should belong. We have modeled these
preferences as soft constraints. In other words, if a solution for which
each criterion belongs to the given range does not exists, then the so-
lution the closest to the preferences of the decisor maker is found. To
mathematically represent the problem, we have used the concept of
reference point. An appropriate scalarizing function has been defined
in order to take into account the desiders of the decisor maker. In
particular, this function gives the distance of the solution from the
reference point that is defined on the bases of the preferences of the
decisor maker. Thus, the obtained solution is as close as possible to
the desiders of the decisor maker. It is worth mentioning that the
optimal solution is not necessary Pareto optimal. A non efficient so-
lution could be optimal for the problem under investigation because
of the particular demands of the decisor maker.

A branch-and-bound based solution approach is devised in order
to optimally solve the problem under investigation.

The computational phase has been carried out by considering dif-
ferent scenarious. Indeed, several types of networks and different pos-
sible desiders of the decisor maker have been considered. The experi-
mental results suggest that the performance of the proposed strategy
is closely related to the width of the range, the higher the width, the
higher the computational effort. No relationship has been observed
beetwen the behaviour of the proposed method and the value of the
middle of the ranges.

271 Appendix

Appendix A - Computational results

A
p
p

en
d
ix

272
const 150 225 300 350 400
test time iter nodes time iter nodes time iter nodes time iter nodes time iter nodes

Rr1
1 2067.00 3.00 19.25 6013.75 6.25 45.25 4098.75 3.00 25.75 71175.50 4.75 49.25 3617.75 1.00 19.00

Rr1
2 3956.50 6.00 35.50 1993.25 1.75 13.75 2903.00 2.00 17.50 2537.00 1.25 13.00 13948.25 7.25 81.50

Rr1
3 22202.75 30.50 204.50 1614.75 1.00 10.00 1692.75 1.00 10.25 1786.50 1.00 10.75 2784.50 1.50 17.00

Rr1
4 1229.50 1.25 9.25 15032.75 11.50 90.75 3237.25 1.75 17.50 3695.50 1.50 17.00 4050.75 1.00 15.50

Rr1
5 2745.75 2.50 19.00 2402.25 1.50 13.25 9629.00 4.75 49.50 28263.25 10.50 116.25 9656.50 4.00 40.25

Rr1
6 2574.00 2.00 15.25 2609.00 1.50 13.00 2194.25 1.00 9.00 4609.75 2.00 19.75 7256.50 3.50 32.75

Rr1
7 2510.50 1.75 13.00 2732.00 1.25 11.75 4187.25 1.75 17.25 5780.75 2.25 23.00 3613.00 1.00 13.25

Rr1
8 5078.50 5.00 27.25 4315.25 2.75 21.00 33692.00 18.75 145.75 5809.00 2.25 19.50 6823.25 1.75 21.25

Rr1
9 2185.00 1.25 9.25 7021.25 3.50 28.25 8052.25 3.50 31.75 26909.00 7.25 83.50 13354.50 3.50 39.50

Rr1
10 5070.50 2.50 20.25 7062.75 3.50 26.75 38495.50 16.25 133.75 205226.25 82.25 741.25 3727.25 1.00 10.25

Rr1
11 1591.50 1.75 8.75 2457.00 1.50 10.25 2898.75 1.75 12.00 5460.00 3.75 26.75 3378.25 1.25 10.25

Rr1
12 1876.00 1.50 8.50 1890.00 1.25 7.25 2691.50 1.25 8.75 2936.75 1.25 9.75 3253.50 1.00 8.50

Rr1
13 2143.50 1.25 7.50 11699.75 2.75 26.50 4017.00 1.00 9.50 11232.25 1.75 20.50 11001.00 1.25 18.25

Rr1
14 5095.50 1.25 10.25 29818.75 6.75 56.75 8831.75 1.25 13.75 8755.00 1.00 11.50 9144.75 1.00 11.50

Rr1
15 3061.50 1.00 6.00 7222.25 3.00 17.75 14795.25 4.75 33.75 29072.00 9.25 64.50 4048.25 1.00 7.75

Rr1
16 3241.00 1.75 8.00 13907.50 2.50 17.75 9906.50 2.00 16.00 26057.00 4.25 34.75 32543.25 7.25 58.50

Rr1
17 17380.50 4.75 25.75 54830.00 11.00 66.00 16563.00 1.00 11.50 15793.25 1.25 13.25 13025.00 1.25 11.75

Rr1
18 89928.50 10.50 66.25 37693.25 2.75 23.00 35072.75 1.00 15.00 46624.50 1.00 18.00 47248.50 1.25 19.75

Rr1
19 11588.25 1.50 9.50 15571.50 2.25 14.75 64515.25 8.50 66.25 46733.75 5.25 41.50 14680.00 1.00 9.75

Rr1
20 21068.25 5.50 21.00 27233.75 5.00 24.00 12866.00 1.00 8.75 19180.25 1.50 13.25 16906.50 1.25 11.50

Rr1
21 30317.00 1.25 10.25 55478.00 1.75 17.00 55493.00 2.25 18.50 53078.50 2.25 18.50 153627.50 3.50 40.25

Rr1
22 62377.00 2.25 16.50 105700.50 1.25 15.50 76303.25 1.00 11.75 127974.75 1.00 15.50 177910.00 1.75 22.25

Rr1
23 23815.50 2.50 15.00 11747.00 1.25 8.50 32326.00 2.00 16.50 15776.00 1.00 7.75 29713.00 1.50 13.25

Rr1
24 27348.25 2.25 11.75 59348.25 2.25 17.75 22163.75 1.00 9.00 35701.50 1.00 9.25 34131.75 1.00 10.50

Rr1
25 62930.50 1.00 10.75 221949.00 2.75 31.25 94512.50 2.00 18.75 85375.00 1.00 11.50 193518.25 3.00 33.00

Rr1
26 143850.75 1.50 14.25 139858.00 1.00 11.25 383023.00 1.50 23.75 217048.75 1.00 14.25 990130.50 7.25 72.50

AVG 21432.06 3.74 23.94 32584.67 3.21 24.58 36313.89 3.35 28.90 42407.38 5.87 54.76 69349.70 2.35 24.98

Table A.1: Computational results collected for the networks of the sets S1 and S2 with γ chosen in the interval r1.

273
A

p
p

en
d
ix

const 150 225 300 350 400
test time iter nodes time iter nodes time iter nodes time iter nodes time iter nodes

Rr2
1 2324.25 1.25 12.50 3942.75 3.00 23.75 5335.00 4.75 38.25 5042.75 3.25 31.00 14009.00 8.00 83.75

Rr2
2 22551.00 11.25 115.50 1692.25 1.25 11.25 3852.25 2.75 23.50 2962.25 2.00 18.50 18425.00 10.25 102.50

Rr2
3 2546.75 1.00 11.75 2566.25 1.00 12.00 11068.25 8.25 71.00 4001.75 2.00 21.75 7035.75 5.00 40.50

Rr2
4 17679.50 17.25 125.75 5981.50 5.25 38.50 7439.50 3.00 34.25 3367.50 1.50 15.25 2972.25 1.25 13.75

Rr2
5 1603.00 1.00 9.00 8446.75 6.00 45.75 31601.25 18.25 159.25 30167.75 15.75 154.50 17380.00 7.00 72.25

Rr2
6 3946.75 4.25 25.00 1723.50 1.50 10.25 3002.75 2.00 16.25 2472.75 1.50 13.00 7667.50 4.50 37.50

Rr2
7 3109.75 3.50 20.00 3114.00 2.50 18.00 2472.00 1.75 13.00 5428.25 3.25 26.75 4132.25 2.00 17.25

Rr2
8 1364.25 1.00 6.75 2380.25 1.75 12.25 49368.50 28.00 220.00 3044.75 1.50 13.50 2693.00 1.25 11.50

Rr2
9 4071.50 3.50 20.75 15282.75 10.75 71.25 6983.50 3.75 31.50 2651.25 1.00 9.25 31205.75 12.00 115.25

Rr2
10 3245.75 2.50 17.75 6386.75 4.00 29.00 8195.00 4.00 34.00 194139.25 77.25 699.25 122182.50 47.50 447.25

Rr2
11 2046.50 1.75 9.50 4421.00 3.75 21.00 7209.50 4.75 33.00 1443.00 1.25 6.75 8385.75 4.00 29.25

Rr2
12 854.00 1.00 4.00 7866.25 3.50 20.00 3931.25 1.00 8.00 11610.25 4.25 31.50 25720.50 9.00 75.50

Rr2
13 3396.75 2.00 11.25 5557.50 1.75 16.25 5997.00 2.00 17.75 44390.25 12.50 119.50 3439.75 1.00 9.75

Rr2
14 18632.00 1.00 6.50 24717.75 2.25 14.00 49121.00 3.25 30.50 80975.00 5.00 45.25 42100.50 2.00 20.25

Rr2
15 4555.25 2.00 10.50 3763.25 1.00 7.75 13084.25 3.00 25.25 29121.25 8.00 61.00 9324.75 1.75 17.75

Rr2
16 4348.75 1.25 7.00 3393.00 1.50 7.00 23672.75 5.50 42.50 14414.00 3.25 24.50 43880.25 8.00 73.50

Rr2
17 4809.00 1.00 6.50 5132.50 1.00 6.25 13235.25 1.75 14.00 96277.25 11.75 87.75 112737.25 13.25 108.25

Rr2
18 68975.00 7.25 52.75 38867.25 2.50 21.25 1834837.25 107.25 1037.50 107916.50 5.00 54.75 573450.75 25.75 272.25

Rr2
19 15530.25 3.00 15.75 4882.25 1.25 6.25 9003.00 1.50 10.25 12587.25 1.00 9.25 47716.50 6.00 44.75

Rr2
20 12074.50 2.25 11.75 14024.25 2.00 12.50 21332.75 2.25 16.25 20681.50 2.25 17.25 177302.00 16.50 138.75

Rr2
21 26364.00 1.00 8.50 167090.00 8.25 68.25 34565.75 2.00 15.50 34054.75 1.00 11.00 835755.25 24.00 293.00

Rr2
22 31085.50 1.00 8.25 297115.25 9.00 70.50 52295.00 1.00 10.25 200978.50 3.25 34.00 158991.75 2.00 22.25

Rr2
23 18632.00 1.00 6.50 24717.75 2.25 14.00 49121.00 3.25 30.50 80975.00 5.00 45.25 42100.50 2.00 20.25

Rr2
24 29729.50 2.25 13.00 38604.00 2.50 16.50 46225.25 1.00 13.00 31746.00 1.00 11.25 88379.50 3.00 29.25

Rr2
25 20693.50 1.00 6.50 136405.00 3.00 23.50 140138.50 2.75 25.25 121192.50 1.25 14.75 266081.50 4.75 46.00

Rr2
26 111754.25 1.00 10.00 98807.00 1.00 10.00 427551.50 2.25 28.25 143511.00 1.25 11.50 655037.75 3.50 38.50

AVG 16766.28 2.93 21.27 35649.26 3.21 23.35 110024.58 8.50 76.88 49428.93 6.77 61.08 127619.51 8.66 83.88

Table A.2: Computational results collected for the networks of the sets S1 and S2 with γ chosen in the interval r2.

