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Introduction

In the last decades the attitude of the physics community towards non-local
quantum correlations (entanglement) has experienced a deep change. From
being mainly a bizarre and counter-intuitive characteristic of quantum me-
chanics, it has become a keyword of a deeper understanding of quantum
mechanics itself, by throwing light on quantum many-body phenomena like
decoherence and quantum phase transitions, just to name a few. At the
same time entanglement has become the main ingredient of a new highly-
interdisciplinary field: quantum information theory (QIT). In this frame-
work entanglement has been considered a resource to accomplish various QIT
tasks, otherwise inconceivable, like dense coding, teleportation and quantum
information processing.

The perspective to realize powerful entanglement-based applications has
directed the QIT community to search for physical systems which, with a
minimal external-control operations, can perform these applications. What-
ever the physical implementation, a common question of central importance is
the ability to distribute with high efficiency quantum states and/or entangle-
ment between different end-users in order to obtain meaningful experimental
protocols.

The present work is based on the suggestion to use solid state systems,
more precisely those described by a 1D spin-1

2
hamiltonian, both as qubit

registers and coherent data bus. Much work has been carried out on 1D spin
systems with various spin-spin interaction hamiltonians, achieving, e.g., both
perfect quantum-state transfer and ground-state entanglement control. How-
ever, the effect of the presence of impurities, given, for example, by magnetic
fields defects at some lattice point has not yet been considered in detail. Our
work deals with such a system: a 1D spin-1

2
ring, i.e. a chain with periodic

boundary conditions, with isotropic spin-spin Heisenberg-type interaction in
a transverse magnetic field which presents local inhomogeneities. This causes
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a change of the qubit energy level spacing at the impurity sites with respect
to the rest of the ring’s qubits. Our interest in this system is also motivated
by the fact that several experimental implementations have already been re-
alized both with cold atoms trapped in optical lattices and with Josephson
junction arrays.

Exploiting the conservation of the total spin component along the z
axis (the direction of the applied magnetic field), we focus on the invari-
ant one-excitation sector of the Hilbert space, because of the importance
of singlet-state transmission along the chain. In this sector our hamiltonian
becomes equivalent to a tight-binding model and the exact solutions of finite-
impurities hamiltonians are obtainable via the Green’s operator formalism.
Moreover, as even a single impurity can lead to spatial localization of the
wave function, our system undergoes a quantum phase transition and a new
localized ground state arises, whose entanglement content is analyzed.

We begin our work by adding a single impurity at one spin site, say l,
in the ring and solve, in the thermodynamic limit, the eigenvalue problem
in the one-excitation sector. We obtain that the energy spectrum of the
hamiltonian, apart from the unchanged continuous energy band, exhibits a
discrete energy level which can be found both above or under the energy
band. The eigenstates associated to the continuous band are represented by
distorted plane waves, accounting for the scattering at the impurity site. The
discrete eigenstate, on the other hand, is localized around the defect, in the
sense that there’s an exponentially decaying probability to find the excitation,
that is the reversed spin, far away from the impurity site (sec.2.4).

We find that in the paramagnetic phase, i.e. for the qubit level spacing
greater than the spin exchange coupling, there exists a critical value of a
parameter, named α, given by the ratio of the local inhomogeneity on site
l and the exchange coupling. For α exceeding αc the ground state becomes
the discrete, localized eigenstate of the hamiltonian and a non-zero two-party
entanglement, which we measure by the concurrence, arises in the new ground
state. This entanglement content too shows a localized spatial structure
around the impurity, and in the limit of α À 1, when the localization length
goes to zero, also the spatial extension of the concurrence reduces to zero, so
that, in this limit, the ground state is again a factorized state (sec.2.5)

Next we turn to quantum-state transmission tasks. First we consider the
situation in which a singlet state has been realized between an external spin,
i.e. a spin not participating in the hamiltonian’s dynamics, and another, the
sender, different from the impurity. This setup has been proposed in order
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to send entanglement, with possibly high efficiency, along the chain up to
another spin, the receiver. This process allows to realize two-party entangled
states between the external spin and an arbitrary spin of the ring; which is
a necessary prerequisite of almost all quantum communication protocols, for
example.

We find that entanglement propagates almost freely up to the impurity
which acts like an entanglement mirror, characterized by transmission and
reflection coefficients (sec.2.8). The reasons of this behaviour reside in the
analytic structure of the concurrence (the two-party entanglement measure
between the external spin and the receiver spin), which identifies with the
amplitude of the transmission of the excitation from the sender to the receiver
(sec.2.6). Therefore, the excitation propagates both through the mediation of
the continuous band, where distorted plane waves affect only slightly the free
entanglement’s propagation, and through the mediation of the localized state,
which affects the entanglement’s propagation only within the localization
length. With high values of the impurity strength, the latter contribution
goes to zero, while the impurity qubit energy spacing has become considerable
larger than that of the other qubits; as a consequence, the energy carried by
the entanglement wave isn’t enough to transmit the excitation at the impurity
spin. Because of the conservation of the z-component of the total spin, the
excitation, and the entanglement, is reflected backward.

If we instead consider the situation in which the sender identifies with
the impurity, the spin ring acts as an entanglement memory (sec.2.7), in the
sense that the initial entanglement doesn’t diffuse away (up to second order
effects in 1

α
). Moreover, this quantum information storage effect isn’t limited

to the singlet state, as the relative phase of the superposition of an arbitrary
maximally entangled state in the one-excitation sector is almost perfectly
retained (sec.2.7.1).

Again this effect can be explained by the impossibility, in the limit α À 1,
of the excitation to leave the impurity site.

Then we turn to single-qubit quantum state transfer, meaning that an
arbitrary state is encoded in a spin of the ring (the sender), and one wants
to use the spin ring as a quantum channel to send the quantum state to
another spin (the receiver). The efficiency of this transmission is measured
by the fidelity, which too is proportional to the amplitude of the excitation
transmission (sec.2.7). Therefore similar results are obtained: 1.) high-
fidelity quantum-state storage at the impurity site; 2.) possibility to achieve
quantum-state transmission control by operating on the impurity strength.
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With similar motivations, we have studied the same hamiltonian with
one more impurity added at another site, say m. The eigenspectrum of the
hamiltonian exhibits a more complicated structure, admitting the possibility
of one or two discrete energy eigenvalues. If there’s only one, it can be either
below or above the unchanged energy band. If the system presents two
discrete eigenvalues, they can be found either both below, or both above the
energy band, or one above and another below, depending on the strength of
the impurities (sec.3.1). As in the one-defect model, the associated discrete
eigenstates exhibit a localized spatial structure and the system undergoes a
first order quantum phase transition for appropriate values of the defects.
This is reflected on ground-state entanglement, which too becomes localized
around the impurity sites, but notable differences arise with respect to the
one-impurity model.

For large enough, and equal, defects strength the ground-state is localized
around both impurity sites l and m. Therefore the system doesn’t reduce to a
product state, as in the one-defect model. On the contrary, the two impurities
appear to be maximally entangled, independently of their distance, while the
rest of the ring turns out to be in a factorized state. Furthermore, the two-
party entanglement content between the qubits around one defect can be
changed by acting on the defect’s strength of the other spin, in the sense
that a reduction of the m-qubit impurity raises the concurrence between the
qubits around the other qubit l. At the same time, the concurrence in the
neighbourhood of site m decreases (sec.3.2). Obviously the reversed situation
is obtained if the defect’s strength on site m is increased, because of the label
exchange symmetry. This achieves a remote control of entanglement.

Then we analyze quantum-information transmission in our two-impurities
model and consider the case in which two localized eigenstates are present
in the eigenspectrum. This assumption is motivated by the observation that
already for small values of the defects, the systems exhibits such an energy
structure and, because of our one-defect analysis, it is in this regime that
more interesting phenomena arise.

First we consider the case in which the sender is encoded in a spin dif-
ferent from the defects, and we find the same qualitative behaviour in terms
of reflection and transmission of entanglement waves. But now we are in
presence of two mirrors and, placing the sender within a region bounded by
the two defects, it is possible to trap therein the entanglement waves with
different results: 1.) if the sites l and m are next-nearest neighbours and the
sender is in the middle, again quantum information storage can be achieved;
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2.) if the sites l and m are more distant each other, entanglement waves prop-
agates almost lossless in the region between the two defects and interference
phenomena occur, like in a finite spin chain with open boundary.

If, instead, the singlet state is realized initially between one of the de-
fects and the external spin, the concurrence with the external spin bounces
between the two impurities, while the rest of the chain is not involved in
the entanglement transmission. This effect can be explained by taking the
defects strength equal and sufficiently high, so that the discrete states are
highly localized around both impurity sites. Therefore the excitation can
be transmitted only over these discrete states, again because the continuous
energy band cannot receive the too high energy excitation. Looking at the
expression of the two localized states, they turn out to be a coherent super-
position of one-excitation state l and m, resulting in the two (orthonormal)
maximally entangled states of the one-excitation Hilbert sector. The en-
tanglement dynamics reduces also to a dynamics of a two-level system (the
two levels being the localized states) where entanglement bounces with a
Rabi frequency given by the energy difference of the two discrete eigenstates.
As this energy difference tends to zero by increasing the distance between
the impurities, the related entanglement transfer requires an increasing time
interval (sec.3.3).

In conclusion, we have dealt with defected 1D spin systems from an
quantum-information point of view. We examined the implications of the
Anderson localization effect on the ground state entanglement content and
quantum-state transmission’s related problems. We have found several in-
teresting phenomena, which permits, by minimal control operations, both
quantum information storage and entanglement dynamics manipulation as
well as entanglement generation.
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Chapter 1

Entanglement

In this chapter we review some milestones in quantum physics, from the EPR
paradox to Bell’s inequalities, leading to the emerging of the entanglement’s
concept, sec.1.1. In sec.1.2, density operator formalism is introduced together
with the main object of interest in quantum information theory (QIT): the
qubit. In sec.1.3 some of the entanglement measures for bipartite systems are
presented and in sec.1.4 we focus on some aspects of open system quantum
theory, which will have application in the forthcoming work. The last section
is devoted to a brief description of some common entanglement’s applications.
For general topics on the subject of this chapter see [1, 2, 3] and references
therein.

1.1 Introduction to Entanglement

The first encounter with entanglement dates back to 1935, when Einstein,
Podolsky and Rosen (EPR) published one of the most cited physics paper
[4]. They supposed that quantum theory was not a complete theory, stating
the condition of completeness as

Every element of physical reality must have a counterpart in the
physical theory.

and defining the cited ”element of reality” as the observable obeying the
following

if, without in any way disturbing a system, we can predict with
certainty...the value of a physical quantity, then there exist an
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element of physical reality corresponding to this physical quantity.

They considered a two-particle system in an eigenstate of their relative po-
sition and total momentum, |Ψ(1, 2)〉 = |x1 − x2; p1 + p2〉, which, according
to quantum theory can exist as the two observables commute. Performing a
Gedankenexperiment in which measuring x1 one obtains x2, the latter must
be an element of physical reality according to EPR; and the same argument
applies to the determination of p2 after a measure of p1 is performed. As a
result, the observed values x2 and p2 must exist, they argued, also before the
measurement process as special relativity doesn’t account for super-luminal
actions. But [x2, p2] 6= 0 and quantum theory doesn’t attribute any definite
value to two non-commuting observables at the same time.

The EPR article was followed by an intense debate between two school’s
of thought, one, headed by Bohr, defending quantum theory, the other un-
derlining its incompatibility with the axioms of local realism and proposing
reconcilable alternatives, such as the hidden variable model.

After Bohm’s work, the paradox became an algebraic contradiction sub-
mitted to experimental verification. Consider a two spin-1

2
particle state

|Ψ(1, 2)〉 =
1

2
(|01〉 − |10〉) (1.1)

resulting, for example, from a decay of spin 0 particle. Looking at their x and
y spin component we have that s

(1)
x = −s

(2)
x and s

(1)
y = −s

(2)
y . So if quantum

theory satisfies the axioms of local realism s
(1)
x s

(2)
y = s

(1)
y s

(2)
x , but quantum

theory predicts
(
s
(1)
x s

(2)
y + s

(1)
y s

(2)
x

)
|Ψ(1, 2)〉 = 0, so that the two observables

are anti-correlated, s1
xs

2
y = −s1

ys
2
x.

The algebraic contradiction was put in an experimentally verifiable form
by Bell [5], who showed that there exists an upper limit for the correlations
of space-like distant events if the principle of local realism has to be satisfied.

There exist different kinds of Bell inequalities depending on what system
one considers, but always there are quantum states which violate the inequal-
ities. Here we consider the inequality arising from measuring dichotomic
variables on system A and B, the CHSH inequality[6].

On system A one measures observables Q and R, on system B, observables
S and T , and each of them can assume only values ±1. So if the mean values
of measurements are classically correlated then

〈QS〉+ 〈RS〉+ 〈RT 〉 − 〈QT 〉 ≤ 2 (1.2)
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But if we consider the singlet state given by eq.1.1 and choose the fol-

lowing set of observable: Q = σA
z , R = σA

x and S = −σB
z −σB

x√
2

, T = σB
z −σB

x√
2

,

then on the left side of eq.1.2 one obtains 2
√

2. This results indicates that
the singlet state containes non-local quantum correlations. Moreover in the
Hilbert space of two qubits, the maximal violation of eq.1.2 is realized by the
so called Bell states

|Ψ±〉 =
1√
2
(|01〉 ± |10〉) |Φ±〉 =

1√
2
(|00〉 ± |11〉) (1.3)

Having defined so far entanglement as non-local quantum correlations
between parties of a composite system, we have to account for more general
states in which quantum systems can be found. In fact, generally the parties
of a system, even if they are initially pure states, evolve in mixed states. This
is because their evolution is not unitary, although the total system evolution
is governed by an unitary operator. Moreover, it is quite common to have
access to only a finite number of parties of the total system, so that one has
to take somehow into account the interaction with the unobserved parties.
This is equivalent to consider a statistical mixture of the parties we observe,
with weights depending on the interaction. Therefore we have to introduce
a formalism which is appropriate for dealing with mixed states: the density
operator.

1.2 Density Operator

Density operators arise in quantum theory as soon as we want to describe no
longer a single quantum object, but two or more. It is possible to arrive at
its properties in two different ways: following the state vector formalism of
quantum mechanics for the composite system and then looking at only one
party or starting from more general principles.

