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Chapter 4 

 

Biscuit macroscopic baking model 

 

 

4.1 Introduction  

The quality of bakery products rely both on formula and processing conditions, and some qualities 

can be improved by optimizing a formula and processing condition. 

The principal process steps of biscuits mainly consist of mixing, sheeting/depositing, baking and 

cooling. Each of these steps influence different quality attributes and final properties.However, in 

every case, the baking step is one of the most important key factor, because, during the cooking 

time, the raw dough piece is transformed in the final biscuit, resulting in a specific texture. For this 

reason a lot of researchers try to describe the physical process affecting the biscuit inside the oven. 

Therefore, a mathematical program, able to describe the transport phenomena and the physical 

changes inside the baking chamber, can reduce the time and the costs involved. 

In order to predict temperature, water distribution, height, porosity and other bakery attributions, 

the knowledge of product properties is very important, these include heat capacity, density and 

others during baking time, in addition to dependence on water content, temperature,and so on. 

Moreover, it is very important to know the mechanical properties of dough during the evolution 

time to characterise and simulate the material’s performance during processing and for quality 

control [Dobraszczyk B. J. et al. 2003]. For the last purpose rheological principles and theory can 

be used. However, the literature divides into researcher groups that apply the rheological principle 

and then use rheology to find the link between the recipe, baking condition and the final texture 

and structure, and other groups that use the classical approach to the transport phenomena and then 

only write the heat and mass transport equations with appropriate boundary conditions and material 

properties. Moreover, biscuits, like any other baked system, are inherently heterogeneous systems, but 

most of the proposed approaches consider the material pseudo-homogeneous, to translate the physical 

aspects into a mathematical model capable of predicting the final biscuit characteristics. This means 

that all the phenomena refer to an equivalent homogeneous system, the properties of which are 

somehow modified to account for the presence of bubbles. Thus effective material properties are 

properly defined. However, these approaches have an evident undoubtedly mathematical advantage 

when numerically solving the obtained equations, and may be applicable in a straightforward way to 
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industrial conditions, since they are essentially based on some adjustable parameters introduced by the 

heat and mass transport models, nevertheless in this way the heterogeneous feature is missed. This 

implies that properties appearing to be mainly responsible for the product structure and texture, as for 

instance, the rheological behaviour of the dense cereal paste, its surface tension, and the interface 

thermodynamic equilibrium, cannot be taken properly into account.  

In recent years, there has been growing interested in modelling heat and mass transport. Broyart B. 

et al. 2002, K. Thorvaldsson et al. (1999), A. K. Datta 2006, M. Sakin et al. 2006 developed models to 

simulate the baking period. The model of Broyart B. et al. 2002 took into account the heat transfer by 

radiation, convection, conduction and heat transfer by product-water phase change. In the model, the 

mass transfer fluxes, exchanged between the baking atmosphere and biscuits during baking, are 

controlled by the difference between the vapour partial pressure air assumed in equilibrium with the 

biscuit and the vapour partial pressure of the bulk air stream in the baking oven. All the material 

parameters are calculated by literature data and the Euler’s method was used to solve a set of equations 

with the initial condition coming from a pilot plant oven. K. Thorvaldsson et al. (1999) wrote a 1-D 

mathematical model that can describe and simulate the mechanisms of simultaneous heat, water and 

vapour transport and the numerical method used for the differentiation was an unconditionally stable 

finite difference method, Implicit Euler. Another 1-D model was written by M. Sakin et al. 2006 that 

analysed cake batter, considered as an infinite slab, neglecting the thermal gradient effect on moisture 

transfer. It was assumed that the moisture transfer is one-dimensional diffusion in the upward direction 

from the bottom of the product toward the top surface, described by Fick’s law of diffusion. The 

simulated curves were compared with the experimental ones. The effective moisture diffusivity of cake 

batter during baking at different oven temperatures was determined. It was significantly affected by 

baking temperature and the average moisture content of cake batter. Shin-Yee Wong et al. 2006 

developed a two-dimensional model for dough in continuous movement. The dough was considered as 

solid material with heat parameter only depending on the temperature. It was modelled in unsteady 

state conditions, writing the equation of momentum, mass and energy conservation, using commercial 

software and moreover using periodic boundary conditions to simulate the movement in the 4 zones of 

oven. To simulate the bread baking process with volume change, A. K. Datta 2006 formulated a model 

for multiphase porous media, describing a number of simultaneous heat and mass transfer processes in 

foods that involve strong internal evaporation, incorporating the large deformation to have the volume 

change.  
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D.R. Jefferson et al. 2005 formulated a model depending on the single bubble, representing the global 

system. In this model pressure as a driven force was considered in the growth of a single isolated 

bubble in a dough. Moreover, the model assumes a specific temperature for its bubble rupture criterion. 

Therefore, when the bubble reaches the fracturing temperature, the bubble is assumed to fracture and 

the pressure inside the bubble becomes atmospheric.  

Bubbles are taken to be spherical and the mathematical model is written down as though the bread 

dough were a homogeneous material without any small-scale bubbly structure. In this homogenised 

model, bubble collapse is taken to occur at a temperature characteristic of the setting and fracturing of 

the dough matrix, which is referred to as the collapse temperature. 

The model is solved in a spherically symmetric geometry: the model is formulated as a set of partial 

differential equations governing heat transfer inside the bread, coupled with a set of ordinary 

differential equations governing moving boundaries (relating to bubble collapse and to moisture 

vaporization) and inner dough expansion. It is assumed that bubble diameters are initially distributed 

log-normally, and that as the inner part of the dough expands, all bubbles in that part expand in 

proportion to one another.  

 
Figure 4. 1 - Diagram of spherically symmetric model of a loaf during 
baking showing moving boundaries and dough movement. 

 

Hadiyanto et al. 2007 developed a generic baking model, which can be divided into three parts: the heat 

and mass transfer model, the state changes owing to the heat treatment (transformation model) and the 
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product quality model. The mass balances was written for liquid water, water vapour and CO2 gas. 

Water vapour and CO2 are considered as an ideal gas which is in equilibrium with liquid water content.  

The energy balance concerns conduction, evaporation-condensation, and the water vapour and CO2 

fluxes. The liquid water and water vapour are correlated by the water activity and partial vapour 

pressure relationship in the sorption isotherm. The balances for water, water vapour and CO2 are 

written using the Fick's law and by CO2 production. Mass fluxes of CO2 and water vapour depend on 

local pressure differences, kinematic viscosity and permeability of product. The changes of height are 

caused by the increasing pressure inside the gas cells in dough due to the release of water vapour and 

CO2 from baking powder or from yeast.Moreover, the dough is considered as a visco-elastic material 

for which the deformation, caused by expansion, can be expressed by the Maxwell equation and it is 

driven by pressure difference between total pressure inside the product and ambient pressure. The rate 

of extension describes then the change of height.  

The study of J. Zhang et al. 2006 modelled the transport phenomena inside the bread crumb and then 

heat transport, liquid water transport and water vapour as well as CO2 transport. Deformation is driven 

by internal pressure build up as a result of vapour and CO2 generation and their transport. The 

governing equation for deformation is based on the principle of virtual work (PVW). The material was 

assumed viscoelastic (Maxwell). The mechanical properties of bread change with temperature and the 

deformation affects transport through changes in characteristic dimension, porosity and effective 

conductivity,and so on. A fully coupled model was developed for deformation and multiphase heat and 

mass transfer in bread baking. The model was validated using experimental data on baking. Axi-

symmetric geometry is used in this study. At the surface of the bread, moisture loss is through 

convection. Heat transfer is through convection and radiation. The coupled transport and deformation 

are solved simultaneously using a finite element code developed from the authors. 

