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UNIVERSITÀ DELLA CALABRIA

Dottorato di Ricerca in

Ingegneria dei Materiali e delle Strutture

- Ciclo XX -

Simplified Methods for Dynamic Analysis

of Structures under Blast Loading

by

Manuel Campidelli

A dissertation submitted in fulfillment

of the requirements for the degree of

Doctor of Philosophy

ADVISOR

Professor Erasmo Viola

PH.D. COORDINATOR

Professor Domenico Bruno

November 2007



.

The dissertation of Manuel Campidelli is approved:

25.11.07

Professor Domenico Bruno Date

25.11.07

Professor Erasmo Viola∗ Date

Date
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ABSTRACT

Simplified Methods for Dynamic Analysis

of Structures under Blast Loading

by

Manuel Campidelli

The increasing threat of extremely severe loading conditions caused by a num-

ber of explosive sources made engineers and scientists developing, during the last

half century, several methods of analysis and design of blast–resistant structures.

Simple, intermediate, and advanced computational approaches have been adopted,

requiring increasing computational resources. These efforts led to the publication

of several manuals and guidelines for the analysis and design of blast–resistant rein-

forced concrete and steel structures, mostly based on simple considerations derived

from Single Degree of Freedom (SDOF) models. Although the development of fu-

ture guidelines based on advanced numerical techniques is desirable, typical design

activities cannot be effectively carried out by applying complex methods, because

of their large demand of resources. Therefore the necessity to develop simplified,

low time consuming, methods of analysis, capable of supporting a daily design ac-

tivity and, at the same time, takeing into account issues usually neglected, such as

a strong non linear material behavior and the influence of the strain rate caused

by a blast load on the structural response. The development of such design tools

is the object of this study. The first part of this thesis deals with the influence

of the blast load shape on the dynamic response of an undamped linear elastic

oscillator. Response spectrum and pressure–impulse diagrams are shown for sev-

eral shape parameters, and a sensitivity analysis of the results with respect to the

computational parameters is also presented. A method validation is carried out via

genetic algorithms, through a careful calibration of all the genetic parameters, such

as crossover fraction and number of elite elements. Non linear material modeling

and strain rate dependent constitutive laws are objects of the second part of this

dissertation. A non linear oscillator made of displacement, velocity, and accelera-

tion dependent springs and dampers, under an arbitrary dynamic load, is proposed.

Spring and damper constitutive laws have no restrictions as well as the load–time

function, and the dynamic analysis is accomplished by a piecewise linear approxi-

mation of any input function. Numerical problems are dealt with by applying the

Newton–Raphson method, in such a way that enables the error range to be estab-
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lished “a priori”. Any possible drawback of this method is carefully avoided, and a

quadratic speed of convergence is always ensured. Since the model provides velocity

dependent springs, strain rate effects of blast loads on the structural response are

taken into account by including strain rate dependent constitutive laws within the

problem definition.
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“The truth will set you free,

but first it will make you miserable.”

J. A. Garfield
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Chapter 1

Introduction

1.1 Scope and objectives of the research

Since after World War II, the effects of both conventional and non–conventional

explosives have been well documented. The increasing hazard of terrorist attacks,

as well as major catastrophes resulting from petro–chemical explosions, aircraft

crashes, nuclear leakage, and large magnitude earthquakes, threaten military and

civil structures with extreme and extraordinary loading conditions, which require

a better understanding of blast effects and how they may be mitigated. Due to

the threat from such severe loading conditions, efforts have been made during the

last half century to develop techniques of design and structural analysis to resist

blast loads. Simple, intermediate, and advanced computational approaches have

been used, requiring increasing computational resources. Single Degree of Freedom

(SDOF) models and Multi–degree of Freedom (MDOF) models have been widely

used as simple methods, based on linear, or very simple non linear, structural be-

havior assumptions. Among the intermediate approaches, it is worth recalling the

Timoshenko beam and Mindlin plate formulations, capable to provide detailed be-

havior information despite modest computational resources. Advanced methods

include many finite element, finite difference, and hybrid codes. These efforts led

to the publication of several manuals and guidelines for the analysis and design of

blast–resistant reinforced concrete and steel structures, such as the U.S. manual TM