Let’s explore the first case relative to a bipartite system, but generaliza-
tions are straightforward. A general pure1 state of the total system can be
expressed as a vector |Ψ〉AB =

∑
ij aij|i〉A|j〉B in the Hilbert space having

{|i〉A ⊗ |j〉B} as an orthonormal basis. If we look at the expectation value
of a variable acting on A alone, MAB = MA ⊗ 1B, using the state vector
formalism, we can write

1this assumption is necessary as mixed states cannot be expressed by a vector
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〈M〉 = 〈Ψ|M |Ψ〉 = Tr(ρAMA)

In the last equality ρA =
∑

ijk aija
∗
jk|i〉A〈j|A ≡ TrB(|Ψ〉〈Ψ|) is the density

operator of party A, obtained by tracing the total density operator over the
states of party B. We will postpone the discussion of the formal properties
of density operators in the following, where an axiomatic approach will be
given; let’s just say now that the state of party A cannot be expressed by a
state vector, because in general it’s density operator, in the basis in which it
has a diagonal matrix representation, is given by

ρA =
∑

i

pi|φi〉〈φi| (1.4)

with 0 < pi ≤ 1 and
∑

i pi = 1. So ρA is not a projector on a one-
dimensional space, unless only one of the pi is different from zero. It follows
that ρA describes a pure state (and in that case state vector formalism is
applicable) only if Tr(ρ2

A) = 1; if, on the other hand, Tr(ρ2
A) < 1 then, from

eq.1.4, one says that system A is composed by an incoherent superposition
of states |φ〉A; that is, ρA describes an ensemble of pure quantum states each
occurring with probability pi.

In this framework we can see also the role of entanglement in the decoher-
ence process. Let’s assume we have access to a system A interacting with an
environment, system B. This interaction entangles the states of our system
A with the states of the environment; the latter however is constitute by a
huge number of degrees of freedom. Therefore, being in the impossibility to
monitor the environment, system A evolves in a state described by eq.1.4: a
statistical mixture.

The axiomatic way leading to density operator formalism starts with
Gleason’s theorem. A quantum state has to be an object on which mea-
surement can be defined consistently. Considering a set of orthogonal mea-
sures, described by projectors Ei, a quantum state p is a map that fulfills the
following conditions:

• 0 ≤ p(E) ≤ 1, with p(0) = 0 and p(1) = 1, meaning that if we make
no measure on state p we obtain 0, if we make all 1;

• if EiEj = 0 then p(Ei+Ei) = p(Ei)+p(Ei), meaning that, as orthogonal
projections are mutually exclusive, the probabilities assigned to their
outcomes must be additive
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Gleason’s theorem states that for Hilbert spaces with d ≥ 2, every map-
ping satisfies p(E) = Tr(ρE), where ρ is the density operator. The corner-
stone in the demonstration is the second requirement and it’s also the reason
of the lower bound on the dimensionality of Hilbert space, because in d = 2
there is only one projector satisfying this requirement and consequently there
are many different maps.

So density matrix formalism turns out to be the most general possible,
and every other description reduces to it. In order to be a density operator,
ρ needs to fulfill two conditions:

1. (unit trace) Tr (ρ) = 1

2. (positivity) ∀ |ϕ〉 ∈ H, 〈ϕ|ρ|ϕ〉 ≥ 0

The first condition is equivalent to a completeness relation, the second
implies that the density operator is hermitian. So to any isolated physical
system there is associated a density operator acting on the Hilbert space H
spanned by the eigenvectors of the density operator spectral decomposition;
the evolution of a closed system ρ is described by unitary operators

ρ(t2) = U(t2, t1)ρ(t1)U
†(t2, t1)

and measurements are described by hermitian operators Mm, where the capi-
tal letter is the observable being measured and the lower case is the outcome.
So mean values are obtained by 〈M〉 = Tr (ρM), the probability of the out-
come m is p(m) = Tr

(
M †

mMmρ
)

and the state of the system immediately

after the measurement is ρ = M†
mMmρ

Tr(M†
mMmρ)

.

1.2.1 Reduced Density Operator

Let’s consider a system S composed of many different parties and we act a
bipartition on it: S = A + B. The complete system is described by ρAB, but
we are interested (or we have access) only at one of them, say A. Therefore we
have to perform a partial trace operation (PT) on the total density operator
ρAB to obtain the reduced density operator describing the subsystem A:

ρA =
∑

i

〈i|ρAB|i〉 .
= TrB (ρAB)
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where {|i〉} is any orthonormal (O.N.) basis of party B. The reason for this
choice resides in the observation that PT is the unique operation that satisfies
the measurements requirement of observable quantities of subsystems. It
turns out that PT gives some insights into the nature of entangled states.
If we consider one of the pure Bell states and perform a PT, the reduced
density operator of both parties is 1

2
1, which is not a pure state, moreover it

is a completely mixed state.
An important property of density operator that will be used in the def-

inition of entanglement’s measures is that they form a convex subset of the
NxN hermitian matrix vector space as can be seen from eq.1.4, with pure
states on the boundary. So any point in the interior of the convex subset,
that is every mixed density matrix, can be expressed as a convex sum of pure
states.

1.2.2 Schmidt Decomposition

A useful expression for entanglement definitions of a bipartite pure state is
given by the Schmidt decomposition. A general pure state in HA ⊗ HB is
given by |Ψ〉AB =

∑
ij aij|i〉A|j〉B, which, in turns, can be written as

|Ψ〉AB =
∑

i

√
pi|i〉A|i′〉B (1.5)

where |i〉A and |i′〉B are O.N. basis of HA and HB respectively. Eq.1.5 is
the Schmidt decomposition of the given pure state, and, in general, it isn’t
possible to use the same O.N. basis to expand a different pure state |Φ〉
belonging to HAB because |i′〉 = p−

1
2

∑
j aij|j〉 so that the basis used in

eq.1.5 depends upon the pure state being expanded. Schmidt decomposition
reveals it’s utility in computing reduced density operators ρA and ρB, which
will be ρA =

∑
k pk|k〉〈k| and ρB =

∑
k pk|k′〉〈k′|. Both operators have the

same non zero eigenvalues and the number of them is the Schmidt number.
If this number is greater than one then the parties A and B are entangled,
otherwise they aren’t. This can be understood considering that in eq.1.5 a
Schmidt number equal to one means that |Ψ〉AB = |i〉A|i′〉B, so the pure state
is separable. Unfortunately there exist pure states of a n-partite system, with
n > 2, that don’t admit a Schmidt decomposition, so this is a tool only for
revealing entanglement in bipartite systems.

The systems with which quantum information theory (QIT) generally
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deals with are two-level systems: these are consistently described attributing
them a fictitious 1

2
spin, and in QIT one refers to them with the term qubit.

1.2.3 The Qubit

A qubit is the quantum analogue of the classical bit. As the classical bit it
can assume two values, say 0 and 1, when measured along some axis 2 but,
here’s quantum, it can be also in a superposition of the two states:

|qubit〉 = a|0〉+ b|1〉 ≡ cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (1.6)

A qubit belongs to the 2-dimensional Hilbert space H2 and all operations
on it, due to norm preservation, can be represented by 2x2 unitary matrices.
An irreducible representation of this group is given by the identity and the
Pauli matrices

σ0 =

(
1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(1.7)

A useful picture of single qubit density matrices, and of the operations
on them, is the Bloch ball, fig.1.1. For a single qubit the density matrix is a
2× 2 hermitian matrix having three independent parameters, thus the most
general ρ(1) can be expanded in the {1, σx, σy, σz} basis:

ρ(1) =
1

2

3∑
α=0

qασα (1.8)

where qα are the cartesian components of a vector related to the mean
values of the Pauli matrices: qα = 〈σα〉. The condition of positivity implies
that |q|2 ≤ 1, so to every point of the Bloch ball corresponds univocally a
single-qubit density matrix. Only the points on the boundary of the ball,
that is on the enveloping surface of the convex subset are pure states; on the
contrary the origin is a completely mixed state ρ = 1

2
1; the boundary to the

origin the state becomes more and more mixed.

2From now on we choose z as the quantization axis, and qubits measured in the σz

eigenstates basis are said to be expressed in the computational basis. Moreover we adopt

the conventions |↑〉 = |0〉 =
(

1
0

)
and |↓〉 = |1〉 =

(
0
1

)
.
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x

y

z

ρ

|0><0|

|1><1|

1/2 (|0>+|1>)(<0|+<1|)

1/2 (|0>+i|1>)(<0|+<1|i)

Figure 1.1: Bloch ball with some pure state density matrices in the σz basis.
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Two qubits density matrices belong to H4, and their operator expansion
representation in terms of Pauli matrices is

ρ(2) =
1

4

3∑

α,β=0

qαβσα ⊗ σβ (1.9)

where the 15 independent coefficients accounts for both single spin properties
and the correlations between spins: qαβ = 〈σασβ〉.

1.3 Entanglement Measures

In the previous sections we have described entanglement as the quantum
correlations that can reside in multipartite systems. Now we trace a more
precise and general distinction between classical and quantum correlation
than that due to Bell’s inequality. We define classical correlations those which
can be generated, between parties of a multipartite system, by performing a
class of operations that includes local quantum operations (on each party)
and classical communication (between parties), in brief LOCC. On the other
hand, quantum correlations, that is entanglement, are those which can’t be
generated by LOCC operations. It is possible also to re-state the latter
sentence in a stronger way: LOCC operations cannot increase the amount of
entanglement shared by the parties of a system3. As a corollary we obtain
that entanglement does not change under local unitary operations. In fact,
as local unitary operations can be inverted by local unitary operations, the
two states are related by a LOCC operation, therefore they must have the
same amount of entanglement.

By only a LOCC-based definition of entanglement descends that separable
states contain no entanglement, as they can be generated by use of LOCC
operations alone. On the contrary, all non-separable states are entangled.

Henceforth we focus only on entanglement between parties of a bipartite
system, for which a more exhaustive theory has been developed and because
in our work we have to deal only with bipartite entanglement. The first
step in order to define an entanglement measure is to realize whether there
exist states which are more entangled than others, and if there exists an
upper bound (the lower being zero) on the value entanglement takes. In the

3This monotony constraint allows the use of the term entanglement monotone for each
proposed entanglement measure satisfying the LOCC constraint.
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following the entanglement measures are divided into those referring to pure
states and those referring to mixed states.

In two-party systems composed of two fixed d-dimensional sub-systems,
referred to as qudits, it is possible to identify maximally entangled pure
states, given by

|Φ+
d 〉 =

1√
d

(|00〉+ |11〉+ ... + |d + 1 d + 1〉)

and local-unitarily equivalent states. If the bipartite system is composed
of qubits, the maximally entangled states becomes the Bell states, as previ-
ously reported4.

If the system is in a pure state, it has been proved that there exists an
unique measure of the entanglement shared among the parties: namely the
entropy of entanglement [7] or the von Neumann entropy

E(ρA) ≡ S(ρA) = −Tr (ρA log2 ρA) (1.10)

Due to Schmidt decomposition, the same amount results for E(ρB).

1.3.1 Entropy

Entropy had a central relevance long before quantum information theory;
it enters already in classical information theory after the work of Shannon,
who was concerned with the question: What is the rate of redundancy of a
message?

Answering this will be useful for compressing the original message and the
result is the noiseless coding theorem. It states that a message, i.e. a string
of n letters chosen from k letters {xk} each occurring with probability p(xk),
can be compressed to a message composed of nH(X) bits. The quantity
H(X) is known as Shannon entropy of the ensemble X = {x, p(x)}, eq.1.11
can be also seen as the average amount of information that a letter x chosen
from the ensemble carries.

H(X) = −
∑

k

p(xk) log2 p(xk) (1.11)

4The non-existence of a similar statement in multipartite systems is one of the difficul-
ties of a related entanglement measure theory.
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Figure 1.2: left: Binary entropy (eq.1.12) of a two-outcome random
variable; right: von Neumann entropy (eq.1.10) for ρ = p|0〉〈0| +
1−p
2

(|0〉+ |1〉) (〈0|+ 〈1|)). As quantum information can be encoded also in
non-orthogonal states the amount of information it carries is different from
the classical case where information is carried by, in principle, distinguishable
letters.

If we consider an ensemble made of only two letters, denoted by 0 and 1,
then Shannon entropy is given the name of binary entropy (fig.1.2).

H(p) = −(p log2 p + (1− p) log2(1− p)) (1.12)

Now let’s turn to QIT, assuming that the letters are quantum states char-
acterized by a density matrix ρx occuring with probability px. So Shannon
entropy becomes von Neumann entropy 5 given by eq.1.10

This quantity reduces to eq.1.11 if the ensemble is made of orthogonal
(commuting) density matrices; if, on the other hand, the ρx’s in ρ =

∑
pxρx

don’t commute among each other, there arise substantial differences (fig.1.2).
So if we consider maximally entangled pure bipartite systems, like the

Bell states, we have S(ρA) = S(ρB) = 1, on the other hand S(ρAB) = 0,
meaning that even if the joint system is completely known, the state of each
party is completely unknown.

5In eq.1.10 logarithms can be also taken in base d, with d given by the dimensionality
of the parties, in order to normalize entanglement; but if we consider the amount of
entanglement in a Bell state, and refer to it with the term ebit, then ebits can be considered
as a unit of measure of entanglement. So if the bipartite system is composed of parties A
and B, the quantity S(ρA) = −Tr (ρA log2 ρA) represents the number ebits they share.
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Von Neumann entropy is a natural entanglement measure as it fulfills the
subsequent requirement:

1. entanglement is an extensive property, so that if two systems are inde-
pendent E(AB) = E(A) + E(B);

2. entanglement is conserved under local unitary operations U , so that
E(A) = E(UA);

3. entanglement cannot increase (but can decrease) under local non-unitary
operations, e.g. a measurement;

4. entanglement can be concentrated and diluted with unit asymptotic ef-
ficiency by means of local actions and one-way classical communication
[8].

In QIT a few other entropy definitions can be quite useful

• quantum relative entropy S(ρA||ρB) ≡ Tr (ρA log ρA)− Tr (ρA log ρB),
for which the Klein’s inequality holds S(ρA||ρB) ≥ 0, with equality iff
ρA = ρB;

• quantum conditional entropy S(ρA|ρB) ≡ S(ρAB) − S(ρB), which is a
measure of our ignorance about system A once we know B;

• quantum mutual information S(ρA : ρB) ≡ S(ρB)− S(ρB|ρA) which is
a measure of the information about system A shared by system B.

Also in classical information theory one can define similar entropy mea-
sures (fig.1.3), where the role of von Neumann entropy is played by Shannon
entropy; but some properties, valid in CIT fails in QIT, due to entanglement.
Let’s consider the conditional entropy, which in CIT obeys H(A|B) ≥ 0, i.e.
H(A, B) ≥ H(A), with the intuitive meaning that the ignorance about the
composite state A+B cannot be less that the ignorance upon state A alone.
In QIT this is no longer true, for entangled parties of a pure bipartite state
S(ρA|ρB) < 0, as can be easily checked for Bell states.

