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Introduzione

This thesis is devoted to one of the classic topics about algebraic surfaces:

the classification of irregular surface of general type and the analysis their moduli

space.

To a minimal surface of general type S we associates the following numerical

invariants:

• the self intersection of the canonical class K2
S;

• the geometric genus pg := h0(ωS)

• the irregularity q := h0(Ω1
S) = h1(OS).

A surface S is called irregular if q > 0. By a theorem of Gieseker the coarse

moduli space Ma,b corresponding to minimal surfaces with K2
S = a and pg = b is a

quasi projective scheme, and it has finitely many irreducible components.

The above invariants determine the other classical invariants:

• the holomorphic Euler–Poincarè characteristic χ(S) := χ(OS) = 1− q + pg;

• the second Chern class c2(S) of the tangent bundle which is equal to the

topological Euler characteristic e(S) of S.

The classical question that naturally rises at this point is the so–called geo-

graphical question, i.e., for which values of a, b is Ma,b nonempty? The answer to

this question is obviously non trivial.
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There exists the following inequalities holding among the invariants of minimal

surfaces of general type:

• K2
S, χ ≥ 1;

• K2
S ≥ 2pg − 4 (Noether’s inequality);

• if S is an irregular surface, then K2
S ≥ 2pg (Debarre’s inequality);

• K2
S ≤ 9χOS (Miyaoka–Yau inequality).

Thus χ = 1 is the lowest possible value for a surface of general type. By the

Miyaoka–Yau inequality, we have that K2
S ≤ 9, hence by the Debarre’s inequality

we get q = pg ≤ 4. All known results about the classification of such surfaces are

listed in [MePa, Section 2.5 a].

If K2
S = 2χ, we have that necessarily q = 1. Since in this case

f : S −→ Alb(S) is a genus 2 fibration, by using the fact that all fibres are

2–connected, the classification was completed by Catanese for K2 = 2, and by

Horikawa in [Hor3] in the general case.

Catanese and Ciliberto in [CaCi1] and [CaCi2] studied the case K2 = 2χ + 1,

with χ = 1. So in this case, by the above inequalities we get that the surfaces have

the following numerical invariants:

K2
S = 3 and pg = q = 1.

The classification of such surfaces was completed by Catanese and Pignatelli

in [CaPi]. The main tool for this classification is the structure theorem for genus

2 fibration, which is proved in the same work.

For χ ≥ 2 the situation is far more complicated and not yet studied. We

consider in this thesis the case χ = 2. So our surfaces have the following numerical
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characters

K2
S = 5, pg = 2, q = 1.

By a theorem of Horikawa, which affirms that for an irregular minimal surface

of general type with 2χ ≤ K2 ≤ 8
3
χ, the Albanese map

f : S −→ Alb(S)

induces a connected fibration of curves of genus 2 over a smooth curve of genus q,

we have that in the considered case a fibration f : S −→ B over an elliptic curve

B and with fibres of genus 2.

So we can use the results of Horikawa–Xiao and most of all those of Catanese–

Pignatelli to face the challenge to completely classify all surface with the above

numerical invariants. Their approach is of algebraic nature and in particular is

based on a new method for studying genus 2 fibration, basically giving generators

and relations of their relative canonical algebra, seen as a sheaf of algebras over

the base curve B.

Our main results are as follows. First at all we studied the various possibilities

for the 2–rank bundle f∗ωS. We have that f∗ωS can be decomposable or indecom-

posable. In the first case the usual invariant e, associated to f∗ωS by Xiao in [Xia1]

can be equal to 0 or 2. We prove that the case e = 2 does not occur.

Subsequently we study the case e = 0 with f∗ωS decomposable. In such case

we divide the problem in various subcases. For each such subcase we study the

corresponding subspace of the moduli space M of surfaces with K2 = 5, pg = 2 e

q = 1.

By using the following formula:

dim M ≥ 10χ− 2K2 + pg = 12

we can consider only the strata of dimension greater than or equal to 12.
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We proved that almost all the strata has dimension ≤ 11, so they don’t give

components of the moduli space.

The most important result is that, for the so-called strata V II, we have the

following theorem.

Theorem 0.0.1.

(i) MV II,gen is non-empty and of dimension 12;

(ii) MV II2 is non-empty and of dimension 13.

For the most difficult case of f∗ωS indecomposable, the results are promising

but still partial.



Notazioni

We work over the complex number field C. All surfaces are projective al-

gebraic and, unless otherwise specified, smooth. We do not distinguish between

line bundles and divisors on a smooth surface. If C and D are divisors on a

surface S, C ·D denotes the intersection number of C and D, and C2 is the self–

intersection of the divisor C. Furthermore ≡ denotes linear equivalence and ∼

denotes algebraic equivalence. For a Gorenstein projective variety X, ωX is the

canonical sheaf of X. A divisor in the linear system |ωX | is called a canonical

divisor and it is denoted by KX . If F is a coherent sheaf on X then we denote

H i(F) = H i(X,F), hi(F) = dimH i(F), χ(F) =
∑dimX

i=0 (−1)ihi(F). As usual we

denote pg(S)) = h0(KS) the geometric genus, q = h1(OS) the irregularity and

χ(S) = 1− q(S) + pg(S) the Euler characteristic of the structure sheaf of S.



Chapter 1

Preliminaries

1.1 Surfaces of General Type

Let S be a surface, i.e. a smooth projective surface and let D be a divisor on

S. We associate to D the graded ring:

R(S,D) :=
⊕

0≤m≤∞

H0(S,OS(mD))

We note that the subspace R(S,D)0 of the homogeneous elements of degree zero,

equals the base field C. To the ring R(S,D), we associate the subfield

Q(S,D) := {f/g|f, g ∈ R(S,D)m, m > 0} of C(S).

Proposition 1.1.1. Let S be a smooth projective surface and D a divisor on S.

Then Q(S,D) is a finitely generated field extension of C and is algebraically closed

in C(S). In particular its transcendence degree is finite and at most equal to the

dimension of S (cf. [And1]).

Definition 1.1.2. Let S be a smooth projective surface and D a divisor on S.

Then we define the Kodaira–Iitaka dimension of D as:
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(i) Kod(D) := tr. degCQ(S,D) if R(S,D) 6= C;

(ii) Kod(D) := −∞ if R(S,D) = C (or equivalently if Q(S,D) = 0).

If D = KS, the graded ring K(S) := R(S,K) =
⊕

m≥0H
0(S,OS(mKS) is

called the canonical ring of S and the Kodaira–Iitaka dimension of KS is called the

Kodaira dimension of S.

Remark 1.1.3. The canonical ring R(S) of S, the plurigenus Pm(S) and h0(S,Ω1
S)

are birational invariants, so Kod(S) is also a birational invariant.

We have the following result:

Theorem 1.1.4. Let S be a minimal surface. The following three conditions are

equivalent:

(i) Kod(S) = 2;

(ii) K2
S > 0 and KS is nef;

(iii) there exists an integer n0 such that for any n ≥ n0 the n–canonical map ϕnK

is birational to its image.

If these conditions hold, then S is called a surface of general type.

1.2 Fibrations

The purpose in this section is to give an introduction to the theory of fibrations

of algebraic surfaces to curves. We will collect here some results.

Definition 1.2.1. Let S be a smooth projective surface and B a smooth projective

curve. A fibration f : S −→ B is a surjective morphism with connected fibres.

The fibration is said to be relatively minimal if f : S −→ B has no rational smooth
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curves of self intersection −1 in any of its fibres. Relatively minimal models always

exist.

We denote by b the genus of the curve B, and by g the genus of a general

fibre F . Notice that, for g ≥ 1, the fibration f is relatively minimal if and only

if the canonical divisor KS is f–nef, i.e. KS · C ≥ 0 for every irreducible curve C

contained in a fibre of f . In the case g ≥ 1 the relatively minimal model of f is

unique.

Proposition 1.2.2. Let f : X −→ Y a proper morphism of algebraic varieties

with Y normal. If f has connected fibres then f∗OX = OY

This result is a consequence of the Zariski’s Main Theorem via Stein Factor-

ization (see [Har, Chapter III, Corollary 11.5]). We will get that for a fibration

f : S −→ B

f∗OS = OB.

Notice that a fibration f : S −→ B is a flat morphism ([Har, 9.7.1]). We need

some Lemmas about fibrations.

Lemma 1.2.3. (Zariski’s Lemma) Let f : S −→ B be a fibration and Fb =
∑
niCi,

ni > 0, Ci irreducible, be a fibre of f . Then we have:

(i) CiFb = 0 for all i;

(ii) If D = miCi, mi ∈ Z, then D2 ≤ 0;

(iii) D2 = 0 holds in (ii) if and only if pD = qFb, with p, q ∈ Z, p 6= 0.

Definition 1.2.4. A singular fibre Fb =
∑
niCi is called a multiple fibre of multi-

plicity n if n = gcd{ni} > 1.
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In such case, Fb = nF , with F an effective divisor on S. F 2
b = 0 implies that

F 2 = 0. Furthermore F is 1–connected: let

F = F1 + F2, F1 > 0, F2 > 0

be a nontrivial decomposition of F . Since, by Zariski’s lemma, F 2
1 < 0 and F 2

2 < 0

we get F1 · F2 ≥ 1, by using the equality 0 = F 2 = F 2
1 + F 2

2 + 2F1 · F2.

Lemma 1.2.5. Let Fb = nF , n > 1 be a multiple fibre. Then OS(F ) and OF (F )

are both torsion line bundles of order n (cf. [BHPV, Chapter III, Lemma 8.3]).

Lemma 1.2.6. Let f : S −→ B be a fibration. Then h0(Fb,OFb
) is independent

of b ∈ B. Since the general fibre is connected and smooth, h0(Fb,OFb
) = 1 for all

b ∈ B.

Proof. Suppose that for some b ∈ B we have h0(Fb,O) > 1. We get that Fb is

not 1–connected by Ramanujam’s Lemma (cf. [BHPV, Chapter II, Lemma 12.3]).

Then, as we have noticed before, Fb is a multiple fibre, i.e. Fb = nF , n > 1, with

F 1–connected. Consider now, for 1 ≤ m ≤ n− 1, the decomposition sequence

0 −→ OF (−mF ) −→ O(m+1)F −→ OmF −→ 0.

Now, we have that if F is 1–connected, then Ramanujam’s Lemma implies that

h0(F,OF (−mF )) ≤ 1 and h0(F,OF (−mF )) = 1 if and only if OF (−mF ) = OF .