M. Lostie et al.2002 proposed a 1-D mathematical model of heat and mass transfer for a sponge cake. 

The material, considered as a viscous compressible medium, expanded owing to liquid water 

vaporization, and the local deformation rate being proportional to the local overpressure. To take into 

account the rheological behaviour of batter, they related the local volume deformation to the local 

overpressure. The batter was considered able to expand only in one direction, because of a rigid mould 

that prevents spreading, then radial deformation. The local volume deformation rate was equal to the 

axial one, which corresponds to the axial velocity gradient: 
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Where η is the bulk viscosity of the batter. 

The final model equations set was obtained by inserting the constitutive relation in the equations. The 

resulting set of partial derivative equations were solved discretising with a finite volume scheme and 

solving with the time partial derivative with the Crank–Nicholson centred difference scheme. To 

simulate the first baking period, Lostie et al. used properties not constant with time, but that change 

with water content, temperature, pressure and total porosity of material. The drying rate and the oven 

air temperature were used as boundary conditions in the calculation code. The model is valid for the 

heating period because the correlations and data used in the model are estimated in the first part of 

baking, before the crust and crumb zone. To complete the cake baking model M. Lostie at al. 

subsequently presented in 2004 [M. Lostie at al. 2004] only a model concerning the second baking 

period “crust and crumb”. Experimental data were estimated by trials in a laboratory oven and the 

batter weight and the oven temperature served as boundary conditions for the simulations, whereas the 

other curves were used for cake properties estimation. Moreover, the initial conditions, like internal 

temperature, water content and thickness of the cake, for the differential equations written were 

evaluated at the end of the first baking period (‘‘heating up’’ period) obtained from the experimental 

baking curves [Lostie, 1998; Lostie et al., 2002a, 2002b]. The cake is considered formed by two 

structurally distinct layers: a dry crust with constant shape and porosity and a wet deformable crumb; 

the heat and mass transfer is deemed unidirectional with the gas phase moving through the crust by 

permeation under a total pressure gradient according to Darcy’s law. The heat is transferred through the 

crust by conduction, according to Fourier’s law with an equivalent thermal conductivity. The 

convective heat transport owing to the gas flow within the material is neglected and the heat and mass 

transfer in the crust are in the steady state, the temperature and the pressure profiles being linear; there 

is no heat and mass transfer within the crumb, so that the temperature, the water content and the 

pressure are uniform through it; the crumb, always considered as a viscous compressible medium, 

expands due to the liquid water vaporization, the local deformation rate being proportional to the local 

overpressure. The model uses adjustable parameters which depend on the product properties and on the 

operating conditions and which have to be numerically estimated using some experimental baking 

curves. 

J. Fan et al. 1999 modelled the dynamics of oven rise of dough during baking. They considered the 

growth of gas cells to be as a result of the thermally-induced release of CO2 and water vapour from the 

aqueous dough phase. The model is independent of the number of gas cells present initially in the 

dough. They modelled a spherical gas cell of initial radius R0 surrounded by a shell of liquid dough, 
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considered as viscous fluid, with a constant mass. Dough cells contain only carbon dioxide and water 

vapour. The gas cells are closed and their number in the dough remains constant during the entire 

period of baking. The dough behaves rheologically as a power law fluid and dough temperature is 

uniform with position but is time-dependent. In considering the volume expansion of the dough, they 

first examined the growth of an isolated gas cell as the temperature changed. Finally, the model ignores 

bubble coalescence. The equations involved in the model were transformed to a dimensionless form 

and solved numerically by using the 4th Runge - Kutta method using the above initial conditions. 

Morales M. E. S. et al. 2004 studied the modelling of heat and mass transfer during the baking of 

biscuits. The principal objective of the work was to study a model for heat and mass phenomena during 

the precooking and freezing of biscuits, and compare the final cooking in a conventional or microwave 

oven by measuring the quality attributes of the product. Moisture transfer during precooking was 

considered a diffusion phenomenon for a solid cylinder. The moisture content in a solid cylinder such 

as a biscuit is a function of both radius and time: 
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where M is the biscuit moisture content (%wet basis) at baking time t (s), r is the radial position (m) in 

R, and D is the moisture diffusivity coefficient (m2/s). Biscuits were modelled as a finite cylinder body 

in which the analytical solution is given by the interaction of two infinite geometries: infinite cylinder 

and infinite slab, following the method of Heldman and Singh in their work of 1981. In this way they 

calculated the temperature profile. 

Many of the works reported in this brief review consider the dough as solid material, not taking into 

account the system heterogeneity and then the connected volume expansion. Only a small minority of 

the papers examined analyze the dough and impute the expansion to the overpressure inside the bubble, 

but do not consider the eventuality of the mechanical criterion for the coalescence, which cause the 

break of layer around the bubbles, or an eventual stabilization criterion. Instead, in this work a model 

capable of taking  into account bubble growth, coalescence and collapse to predict final biscuit 

properties is developed. The main idea is to split biscuit behaviour into two parts called micro- and 

macro-systems, the first one being heterogeneous, while the latter is pseudo-homogeneous. The 

information obtained at the micro level are transferred to the macro, which through a proper numerical 

solution gives the transient values of temperature, humidity, and component concentrations at any point 

of a spatial grid into which the system is subdivided, from which the height of the biscuit may be 
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computed at any time. In such a way the pseudo-homogeneous computational advantages are 

maintained without missing the heterogeneous character. 

 

 

4.2 Baking modelling 

In the present work we seek to analyse the evolution of the baking period for a crunchy biscuit type, 

which is made by an industrial process and that can be schematized as a series of steps: mixing, 

standing, forming and baking. 

During mixing a certain amount of air bubble nuclei is inserted into a mixture essentially constituted of 

flour, water and other minor ingredients. After a proper time of standing, during which the raising 

agents start to react to produce some substances capable of blowing the dough, the biscuit is subjected 

to a forming, usually on a band belt. Finally, the belt passes through a heating oven where the biscuit 

baking is carried out for a few minutes, depending on the type and size. The heating is realised by 

applying either irradiative or convective heat fluxes. Gas bubbles grow due to both the thermal 

expansion and the thermodynamic equilibrium between the dense phase and the gas, allowing the 

increase of the total amount of moles of the gas phase. Whilst at the beginning it is possible to admit 

that the bubbles behave as single closed cells, when increasing their diameter, interactions between 

them occur and bubble coalescence is generally observed. Thus the biscuit reaches a maximum height 

with only a small loss of water, thereafter a more or less pronounced mechanical collapse of the 

structure is observed, evidenced by a sharp decrease of both the total height of the biscuit and its water 

content. Thus, as a consequence of raising agents and thermal treatment during the entire process, the 

main phenomena involved in biscuit production are: 

1. bubble expansion 

2. bubble coalescence 

3. biscuit collapse 

4. biscuit drying 

The overall phenomenon depends on several factors: dough rheological properties, transport properties, 

void fraction, heat treatment, process features and so on. In addition, during this stage the biscuit 

shrinks as a consequence of water loss that is ascribed to evaporation from both the external surfaces 

and the new surfaces made available for evaporation by the air cell opening towards the external 

ambience. For these reasons transport phenomena of both energy and mass must play a crucial role in 

determining the final biscuit characteristics. 
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The proposed model aims to deal only with the baking phase, while mixing and standing are roughly 

considered as an initial condition for the baking. In addition no spread was considered and therefore 

forming on the belt was neglected. Thus a 1-D model was assumed to be sufficient to describe the 

biscuit behaviour during baking according to the steps enumerated before. Every step was modelled 

according to some specific physical hypotheses as reported in the following, so generating in such a 

way a series of microsystems, every one characterised by the assumption that they must represent both 

thermodynamic and mechanical equilibrium conditions. The microsystem is treated essentially as a 

sink for the macrosystem and represent the link between them. The thermodynamic and mechanical 

variables computed by the so-called macrosystem, are put in equilibrium condition by applying a single 

microsystem according to the considered step. Then the equilibrium information obtained at micro 

level, being essentially bubble radius, and the split of the components between gas and paste phases, 

are transferred to the macrosystem which deals with the transport phenomena, operating essentially 

with effective properties. By integrating heat and mass balance equations with reference to a discretised 

1-D spatial grid and for any given initial and boundary conditions, the new values of the 

thermodynamic and mechanical variables are obtained and sent again to the microsystem. This 

procedure is iterated at any grid point and at any time. By collecting the data coming out of this 

computing procedure at any instant, the transient height, temperature and water content of a biscuit are 

obtained.  