A list of mathematical properties of von Neumann entropy is given, with
the remark that they are valid also for the entanglement measure of pure
states:
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Figure 1.3: Relationships between various entropies: the Shannon entropy
H(X), the conditional entropy H(X|Y ), and the mutual entropy H(X : Y ).
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non-negativity log D ≥ S(ρ) ≥ 0 with equality on the left (right) iff ρ
describes a completely mixed (pure) state, because there’s total (no)
lack of knowledge in a system described by a state vector;

invariance entropy is invariant under unitary change of basis S(Uρ U−1) =
S(ρ), since eigenvalues are also invariant under the transformation.

concavity S(
∑

piρi) ≥
∑

piS(ρi), where pi ≥ 0 and
∑

pi = 1, this arises
from the convexity of the logarithmic function and means that our
knowledge is greater if we have information about the preparation of
the quantum state

entropy of measurement 6 S(ρ′) ≥ S(ρ), where ρ′ and ρ describe the
system respectively after and before a projective measurement7, with
equality holding iff ρ′ = ρ. On the other hand, generalized measure-
ments 8 can decrease entropy.

subadditivity S(ρAB) ≤ S(ρA) + S(ρB) with equality iff ρAB = ρA ⊗ ρB.
This accounts for the presence of correlations9 between the two parties.

strong subadditivity S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC), where ρi de-
scribes the parties of a tripartite system. A lot of interesting entropy’s
properties can be derived from this inequality. One of them, for ex-
ample, is S(ρA) + S(ρB) ≤ S(ρAC) + S(ρBC), which is responsible for
the fact that even if S(ρA) ≥ S(ρAC) and S(ρB) ≥ S(ρBC) are both
possible, strong subadditivity negates this possibility to hold simulta-
neously.

1.3.2 Mixed-State Entanglement

The necessity of a measure of the amount of entanglement in a mixed state
comes from the aim to quantify entanglement also in the case where the
two parties are not component of a pure state. This is quite common as

6this holds only in the case we don’t acquire the result of the measure
7projective measurements are a special class of quantum measurement represented by

operators Mm for which holds, apart the usual completeness relation
∑

m M†
mMm = 1,

also the condition that they’re orthogonal projectors, that is MmMm′ = δmm′Mm
8generalized measurements are represented by operators which are not projectors
9Nevertheless it isn’t a signature of non-local quantum correlations as the same property

holds for Shannon entropy
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generally systems A and B are part of a bigger system which comprehends
the environment, and dynamical evolution of system A+B and E transforms
the possible initial pure state of A and B in a mixed one.

For parties of a mixed state a unique measure for entanglement doesn’t
exist; also the semi-quantitative Bell’s criterion fails as there are states which
don’t violate any Bell inequality and nevertheless exhibit non-local behaviour
[9].

In relation to a general mixed state ρAB three entanglement measures can
be defined:

1. entanglement of formation, EF , which gives the (asymptotic) number
of Bell states needed in order to generate ρAB;

2. entanglement of distillation with two-way communication, D2, giving
the (asymptotic) number of Bell states that can be extracted from ρAB

with the help of classical communication between the parties;

3. entanglement of distillation with one-way communication, D1, which
gives the (asymptotic) number of Bell states that can be extracted from
ρAB with the help of classical communication only from one party to
another.

It can be shown that EF ≥ D2 ≥ D1, with equality holding only for pure
states.

Entanglement of Formation

The definition of this measure requires the following iter:

1. the entanglement of formation of a bipartite pure state |Ψ〉 is the von
Neumann entropy of either the reduced density operators;

2. the entanglement of formation of an ensemble of bipartite pure states
E = {pi, |Ψ〉} is the ensemble average of the entanglement of formation
of the pure states of the ensembles;

3. the entanglement of formation of a bipartite mixed state is the mini-
mum of the above defined entanglement averages over all possible pure
states decomposition of the mixed state.
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Let’s illustrate with an example how does it work. The first point is
simply a redefinition of von Neumann entropy as entanglement of formation;
for the second and third point we consider a totally mixed bipartite system,
ρ = 1

4
1. Among all possible decomposition of ρ we need for our purpose only

two:

• ρ′ = 1
4
(|00〉〈00|+ |01〉〈01|+ |10〉〈10|+ |11〉〈11|)

• ρ′′ = 1
4
(|Ψ−〉〈Ψ−|+ |Ψ+〉〈Ψ+|+ |Φ−〉〈Φ−|+ |Φ+〉〈Φ+|)

The entanglement of formation of the first ensemble is identically zero, for
the second it is 1. Finally the third definition tells us that the mixed state ρ
has entanglement 0. So the complete expression for the entanglement shared
between parties of a mixed bipartite quantum system is given by

EF (ρ) = inf
(pk,|Ψk〉)

[∑

k

pkE (|Ψk〉〈Ψk|)
]

(1.13)

This measure involves a minimization procedure that can be not at all
simple to handle, but, if the two parties are two-level systems, Wootters [10]
has related the entanglement of formation to a quantity, the concurrence
C, which is easier to calculate. As EF relies on entanglement of pure states,
there’s a need for the relationship between entanglement of pure state, i.e. as
measured by von Neumann entropy, and concurrence: E(|Ψ〉) = E(C(|Ψ〉)),
where E(C) = h

(
1+
√

1−C2

2

)
and h(x) = −x log2 x − (1 − x) log2(1 − x), i.e.

the binary entropy of x. The function E is monotonically increasing from
0 to 1 as C goes from 0 to 1, so concurrence can be taken as a measure
of entanglement itself. The concurrence is defined in terms of the spin flip
transformation, which for a pure state of a single qubit gives the spin flipped
state ˜|Ψ〉 = σy|Ψ∗〉, corresponding to the time reversal transformation. For
the general state ρ of two qubits, the corresponding spin-flipped state is
ρ̃ = (σy ⊗ σy) ρ∗ (σy ⊗ σy). Finally the concurrence of a pure state of two
qubits is defined as C(Ψ) = |〈Ψ|Ψ̃〉|. If we refer instead to mixed states
described by the density matrix ρ, always in the computational basis, also
concurrence is given by C(ρ) = max[0, λ1 − λ2 − λ3 − λ4], where λi are
the square root of the eigenvalues, in decreasing order, of the non-hermitian
matrix R = ρρ̃ or, equivalently, the eigenvalues of the hermitian matrix
R′ =

√√
ρρ̃
√

ρ.
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Concurrence results a powerful tool in evaluating the entanglement be-
tween two qubits10 in a mixed state, but it can be possible, that entanglement
is shared between more than two parties [12]. Without entering the multi-
partite entanglement properties, we introduce only the concept of tangle.
Considering a pure state system composed of n qubits, partitioned so that
party A results composed of (n − 1) qubits and party B only from the i-
th qubit, then the total amount of entanglement between the two parties is
given as usual by the von Neumann entropy E(ρ(1)) = −Tr

(
ρ(1) log2 ρ(1)

)
,

where ρ(1) is the one-site density matrix of the partition B. One defines the
one-tangle [13] as τ 1(ρ(1)) = 4 det(ρ(1)) and its relation to von Neumann’s
entropy is exactly the same as for concurrence. In the tangle-measure of en-
tanglement between the qubit i and the (n−1) qubit are contained all forms
of possible entanglement, the pairwise one, as measured by concurrence, as
well as the multipartite one, moreover it is an additive quantity. So the fol-
lowing CKW inequality arises:

∑
j 6=i C

2
ij ≤ τ

(1)
i . It’s meaning is that on the

left side is reported the pairwise entanglement between qubit i and each of
the remaining qubits, on the right its total amount of entanglement.

Entanglement of Distillation

For this entanglement measure an expression like eq.1.13 isn’t known, but
upper and lower bound are obtainable. The upper bound is given just by EF ,
because it is a non-increasing quantity under LOCC; lower bound depends
on the entanglement purification protocol (EPP) chosen.

1.4 Quantum Operations

As seen previously, entanglement measures rely on the density operator for-
malism; also it is useful to introduce a class of operations, {E}, acting on the
density operator vector space such that E : E(ρ) = ρ′ describes a stochas-
tic evolution of the quantum system. Following an axiomatic approach we
require the map E to fulfill the following requirements:

1. 0 ≤ Tr(E(ρ)) ≤ 1, defining Tr(E(ρ)) as the probability that the process
represented by E takes place.

10if the parties are not qubits but higher-dimensional systems concurrence has been
generalized to I-concurrence [11]
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2. E(
∑

i piρi) =
∑

i piE(ρi), that is, E is a convex-linear map

3. E is a completely positive map, meaning that if ρAB is a density operator
of the joint system A+B, then also E(ρAB) must be a density operator,
where E(ρAB) = 1A ⊗ EB. An example of a positive map, but not
completely positive, is given by the transposition operation on a single
qubit.

A theorem states that a map, in order to satisfy these requirements, must
admit an operator-sum representation

E(ρ) =
∑

k

EkρE†
k (1.14)

where the set of operators Ek maps the input n-dimensional Hilbert space
to the m-dimensional Hilbert space; and satisfy

∑nm
k=1 E†

kEk ≤ 1. If equality
holds the map is said trace-preserving, as happens for trace and partial trace
operations.

The outlined formalism is useful when dealing with open quantum sys-
tems: the evolution of the parties may not be unitary and it is described by
the map

E(ρA) = TrE

(
U (ρA ⊗ ρE) U †) (1.15)

where the assumption has been made that the bipartite system, composed
of system A, which we generally access, and system E, the environment,
forms a closed system and starts its evolution in a product state. This last
assumption isn’t generally true, because A and E interact also before we start
to observe them and correlations are built up, but they can be washed out as
soon as the experimentalist prepares the observed system in a definite state.

Eq.1.15 can be put in an operator-sum representation like eq.1.14 involv-
ing only operators acting on the Hilbert space of system A. Assuming that
the environment starts in a pure11 state, |e0〉 belonging to the O.N. basis
{|ek〉}, then the operators elements of the map are Ek = 〈ek|U |e0〉 acting on
system A.

Following a system-environment interpretation of quantum operations
formalism, we discuss the situation in which our system is composed from

11also this assumption isn’t generally true, but it is possible to introduce an auxiliary
system purifying the environment into the desired pure state
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Figure 1.4: evolution of a closed system (left) an open system (right) left
unobserved. The density matrix describing the total system (left) evolves
by means of unitary operators, whereas the evolution of a party of the total
system (right) exhibits a non-unitary evolution.

one qubit undergoing some kind of trace-preserving quantum operation due
to his coupling to the environment, which acts like a quantum channel.

Depolarizing Channel

In this case the environment acts on the qubit causing an evolution to a
completely mixed state: E(ρ) = 1

2
1. The operator sum representation is

given by the set {√1− p1,
√

p
3
σx,

√
p
3
σy,

√
p
3
σz} where p is the probability

that one of the possible one-qubit operations took place;

Phase Damping Channel

In this case environment causes the evolution of the qubit in a statistical
mixture of states, i.e. it induces the decay of the off-diagonal terms of ρ
in the so-called pointer basis12 {|i〉}: E(ρ) =

∑
i pi|i〉〈i|. Its operator sum

representation is given by

{√
1− p1,

√
p

(
1 0
0 0

)
,
√

p

(
0 0
0 1

)}

12the basis that diagonalizes the observable(s) of the qubit involved in the system-
environment interaction
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Amplitude Damping Channel

In this case the environment causes the spin to relax in his ground state |1〉,
after t →∞, via an energy dissipation process:E(ρ) = |1〉〈1|. The connected
representation is

{(
1 0
0
√

1− p

)
,

(
0
√

p
0 0

)}

As we will see in the next chapter the spin chain driven by the XX interactions
acts like an amplitude damping channel, but the introduction of a defect can
significatively reduce this effect.

1.4.1 Fidelity

One of the most import tasks in order to realize quantum information based
devices is the transfer of a quantum state in the space-time domain with
an high degree of similarity between the input and the output states. So
the necessity arises of the definition of a measure reporting how much two
quantum states, ρ(t) and ρ′(t′), resemble each other. A natural approach
to this measure is the usual concept of distance, between quantum states in
the Hilbert space. For finite-dimensional systems one can define the trace
distance

D(ρ(t), ρ′(t′)) ≡ 1

2
‖ρ− ρ′‖ (1.16)

where ‖.‖ denotes the trace norm

‖A‖ ≡ Tr(
√

A†A)

where the positive value of the square root has to be taken.
Applying the definition to two qubits described by eq.1.8 one obtains

D(ρ, ρ′) = 1
2
|∑α (qα − q′α) |, i.e. half the euclidean distance of the Bloch

vectors. Some important theorems of trace-distance eq.1.16 are:

• D(ρ, ρ′) = D(UρU †, Uρ′U †), ∀U unitary. It can be understood thinking
at unitary operators as a rotation of the Bloch ball.

• D(E(ρ), E(ρ′)) ≤ D(ρ, ρ′) for all E trace preserving quantum operations.
An important case is given when the quantum operation E is the partial
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trace, D(E(ρA), E(ρ′A)) ≤ D(ρAB, ρ′AB), meaning that distinguishing
quantum states becomes harder having less information.

Trace distance defines a metric on density operator’s Hilbert space, but
in many applications it turns out to be simpler to relate the closeness of
quantum state to another quantity, the fidelity.

F (ρ, ρ′) ≡ Tr

(√(√
ρ′
√

ρ
)† (√

ρ′
√

ρ
))

(1.17)

Although fidelity isn’t a metric, it has features similar to those of trace
distance.

• F (Uρ U †, Uρ′ U †) = F (ρ, ρ′), where U is an unitary operator;

• F (E(ρ), E(ρ′)) ≥ F (ρ, ρ′) for all E trace preserving quantum operations.
The inequality is reversed with respect to trace distance, because in-
creasing fidelity means that the states are more similar.

If we look for the distance between a generic state ρ′ and a pure one,
ρ = |Ψ〉〈Ψ|, eq.1.17 gives

F (ρ, ρ′) = 〈Ψ|ρ′|Ψ〉 (1.18)

if also ρ′ = |Φ〉〈Φ|, F (ρ, ρ′) = |〈Ψ|Φ〉|2. The relation between the trace
distance and the fidelity is given by

1− F (ρ, ρ′) ≤ D(ρ, ρ′) ≤
√

1− F (ρ, ρ′)2

1.5 Application of Entanglement

As entanglement concept is a peculiar feature of quantum mechanics, it has
widely-spread applications, both theoretical and technological ones. For the
latter it’s useful to stress that in any quantum communication experiment the
aim of distributing quantum particles between different places is equivalent
of distributing entanglement among the same places. In the sense that if we
could transport a quantum state without any decoherence, then the amount
of entanglement shared by the same state is perfectly distributed too. In
the reverse sense, if the entanglement shared by quantum states could be
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distributed perfectly, then, with a small amount of classical communication,
we could use teleportation to achieve perfect quantum-state transfer.

The use of entanglement in technological applications relies in its use as a
resource, in the sense that there are no other ways to achieve the same result,
that is the generation of what has been defined as quantum correlations:
entanglement cannot increase by LOCC alone (sec.1.3.1).