Thus h0(F,OF (−mF )) = 0, since the torsion bundles OF (−mF ) are nontrivial for

1 ≤ m ≤ n− 1. By induction, we get

h0(F,OFb
) = h0(F,OnF ) ≤ h0(F,OF )

with h0(F,OF ) = 1, since F is 1–connected. So we have h0(Fb,OFb
) = 1, for all

b ∈ B. Since the Euler characteristic χ(Fb,OfB
) is independent of b, we get that

also h1(Fb,OFb
) is independent of b ∈ B.
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Let f : S −→ B be a relatively minimal fibration.

Definition 1.2.7. The line bundle ωS|B := KS ⊗ f ∗(K−1
B ) on S is called the dual-

izing sheaf of f .

Since the normal bundle OFb
(Fb) of any fibre Fb is trivial, we have

ωS|B|Fb
= OS(KS)⊗ f ∗(K−1

B )|Fb
∼= OS(KS)|Fb

∼= OS(KS + Fb)|Fb
= ωFb

,

for every b ∈ B.

Recall now two important results, one on the cohomology and base change,

another on relative duality.

Theorem 1.2.8. Let f : X −→ Y a proper morphism of algebraic varieties,

Xy = f−1(y) the fibre over y. If E is a coherent sheaf on X, which is flat over Y ,

we have:

(i) The Euler characteristic χ(Xy,E|Xy) is constant;

(ii) hq(Xy,E|Xy) is an upper semicontinuous function of y, for all q ≥ 0;

(iii) If hq(Xy,E|Xy) is constant, then Rqf∗(E) is locally free;

(iv) If hq(Xy,E|Xy) is constant, then the ”base change morphism”

Rqf∗(E)⊗OY
Oy/m −→ Hq(Xy,E|Xy)

is an isomorphism.

Theorem 1.2.9. (Relative Duality Theorem) If f : S −→ B is a fibration and E

a locally free OS–sheaf, then we have that the (duality) morphism

f∗(E
∨ ⊗ ωS|B) −→ (R1f∗E)∨

is an isomorphism
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In particular we get

(R1f∗ωS)∨ ∼= f∗(f
∗ω−1

B ) ∼= ω−1
B

i.e.

R1f∗ωS ∼= ωB,

equivalently

R1f∗(ωS ⊗ f ∗ω−1
B ) ∼= R1f∗ωS|B ∼= OB.

Remark 1.2.10. If B has genus 1, we have

R1f∗ωS ∼= OB. (1.1)

Since χ(Fb,OFb
) = h0(Fb,OFb

)−h1(Fb,OFb
) is constant for a fibration f : S −→ B,

and h0(Fb,OFb
) = 1 for all b ∈ B, we obtain (using the duality on Fb)

h1(Fb, ωFb
) = h0(Fb,OFb

) = 1

and

h0(Fb, ωFb
) = h1(Fb,OFb

) = g

Furthermore, if the fibration is relatively minimal, g ≥ 2, then degωFb
> 0, for all

b ∈ B. Thus

h1(Fb, ω
⊗n
Fb

) = h1(Fb, ω
⊗(1−n)
Fb

) = 0, for n ≥ 2

In conclusion we have:

Theorem 1.2.11. If f : S −→ B is a relatively minimal fibration, then:

(i) f∗ωS|B is locally free of rank g;

(ii) f∗ω
⊗n
S|B is locally free of rank (2n− 1)(g − 1);
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(iii) R1f∗ω
⊗n
S|B = 0 for n ≥ 2 when g ≥ 2.

Let f : S −→ B be a relatively minimal fibration with S of general type. Since

R1f∗ωS|B = OB and R1f∗ω
⊗n
S|B = 0 for n ≥ 2 we can compute the Euler character-

istic of f∗ω
⊗n
S|B = 0 by Riemann–Roch and conseguently its degree.

We introduce now the following invariants of f :

• The self intersection of the relative dualizing sheaf:

K2
S|B := ω2

S|B = K2
S − 8(b− 1)(g − 1); (1.2)

• the Euler characteristic of the relative dualizing sheaf:

χS|B := χ(OS)− (b− 1)(g − 1). (1.3)

It follows by Riemann–Roch that for n ≥ 1:

χ(f∗ω
⊗n
S|B) = χ(ω⊗nS|B) =

1

2
n(n− 1)K2

S|B + 2χ(f∗ω
⊗n
S|B)χ(OB) + χS|B,

deg(f∗ω
⊗n
S|B) =

1

2
n(n− 1)K2

S|B + χS|B.

For simplicity, we define Vn := f∗ω
⊗n
S|B. The vector bundles Vn have very nice

properties.

Theorem 1.2.12. (Fujita) The vector bundles Vn are semipositive, i.e. every

locally free quotient of it has nonnegative degree. Precisely, V1 = O
q−b
B ⊕A⊕(

⊕
iMi)

where A is an ample bundle, each Mi is an indecomposable and stable of degree 0

with h0(Mi) = 0. If rankMi = 1, then Mi is a torsion line bundle.(for this last

observation see [Zuc])
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Fujita’s theorem shows that

deg Vn =
1

2
n(n− 1)K2

S|B + χS|B ≥ 0

The Arakelov inequality

K2
S|B = K2

S − 8(b− 1)(g − 1) ≥ 0 (1.4)

follows as corollary, together with the inequality

χS|B = χ(OS)− (b− 1)(g − 1) ≥ 0 (1.5)

which is note as the Beauville’s inequality. For n ≥ 2 we have:

Theorem 1.2.13. (Esnault, Viehweg) For any n ≥ 2 the vector bundle Vn is

ample unless f has constant moduli, which means that all the smooth fibres are

isomorphic.

We now restrict to fibrations f : S −→ B, where S is a minimal surface of

general type with the general fibre F of genus 2.

Remark 1.2.14. A fibration f : S −→ B with the general fibre of genus 2 has

not multiple fibres. For that, since F 2 = 0 and KS · F = 2, for a multiple fibre

F = nF ′, n ≥ 2, we would get

2 = n(KS · F ′), then KS · F ′ =
2

n
;

since KS · F ′ is even, we have a contradiction.

Another property of a fibration with fibre of genus 2 (or more generally hyper-

elliptic fibres) is that f is not smooth. The relative canonical map of a fibration of

genus g ≥ 2 is a generically finite rational map of degree 2,

S 99K Σ ⊆ P(f∗ωS|B),
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where Σ ⊆ P(f∗ωS|B) = P(V1) is birationally equivalent to a ruled surface over B.

Then S has a birational involution σ which restricts to the hyperelliptic involution

of F . Since S is minimal, σ act biregularly on the fibration, i.e.

S S

B

σ

f f

σ2 = id, σ 6= id and f ◦σ = f . We recall the well–known procedure that associates

to f : S −→ B a double cover of a (relatively) minimal fibration.



Chapter 2

Double Covers and Genus 2

Fibrations

2.1 Double Covers

Definition 2.1.1. A cover is a finite surjective morphism f : X −→ Y between

algebraic irreducible varieties

A cover is said flat if the morphism f is flat. Recall that:

Proposition 2.1.2. A finite morphism f : X −→ Y is flat if and only if f∗OX is

locally free on Y . (see [Mum, p. 43])

A useful criterion for flatness is the following:

Proposition 2.1.3. Let f : X −→ Y be a finite morphism. Suppose Y is a

nonsingular variety. Then f is flat if and only if X is a Cohen–Macaulay variety.

(cf. [Eis])

We are interested to double covers, i.e. such that deg f = [K(X) : f ∗K(Y )] =
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2. If f : X −→ Y is a surjective morphism between surfaces, in general, f is not

finite.

In such situation we use Stein factorization in order to get a finite morphism.

In fact we have the following:

Theorem 2.1.4. (Stein factorization) Let f : X −→ Y be a surjective morphism

between algebraic surfaces. We suppose X normal and Y nonsingular. Then f

factors:

X

Z

Y

g

f

h

where h is a double cover, g is a birational morphism with g∗OX = OZ. In particular

g has connected fibre and Z is a normal surface.

By Proposition 2.1.3 we get that, being Z a Cohen–Macaulay variety, h is a

flat morphism and h∗OZ is a locally free OY –module of rank 2. Actually Z is the

normalization of Y in the field K(X).

Then the natural injection 0 −→ OY −→ h∗OZ has an invertible cokernel:

0 −→ OY −→ h∗OZ −→ OY (−δ) −→ 0 (2.1)

with δ ∈ Pic(Y ).

Working locally, we can see that the branch locus B of f (and of h) is a reduced

divisor linearly equivalent to 2δ. The surface Z is nothing but Spec(OY ⊕OY (−δ)).

Z is smooth if and only if B is a smooth divisor. So if B ≡ 2δ is singular, then

also Z is singular.

The singularities of Z can be resolved by the canonical resolution. (see [Hor1]).

Set Y0 = Y and B0 = B. Let y1 be a singular point of B of multiplicity m1. Let
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σ1 : Y1 −→ Y0 be the blowup of y1 with exceptional curve E1. Then B1 = σ∗1B0 −

2[m1

2
]E1 is a reduced curve linearly equivalent to 2δ1, where δ1 = σ∗S − [m1

2
]E1;

[m1

2
] is the greatest integer less than or equal to m1

2
. Therefore there exists a double

cover Z1 −→ Y1 branched along B1 and a birational morphism Z1 −→ Z. If Z1

is singular we repeat this construction. After finitely many steps we arrive at a

ramification divisor Bd smooth, and hence Zd is smooth. Z∗ := Zd is called the

canonical resolution of Z. Generally Z∗ is not the minimal resolution of Z. We

have the

Theorem 2.1.5. Let h : Z −→ Y be a double cover with Z normal and Y non-

singular, ramified over the reduced divisor B ⊂ Y . Let δ be the line bundle on Y ,

satisfying B ≡ 2δ such that

Z = Spec(OY ⊕ OY (−δ))

Consider the canonical resolution

Z∗ = Zd Zd−1 . . . Z1 Z0

Yd Yd−1 . . . Y1 Y0 := Y

h∗

σd σd−1 σ1

Let σ = σ1 ◦. . . ◦ σd, π : Z∗ −→ Z the induced birational morphism. Then there

exists an effective divisor E ≥ 0 on Z∗, with Supp(E) contained in the union of

the exceptional curves for π such that

KZ∗ = (h ◦ π)∗(KY + δ)⊗ OZ∗(−E)

Furthemore, E ≡ 0 if and only if the singularities of B (hence of Z) are simple,

i.e. B has no singular point of multiplicity greater than 3, and any triple point P

of B decomposes into singularities of multiplicities less than or equal to 2 on the
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proper transform of B after one blowup with center P . In such case (E = 0), the

canonical resolution is the minimal resolution. The numerical characters of Z∗ are

the following:

χ(Z∗,O∗Z) =
1

2
(KY + δ)δ + 2χ(Y,OY )−

∑ 1

2

[
mi

2

]([
mi

2
− 1

])

K2
Z∗ = 2(KY + δ)2 − 2

∑([
mi

2

]
− 1

)2

where mi (i = 1, ..., d) denotes the multiplicity of Bi−1 at the center of the blowup

yi which appears in the construction of Z∗.