A
p
p

en
d
ix

274

const 150 225 300 350 400
test time iter nodes time iter nodes time iter nodes time iter nodes time iter nodes

Rr3
1 2367.00 1.50 14.00 1107.50 1.50 9.50 8828.25 7.25 58.75 22704.25 18.00 150.75 2535.00 1.00 13.75

Rr3
2 9023.50 10.00 60.75 1977.75 1.50 13.50 20537.00 14.75 126.50 2623.75 1.75 16.25 10285.75 4.50 51.50

Rr3
3 1432.25 2.00 12.75 1704.00 1.25 10.25 11571.50 9.75 72.25 12426.50 8.50 75.25 2779.00 1.00 12.50

Rr3
4 858.25 1.00 6.75 24901.00 22.25 161.00 6085.25 3.50 34.00 1404.50 1.00 8.25 4718.00 2.25 22.75

Rr3
5 1458.75 1.25 10.25 64030.25 41.00 390.00 6068.25 4.50 31.25 220623.50 128.00 1182.75 36870.50 16.75 175.25

Rr3
6 4313.25 4.75 28.50 1052.75 1.25 8.00 52125.00 32.25 264.25 963.25 1.00 7.25 192009.00 111.75 972.25

Rr3
7 2819.25 2.00 14.25 2031.50 1.25 9.50 3516.50 1.75 16.50 16451.25 9.00 79.50 5135.75 2.00 20.75

Rr3
8 5584.75 3.25 24.00 5674.50 2.00 18.75 61291.25 35.50 272.25 11028.00 4.75 47.50 4224.50 1.50 16.25

Rr3
9 2153.00 1.25 9.50 2271.50 1.50 11.50 1898.50 1.00 8.75 14174.00 6.50 58.50 83307.25 29.50 306.00

Rr3
10 133944.50 79.00 605.50 16982.25 9.75 71.75 9174.00 4.25 36.25 202029.00 77.75 704.25 3525.00 1.25 12.00

Rr3
11 3069.25 3.00 14.50 3092.75 2.25 13.25 3159.00 2.25 13.50 3026.25 2.00 14.25 8447.50 5.25 39.75

Rr3
12 1320.25 1.00 5.25 1388.50 1.00 6.50 6279.25 3.75 26.50 178497.75 94.25 739.75 18636.00 9.75 68.50

Rr3
13 5405.00 1.50 13.25 11700.75 5.00 36.00 4836.00 1.25 12.00 261482.25 86.25 711.25 35069.00 5.75 62.75

Rr3
14 60963.75 16.25 120.00 21405.25 2.00 25.00 46718.25 5.75 61.50 34407.75 5.50 48.25 139806.50 16.00 174.25

Rr3
15 7484.00 2.00 12.50 16329.25 5.25 31.75 30369.25 8.75 68.75 47350.00 10.75 109.50 10407.50 1.75 17.00

Rr3
16 8196.50 1.00 8.50 14661.25 4.50 25.25 283785.25 58.50 459.75 21924.00 4.50 33.50 8547.50 1.00 9.75

Rr3
17 18387.50 4.00 25.25 7552.75 1.50 10.00 13157.25 1.75 13.00 17129.75 1.00 12.00 88763.00 7.75 88.75

Rr3
18 58632.75 6.50 42.25 25712.50 1.75 15.25 2858421.00 161.00 1403.50 1817149.25 86.75 894.50 1446256.75 65.00 669.00

Rr3
19 24655.25 4.25 22.50 61320.50 10.50 58.75 8402.00 1.00 6.25 9644.25 1.00 8.00 25064.50 3.50 23.00

Rr3
20 15010.75 1.50 9.50 16083.75 1.75 11.75 62903.25 6.75 50.75 35462.75 3.00 25.00 28597.50 2.75 24.00

Rr3
21 10954.25 1.00 6.25 35258.50 1.00 9.75 101275.50 4.50 38.00 671126.25 32.75 254.75 1011965.75 38.50 363.25

Rr3
22 12916.03 1.00 6.07 62695.78 1.09 10.07 153221.10 2.25 25.13 3960738.14 106.44 787.41 192513.54 3.21 27.58

Rr3
23 858.25 1.00 6.75 24901.00 22.25 161.00 6085.25 3.50 34.00 1404.50 1.00 8.25 4718.00 2.25 22.75

Rr3
24 18604.50 1.00 6.75 69982.50 5.00 30.50 84765.75 5.50 36.50 75653.75 3.25 31.50 178630.50 7.75 75.75

Rr3
25 86677.50 1.00 12.25 131008.50 5.00 32.00 145294.25 3.00 28.50 318302.50 6.25 57.00 133082.25 1.50 19.75

Rr3
26 221271.25 1.00 13.25 67068.00 1.00 8.00 171733.75 1.00 11.25 399327.75 1.00 19.75 1957274.75 13.00 135.00

AVG 27629.28 5.88 42.73 26611.33 5.93 45.71 160057.75 14.81 123.45 321425.19 27.00 234.03 216660.40 13.70 131.69

Table A.3: Computational results collected for the networks of the sets S1 and S2 with γ chosen in the interval r3.

275
A

p
p

en
d
ix

const 150 225 300 350 400
test time iter nodes time iter nodes time iter nodes time iter nodes time iter nodes

cr151 265.50 1.75 4.75 651.00 1.00 6.50 1115.50 2.25 11.75 11286.75 21.50 137.00 2496.25 5.50 28.50

cr1101 2022.75 1.50 6.00 4571.00 1.75 11.00 10249.00 4.50 26.00 12195.25 5.25 28.75 12788.00 6.75 36.25

rr151 1981.00 5.00 23.75 3026.50 6.50 34.00 2024.25 3.25 21.75 908.75 1.25 8.50 760.50 1.00 6.50

rr1101 3112.25 2.00 9.50 11967.75 6.50 32.00 6555.75 2.25 21.50 13193.75 6.50 39.75 5300.25 3.75 18.50

rcr151 17362.75 8.00 50.50 79704.50 28.25 221.00 15260.75 4.50 42.00 9333.00 3.25 24.00 5456.50 3.50 14.50

rcr1101 702.00 1.25 6.00 6088.00 10.25 58.25 1505.25 2.00 15.00 905.00 1.75 9.25 280.75 1.00 3.75
AVG 4241.04 3.25 16.75 17668.13 9.04 60.46 6118.42 3.13 23.00 7970.42 6.58 41.21 4513.71 3.58 18.00

cr251 405.75 1.50 5.75 635.50 1.75 8.50 604.25 1.00 6.75 973.00 3.00 13.75 22056.00 30.00 227.75

cr2101 3131.50 1.75 9.00 3919.00 2.75 12.00 2366.75 1.50 8.25 25533.25 15.00 76.25 15799.00 8.00 46.75

rr251 1154.75 3.00 15.00 1368.75 2.50 17.00 9044.25 16.00 99.25 44374.50 51.00 534.50 11512.00 15.00 122.25

rr2101 2667.25 1.50 7.25 24938.75 8.00 59.75 27694.25 10.00 70.25 5780.00 2.25 18.50 491291.50 119.75 1358.25

rcr251 2929.00 1.25 8.00 96126.25 28.75 276.00 5000.00 1.50 12.00 21703.75 5.75 48.00 3814.25 1.25 8.75

rcr2101 1435.00 3.00 17.50 48398.75 59.75 497.75 1715.75 3.50 18.75 4205.00 3.75 50.00 865.75 1.75 11.25
AVG 1953.88 2.00 10.42 29231.17 17.25 145.17 7737.54 5.58 35.88 17094.92 13.46 123.50 90889.75 29.29 295.83

cr351 483.75 1.25 4.75 943.75 2.00 10.50 1642.25 3.50 18.75 1956.50 5.00 23.25 12097.75 17.75 136.25

cr3101 2636.25 1.00 5.50 7929.25 3.50 19.00 36894.00 14.50 91.75 6528.75 2.25 17.75 36176.50 19.75 105.00

rr351 597.00 1.50 7.25 1131.00 2.00 12.00 53956.50 74.75 664.25 47572.25 52.00 545.00 10077.75 12.00 105.25

rr3101 34072.50 19.25 104.75 16575.75 5.50 35.00 15834.00 5.50 42.25 237549.25 68.25 703.50 917873.25 191.50 2008.25

rcr351 1840.75 1.00 6.00 7441.00 2.75 16.50 5511.00 2.00 14.50 936830.50 168.25 2101.50 25708.75 6.00 67.25

rcr3101 2870.50 6.25 34.50 903829.50 1060.25 9496.50 54264.50 76.00 536.25 7803.75 7.25 98.00 1801029.50 961.00 16201.25
AVG 7083.46 5.04 27.13 156308.38 179.33 1598.25 28017.04 29.38 227.96 206373.50 50.50 581.50 467160.58 201.33 3103.88

Table A.4: Computational results collected for the networks of the set S3.

A
p
p

en
d
ix

276

const 150 225 300 350 400
test time iter nodes time iter nodes time iter nodes time iter nodes time iter nodes

Cr1
1 1872.00 4.25 20.00 1813.50 4.25 22.25 702.00 1.50 9.50 1084.25 1.00 8.00 14562.50 19.25 158.50

Cr1
2 1973.50 1.75 8.50 3232.75 2.75 14.75 1263.50 1.00 5.50 3669.75 3.00 18.50 2191.75 1.50 10.25

Cr1
3 3030.75 1.50 7.50 3517.75 1.00 5.75 14868.25 5.50 35.75 8728.75 4.00 20.00 4298.00 1.25 7.50

Cr1
4 7028.75 1.75 8.25 13746.50 2.25 14.00 15142.25 2.75 18.75 11709.25 1.50 12.25 14073.75 1.75 12.75

Cr1
5 14405.75 2.00 11.00 21568.75 3.50 19.50 12836.00 1.50 11.00 11852.50 1.00 7.50 25820.50 3.75 24.25

Cr1
6 17770.25 2.00 12.25 30599.75 4.00 21.00 18746.75 2.25 13.25 21129.75 2.25 14.00 29893.25 2.75 20.25

Cr1
7 17566.25 1.25 6.75 20067.50 1.00 6.50 53133.50 4.00 23.00 97559.00 5.00 37.25 23230.50 1.00 6.25

AVG 9092.46 2.07 10.61 13506.64 2.68 14.82 16670.32 2.64 16.68 22247.61 2.54 16.79 16295.75 4.46 34.25

Cr2
1 1313.75 2.50 13.25 1505.50 2.50 15.00 3275.50 5.00 33.75 932.75 13.75 95.00 39675.00 46.50 393.00

Cr2
2 3481.00 2.25 12.75 2340.25 1.50 9.00 6079.25 4.75 28.00 7206.50 4.50 30.00 13271.75 7.00 53.50

Cr2
3 10307.00 6.00 26.00 6492.50 2.00 14.00 2978.75 1.50 9.25 6664.00 3.25 18.75 7019.25 1.75 13.75

Cr2
4 5073.25 1.25 5.75 20697.50 2.75 17.75 54303.50 8.00 60.25 11758.00 1.25 11.00 47993.50 6.50 48.50

Cr2
5 22667.50 3.50 15.75 9887.75 1.25 8.25 53698.75 5.25 38.50 20520.25 2.00 16.75 14341.75 1.00 8.50

Cr2
6 13425.50 1.25 7.50 35917.50 3.75 23.75 66012.00 5.25 39.50 40641.00 3.75 26.75 89988.25 6.00 58.75

Cr2
7 9993.50 1.00 5.00 62312.50 4.00 25.00 39872.25 2.00 14.50 40504.75 2.00 16.75 104077.50 5.50 43.00

AVG 9465.93 2.54 12.29 19879.07 2.54 16.11 32317.14 4.54 31.96 19461.04 4.36 30.71 45195.29 10.61 88.43

Cr3
1 1017.75 2.00 10.25 21914.25 42.25 241.00 3123.75 5.50 34.50 990.50 1.75 11.00 19862.25 23.75 198.00

Cr3
2 1174.25 1.00 5.50 4820.50 3.25 19.50 11688.50 6.75 45.50 2650.50 1.00 9.00 170613.25 71.25 618.25

Cr3
3 3279.00 1.50 7.00 5418.00 1.75 10.50 23241.00 8.50 57.50 3433.50 1.00 6.50 60941.50 15.75 137.50

Cr3
4 5613.50 1.00 6.25 72471.75 14.75 76.25 31475.75 6.00 34.75 89981.00 12.00 95.50 18185.75 2.50 20.50

Cr3
5 30493.50 4.00 22.25 10457.75 1.25 8.50 76506.50 6.75 53.00 12806.75 1.00 9.50 20052.50 2.25 16.00

Cr3
6 16373.00 1.25 6.75 46593.00 5.00 30.00 43739.25 3.25 25.50 117513.00 8.00 69.25 652447.00 47.00 393.50

Cr1
7 43729.75 3.75 18.25 17955.00 1.50 8.25 194888.75 12.75 80.50 23743.50 1.00 9.75 26071.75 1.25 11.50

AVG 14525.82 2.07 10.89 25661.46 9.96 56.29 54951.93 7.07 47.32 35874.11 3.68 30.07 138310.57 23.39 199.32

Table A.5: Computational results collected for the networks of the set S4.