 

4.2.1 Bubble opening 

It was stated that the bubbles inserted at the beginning into the dense cereal paste, grow as a 

consequence of the combined actions due to Raising Agents decomposition, water evaporation, and 

temperature increase. As mentioned in chapter 2, at the start the bubbles may be considered as 

submerged in an infinite medium of a viscoelastic paste and the system is subjected to both mechanical 

and thermodynamic equilibrium. Moreover, the amount of new products or components present at any 

time in the gas bubble is determined by a thermodynamic flash, while the bubble volume is computed 

by the mechanical equilibrium. Thus, from a theoretical point of view, the process has been considered 

to change as a quasi-static transformation, allowing passing through the equilibrium stages. 

In chapter 3 the coalescence problem was dealt with. It was stated that the bubbles grow as long as 

either the reactions proceed or until the temperature increases, but if the reactants are completely 

consumed or temperature remains constant, the growing stops, but it is well-known that the classic 

baking time is of a few minutes, and then not sufficient to reach an internal constant temperature 
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profile. Therefore another mechanism was considered to stop bubble growth. In fact, when bubbles 

expand, their radius increases and they may start to mutually interact, eventually up to their 

coalescence. In the previous chapter a simple original model was defined , which treated the bubble 

property, called “coalescence-ability”, as the capability of a single bubble to coalesce. Of course this 

model works at the micro level and deals with with a heterogeneous system, taking into account the 

dimension, the shape and distribution of the bubbles.  

Once a bubble attains coalescence conditions as described above, it would really coalesce if contiguous 

bubbles are in the same condition (Fig.4.2), otherwise this does not happen. In addition bubbles that are 

near the biscuit surface might open towards the external ambience, with the consequence that the 

thermodynamic and mechanical equilibrium is completely changed and a new microsystem is needed.  

 

 
Figure 4. 2 - Coalescence between bubble pairs 

 

This point is often approached as a crust-crumb problem, because when modelling the physics of 

biscuit baking it is necessary to distinguish between the part of the biscuit that is directly exposed to the 

ambience, i.e. the crust, from the part that is inside biscuit, i.e. the crumb. Generally speaking, the crust 

becomes quickly rather drier than the crumb, so that it can be considered as a boundary condition for 

this latter, which in turn contains the majority of developing gas cells and therefore is the most relevant 

for determining biscuit height.  

It was assumed that the biscuit condition of humidity and temperature do not change so significantly, 

and, moreover, the single microsystem at any given grid point is representative of all the other possible 

microsystems on the same grid point line.  

 
Figure 4. 3 - Horizontal coalescence 
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It was considered as a 1-D Model and therefore the spatial grid consists of a series of points in the z-

direction (Fig.4.4).  

 
Figure 4. 4 - The z-spatial grid 

 

As a consequence of the one-dimensional assumption, any grid point represents a unique microsystem 

at the given current conditions.  

For this motive, the baking model was built assuming coalescence between horizontal layers (Fig.4.3) 

and consequently the opening must refer only to horizontally connected bubbles, which means that they 

must be in the same layer. No other coalescence was considered. 

This implies on the one hand that every continuous variable changes only in the z-direction, and on the 

other, because coalescence occurs between horizontal layers, that coalescence becomes a property of 

the grid point. In addition, there is no distinction between crust and crumb and therefore coalescence 

corresponds inherently even to opening in a 1-D model. Finally, it may be concluded that in the current 

model coalescence and opening coincide. At the opening the entire considered layer is suddenly 

connected to the external ambience and therefore an open cell model must be built and applied. It is 

obvious that in such a way the crust behaviour is to some extent missed, but this may be recovered by 

putting this information into the boundary conditions.  

 

4.2.2 Biscuit collapse 

When bubbles coalesce, they open towards the ambience, and two different volume reductions are 

observed: collapse and drying. The first one is assumed to be essentially a mechanical effect, while the 

latter is ascribed to evaporation consequent on the sudden increase of the biscuit/air surface. 

Nevertheless, an opening criterion is needed. In fact, what can happen is that a horizontal channel is not 

completely in coalescence conditions, therefore it can be only partially opened and therefore a rather 
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difficult condition should be applied with partially opened channels. This inherent difficulty was 

overcome by reducing the system to a 1-D model and assuming the simultaneous coalescence of all 

cells contained in each row. It should be reminded that in the 1-D model a row of bubbles corresponds 

to a single grid point, and therefore coalescence corresponds to opening.  

Opening towards the external ambience, imposes that the pressure inside the generated channel-like 

structure suddenly becomes equal to the ambient pressure. In these conditions an elastic recovery may 

be expected due to the mechanical action of the unrelaxed stresses.  

From a mechanical point of view, the dough structure constituting the channel walls, may be 

considered as a viscoelastic material, therefore if the relaxation of stresses is not complete at the 

opening, they will relax completely and consequently a more or less large elastic recovery under 

constant pressure is shown. The collapse has been interpreted as a mechanical failure of the system, 

following the coalescence of a series of bubbles that are connected to the external ambience and that 

therefore pass instantaneously from the relatively high internal pressure to the lower external one. 

It should be noticed that under this new condition a decrease of “pearl necklace”, formed by the 

contiguous bubbles, is expected only if the deformation is still linked to the stress, because it should 

become the equilibrium value at the external pressure. However, if the stress is fully relaxed the 

deformation is independent of the pressure and therefore no recovery is shown. With this physical 

interpretation it is assumed that the more elastic the dough, the  greater will prove the collapse. 

At the opening the thermodynamic equilibrium is missed because the system becomes basically an 

open thermodynamic system and therefore cannot be at equilibrium and the new surfaces are equivalent 

to the external transport/evaporating surfaces. To take into account this additional flux and the new 

surface, available for both mass and heat transfer, a new term must to be considered in the mass 

balance. Generally speaking, the water, CO2 and NH3 losses from the channel surface, can be 

considered as a local generation term in the macrosystem equation, but to make a simpler computation, 

an open cell microsystem was built. Finally, the volume reduction called shrinkage, is ascribed to the 

natural continuous water loss at the air/biscuit interface, which is regulated by a simple equilibrium 

thermodynamics. 

 

 

4.3 Mass transport (Macrosystem) 

The mass transport inside the biscuit must be subdivided into two parts: transport into the dense 

phase and transport into the gas cells. Owing to the assumption that the variables must be 
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continuous, a pseudo-homogeneous system is built with effective properties. This is made possible 

because the transport into the gas is neglected and a pure diffusive transport is considered. This 

agrees with the assumption that the microsystem is in equilibrium and consequently no transport 

must be considered. On the contrary, the macrosystem is formed by a continuous matrix that can be 

seen as a water solution where the presence of the bubbles is hidden in the properties. It should be 

noticed that the R.A. reaction products are soluble only in water and as a consequence in the 

macrosystem water can diffuse throughout, whereas the latter, only in water. This has some effect not 

only on the transport properties but even on the gas-water solution equilibrium of those species. It 

should also be noted that the concentration of all the species has to be referred to the system where they 

are effectively contained. The mass transport mechanism of the R.A. products has been assumed to be a 

pure diffusion into water, and consequently the mass balances refer to this mechanism. 