2.2 Fibrations of Genus 2

Let f : S −→ B be a fibration with fibres of genus 2. We often call a such

fibration a genus 2 fibration. Let σ be the biregular involution on S. The fixed

locus of σ is the union of a smooth reduced curve R and finitely many isolated

points p1, . . . , pε. Let % : Ŝ −→ S be the blow–up of the isolated points of σ,

Ei = %−1(pi) the exceptional curves. The involution σ induces an involution σ̂

on Ŝ, which has as fixed locus the smooth curve R̂ = %∗R +
∑ε

i=1Ei. Hence

the quotient Ŵ := Ŝ/ < σ̂ > is a smooth surface, and the projection morphism

%̂ : Ŝ −→ Ŵ is a flat double cover branched along the smooth reduced curve

Ĉ = %̂(R̂) = %̂∗(R̂).

There exists a line bundle ∆̂ ∈ Pic(Ŵ ) such that Ĉ ∈ |2∆̂|. Then Ŝ is isomor-

phic to the double cover of Ŵ constructed in the total space of the line bundle ∆̂:

if p : ∆̂ −→ Ŵ is the bundle projection, then

Ŝ = (p∗s− tn = 0) ⊂ ∆̂

where t ∈ H0(∆̂, p∗∆̂) is the tautological section, and s is a section inH0(Ŵ ,O∆̂(2∆̂))

such that div(s) = Ĉ. Since Ŵ has a natural fibration over B, we can make a rel-
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atively minimal model π : W −→ B. If the genus h of the fibres of π : W −→ B

is ≥ 1, then W is unique.

If the genus h is equal to 0, then a relatively minimal model is not unique and

we can move from a model to another via elementary transformations. We have a

commutative diagram

Ŝ Ŵ

S W

B

% ψ

f π

Let C be the direct image ψ∗Ĉ of the branch locus Ĉ in W . Then C is an even

reduced divisor, i.e. C = 2L, with L a line bundle on W .

Hence we have a double cover S ′ −→ W , with S ′ minimal, but not necessarily

smooth. So S ′ is birational to S. By construction, S ′ is a divisor in a smooth 3–fold

(the total space of the line bundle L),which is smooth over B, so f ′ : S ′ −→ B

admits an invertible relative dualizing sheaf, which is induced by ωW + L. The

singularities of S ′ can be resolved in a natural way performing the canonical reso-

lution:

Sn Sn−1 . . . S1 S0

Wn Wn−1 . . . W1 W0

σn σn−1 σ1

τn τn−1 τ1

such that the branch locus Cn of Sn −→ Wn is smooth.

We know that each morphism Sj −→ Wj is the double cover with branch locus

Cj := τ ∗j (Cj−1)−2[
mj−1

2
]Ej, where as usual Ej is the exceptional divisor of τj, mj−1
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is the multiplicity of the blown–up point. If we choose such n minimal, then we

can prove that Sn is isomorphic to Ŝ. A proof of this fact can be find in [Bau] (see

theorem 3.43).

Let fj : Sj −→ B and f ′ : S ′ −→ B be the induced fibrations. We can calculate

the invariants of f ′ : S ′ −→ B and fj : Sj −→ B:

(ωfn · ωfn) = (ωf ′ · ωf ′)− 2
n∑
i=0

([
mi

2

]
− 1

)2

and

deg(fn∗ωfn) = deg(f ′∗ωf ′)−
1

2

n∑
i=0

[
mi

2

]([
mi

2

]
− 1

)
Suppose that the sequence Sn −→ . . . −→ S1 −→ S ′ is minimal. Since Sn is

smooth, f : S −→ B is relatively minimal and the induced birational map Sn =

Ŝ 99K S is a regular map. Therefore

(ωf · ωf ) = (ωS|B)2 = (ωfn · ωfn)2 + ε

where ε is the number of blow–ups that make up % : Ŝ −→ S. We get the following

identity:

(ωS|B)2 =
4(g − 1)

g
deg(f∗ωS|B) +

2

g

n∑
i=0

([
mi

2

]
− 1

)(
g −

[
mi

2

])
+ ε (2.2)

Therefore, if g = 2, we get:

ω2
S|B = 2 deg f∗ωS|B +

k∑
i=1

([
mi

2

]
− 1

)(
2−

[
mi

2

])
+ ε (2.3)

Consider the even reduced divisor C as sum of irreducible vertical components

and irreducible horizontal components, i.e.

C = Cv + Ch (2.4)

where Cv is the sum of all irreducible components D of C such that π(D) =

point, while Ch is the sum of the irreducible components of C which go onto B.
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Then it is possible to show that we can choose W such that the singularities

of Ch are at most of order g + 1 and C2 is the smallest among all such choices.

Therefore as C is reduced, the singularities of C are at most g + 2, and if p is a

singular point of order g+2, C contains the fibre of π passing through p (see [Xia2]

for the details).

Then, in the case g = 2, we obtain that we can choose the ruled surface

W
π−→ B such that, for all i, ([mi

2
]−1)(2−[mi

2
]) = 0. Then ω2

S|B = 2 deg(f∗ωS|B)+ε.

Equivalently,

K2
S = 2 deg(f∗ωS|B) + 8(b− 1) + ε (2.5)

where b is the genus of B.

From now on we consider fibrations f : S −→ B with general fibre of genus 2.

We have seen that, the genus formula,

2π(F )− 2 =
F 2 + F ·K

2
(2.6)

implies that S has not multiple fibres, and so all the fibres are 1–connected.

We will consider the relative canonical algebra in order to give the structure

theorem, proved by Catanese and Pignatelli in [CaPi] for fibrations of genus 2.

This approach uses the geometry of the bicanonical map of a 1–connected

divisor of genus 2, which is a morphism generically of degree 2 onto a plane curve

Q which may be reducible or nonreduced.

The above approach was that of Horikawa.

We saw that the ruled surface π : W −→ B is not uniquely determined if

b := genus(B) ≥ 1. In case b = 0, Horikawa proved that W is canonically deter-

mined and is isomorphic to P(f∗ωS|B) (cf. Hor2 th.1). The proof is based on the

isomorphism (2) of that paper and on the assertum that for a sufficiently ample
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divisor L on B, we have

P := P(f∗ωS ⊗ L) ↪→ P(ωS + f ∗ L) = P(H0(ωS + f ∗L)) =

= P(H0(f∗ωS + L)) =

= P(H0(P,OP(1))).

In the approach of Catanese and Pignatelli, there is a unique birational model X

of S, which admits a double cover ψ : X −→ C, where C is a conic bundle over B,

the branch divisor ∆ has only simple singularities and X is the relative canonical

model of f . X is obtained contracting the (−2)–curves D, (i.e. KS|B · D = 0)

contained in the fibres to singularities which are then rational double points.

In order to have a better understanding of X, we consider the relative canonical

algebra R(f)

R(f) :=
∞⊕
n=0

f∗ω
⊗n
S|B =

∞⊕
n=0

Vn (2.7)

where we have put Vn = f∗ω
⊗n
S|B. By base change, its stalk at p ∈ B is an OB,p–

algebra whose reduction modulo mp is the canonical K–algebra

R(Fp) =
∞⊕
n=0

H0(Fp, ω
⊗n
Fp

) (2.8)

where Fp = f−1(p) is the scheme theoretic fibre of f and ωFp = ωS|B|Fp .

We have natural homomorphism induced by multiplication:

µm,n : Vm ⊗ Vn −→ Vm+n (2.9)

and

σn : Sn(V1) := Symn(V1) = Sn(f∗ωS|B) −→ Vn = f∗ω
⊗n
S|B (2.10)

If there are no multiple fibres, the relative canonical algebra is generated by

elements of degree ≤ 3. Since for g = 2, there are no multiple fibres, the canonical

algebra R(f) is generated in degree ≤ 3. The hyperelliptic involution σ : S −→ S
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acts linearly on the space of sections Γ(U, ω⊗S|B), where U is open and σ–invariant.

Then Γ(U, ω⊗nS|B) splits as the direct sum of the invariant and the antinvariant spaces

of sections. We obtain the decomposition:

Vn = V+
n ⊕ V−n = f∗(ω

⊗n
S|B)+ ⊕ f∗(ω⊗nS|B)− (2.11)

Therefore we get that the canonical algebra splits as

R(f) = R(f)+ ⊕R(f)− (2.12)

where R(f)+ =
⊕∞

n−1 V+
n , R(f)− =

⊕∞
n−1 V−n .

Since genus(F ) = g = 2, we have:

V−1 = V1, V+
1 = (0) (2.13)

and the sheaf homomorphisms σn are injective. In particular, for n = 2, we get

the important sheaf exact sequence:

0 −→ S2 V1 −→ V2 −→ T2 −→ 0

where T2 := coker σ2.

Now we want to give another proof of the formula

Proposition 2.2.1.

ω2
S = 2χ(OS)− 6χ(OB) + lenght(coker(S2V1

σ2−→ V2))

= 2 deg f∗ωS|B + deg T2 (:= lenght(coker(S2V1
σ2−→ V2)).

Proof.

Since S2V1
σ2−→ V2 is injective, we have

deg T2 = χ(V2)− χ(S2 V1).

We have

χ(B,V2)− χ(B, S2 V1) = deg T2
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By Riemann–Roch on B:

χ(B, S2 V1) = deg S2 V1 − 2K(S2 V1)(b− 1) == 3 deg V1 − 3(b− 1) = = 3 deg V1 + 3χ(OB) =

Now, by using the Leray’s spectral sequence, we have

χ(V1) = h0(f∗ωS|B)− h1(f∗ωS|B) =

= h0(f∗ωS|B − [h1(ωS|B)− h0(R1f∗ωS|B)] =

= h0(ωS|B)− h1(ωS|B) + h2(ωS|B)− h2(ωS|B) + h0(OB),

since OB = R1f∗ωS|B.