Chapter 8

Solution Approaches for the
Elementary Shortest Path
Problem

Luigi Di Puglia Pugliese

Department of Electronics, Informatics and Systems, University of
Calabria, 87036, Rende (CS), Italy

Francesca Guerriero

Department of Electronics, Informatics and Systems, University of
Calabria, 87036, Rende (CS), Italy

Abstract

In this paper, the elementary shortest path problem is considered.
Given a directed graph, containing negative cost cycles, the aim is to
find the paths with minimum cost from a source node to each other
node, that do not contain repeated nodes. The problem under study
is formulated by considering the classical mathematical model of the
shortest path in which the sub-tours elimination constraints have to

277

8.1. Introduction 278

be satisfied. Three different solution strategies are proposed to solve
the problem under investigation and their theoretical properties are
investigated. The first is a dynamic programming approach, the sec-
ond method is based on the solution of the k shortest paths problem,
where k is considered as a variable. In the last approach, upper bounds
are computed and the optimality gap is closed by using a branch and
bound scheme.

Keywords: shortest path; negative cost cycles; dynamic program-
ming; k shortest paths; branch and bound method.

8.1 Introduction

The Shortest Path Problem (SPP , for short) is one of the most stud-
ied problems in network optimization ([46], [57], [65]). The problem
comes up in practice and arises as a subproblem in many network op-
timization algorithms. Solution approaches for the SPP have been
studied for a long time (e.g., [17], [55], [57], [66], [109], [115]). More
recently, some improvements and computational study have been pre-
sented in [4], [69], [73]. For a detailed survey on the algorithms for
solving the SPP the reader is referred to [70] and [29].

In its basic formulation, the objective is to determine the min-
imum cost path through a network from a given origin node to a
destination node. Several polynomial time solution approaches have
been developed in the scientific literature to address the SPP (e.g.,
see [47], [57], [99]). On a network with negative length arcs but with
non-negative cost cycles, the best currently known time bound O(nm)
is achieved by the Bellman-Ford-Moore algorithm ([17], [66], [109]),
where n and m denote the number of nodes and arcs in the network,
respectively. If the arc lengths are non-negative, implementations of
Dijkstra’s algorithm ([57]) achieve better bounds. In particular, an
implementation presented in [68] runs in O(m+ n log n) time.

279 Chapter 8

A trivial extension of the SPP is to find the shortest tree rooted
at a source node, by considering as destinations all the nodes of the
network. This problem is known in the scientific literature as span-
ning tree problem (ST P , for short). A detailed description and a
computational study on algorithms for solving the ST P can be found
in [15].

An interesting extension of the SPP is the problem to find the
first k shortest paths (kSPP , for short). For each node, a set of k
shortest paths have to be determined by considering the first, the sec-
ond and so on up to the k-th shortest path. This problem arises in
many real-life applications, e.g. in telecommunication and transporta-
tion fields. In these contexts, alternative solutions should be available
when the current best is forbidden for various reason, e.g. link inter-
ruption in telecommunication network or street closed in transporta-
tion plant. Many solution approaches have been defined to solve the
kSPP . The scientific literature takes into account two variants of the
kSPP :1) the pure kSPP and 2)the so-called loopless kSPP . In the
first case, a node can appear more than once in the solution paths,
whereas, in the latter we are interested in finding the first k shortest
paths such that they contain a node only once. A wide number of
papers address the kSPP ([9], [31], [58], [62], [77], [100], [127]). Solu-
tion approaches for the loopless kSPP have been defined in [104] and
[146]. Dreyfus ([58]) and Yen ([146]) cite several additional papers on
this subject going back as far as 1957.

When negative cost cycles are present in the network, the SPP
is not well defined, that is a finite optimal solution does not exist. In
this case, the problem is to check whether there exists a simple cycle
in this network whose arc costs sum up to a negative number. In
the scientific literature this problem is known as Negative Cost Cycle
Detection (NCCD, for short) problem.

Approaches to NCCD can be broadly categorized as relaxation-
based [38] or contraction-based [132]. The former approaches are

8.1. Introduction 280

also colled label-correcting methods. The relaxation approach of the
Bellman-Ford algorithm is one of the earliest and to date, asymptot-
ically fastest algorithm for NCCD. Depending on the heuristic used
to select arcs to be relaxed, a number of relaxation-based approaches
are possible ([29], [72]). Recently, in [131] the author introduces a new
approach for negative cost cycle detection; the approach is based on
exploiting the connections between the NCCD problem and the prob-
lem of checking whether a system of difference constraints is feasible.
The author concludes that the proposed procedure is as efficient as
the fastest known comparison-based algorithm for this problem.

The problem to find a shortest path in a network with negative
cost cycle is still a very challenging problem. To the best of our knowl-
edge, no solution approaches have been defined up to now to solve the
elementary shortest path problem (ESPP , for short). It is of course,
well known that computing shortest paths in the presence of negative
cost cycles is a strongly NP -hard problem [71].

When further constraints on the consumption of resource along
the path are introduced, the problem is referred to as the resource
constrained elementary shortest path problem (RCESPP , for short).
This problem has attracted the attention of many researchers in the
last years. Starting to the seminal work of Beasley and Christofides
([16]), a variety of solution approaches have been developed to optimal-
ity solve the RCESPP . We cite the work of Feillet et al. ([64]), where
the ideas introduced in [16] have been used to define an optimal so-
lution approach and a computational study to assess the performance
of the proposed solution strategies has been carried out for the first
time.

In the paper of Boland et al. ([22]) and of Righini and Salani
([120]), methods based on a relaxation of the RCESPP have been
proposed. These approaches resemble the idea of Kohl [96]. Briefly,
the RCESPP is solved by considering a relaxed problem in which
the constraints on the elementarity are not taken into account. The

281 Chapter 8

state-space is iteratively incremented adding the constraint on the
nodes that appear more than once in the path until the solution of the
relaxed problem is an elementary path. The state-space is augmented
by introducing a dummy resource on the node that is repeated along
the optimal path of the relaxed problem. The methods proposed in
[22] and in [120] turn out to be the most efficient solution approaches.

It is evident that the ESPP can be viewed as a particular instance
of the RCESPP . However, it is worth observing that the solution
approaches proposed to solve the latter cannot be directly applied for
solving the former. If the best known methods for the RCESPP are
applied to the ESPP , then the constraints on the elementarity are
relaxed, thus the relaxation of the ESPP , that is the SPP is not well
defined.

In this paper, we extend the concepts proposed in [22] and in
[120] to the general case, that is the ESPP . Other solution strategies
are also exploited and an analysis is conducted in order to evaluate
the theoretical complexity of the proposed solution approaches.

The paper is organized as follows. In Section 8.2 we give some
notations and definitions used in the paper. The proposed solution
approaches, along with their theoretical analysis and comparison are
presented in Section 8.3, whereas in Section 8.4 we give some conclu-
sions.

8.2 Notations and Definitions

Let G = (N ,A) be a directed graph where N is the set of n nodes,
whereas A denotes tha set of m ≤ |N ×N| arcs. N contains also the
source node s and the destination node d. In the sequel, we assume
that (j, s), (d, j) 6∈ A, ∀j ∈ N , that is arcs entering node s and
leaving node d do not exist in G. A cost cij is associated with each
arc (i, j) ∈ A. A cycle on node i is defined as a sequence of nodes

8.2. Notations and Definitions 282

Ci = {i, j1, . . . , jl, i} and it can be also viewed as a sequence of l + 1
arcs {(i, j1), . . . , (jl, i)} where l = 1, . . . , L(Ci). The value L(Ci) =
|Ci| − 2 denotes the number of nodes in the cycle exluding those that
appeared twice. A path πsi from node s to node i is a sequence of
node πsi = {s = i1, . . . , il = i}, l ≥ 1 and a corresponding sequence
of l − 1 arcs such that the h-th arc in the sequence is (ih, ih+1) ∈
A for h = 1, . . . , l − 1. Thus, each path contains at least one arc.
Let Mπ(j) be the multiplicity of node j in path π, that is Mπ(j) =
|{v : 0 ≤ v ≤ |π|, iv = j}|. The path π is said to be an elementary
path if Mπ(j) = 1, for all j ∈ π. The cost of a sequence of nodes ND,
and thus the corresponding sequence of arc, is defined as c(DN) =∑

(i,j)∈ND cij. A cycle Ci on node i ∈ N is said to be a negative cost
cycle (NCC) if c(Ci) < 0.

Since the directed graph G is not assumed to be acyclic and the
costs are not constrained in sign, thus there may be NCC in G.

The ESPP , from the source s to the destination d, consists in
finding the path πsd such that c(πsd) is minimized and Mπsd(j) =
1, ∀j ∈ πsd.

From a mathematical stand point, the single-source single-destination
ESPP can be formulated by the linear integer programming shown in
what follows:

283 Chapter 8

min
∑

(i,j)∈A

cijxij(8.1)

s.t. ∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = 0,∀i ∈ N − {s, d}(8.2)

∑
{j:(s,j)∈A}

xsj = 1(8.3)

∑
{j:(j,d)∈A}

xjd = 1(8.4)

∑
i∈sN

∑
j∈sN

xij ≤ |sN | − 1, ∀ sN ⊆ N(8.5)

xij ∈ {0, 1} ∀(i, j) ∈ A(8.6)

Equation (8.2) is the degree constraint for each node of the directed
graph excluding the source and the destination, while equations (8.3)
and (8.4) ensure that one arc leaves the source node and one arc
enters the destination node, respectively. Conditions (8.5) represent
the subtour elimination constraints, where sN is a subset of nodes
belonging to N . The domain of the decision variable xij, ∀(i, j) ∈ A
is defined by (8.6).

It is worth observing that the mathematical model reported above
is the same as the classical formulation of the single-source single-
destination SPP , if condition (8.5) are removed. These additional
constraints guarantee that a finite optimum can be found.

Let yi be the label that stores the value of the dual price for each
node i ∈ N and L denote the list of nodes, that have to be processed.
We denote as p ∈ R|N | the vector of predecessors, that is p[i] = j is
the predecessor of node i in the path πsi from node s to node i. A set
FS(i) of successor nodes is associated with each node i ∈ N , that is
defined as follows: FS(i) = {j : (i, j) ∈ A}.

8.2. Notations and Definitions 284

A general scheme of a label-correcting method for the ESPP is
reported in Algorithm 21.

Algorithm 21 Label Correcting Scheme

1: Step 1 (Initialization phase)
2: ys = 0, yi = +∞, ∀i ∈ N − {s}; p[i] = i, ∀i ∈ N ;L = {s}.
3:

4: Step 2 (Node selection)
5: Select a node i from the list L and remove it from L.
6:

7: Step 3 (Label extention)
8: for all j ∈ FS(i) do
9: if yj > yi + cij then

10: if j 6∈ πsi then
11: yj = yi + cij;
12: p[j] = i;
13: add node j to L if it does not already belong to it.
14: end if
15: end if
16: end for
17:

18: Step 4 (Termination check)
19: if L = ∅ then
20: STOP. yi, ∀i ∈ N is an upper bound on the optimal cost of the path from

node s to node i.
21: else
22: Go to Step 2.
23: end if

Algorithm 21 is a classical label-correcting method where the el-
ementarity constraints are taken into account. The condition intro-
duced in line 10 ensures that the built paths do not contain repeated
nodes and that the algorithm terminates in a finite number of itera-
tions. However, Algorithm 21 cannot be applied to optimality solve
the ESPP . This means that at the end of the algorithm, the label
yi, ∀i ∈ N represents an upper bound on the shortest path from node
s to node i. Indeed, the Bellmann’s optimality principle is not verified
for this problem. Let us assume that π∗sd represents the path with
minimum cost and no repeated nodes in a graph with NCCs. We

285 Chapter 8

prove that sub-paths of the optimal path are not optimal. This result
is formally stated in the following Theorem.