Entanglement as a theoretical tool in our world’s investigation is mo-
tivated by the role quantum correlations play in a great variety of physical
phenomena: from environment-induced decoherence, offering an explanation,
although not exhaustive, of the emergence of the classical world, to many-
particle quantum physics, where collective behaviour (e.g. quantum phase
transitions) and particle correlations are strongly related.

In the following we review briefly some proposed entanglement applica-
tions, limiting our discussion only to scenarios involving pure states, but no
generality is loss because of the possibility to perform purification protocols
on mixed states in order to concentrate entanglement into pure states.

1.5.1 Dense Coding

Suppose Alice and Bob share one party of a maximally entangled state, say
|Ψ−〉, and Alice wants to send two bit of information by sending only one
qubit. She can achieve this task[14] sending his member of the |Ψ−〉 state.
Effectively she can perform four types of operations on her party transforming
the initial EPR state into another one

1|Ψ−〉 = |Ψ−〉 σx|Ψ−〉 = |Φ−〉 σy|Ψ−〉 = −|Φ+〉 σz|Ψ−〉 = −|Ψ+〉
Then she sends the qubit in her possession to Bob who can perfectly

distinguish between the four orthonormal Bell states, with an appropriate
measure, which one he received. Recalling that 2 bit of classical information
reside in a Bell state a dense coding protocol has been performed.

1.5.2 Teleportation

Suppose Alice and Bob share one party of a maximally entangled state, let’s
say |Ψ+〉; but now Alice wants to send to Bob an unknown quantum state

|ϕ〉 = α|0〉+ β|1〉 (1.19)

22



using only classical communication channels. Again she will be able to
achieve this task using entanglement properties[15]. The initial state of the
three qubits, Alice having only the first two, is

|Υ〉 =
1√
2

(α|0〉 (|01〉+ |10〉) + β|1〉 (|01〉+ |10〉))

Applying a C-NOT gate on her qubits the state becomes

|Υ1〉 =
1√
2

(α|0〉 (|01〉+ |10〉) + β|1〉 (|11〉+ |00〉))

applying a Hadamard gate on the first qubit

|Υ2〉 =
1

2
(α (|0〉+ |1〉) (|01〉+ |10〉) + β (|0〉 − |1〉) (|11〉+ |00〉))

Finally, simply rearranging the terms,

|Υ2〉 =
1

2
(|00〉 (α|1〉+ β|0〉) + |01〉 (α|0〉+ β|1〉) + |10〉 (α|1〉 − β|0〉) + |11〉 (α|0〉 − β|1〉))

Now Alice performs a measurement in the computational basis of two qubits
and sends two bits to Bob via a classical communication channel telling him
the outcome. Depending on this, Bob performs simply single qubit operations
and retrieves the state described by eq.1.19.

1.5.3 Quantum Key Distribution

Cryptography deals with the task to exchange information between parties
in a way that unwanted eavesdroppers cannot acquire any information from
the message they eventually intercepted. One basic protocol for this goal is
to encode the message in a not understandable way for the eavesdropper,
but, in order to be understandable for the receiver, the message has also
to be decoded. This can be accomplished with a key known to Alice (the
sender) and Bob (the receiver) alone. The secretness of the key is also the
central point in cryptography. If Alice and Bob could met, they exchange
a private key; otherwise they have to use public key distribution protocols,
and entanglement turns out to be very useful. A possible entanglement-
based public key distribution protocol relies on the condition Alice and Bob
share initially a certain amount of entanglement, say n number of singlet
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states. Then both perform a measurement of the their own qubit in the z
or x basis, chosen randomly. After they announce publicly the observable
they measured, but not the outcome, which results anti-correlated if the
measurement was performed in the same basis: so they established their
shared random key. Other QKD protocols, like the BB84, doesn’t even rely
on the initial entanglement sharing.

1.5.4 Entanglement and Quantum Phase Transition

Apart from being a resource for different technological devices and a central
epistemological question about the nature of quantum physics, entanglement
can be seen also as a methodological approach to several physical phenomena.
Here we consider the relationship between entanglement and quantum phase
transitions (QPT).

A QPT takes place, at zero temperature, in a many-body system when
a qualitative change in its ground state occurs by tuning a parameter of
the system’s hamiltonian. The nature of the fluctuations in a QPT is fully
quantum and at the critical point of the value of the parameter, long-range
correlations appear. If these quantum long-range correlations exhibit an
entanglement content is still under investigation and a general theory has, at
present-days, not been proposed. Here we outline the role of entanglement
in the transverse Ising model.

A well known [16][17] system undergoing QPT is the 1D XY spin 1
2

model
in a transverse magnetic field

H = −
N−1∑
n=0

(
σn

z +
λ

2

(
(1 + γ) σn

xσn+1
x + (1− γ) σn

y σn+1
y

))
(1.20)

The system described by eq.1.20 exhibits different behaviour according to the
degree of anisotropy γ and the ratio of the exchange coupling and the external
fields strength λ = J

h
. For γ = 1 one obtains the transverse Ising model which

is the simplest quantum lattice system undergoing a second order QPT at
λ = 1, with the magnetization 〈σx〉 playing the role of the order parameter
distinguishing the paramagnetic phase with 〈σx〉 = 0 and λ < 1 from the
ferromagnetic one where 〈σx〉 6= 0 and λ > 1. It has been shown that
concurrence between nearest neighbours is maximum at the critical point
where a logarithmic divergence is present for its derivative respect to λ.
Furthermore, entanglement shows finite-size scaling near the critical point,
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that is concurrence for finite-size systems diverges logarithmically with the
number of spins N . But unlike quantum correlations between spins, which
at the critical point are of infinite range, concurrence doesn’t extend over
next-nearest neighbours, indicating that the non-local part of the two point
correlation occurring at the QPT point is not truly significative.
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Chapter 2

Spin Systems

As seen in the previous chapter, entanglement generation and distribution is
the main ingredient of many quantum-information tasks; therefore, as entan-
glement between parties is generated only through their direct interaction,
entanglement or quantum state-transfer schemes are needed in almost all
quantum information protocols.

Indeed, the problem of designing quantum networks which enable efficient
and high-fidelity transfer of quantum states has been addressed by a number
of authors, especially focusing on the requirement of minimal control. That
means that state-transfer should be achieved without many control opera-
tions, such as switching on and off the interactions, measuring, encoding or
decoding [18, 19, 20, 21, 22, 23, 24].

In this respect, spin systems provide ideal models to study the dynamics
of quantum coherence and entanglement as they can be naturally thought as
qubit registers and exploited as quantum channels (or coherent data bus).
Spin chains with fixed interactions have been considered [18], and solid state
implementations have been already put forward [19]. By suitable modifica-
tions of the set-up proposed by Bose in [18], it has been shown that perfect
transfer can be achieved in many ways: 1) by performing local measurement
at the other sites [21], 2) by using several spin chains in parallel [22], 3) by
employing local memories at the receiver side [23], or 4) by means of a spatial
modulation of the spin coupling strengths [24]. For this latter case, the effect
of static errors in the engineering of the qubit chain has been analyzed in
[25], where a scaling relation has been obtained for the transmission fidelity
as a function of the degree of imperfection.

Apart from this latter example, considerable attention has been devoted
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to study the effect of disorder in spin systems from the point of view of quan-
tum information theory. Perturbative, numerical, and Bethe-Ansatz-based
investigations of entanglement between two defects have been performed for a
disordered anti-ferromagnetic spin-1/2 chain with anisotropic exchange cou-
pling, [26, 27, 28]. A possibility of tuning the ground state entanglement
by a single off-diagonal impurity in the anisotropic XY model has also been
considered [29]. Diagonal disorder has also been considered as a mean to
localize entanglement in [30]. However, the effect of the presence of defects
(or, in a more solid-state oriented language, “impurities”) in the transmission
of a quantum state has not been analyzed in detail

It is well known that disorder can lead to a spatial localization of the
electronic wave function [31], and this occurs even if there’s only a single
impurity in one and two-dimensional systems described by a tight-binding
hamiltonian [32]. That’s precisely the effect that will be discussed in the
following.

This chapter begins a brief overview of different spin hamiltonians, then
we focus on the one-dimensional XX hamiltonian and review some of its
physical implementations; next, by use of the Green’s operator formalism,
we solve this system in presence of a single diagonal defect. In many of
the existing physical implementations, starting from a homogeneous system,
diagonal defects can be “artificially created” by controlling some external
parameter, an ability which is essential to perform one-qubit gates. This
amounts to discuss a chain in which the qubit level spacing is equal at every
site but one. We see that this system exhibits a localized eigenstate, which
can become also the ground state via a first-order quantum phase transition.

In sec.2.5 the entanglement properties of this localized ground state is
analyzed. In sec.2.6 fidelity and entanglement measure are derived for our
model; then, quantum-state storage and transfer are addressed, showing how
the impurity site can be used both as 1.) a truly physical place to store a
quantum state or entanglement with an external spin (sec.2.7) and 2.) as an
entanglement mirror, where entanglement waves can be reflected backwards,
sec.2.8.

Finally, another diagonal impurity is added (sec.3) to the system, which
gives rise (1) to a non-zero ground-state entanglement between the two im-
purities; and, referring to quantum-state transmission, (2) to bouncing of
entanglement between an external spin and the two impurities as well as
(3) to the possibility of trapping the entanglement waves in a finite region
bounded by the two defects.
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2.1 Spin Hamiltonian

A general spin interaction hamiltonian of two level-systems over a lattice is

H = −
∑

n,m;α,β

Jαβ
nm(t)σn

ασm
β (2.1)

where J is the exchange coupling, σ’s are the Pauli matrices, α, β runs
over the cartesian axes x, y, z and n,m are the spin position labels on the
lattice. This kind of hamiltonian describes a great variety of physical systems
with properties changing dramatically as the type or the dimensionality of
the lattice, the strength of the coupling or other parameters varies.

If one considers a vector-like, time-independent, nearest-neighbours and
homogeneous interaction between spins, eq.2.1 reduces to the class of Heisen-
berg hamiltonian [33]

H = −
∑

〈nm〉;α
Jασn

ασm
α (2.2)

where 〈·〉 denotes next-neighbours sites. Because of the magnetic origin
of this hamiltonian, the coupling J > 0 is said ferromagnetic, as it tends to
align parallel spins, while J < 0 anti-ferromagnetic.

Even if this hamiltonian is innocent looking, nevertheless is it a formidable
task to solve it analytically. The reason is that the spin operators are neither
bosons nor fermions, in fact they obey peculiar commutations rules

[
σn

x , σm
y

]
= 2iεijkσn

k δnm

To show this point in more detail let’s introduce raising and lowering
operators at each lattice site

{
σ+ = σx+iσy

2

σ− = σx−iσy

2

If we denote the two spin states as |0〉 and |1〉, their action is to increase
(decrease) by one unit the z quantum number of the spin
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σ+|1〉 = |0〉 σ+|0〉 = 0
σ−|1〉 = 0 σ−|0〉 = |1〉

and the following commutation relations hold

[
σn

+, σm
−

]
= σn

z δnm

[
σn

z , σm
+

]
= 2σn

+δnm

[
σn

z , σm
−

]
= −2σn

−δnm

so that the operators satisfy boson commutation rules on different sites,
but on the same site they behave like fermions

{
σn

+, σn
−
}

= 1

For 1D spin arrays with isotropic exchange coupling, that is Jx = Jy = Jz,
a solution of eq.2.2 can be found using the Bethe-Ansatz. It’s applicability
relies on two symmetries of the hamiltonian: the rotational and the trans-
lational one. The first one reflects the invariance of the hamiltonian with
respect to continuous rotations around the z axis and implies the conserva-
tion of z component of the total spin along the same direction, the second
one involves the invariance of the hamiltonian by discrete translation of any
number of lattice spacing and implies that the eigenstates of the hamiltonian
have to be also eigenvectors of the momentum operator. For coupling con-
stants which differs along the axis, Bethe-Ansatz is still a valid technique if
the two symmetries hold, i.e. the XXZ and the XX model1 and the Ising
model where Jx = Jy = 0, even if one adds an uniform external magnetic field
along some direction. On the contrary, for the XY and XY Z model Bethe-
Ansatz cannot be used because of the absence of the rotational symmetry.
In the XY case (Jx 6= Jy, Jz = 0) a diagonalization technique, involving the
Jordan-Wigner transformation, permits to reduce the hamiltonian to that of
spinless non-interacting fermions, thus easy to diagonalize, even in presence
of an uniform external magnetic field [34].

If we go to higher dimensions the eigenvalue problem given by the hamil-
tonian of eq.2.2 becomes considerably more difficult to solve. If we deal with
an Ising model a solution, without any additional magnetic field, was given

1the different hamiltonians arising from the Heisenberg model will be denoted in the
following with capital letters along the axis where the interaction between spins is present,
and in the case where it is equal the letter is repeated.
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by Onsager for 2D systems; for the XXZ and the XX model generalized
Jordan-Wigner transformation permits to solve the eigenvalue problem for
every lattice dimensionality [35][36].

Henceforth we refer to the 1D XX model, with ferromagnetic coupling,
placed in an external magnetic field h overall uniform and we assume periodic
boundary conditions (that is the last spin identifies with the first one, σ

N
2 =

σ−
N
2 ):

H = −h

N
2
−1∑

n=−N
2

σn
z − J

N
2
−1∑

n=−N
2

(
σn

xσn+1
x + σn

y σn+1
y

)

in the {σ+, σ−, σz} representation (the summation henceforth is intended
over the same range, if not otherwise reported)

H = −h
∑

n

σn
z − 2J

∑
n

(
σn

+σn+1
− + σn+1

+ σn
−
)

(2.3)

The physics of this hamiltonian is well known; translational invariance
and rotational symmetry around z direction allows the use of the Bethe
Ansatz. So eq.2.3 can be diagonalized in the invariants Hilbert subspaces
Hm, with m giving the number of excitations, i.e. spin reversed along the
z direction, therefore the solution space is given by Hsol = ⊕mHm (fig.2.1),
with

H0 = {|000..00〉︸ ︷︷ ︸
N

≡ {|0〉} (2.4)

H1 = {|100..00〉︸ ︷︷ ︸
N

, |010..00〉︸ ︷︷ ︸
N

, ...} ≡ {|n〉} (2.5)

...
... (2.6)

HN = {|111..11〉︸ ︷︷ ︸
N

} ≡ {|N〉} (2.7)

where |n〉 denotes the n− th spin reversed in the ring.
In H0 there is only one eigenstate given by |0〉⊗N , with E0 = −Nh.