Then, by Riemann–Roch on S, we have

χ(V1) = χ(ωS|B) + 1− b =

= χ(OS) +
1

2
(KS − f ∗KB)(f ∗KB) + χ(OB) =

= χ(OS) + 2χ(OB) + χ(OB) =

= χ(OS) + 3χ(OB).

Similarly

χ(V2) = χ(OS) +K2
S + 12χ(OB)

Then

χ(V2)− χ(S2 V1) = χ(OS) +K2
S + 12χ(OB)− 3 deg V1 − 3χ(OB) =

= K2
S + χ(OS) + 9χ(OB)− 3 deg V1.

By Riemann–Roch on B we get

χ(V1) = deg V1 + 2(1− b) = deg V1 + 2χ(OB).

Then

deg V1 = χ(V1)− 2χ(OB) =

= χ(OS) + 3χ(OB)− 2χ(OB) =

= χ(OS) + χ(OB).
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In conclusion

χ(V2)− χ(S2 V1) = K2
S + χ(OS) + 9χ(OB)− 3(χ(OS) + χ(OB)) =

= K2
S − 2χ(OS) + 6χ(OB),

so

K2
S = 2χ(OS)− 6χ(OB) + deg T2

In their paper Catanese and Pignatelli use the graded canonical ring,

R(f) =
⊕

n≥0H
0(F, ω⊗nF ) of a curve F of genus 2. We now recall this result

(see [Men]).

Theorem 2.2.2. Let F be a fibre of a genus 2 fibration f : S −→ B. Then either

F is honestly hyperelliptic, i.e. the graded ring R(f) is isomorphic to

C[x0, x1, z]/(z
2 − g6(x0, x1)) (2.14)

where deg x0 = deg x1 = 1, deg z = 3, deg g6 = 6, or the fibre F is not 2–connected

and the graded ring R(f) is isomorphic to

C[x0, x1, y, z]/(Q2, Q6) (2.15)

where deg x0 = deg x1 = 1, deg y = 2, deg z = 3 and

Q2 := x2
0 − λx0x1

Q6 := z2 − y3 − x2
1(α0y

2 + α1x
4
1)

The first case is the one where the fibres are 2–connected

Using this result, they prove that the sheaf T2 := coker(σ2 : S2 V1 −→ V2) is

isomorphic to the structure sheaf of an effective divisor T on B, supported on the

points of B corresponding to the fibres of f : S −→ B which are not 2–connected.
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Consider now the exact sequence

0 −→ S2 V1 −→ V2 −→ OT −→ 0

We have the following natural map induced by σ2:

q : P(V2)99KP(S2 V1)

which is birational, and the Veronese embedding

ν2 : P(V1)↪→P(S2 V1).

Then the composition

ν := q−1
◦ν2 : P(V1)↪→P(V2)

can be considered as the relative 2–Veronese map.

If we consider the pluricanonical relative maps

ϕ1 : S99KP(f∗ωS|B) = P(V1)

ϕ2 : S99KP(f∗ωS|B) = P(V2)

we have that ϕ1 is a rational map generically of degree 2, since F is hyperelliptic,

while ϕ2 is a morphism of degree 2, since every fibre F is 1–connected and then

|ω⊗2
F | is a free linear system.

The diagram

S P(V2)

P(V1)

ϕ2

ϕ1 ν

is commutative, i.e. ν◦ϕ1 = ϕ2 as rational maps. The image of ϕ2 is a conic bundle

C over B.
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The structure theorem of Catanese and Pignatelli proves that to reconstruct

the pair (S, f) one only needs to know σ2, which gives at once the conic bundle C

and the isolated branch points of ϕ2, and the divisorial part ∆ of the branch locus

of ϕ2.

Furthermore, it gives a concrete recipe to construct all possible pairs (σ2,∆).

We now introduce the five fundamental ingredients (B,V1,T, ξ, w). Their order

is important since each ingredient is given in a space which depends on the previous

introduced ingredients:

1. B, any smooth curve;

2. V1, any rank 2 vector bundle over B;

3. T, any effective divisor on B;

4. ξ, any extension class

ξ ∈ Ext1
OB

(OT, S
2(V1)/AutOB

(OT)

such that the extension V2 given by ξ,

0 −→ S2 V1 −→ V2 −→ OT −→ 0

is a vector bundle;

5. w, a non trivial element of

Hom((det V1 ⊗ OB(T))2,A6)/C∗,

where A6 is a vector bundle determined by ξ in the following way:

let σ2 : S2 V1 −→ V2 be an injective homomorphism whose cokernel is OT.

The A6 is a vector bundle

(coker L3)⊗ (det V1 ⊗ OB(T))−2 (2.16)
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where the map L3 : (det V1)2 ⊗ V2 −→ S3(V2) is the one induced by σ2 as

follows. Consider the map η in the natural exact sequence

0 −→ det(V1)2 η−→ S2(S2(V1)) −→ S4(V1) −→ 0

given locally, if x0 and x1 are locally generators of V1, by

η((x0 ∧ x1)⊗2) = (x0)2(x1)2 − (x0x1)2.

A6 is then the cokernel of the composition of the maps

det(V1)2 η⊗idV2−→ S2(S2(V1))⊗ V2

S2(σ2)⊗idV2−→ S2(V2)⊗ V2
µ2,1−→ S3(V2)

Putting L3 for (µ2,1)◦(S2(σ2)⊗ idV2)◦(η ⊗ idV2), we obtain that A6 fits in the

following exact sequence:

0 −→ det(V1)2 ⊗ V2
L3−→ S3(V2) −→ A6 −→ 0

These five ingredients is required to satisfy some open conditions:

(i) The conic bundle C coming from the first 4 ingredients, has only Rational

Double Points as singularities;

(ii) Let ∆ be the divisor defined by w in C. Then ∆ has only simple singularities.

Now the map σ2 on the points of Supp(T) defines a rank 2 matrix, whose

image defines a pencil of lines in the corresponding P2, thus having a base

point. Denote by P the union of such base points;

(iii) Then we impose that ∆ does not contains any point of the set P.

If the 5–tuple (B,V1,T, ξ, w) satisfies the above conditions, (i), (ii) and (iii),

we say that it is an admissible genus two 5–tuple.

Then the structure theorem they obtain (for genus 2 fibration) is the following:
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Theorem 2.2.3. Let f : S −→ B be a relatively minimal genus two fibration.

Then the associated 5–tuple (B,V1 := f∗ωS|B,T, ξ, w) is admissible.

Vice versa every admissible genus two 5–tuple (B,V1,T, ξ, w) determines a

sheaf of algebras R over B whose relative projective spectrum X is the relative

canonical model of a relatively minimal genus two fibration f : S −→ B having the

above as associated 5–tuple.

Moreover, the surface S has the following invariants:

χ(OS) = deg V1 + (b− 1),

K2
S = 2 deg V1 + 8(b− 1) + deg(T).

(2.17)

2.3 Ruled Surfaces

In this section we will recall basic facts about ruled surfaces.

A surfaces is birationally ruled if it is birationally isomorphic to C×P1, where

C is a smooth curve.

A (geometrically) ruled surface is a surface S, together with a smooth surjective

morphism π : S −→ C to a smooth curve C such that the fibre Fx is isomorphic

to P1, for every point x ∈ C.

It is a classical result of Noether and Enriques that π : S −→ C is a P1–bundle

over C.

Theorem 2.3.1. (Noether–Enriques) Suppose π : S −→ C is a smooth surjective

map such that Fx := π−1(x) ∼= P1, for every x ∈ C. Then, for any x ∈ C, there

exists a Zariski open set U ⊂ C, containing x, and a commutative diagram:

π−1(U) U × P1

U

∼

π prU
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So by the Noether–Enriques theorem, a geometrically ruled surface is locally

trivial in the Zariski topology.

Thus these projective bundles are classified by

H1(C,PGL(2,C))

where PGL(2,C) is the sheaf of germs of regular maps from C into PGL(2,C).

Since C is a curve (H2(C,OC) = 0), we have an exact sequence of cohomology

sets:

Pic(C)
σ−→ H1(C,GL(2,C)

%−→ H1(C,PGL(2,C) −→ 0

Now, H1(C,GL(2,C) parametrizes rank 2 vector bundles on C, whileH1(C,PGL(2,C))

parametrizes P1–bundles over C.

The above exact sequence says that S
π−→ C is isomorphic to PC(E) :=

Proj
∞⊕
n=0

Symn(E) for some rank 2 locally free sheaf (vector bundle) E over C.

The bundles PC(E) and PC(E′) are isomorphic over C if and only if there exists an

invertible sheaf (line bundle) L on C such that

E′ ∼= E⊗ L.

From the trivialization of π : S −→ C over an open Zariski set U ⊂ C:

π−1(U) U × P1

U

∼

π prU

we get a rational section s : U −→ S, i.e. π◦s = idU , but since C is a smooth

complete curve, s extends to a regular map from C to S, which is necessarily a

section.
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Let D := s(C) ⊂ S be the image of s. Then D is a divisor on S and D ·Fx = 1

for every fibre Fx of π. This implies (using base change) that

E := π∗OS(D)

is a locally free sheaf of rank 2 = h0(Fx,OFx(1)). The surface S is isomorphic just

to PC(E) over C.

Proposition 2.3.2. Let π : S −→ B be a ruled surface, let D ⊂ S be a section

and let F be a fibre. Then

Pic(S) ∼= π∗ Pic(C)⊕ Z,

where Z is generated by the class of D. Also

NumS ∼= Z⊕ Z

with D and F as generators, D · F = 1, F 2 = 0 and D2 = deg E.

Let π : S −→ C be a ruled surface. Then it is possible to write

S ∼= PC(E)

where E is a locally free sheaf on C with the property that H0(E) 6= 0, but for all

L ∈ Pic(C) with deg L < 0, we have H0(C,E ⊗ L) = 0 In this case the degree

−e := deg E of E is an invariant of S.

Furthermore in this case there is a section σ0 : C −→ S with image C0 such

that

OS(C0) ∼= OP(E)(1)(= OS(1)) (2.18)

where OP(E)(1) is the Serre tautological sheaf on P(E).

If E has the above properties, we say that E is normalized.

We put e :=
∧2

E as divisor on C, so that e := − deg e.
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Lemma 2.3.3. Let S = PC(E), with E normalized. Then the canonical divisor KS

of S is given by

KS ≡ −2C0 + π∗(KC + e) (2.19)

where KC is the canonical divisor on C.