Theorem 8.2.1. The optimal path π∗sd from node s to node d is com-
posed by sub-paths πsi from node s to each other node i ∈ πsd that
cannot be optimal for node i.

Proof. We will prove this theorem by contradiction. Thus, we assume
(for the purposes of contradiction) that for π∗sd the following optimality
conditions hold:

yz = yw + cwz,∀ (w, z) ∈ π∗sd;(8.7)

yv ≤ yu + cuv,∀ (u, v) 6∈ π∗sd.(8.8)

Let us suppose that a sub-path π∗sj = π∗si ∪ π∗ij is part of the optimal
solution π∗sd, thus from condition (8.7) we have that y∗j = y∗i + c(π∗ij).
Let us suppose that a path π̄sj : i 6∈ π̄sj exists to reach node j. Since
π̄sj does not belong to π∗sj, thus ȳj ≥ y∗j .

Let us suppose to extend path π̄sj to node i through path π̄ji.
By the optimality conditions, it follows that ȳi = ȳj + c(π̄ji) ≥ y∗i . If
π∗ij ∪ π̄ji = Ci is a NCC, then ȳi ≥ y∗i is not valid, that is ȳi < y∗i . This
means that ȳj + c(π̄ji) < y∗j − c(π∗ij), it follows that ȳj − y∗j < −c(Ci).
Since ȳj − y∗j ≥ 0, thus c(Ci) < 0.

The sub-path π∗si is part of the optimal path π∗sj but it is not
optimal for node i. This contradicts the assumption and concludes
the proof.

The theoretical results of Theorem 8.2.1 suggest that it should
be necessary to keep more than one path for some node. In addition,
if the single-source all-destination version of the ESPP is considered,
the optimal solution is not a spanning tree. Indeed, for some node
more than one arc enters it, one for each path that is used to generate
optimal path for other nodes.

We remark that the cost of the spanning tree determined by ap-
plying Algorithm 21 represents an upper bound on the solution of

8.3. Proposed Solution Approaches 286

the single-source all-destination ESPP . This results can be easily de-
rived from Theorem 8.2.1. It is evident that this is also valid for the
single-source single-destination version of the problem.

8.3 Proposed Solution Approaches

The solution approaches proposed in this paper are based on the idea
to compute for each node the minimum set of paths such that the
elementary shortest path is found for all nodes.

Three strategies have been developed. The first one can be viewed
as an application of the methods proposed to solve the RCESPP . A
multi-dimensional labeling procedure is devised and the dimension of
the label is updated dynamically. The second strategy is based on a
labeling approach to solve the kSPP . In our case, k is considered
as a variable that can take different values for each node. In the last
solution approach an upper bound is computed and a branch and
bound scheme is used to close the optimality gap.

In what follows, we describe in details the proposed solution ap-
proaches.

8.3.1 Dynamic Multi-dimensional Labeling Approach

The approach, presented in this section, uses the concept of critical
node introduced in [96]. In particular, a node i is said to be critical
if there exists a cycle Ci that is a NCC. For each of such a node, a
binary value is introduced in order to keep trace about the visiting of
the node. This binary variable can be viewed as a resource associated
with node i bounded to be less than or equal to one. The concept of
node resources was introduced by Beasley and Christofides in [16] for
solving the RCESPP .

Let S = {i1, i2, . . . , i|S|} be the set of critical nodes and r[p], p =

287 Chapter 8

1, . . . , |S| be the binary variable/resource consumption associated with
node ip ∈ S.

We denote as yi = (c(πsi), ri) the label representing the cost and
the resource consumption of the path πsi from node s to node i. The
resource consumption ri has the following form: ri[p] = 1, ∀p : ip ∈
πsi; ri[p] = 0, ∀p : ip 6∈ πsi. In other words, the vector ri keeps trace
of the nodes i ∈ S that are visited along the path πsi.

Definition 8.3.1. Let y1
i = (c(π1

si), r
1
i) and y2

i = (c(π2
si), r

2
i), be two

labels associated with node i. The label y2
i is dominated by the label

y1
i if c(π1

si) ≤ c(π2
si), r1

i [p] ≤ r2
i [p], p = 1, . . . , |S| and at least one

inequality is strict.

Definition 8.3.2. A label yi = (c(πsi), ri) associated with node i is
said to be efficient if does not exist a label ȳi that dominates it.

Definition 8.3.3. A label yi = (c(πsi), ri) associated with node i is
said to be feasible if ri[p] ≤ 1, ∀p = 1, . . . , |S|.

With each node i ∈ N is associated a set D(i) that stores all the
labels that are efficient, i.e. Pareto optimal. The procedure defined
by Desrochers in [50] can be applied to solve the ESPP . It is worth
observing that the Desrochers’ algorithm is an extension of Algorithm
21 without line 10, to the constrained case. In Algorithm 22 we report
the steps of the label-correcting method extended to the constrained
case.

It is important to point out that it is possible to devise a label-
setting algorithm by slightly modifying Algorithm 22. Indeed, the set
L stores all the efficient and feasible labels and it is initialized by the
label ys. At Step 2, from the list L the lexicografically minimal label is
selected. This label is used to generate feasible and efficient labels to
each successor node. This procedure is the same as the one proposed
in [22] called general label-setting algorithm.

The drawback of the procedure is that the set S of critical nodes
must be known in advance. This means that a NCCD problem has to

8.3. Proposed Solution Approaches 288

Algorithm 22 Label Correcting Scheme for the ESPP
1: Step 1 (Initialization phase)
2: y1

s = (0, 0), D(s) = {y1
s}; L = {s}.

3:

4: Step 2 (Node selection)
5: Select a node i from the list L and remove it from L.
6:

7: Step 3 (Label extention)
8: for all yξi ∈ D(i) do
9: for all j ∈ FS(i) do

10: Set: c(π̄sj) = c(πξsi) + cij; r̄j[p] = rξi [p], p = 1, . . . , |S|; if j ∈ S then r̄j[p̂] +
+, ip̂ = j.

11: if r̄i[p] ≤ 1, p = 1, . . . , |S| then
12: if ȳj = (c(π̄sj), r̄j) is not dominated by any label in D(j) then
13: D(j) = D(j) ∪ {ȳj};
14: remove from D(j) all the labels that are dominated by ȳj;
15: add node j to L if it does not already belong to it.
16: end if
17: end if
18: end for
19: end for
20:

21: Step 4 (Termination check)
22: if L = ∅ then
23: STOP. The label yi with the smollest cost among those belonging to D(i) is

associated with the optimal elementary path from s to i, ∀i ∈ N .
24: else
25: Go to Step 2.
26: end if

be solved in order to detect all the NCCs Cis. All nodes is have to be
marked as critical nodes. It is important to point out that both the
relaxation-based and contraction-based methods are able to solve the
shortest path problem if NCCs are not present. A check is invoked
in order to detect the NCC. The procedures are not able to return
all the NCCs, rather they detect if at least one NCC exists, thus this
type of algorithm cannot be used for our scope. In addition, also the
new solution approach for the NCCD problem proposed in [131] is not

289 Chapter 8

able to determine the entire set of NCC.
If the set S is not known in advance, then it can be possible to

devise an incrementally strategy by following the idea of Kohl ([96]).
In particular, starting from S = ∅, the label-setting algorithm is re-
executed. The search is stopped when a NCC Ci is detected. The
set S is incremented by adding node i and the label-setting algorithm
is rerun. The procedure terminates when no NCC is detected. This
approach is similar to the general state-space augmenting algorithm
proposed in [22]. In Algorithm 23 we describe the steps of the afore-
mentioned procedure.

Algorithm 23 Dynamic Multi-dimentional Labeling Approach

1: Step 1 (Initialization phase)
2: Set: ζ = 0, Sζ = ∅
3:

4: Step 2 (Run the truncated label-setting algorithm)
5: Run Algorithm 24 with critical node restricted to Sζ .
6:

7: Step 3 (Cycle detection)
8: if Ci is detected then
9: Sζ+1 = Sζ ∪ {i};

10: ζ + +;
11: Go to Step 2.
12: else
13: STOP. The label yi with the smallest cost among those belonging to D(i) is

associated with the optimal elementary path from s to i, ∀i ∈ N .
14: end if

It is worth observing that at the first iteration of Algorithm 23,
since the set S0 is an empty set, the multi-dimensional labels contain
only the cost, that is yi = c(πsi) and |D(i)| = 1 ∀i ∈ N . In other
words, when ζ = 0 we have an instance of the SPP . The truncated
label-setting algorithm is reported in Algorithm 24.

It is a common agree that a bi-directional search can improve the
performance of the mono-directional counterpart when the SPP is
solved. The search from both node s and node d were extended to the

8.3. Proposed Solution Approaches 290

Algorithm 24 Truncated label-setting algorithm with Sζ

1: Step 1 (Initialization phase)
2: y1

s = (0, 0), D(s) = {y1
s}; L = {y1

s}.
3:

4: Step 2 (Label selection)
5: Select the lexicografically minimal label yξi from the list L and remove it from
L.

6:

7: Step 3 (Label extension)
8: for all j ∈ FS(i) do
9: Set: c(π̄sj) = c(πξsi) + cij; r̄j[p] = rξi [p], p = 1, . . . , |Sζ |; if j ∈ Sζ then r̄j[p̂] +

+, ip̂ = j.

10: if j 6∈ Sζ and j ∈ πξsi and c(π̄sj) < c(πξsj) then
11: STOP. A NCC Cj is detected.
12: else
13: if r̄i[p] ≤ 1, p = 1, . . . , |Sζ | then
14: if ȳj = (c(π̄sj), r̄j) is not dominated by any label in D(j) then
15: D(j) = D(j) ∪ {ȳj}, L = L ∪ {ȳj};
16: remove from D(j) and L all the labels that are dominated by ȳj.
17: end if
18: end if
19: end if
20: end for
21:

22: Step 4 (Termination check)
23: if L = ∅ then
24: STOP. The label yi with the smallest cost among those belonging to D(i) is

associated with the optimal elementary path from s to i, ∀i ∈ N .
25: else
26: Go to Step 2.
27: end if

SPP with resource constraints in [119]. The authors used the label-
correcting methods of Feillet ([64]) to perform the mono-directional
serch from both s and d. When no more nodes have to be considered,
the paths from node s to node d are computed by joining the forward
paths from node s and the backward paths from node d. Both forward
and backward labels are extended only if the consumption of resource
is less than an half of the available critical resource. This procedure

291 Chapter 8

is called by the authors as bounded bi-directional search.

In our case the resources model the elementarity constraints and
the corresponding available amount of resource is exactly one. It is
evident that the bounded bi-directional search turn out to be less
efficient than the mono-directional counterpart. Indeed, the bounding
strategy is not able to stop the extension of the label, thus the bi-
directional search generates a twice number of labels respect to that
computed with a mono-directional search.

In addition, our scope is to determine the elementary path from
the source s to all the remaining nodes. If the bi-directional search is
used, then in the join phase it is necessary to consider the generation
of all the paths from node s to all other nodes of the network.

Complexity analysis

As far as the complexity analysis of the proposed state-space aug-
menting algorithm for the ESPP , let C̃ be the number of NCCs that
are included in the graph G and D be the set of efficient and feasible
labels with the highest cardinality. The complexity of Algorithm 23,

in the worst case, is O(n2|D|2
∑C̃

c=1 c).

This results is formally stated in the following lemma.

Lemma 8.3.4. In the worst case, the complexity of the proposed ap-

proach is O(n2|D|2
∑C̃

c=1 c).