A 1-D macroscopic model was studied assuming that the system may be geometrically transformed 

from a series of superimposed disks, into single points, corresponding to the grid points (Fig. 4.5).  

 
Figure 4. 5 - D Grid equivalence 

 

The computing advantage is quite evident, but what is the main gain is also the possibility of writing 

boundary conditions in a rather simple way. Therefore referring to any disk volume a mass balance is 

carried out for the main components, which are H2O, NH3 and CO2. 

 

4.3.2 Water transportation  

Owing to the presence of gas bubbles, the water content may be measured referring to two different 

systems, therefore the following variables are defined: 

 
W

moles of waterc
Total volume

=
 4.3 
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W

moles of waterc
Paste volume

∗ =
 4.4 

By using the definition of void fraction ε: 

 
void  volume
Total  volume

ε =
 4.5 

the relationship between those variables is found: 

 ( )W Wc c 1 ε∗= −  4.6 

 
Figure 4. 6 - Control Volume 

 

From a geometrical point of view, the system was considered as a cylinder, with a variation only along 

the z-coordinate. The microscopic mass balance of water was written with reference to a control 

volume obtained as a slice of thickness Δz of the original cylinder (Fig. A10.1). Thus the time rate of 

change of mass of water in the considered volume element is: 

 
( ) ( )W WW t t t

c 1 S z c 1 S z
Acc

t
Δ

ε Δ ε Δ

Δ

∗ ∗

+
⎡ ⎤ ⎡ ⎤− ⋅ − − ⋅⎣ ⎦ ⎣ ⎦

=  4.7 

where S is the volume surface of the biscuit 

 2
BS Rπ= ⋅  4.8 

The mass balance in the considered control volume is obtained by adding the input and output terms 

along the z-direction, and in addition, the generation terms. The latter are water mass Wℜ  generated by 

the decomposition of R.A reaction per unit of mass of paste, and the mass of water Se
W moving to/from 

the gas bubbles, according to the equilibrium in the microsystem at any time step. Therefore the 

following expression is found 
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where ρP is the paste density. The term Se
W is measured per unity of volume, and is assumed positive as 

a sink, which means when water leaves the paste and goes into the gas bubbles. Thus if FW is the water 

molar flux that evaporates/condenses in any bubble and nb
0 is the number of bubbles per unity of 

volume, it holds: 

 W 2 0
e W bS F 4 R nπ= ⋅ ⋅  4.10 

where R is the current value of bubble radius. Regarding the input/output terms NW, a pure diffusive 

mechanism is assumed, therefore the z-component of the water molar flux may be written as: 

 W
W W

cN D
z

∗∂
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∂
 4.11 

By substituting Eq.s 4.8, 4.11 and 4.12, after letting the volume element decrease to zero, the continuity 

equation for water is obtained: 
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that is the differential form of water balance that may be integrated. 

The boundary conditions are the following: 
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where Wy∞  is the water molar concentration in the oven, while W
eqy  is the water molar concentration at 

the gas/biscuit interface, which must be obtained by imposing the equilibrium condition. This is done 

by assuming the coincidence of the water activities in the two phases: 

 B Air
W Wa a=  4.15 

By assuming Dalton’s law ideal for the gas phase, and Raoult’s law as reference status for the paste 

phase, the following expression : 

 ( )
o B o

W W W W
eq W

p a py f c
π π

∗⋅
= =  4.16 



 79

The function f is found through the absorption isotherm measure, giving the value of the water activity 

at any value of the concentration into the paste phase.  

Finally, the initial condition, at t=0 at every z point, is: 

 0
W Wc c∗ ∗=  4.17 

 

4.3.3 Carbon Dioxide and Ammonia transportation 

Both the CO2 and NH3 components are present only in the water because they are completely 

immiscible in flour, therefore their molar fraction is defined as: 

 i
moles of i-componentx

Moles of aqueous solution
=  4.18 

where i-component stands for the two above-considered substances. As a consequence the transport of 

those components is due to diffusion in water. Since the solution is diluted with respect to any i-

component, Eq. 4.18 it may be approximated as: 

 i
moles of i-componentx

Moles of water
=  4.19 

By using the same control volume as above, the rate of mass change of any i-component may be 

expressed as: 
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Then an expression analogous to Eq. 4.9 referred to the considered components is found: 
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where again, iℜ  is the mass of i-component generated by R.A. decomposition per unit of paste. The 

term Se
i is the mass per unity of volume of the i-component moving to/from the bubbles, according to 

the equilibrium in the microsystem at any time step, assumed positive as a sink for the paste phase: 

 i 2 0
e i bS F 4 R nπ= ⋅ ⋅  4.22 

where Fi is the i-component molar flux that comes in/out for any bubble.  

Regarding the input/output terms, a pure diffusion mechanism in water was assumed, thus Fick’s first 

law of diffusion was used: 

 
( )

( )W i
i i ,W i W i

c 1 x
N D x N N

z

ε∗⎡ ⎤∂ −⎣ ⎦= − + +
∂

 4.23 
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where Di,W is the diffusion coefficient of i-component in water. The molar flux Ni of the i-component is 

negligible if compared to the water molar flux NW, therefore: 

 
( )W i

i i ,W i W

c 1 x
N D x N

z

ε∗⎡ ⎤∂ −⎣ ⎦= − + ⋅
∂

 4.24 

By substituting Eq.s 4.20 and 4.22-4.23 into Eq. 4.21, after letting the volume element decrease to zero, 

the continuity equation for any i-component is obtained:  

 
( )

( ) ( )W i 2 o
iW W i i W i b i p

c 1 x
D c 1 x x N F 4 R n 1

t z z

ε
ε π ε ρ

∗
∗

⎡ ⎤∂ − ∂ ∂⎧ ⎫⎣ ⎦ ⎡ ⎤= − − + − + ℜ −⎨ ⎬⎣ ⎦∂ ∂ ∂⎩ ⎭
 4.25 

This differential form of the mass balance may be integrated according to suitable boundary and initial 

conditions. The following boundary conditions were applied: 

tray/biscuit interface 

Tz δ=  
T T

T

W i
i i ,W i Wz z

z

c (1 )x
N D x N 0

zδ δ

δ

ε∗

= =

=

⎡ ⎤∂ −⎣ ⎦= − + ⋅ =
∂

 4.26 

biscuit surface 

)(tz BT δδ +=   

 
T B T B

T B

W i ext
i i ,W i W wat iz ( t ) z ( t )

z ( t )

c ( 1 )x
N D x N x N

zδ δ δ δ

δ δ

ε∗

= + = +

= +

⎡ ⎤∂ −⎣ ⎦= − + ⋅ = ⋅
∂

 4.27 

The xwat term reduces the external flux by taking into account the evidence that the surface available to 

the i-component to pass to the gas phase is only the one occupied by water. In fact, the entire surface 

may be considered as composed of a part that is just water and another that is the dry matter, 

considered as immiscible for any i-component. The external flux may be calculated as  

 ( )ext i i i
i y eqN K y y∞= −  4.28 

where iy∞  is the concentration in the gas phase in the oven, while i
eqy  is the surface value at the gas 

side. The latter is calculated by imposing the thermodynamic equilibrium at the surface, assuming the 

coincidence of the water activities in the two phases: 

 Air
i

B
i aa =  4.29 

By assuming Dalton’s law ideal for the gas phase, for the paste phase, when considering substances 

that at the process temperature are above their critical temperature, Henry’s law is a reasonably suitable 

reference status. Thus for CO2 it was assumed to hold: 



 81

 ( )2 2 2 22

surf
CO CO W CO COCO

eq W
H x a H x

y f x
π π

⋅ ⋅ ⋅
= =  4.30 

Where the term aw
surf was put instead of an activity coefficient of CO2. This was justified by 

considering that Henry’s constant generally refers to a non-ideal solution with free water, whereas the 

water solvent in this case is that present in the dough and, therefore, is partially bounded (see Eq. 4.16). 