For numerical equivalence, we have

KS
∼= −2C0 + (2g − 2− e)f (2.20)

where g is the genus of C and f is the numerical class of the fibres. In particular

K2
S = 8(1− g) (2.21)

Remark 2.3.4. If C = P1, then by a theorem of Grothendieck every vector bun-

dle over B is isomorphic to a direct sum of line bundles. So in this case every

ruled surface over P1 is of the form P(OP1 ⊕ OP1(n)). If we choose OP1 ⊕ OP1(n)

normalized, then necessarily n ≤ 0.

With regarg to the possible values of e, we have the following theorem:

Theorem 2.3.5. Let S be a ruled surface over the curve C of genus g, determined

by a normalized locally free sheaf E. Then;

(a) If E is decomposable, i.e. E ∼= L1⊕L2, with L1, L2 ∈ Pic(C), then E ∼= OC⊕L

for some L ∈ Pic(C), with deg L ≤ 0. Therefore e ≥ 0. All values e ≥ 0 are

possible.

(b) If E is indecomposable, then

−g ≤ e ≤ 2g − 2 (2.22)

([[Har]], V.2)
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Remark 2.3.6. If E is indecomposable, to the section C0 ↪→ S corresponds a

nontrivial extension of vector bundles:

0 −→ OC −→ E −→ L −→ 0 (2.23)

for some L ∈ Pic(C). It corresponds to a nonzero element

ξ ∈ Ext1(L,OC) ∼= H1(C,L∨)

In particular H1(C,L∨) 6= 0. If g = 1, H1(C,L∨) ∼= H0(C,L)∨ since ωC = OC.

Now H0(C,L)∨ 6= 0 implies that deg L ≥ 0, and if deg L = 0, L is not of nontrivial

torsion.

Theorem 2.3.7. Let C be an elliptic curve and let S be a ruled surface on C

corresponding to an indecomposable (normalized) sheaf E. Then e = 0 or e =

−1, and there is exactly one such ruled surface for each of these two values of e.

Precisely, for e = 0, E is given by a nontrivial extension

0 −→ OC −→ E(2, 0) −→ OC −→ 0

For e = −1, E is given by a nontrivial extension

0 −→ OC −→ Eu(2, 0) −→ OC(u) −→ 0

where u is a point on C.

In general, given a point u over an elliptic curve C and integers r, d, with r > 0,

(r, d) = 1, Atiyah in [[Ati]] proved that there exists a unique indecomposable vector

bundle Eu(r, d) of rank r on C with

detEu(r, d) = OC(u)⊗d = OC(d · u).
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In the same paper, Atiyah proved that there exists a unique indecomposable

vector bundle E(r, 0) over C of rank r and degree 0 with H0(E(r, 0)) 6= 0. Moreover

there is an exact sequence

0 −→ OC −→ E(r, 0) −→ E(r − 1, 0) −→ 0 (2.24)

Furthermore if E is an indecomposable vector bundle of degree 0 and rank r, we

have

E ∼= L⊗ E(r, 0) (2.25)

where L ∈ Pic(C) with deg L = 0, unique up to isomorphism and such that

L ∼= detE (2.26)

Remark 2.3.8. Suppose that C is an elliptic curve. Then the symmetric prod-

uct Sn(C) of C is isomorphic as Pn−1–bundle over C to the projective bundle

P(Eu(n, n− 1)).



Chapter 3

Surfaces with pg = 2, q = 1 and

K2 = 5

3.1 The Invariant e

In this chapter we consider the fibration

f : S −→ B

where b := genus(B) = 1, K2
S = 5, q = b = 1, induced by the Albanese map of S

(see [Hor3]).

To f we associate the following diagram

S Proj(f∗ωS)

B

ψ

f
π

We have that

1. Every fibre F of f is 1–connected (since f has not multiple fibres);
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2. ψ is a morphism on any 2–connected fibre;

3. There is one 2–disconnected fibre, since

deg T = K2
S − 2 degE + 8(1− b) = 1

where E := f∗ωS|B = f∗ωS, and T is defined by

0 −→ S2f∗ωS|B −→ f∗ω
⊗2
S|B −→ T −→ 0

Consider the ’Horikawa diagram’

S∗

Ŝ S̃

S W := Proj(f∗ωS)

%

σ

h

g

ψ

where Ŝ
σ

99K S is the resolution of indeterminates of ψ, S∗ (∼= Ŝ, as proved in

[Bau]) is the Horikawa resolution of the branch locus B of ψ (or equivalently of

ψ◦σ). The branch locus is linearly equivalently to

B ≡ 6D − bΓ F = B/2

χ(W ) = 1− q − pg = 0

and

KW ≡ −2D + 2F

Now 2 = χ = 1
3
(3D − b

2
F )(D + 4−b

2
Γ)?

⇒ b = 2, and so B ≡ 6D − 2Γ

The 2–disconnected fibre F is of type I, III1, V in the classification of Horikawa.
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Consider again the rank 2–bundle E = f∗ωS|B. We have rank(E) = 2, deg(E) =

2.

Let E1 ⊂ E be the line subbundle of maximal degree.

E2 := E/E1 is torsion free, so E2 is a line bundle. For this consider the

following exact sequence

0 −→ E1 −→ E
π−→ E2 ⊕ T −→ 0

We have E1 ⊂ π−1(T ). If E1 ( π−1(T ), then deg(E1) < deg(T ), absurd. Then

T = 0.

Let e := deg(E1)− deg(E2). Fujita’s theorem ⇒ deg(E2) ≥ 0.

By a theorem of Xiao (see [Xia1, p. 71] we have that either e = 0 or e = 2.

3.1.1 The Case e = 2

In this case we get that:

deg(E1) = 2, deg(E2) = 0

Considering the long cohomology sequence associated to the exact sequence

0 −→ E1 −→ E
π−→ E2 −→ 0,

i.e.

0 −→ H0(E1) −→ H0(E) −→ H0(E2) −→ H1(E1) −→ . . .

We have H1(E1) = H0(E∨1 )∨ = 0 because E∨1 has degree −2. Now h0(E1) = 2 =

h0(E), then H0(E2) = 0, i.e. E2 is a torsion line bundle, E2 = OB(η).

Since f∗H
0(E1) = H0(ωS), we get that the canonical map factors through f ,

ϕKS
= ϕ|E1|◦f.
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Now |E1| = g1
2 without base points.

Then ϕKS
is a morphism, i.e.

|KS| = |M |+ Z

where M = F1 + F2, Z is the fixed component and M2 = 0.

Thus we have

Ext1(E2, E1) = H0(E2 ⊗ E∨1 )∨ = 0

so

f∗ωS = OB(P +Q)⊕ OB(η), with η 0, ηk ≡ 0, k ≥ 2 and P +Q ∈ |E1|

The Horikawa diagram becomes

S∗

Ŝ S̃

S P(O(P +Q)) ⊕O(η =: P

%

σ

h

g

ψ

We have K2
Ŝ

= KS∗ = 4, χ(OS) = χ(OŜ) = 2, KP = −2H + 2Γ, and since

H2 = degE = 2, K2
P = 4H2 − 8 = 0.

Moreover χ(OP) = 1− q + pg = 0

m2 = 4⇒ [m2

2
] = 2 and m1 = 4⇒ [m1

2
] = 2.

We get

2 = χ(OŜ) = 2χ(OP)+
1

2
(3H+bΓ)(−2H+2Γ)+

1

2
(BH+bΓ)2−2 = 2b+4⇒ b = 1.

The branch locus is algebraically equivalent to 6H − 3Γ.

B = B∗ + Γo ⇒ B∗ ≡ 6H − 3Γ.

B∗ has 2 ordinary triple points.
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H0(6H − 3Γo) = H0(Sym6(O(P +Q)⊕ O(η))⊗ O(−3o)) =

= H0(O(P +Q)6 ⊗ O(−3o)⊕H0(O(P +Q)5 ⊗ O(η − 3o)

⊕H0(O(P +Q)4 ⊗ O(2η − 3o)⊕H0(O(P +Q)3 ⊗ O(3η − 3o)

⊕H0(O(P +Q)2 ⊗ O(4η − 3o)

⊕H0(O(P +Q)⊗ O(5η − 3o)⊗H0(6η − 3o).

The dimensions of each terms of such decomposition are

9, 7, 5, 3, 1, 0, 0

So h0(6H − 3Γo) = 9 + 7 + 5 + 3 + 1 + 0 + 0 = 25.

The coordinates along the fibre Γ of P are

x0 ∈ H0(O(1)⊗ π∗O(−P −Q)

x1 ∈ H0(O(1)⊗ π∗O(−η)

with xi0x
j
1 ∈ H0(O(6)⊗ O(−iP − iq − jη)) if i+ j = 6.

∑
ψijx

i
0x

j
1 ∈ H0(O(6)⊗ π∗O(−3o))⇒ ψij ∈ H0(O(ip+ j + iq − 3o− 3o))

h0(ip+ iq + jη − 3o) = 2i− 3 (3.1)

Obviously 2i− 3 > 0⇔ i ≥ 2. Then ψ06, ψ15 = 0.

C ∈ |6H − o|. Equation of C:

ψ60x
6
0 + ψ51x

5
0x1 + ψ42x

4
0x

2
1 + ψ33x

3
0x

3
1 + ψ24x

2
0x

4
1 = x2

0Q4(x0, x1). (3.2)

The branch locus should have at least a double component: this is a contra-

diction.
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D = div(x0) ≡ H − 2Γ, B# ·D = −3⇒ B# = (B#)′ +DB# ·D = −1⇒

⇒ B# = (B#)′′ + 2D

Corollary 3.1.1. The case e = 2 does not occur.

3.1.2 The Case e = 0

By the previous subsection, we have that e = 0. Thus we have

deg(E1) = 1 = deg(E2)

so

E1 = O(P ), E2 = O(Q)

If P 6= Q, then

Ext1(O(Q),O(P )) = H0(O(Q− P )) = 0

Otherwise if P = Q

Ext1(O(P ),O(P )) = C.

By tensoring the following exact sequence:

0 −→ O(P ) −→ f∗ωS −→ O(P ) −→ 0

with O(−P ), we obtain:

0 −→ OB −→ f∗ωS(−P ) −→ OB −→ 0

Then f∗ωS(−P ) is normalized.

If f∗ωS(−P ) is decomposable, then

f∗ωS(−P ) = OB ⊕ OB(−η).
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But
∧2(f∗ωS(−P )) = OB ⇒ η ≡ 0, i.e.

f∗ωS(−P ) = O2
B

Note that H0(f∗ωS ⊗ O(−P )) = H0(KS − FP ) = C2 ⇒ |KS| = |M |+ FP .