5-1300, mostly based on simple SDOF considerations. Although the development of

future guidelines based on advanced numerical techniques is desirable, typical design

activities cannot be effectively carried out by applying complex methods, because of

their large demand of resources. Therefore the necessity to develop simplified, low

time consuming, methods of analysis, capable of supporting a daily design activity
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and, at same time, takeing into account issues usually neglected, such as a strong

non linear behavior and the influence of the strain rate caused by a blast load on

the characteristics of the material the target structure is made of. The development

of such structural design tools is pursued in this thesis.

1.2 Outlines of the thesis

Chapter 2 reports a literature review of blast phenomena including the basic

characteristics of blast waves yielded by several explosion sources, the interaction of

blast waves with different type of structures, the effects of air blast loads resulting

from external explosions, internal explosions, and ground shocks.

Failure mechanisms induced by blast loads and corresponding damage criteria

are reviewed in chapter 3. The effects of strain rate on the dynamic strength of

concrete, reinforcing steel, and reinforced concrete are also highlighted.

Chapter 4 is focused on the dynamic response of a linear undamped oscillator,

with special attention to the limits of structural response. The first part of this

chapter deals with the problem of finding a response spectrum of such system un-

der several load shapes, while the second part concerns the representation of the

damage level via pressure–impulse diagrams. A sensitivity analysis is also carried

out in order to survey how the structural response is affected by the computational

parameters. Finally, a method validation is accomplished via genetic algorithms,

through a careful calibration of all the genetic parameters, such as crossover fraction

and number of elite elements.

A more complex structural model is proposed in chapter 5. It consists of a non

linear oscillator made of displacement, velocity, and acceleration dependent springs

and dampers, under an arbitrary dynamic load. Spring and damper constitutive

laws have no restrictions as well as the load–time function, and the dynamic anal-

ysis is accomplished by a piecewise linear approximation of any input function.

Numerical problems are dealt with by applying the Newton–Raphson method, in

such a way that enables the error range to be established “a priori”. Any possible

drawback of this method is carefully avoided, and a quadratic speed of convergence

is always ensured. Full details of Newton’s method applications are presented in

appendix B. Since the model provides velocity dependent springs, strain rate effects

of blast loads on the structural response are taken into account by including strain

rate dependent constitutive laws within the problem definition.

Conclusions and recommendations for future work are given in Chapter 6.
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Appendices A and B present a brief review of the Newton–Raphson method and

its application to a single–variable problem. Speed of convergence, efficiency, and

drawbacks of this method are highlighted in appendix A. Four lemmas are proposed

in appendix B, each of them showing an application of Newton’s method involving a

speed of convergence at least quadratic. Since such lemmas are the key to solve the

non linear model proposed in chapter 5, original proofs of any of them have been

developed, though a more extensive literature survey might make them unnecessary.

Appendix C reports some recurrent trigonometric identities.
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Chapter 2

Blast Phenomena

2.1 Historical background

The most common artificial explosives are chemical explosives, usually involving

a rapid and violent oxidation reaction that produces large amounts of hot gas.

Gunpowder was the first explosive to be discovered and put to use. Other notable

early developments in chemical explosive technology were Frederick Augustus Abel’s

development of nitrocellulose (guncotton) in 1865 and Alfred Nobel’s invention of

dynamite (stabilized nitroglycerin) in 1866. A new order of explosive, the nuclear

bomb, was invented in 1945 by Allied scientists. In 1952, the US military developed

the first fusion bomb.