The easiest way to take into account this effect is just to multiply for water activity that gives the 

amount of bounded water equal to 1 just when the water is completely free. 

On the contrary, when considering substances that at the process temperature are below their critical 

temperature, Raoult’s law may be reasonably assumed as reference. Thus for NH3 it was assumed: 

 ( )3 3 3 33

o surf o
NH NH W NH NHNH

eq W
P x a P x

y f x
π π

⋅ ⋅ ⋅
= =  4.31 

Even in this case, following the same reasons illustrated above, the non-ideality of the water activity 

dependence on concentration has been taken into account. The initial condition, at t=0 at every z point, 

is: 

 0
i ix x=  4.32 

for any i-component. The values of the mass transport coefficients were determined through the 

Chilton Colburn analogy, and referring to the value of iy∞  for both CO2 and NH3 were assumed equal 

to 0. 

 

 

4.4 Energy transport (Macrosystem) 

The energy transport model was developed in a way essentially very similar to the above discussed 

mass transport. It looks simpler than the latter, because the equilibrium conditions do not need any 

constitutive equation, being expressed just as the continuity of the temperature at interface. This 

implies that a temperature microsystem is not required, thus T is a macro-system variable. Inside both 

the biscuit and on the tray where it lays, the transport mechanism is assumed as a purely conductive 

one. Regarding the oven, two external heating mechanisms are considered: convective and radiative. In 

general, the latter is the more relevant, thus in the following a flux ΦOven is given as an input data, while 

convection is in general assumed as a stagnant flow and consequently a constant value of the transport 

coefficient may be used. 
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The energy balances concern both the tray and the biscuit in a series arrangement. In the baking model 

the 1-D approach was used and therefore the unique spatial variable is z. The microscopic 

 equation of change is the classic balance equation for a purely conductive transport mechanism, with 

effective properties to maintain the pseudo-homogeneous frame. To take into account the loss of the 

radial coordinate and therefore of the lateral heat transport boundary conditions, according to the 

lumped variable solution method, the latter, which in principle are boundary conditions, have to be 

considered as sinks for any volume element. Thus the following equation for the tray was used: 

 ( ) ( ) ( )L L 4
Steel PSteel Tray B ext B Oven Oven Tray

TC T K S h T T S E E T
t z z

ρ Φ σ∞
∂ ∂ ∂

= + ⋅ − + ⋅ ⋅ − ⋅ ⋅
∂ ∂ ∂

 4.33 

where the two negative sinks on the right hand are firstly, the heat convection and secondly, the 

irradiative heating referred to the lateral surface L
B BS z 2 RΔ π= ⋅ . With this approach the sole boundary 

condition needed for the tray is  

z 0=   ( ) ( )4 p
T ext Oven Oven Trayz 0 z 0

Z 0

STK h T T E E T
z S

Φ σ∞ = =
=

∂
− = − + − ⋅

∂
 4.34 

where Sp is the metallic network surface and 2
BS Rπ=  is total surface. 

The same sort of balance applies to the biscuit and the following microscopic change equation is found: 

( ) ( ) ( )i L L 4
P PDough Dough i e B ext B Oven Oven B

i

TC T K S S h T T S E E T
t z z

ρ λ Φ σ∞
∂ ∂ ∂

= − + ⋅ − + ⋅ −
∂ ∂ ∂ ∑

 4.35 

where a further but positive sink is considered to take into account the evaporation of volatile 

components, particularly water and ammonia. This term may be rather important when opening occurs 

because the relative surfaces i
eS  increase rather significantly. The sole boundary condition required for 

the biscuit refers to its upper surface: 

( )T Bz tδ δ= +

( )
( )( ) ( )( ) ( )T B T B T B

T B

4
B ext Oven Oven B i iz t z t z t

iz t

TK h T T E E T N
z δ δ δ δ δ δ

δ δ
Φ σ λ∞ = + = + = +

= +

∂
− = − + − −

∂ ∑  4.36 

Since the considered system is a two-phase system, an additional boundary condition is needed at the 

tray biscuit interface, imposing the continuity of both temperatures and heat fluxes. Therefore the 

following thermal equilibrium interface conditions apply: 

 
T Tz zT Tδ δ− += =

=  4.37 
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 ( )
T

T T

4 p
Tray B Oven Oven B Z

z z

ST TK K E E T 1 a
z z Sδ

δ δ
Φ σ +

− +
=

= =

⎛ ⎞∂ ∂
− = − − − ⋅ − ⋅⎜ ⎟∂ ∂ ⎝ ⎠

 4.38 

The second term on the right side of Eq.4.38 takes into account the fact that the metallic net allows a 

reduced radiative flux impinging on the biscuit with a view factor a. The initial condition for the entire 

system is: 

 0z       t 0          T=T∀ =  4.39 

It is worth noticing that the evaporation surfaces must take in account the fact that ammonia is 

insoluble in the paste phase, but is soluble only in water. This implies that the surface for NH3 

evaporation is reduced just by a factor XW. 

 

 

4.5 Opened cell mechanical equilibrium  

When the bubbles open towards the ambience the internal pressure suddenly drops from the actual to 

the external value. This implies a new mechanical equilibrium with an elastic recovery under constant 

pressure. Therefore it was proposed to compute the recovery defined as the bubble radius with respect 

to its value at coalescence, using the relaxation relationship derived from a creep test. In this way the 

channel still maintains a spherical shape after deformation recovery. In addition, because the properties 

of dough are time-dependent, it is necessary to know what is the amount of elastic energy stored during 

the closed cell behaviour, and that can be recovered at opening. This in turn means that a material 

memory function must be inserted somehow.  

The mechanical problem was treated by using the Henky strain ε’  which measures the deformation 

starting from a reference radius *
cR of the virtual closed cylinder up to the radius at its disclosure 

towards the ambience: 

 *ln
2
1'

c

c

R
R

−=ε  4.40 

Starting from this reference configuration, the strain is “stored” and because the viscoleastic solid 

hypothesis, at collapse it is recovered according to a simple Kelvin Voigt mechanical model: 

 ∑
−

+=
i

t

i
ieww τ

ε
ε

0'
0

'  4.41 
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where σ0 is deformation at collapse, wi are the recovery weights and τi are the retardation times. These 

parameters are computed from a creep-recovery test by using a 3-element model that proved to be a 

good fit with the experimental data:  

 ⎟
⎠
⎞

⎜
⎝
⎛ +++⋅=

−−−
32

32100')(' τττεε
ttt

eJeJeJJt i  4.42 

For the tested dough it was found that computed parameters are quite independent of the applied stress 

within a large stress range, because they are simply related to the strain recovery when the stress is 

instantaneously put to zero. This behaviour is often found for dough. The deformation of a viscoelastic 

solid is remembered by the structure only during a certain lapse of time according to its material 

properties. This implies that the deformation σ0 at the maximum height before collapsing, must be 

computed going backwards for a certain amount of time corresponding to a characteristic material 

value, which may be assumed practically as a measure of the fading memory of the considered dough. 