Proof. The operations executed in lines 9 - 19 of Algorithm 24 are
|D||S|, that is the test of dominance. Since the FS can contain at
most n− 1 elements, the total number of operations executed in lines
8 - 20 is n|D||S|. Since the forloop of line 8 is invoked n|D| times,
that is the total number of generated labels, thus Algorithm 24 takes
O(n2|D|2|S|) operations. The number of iterations executed by Al-
gorithm 23 is exactly C̃. This means that, starting from S = ∅,

8.3. Proposed Solution Approaches 292

the set of critical nodes is incremented by one unit at each itera-
tion. In other words, the operations executed by Algorithm 23 are
n2|D|21 + n2|D|22 + . . . + n2|D|2C̃. Consequently, the complexity of

Algorithm 23 in the worst case is O(n2|D|2
∑C̃

c=1 c)

8.3.2 Labeling Approach based on the k Shortest Path Method

In this section a labeling approach is presented for solving a dynamic
kSPP . The devised procedure is able to solve the ESPP and it works
as described in what follows.

Let Ki be the number of best paths from node s to node i. The set
Πi contains the Ki paths ordered by increasing cost, that is c(πksi) <
c(πk+1

si), ∀k = 1, . . . , Ki − 1. In other words, Πi[k] = πksi is the k-st
shortest path from node s to node i. With each node i is associated a
vector yi ∈ RKi that stores the costs of the paths belonging to the set
Πi, that is yi[k] represents the cost of path πksi ∈ Πi.

Also in this case we use a truncated labeling algorithm. Every
time a cycle Ci is detected, the number of paths that have to be found
for the node jL(Ci) ∈ Ci is increased, that is KjL(Ci)

= KjL(Ci)
+ 1

and the truncated labeling algorithm is execute again. When the
truncated algorithm does not detect a cycle, yi[1] is the cost of the
optimal elementary shortest path.

The steps of the proposed algorithm are depicted in Algorithm
25.

In order to obtain a finite optimal solution, an iterative scheme
is devised. The proposed algorithm iteratively run Algorithm 25 after
coherently updated the set Ki, ∀i ∈ N . The dynamic labeling solution
strategy is reported in Algorithm 26.

293 Chapter 8

Algorithm 25 Truncated labeling algorithm for dynamic kSPP
1: Step 1 (Initialization phase)
2: Set: ys[1] = 0; yi[k] = +∞, k = i, . . . ,Ki; Πs = {π1

ss}, π1
ss = {s}; Πi = ∅,∀i ∈

N − {s}; L = {s}.
3:

4: Step 2 (Node selection)
5: Select a node i from L and delete it from L.
6:

7: Step 3 (Label extension)
8: for all j ∈ FS(i) do
9: if ∀k : j ∈ πksi, yki + cij < y1

j , k = 1, . . . , Ki AND 6 ∃k̄ : j 6∈ πk̄si then
10: STOP. A cycle Cj is detected.
11: else
12: for all k̄ : j 6∈ πk̄si do
13: for all ξ = 1, . . . , Kj do
14: if yi[k̄] + cij < yj[ξ] then
15: yj[δ + 1] = yj[δ], δ = ξ, . . . , Kj;
16: πδ+1

sj = πδsj, δ = ξ, . . . , Kj;

17: yj[ξ] = yi[k̄] + cij;

18: πξsj = πk̄si ∪ {j};
19: add node j to L if it does not already belong to it.
20: end if
21: end for
22: end for
23: end if
24: end for
25:

26: Step 4 (termination check)
27: if L = ∅ then
28: STOP. yi[1] is the cost of the optimal elementary path π1

si.
29: else
30: Go to Step 2.
31: end if

Complexity analysis

Let K be the highest number of paths that have to be found. The
complexity of Algorithm 26 is derived in the following lemma.

Lemma 8.3.5. In the worst case, the complexity of Algorithm 26 is

8.3. Proposed Solution Approaches 294

Algorithm 26 Dymanic labeling approach

1: Step 1 (Initialization phase)
2: Set: ζ = 0; Ks = 1; Kζ

i = 1 ∀i ∈ N − {s}.
3:

4: Step 2 (Run the truncated labeling algorithm)
5: Run Algorithm 25 with Kζ

i , i ∈ N
6:

7: Step 3 (Cycle detection)
8: if a cycle Ci is detected then
9: Kζ+1

jL(Ci)
+ +, Kζ+1

i = Kζ
i ∀i ∈ N − {jL(Ci)};

10: ζ + +;
11: Go to Step 2.
12: else
13: STOP. yi[1] is the cost of the optimal elementary path π1

si.
14: end if

O(n2
∑C̃

c=1 c
5).

Proof. The operations executed in lines 14 - 20 are K2. Since the
forloops of line 12 and 13 take K2, thus the number of iterations in
lines 12 - 22 is K4. The FS contains at most n − 1 elements. The
forloop of line 8 is invoked nK times. Consequently, Algorithm 25
takes O(n2K5). The iterations executed by Algorithm 26 are exactly
C̃. This means that the proposed approach executes n215 + n225 +
. . .+ n2C̃5 operations, in other words the complexity of Algorithm 26

is O(n2
∑C̃

c=1 c
5).

8.3.3 Branch and Bound

The proposed branch-and-bound (B&B) solution approach relies on
the detection of a NCC. Each time the truncated labeling method,
that is Algorithm 25 with Ki = 1, ∀i ∈ N , is stopped because a cycle
is found, a number of sub-problems are generated in order to exclude
the detected NCC from the related sub-graph.

295 Chapter 8

Branching rule

Let G(N ,A) be a graph associated with a generic node of the B&B
tree. The truncated labeling approach is run on G(N ,A). If a NCC Ci
is detected, then δ = |Ci| − 1 sub-graphs are generated starting from
G(N ,A) by removing the δ − st arc of Ci. In other words, the graph
Gδ(N ,Aδ), δ = 1, . . . , |Ci|−1 are generated where Aδ = A−{(uδ, vδ)},
with (uδ, vδ) ∈ Ci.

Since at least one arc of the detected NCC Ci is removed, the
related sub-graph does not contain this cycle. When the truncated
labeling algorithm is run on this sub-graph, if a NCC C̄i, for some
node i ∈ N is detected, we are sure that Ci 6= C̄i. This means that at
a certain level σ of the B&B tree exactly σ NCCs have been detected.
Consequently, in all the sub-graphs at level σ, exactly σ NCCs are
removed.

Algorithm

Let yζ ∈ R|N | be the vector that stores the best solutions for each node
i ∈ N , determined so far, and y∗ ∈ R|N | be the vector of the optimal
solutions for each node i ∈ N . The value ζ is the iterations counter.
At the last iteration ζ̄, yζ̄ = y∗, that is y∗[i] is the cost of the optimal
path from node s to node i. Let y(G)[i] be the cost of the path from
node s to node i obtained applying the truncated labeling algorithm
on graph G. If a NCC Cj is detected when the truncated labeling
algorithm is executed on G, then we have that y(G)[i] is a valid upper
bound for all nodes i ∈ N̄ , where N̄ = {u ∈ N : v 6∈ πsu, ∀v ∈ Cj}.
This means that y(G)[i], ∀i ∈ N̄ can be used to initialize the cost of
node i for the sub-graph Gδ. In other words, yGδ [i] = yG[i], ∀i ∈ N̄ . In
addition, if yG[i] < yζ [i] for some i ∈ N̄ , then yζ [i] = yG[i]. Let L be
the list containing the sub-problems/graphs that have to be solved by
applying the truncated labeling algorithm. The steps of the proposed
B&B approach are reported in Algorithm 27.

8.3. Proposed Solution Approaches 296

Algorithm 27 B&B algorithm

1: Step 1 (Initialization phase)
2: Set: ζ = 0; yζ [s] = 0, yζ [i] = +∞, ∀i ∈ N −{s}; L0 = {G},G = (N ,A), yG[s] =

0, yG[i] = +∞, ∀i ∈ N .
3:

4: Step 2 (Selection phase)
5: Select a graph Ḡ = (N , Ā) from Lζ and remove it from Lζ .
6:

7: Step 3 (Branching phase)
8: Let apply the truncated labeling algorithm to Ḡ.
9: if a NCC Cj is detected then

10: Let generate δ = |Cj| − 1 sub-graph Gδ = (N , Ā − {(uδ, vδ)}) and add them
to Lζ ;

11: set: yGδ [i] = yḠ[i], ∀i ∈ N̄ .
12: if yḠ[i] < yζ [i] for some i ∈ N̄ then
13: yζ [i] = yḠ[i].
14: end if
15: yζ+1 = yζ

16: Lζ+1 = Lζ

17: ζ + +;
18: go to Step 4.
19: else
20: if yḠ[i] < yζ [i] for some i ∈ N then
21: yζ [i] = yḠ[i].
22: end if
23: yζ+1 = yζ

24: Lζ+1 = Lζ

25: ζ + +;
26: Go to Step 4
27: end if
28:

29: Step 4 (Termination check)
30: if Lζ = ∅ then
31: STOP. yζ−1[i] is the cost of the optimal path from node s to node i.
32: else
33: Go to Step 2.
34: end if

Complexity analysis

Let M be the maximum cardinality among those of the NCCs in the
graph. We know that the number of NCCs in the graph is C̃. In

297 Chapter 8

addition, for each level σ of the B&B tree exactly σ NCCs have been
removed from the graphs at level σ. Since the number of NCCs in
the original graph is C̃, thus the levels of the B&B tree are exactly
C̃. The complexity of the B&B approach is O(n2M C̃). This result is
formally stated in the following lemma.

Lemma 8.3.6. In the worst case, the complexity of the proposed B&B
methods for the ESPP is O(n2M C̃).

Proof. The original graph associated with the first node of the B&B
tree is solved and a NCC is detected. The branching procedure is
applied and δ = M − 1 sub-graphs are generated. When each of this
sub-graph is solved, another NCC is detected and M − 1 graphs of
the second level are generated. This means that the number of graphs
that have to be solved is (M − 1)C̃ . Since the complexity to solve
each graph with Algorithm 25 where K = 1 takes O(n2) (see lemma
8.3.5), thus the worst case complexity of the proposed B&B method

is O(n2M C̃).

8.3.4 Theoretical comparison

As far as the theoretical comparison among the proposed solution ap-
proaches is concerned, let us consider the worst case complexity. We
remark that the complexity of the dynamic multi-dimensional label-

ing approach, DMLA for short (Algorithm 23) is O(n2|D|2
∑C̃

c=1 c),

whereas, O(n2
∑C̃

c=1 c
5) is the complexity of the dynamic labeling ap-

proach (DLA, for short) that is Algorithm 26 and the complexity of

the B&B approach is O(n2M C̃).

DMLA is worse thanDLA, that isO(n2|D|2
∑C̃

c=1 c) > O(n2
∑C̃

c=1 c
5)

if |D| >
√∑C̃

c=1 c
5√∑C̃

c=1 c
. Whereas, DMLA is worse than the B&B approach

if C̃ < logM |D|2
∑C̃

c=1 c. Regarding the comparison between DLA

8.4. Conclusions 298

and the B&B, the latter is better than the former if C̃ < logM
∑C̃

c=1 c
5

8.4 Conclusions

In this paper we have investigated the shortest path problem in pres-
ence of negative cost cycles. This study is the first attempt to provide
resolution methods for the shortest path problem with negative cost
cycles. The scientific literature provides strategies that are able to
check if a negative cost cycle exists but no works consider the resolu-
tion of the elementary shortest path problem.

Three different strategies have been devised to optimally solve
the problem under investigation. The main idea behind the proposed
solution approach is to compute, for each node, the minimal number
of paths such that the shortest paths from the source node to all
others nodes are determined. In addition, all the methods dynamically
increase the number of paths that have to be found for some node.
The main difference among the proposed approaches is related to the
way in which the number of paths is incremented. In the first method,
the number paths that have to be found is determined by considering
a dummy node resource that keeps trace about the visiting at the
node. This results in a constrained multi-objective shortest path in
which the node associated with the dummy resource can be visited
only once along the paths. The second proposed approach is based on
the idea behind the k shortest path methods. In particular, the value
of k is different per node and it is incremented each time a further
path that pass through such a node is needed in order to avoid the
negative cost cycle. The last strategy increases the number of path by
considering a branching rule based on cycle elimination.