It corresponds to a state with all spin pointing in the positive z direction.
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Figure 2.1: (left) Hilbert space H0 has only one state where all spins are
pointing in the same direction (the quantization axis given by the applied
magnetic field); (right) Hilbert space H1 has as many states as the number
of spins; each state is expressed in the computational basis by |n〉, referred to
the state with the n-th spin reversed. The spin l refers to the site on which,
in the next section, an inhomogeneity will be placed.
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In the Hilbert space sector H1 where one spin is pointing downwards, the
eigenstates are given by

|k〉 =
1√
N

∑
n

e
2πikn

N |n〉

where |n〉 indicates that the spin labeled by n is in the |1〉 state. These
eigenstates represents plane waves and usually are referred to as magnons,
whose energy is Ek = −(N − 2)h− 4J cos(2πk

N
) with k running from −N

2
to

N
2

by unit steps2. In this Hilbert subspace the hamiltonian 2.3 is equivalent
to a tight-binding model.

In the thermodynamic limit, the system exhibits a quantum phase tran-
sition (QPT), driven by the dimensionless coupling γ = h

2J
. For γ < 1 the

ground state is given by |0〉⊗N , but, for γ equal to its critical value of 1,
the ground state becomes degenerate because the state |0〉⊗N and the state
|k = 0〉 = 1√

N

∑ |n〉, belonging to the Hilbert space sector of one excitation,
have the same energy. For γ > γc the ground state involves many-excitations
sectors of the Hilbert space.

2.2 1D Spin Chain with Defects

Now we introduce a diagonal defect in the ring structure, that is we change
the uniform external magnetic field along the z axis by an amount εi on the
i-th site. The new hamiltonian is

H = −h
∑

n

σn
z − J

∑
n

(σn
xσn+1

x + σn
y σn+1

y )−
∑

i

εi σ
i
z (2.8)

which can be written in the subsequent form, reminding that σi
+σi

− =
|i〉〈i|

H = −h
∑

n

σn
z − 2J

∑
n

(σn
+σn+1

− + σn+1
+ σn

−) +
∑

i

εi − 2
∑

i

εi σ
i
+σi

− (2.9)

Rotational symmetry still holds for this hamiltonian, so the z-component
of the total spin continues to be conserved and the structure of the solution’s

2As we will go over N →∞, we have set N − 1 → N in the previous expressions.
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Hilbert space is the same as for the hamiltonian of eq.2.3; but translational
symmetry is broken and therefore the eigenstates of eq.2.3 are no more eigen-
states of the defected hamiltonian. Before presenting the solution of the new
eigenvalue problem, a few physical systems described by this kind of hamil-
tonian are presented and, as Green’s operators technique will be employed,
a brief overview of their properties is given.

2.2.1 Physical Systems Described by the Hamiltonian

Several different physical systems are described by the hamiltonian of eq.2.9
(or reduce to it in the subspace H1, where an additional interaction Jzσ

n
z σn+1

z

produces only an irrelevant energy shift) and some of them are also experi-
mentally realizable with present-day technologies.

In [19] a 1D Josephson junctions [37] array is presented in which the
qubit is represented by the a Cooper pair box, fig.2.2, and a recently realized
super-conducting tunnel junction circuit [38] exhibits also the possibility to
control single qubits dynamics, so that diagonal defect control, described by
the last term in the hamiltonian 2.9, can be achieved. A Josephson junction
array of length L is described by an hamiltonian

H =
1

2

L∑
ij

(Qi −Qxi)C
−1
ij (Qj −Qxj)− EJ

L−1∑
i

cos(φi − φi+1) (2.10)

where the first term is the charging energy due to the applied voltage, with
Qi the charge of the i-th junction and Cij the capacitance matrix, the second
term accounts for the tunneling of the Cooper pair. In the regime e2C−1

00 À
EJ the hamiltonian 2.10 reduces to the XXZ spin-1

2
model [39].

Another possibility is to use cold atoms in optical lattices. In the last
decades laser techniques advances, such as laser cooling of Fermi and Bose
gases, atoms and ions trapping and many else, permits to realize physi-
cal systems accurately described by spin-type hamiltonians[40]. The exper-
imental protocol of these techniques starts by trapping the atomic gas with
magneto-(optical) devices and then superimpose on the trap the lattice po-
tential generated by the lasers. Atomic systems in optical lattices presents
the advantage with respect to solid-state devices of the precise knowledge of
the model hamiltonian, manipulation of its coupling constants and genera-
tion of controllable disorder, in addition of the possibility to realize a great
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Figure 2.2: Dashed box: one-dimensional Josephson array proposed for the
transmission of quantum states. The crossed rectangles denote the Josephson
junction between the islands. The state prepared on the left-most island is
transferred to the right by the time evolution generated by the hamiltonian.
On the left and the right are present respectively the Cooper-pair box used
to prepare the state and the measurement device.
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Figure 2.3: The optical potential resulting from the interference of a plane
wave with a LG mode in which 14 sites has been realized.

variety of different optical lattices. In [41], for example, a perfect 1D ring
has been obtained by interference of a plane wave with Laguerre-Gauss laser
modes, fig.2.3, and, loading fermionic atoms into this optical ring-shaped
lattice, realizes an hamiltonian that, by tuning the laser frequencies within
the atomic fine structure, reduces also to the XXZ model. Starting from
Bose-Einstein condensates (BEC) it has been possible to store approximately
up to two atoms per site.

Another experimental implementation of the hamiltonian 2.9 has been
realized with electrons floating on a liquid helium thin surface [42].
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2.3 Green’s Function

The use of Green’s operators turns out to be very useful in many ways, here
we discuss only their application in a context where the hamiltonian is time-
independent and the results connected to the Dyson series. Green’s operator
is defined by

(z − L)G(z) = 1 (2.11)

where z is a complex number, L is a linear, time-independent hermi-
tian operator, which we shall assume to be the hamiltonian, and G(z) is its
Green’s operator. In the position-representation definition 2.11 reads as a
inhomogeneous differential equation

(z − L(r))G(r, r′; z) = δ(r − r′) (2.12)

In the following the hamiltonian operator H is assumed to have a complete
set of eigenvectors {|ψk〉}, with eigenvalues {Ek}, where the index k can
assume both discrete and continuous values.

Solving eq.2.11 formally one obtains, if z 6= {Ek}

G(z) =
1

z −H
=

∑

k

|ψk〉〈ψk|
z − Ek

+

∫
dk′
|ψk′〉〈ψk′|
z − Ek′

where in the last equation the so-called eigenfunction decomposition tech-
nique has been used with k and k′ referring respectively to the discrete and
the continuous spectrum of H. From this last equation one sees that G(z) is
analytic in the complex-z plane except for two cases:

• at the points where z is equal to a discrete eigenvalue Ek;

• at the portions of the real axis where z equals Ek′ .

In the first case the simple poles of G(z) give the discrete eigenenergies
of H and information about the corresponding eigenvectors can be found
computing the residue at z = Ek

Res[G(z), Ek] =
∑

i

|ψi〉〈ψi| (2.13)
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with the summations running over the degeneracy of the eigenvalue Ek.
In the second case Green’s operator is not well defined cause of the pres-

ence of the pole in the integrand, but one can use a limiting procedure

G±(z) = lim
ε→0+

G(z ± iε) (2.14)

The two limits exist but are not the same, so the continuous spectrum
is revealed by a branch cut, Ib, along the real axis in the z plane. The
corresponding eigenvectors are delocalized in the space domain, i.e. they
don’t decay with r →∞.

It is also possible that the two side limits defined by eq.2.14 don’t exist,
then the corresponding singularities on the real axis denote a so-called natural
boundary and the corresponding eigenstates are localized. As in our work
we encounter the first situation, we briefly outline the description of the
construction of the extended eigenvectors in the case we wish to solve the
following eigenvalue problem

(E −H)|ψ(E)〉 = 0 (2.15)

where E belongs to the branch cut.
To accomplish this task some elements of time-independent perturbation

theory are required, leading to the Dyson series expansion. We assume that
H in eq.2.15 can be written in the form H = H0 + HI , and that a spectral
decomposition of H0 is given. So Dyson expansion of the Green’s operator
G of the full hamiltonian H in terms of HI and the Green’s operator of H0

is

G = G0 + G0HIG0 + G0HIG0HIG0 + · · · = G0 + G0HIG = G0 + GHIG0

(2.16)

Frequently, when dealing with scattering processes for instance, it is useful
to introduce the so-called T matrix, whose definition is





T (z) = HIG(z)(z −H0) z 6= Ib

T±(z) = HIG
±(z)(z −H0) z ∈ Ib

(2.17)
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Also for the T matrix a Dyson expansion is possible and gives

T (z) = HI + HIG0HI + HIG0HIG0HI · · · = HI + HIGHI = HI + HIG0T = HI + TG0HI

(2.18)

Finally the relation between the Green operator of the full hamiltonian
and the T matrix is given by

G(z) = G0(z) + G0(z)T (z)G0(z) (2.19)

From this last expression it is evident that, under the condition that G0(z)
is known, the T matrix fully determines the Green operator. In fact, they
have the same analytical structure, so that the poles and the branch cuts of
T have the same meaning as those of G.

With these new instruments we can now face the problem of the deter-
mination of the continuous eigenstates

|Ψ±〉 = |ψk′〉+ G±
0 T±|ψk′〉 = |ψk′〉+ G±HI |ψk′〉 (2.20)

where the ± sign refers to eigenstates obtained using the corresponding G±

operator and accounts for different physical processes, like in scattering where
the minus sign solution is excluded as representing meaningless ingoing spher-
ical waves towards the scattering center.

2.4 The XX Model with One Defect

In the framework of Green operator perturbation theory we can now find
the spectral resolution of the hamiltonian given by eq.2.9 when only a single
defect is present at l = 0, with some constant factors re-scaled for further
convenience and the coupling constant J set as energy unit

H0 = −ω0

2

∑
n

σn
z −

∑
n

(σn
+σn+1

− + σn+1
+ σn

−) +
α

2
(2.21)

HI = −α σl
+σl

− (2.22)

The solution of the unperturbed hamiltonian (eq.2.21) presents the same
structure of solution’s Hilbert space as given by eq.2.3, and the effect of
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the last term is only an energy shift by α
2

upon the eigenvalues with the
eigenvectors left unchanged. Without loss of generality, we re-scale E0 =
−Nω0+α

2
to zero, so that in the one-excitation sector we have E1 = ω0−cos 2πk

N
.

The mechanism outlined in sect.2.3 requires initially the Green operator
for the unperturbed hamiltonian

G0(z) =
1

z −H0

=
∑

k

|k〉〈k|
z − Ek

(2.23)

In the thermodynamic limit, N →∞, L →∞ and N
L

= cost, the discrete
index k = 2π

N
becomes continuous and the discrete levels merge into a con-

tinuous band: E(k) ∈ [ω0 − 1, ω0 + 1] = Ib, which is revealed by the branch
cut on the real axis in the z-complex plane.

Now we can write down explicitly the matrix element of G0 in the com-
putational basis of H1

G0(r, s; z) =
1

2π

∫ π

−π

dθ
exp[iθ(r − s)]

z − ω0 + cos θ
=





G0(r, s; z) = (−x+
√

x2−1)|r−s|
√

x2−1
z 6= Ib

G±
0 (r, s; z) = (−x±i

√
1−x2)|r−s|

±i
√

1−x2 z ∈ Ib

(2.24)

where x = z − ω0.
Taking into account the perturbation HI of eq.2.21, and using expressions

2.18 and 2.16, the right-hand side terms can be re-summed exactly due to
the diagonal form of HI in the one-excitation sector

T (z) = |l〉 α

1 + αG0(l, l; z)
〈l| = |l〉tl〈l| (2.25)

G(z) = G0(z)−G0(z)T (z)G0(z) (2.26)

The matrix elements of the G operator can be also represented by Feyn-
mann diagrams, making sense to the term ”propagator” referred to G, fig.2.4.

As the branch cut of G(z) is the same as for the unperturbed Green
operator, eq.2.26, the continuous band is unaffected by the presence of the
impurity, therefore still it is located in the interval E ∈ [ω0− 1, ω0 + 1]. The
use of eq.2.20 enable us to retrieve the eigenstates expanded in the c.b.

|Ψ(E)〉 =
∑

n

an(E)|n〉 (2.27)
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r

=
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r

l +

s

r

l

Figure 2.4: The matrix element G(r, s; z) = G0(r, s; z)+G0(r, l; z)tlG0(l, s; z)
is the sum of the free propagation of the excitation from site s to r (first
right-side diagram) and the free propagation from s to l, where scattering
take place, then again free propagation from l to r.

where the probability amplitudes of finding the n-th spin reversed is given
by

an(E) =
1√
N

(
eiθn − α ei|θ||n−l|

i sin |θ|+ α
eiθl

)
, (2.28)

and cos θ = ω0 − E.
Besides a distortion of the states within the band, the perturbation pro-

duces the appearance of a discrete eigenstate, whose energy is given by
the simple pole of the Green function 2.26, determined by the equation
1 + αG0(l, l; z) = 0. This state lies below or above the band (as for E ∈ Ib

the Green function has also an imaginary part) depending on whether α is
greater than zero or not, and its energy is Eloc = ω0 ∓

√
1 + α2. Explicitly,

the state is given by |Ψ(Eloc)〉 =
∑

n bn(Eloc)|n〉, with

bn =




−

√
|α|

(1+α2)
1
4

exp[−ξ(α)|n− l|] α > 0

(−1)|n−l|
√
|α|

(1+α2)
1
4

exp[−ξ(α)|n− l|] α < 0

where

ξ(α) = − ln
(√

1 + α2 − |α|
)

(2.29)

As one can see directly from this expression, the spin excitation is expo-
nentially located near the defect, with a localization length, given by ξ−1,
which characterizes the spatial extension of the wave function around site
l. This characteristic length goes logarithmically to zero with increasing α,
but is already less than the site spacing for a defect strength of the same
order of the ferromagnetic coupling (to be more precise, we have ξ−1 < 1 for
α ≥ (1− e2)/2e ' 1.175).

Moreover there is also a first-order quantum phase transition (QFT) for

α ≥
√

ω2
0 − 1 and ω0 > 1
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as for these values of the hamiltonian’s parameters, the energy (at temper-
ature T = 0) of the localized state is less than that of the |0〉 state and
becomes the new ground state.

Let’s illustrate this point in more detail. In sec.2.1 it was shown that
the 1D XX spin-1

2
ring in transverse field has the (only) state in the zero-

excitation sector as its ground state, namely |GS〉 = |0〉, for ω0 > 1. Adding
an impurity α > 0 (and performing an irrelevant global energy shift so
that the energy of the zero-excitation and one-excitation states were left
unchanged), a localized level appears with energy Eloc = ω0−

√
1 + α2. This

energy becomes less than the energy of the |0〉 state if α >
√

ω2 − 1, therefore
the localized state Ψ(Eloc) becomes the new ground state:

|GS〉 =

{
|0〉⊗N α < αc EGS = 0

|Ψ(Eloc)〉 α > αc EGS = ω0 −
√

1 + α2

with the critical value of the impurity given by αc =
√

ω2 − 1
To evaluate the order of the QPT, we take the derivatives of the energy

respect to α at αc:

{
∂EGS

∂α
|α=α−c = 0

∂EGS

∂α
|α=α+

c
=

1+ω2
0

ω0

because of the discontinuity of the 1-th order derivative of the energy
at the critical point, the system exhibits a 1-th order QPT, which doesn’t
present spontaneous symmetry breaking phenomena.