The characteristic reference time t* from which the system starts to remember is a measure of the 

transition in dough behaviour from viscoelasticity to “plasticity”, and it can be determined by a creep 

test. Creep experimental data were fitted by using a 1-element Kelvin-Voigt model: 

 

t
t*

0 1
tJ J J 1 e
η

−⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠  4.43 

Thus from this equation the value of t* is obtained. Below t* a viscoelastic behaviour is shown, while 

above t* a plastic behaviour is exhibited. In this sense the defined value represents the fading memory 

of the considered material. The above-discussed approach is, in principle, a new mechanical 

microsystem model that has the aim of taking the collapse into account  In fact, the model describes the 

possibility that the considered channel may collapse and, if this happens, the pearl necklace radius 

decreases according to the strain recovery mechanism, from which a volume reduction is obtained. In 

order to take into account the difference of recovery between two different flours, first of all 

information about the memory function t* is needed and may be derived from creep-recovery test of a 

vacuum dough. These material parameters take into account the evidence that no bubble free surfaces 

are available to relax the imposed stress and, as a consequence, they give a measure of the “memory 

time”. Very often if a different flour is used a different void fraction is expected. For instance, if the 

void fraction ε increases, a freer surface would be available to relax the stress and as a consequence a 
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lower radius recovery would be observed. According to that and matching some available experimental 

data, the following correlation is proposed: 

 
( ) ( )

1
3 2

c ct t A t B 1 a ε∗ = − ⋅ + ⋅ + ⋅
 4.44 

where A, B and a are fitting parameters. 

 

 

4.6 Opened cell thermodynamic equilibrium  

If coalescence holds, the original closed bubble is suddenly in contact with the external atmosphere and 

it starts to behave as an open system. In addition, since the bubbles are joined among themselves a sort 

of equivalent channel has to be accounted for when the heat and mass transfer is modeled, in the gas 

phase toward the external ambience. 

An estimate of the water amount leaving the paste when the cells open towards the external ambience 

forming a sort of channel, could be obtained by considering the system as an opened paste “pearls 

necklace”, filled with a gas mixture at the same T and P of the external fluid. 

The main flux is due to water evaporation from the “pearls necklace surface”, and a mass transport is 

observed towards the external ambience, where a mass convective mechanism governed by the air 

velocity v∞  is present. Regarding the inner part, the necklace surface should be assumed at 

thermodynamic equilibrium at a temperature of T calculated from the macrosystem, then a diffusive 

transport may be assumed throughout the channel. This problem is quite difficult to solve analytically 

also because a radial variable should be included, therefore it was preferred to continue following the 

main general idea of micro- and macro-systems. This means it was preferred to avoid the 

heterogeneous approach at macro level and to maintain a 1-D model. For this reasons, an equivalent 

system at micro level was considered.  

The interface is calculated as equivalent to the side surface of the pearl necklace and, if the material 

properties are assumed to be constant at any time (constant T and U from macrosystem calculation), a 

constant water flux computed at the evaporating surface is given by: 

 ( ) nSurfEvaporatioyy
D
D

N eq
Bisc

AW
zW */

0 ∞=
−

−
=  4.45 
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The equivalent evaporating surface (EvaporationSurf) should be derived from the overall surface of the 

coalesced bubbles, also accounting for the time-dependent shrinkage due to water loss. In principle this 

geometric equivalence includes the evaporating surface of all the bubbles (nb) joined as a necklace  

 ( )[ ]2* 4 tRnS cb π⋅=  4.46 

This value overestimates the effective available surface because in the adjoining zone the dough is 

missed and no evaporation is possible. In addition, the connection zone proceeds to enlarge as the 

channel shape moves from a necklace to a proper channel. This means that the ratio between the no-

paste zone and the total bubble surface has to increase and the evaporating surface decreases as a 

consequence. Therefore a reducing factor has to be introduced as a function of time and the physically 

more reliable way was to link the reducing factor to the time-dependent bubble radius diminution with 

respect to the initial radius (at the collapse time): 

 
( )[ ]{ }2

3

*

3

4 tRnb
R

RcS
R

RcS c
collapsecollapse

π⋅⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

 4.47 

Where nb is the number of bubbles for volume and collapseR  the bubble radius at the collapse time. 

This term computed in such a way can be send to the macrosystem mass transfer equation as a sink for 

the paste phase to take into account the effect of the transport phenomena. Of course, the same 

considerations made for water apply for any component present in the gas bubbles, even if their 

importance is notably less. As a result even the flux expression is changed because the component 

profiles reduce to a single point.At any time, according to the collapse model, the exchange surface 

must be updated to evaluate the new cylinder radius following the recovery, and, according to T and U 

profiles computed by the macrosystem, the equilibrium conditions are updated too. Since the actual 

surface is important for evaporation, the computation of the shrinkage must take into account this 

reduction. 

 

 

4.7 Shrinkage Computation 

The drying process that is coupled with biscuit baking implies the onset of shrinkage, which represents 

the volumetric dimensional reduction mainly due to water loss. It should be noticed that this 

phenomenon is always present due to the oven conditions that are far from water equilibrium, but the 

experimental evidence shows that during bubble growing, water tends to go preferably towards the gas 

bubble also owing to the smallness of the evaporating surfaces. At the opening the evaporating surface 
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increases considerably and therefore a rather more consistent drying is exhibited, therefore this effect 

was neglected during rising.  

The shrinkage phenomenon was amply studied in the past by Minshkin, Saguy & Karel (1984) and 

Lang, Sokhansanj and Rohani (1984), reporting the dimensional variation of dough with the water loss 

thanks to a linear equation like the following: 

 ( )( )0_ 1)( UUKVtV shrpbiscbisc −+=  4.48 

Where )(tVbisc  is the biscuit volume with time, pbiscV _  is the biscuit volume at the maximum height, 

Ksh=1.18 was suggested by experimental data and the value of the initial humidity (U0) was assumed 

constant and equal to 17%. Therefore the biscuit volume diminishes linearly according to the water loss 

during the baking period.  

 

 

4.8 Calculation Method 

The equations system was solved applying the “Lumped Heat Capacity Method” [Holman, J.P, 1972; 

Mills, A. F., 1999], which is normally applied especially for heat transport, but which can be used 

by analogy for mass transport. The method requires the spatial definition of domain for the 

integration. Since it was supposed that the variability of temperature and concentrations are only in z- 

direction, the domain is an integration grid having the points equispaced at distance Δz (fig.4.8).  

The “Lumped Heat Capacity Method” returns the temperature of a single ΔV as a function of time. The 

method requires the absence of a spatial temperature distribution in r direction (in this specific case), 

then for the single ΔVi it is possible write as follows: 

 iipii q
t
TVC =

Δ
Δ

Δρ  4.49 

where qi is the heat given to the point i for radiation, convection, etc. [Holman, J.P, 1972]. 

Then, because each volume element, ΔVi, behaves like a small “lumped capacity” and the interaction 

of all the elements determines the behaviour of the object during a transient process, if we define the 

thermal capacity as: 
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Figure 4. 7 – Calculation Domain 

 

 ipiii VCC Δ= ρ  4.50 

Thus, the general resistance-capacity formulation for the energy balance can be written for the 

individual node in this way : 

 
t

TT
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R
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q
p

i
p

i
i

ij

p
i

p
j

i Δ
−

=
−

+
+

∑
1

 4.51 

Where Rij is the resistance (convective, conductive….) between one grid point and another. 