The theoretical complexity of the proposed solution approaches
in the worst case is derived and a theoretical comparison is also made.

It is worth mentioning that an empirical comparison among the

299 Chapter 8

defined approaches is necessary. In addition, it is important to evalu-
ate the behaviour of the proposed methods in terms of computational
effort and memory occupancy. These represent the subjects of current
investigation.

8.4. Conclusions 300

Part III

Conclusions

301

Chapter 9

Conclusions

In this thesis we have addressed the constrained shortest path prob-
lem and some variants of its. This work summarize the main results
achieved in the three years of the Ph.D. program. In particular, inno-
vative models and methods have been defined for several instances of
the constrained shortest path. The considered problems are listed in
what follows:

• the resource constrained shortest path problem (RCSPP , for
short);

• the shortest path problem with forbidden paths (SPPFP , for
short);

• the elementary shortest path problem with forbideen paths (ESPFP ,
for short);

• the resource constrained elementary shortest path problem (RCESPP ,
for short);

• the linear franctional elementary shortest path problem with time
windows (LFESPPT W , for short);

• the multi-criteria path problem with multiple metrics and soft
constraints (MPPSC, for short);

303

304

• the elementary shortest path problem (ESPP , for short).

Innovative methods have been developed, designed and imple-
mented. The obtained theoretical results have been validated by an
extensive and exaustive experimental phase in order to asses the be-
haviour of the porposed solution approaches in terms of both the com-
putatiuonal effort, the memory occupancy and the robustness.

Regarding the RCSPP , an innovative method based on the con-
cept of reference point have been defined. The proposed solution ap-
proach has been computationally compared with the best known state
of the art algorithms. In addition, new models and methods for com-
puting upper and lower bound have been introduced. The results are
very encouraging. Indeed, the poposed resolution strategy is compet-
itive with the considered algorithms taken from the literature and the
the upper bounds obtained with the proposed procedure improve the
previous results. In addition, the lower bounds abtained with the pro-
posed model are very close to the optimal solution and in most cases
the model provides the optimal one.

Solution methodologies to address the SPPFP have been pro-
posed. The developed algorithms are based on the paradigm of the dy-
namic programming optimization and can be viewed as modified ver-
sions of the Desrochers’ algorithm ([50]), for the constrained shortest
path. A pruning strategy has been defined with the goal to speed-up
the search of the optimal solution. With this aim, upper bounds have
been determined by developing a well-tailored heuristic procedure. In
addition, we have considered both the node and state extension rule
and two types of selection strategies. Indeed, a Dijkstra-like and the
Bellman-Ford rules have been implemented to select, at each iteration,
the node/state to be processed. The solution approaches have been
evaluated numerically on several sets of networks. A comparison with
the state-of-art algorithm to solve the problem under consideration
and with Desrochers’ approach has also been made. The proposed
solution approach is very efficient in solving the shortest path prob-

305 Chapter 9

lem with a forbidden path and outperforms the polinomial algorithms
which appeared quite recently in scientific literature to address the
problem at hand.

Regarding the ESPFP , the problem has been formulated as a
specific instance of the resource constrained shortest path problem.
B&B and dynamic programming based solution approaches have been
defined and implemented. Different versions of the two types of solu-
tion approaches have been developed. Regarding to the B&B method,
a naive and two enhanced versions have been defined. Both node and
label selection versions of a dynamic programming based algorithm
have been considered. In addition, several rules have been imple-
mented to select, at each iteration, the label/node to be processed.
An extensive computational study has been carried out on a variety
of network instances with the goal of assessing the behavior of the pro-
posed solution procedures. The collected numerical results underline
that the performance of the proposed solution approaches is influenced
by both the number of the additional constraints and the dimension of
the problems that have to be solved. In conclusion, the B&B strate-
gies developed to solve the elementary shortest path problem with
forbidden paths could be competitive with the dynamic programming
solution approaches only if the number of violated constrains is very
limited respect to the total number of forbidden paths and when the
number of nodes and the number of arcs of the considered problem is
not too high, i.e., networks with a number of nodes and a number of
arcs less than or equal to 400 and to 5000, respectively. In addition,
when the number of violated constrains increases, the computational
cost of the B&B methods increases dramatically and they behave very
poorly. On the contrary, the dynamic programming approaches seem
to be very effective in solving the problem under study.

We have presented multi-dimensional labelling approaches to ad-
dress the LFESPPT W , defined by using different label selection and
node selection strategies, on the basis of which the most promising

306

node/label is selected at each iteration. In order to define efficient
solution approaches, a bi-directional search strategy and some domi-
nance rules, well tailored to the problem at hand, have also been ex-
ploited. In order to assess the behaviour of the proposed approaches,
extensive computational experiments have been carried out on a set
of randomly generated networks, with varying size and density. The
label selection methods have been compared with the state of art ap-
proach to address the problem under study, i.e. the label correcting
method in which the candidate list of labels is accessed by a FIFO
policy proposed by Roan and Lee in 2003 [122].

For the RCESPP , we have conducted a computational analysis
of the two best known algorithms. In addition, we have discussed
about the similarity of the two algorithms and we have highlighted
the differences related to critical aspects in terms of efficiency. For
the computational studies, we have considered the instances proposed
by the authors for testing their algorithm. Thus, we have unified the
computational setting and the comparison between the two algorithms
have been done on the same data-set. In this way, we have studied the
behaviour of each algorithm not only on the test problems considered
originally by the authors, but also on the instances considered by the
others. The computational results suggest that no algorithm domi-
nates the other. In addition, the performance of one of the considered
algorithms has been improved by considering some strategies adopted
in the other.

Regarding theMPPSC, a branch-and-bound based solution ap-
proach has been devised. The computational phase has been carried
out by considering different scenarious. Indeed, several types of net-
works and different possible desiders of the decisor maker have been
considered. The experimental results suggest that the performance of
the proposed strategy is closely related to the width of the range, the
higher the width, the higher the computational effort. No relationship
has been observed beetwen the behaviour of the proposed method and

307 Chapter 9

the value of the middle of the ranges.

Three different strategies have been devised to optimally solve
the ESPP . The first method is based on a dynamic programming
framework. This results in a constrained multi-objective shortest path
in which the constraints are dummy node resources. In this way, the
node associated with the dummy resource can be visited only once
along the paths. The second proposed approach is based on the idea
behind the k shortest path methods. In particular, the value of k is
different per node and it is incremented each time a further path that
pass through such a node is needed in order to avoid the negative cost
cycle. The last strategy increases the number of path by considering
a branching rule based on cycle elimination. A theoretical analysis
has been conducted and a comparison among the defined solution
approaches has also been made.

308

Bibliography

[1] J.I. Agbinya. Qos functions and theorems for moving wireless
networks. In International Conference on Information Technol-
ogy and Application, 2005.

[2] A.V. Aho and M.J. Corasick. Efficient string matching: An aid
to bibliographic search. Journal of the ACM, 18(6):333–340,
1975.

[3] R.K. Ahuja. Minimum cost-reliability ratio path problem. Com-
put. Oper. Res., 15:83–89, 1988.

[4] R.K. Ahuja, K. Mehlhorn, J.B. Orlin, and R.E. Tarjan. Faster
algorithms for the shortest path problem. Technical Report CS-
TR-154-88, Departement of Computer Science, Princeton Uni-
versity, 1988.

[5] Y.P. Aneja, V. Aggarwal, and K.P.K. Nair. Shortest chain sub-
ject to side constraints. Networks, 13:295–302, 1983.

[6] C. H. Antunes, J. Craveirinha, J. Climaco, and J. Barrico. Mul-
tiple objective routing in integrated communication networks.
In P. Key and D. Smith, editors, ITC-16 Teletraffic engineering
in a competitive world, pages 1291 – 1300, North Holland, 1999.
Elsevier.

[7] P. Avella, M. Boccia, and A. Sforza. Resource constrained short-
est path problems in path planning for fleet management. Jour-
nal of Mathematical Modelling and Algorithms, 3:1–17, 2004.

309

BIBLIOGRAPHY 310

[8] A. Awajan, K. Al-Begain, and P. Thomas. Quality of service
routing for real-time applications using multiple criteria decision
making methods. In 3rd Research Student Workshop, ed. P.
Plassmann and P. Roach, pages 13–19, 2008.

[9] J. A. Azevedo, J. Madeira, M. Costa, E. Q. V. Martins, and
F. Pires. A computational improvement for a shortest paths
ranking algorithm. European Journal of Operational Research,
73:188–191, 1994.

[10] J. Azvedo and E. Q. V. Marins. An algorithm for the multiob-
jective shortest path problem on acyclic networks. Investigacao
Operational, 11:52–69, 1991.

[11] A. Bagchi. Route selection with multiple metrics. Information
Processing Letters, 64:203–205, 1997.

[12] O. Barndorff-Nielsen and M. Sobel. On the distribution of the
number of admissible points in a vector random sample. Theory
of Propability and its Applications, 11(2):283–305, 1966.

[13] C. Barnhart, N. Boland, L. Clarke, E. L. Johnson, G. L.
Nemhauser, and Shenoi R. G. Flight string models for aircraft
fleeting and routing. Trans Sci, 32:208–220, 1998.

[14] R. Batta and S. S. Chiu. Optimal obnoxious path on a net-
work: Transportation of hazardous materials. Operations Re-
search, 36:84–92, 1988.

[15] C.F. Bazlamacc and K.S. Hindi. Minimum-weight spanning tree
algorithms a survey and empirical study. Computers & Opera-
tions Research, 28:767–785, 2001.

[16] J. E. Beasley and N. Christofides. An algorithm for the resource
constrained shortest path problem. Networks, 19:379–394, 1989.

[17] R.E. Bellman. On a routing problem. Quarterly of Applied
Mathematics, 16(1):87–90, 1958.

311 BIBLIOGRAPHY

[18] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thomp-
son. On the average number of maxima in a set of vectors and
applications. Journal of ACM, 25(4):536–543, 1978.

[19] D. P. Bertsekas. A simple and fast label correcting algorithm for
shortest path. Networks, 23:703–709, 1993.

[20] D. P. Bertsekas. Network Optimization: Continuous and Dis-
crete Models. Athena Scientific, 1998.

[21] H. Bettahar and A. Bouabdallah. A new approach for delay-
constrained routing. Computer Communications, 25(18):1751–
1764, 2002.

[22] N. Boland, J. Dethridge, and I. Dumitrescu. Accelerated label
setting algorithms for the elementary resource constrained short-
est path problem. Operations Research Letters, 34:5868, 2006.

[23] R. Borndoefer, M. Grotschel, and A. Lobel. Scheduling duties by
adaptative column generation. Technical Report 01-02, Konrad-
Zuze-Zentrum fur Informationstechnik, Berlin, 2001.

[24] J. Brumbaugh-Smith and D. Shier. An empirical investigation
of some bicriterion shortest path algorithms. European Journal
of Operational Research, 43(2):216–224, 1989.

[25] J. Buchanan and L. Gardiner. A comparison of two reference
point methods in multiple objective mathematical programming.
European Journal of Operational Research, 149:17–34, 2003.

[26] W. M. Carlyle and R. K. Wood. Lagrangian relaxation and
enumeration for solving constrained shortest-path problems. In
38th Ann ORSNZ Conf, Hamilton, New Zealand, University of
Waikato, November 2003.

[27] R. L. Carraway, T. L. Morin, and H. Moskowitz. Generalized
dynamic programming for multicriteria optimization. European
Journal of Operational Research, 44(1):95–104, 1990.