2.2 Natural and artificial explosions

An explosion is a sudden increase in volume and release of energy, usually with

the generation of high temperatures and the release of gases. Explosions do not com-

monly occur in nature. On Earth, most natural explosions are caused by volcanic

processes. Explosive volcanic eruptions occur when magma rising from the mantle

below the Earth crust contains large quantities of dissolved gas; the reduction of

pressure as the magma rises causes the gas to bubble out of solution, resulting in a

rapid increase in volume. Explosions also occur as a result of Earth impacts. Solar

flares are an example of explosion common on the Sun, and presumably on many

other stars. Among the largest known explosions in the universe are supernovae,

which result from stars exploding and gamma ray bursts.

Artificial explosions, on the other hand, are unfortunately much more common

and may have many different sources. The rapture of a vessel containing a pres-
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surized liquid causes a rapid increase in volume as the liquid evaporates, which

may lead to a boiling liquid expanding vapour explosion. A high current electri-

cal fault may create an electrical explosion by forming a high energy electrical arc

which rapidly vaporizes metal and insulation material. Excessive magnetic pressure

within an ultra–strong electromagnet may cause a magnetic explosion. It is well

known the risk of accidental explosions in many workplaces which may contain, or

have activities that produce, an explosive or potentially explosive atmosphere, that

is a mixture of dangerous substances with air under atmospheric conditions, in the

form of gases, vapours, mist or dust in which, after ignition has occurred, combus-

tion spreads to the entire unburned mixture. Examples include places where work

activities create or release flammable gases or vapours, such as vehicle paint spray-

ing, workplaces where fine organic dusts such as grain flour or wood are handled,

and petroleum refineries or chemical plants, which process hydrocarbons and other

inflammable fuels. Although some of these workplaces are designed to minimize the

occurrence of accidental explosions, when they do occur the consequences might be

extremely severe, particularly for buildings not specifically designed to withstand

blast effects.

Intentional explosion are obtained by the ignition of several kind of explosive

compounds, which may be defined as materials that either are chemically or oth-

erwise energetically unstable. Upon initiation, such materials undergo a chemical

decomposition or a nuclear reaction (fission or fusion), which causes a sudden vol-

ume expansion usually accompanied by the production of heat and large changes

in pressure (and typically also a flash and/or loud noise). Chemical explosives are

classified as low or high explosives according to their rates of decomposition; low ex-

plosives burn rapidly (or deflagrate), while high explosives undergo detonations. No

sharp distinction exists between low and high explosives, because of the difficulties

inherent in precisely observing and measuring rapid decomposition. A low explosive

is usually a mixture of a combustible substance and an oxidant that decomposes

rapidly (deflagration); unlike most high explosives, which are compounds. Under

normal conditions, low explosives undergo deflagration at rates that vary from a few

centimeters per second to approximately 400 meters per second. However, it is pos-

sible for them to deflagrate very quickly, producing an effect similar to a detonation,

but not an actual detonation; this usually occurs when ignited in a confined space.

Low explosives are normally employed as propellants. Included in this group are gun

powders and pyrotechnics such as flares and illumination devices. High explosives

are normally employed in mining, demolition, and military warheads. They undergo
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detonation at rates of 1,000 to 9,000 meters per second. High explosives may be

conventionally subdivided into three classes differentiated by sensitivity. Primary

explosives are extremely sensitive to mechanical shock, friction, and heat, to which

they will respond by burning rapidly or detonating. Secondary explosives, also

called base explosives, are relatively insensitive to shock, friction, and heat. They

may burn when exposed to heat or flame in small, unconfined quantities, but deto-

nation can occur. These are sometimes added in small amounts to blasting caps to

boost their power. Dynamite, TNT, RDX, PETN, HMX, and others are secondary

explosives. PETN is often considered a benchmark compound, with materials that

are more sensitive than PETN being classified as primary explosives. Tertiary ex-

plosives, also called blasting agents, are so insensitive to shock that they cannot

be reliably detonated by practical quantities of primary explosive, and instead re-

quire an intermediate explosive booster of secondary explosive. Examples include

an ammonium nitrate/fuel oil mixture (ANFO) and slurry or “wet bag” explosives.