2.5 Ground-State Entanglement

We analyze the entanglement content shared by two qubits located at i and
j, when the ground state is the localized one. The concurrence turns out to
be [43]

Cij = 2|(G(i, j; Eloc)| = 2|α|e−ξ(|i|+|j|)
√

1 + α2
(2.30)

From this equation it follows that two qubits are entangled only if the sum
of their distance from the defect doesn’t considerable exceed the localization
length ξ−1 defined by eq.2.29. In that sense we state that entanglement
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is localized around the impurity site in the localized ground state of the
system, fig.2.5. In analogy with the Ising model in transverse field [16],
below the critical value of α the ground state is a product state as well as for
α → +∞, but at the critical value entanglement is present between spins in
the neighbourhood of the impurity.

2.6 Fidelity and Concurrence in our Model

The solution of the Schrödinger equation reported in the previous section
enables us to describe our system by means of a density matrix, which, in
turns, permits to obtain analytic quantities for the fidelity and the con-
currence of sec.1.3.2 and 1.4.1. In both cases we analyze the effect of the
impurity on transmission’s tasks in the paramagnetic phase of the ring, that
is when ω0 > 1. This last requirement is due to the necessity of choosing the
|0〉 state as ground state of the system because we want essentially to send
an excitation along the chain remaining in the one-excitation sector of the
Hilbert space.

Let’s start with the situation where initially an unknown quantum state
is put on the spin s (sender) with the rest of the chain in the factorized
ground state

|Ψ(t = 0)〉 = (a|0〉+ b|s〉) |0〉⊗N−1 (2.31)

Then the pure state of the whole ring at time t is given by

|Ψ(t)〉 = a|0〉+ b
∑

fsn(t)|n〉 (2.32)

where fsn = 〈n|−iHt|s〉 is the transition amplitude of the excitation from spin
s to n. The density matrix of an arbitrary spin r, which will be generally in
a mixed state, is obtained via the partial trace over the total density matrix

ρ(r)(t) =

(
1− |b|2|frs(t)|2 ab∗f ∗rs(t)

a∗bfrs(t) |b|2|frs(t)|2
)

(2.33)

Using eq.1.18 the quality of the transmission is

〈F (t)〉 =
1

2
+
|frs(t)|2

6
+

Re [frs(t)]

3

With an appropriate choice of the qubit level spacing ω0 the last term
can be maximized and the fidelity results
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Figure 2.5: (up-left) Localization length as a function of α. (down-left and
right) Ground-state concurrence between the impurity and the spin at site
j. Notice the exponential decrease as a function of the distance.
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〈F (t)〉 =
1

2
+
|frs(t)|2

6
+
|frs(t)|

3
(2.34)

On the other end, to send entanglement over the chain, one prepares an
initial state in which the spin s is entangled with an external spin e, i.e un-
coupled from the chain and therefore not involved in the evolution determined
by the hamiltonian, with the rest of the chain always in the ground state |0〉

|Ψ(t = 0)〉 =
1√
2

(|1e 0〉+ eiφ|0− e s〉) |0〉⊗N−1 (2.35)

where the relative phase φ accounts for all one-excitation maximal entangled
states, i.e. from the singlet at φ = π to the triplet at φ = 0. The aim is
then to swap the state of the sender and the receiver, in order to transfer the
initial entanglement between s and e to r and e. The success of this opera-
tion is measured by the concurrence (sec.1.3.2), whose explicit expression is
computed via the two-qubit density matrix

ρ(er)(t) =
1

2




1− |frs(t)|2 0 0 0
0 1 eiφfrs(t) 0
0 e−iφf ∗rs(t) |frs|2 0
0 0 0 0


 (2.36)

and the concurrence is simply

Cr = |frs(t)| (2.37)

In presence of the defect, the transition amplitude is

frs(t) = brb
∗
s e−iEloct +

∫ ω0+1

ω0−1

dE ar(E)a∗s(E) (2.38)

The first contribution to frs comes from the localized state and describes
an information transport mediated by |Ψloc〉. It has a spatially localized
(i.e. exponentially decaying) structure, so that it can be neglected when
|r−s| > ξ−1, while it constitutes the dominant term when sender and receiver
are near to each other (and, in particular, for the case of information storage,
see sec.2.7).

The second contribution is an integral over the branch cut region of the
Green function and describes an information transport mediated by the states
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within the continuous band. When α → 0, it reduces to the un-perturbed
transition amplitude, given by the Bessel function of order r−s, Jr−s(t), [43],
which can be interpreted as a spin-wave mediated information transfer, see
[44]. The main effect of a finite impurity field α is to break the translation
invariance of the system. This implies that the elementary excitations cannot
be interpreted as magnons anymore, although their energy stays still within
the same continuous band. A close examination of the second term in the
amplitude shows that the defect produces a distortion of the unperturbed
spin waves, which are no longer freely propagating but rather are scattered
at the defect during propagation from s to r.

Eq.2.39 can be written in terms of Green’s functions,

frs(t) =

∫ π

−π

dθ

2π

{
eiθ(r−s) + eiθ(l−s)g

(+)
r,l + eiθ(r−l) g

(−)
l,s

+g
(+)
r,l g

(−)
l,s

}
e−iEt + Res[G(r, s; Eloc)] e

−iEloct (2.39)

where, within the integral, E = ω0 − cos θ, while

g
(±)
i,j (E) =

αG
(±)
0 (i, j; E)

1 + αG
(±)
0 (l, l; E)

=
−α e±i|θ||i−j|

±i sin |θ|+ α
(2.40)

and then expanded asymptotically in powers the reciprocal defect strength,
1/α

frs(t) =
∑

n

(−1/2

n

)
1

α2n
e−iEloct + (−i)r−sJr−s(t)− ir+sJr+s(t) (2.41)

−
∑

n odd

(
i

2α

)n
n−1

2∑

k=0

(
n

k

) (
J|r|+|s|+n−2k(t) + J|r|+|s|−n+2k(t)

)

+
∑

n even

(
i

2α

)n



n
2
−1∑

k=0

(
n

k

) (
J|r|+|s|+n−2k(t) + J|r|+|s|−n+2k(t)

)
+

(
n
n
2

)
J|r|+|s|(t)




In the next two sections we characterize the quantum-information trans-
mission first when the initial state involves the impurity then when it doesn’t,
and reveal the utility of the defect both in storing and in reflecting a given
state.
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2.7 Information Storage

Information storage in a spin chain has been considered previously, and the
case of a Heisenberg chain working as a quantum memory has been discussed,
[45]. Here, instead, we will discuss an information storage that is realized by
exploiting the Anderson localization phenomenon. In fact, the appearance
of a localized eigenstate leads naturally to the question if it can be used to
store locally quantum information and with which degree of fidelity versus
time evolution. We will face this question in the limit α À 1 where the
localization length goes to zero, and therefore the localized state is really
concentrated on the impurity site. This suggests that a high fidelity storage
of information (both of single qubit states and of pairwise entanglement) can
be achieved at this site. We explore this possibility in the following, trying to
characterize the quality of the storage in terms of the amount of information
that is lost.

Simple approximate expressions for the fidelity of storage and for the
amount of stored entanglement are obtained if we limit ourselves to second
order in the 1/α expansion for the transition amplitude. From eq.2.41 for
r = s = 0 the amplitude f00 has two distinct contributions: 1) the localized
state gives a term of the form

f
(loc)
00 '

[
1− 1

2α2

]
e−iEloct,

whereas, 2) the continuous energy eigenstates give:

f
(cont)
00 ' − 1

2α2
(J0(t) + J2(t)).

This latter contribution is negligible after a few exchange times due to the
decay of the Bessel functions. As a result, if the sender resides at the defect,
quantum information doesn’t propagate at all and for the fidelity and the
concurrence we obtain the simple forms (valid for s = l = 0):

Fr '
{

1− 1
3α2 r = 0

1
2

+ r
3α t

Jr(t) r 6= 0
Cr '

{
1− 1

2α2 r = 0
r

α t
Jr(t) r 6= 0

(2.42)

These results are easily interpreted: quantum information is localized at
the defect site as the state |l〉 approximately coincides with the localized
eigenstate |Ψloc〉. Indeed, the fidelity of storage (i.e., the fidelity for a retrieval
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Figure 2.6: Left panel: space-time evolution of the concurrence Cr for α = 3
with s = l = 0. The entanglement with the external qubit stays localized at
the sender site. Right panel: time evolution of the leakage, as defined in Eq.
(2.43)

at the very same site in which information was put) approaches 1 up to second
order terms in 1/α. The same occurs for the case of the entanglement, as the
concurrence is very high when the receiver coincides with the sender (and
the defect). On the other hand, if one tries to retrieve the information at
a different site, the result is very poor as the fidelity goes to 1/2 and the
concurrence goes to zero, decreasing with the distance, with time, and with
increasing α. Figures 2.6 and 2.7 show that these results can be obtained
even for moderate values of the defect strength. Indeed, for α = 3, one
can see that both the fidelity and the concurrence are extremely peaked at
the sender site. The secondary V -shaped propagation lines are essentially
a reminiscence of the unperturbed problem. In fact, for α = 0 these would
be the only existing lines, describing the distribution of information along
the chain as a result of the spin wave propagation. In our case, they signal
that the storage is not perfect since some information is carried away by the
distorted spin waves and, thus, lost. This is discussed in detail in the next
section.

47



0 5 10 15 20 t

0.5

1

-10

0

10

20

r

5 10 15 20

0.02

0.06

0.1

t

FL

Figure 2.7: Left panel: space-time evolution of the average fidelity F for
α = 3 with s = l = 0. Right panel: time evolution of the leaked fidelity, as
defined in Eq. (2.44)

2.7.1 Quality of the Storage

We notice that the loss of information only occurs at short times, while
the contribution of the localized state is essentially time independent. This
results from the fact that the major component of the initial state is the
energy eigenstate |Ψloc〉 which does not evolve with time. If the initial state
is decomposed as a superposition of energy eigenstates, other contributions
are obviously present, but these are propagating states, which leave the defect
once and for all after a very short while. These components are small for
large α, but nevertheless they are present and give rise to the leakage of
information which we describe in the following by introducing two leakage
coefficients, valid for the cases of the entanglement and of the single qubit
state, respectively.

To characterize the ability to store entanglement at the defect, a leakage
coefficient can be designed which quantifies how much can be obtained from
other qubits (i.e., the ability to retrieve some entanglement at sites different
from l). This can be defined as

L :=
∑

r 6=l

C2
r ≡ 1− C2

l , (2.43)

where the second equality comes from the monogamy relation for the pairwise
tangles, which in our case gives

∑
r C2

r = 1, [13].
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As shown in the right plot of Figure 2.6, after a transient regime, leakage
does not change with time anymore. This agrees with the observation that
storage imperfections only occurs at short times while essentially nothing is
lost afterwards.

To obtain a similar characterization for the single qubit case, we define a
“leaked fidelity”. This is obtained by maximizing the information that can
be obtained if one tries to extract the state at a site different from s = l:

FL(t) = maxr

{
Fr

}
− 1

2
, (2.44)

where the term 1
2
, giving the fidelity of the completely mixed state, is sub-

tracted to avoid counting the simple guessing as genuine information re-
trieval.

This quantity is shown in the right plot of Figure 2.7 and similar consid-
erations apply as those made to comment the behavior of the leakage L.

Indeed, although displaying very different physical quantities, the simi-
larity between Figures 2.6 and 2.7 is quite striking. This results from the
nature of the localization process and from the fact that both the fidelity
and the concurrence are obtained from the same transition amplitude.

The long time behavior of FL, however, deserves a comment. One could
expect that the quantum information is dispersed all over the chain as time
goes on, so that FL should go to zero. Indeed, this would be the case in
the unperturbed problem, in which the dominant long time contribution is
FL ∼ t−1/2. In the presence of the defect, the decay of FL saturates. In
fact, to understand what is going on, one should look at the position r which
realizes the maximum in Eq. (2.44). It turns out that, after a short while,
the optimum site is given by the nearest neighbor of the defect. Therefore,
what we are effectively looking at is just the tail of the localized state, which,
of course, quickly decreases with increasing the defect amplitude α. This is
shown in the right plot of Figure 2.8, where the long time behavior of FL is
displayed as a function of α. Notice that the plot starts at α = 1, because
FL does not saturate with time for smaller defect strengths. We can also
analyze the long time behavior of the entanglement leakage as a function of
α. Indeed, L too approaches a finite value for t → ∞. But the amount of
entanglement that can be obtained from other sites goes down as 1/α2 (this
is easily obtained by using Eq. (2.42) to approximately compute L).

Concerning the localized entanglement, one can also ask which entangled
state is effectively stored at the defect. In particular, assuming that the
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Figure 2.8: Left: long time behavior of the entanglement leakage, displayed
as a function of α (solid line). For comparison, the dashed line is a plot of the
function 1/α2, which approximates L for large values of the defect amplitude.
Right: long time values of FL, plotted with respect to α.

stored state is a superposition of |01〉 and |10〉, what is the value of the phase
φ in the entangled superposition

|Ψ(φ)〉 =
1√
2

(
|01〉 − eiφ|10〉

)

and what (if any) is the time evolution of φ.
To answer this question, we consider the density matrix ρ(2), describing

the reduced state of the qubit at the defect site and of the external one.
This is the entangled state that is stored in the chain. The concurrence C
gives the amount of entanglement present in ρ(2), but does not provide any
information about the value of φ, which, instead, can be obtained through
the function

R(φ) = 〈Ψ(φ)|ρ(2)|Ψ(φ)〉, (2.45)

which returns the degree of resemblance (fidelity) between ρ(2) and the max-
imally entangled state |Ψ(φ)〉. One expects that R(φ) has a maximum as a
function of φ, signalling the stored value of the phase. This maximum can-
not be exactly 1, since the concurrence itself is not unity. However, as α is
increased, ρ(2) becomes more and more pure and we expect R → 1 for an
optimum value of the phase.

Since the localized state has an energy Eloc = −√1 + α2, we expect that
the time evolving phase factor e−iEloct is present, so that R(φ) is a rapidly
oscillating function of both α and time. Once this trivial contribution to the
phase is subtracted by defining the new variable ϕ = φ−Eloct, a very smooth
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Figure 2.9: The function R(ϕ) (eq.2.45), for α = 4 (left) and α = 0.5 (right),
displayed versus the phase ϕ and as a function of time.

function R(ϕ) is obtained. This is shown in Figure 2.9 for two values of the
defect field.