BIBLIOGRAPHY 312

[28] Z. L. Chen and Powell W. B. A generalized threshold algorithm
for the shortest path problem with time windows. In Network
Design: Connectivity and Facilities, pages 303–318. Pardalos, P.
and Du, D., 1998.

[29] B.V. Cherkassky, A.V. Goldberg, and T. Radzik. Shortest paths
algorithms: Theory and experimental evaluation. Mathematical
Programming, 73(2):129–174, 1996.

[30] H. Chin-Chieh, C. Da-Ren, and D. Hua-Yuan. An efficient algo-
rithm for the shortest path problem with forbidden path. LNCS,
5574:638–650, 2009.

[31] E.I. Chong, S.R. Maddila, and S.T. Morley. On finding single-
source single-destination k shortest paths. In 7th International
Conference Computing and Information, July 1995.

[32] N. Christofides, A. Mingozzi, and P. Toth. Exact algorithms for
the vehicle routing problem based on spanning tree and shortest
path relaxations. Math. Program., 20:255–282, 1981.

[33] J. C. N. Climaco, J. M. F. Craveirinha, and M. M. B. Pascoal. A
bicriterion approach for routing problem in multimedia network.
Networks, 41:206–220, 2003.

[34] J. C. N. Climaco, J. M. F. Craveirinha, and M. M. B. Pas-
coal. An automated reference point-like approach for multicri-
teria shortest path problem. Journal of Systems Science and
Systems Engineering, 15(3):314–329, 2006.

[35] J. C. N. Climaco and E. Q. V. Martins. On the determination of
the nondominated paths in a multiobjective network problem.
Methods in Operations Research, 40:255–258, 1981.

[36] J. C. N. Climaco and E. Q. V. Martins. A bicriterion short-
est path algorithm. European Journal of Operational Research,
11(4):399–404, 1982.

313 BIBLIOGRAPHY

[37] J.F. Cordeau, G. Desaulniers, J. Desrosiers, M.M. Solomon, and
F. Soumis. Vrp with time windows. In The vehicle-routing prob-
lem. Toth, P. and Vigo, D. (Editors), 2002.

[38] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to
Algorithms. MIT Press/McGraw-Hill Book Company, Boston,
MA, second ed. edition, 1992.

[39] J. M. Coutinho-Rodrigues, J. C. N. Climaco, and J. R. Current.
A pc-based interactive decision support system fot two objective
direct delivery probelms. Journal of Business Logistics, 15:305–
322, 1994.

[40] J. M. Coutinho-Rodrigues, J. C. N. Climaco, and J. R. Current.
An interactive bi-objective shortest path approach: searching
for unsupported nondominated solutions. Computers and Oper-
ations Research, 26(8):789–798, 1999.

[41] J. R. Current and M. Marsh. Multiobjective transportation net-
work design and routing problems: Taxonomy and annotation.
European Journal of Operational Research, 103:426–438, 1993.

[42] J. R. Current and H. Min. Multiobjective network design of
transportation networks: Taxonomy and annotation. European
Journal of Operational Research, 26:187–201, 1986.

[43] J. R. Current, C. S. Revelle, and J. L. Cohon. An interactive ap-
proach to identify the best compromise solution for two objective
shortest path problems. Computers and Operations Research,
17(2):187–198, 1990.

[44] J.R. Current, H. Pirkul, and E. Rolland. Efficient algorithms
for solving the shortest covering path problem. Transportation
Science, 28:317–327, 1994.

BIBLIOGRAPHY 314

[45] J.R. Current, C.S. Revelle, and J.L. Cohon. The shortest cov-
ering path problem: an application of locational constraints to
network design. Journal of Regional Science, 24:161–185, 1984.

[46] G.B. Dantzig. On the shortest route through a network. Man-
agement Science, pages 187–190, 1960.

[47] M.S. Daskin. Network and Discrete Location. John Wiley and
Sons, New York, 1995.

[48] M. Dell’Amico, G. Righini, and M. Salani. A branch-and-price
approach to the vehicle-routing problem with simultaneousdis-
tribution and collection. Transport Sci, 40(2):235–247, 2006.

[49] N. Deo and C. Pang. Shortest-path algorithms: taxonomy and
annotation. Networks, 14:275–523, 1984.

[50] M. Desrochers. An algorithm for the shortest path problem with
resource constraints. Technical Report G-88-27, GERAD, 1988.

[51] M. Desrochers, J. Desrosiers, and M. Solomon. A new opti-
mization algorithm for the vehicle routing problem with time
windows. Operations Research, 40(2):342–354, 1992.

[52] M. Desrochers and F. Soumis. A generalized permanent label-
ing algorithm for the shortest path problem with time windows.
INFOR, 26:191–212, 1988.

[53] J. Desrosiers, P. Pelletier, and F. Soumis. Plus court chemin avec
constraints d’horaires. RAIRO, 17:357–377, 1983. in French.

[54] L. Di Puglia Pugliese and F. Guerriero. A class of solution ap-
proaches for the linear fractional shortest path problem with
time windows. Technical report, University of Calabria, 2008.

[55] R.B. Dial. Algorithm 360: Shortest path forest with topological
ordering. Communications of the ACM, 12(11):632–633, 1969.

315 BIBLIOGRAPHY

[56] R.B. Dial. A model and algorithm for multicriteria route-
mode choice. Transportation Research Part B: Methodological,
13(4):311–316, 1979.

[57] E.W. Dijkstra. A note on two problems in connection with
graphs. Numerische Mathematik, pages 269–271, 1959.

[58] S.E. Dreyfus. An appraisal of some shortest path algorithms.
Operations Research, 17:395–412, 1969.

[59] M. Dror. Note on the complexity of the shortest path models
for column generation in vrptw. Oper Res, 42:977–978, 1994.

[60] I. Dumitrescu and N. Boland. Improved preprocessing, labeling
and scaling algorithms for the weight-constrained shortest path
problem. Networks, 42(3):135–153, 2003.

[61] A. Elimam and D. Kohler. Two engineering applications of a
constrained shortest path model. European Journal of Opera-
tional Research, 103:426–438, 1997.

[62] D. Eppstein. Finding the k shortest paths. SIAM J Compututing,
28(2):652–673, 1998.

[63] D. Espinoza, R. Garcia, M. Goycoolea, G. L. Nemhauser, and
M. W. P. Savelsbergh. Per-seat, on-demand air transportation
part i: Problem description and an integer multicommodity flow
model. Transportation Science, 42(3):263–278, 2008.

[64] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact al-
gorithm for the elementary shortest path problem with resource
constraints: application to some vehicle routing problems. Net-
works, 43(3):216–229, 2004.

[65] R.W. Floyd. Algorithm 97: shortest path. Communications of
the ACM, 5(6):345, 1962.

BIBLIOGRAPHY 316

[66] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton
University Press, Princeton, NJ, 1962.

[67] B. L. Fox. Finding minimum time-cost ratio circuits. Operations
Research, 17:546–551, 1969.

[68] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses
in improved network optimization algorithms. Journal of the
ACM (JACM), 34(3):596–615, 1987.

[69] H.N. Gabow and R.E. Tarjan. Faster scaling algorithm for net-
work problems. SIAM J. COMPUT., 18(5):1013 – 1036, 1989.

[70] G. Gallo and S. Pallottino. Shortest path algorithms. Annals of
Operations Research, 13:3–79, 1988.

[71] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman, San
Francisco, 1979.

[72] A. Goldberg. Shortest path algorithms: Engineering aspects. In
ISAAC: 12th International Symposium on Algorithms and Com-
putation, pages 502–513, 2001.

[73] A.V. Goldberg. Scaling algorithms for the shortest path problem.
In 4th ACM-SIAM Symposium on Discrete Algorithms, pages
222–231, 1993.

[74] J. Granat and F. Guerriero. The interactive analysis of the
multicriteria shortest path problem by the reference point
method. European Journal of Operational Research, 151(1):103–
118, 2003.

[75] F. Guerriero and L. Di Puglia Pugliese. Shortest path problem
with forbidden paths: the elementary version. Technical Report
2/09, Laboratorio Logica, 2009.

317 BIBLIOGRAPHY

[76] F. Guerriero and R. Musmanno. Label correcting methods to
solve multicriteria shortest path problems. J. Optim. Theory
Appl., 111(3):589613, 2001.

[77] F. Guerriero, R. Musmanno, V. Lacagnina, and A. Pecorella. A
class of label-correcting methods for the k shortest paths prob-
lem. Operations Research, 49(3):423–429, 2001.

[78] E. Gutierrez and A. L. Medaglia. Labeling algorithm for the
shortest path problem with turn prohibitions with application
to large-scale road networks. Ann Oper Res, 157(169-182), 2008.

[79] C. Hallam, K. J. Harrison, and J. A. Ward. A multiobjective
optimal path algorithm. Digital Signal Processing, 11(2):133–
143, 2001.

[80] J. Halpern and J. Priess. Shortest paths with time constraints
on moving and parking. Networks, 4:241–253, 1974.

[81] G. Y. Handler and I. Zang. A dual algorithm for the constrained
shortest path problem. Networks, 10:293–309, 1980.

[82] P. Hansen. Methods of nonlinear 0-1 programming. Annals of
Discrete Mathematics, 5:53–70, 1979.

[83] P. Hansen, B. Jaumard, and T. Vovor. Solving the bicriterion
shortest path problem from both ends. Technical Report G-98-
17, GERAD, 1998.

[84] R. Hassin. Approximation schemes for the restricted shortest
path problem. Math Oper Res, 17:36–42, 1992.

[85] M. I. Henig. The domination property in multicriteria opti-
mization. Journal of Mathematical Analysis and Applications,
114(1):7–16, 1986.

[86] D.J. Houck, J. C. Picard, M. Queyranne, and R. R. Vemuganti.
The travelling salesman problem as a constrained shortest path

BIBLIOGRAPHY 318

problem: theory and computational experience. Oper. Res.,
17:93–109, 1980.

[87] T. Ibaraki. Enumerative approaches to combinatorial optimiza-
tion. Annals of Operations Research, 11:345–602, 1988.

[88] I. Ioachin, Gélinas S., F. Soumis, and J. Desrosiers. A dynamic
programming algorithm for the shortest path problem with time
windows and linear node costs. Networks, 31(3):193–204, 1998.

[89] S. Irnich. Resource extension functions: properties, inversion
and generalization to segments. OR Spectrum, 30(1):113–148,
2008.

[90] S. Irnich and G. Desaulniers. Shortest path problems with re-
source constraints. Technical Report G-2004-11, Les Cahiers du
GERAD, 2004.

[91] J. M. Jaffe. Algorithms for finding paths with multiple con-
straints. Networks, 14:95–116, 1984.

[92] B. Jaumard, F. Semet, and T. Vovor. A two-phase resource
constrained shortest path algorithm for acyclic graphs. Technical
Report G-96-48, Les Cahier du GERAD, 1996.

[93] V. Jimenez and A. Marzal. Computing the k shortest paths:
A new algorithm and an experimental comparison. In Proc
3rd Workshop on Algorithm Engineering (WAE99), LNCS 1668,
pages 15–29, 1999.

[94] H. C. Joksch. The shortest route problem with constraints. J
Math Anal Appl, 14:191–197, 1966.

[95] D. Klingman, A. Napier, , and J. Stutz. Netgen: A program for
generating large-scale (un)capacitated assignment, transporta-
tion, and minimum cost flow network problems. Management
Science, 20, 1974.

319 BIBLIOGRAPHY

[96] N. Kohl. Exact methods for time constrained routing and related
scheduling problems. PhD thesis, Institute of Mathematical Mod-
elling, Technical University of Denmark, DK-2800 Lyngby, 1995.
Dissertation no. 16.

[97] E. L. Lawler. Combinatorial optimization: networks and ma-
troids. Holt, Rinehart and Winston, New York, 1976.

[98] M. Luquea, K. Miettinen, P. Eskelinen, and F. Ruiz. Incorporat-
ing preference information in interactive reference point methods
for multiobjective optimization. Omega, 37:450 – 462, 2009.