These are primarily used in large-scale mining and construction operations.

2.3 Detonation process

A detonation is an extremely rapid release of energy in the form of light, heat,

sound, and a shock wave. A shock wave consists of highly compressed air travel-

ing radially outward from the source at supersonic velocities. As the shock wave

expands, pressures decrease rapidly (with the cube of the distance) and, when it

meets a surface that is in line–of–sight of the explosion, it is reflected and amplified

by a factor of up to thirteen (see Kinney and Graham [1] for more details). Pres-

sures also decay rapidly over time (i.e., exponentially) and have a very brief span of

existence, measured typically in milliseconds. Diffraction effects, caused by corners

of a building, may act to confine the air–blast, prolonging its duration. Late in

the explosive event, the shock wave becomes negative, creating suction. Behind the

shock wave, where a vacuum has been created, air rushes in, creating a powerful

wind or drag pressure on all surfaces of the building. This wind picks up and carries

flying debris in the vicinity of the detonation. In an external explosion, a portion

of the energy is also imparted to the ground, creating a crater and generating a

ground shock wave analogous to a high–intensity, short–duration earthquake.
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2.4 Regular and Mach reflection

The blast load acting on the target structure is strongly affected by the angle

of incidence α1 of the blast wave on the target surface. When α1 = 0◦, the blast

wave impinges on the surface at zero angle of incidence. The reflection occurs when

the forward moving gas molecules are stopped and compressed above the incident

pressure, inducing a reflected blast wave. In case of α1 = 90◦ the incident blast wave

front, traveling at velocity Us parallel to the structure surface, does not undergo

any reflection and the target is loaded by the incident overpressure. Regular and

Mach reflections take place when α1 lies within the intervals [0◦,αlim] and [αlim, 90
◦]

respectively, where αlim is a threshold value depending on the medium the blast

wave is propagating in. For air this angle is approximately 40◦. Mach reflection is

a complex process and is sometimes described as a “spurt–type” effect where the

incident wave skims off the reflecting surface rather than bouncing on it (Smith and

Hetherington [2]). It occurs when the reflected wave catch up with the incident

wave at some point above the reflecting surface, yielding a third wave called Mach

stem. The point where the three waves meet together is called triple point, and it

follows a path shown in Fig. 2.1 (b).

The target location with respect to the triple point affects the blast load under-

gone by the structure. Targets above the triple point path undergo the effects of

both the incident and reflected waves, whereas structures below such path are un-

der a single vertical shock Mach stem propagating parallel to the reflecting surface.

Examples requiring the Mach stem effects to be taken into account are detonations

at some height above the ground and internal explosions, in which case the blast

waves may be reflected by the internal surfaces of the structure with a wide range

of angles (Baker et al. [3]).
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Fig. 2.1. Regular and Mach reflection (Baker, [4]).

2.5 Ideal blast wave pressure profile

Regardless the the physical properties of an explosion source, at some point far

from the explosion centre all blast waves develop the same pressure profile, shown

in Fig. 2.2. At a time tA, representing the time when a blast wavefront reaches a

certain point nearby the charge, the pressure at that location undergoes a step rise

above the ambient pressure P0, reaching its peak value Ps0. A rapid decay, usually

idealized as exponential, follows, which brings back the pressure to the ambient

value at a time tA + t0. This part of the pressure–time profile is usually called

positive phase, since the wavefront pressure remains above the ambient value. A

mathematical description of such phase, representing the side– on overpressure Ps
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Fig. 2.2. Pressure–time profile of blast wave in free air (TM 5–1300 [6])

as a function of time t and a dimensionless coefficient α, was proposed by Baker [4],

Ps(t) = Ps0



1 −
t

t0



 e
−α t

t0

After tA + t0, because of the momentum gained by the gas particles, a negative

phase of suction takes place, during which the pressure decreases until it reaches

a partial vacuum of peak under pressure P−

s0, and then returns to Ps0 at a time

tA + t0 + t−0 . Notoriously, the negative phase last longer than the positive one but is

much less intense (|P−

s0| ≪ |Ps0|), therefore it is usually neglected. On the contrary,

positive phase parameters such as peak overpressure, duration, dynamic pressure,

shock front velocity, and wind velocity are essential in order to establish the load

acting on the target structure. Simplified pressure–time functions describing the

positive phase have been suggested over the years by many authors. Amon them,

Newmark [5] proposed a linear equivalent profile, characterized by the same initial

peak overpressure Ps0 but different durations.