 
Figure 4. 8 – General scheme of grid points 

 

The lumped approach is well-suited and has advantages when it comes to flexibility in time- and 

temperature-varying boundary conditions, calculation speed and effort, simplicity in implementation 

and analysis technique. This method allows the introduction  in simple way of the qi terms that can be 

seen as sinks for the system. 
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The system of equations in paragraphs 4.3 and 4.4 are coupled, the material parameters are dependent 

on temperature and concentration or the molar fraction of the component present in the system. For this 

reason, it was assumed that, at every time step, the physical properties do not change very much and, 

then we can calculate the parameters with the value of T and concentration/molar fraction calculated at 

the previous step. This hypothesis is more valid because a small time step was chosen. Another 

problem is the initial expansion of the system and the successive shrinkage after collapse, because this 

phenomenon implies a different dimensional increase/reduction of different Δzi, because of bubble 

expansion and humidity gradients. The problem was overcome by calculating the new Δz as the 

arithmetic mean of the real dimension of the interval at every instant of time. The numerical 

approximation of Δz calculation can be improved, but in every case the results are comfortable in terms 

of stability and velocity calculation and for this motive the program was considered acceptable for the 

pre-established purpose. 

 

 

4.9 Thermodynamic and transport properties 

The following paragraph reports all the material parameters necessary for the simulation of the baking 

of a crunchy biscuit, relative to material and energy transport. Many of these were obtained from the 

literature data, while for the density value, surface tension, void fraction, number of bubbles and water 

activity laboratory tests were performed . 

 

4.6.1 Equilibrium Constants 

The equilibrium constants were found in Perry R. H. and Green D. (1984): 

H2O Vapour Pressure [Pa] 

 
2

1730.638.07131
T 273.15 233.426

0
H O

10P 101325
760

⎛ ⎞−⎜ ⎟− +⎝ ⎠
= ⋅  4.52 

NH3 Vapour Pressure [Pa] 

 
3

1106.8756149.858926852
0 T 11.4970708
NHP 10

⎛ ⎞−⎜ ⎟−⎝ ⎠=  4.53 

CO2 Henry’s Function [Pa] 

 
2COH 4534293.75 T 1176741506.25= ⋅ −  4.54 
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The water activity was measured in the United Biscuits (UK) laboratory in accordance with their 

standard procedures: 

Water Activity: 

XW > 0.006 moles/total moles 

 ( )3 2
W W W Wa 26.672 X 26.338 X 8.5353 X 0.0471 Shift  T= ⋅ − ⋅ + ⋅ − ⋅  4.55 

 T < 100°C          1 1Shift  T exp 292.96
298 T

⎛ ⎞⎛ ⎞= ⋅ −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 4.56 

 T > 100°C         1 1Shift  T exp 292.96
298 373

⎛ ⎞⎛ ⎞= ⋅ −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 4.57 

XW < 0.006 

 0aW =  4.58 

 

4.6.2 Heat Conductivity and Emissivity 

Thermal conductivity, since it appears in the macrosystem, must take into account the pseudo-

homogeneity assumed for the considered system. Therefore, when the gas cells are closed, the 

current literature indicates the following so-called EUKEN equation giving the effective heat 

conductivity, Keff, for a composite material constituted by a continuous phase (KCONT) and a 

dispersed one (KDISP) of spherical shape, as a function of the volumetric fraction of the dispersed 

phase φ: 

 ( )
( )

DISP CONT CONT DISP
eff CONT

DISP CONT CONT DISP

K 2K 2 K K
K K

K 2K K K
φ

φ
+ − −

=
+ + −

 4.59 

The validity of this equation was proved [Sakiyama et alt., 1990] for spheres organized in several 

spatial distributions, e.g. simple, body-centred and face-centred cubic lattices, and for both uni 

and bi-modal dimension distributions, in the specific case of KDISP ⁄ KCONT=0.01. When 

considering dough, air gas spherical cells are embedded in a dense cereal paste, therefore eq.4.52 

seemed to well-approximate the considered physical condition. According to the rather low value 

of the air conductivity, the equation may be approximated as 

 
φ
φ

+
−

=
2
12CONTeff KK  4.60 

To determine KCONT , data were taken from vacuum paste sheet, but it should be noticed that all 

the same a certain amount of gas remains entrapped in the samples during mixing even if the 
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bubbles are rather small according to the vacuum degree imposed. An approximate computation 

was made by assuming that the number of bubbles remains the same, but the volume is much less 

because of the vacuum level. therefore it is possible to determine the volumetric fraction and the 

value of KCONT from the following: 

 
φ
φ

−
+

=
1
2

2
1

MEASCONT KK  4.61 

The value obtained by this procedure at 30°C gives a value that is rather close to that measured, 

therefore it was chosen to approximate KCONT  to KMEAS . Experimental measurements were made 

as a function of T and water content XW and the following results were obtained by data fitting: 

 ( ) ( )MEAS WK f T f X=  4.55 

Thus in principle the resulting equation should read: 

 ( ) ( ) ( )eff WK f f T f XΦ=  4.56 

It should be noticed that, if a 1D model is assumed, the equation represents a too strong 

functionality and therefore must be reduced. In fact, it should apply only in a 3D model. 

This approach holds for coalescence, thereafter the value of the heat conductivity is KCONT. It 

should be noted that because up to coalescence the water content almost remains constant, the 

humidity dependence does not play an important role. 

The value of continuous phase (Dough heat conductivity), furnished by UB literature data, is the 

following: 

 ( ) ( )Dough WK 0.00101429 T 0.04872584 4.6628 X 0.0726= ⋅ + ⋅ ⋅ +  4.57 

For the tray the heat conductivity is: 

 ( ) ( )Tray TrayK 0.0153 T 8.2774 1 ε= ⋅ + ⋅ −
 4.58 

and for the Air is: 

 AirK 0.00007252 T 0.003674= ⋅ +  4.59 

all the conductibility values are measured in W/(m·K). Moreover the emissivity value of the tray, 

oven and biscuit are the following: 

 Tray [W/(m·K)]: ETray=1 4.60 

 Oven [W/(m·K)]: EOven=1 4.61 

 Biscuit [W/(m·K)]: EB=0.95 4.62 
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4.6.3 Mass Diffusivity 

The Diffusivity of Water in the dense paste [m2/s], also furnished by UB, takes into account the 

dependence of diffusivity on the void fraction of material thanks to a function f(ε): 

 
( )( ) ( )W

W/D
exp 6 exp 20 X 226000.00008D 0.00000012 f

101325 8.31439 T
ε ε

− ⋅ − ⋅ +⋅⎛ ⎞= + ⋅ ⋅⎜ ⎟ ⋅⎝ ⎠
  4.63 

The function f(ε) before coalescence is the following: 

 ( )
2
3

2
3

(1 )f
(1 )

εε
ε ε

−
=

− +

 4.64 

while after coalescence the function is: 

 ( )f ( 1 )ε ε= −  4.65 

for the diffusivity of Ammonia in water, Carbon Dioxide in water we have respectively: 

 
( )

3NH /W W
TD 0.00000012 X

298
= ⋅ ⋅

 4.66 

 
( )

2CO /W W
TD 0.00000000177 X

298
= ⋅ ⋅

 4.67 

and for the diffusivity of water vapour in the water, ammonia in air, carbon dioxide in air we have 

respectively: 

 

( ) 0.5
Air Wat

Air Wat1.75
W/A

1 / 3 1 / 3 2atm
iair iwat

MW MW
MW MW 1D 0.001 T P 10000( N N )

101325

⎛ ⎞+
⎜ ⎟⋅⎝ ⎠= ⋅ ⋅ ⋅

⋅ +
 4.68 

where: Niair = 20.1 air atomic diffusion volume, NiWat = 12.7 water atomic diffusion volume, 

MWAir molecular weight of air, MWWat molecular weight of water. 