[99] T.L. Magnanti and R.T. Wong. Network design and transporta-
tion planning: models and algorithms. Transportation Science,
18:1–55, 1984.

[100] E. Q. V. Martins. An algorithm for ranking paths that may con-
tain cycles. European Journal of Operational Research, 18:123–
130, 1984.

[101] E. Q. V. Martins. An algorithm to determine a path with mini-
mal cost/capacity ratio. Discrete Appl. Math., 8:189–194, 1984.

[102] E. Q. V. Martins. On a special class of bicriterion path problem.
European Journal of Operational Research, 17:85–94, 1984.

[103] E. Q. V. Martins and J. L. E. Santos. An algorithm for the
quickest path problem. Operations Research Letters, 20(4):195–
198, 1997.

[104] E.Q. Martins, M.M. Pascoal, and J.L. Santos. Deviation al-
gorithms for ranking shortest paths. International Journal of
Foundations of Computer Science, 10(3):247–261, 1999.

[105] K. Mehlhorn and M. Ziegelmann. Resource constraint shortest
paths. In 7th Ann European Symp on Algorithms (ESA2000),
LNCS 1879, pages 326–337, 2000.

BIBLIOGRAPHY 320

[106] K. Miettinen, M.M. Mäkelä, and K. Kaario. Experiments with
classification-based scalarizing functions in interactive multiob-
jective optimization. European Journal of Operational Research,
175:931–947, 2006.

[107] P. B. Mirchandani and M. M. Wiecek. Routing with nonlinear
multiattribute cost functions. Applied Mathematics and Com-
putation, 54(2-3):215–239, 1993.

[108] P. Modesti and A. Sciomachen. A utility measure for find-
ing multiobjective shortest paths in urban multimodal trans-
portation networks. European Journal of Operational Research,
111(3):495–508, 1998.

[109] E.F. Moore. The shortest path through a maze. In Interantional
Symposium on the Theory of Switching, pages 285–292. Harvard
University Press, 1959.

[110] I. Mote, I. Murthy, and D. L. Olson. A parametric approach to
solving bicriterion shortest path problems. European Journal of
Operational Research, 53(1):81–92, 1991.

[111] R. Muhandiramge and N. Boland. Simultaneous solution of la-
grangean dual problems interleaved with preprocessing for the
weight constrained shortest path problem. Networks, 53:358–
381, 2009.

[112] I. Murthy and D. L. Olson. An interactive procedure using dom-
ination cones for bicriterion shortest path problems. European
Journal of Operational Research, 72(2):417–431, 1994.

[113] R. Nygaard. Shortest Path Methods in Representation and Com-
pression of Signals and Image Contours. PhD thesis, Norwegian
University of Science and Technology, 2000.

321 BIBLIOGRAPHY

[114] W. Ogryczak. On goal programming formulations of the refer-
ence point method. Journal of the Operational Research Society,
52:691–698, 2001.

[115] U. Pape. Implementation and efficiency of moore-algorithm
for the shortest path problem. Math. Programming, 7:212–222,
1974.

[116] L.L. Pinto and M.M.B. Pascoal. On algorithmsforthetricri-
teriashortestpathproblemwithtwobottleneck objective functions.
Computers & Operations Research, 37:1774–1779, 2010.

[117] A. G Qureshi, E. Taniguchi, and T. Yamada. Elementary short-
est path problem with resource constraints and time dependent
late arrival penalties. Doboku Gakkai Ronbunshuu D, 63(4):579–
590, 2007.

[118] C. Ribeiro and M. Minoux. A heuristic approach to hard con-
strained shortest path problems. Discrete Applied Mathematics,
10:125–137, 1985.

[119] G. Righini and M. Salani. Symmetry helps: Bounded bidi-
rectional dynamic-programming for the elementary shortest
path problem with resource constraints. Discrete Optimization,
3(3):255–273, 2006.

[120] G. Righini and M. Salani. New dynamic programming algo-
rithms for the resource constrained elementary shortest path
problem. Networks, 51(3):155–170, 2008.

[121] G. Righini and M. Salani. Decremental state space relaxation
strategies and initialization heuristics for solving the orienteering
problem with time windows with dynamic programming. Com-
puters & Operations Research, 36:1191 – 1203, 2009.

BIBLIOGRAPHY 322

[122] J. Roan and C. Lee. Algorithms for linear fractional shortest
path problem with time windows. Pan-Pacific Manage. Rev.,
6(1):75–84, 2003.

[123] A. Roginsky, K. Christensen, and V. Srinivasan. New methods
for shortest path selection for multimedia tra c with two de-
lay constraints. Computer Communications, 22(17):1531–1539,
1999.

[124] C. Romero, M. Tamiz, and D. F. Jones. Goal programming, com-
promise programming and reference point method formulations:
linkages and utility interpretations. Journal of the Operational
Research Society, 49:986–991, 1998.

[125] L. Santos, J. Coutinho-Rodrigues, and J. R. Current. An im-
proved solution algorithm for the constrained shortest path prob-
lem. Transportation Research Part B, 41:756–771, 2007.

[126] H. D. Sherali, L. D. Brizendine, T. S. Glickman, and S. Sub-
ramanian. Low probability-high consequence considerations in
routing hazardous material shipments. Transp. Sci, 31:237–251,
1997.

[127] D.R. Shier. On algorithms for finding the k shortest paths in a
network. Networks, 9(3):195–214, 1979.

[128] A. J. V. Skriver and K. A. Andersen. A label correcting approach
for solving bicriterion shortest-path problems. Computers and
Operations Research, 27(6):507–524, 2000.

[129] H. M. Soroush. The optimal path problem in a bi-attribute
network with fractional objective function. Kuwait J. Sci. Eng.,
32:35–56, 2005.

[130] H. M. Soroush. Optimal path in bi-attribute networks with frac-
tional objective function. European Journal of Operational Re-
search, 190(3):633–658, 2008.

323 BIBLIOGRAPHY

[131] K. Subramani. A zero-space algorithm for negative cost cycle
detection in networks. Journal of Discrete Algorithms, 5:408–
421, 2007.

[132] K. Subramani and L. Kovalchick. A greedy strategy for detecting
negative cost cycles in networks. Future Generation Computer
Systems, 21(4):607–623, 2005.

[133] P. Toth and D. Vigo. Capacitated vehicle-routing problems in
the vehicle-routing problem. In SIAMMonographs on Discrete
Mathematics and Applications. P. Toth and D.Vigo (Editors),
2002.

[134] C. T. Tung and K. L. Chew. A bicriterion pareto-optimal path
algorithm. Asia-Pacific Journal of Operations Research, 5:166–
172, 1988.

[135] C. T. Tung and K. T. Chew. A multicriteria pareto-optimal
path algorithm. European Journal of Operational Research,
62(2):203–209, 1992.

[136] P. Van Mieghem. Paths in the simple random graph and the
waxman graph. Probability in the Engineering and Information
Sciences, 15:535–555, 2001.

[137] P. Van Mieghem and F. A. Kuipers. On the complexity of QoS
routing. Computer Communications, 26:376–387, 2003.

[138] D. Villeneuve and G. Desaulniers. The shortest path problem
with forbidden paths. European Journal of Operational Research,
165(1):97–107, 2005.

[139] Z. Wang. On the complexity of quality of service routing. Infor-
mation processing letters, 69:111–114, 1999.

[140] Z. Wang and J. Crowcroft. Bandwidth-delay based routing algo-
rithms. In Global Telecommunications Conference, pages 2129–
2133, 1995.

BIBLIOGRAPHY 324

[141] Z. Wang and J. Crowcroft. Quality-of-service routing for sup-
porting multimedia applications. IEEE Journal on Selected Ar-
eas in Communications, 14(7):1228–1234, 1996.

[142] A. Warburton. Approximation of pareto optima in multiple ob-
jective shortest path problems. Operations Research, 35:70–79,
1987.

[143] A. Wierzbicki. Basic properties of scalarizing functionals for mul-
tiobjective optimization. Mathematische Operationsforschung
und Statistik, s. Optimization, 8:55–60, 1977.

[144] A. Wierzbicki, M. Makowski, and J. Wessels. Modelbased De-
cision Support Methodology with Environmental Applications.
Mathematical Modeling and Applications. Kluwer Academic
Publishers, Dordrecht, 2000 edition, 2000.

[145] G. Xue. Primal-dual algorithms for computing weight-
constrained shortest paths and weight-constrained minimum
spanning trees. In 19th IEEE International Performance, Com-
puting, and Communications Conference (IPCCC), pages 271–
277, 2000.

[146] J. Y. Yen. Finding the k-shortest loopless paths in a network.
Manage Sci, 17:711–715, 1971.

[147] X. Yuan. On the extended bellman-ford algorithm to solve two-
constrained quality of service routing problems. In IEEE In-
ternational Conference on Computer Communications and Net-
works, pages 304–310, Boston, MA, USA, 1999.

[148] X. Yuan. Heuristic algorithms for multiconstrained quality-
of-service routing. IEEE/ACM Transactions on Networking,
10(2):244–256, 2002.

325 BIBLIOGRAPHY

[149] M. Zabarankin, S. Uryasev, and P. Pardalos. Optimal risk path
algorithms, Cooperative control and optimization, pages 271–303.
Murphey R. and Pardalos P, Kluwer, Dordrecht, 2001.

[150] M. Ziegelmann. Constrained shortest paths and related problems.
PhD thesis, Universitat des Saarlandes, 2001.

	I Introduction
	Introduction
	Motivation
	Goals
	Contribution
	Organization of the thesis

	II Constrained Shortest Path
	Reference point based solution approach for the resources constrained shortest path problem
	Introduction
	Problem formulation
	Proposed solution approach
	Upper and Lower bounds

	Numerical experiments
	Test Problems
	Computational results
	Final remarks

	Conclusions and future work

	Dynamic programming approaches to solve the shortest path problem with forbidden paths
	Introduction
	Problem definition
	Solution approach
	State selection method
	Node selection method

	Computational Experiments and Discussion
	Test Problems
	Test Codes
	Computational Results on sprand Networks
	Computational Results on Complete Networks
	Comparison with the state-of-art algorithms

	Conclusions

	Shortest path problem with forbidden paths: the elementary version
	Introduction
	Modelling the ESPFP
	Solution Approaches for the ESPFP
	Branch & Bound Approaches
	Dynamic Programming Approaches

	Computational Experiments
	Test Problems
	Numerical Results of Branch & Bound Methods
	Numerical Results of Dynamic Programming Approaches
	Comparison

	Conclusions

	Multi-dimensional labelling approaches to solve the linear fractional elementary shortest path problem with time windows
	Introduction
	Mathematical formulation
	The proposed solution approaches
	Label fathoming rules

	Label selection methods
	Forward label selection method
	Backward label selection method
	Bi-directional label selection method
	Label selection strategies

	Node selection methods
	Froward node selection method
	Backward node selection method
	Bi-directional node selection method
	Node selection strategies

	Computational experiments
	Numerical results

	Conclusions

	A computational study of the resolution methods for the resource constrained elementary shortest path problem
	Introduction
	State of the art
	Problem definition and notation
	Prototype framework
	The decremental state-space relaxation
	The general state-space augmenting algorithms
	Algorithm comparison
	Computational experiments
	Test problems
	Results on set S1
	Results on set S2

	Conclusion and final remark

	Modelling and solving a multi-criteria path problem with multiple metrics and soft constraints
	Introduction
	Problem formulation
	Solution Approach
	Branch and Bound approach

	Computational experiments
	Test problems
	Experimental results

	Conclusions

	Solution Approaches for the Elementary Shortest Path Problem
	Introduction
	Notations and Definitions
	Proposed Solution Approaches
	Dynamic Multi-dimensional Labeling Approach
	Labeling Approach based on the k Shortest Path Method
	Branch and Bound
	Theoretical comparison

	Conclusions

	III Conclusions
	Conclusions