We are interested in the best value of the phase ϕ, that is, the value
ϕmax for which R takes its maximum value. If ϕmax is zero, then the storing
preserves the phase of the entangled superposition; whereas a deviation from
ϕmax = 0 indicates a drift of the phase induced by the chain.

Figure 2.10 shows this maximal phase as a function of α and time. It
can be seen that the phase is indeed almost zero, and that small phase drifts
are present only for small values of α and at short times (not too short, of
course, since at t = 0 the phase is fixed to ϕmax = 0 by the initial condition).

2.8 Quantum-State Transmission

We now analyze the transmission of a quantum state along the chain when
the initial state |Ψ〉, eq.2.31, doesn’t reside on the impurity, whereas, to send
entanglement, we choose the spin s in eq.2.35 different from the impurity
spin.

The qualitative action of the impurity is to provide a barrier for the prop-
agation of the entanglement wave, fig.2.11, which at the impurity location
will be reflected and transmitted by an asymmetrical amount determined
by the defect’s strength, whereas at all other locations the entanglement
spreading is isotropic in both directions. This two features, transmission and

51



0
 5 10 15 20

8.5

6.5

4.5

2.5

0.5

π/40

0


α

τ

Figure 2.10: The function ϕmax, as a function of both time and defect
strength. One can see that the deviations from zero are quite small and
occur at short times and for small defect fields.

reflection of entanglement can be obtained from eq.2.41 which gives for the
concurrence:

transmission when sender and receiver are located on opposite sides with
respect to l

Cr =
1

2α
(Jd+1(t) + Jd−1(t))

where d = |r|+ |s| is the sum of the spin distances from the defect site.
This expression shows that the transmission of entanglement through
the defect decays also with the impurity level spacing, proportional to
α, because the excitation hasn’t enough energy to flip the spin and,
due to the nearest-neighbors interaction, the excitation cannot reach
the spins on the opposite side of s;

reflection when sender and receiver are on the same side respect to l, (say
r > s > 0), we have

Cr =

∣∣∣∣(−1)sJr−s(t)− Jr+s(t)− i
Jr+s+1(t) + Jr+s−1(t)

2α

∣∣∣∣
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Figure 2.11: time evolution of the concurrence between spin r and the exter-
nal spin for α = 2 when the sender identifies with site s = −5. Symmetrical
propagation of entanglement up to the impurity site, where backwards re-
flection occurs, is seen clearly.

where the first term accounts for free entanglement propagation from s
to r, the second term represents the reflection of this freely propagating
wave, as r + s is the distance traveled from s to l = 0 and then to r,
while the last term is the amount of entanglement amplitude lost by
transmission through the defect. The presence of freely propagating
terms can be explained by the small spatial extension of the localized
state, which doesn’t overlap with the initial state, so that the excitation
propagates freely up to the defect, where due to the energy difference,
it can neither receive nor transmit forward the reversed spin. As the
z component of the total spin has to be conserved, the excitation is
reflected backward. Fig.2.11 reports this situation, where, because of
the relatively small value of the defect’s strength, further order in 1

α
of

eq.2.41 have to be considered and therefore a small amount of trans-
mission of the excitation over the defect site is visible.

To better characterize the effect of the impurity on the entanglement
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Figure 2.12: transmission and reflection coefficients as defined by eq.2.46.
Already for |α| ≥ 5 an high reflection rate is achieved; for |α| → 0, instead,
the two coefficients approach monotonically 1

2
.

propagation, we introduce the transmission and reflection coefficient observ-
ing that single-excitation states saturates the CKW inequality,

∑
r C2

r = 1.
Therefore we assume the tangle as a probability distribution and set

T = lim
t→+∞

∑
r>0

C2
r R = lim

t→+∞

∑
r<0

C2
r (2.46)

where s < 0 has been assumed. One can see that, already for |α| ≤ 5|,
transmission coefficient is less than one percent (fig.2.12) and the impurity
acts like an entanglement mirror.

2.9 Finite Size Chain

In this section we face the problem of a finite-size chain described by the
hamiltonian given by eq.2.9. In fact, this is a more frequently encountered
situation (sec.2.2.1), and finite-size considerations are useful for quantum-
phase transition characterization, [17].

If the ring is composed of a finite number of spins, the summation in
eq.2.23 can’t be computed by the integral of eq.2.24; but one can use the
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Euler-MacLaurin summation formula [46]

n=b∑
n=a

fn =

∫ b

a

f(x)dx− 1

2
(f(a) + f(b)) +

∞∑
j=1

(−1)j B2j

(2j)!

(
f (2j−1)(a)− f (2j−1)(b)

)

(2.47)

where Bj are the Bernoulli numbers, f j the j-th derivative respect to x,
and f(x) the continuous extension of fn on the real numbers. It’s this last
condition that doesn’t allow the use of this sum rule inside the energy band
when applied to Green operator formalism; so only the remaining domain can
be investigated. Therefore we can obtain in this section only the energies of
the discrete eigenstates (if any) outside the extremes of the one-excitation
eigenvalues ω0 ± 1, and the corresponding discrete eigenvectors. With the
help of eq.2.47 we obtain for the finite-size Green matrix element Gf

0(n,m; x)
and for the T f matrix respectively

Gf
0(n,m; x) = G0(n,m; x) +

(−1)|n−m|

N(x− 1)
(2.48)

T f = T +
|l〉〈l|

N(x− 1)
(2.49)

where G0(n,m; x) and T are given by eqs.2.24, 2.25. Also in this case a
discrete eigenstate with energy outside the interval [ω0−1, ω0+1] arises, given
by the solution of cubic equation y3 + a2y

2 + a1y + a0 = 0 with coefficients
a2 = 2

(
1 + α

N

)
, a1 = −α2+ 4α

N
+ α2

N2 , a0 = 2α2

N2 and y = x−1. If we neglect the
terms in 1

N2 , we have a simple quadratic equation, whose solution gives the

eigenenergies E = ω0 − ( α
N
∓

√
1 + α2 − 2α

N
), with the + sign for α > 0 and

the − sign otherwise. The corresponding eigenstates, in the computational
basis, have the following amplitudes

bn =

(−x±√x2−1)
|n|

±√x2−1
+ (−1)|n|

N(x−1)√ ±x

(x2−1)
3
2

+ 1
N(x−1)2

(2.50)

where still x = E − ω0

Even if it is not possible to define a localization length ξf (α) like in
eq.2.29, the discrete state is localized as the amplitudes are exponentially
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decreasing with the distance from the defect, but not-monotonically because
of the correction of order 1

N
.

Considering, as in the infinite ring, ω0 > 1 and α such that the en-
ergy of the impurity induced eigenstate becomes the ground state, we quan-
tify the ground-state entanglement between qubit i and j, as usual, by the
concurrence cij = 2|bib

∗
j |, and from the expression of the coefficient ampli-

tudes of eq.2.50, it turns out that, beside localization of entanglement in
the neighbourhood of the defect, if one of the spin i or j has an odd lat-
tice distance from the defect, there always exist a couple of values (α,N)
for which their entanglement vanishes, fig.2.13. That is due to the fact that
the probability amplitude of the i-th site is zero, so for every value of α
and N there exist always two spins, equidistant from the defect, who are
certainly in the |0〉 state, thus the ground state has a factorized structure:
|Ψ〉 =

∑
n 6=±i bn|n〉 ⊗ |00〉+i,−i.
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Figure 2.13: ground-state entanglement between spin i = l = 0 and spin
r = 1 (red), r = 2 (green) and r = 3 (blue) for a spin ring composed of 50
qubits. The concurrence between qubits located at an odd lattice distance
from the defect presents a value of α that reduces to zero its entanglement
contents. The ground-state entanglement approaches a common finite value
for α →∞.
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Chapter 3

1D Spin Chain with Two
Defects

The results of the one-impurity spin ring suggest several modifications of our
model in order to accomplish some QIT’s tasks. Here we deal with the 1D
XX spin ring where one more impurity is added at another site. The reasons
for this are:

• the ground-state entanglement in the one-impurity model was localized
around the defect site with a spatial extension depending on the defect
strength α; if the number of impurities grows we suppose that more lo-
calization points are present, with relative localization ratio depending
on the local α’s;

• the possibility of storing quantum states at the impurity site in the one-
defect model resides on the Anderson localization around the defect;
therefore one could expect that, if the localized states become two,
there will be some dynamical effects, such as bounching entanglement
or coherent quantum-state transfer between the two impurity sites, as
shown by a perturbative approach in [26];

• the entanglement’s reflection at the impurity site is caused by the dif-
ferent qubit level spacing induced there by the inhomogeneity of the
magnetic field; therefore providing two different sites with sufficient
energy spacing could lead to the possibility of entanglement trapping
within the region delimited by the defects.
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This chapter is organized as follows: in sec.3.1 the model and its solution
is presented, relying on the previously outlined formalism; in sec.3.2 we show
the results obtained when the ground state is localized and in the final section
we analyze transmission’s tasks.

3.1 Hamiltonian

We consider the same hamiltonian as in sec.2.4 but now one more impurity
has been added at site m. The hamiltonian describing such a system is

H = −1

2


ω0

N
2
−1∑

n=−N
2

σn
z +

N
2
−1∑

n=−N
2

(σn
xσn+1

x + σn
y σn+1

y )− αlσ
l
z − αmσm

z


 (3.1)

Applying the usual transformations and conventions this hamiltonian be-
comes

H = −ω0

2

∑
σn

z −
∑

(σn
+σn+1

− + σn
+σn+1

− ) +
∑

i=l,m

αi

2
−

∑

i=l,m

αiσ
i
+σi

− (3.2)

where the un-perturbed system is governed by the first four terms and
presents the same solutions as the un-perturbed system of sec.2.4, apart
from an additional global energy shift included in the rescaling of the zero-
excitation energy E0 = 0. It can be cast also in the form

H = −ω0

2

∑
(|0〉〈0| − |n〉〈n|)−

∑
(|n〉〈n + 1|+ |n + 1〉〈n|)

+
αl + αm

2

∑
(|0〉〈0|+ |n〉〈n|)− αl|l〉〈l| − αm|m〉〈m| (3.3)

which, in the one-excitation sector of the Hilbert space is again, as eq.2.9,
equivalent to a tight-binding hamiltonian.

Again the two-impurities model will be solved by use of the Green opera-
tor’s technique where the role of the un-perturbed hamiltonian in the Dyson
series is now played by the one-impurity model and the perturbation is the
magnetic field’s inhomogeneity αm on spin m. Again the diagonal form in
the one-excitation sector of the Hilbert space allows to re-sum the series and
the knowledge of G (or T ) permits to solve exactly the eigenvalue problem.
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Therefore we use the following notation: the system without impurities has
the couple of hamiltonian and Green operator H0 and G0 (eq.2.24); with
one impurity on site l, H0l and G0l (eq.2.26); whereas the re-summed Dyson
series for the Green operator of the full hamiltonian (eq.3.2) becomes

G = G0l −G0lRmG0l (3.4)

where Rm = |m〉 αm

1+αmG0l(m,m)
〈m|

After some elementary algebra this expression can be cast in a form where
the T matrix is explicitly given

T =
|l〉tl〈l|+ |m〉tm〈m| − |m〉tmG0(m, l)tl〈l| − |l〉tlG0(l, m)tm〈m|

1− tmtlG0(m, l)G0(l, m)

where (see eq.2.25)

ti =
αi

1 + αiG0(i, i; z)

with i = l,m, so that G = G0 −G0TG0.
This can be interpreted using Feynmann diagrams, fig.3.1
The discrete eigenenergies are given by the poles of G (or T ), that is by

the solution of 1+αmG0l(m,m) = 0; written in terms of x = E−ω0 one has
to solve

1 + αm


 1

Sign[x]
√

x2 − 1
− αl

(−x + Sign[x]
√

x2 − 1
)2|l−m|

(x2 − 1)
(
1 + αl

Sign[x]
√

x2−1

)

 = 0 (3.5)

This equation can be solved analytically for |l − m| = 1, 2, i.e. nearest-
neighbours and next-nearest neighbours defects.

We focus on the first case, where the analytic expression is simpler and
offers a qualitative overview on the physics of the system that holds also for
more distant impurities.

The solution of eq.3.5 is given by

E = ω0 −
2αlαm (αl + αm)±

√(
1 + (αl − αm)2) (1− 2αlαm)2

4αlαm − 1
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Figure 3.1: The propagator G(r, s; z) is the sum of the free prop-
agation G0(r, s; z) of the excitation from site s to r, then fol-
low four kind of diagrams. The first (infinite) sum represents
G0(r, l; z)tlG0(l, s; z) + G0(r, l; z)tlG0(l, m; z)tmG0(m, l; z)tlG0(l, s; z) + ...

which gives G0(r,l;z)tlG0(l,s;z)
1−tmtlG0(m,l)G0(l,m)

. Similar considerations apply to the other
three series.
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These energies must lie outside the energy band, otherwise G0l(m,m; E)
would have a non-zero imaginary component; but nevertheless there can be
values of E ∈ [ω0−1, ω0 +1] such that Im[G0l(m,m; E

′
)] ' 0 and resonances

occur.
Depending on the values of the perturbations, we can have different sce-

narios, but always at most two simple poles (discrete eigenenergies), which
can lie below or above the band.

With reference to fig.3.2(a) the (αlαm) plane is divided by four hyperbo-
laes

1

αl

+
1

αm

= 2 (3.6)

1

αl

+
1

αm

= −2 (3.7)

into six areas where different kinds of solutions of eq.3.5 reside.
In the region labelled by 1LB, there’s only one solution to eq.3.5 with

energy below the band. In fig.3.2(b), Re[G0l(m,m; E)] versus energy E and
1

αm
are plotted for αl = 0.1 and αm = 2. The value on the abscissa of the

intersection point, according to eq.3.5, gives the energy of the discrete level,
Eloc. The increase of αm causes the straight line 1

αm
to approach the abscissa,

so that still only one intersection point remains, but at more negative energy.
In order to appear a second energy level below the band, the αl value has

to reach the critical value given by eq.3.6. Then the system enters the region
denoted by 2LB, and from fig.3.2(c), plotted for αl = 1 and αm = 2, one sees
that the change of the αm value affects both energy levels.

If, instead, αm has a negative value, the system can enter the (1LA, 1LB)
region by crossing the hyperbolae given by eq.3.7, where one level is above
the energy band while the other is below. This is also the case reported in
fig.3.2(d), with αl = 1

2
and αm = −2.

Similar consideration applies to the other regions of fig.3.2(a).
If the distance between the defects in the spin ring augments, the hyper-

bolaes approach more and more the αlαm axis, but the outlined qualitative
features still hold.