 

( )3

3

3

3

0.5
Air NH

Air NH1.75
NH /A

1 / 3 1 / 3 2atm
iair iNH

MW MW

MW MW 1D 0.001 T P 10000( N N )
101325

⎛ ⎞+
⎜ ⎟

⋅⎜ ⎟
⎝ ⎠= ⋅ ⋅ ⋅

⋅ +
 4.69 

Where Niair = 20.1 air atomic diffusion volume, NiNH3 = 14.9 ammonia atomic diffusion volume, 
MWNH3  molecular weight of ammonia. 
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( )

2

0.5
Air CO2

Air CO21.75
CO /A

1 / 3 1 / 3 2
iair iCO2

MW MW
MW MW 1D 0.001 T Patm 10000( N N )

101325

⎛ ⎞+
⎜ ⎟⋅⎝ ⎠= ⋅ ⋅ ⋅

⋅ +
 4.70 

where NiAir = 20.1 air atomic diffusion volume, NiCO2= 26.9 carbon dioxide atomic diffusion 
volume. All the diffusivity value are measured in [m2/s]. 
 
4.6.4 Specific Heat  

The specific heat of the biscuit can be calculated as the weighted mean of the principal 

component of the dough biscuit [Andrieu et al. 1989] : 

 ∑ ⋅=
i

iiPDough xCC  4.71 

The dough is principally constituted of fat, protein carbohydrate and water, then the eq. 4.66 

becomes the following:  

 PDough PFat Fat PProt Prot PCarb Carb PWat WC C X C X C X C X= ⋅ + ⋅ + ⋅ + ⋅  4.72 

where X0Fat = 0.12, X0Carb = 0.63, X0Prot = 0.05. Then the heat capacities are the following: 

 ( )2
PFatC 1.984 0.001473 T 0.0000048 T 1000= + ⋅ − ⋅ ⋅

 4.73 

 ( )2
P Pr otC 2.008 0.001208 T 0.000001312 T 1000= + ⋅ − ⋅ ⋅

 4.74 

 ( )2
PCarbC 1.548 0.001962 T 0.000005939 T 1000= + ⋅ − ⋅ ⋅

 4.75 

 ( )2
PWatC 4.176 0.0009086 T 0.000005473 T 1000= − ⋅ + ⋅ ⋅

 4.76 

The specific heat is measured in [J/(kg·K)]. 

For the Air the heat capacity is equal to 1046 J/(kg·K) and for Steel the relation is the following:  

 ( ) ( )PSteel TrayC 0.1774 T 431.09 1 ε= ⋅ + ⋅ −
 4.77 

 

4.6.5 Latent Heat 

Water [J/mole]: 

 W 40550λ =  4.78 

Ammonia [J/mole]: 

 3NH 232620λ =
 4.79 
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Since the water is partially bounded, the value of the energy needed to pass from the liquid to the 

vapour phase must be increased. By recalling that the link between activity and vaporization heat 

is logarithmic, the following equation was used: 

 ( )o w1 ln aλ λ= −  4.80 

 
4.6.6 Density 

Steel Density [kg/m3]: 

 ( ) ( )Steel Tray0.4338 T 7899.2 1ρ ε= − ⋅ + ⋅ −
 4.81 

Paste Density [kg/m3]: 

 p 1300ρ =  4.82 

 

4.6.7 Surface Tension 

Dough/Gas interface [Pa·m] (internal data of UB): 

T < 55°C 

 

( )20.0005 T 0.1219 T 30.022

1000
γ

⋅ − ⋅ +
=

 4.83 

T > 55°C  

 1000
37.22

=γ
 4.84 

 
4.10 Initial Conditions 

The initial condition for the simulation program are reported in the following: 

• Void fraction  

It was measured and considered constant, depending on the starting flour considered: 

Heygates   ε=5%  

Carr’s   ε=3.7%  

• Number of bubbles 

The number of bubbles remains constant and is computed as follows: 

 ε
ε

ρ
ε

−
⋅⋅=

⋅
==

1
W

V
1

V
V

bubble  singleolumeV
voids Volumen

P

Bisc

bb

toto
b

 4.85 

• Initial temperature: T = 308 K 
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4.11 Block Diagram of the main programme and conclusions. 

The baking model is essentially constituted of two interacting operations: the microsystem and the 

macrosystem. Simply speaking, the microsystem works in heterogeneous conditions and is based on 

equilibrium, therefore different computing blocks are considered according to the different equilibrium 

conditions. This allows managing the whole model in a rather easy way, because it is possible to 

change single micromodels as needed, without changing the main computing programme. On the other 

hand there is the macrosystem that represents the connection tool for those single blocks that are in turn 

essentially subroutines of the computing programme. It was chosen to have a core loop that is the 

baking process, while all the other process steps are considered before start the loop.  

Thus, the first step of the computation consists into giving the data input which are: 

Initial Conditions: Temperature, Diameter, Height, Void Fraction, R.A. concentration, Water 

Content 

Operational Conditions: Heat Flux Top & Bottom, Dew Point, Toven 

Numerical Conditions: Grid for Tray and Biscuit, Time step. 

Some of these may be changed and stored in suitable files. The second step is the evaluation of the 

mixing and standing processes occurring before the biscuit comes into the oven.  

The mixing of the components is the process step during which the structural network is mainly 

generated, and this is carried out with specially designed mixers. However, during stirring, depending 

on the movement of the blades, a certain amount of air is entrapped into the formed dough, which 

represent the initial nuclei for gas bubble development. Of course, the amount and dimensions depend 

on the specific characteristics of the ingredients used, and above all on the flour adopted. After mixing, 

the obtained loaf is left to rest for a while in a closed ambience, and this process step is called standing. 

The number of air moles resulting from these two processing steps, was obtained by means of an 

iterative method based on the knowledge of the final bubble diameter (15 μm) as obtained from 

experimental evidence. The computation starts from the assumption that the bubble pressure is the sum 

of the atmospheric pressure and the surface tension, thus from the thermodynamic equilibrium the 

current air moles are computed. The mixing is carried out for 541 s and, however, the R.A. 

decomposition reactions already occur, but owing to the process conditions, it was admitted that at the 

end the product concentration is set to 0. Thus this is equivalent to a decrease of the initial RA. 

concentrations. Then the dough is put in a closed ambience and the so-called standing step is carried 
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out. The temperature is between 30°C and 40°C, therefore an average of 35°C was assumed. The total 

mole amount contained inside the gas bubble, the internal pressure and the volume of any single bubble 

may be calculated and will represent the initial condition for the baking model computation. From the 

initial diameter it is possible to compute the pressure as the atmospheric pressure plus twice the 

interfacial tension divided by the bubble radius. The amount of air moles entrapped must satisfy 

thermodynamic equilibrium, therefore a flash computation is run assuming a first tentative value of the 

air moles and iterating calculation till the pressure matches the imposed value and the known diameter. 

The computation details are the same as the flash used in the microsystem referred to closed cells. 
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Figure 4. 9 – Block diagram of programm 

 

After the mixing and standing step, the baking computation programme may start. The whole 

computation is based on a quasi-static transformation, implying an alternation between equilibrium and 

physical transport. Thus at any time the values of the current variables are determined at equilibrium 

and after, according to the Raising Agent kinetics and to the time-dependent boundary conditions, they 

are updated by applying the considered transport mechanisms. Of course, the new computed values 

influence the effective values of all the properties used in the computation because the macrosystem is 
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a pseudo-homogeneous system. There are several subroutines to be effected that are separate from the 

main computation direction and they are carried out again when needed to update the material 

properties. Once the updating is done, the new data have to go to the proper equilibrium stage. This 

means that a preliminary control is carried out on which microsystem must be used. The main 

difference in this 1-D version is the coalescence, therefore at the end of the macro computations a 

decision is made on the flow diagram, whether to use open or closed cells for any grid point. The 

thermodynamic and mechanical equilibrium laws according to the given microsystem, establish the 

amount of mass that goes into the gas phase, the new bubble radius and pressure, and finally, the mass 

sink with respect to the paste. 
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