If f∗ωS(−P ) is indecomposable, then

f∗ωS(−P ) = F2.

Choose coordinates

x0 ∈ H0(O(1)⊗ π∗O(−P ))

x1 ∈ H0(O(1)⊗ π∗O(−Q))

We have

H0(O(1)⊗ π∗O(−P )) = H0(OB)⊕H0(OB(Q− P ))

h0(H − ΓP ) =

1 if P 6= Q

2 if P = Q

(3.3)

If P = Q we can choose x0, x1 independent sections. Then

x6
0 ∈ H0(6H − 6ΓP );

x5
0x1 ∈ H0(6H − 5ΓP − ΓQ);

x4
0x

2
1 ∈ H0(6H − 4ΓP − 2ΓQ);

x3
0x

3
1 ∈ H0(6H − 3ΓP − 3ΓQ);

x2
0x

4
1 ∈ H0(6H − 2ΓP − 4ΓQ);

x0x
5
1 ∈ H0(6H − ΓP − 5ΓQ);

x6
1 ∈ H0(6H − 6ΓQ).
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∑
i+j=6

ψijx
i
0x

j
1 ∈ H0(6H − 3Γ)

ψ60 ∈ H0(5P −Q− P1);

ψ51 ∈ H0(4P − P1);

ψ42 ∈ H0(3P +Q− P1);

ψ33 ∈ H0(2P + 2Q− P1);

ψ24 ∈ H0(P + 3Q− P1);

ψ15 ∈ H0(4Q− P1);

ψ06 ∈ H0(5Q− P − P1).

All groups H0((i − 1)P + (j − 1)Q − P1), with i, j = 0, . . . , 6 i + j = 6 has

dimension = 3

[1, 0], [0, 1] ∈ ΓP1 . (3.4)

Set x = x1/x0, y = x0/x1, and consider a coordinate t near P1 Then

ψ60 + ψ51x+ ψ42x
2 + ψ33x

3 + ψ24x
4 + ψ15x

5 + ψ60x
6 = 0

Condition on ψ60: to find a point o such that 5P −Q−P1 ∼ 3o. |5P −Q−P1|

is very ample, then it is equivalently to find a point o that is a flex in the immersion

associated to |5P −Q− P1|.

Condition on ψ06. As before 5P − Q − P1 ∼ 3o ⇒ 6P ∼ 6Q. If P = Q, it is

obvious. If P 6= Q, then P −Q must have torsion order 2, 3 or 6.
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3.2 Sezione 3.2

We recall the following result:

Proposition 3.2.1. Let u ∈ E, and set W := Eu(2, 1). Then we have

S2W =
3⊕
i=1

Li(u), S3W = W(u)⊕W(u),

where the Li are the three non-trivial 2-torsion line bundles on E.

Proof. If u = o, see [Ati, p. 438-439]. Now the general case follows, since

Eu(2, 1) = Eo(2, 1)⊗L, where L is any line bundle on E such that L2 = OB(u−o).

Consider the exact sequence

0 −→ (det V1)2 ⊗ V2
i3−→ S3V2 −→ A6 −→ 0. (3.5)

Now let

0 −→ G1 −→ G2 −→ Ã6 −→ 0 (3.6)

be the exact sequence obtained by twisting (3.5) by (det V1 ⊗ OB(τ))−2.

Lemma 3.2.2. We have

h0(Ã6) ≤ h0(G2)− h0(G1) + h1(G1).

Proof. By (3.6), we obtain

0 −→ H0(G1) −→ H0(G2) −→ H0(Ã6)
δ−→ H1(G1) −→ coker(δ) −→ 0,
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that is

h0(Ã6) = h0(G2)− h0(G1) + h1(G1)− dim coker(δ).

3.3 The sheaf V2 = f∗ω
2
S|B

3.3.1 The case where V1 is decomposable

In this case S2V1 =
⊕3

i=1 Pi, where P1 = OB(2o), P2 = OB(3o − p), P3 =

OB(4o−2p). Fix a section f0 ∈ H0(OB(τ))\{0}; applying the functor Hom(−, S2V1)

to the exact sequence

0 −→ OB(o− τ)
(−f0)−→ OB(o) −→ Oτ −→ 0

we obtain

Ext1
OB

(Oτ , S2V1) =
3⊕
i=1

H0(Pi(τ − o))
H0(Pi(−o))

∼= C3. (3.7)

Hence an element ξ ∈ Ext1
OB

(Oτ , S2V1) is given by a triple (f̄1, f̄2, f̄3), with

fi ∈ H0(Pi(τ − o)). Arguing as in [CaPi, p. 1032], this implies that V2 is the

cokernel of the short exact sequence

0 −→ OB(o− τ) −→ OB(o)⊕
3⊕
i=1

Pi −→ V2 −→ 0, (3.8)

where the injective map is induced by t(f0, f1, f2, f3).

Notice that V2 is a vector bundle if and only if f1, f2, f3 do not vanish simul-

taneously in τ , that is if and only if ξ = (f̄1, f̄2, f̄3) is not the trivial extension
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class. Let m be the cardinality of the set {i | f̄i = 0}; hence 0 ≤ m ≤ 2. Now we

give the description of V2 in the different cases.

Proposition 3.3.1. Assume V1 = OB(o)⊕ OB(2o− p).

• If OB(2o− 2p) 6= OB then there are precisely the following possibilities.

(I) m = 0, V2(−2o) = E3o−3p+τ (3, 1)

(IIa) m = 1, V2(−2o) = E3o−3p+τ (2, 1)⊕ OB

(IIb) m = 1, V2(−2o) = E3o−3p+τ (2, 1)⊕ OB(o− p)

(IIc) m = 1, V2(−2o) = E3o−3p+τ (2, 1)⊕ OB(2o− 2p)

(IIIa) m = 2, V2(−2o) = OB ⊕ OB(o− p)⊕ OB(2o− 2p+ τ)

(IIIb) m = 2, V2(−2o) = OB ⊕ OB(o− p+ τ)⊕ OB(2o− 2p)

(IIIc) m = 2, V2(−2o) = OB(τ)⊕ OB(o− p)⊕ OB(2o− 2p)

• If OB(2o − 2p) = OB and o 6= p then there are precisely the following possi-

bilities.

(IV) m = 0, V2(−2o) = F2 ⊕ OB(o− p+ τ)

(Va) m = 1, V2(−2o) = Eo−p+τ (2, 1)⊕ OB

(Vb) m = 1, V2(−2o) = Eo−p+τ (2, 1)⊕ OB(o− p)

(VIa) m = 2, V2(−2o) = OB ⊕ OB(o− p+ τ)⊕ OB

(VIb) m = 2, V2(−2o) = OB ⊕ OB(o− p)⊕ OB(τ)

• Finally, if o = p then there is exactly one possibility.
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(VII) 0 ≤ m ≤ 2, V2(−2o) = OB ⊕ OB ⊕ OB(τ).

Proof. We only consider the case OB(2o − 2p) 6= 0; the remaining two are similar

and they are left to the reader. Let L ∈ Pic0(B); twisting the exact sequence (3.8)

by L(−2o) we obtain

0 −→ L(−o− τ) −→ L(−o)⊕ L⊕ L(o− p)⊕ L(2o− 2p) −→ V2(−2o) −→ 0, (3.9)

and this in turn induces a linear map in cohomology

α : H1(L(−o− τ)) −→ H1(L(−o)⊕ L⊕ L(o− p)⊕ L(2o− 2p)).

Now there are several possibilities.

Assume L /∈ {OB, OB(p−o),OB(2p−2o)}. Then ker(α) ∼= C, hence h1(V2(−2o)⊗

L) = 0.

Assume L = OB. If f̄1 6= 0 then α is an isomorphism, and we have h1(V2(−2o)⊗

L) = 0; if f̄1 = 0 then ker(α) ∼= C, and we have h1(V2(−2o)⊗ L) = 1.

Assume L = OB(p − o). If f̄2 6= 0 then α is an isomorphism, and we have

h1(V2(−2o)⊗L) = 0; if f̄2 = 0 then ker(α) ∼= C, and we have h1(V2(−2o)⊗L) = 1.

Assume L = OB(2p − 2o). If f̄3 6= 0 then α is an isomorphism, and we have

h1(V2(−2o)⊗L) = 0; if f̄3 = 0 then ker(α) ∼= C, and we have h1(V2(−2o)⊗L) = 1.

Therefore V2(−2o) is a vector bundle of rank 3 and determinant OB(3o−3p+τ)

such that there exist exactly m line bundles L ∈ Pic0(B) with the property
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h1(V2(−2o)⊗ L) 6= 0.

If V2(−2o) is indecomposable, then V2(−2o) = E3o−3p+τ by Atiyah’s classifica-

tion; this sheaf has always trivial first cohomology group when twisted with any

degree 0 line bundle; hence m = 0 and we are in case (I).

Assume now that V2(−2o) is the direct sum of three line bundles, that is

V2 = L1 ⊕ L2 ⊕ L3.

Since h1(V2(−2o) ⊗ L) = 0 for a general L ∈ Pic0(B), it follows deg Li ≥ 0

for all 1 ≤ i ≤ 3. On the other hand, since deg V2(−2o) = 1 we see that exactly

two summands have degree 0. Therefore it is clear that m = 2; more precisely, if

f̄1 = f̄2 = 0 we are in case (IIIa), if f̄1 = f̄3 = 0 we are in case (IIIb), if f̄2 = f̄3 = 0

we are in case (IIIc).

Finally, let us assume V2(−2o) = W ⊕ L, where W is indecomposable of rank

2 and L is a line bundle; as before, we must have deg L ≥ 0. Let us exclude first

the case deg W = 0, deg L = 1. If deg W = 0 by Atiyah’s classification there exists

exactly one line bundle F ∈ Pic0(B) such that h1(W⊗F) 6= 0. Hence m = 1; but if

f̄i = 0 then Pi is a direct summand of V2(−2o), a contradiction. Hence we obtain

deg W = 1, deg L = 0.

It follows that every twist of W by a degree 0 line bundle has trivial cohomology,

hence the cohomology of V2(−2o) jumps if and only if we tensor it by L−1. Therefore

m = 1, that is exactly one of the f̄i vanishes.