Denoting the eigenenergy with x = E − ω0, the corresponding discrete
eigenstate, given in the computational basis |ΨL〉 =

∑
n bn|n〉, has the fol-
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Figure 3.2: (a) the hyperbolas divide the (αl, αm)-plane in six different re-
gions: one or two levels above the un-perturbed energy band (1LA, 2LA),
one or two levels below (1LB, 2LB) or one level above (1LA) and another
below (1LB); the remaining three figures shows the plot of Re[G0l(m,m; E)]
versus energy E and 1

αm
for nearest-neighbours impurity sites. The abscissa

coordinate of their intersection point(s) gives the solution of eq.3.5, indi-
cating therefore the energy of the discrete eigenstate(s). (b) αl = 0.1 and
αm = 2: there’s only one level below the energy band, represented by the
[−1, 1] interval on the abscissa; (c) αl = 1 and αm = 2: two levels below; (d)
αl = 1

2
and αm = −2: one level above and another below the energy band.
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lowing amplitudes

bn =
G0l(n,m; x)√−G′

0l(m,m; x)
bn = cost

(
e−ξ(|n−l|) + Ke−ξ(|n−m|)) (3.8)

Also in this case the discrete eigenstate(s) are localized around the two
defect sites, with inverse localization length given by the same function as
the one-impurity model ξ(E) = − ln(−x +

√
x2 − 1), and with a coefficient

K = K(αl, αm) that accounts for the ratio of the amplitude coefficients of
finding the excitation on site l or m; so that for αl = αm we have K = ±1. It
is interesting to note that expression 3.8 give rise to eigenstate(s) representing
a coherent superposition of |l〉 and |m〉 for large enough α’s.

Moreover, for equal and large enough α’s, two localized eigenstates ap-
pear, which can be cast in the following useful form

|Ψ(ω1)〉 =
1√
2

(|l〉+ |m〉) (3.9)

|Ψ(ω2)〉 =
1√
2

(|l〉 − |m〉) (3.10)

If, on the other hand, only one level appears by taking αl = αm, it’s the first
expression that holds.

The additional impurity, as in the one-defect model, doesn’t change the
energy band, because the branch cut of the Green function for the two-defect
model is still determined by the unperturbed Green function.

Referring to the eigenstates within the energy band, we obtain, applying
|ΨE〉 = |φ〉 + G+

0 T+|φ〉, the following expression for the an’s in the compu-
tational basis expansion |Ψ(E)〉 =

∑
an|n〉:

an =
1√
N

(
einθ +

g+
nl(αl)e

ilθ + g+
nm(αm)eimθ + g+

nm(αm)g+
ml(αl)e

ilθ + g+
nl(αl)g

+
lm(αm)eimθ

1− g+
ml(αm)g+

lm(αl)

)

where g+
nl(αi)’s are defined by eq.2.40 with αi set to αl or αm.

It is easy to verify that if one of the α’s becomes 0 we return to the single
defect case.

3.2 Ground-State Entanglement

Choosing the values of α’s such that the localized state becomes the ground
state, a non-zero pairwise entanglement between spins in the neighbourhood
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of the defects appears. That means that, as in the one-defect model, a first-
order quantum phase transition occurs and the new ground state exhibits a
ground-state entanglement structure.

Cij(|Ψloc(Eloc〉) = 2|Res (G(i, j; Eloc)) | ≡ 2|bloc
i bloc

j
∗| (3.11)

It’s expression in terms of Green’s function is

Cij = 2

∣∣∣∣
(G0(i,m) + tlG0(l, m)G0(i, l)) (G0(m, j) + tlG0(m, l)G0(l, j))

−G
′
0l(m,m)

∣∣∣∣

Referring to eq.3.11 and, for equal and large enough positive α’s, using
eq.3.9, two-party entanglement is present also in the limit α →∞, but only
between the two impurities and has the value of Clm = 1. This didn’t occur
in the one-model defect, where the ground state was factorized both in the
α = 0 and in the α → ∞ case. The reason is that the impurity tends to
entangle with the lattice sites within the localization length ξ, but, as this
becomes less than the lattice spacing, the whole ring is left in a product state
between a Bell state, involving the two impurities, and the rest of the chain
in the zero-excitation sector of Hilbert space:

|ΨGS〉 → 1√
2

(|1l0m〉+ |0l1m〉)⊗ |0〉

If the ground state belongs to the region αl, αm > 0 of fig.3.2, then two
localization points appear in the spin ring; in the sense that every qubit is
entangled with both impurities, with the entanglement between the qubit
and the impurity on which α is greater being higher than the entanglement
with the other impurity. Moreover, if the defect’s strength reduces on one of
the impurity, so does entanglement between this impurity site and a qubit
of the ring; in the meanwhile entanglement between the same qubit and the
other impurity grows.

It is also possible to have a localized ground state with one of the α’s
negative, if on the other impurity site there’s a sufficiently high positive
magnetic field. In that case the negative-valued impurity site is only weakly
entangled, and it’s entanglement amount can be made arbitrarily small by
reducing further its defect strength.

Analyzing the various cases we can have (fig.3.2):
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αl = αm From eqs.3.11 and 3.8, we obtain that for every spin i, Cil = Cim

regardless of site distances between the spin involved (fig.3.2(a)). In
particular, looking at the entanglement between distant defects, it can
also reach considerably high values (fig.3.2(b));

αl > αm > 0 The ground state entanglement between every spin i and l ex-
ceeds that one with m, because the amplitude coefficient bl > bm, also
if spin i i s nearer to m than to l, |m− i| < |l − i| (fig.3.2(c));

αl > 0, αm < 0 The entanglement of i with l grows by lowering αm, while,
on the other hand, entanglement between i and m decreases, and, at
the same time, entanglement between i and the spins located on the
opposite side with respect to m is highly suppressed (fig.3.2(d)).

All this properties suggest the possibility to control bipartite ground-
state entanglement between spins acting on a remote third party, as well as
the possibility to entangle definite spins in the ring simply by introducing
magnetic inhomogeneities on them.

3.3 Quantum-State Transmission

As we investigate in this section the role of the defects on the QIT’s tasks
described in sec.2.6, we can use the same expressions for the fidelity (eq.2.34)
and the concurrence (eq.2.37), because the additional defect doesn’t change
the structure of the density matrix; therefore the quantity of interest is the
transition amplitude frs(t) = 〈r|H|s〉, which has the same analytical struc-
ture than the one-defect model (eq.2.39), apart from an eventually additional
localized state. Also the same considerations apply to the interpretation of
its expression

frs(t) =
∑

Eloc
eiEloctRes (G(r, s; Eloc)) +

∫ π

−π
dθ
2π

e−iEt (3.12)(
eirθ +

G+
0 (r,l)tle

ilθ+G+
0 (r,m)tmeimθ+G+

0 (r,m)tmG+
0 (m,l)tle

ilθ+G+
0 (r,l)tlG

+
0 (l,m)tmeimθ

1−tltmG+
0 (l,m)G+

0 (m,l)

)

(
eisθ +

G+
0 (s,l)tle

ilθ+G+
0 (s,m)tmeimθ+G+

0 (s,m)tmG+
0 (m,l)tle

ilθ+G+
0 (s,l)tlG

+
0 (l,m)tmeimθ

1−tltmG+
0 (l,m)G+

0 (m,l)

)∗

To discuss the main features that appear in the entanglement distribution,
we consider two cases:
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Figure 3.3: ground state entanglement between a fixed spin i and a spin j
on different lattice sites: (a) i = 0, αl = αm = 1, l = 0 and m = 20 - the
impurity spin l presents entanglement, spatially localized, not only with the
spins around itself, but also with the impurity on a distant site m and the
spins in its neighbourhood; (b) i = −1, αl = αm = 1, l = 0 and m = 20 - the
entanglement contents between an arbitrary spin and one of the impurity
equals the entanglement with the other impurity, the same consideration
applies to its entanglement with the spins having the same lattice distance
from one or another defect; (c) i = −1, αl = 2, αm = 1.9, l = 0 and m = 2 -
lowering the value of the impurity on site m reduces its entanglement contents
as well as those of its neighbour spin; (d) i = 0, αl = 1, αm = −10, l = 0 and
m = 1 - for negative values of the defect’s strength on site m, its concurrence
is highly suppressed, whereas the concurrence of the other impurity spin has
been enhanced.
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entanglement bouncing In reference to fig.3.4, we consider an initial state
|Ψ(0)〉 = 1√

2
(|0x1l〉 − |1x0l〉) |0〉, that is a singlet state between the ex-

ternal spin x and one of the impurities, say l, has been realized. Then
the system evolves and it turns out that entanglement between the
external spin and those belonging to the chain involves only the impu-
rities. The dynamics shows oscillatory maximal entanglement transfer,
i.e. Cxi = 1, between the external spin and alternatively each impurity
at a rate inversely proportional to the frequency separation of the two
localized levels. This can be understood observing that, for identical
defect intensities, the discrete states are equally like localized around l
and m, so that, using eq.3.9, we can write

|l〉 =
1

2
(|Ψ1〉+ |Ψ2〉) |m〉 =

1

2
(|Ψ1〉 − |Ψ2〉)

and all concurrences, except Cxl and Cxm, are zero, because all ampli-
tudes, except bl and bm, are zero in the expansions of the |Ψi〉’s. Finally
the oscillatory behaviour of concurrence is obtained using eq.3.12

Clx =
1

2

∣∣∣e−iE
(1)
loc t + e−iE

(2)
loc

∣∣∣ Cmx =
1

2

∣∣∣e−iE
(1)
loc t − e−iE

(2)
loc

∣∣∣ (3.13)

where E
(i)
loc refers to the energy of the i-th discrete level. If we choose

(E
(1)
loc +E

(2)
loc )/2 as the zero of the energy scale (or, equivalently, multiply

by a irrelevant phase factor ei(E(2)−E(1))/2), eq.3.13 can be re-written as

Clx = cos(ω21t) Cmx = sin(ω21t)

where ω21 is the Rabi frequency (E2 −E1)/2. This could lead to long-
distance transfer of entanglement simply by putting the impurities far
away each other; unfortunately the energy difference of the two lo-
calized eigenstates approaches rapidly zero with increasing distances
so one would have to wait a considerably long time (t = π

ω21
) just to

obtain the first peak in fig.3.4;

entanglement trapping In reference to fig.3.5, we consider the situation
where the sender s is equidistant from the two equal-strength impu-
rities. From an qualitative point of view, the reflected entanglement
waves recombine coherently at the sender site, while the transmitted
ones go over the rest of the chain. Augmenting the defects strengths
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Figure 3.4: concurrence between an external spin and spin r with s = −2,
αl = αm = 3, l = −2 and m = 2: (left) entanglement bounces only between
the two impurities, with the other spins uncoupled from the dynamics; (right)
concurrence of each impurity with the external spin x exhibits Rabi oscilla-
tions with frequency given by the energy difference between the two localized
levels.

and placing the impurities on both sides of the sender, almost total
reflection can be achieves. Therefore, in fig.3.5(a), the slope of concur-
rence’s envelope approaches the abscissa, and entanglement turns out
to be trapped on the sender site; at the same time, the entanglement
shared by the defect (fig.3.5(b)) and that transmitted over the rest of
the chain (fig.3.5(c)) reduce to zero.

If we augment the distance of the impurities from the sender site
(fig.3.6), the entanglement propagates almost freely in the region bounded
by the two defects, wherein interference effects can account also for a
revival of entanglement on the sender site (fig.3.6 (a))
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Figure 3.5: concurrence between an external spin x and spin r with s = 0,
αl = αm = 3, l = −1 and m = 1; (a) the initial entanglement between spin s
and the external one x tends to remain localized because the next-neighbours
impurity cannot accept the excitation; (b) and (c) show the concurrence with
the impurity and spin r = 2.
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Figure 3.6: left: concurrence between an external spin and spin r with s = 0,
αl = αm = 3, l = −2 and m = 2; (a) concurrence of spin 0 where the
peaks are due to the constructive interference of the entanglement waves, (b)
concurrence of spin 1 whose maximum correspond to the minimum of the
concurrence in fig.(a), because perfect entanglement transfer is possible in a
three-qubit chain; (c) and (d) concurrence of the defect and spin 3 accounting
for the entanglement’s transmission over the defect (which in the limit α À 1
would be zero)
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Conclusions

In this thesis we have studied the effects on ground-state entanglement and
quantum-state transfer caused by the presence of one and two diagonal impu-
rities in a 1D ring-shaped spin-1

2
hamiltonian with XX ferromagnetic cou-

pling placed in an otherwise homogeneous transverse magnetic field. We
have restricted our attention to the one-excitation sector of the Hilbert space,
where the hamiltonian becomes equivalent to a tight-binding model. In both
cases, Schrödinger equation has been solved exactly via Green’s operator
formalism.

In the one-impurity model the presence of the defect causes a first order
quantum phase transition, where the new ground state of the system becomes
localized around the impurity site. In this state bipartite entanglement is
different from zero for spins in a region contained within a localization length,
which depends on the ratio of the magnetic inhomogeneity and the exchange
coupling (α).

We have also analyzed the transmission of quantum information along
such a chain. We have found that the presence of the defect is responsible of
various phenomena: 1.) information storage: if the state is encoded initially
in the impurity, it doesn’t diffuse away and both fidelity and concurrence
retain its initial maximum value; 2.) mirror effect: if the state isn’t encoded
initially in the defect, entanglement waves get reflected and transmitted at
the impurity site by an amount depending on reflection and transmission
coefficients, where, they too, involve the same ratio.

In the two-impurity model, a similar quantum phase transition occurs,
and ground-state entanglement becomes localized too, with the same func-
tional relation for the localization length as in the one-impurity model. Nev-
ertheless in this case two localization points arise in the spin ring. Quantum-
state transfer, in the limit of α >> 1, exhibits : 1.) bouncing effect: if the
initial singlet state involves one of the impurities and the external spin, en-
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tanglement bounces between the defects with Rabi oscillations of frequency
given by the energy difference of the two localized eigenstates; 2.) entan-
glement trapping: relying on the mirror effect of the two impurities, the
entanglement waves remain confined into the region delimited by the defects
sites.

From an experimental point of view, we have presented a model that
permits to achieve quantum information tasks by systems realizable with
present-day technology and requiring minimum control operations. Further
studies (inclusion of dynamical properties of the impurities, characterization
of the quantum phase transition from an q-information point of view, ex-
tension to higher spatial dimensionality and/or other sectors of the Hilbert
space, entanglement versus disorder, etc.) should be give more insight on the
fundamental physics behind entanglement’s theory as well as suggest some
achievable experimental protocols for quantum information development.

The author wishes to thank the Quantum Information Theory Group at
the Dept. of Physics - University of Calabria: Prof. G. Falcone, Prof. F.
Piperno, Dr. F. Plastina, Dr. A. Sindona, Dr. G. Liberti, Dr. R.L. Zaffino
and Dr. F. Francica without whom this work wouldn’t have been realized.
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