More precisely, if f̄1 = 0 we are in case (IIa), if f̄2 = 0 we are in case (IIb) and

if f̄3 = 0 we are in case (IIc).
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3.4 The moduli space

Let M be the moduli space of minimal surfaces of general type S with pg(S) =

2, q(S) = 1, K2
S = 5. We write M = M′ ∪M′′, where M′ corresponds to surfaces

such that V1 is decomposable and M′′ corresponds to surfaces such that V1 is in-

decomposable.

Let us start by studying M′.

Definition 3.4.1. We stratify M′ as

M′ = MI ∪MIIa ∪ · · · ∪MVII

according to the decomposition type for V2 = f∗ω
2
S|B, as in Proposition 3.3.1.

3.4.1 The stratum MI

Proposition 3.4.2. The stratum MI is either empty or it has dimension 13.

Proof. Set W := E3o−3p+τ (3, 1); then we have a short exact sequence

0 −→ W(2o− 2τ) −→ S3W(2p− 2τ) −→ Ã6 −→ 0.

By [CaCi2, Section 1] we obtain

h0(W(2o− 2τ)) = 1, h1(W(2o− 2τ)) = 0, h0(S3W(2p− 2τ)) = 10,

hence h0(Ã6) = 9.
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We have 1 parameter for B, 1 parameter for p, 2 parameters for ξ, 1 parameter

for τ and 8 parameters from PH0(Ã6). Therefore either MI is empty or it has

dimension 13.

3.4.2 The stratum MIIa

Proposition 3.4.3. The stratum MIIa is either empty or it has dimension 12.

Proof. Set W = E3o−3p+τ ; then V2(−2o) = W⊕OB and twisting the exact sequence

(3.5) by OB(−6o) we obtain

0 −→ W⊕ OB
i3−→
(
S3W⊕ S2W

)
⊕ (W⊕ OB) −→ A6(−6o) −→ 0. (3.10)

Arguing as in [CaPi, Lemma 6.14], we see that the second component of the

map i3 is actually the identity, hence the exact sequence (3.10) splits, giving

Ã6 = A6(−6o+ 2p− 2τ) = (S3W⊕ S2W)(2p− 2τ).

By Proposition 3.2.1 this in turn implies

Ã6 =

(
W⊕W⊕

3⊕
i=1

Li

)
(3o− p− τ),

hence h0(Ã6) = 9. We have 1 parameter for B, 1 parameters for p, 1 parameter

for ξ, 1 parameter for τ and 8 parameters from PH0(Ã6). Therefore MIIa is either

empty or it has dimension 11.
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3.4.3 The strata MIIb, MIIc

Proposition 3.4.4. The dimension of the strata MIIb, MIIc is at most 12.

Proof. In order to give an unified treatment of these strata, set

W := E3o−3p+τ (2, 1), L :=

 OB(o− p) in case (IIb);

OB(2o− 2p) in case (IIc).

Then V2(−2o) = W⊕ L and twisting the exact sequence (3.5) by OB(−6o) we

obtain

0 −→ W⊕ L
i3−→ S3W⊕ (S2W⊗ L)⊕ (W⊗ L2)⊕ L3 −→ A6(−6o) −→ 0. (3.11)

Hence Ã6 = A6(−6o+ 2p− 2τ) fits into the short exact sequence

0 −→ G1 −→ G2 −→ Ã6 −→ 0, (3.12)

where

G1 = (W⊕ L)(2p− 2τ), G2 =
(
S3W2 ⊕ (S2W⊗ L)⊕ (W⊗ L2)⊕ L3

)
(2p− 2τ).

There are several possibilities.

Case (i). L(2p− 2τ) 6= OB, L3(2p− 2τ) 6= OB. In this case

h0(G1) = 1, h1(G1) = 0, h0(G2) = 10,

hence h0(Ã6) = 9. We have 1 parameter for B, 1 parameter for p, 1 parameter

for ξ, 1 parameter for τ and 8 parameters from PH0(Ã6).
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Case (ii). L(2p− 2τ) 6= OB, L3(2p− 2τ) = OB. In this case

h0(G1) = 1, h1(G1) = 0, h0(G2) = 11,

hence h0(Ã6) = 10. We have 1 parameter for B, 1 parameter for p, 1 parameter

for ξ, no parameters for τ and 9 parameters from PH0(Ã6).

Case (iii). L(2p − 2τ) = OB. Since L2 6= OB, this implies L3(2p − 2τ) 6= OB.

We have

h0(G1) = 2, h1(G1) = 1, h0(G2) = 10,

hence h0(Ã6) ≤ 9 by Lemma 3.2.2. We have 1 parameter for B, 1 parameter for

p, 1 parameter for ξ, no parameters for τ and at most 8 parameters from PH0(Ã6).

Summing up, we conclude that the dimension of the strata MIIb, MIIc is at

most 12.

3.4.4 The stratum MIIIa

Proposition 3.4.5. The stratum MIIIa is either empty or it has dimension 11.

Proof. In case (IIIa) the linear map σ2 has the form

σ2 : OB(2o)⊕OB(3o−p)⊕OB(4o−2p) −→ OB(2o)⊕OB(3o−p)⊕OB(4o−2p+τ).
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Take global coordinates x0, x1 on the fibres of V1 and y′0, y
′
1, y

′
2 on the fibres

of V2; with respect to this coordinates, σ2 can be represented by the matrix


1 0 0

0 1 0

a b f0

 , that is


σ2(x2

0) = y′0 + ay′2

σ2(x0x1) = y′1 + by′2

σ2(x2
1) = f0y

′
2,

(3.13)

where a ∈ H0(OB(2o−2p+ τ)), b ∈ H0(OB(o−p+ τ)). By applying the linear

change of coordinates

y0 := y′0 + ay′2, y1 := y′1 + by′2, y2 := y′2

we see that σ2 can be written in the diagonal form


1 0 0

0 1 0

0 0 f0

 , that is


σ2(x2

0) = y0

σ2(x0x1) = y1

σ2(x2
1) = f0y2.

(3.14)

Hence the map i3 : (det V1)2 ⊗ V2 −→ S3V2 is locally defined as follows:


i3((x0 ∧ x1)⊗2 ⊗ y0) = f0y

2
0y2 − y0y

2
1

i3((x0 ∧ x1)⊗2 ⊗ y1) = f0y0y1y2 − y3
1

i3((x0 ∧ x1)⊗2 ⊗ y2) = f0y0y
2
2 − y2

1y2.

Therefore the matrix representing i3 is given, in suitable coordinates, by the

transpose of


1 0 0 f0 0 0 0 0 0 0

0 1 0 0 f0 0 0 0 0 0

0 0 1 0 0 f0 0 0 0 0

 .

This shows that A6 = coker i3 is isomorphic to
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OB(6o)⊕ OB(7o− p)⊕ OB(8o− 2p+ τ)⊕ OB(9o− 3p+ τ)

⊕OB(10o− 4p+ 2τ)⊕ OB(11o− 5p+ 2τ)⊕ OB(12o− 6p+ 3τ),
(3.15)

so we obtain

h0(Ã6) = h0(A6(−6o+2p−2τ)) =

 10 if either O(2p− 2τ) = OB or OB(o+ p− 2τ) = OB;

9 otherwise.

Summing up, if either O(2p − 2τ) = OB or OB(o + p − 2τ) = OB we have

1 parameter for B, 1 parameter for p, no parameters for τ and ξ and 9 param-

eters from PH0(Ã6); otherwise we have 1 parameter for B, 1 parameter for p, 1

parameter for τ , no parameters for ξ and 8 parameters from PH0(Ã6). In all cases

the construction depends on 11 parameters, hence either MIIIa is empty or it has

dimension 11.

Remark 3.4.6. Equations (3.4.6) show that relative conic C ⊂ P(V2) is defined by

y2
1 − f0y0y2 = 0. Since the coefficient of the monomial y2

1 is a non-zero constant,

the same argument of [Pig, Lemma 3.5] shows that in this case the exact sequence

(3.5) actually splits.

3.4.5 The stratum MIIIb

Proposition 3.4.7. The stratum MIIIb has dimension at most 11.

Proof. Take global coordinates as before so that the linear map

σ2 : OB(2o)⊕OB(3o−p)⊕OB(4o−2p) −→ OB(2o)⊕OB(3o−p+ τ)⊕OB(4o−2p)
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can be represented by the matrix


1 0 0

0 f0 0

0 0 1

 , that is


σ2(x2

0) = y0

σ2(x0x1) = f0y1

σ2(x2
1) = y2.

Arguing as in the previous case we obtain

Ã6 =OB(2p− 2τ)⊕ OB(6o− 4p− 2τ)⊕ OB(o+ p− τ)⊕ OB(5o− 3p− τ)

⊕OB(2o)⊕ OB(3o− p+ τ)⊕ OB(4o− 2p).

Hence we have H0(Ã6) ≤ 11 and equality holds if and only if OB(6o − 6p) =

OB(2p− 2τ) = OB. Write MIIIb =
⋃
p∈B MIIIb(p). Counting parameters as before,

we conclude that MIIIb(p) has dimension at most 11; moreover the points p such

that MIIIb(p) has dimension 11 form a finite set. Therefore the stratum MIIIb has

dimension at most 11.

3.4.6 The stratum MIIIc

Proposition 3.4.8. The stratum MIIIc is either empty or it has dimension 11.

Proof. We can take global coordinates so that the linear map

σ2 : OB(2o)⊕OB(3o−p)⊕OB(4o−2p) −→ OB(2o)⊕OB(3o−p)⊕OB(4o−2p+ τ)

can be represented by the matrix


1 0 0

0 1 0

0 0 f0

 , that is


σ2(x2

0) = y0

σ2(x0x1) = y1

σ2(x2
1) = f0y2.
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The rest of the proof is exactly as in case (IIIa), so it is left to the reader.

3.4.7 The stratum MIV

Proposition 3.4.9. The stratum MIV has dimension at most 12.

Proof. Set L := O(o− p+ τ). Then twisting the exact sequence (3.5) by OB(−6o)

we obtain

0 −→ F2 ⊕ L −→ S3F2 ⊕ (S2F2 ⊗ L)⊕ (F2 ⊗ L2)⊕ L3 −→ A6(−6o) −→ 0. (3.16)

Hence Ã6 = A6(−6o+ 2p− 2τ) fits into the short exact sequence

0 −→ G1 −→ G2 −→ Ã6 −→ 0, (3.17)

where

G1 = (F2 ⊕ L)(2p− 2τ), G2 =
(
S3F2 ⊕ (S2F2 ⊗ L)⊕ (F2 ⊗ L2)⊕ L3

)
(2p− 2τ).

By [Ati, Theorem 9] we have

S2F2 = F3, S3F2 = F4.

There are two possibilities.

Case (i). OB(2p− 2τ) 6= OB. In this case

h0(G1) = 1, h1(G1) = 0, h0(G2) = 10.
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Therefore h0(Ã6) = h0(G2) − h0(G1) = 9. We have 1 parameter for B, 2 pa-

rameters for ξ, 1 parameter for τ and 8 parameters from P(H0(Ã6)).

Case (ii). OB(2p− 2τ) 6= OB. In this case

h0(G1) = 1, h1(G1) = 0, h0(G2) = 11,

hence h0(Ã6) ≤ 10 by Lemma 3.2.2. We have 1 parameter for B, 2 parameters

for ξ, no parameters for τ and at most 9 parameters from P(H0(Ã6)).

Summing up, we conclude that MIV has dimension at most 12.

3.4.8 The strata MVa and MVb

Proposition 3.4.10. The strata MVa, MVb are either empty or they have dimen-

sion 11.

Proof. In order to give an unified treatment of these strata, set

W := Eo−p+τ (2, 1), L :=

 OB in case (Va);

OB(o− p) in case (Vb).

Then V2(−2o) = W⊕ L and twisting the exact sequence (3.5) by OB(−6o) we

obtain, since L2 = OB,

0 −→ W⊕ L
i3−→
(
S3W⊕ (S2W⊗ L)

)
⊕ (W⊕ L) −→ A6(−6o) −→ 0. (3.18)
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Arguing as in [CaPi, Lemma 6.14], we see that the second component of the

map i3 is actually the identity, hence the exact sequence (3.18) splits, giving

Ã6 = A6(−6o+ 2p− 2τ) =
(
S3W⊕ (S2W⊗ L)

)
(2p− 2τ).

By Proposition 3.2.1 this in turn implies

Ã6 =

(
W⊕W⊕

3⊕
i=1

(Li ⊗ L)

)
(o+ p− τ),

hence h0(Ã6) = 9. We have 1 parameter for B, no parameters for p, 1 parameter

for ξ, 1 parameter for τ and 8 parameters from P(H0(Ã6)). Therefore MVa and

MVb are either empty or they have dimension 11.

3.4.9 The stratum MVIa

Proposition 3.4.11. MVIa has dimension at most 11.

Proof. In case (VIa) we have o 6= p but OB(2o− 2p) = OB; moreover f̄1 = f̄3 = 0.

Hence the linear map σ2 has the form

σ2 : OB(2o)⊕ OB(3o− p)⊕ OB(2o) −→ OB(2o)⊕ OB(3o− p+ τ)⊕ OB(2o).

Take global coordinates x0, x1 on the fibres of V1 and y′0, y
′
1, y

′
2 on the fibres

of V2; with respect to this coordinates, σ2 can be represented by the matrix


a1 0 a2

0 f0 0

b1 0 b2

 , that is


σ2(x2

0) = a1y
′
0 + b1y

′
2

σ2(x0x1) = f0y
′
1

σ2(x2
1) = a2y

′
0 + b2y

′
2,

(3.19)
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where a1, a2, b1, b2 ∈ C. Moreover, since the rank of σ2 drops exactly at the point

τ , it follows a1b2 − a2b1 6= 0. Therefore, by using the change of coordinates

y0 := a1y
′
0 + b1y

′
2, y1 := y′1, y2 := a2y

′
0 + b2y

′
2

we see that σ2 can be written in the diagonal form


1 0 0

0 f0 0

0 0 1

 , that is


σ2(x2

0) = y0

σ2(x0x1) = f0y1

σ2(x2
1) = y2.

(3.20)

Arguing as in the previous cases we obtain

Ã6 = OB(2o− 2τ)2 ⊕ OB(3o− p− τ)2 ⊕ OB(2o)2 ⊕ OB(5o− 3p+ τ).

If OB(2o − 2τ) = OB we have 1 parameter for B, no parameters for ξ and τ

and h0(Ã6) = 11. If OB(2o− 2τ) 6= OB we have 1 parameter for B, no parameters

for ξ, 1 parameter for τ and h0(Ã6) = 9. It follows that MVIa has dimension at

most 11.

3.4.10 The stratum MVIb

Proposition 3.4.12. MVIb is either empty or it has dimension 10.

Proof. In case (VIb) we have o 6= p but OB(2o− 2p) = OB; moreover f̄1 = f̄2 = 0.

Hence the linear map σ2 has the form

σ2 : OB(2o)⊕ OB(3o− p)⊕ OB(2o) −→ OB(2o)⊕ OB(3o− p)⊕ OB(2o+ τ).



3.4 The moduli space 61

Take global coordinates x0, x1 on the fibres of V1 and y0, y1, y2 on the fibres

of V2; with respect to this coordinates, σ2 can be represented by the matrix


a 0 b

0 c 0

λf0 d µf0

 , that is


σ2(x2

0) = ay0 + λf0y2

σ2(x0x1) = cy1 + dy2

σ2(x2
1) = by0 + µf0y2,

(3.21)

where a, b, c, λ, µ ∈ C and d ∈ H0(OB(p− o+ τ)).

Therefore the equation of the relative conic C ⊂ P(V2) is

(cy1 + dy2)2 − (ay0 + λf0y2)(by0 + µf0y2) = 0.

Moreover, since the rank of σ2 drops exactly at the point τ , it follows c 6= 0.

This means that the coefficient of the term y2
1 is a non-zero constant, hence the

exact sequence (3.5) splits (see Remark 3.4.6). Therefore we obtain

Ã6 = OB(2o− 2τ)⊕ OB(3o− p− 2τ)⊕ OB(2o− τ)

⊕ OB(3o− p− τ)⊕ OB(2o)⊕ OB(3o− p)⊕ OB(2o+ τ),

so

h0(Ã6) =

 10 if either O(2o− 2τ) = OB or OB(3o− p− 2τ) = OB;

9 otherwise.

Counting parameters as in the previous cases, we find that MVIb is either empty

or it has dimension 10.

3.4.11 The stratum MVII

We write MVII = MVII, gen ∪ MVII,2, where MVII, 2 consists of surfaces with

OB(2o− 2τ) = OB and MVII, gen is the rest.
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Proposition 3.4.13. (i) MVII, gen is nonempty, of dimension 12.

(ii) MVII, 2 is nonempty, of dimension 13.

Proof. In case (VII) we have o = p, hence the linear map σ2 has the form

σ2 : OB(2o)3 −→ OB(2o)2 ⊕ OB(2o+ τ).

Recall that for the general σ2 we have f̄i 6= 0 for all i ∈ {1, 2 , 3}.

Take global coordinates x0, x1 on the fibres of V1 and y0, y1, y2 on the fibres

of V2; with respect to this coordinates, σ2 can be represented by the matrix


a b c

d e f

λf0 µf0 γf0

 that is


σ2(x2

0) = ay0 + dy1 + λf0y2

σ2(x0x1) = by0 + ey1 + µf0y2

σ2(x2
1) = cy0 + fy1 + γf0y2,

(3.22)

where a, b, c, d, e, f, λ, µ, γ ∈ C.

Moreover, since the rank of σ2 drops exactly at the point τ , it follows

∣∣∣∣∣∣∣∣∣
a b c

d e f

λ µ γ

∣∣∣∣∣∣∣∣∣ 6= 0.

Therefore the equation of the relative conic C ⊂ P(V2) is

(by0 + ey1 + µf0y2)2 − (ay0 + dy1 + λf0y2)(cy0 + fy1 + γf0y2) = 0

Up to a linear change of coordinates we can assume e2 − df 6= 0; this means

that the coefficient of the term y2
1 is a non-zero constant, hence the exact sequence

(3.5) splits (see Remark 3.4.6). Therefore we obtain

Ã6 = OB(2o− 2τ)2 ⊕ OB(2o− τ)2 ⊕ OB(2o)2 ⊕ OB(2o+ τ),
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so

h0(Ã6) =

 11 if OB(2o− 2τ) = OB;

9 otherwise.

It is now easy to compute the number of parameters. If OB(2o−2τ) = OB we have

1 parameter for B, 2 parameters for ξ and 10 parameters from PH0(Ã6); otherwise

we have 1 parameter for B, 2 parameters for ξ, 1 parameter from τ and 8 param-

eters from PH0(Ã6).

It remains to show that both MVII, gen and MVII, 2 are non-empty.

Choose a = c = e = µ = 0, b = d = f = λ = 1, γ = −1, so that the equation

of C becomes

y2
0 − y2

1 + f 2
0 y

2
2 = 0.

Notice that this conic bundle has a unique singular point, namely the point

with homogeneous coordinates [0 : 0 : 1] lying on the fibre over τ .

Since (3.5) splits, the relative cubic given by the corresponding section of

H0(Ã6) is cut by a relative cubic G ∈ |OP(V2)(3) − π∗OB(4o + 2τ)|; let us write

the equation of G as

∑
i+j+k=3

aijk y
i
0y
j
i y
k
2 = 0, (3.23)

where aijk ∈ π∗OB(2o+ (k − 2)τ).

If OB(2o − 2τ) 6= OB then all the coefficients of G are generically non-zero;

one easily checks that in this case the linear system |G| in P(V2) is base-point free,

hence the linear system |∆| in C is base-point free too; by Bertini theorem, we

conclude that MVII, gen is nonempty.
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If OB(2o− 2τ) = OB, then a300 = a210 = a120 = a030 = 0. So the relative cubic

G splits as G = H ∪ G′, where H is the relative hyperplane y2 = 0 and G′ is the

relative conic

a201y
2
0 + a111y0y1 + a102y0y2 + a021y

2
1 + a012y1y2 + a003y

2
2 = 0.

Consequently, the curve ∆ splits as ∆ = HC ∪ ∆′, where HC = H ∩ C and

∆′ = G′ ∩ C.

The sections a201, a021, a111 all vanish at the same point, namely the unique

point q ∈ B such that OB(2o − τ) = OB(q); notice that q 6= τ . Hence the base

locus of |G′| is the line y2 = 0 in the fibre π−1(q), and this in turn implies that the

base locus of |∆′| in C are the two points P1 = [1 : 1 : 0] and P1 = [1 : −1 : 0] on

the fibre of C over q. Now let us make a general choice of the coefficients in (3.23).

Then the curve ∆ does not contain the unique singular point of C; moreover, a

standard local computation together with Bertini theorem show that

- ∆′ is smooth;

- ∆′ and HC intersect transversally at P1 and P2.

This implies that MVII, 2 is nonempty.
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