2.6 Blast wave front parameters

Analytical expressions of blast wave front parameters have been reported in a

number of publications (Liepmann and A.Roshko [7], Brode [8], Baker [4], Smith and
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Explosive Mass Specific Energy TNT Equivalent

Qx (KJ/Kg) Qx/QTNT

Amatol 80/20 (80% ammonium nitrate, 2650 0.586

20% TNT)

Compound B (60% RDX, 40% TNT) 5190 1.148

RDX (Cyclonite) 5360 1.185

HMX 5680 1.256

Lead azide 1540 0.340

Mercury fulminate 1790 0.395

Nitroglycerin (liquid) 6700 1.481

PETN 5800 1.282

Pentolite 50/50 (50% PENT, 50% TNT) 5110 1.129

Tetryl 4520 1.000

TNT 4520 1.000

Torpex (42% RDX, 40% TNT, 18% 7540 1.667

Aluminium)

Blastin gelatin (91% nitroglycerin, 4520 1.000

7.9% nitrocellulose, 0.9% antacid,

0.2% water

60% Nitroglycerin Dynamite 2710 0.600

Tab. 2.1. TNT equivalent mass: conversion factors for common explosives (Baker [3]).

Hetherington [2]). Brode’s [8] numerical analysis of spherical blast waves from an air

burst of high explosives led to the following expressions, regarding the velocity of the

wave front Us, the maximum dynamic pressure Pd, and the peak static overpressure

Ps

Us =

√
√
√
√6Ps0 + 7P0

7P0
· a0 (2.1)

Pd =
5P2

s0

2(Ps0 + 7P0)
(2.2)

Ps0 = −0.019 +
0.975

Z
+

1.455

Z2
+

585

Z3
, 0.1 < Ps0 < 10 (bar) (2.3)

Ps0 =
6.7

Z3
+ 1, Ps0 > 10 (bar) (2.4)

Ps0 being the peak side–on overpressure, P0 the ambient air pressure in bars and
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a0 the speed of sound in air at ambient pressure. Z is the scaled distance given by

Z =
SD

m
1
3

(2.5)

where SD id the standoff distance from the charge centre in meters and m is the

charge mass in kilograms of TNT.

Since the actual charge needs to be converted in an equivalent mass of TNT,

many approaches have been introduced over the years in order to achieve such

result. Among them, it is worth recalling the methods adopted in the technical

manual TM5–855–1 [9] and by Baker et al. [3]. The former is based on two con-

version factors, which enable to mach either the peak overpressure or the impulse

delivered by the actual explosive and the TNT equivalent. The latter is based on a

single conversion factor, equal to the ratio between the mass specific energy of the

actual explosive and the mass specific energy of TNT. Ratios for the most common

explosives are shown in Tab. 2.1.

2.7 Blast wave scaling laws

Since physical proprieties of explosives and medium the blast waves propagate

through affect the blast waves themselves, the necessity of relating different types

of explosions to some reference, ideal, cases, arises. Non ideal explosions may be

related to reference experiments conducted in ideal conditions by the Hopkinson–

Cranz [10, 11] scaling law, commonly known as the cube–root scaling law. This

law states that two explosive charges of different sizes, similar geometry, and of the

same explosive, detonated in the same atmospheric conditions, yield self–similar

blast waves at equal scaled distances (Baker [3]). The scaled distance Z is defined

in the Eq. (2.5). The Hopkinson law, applied to the diameters d1 and d2 of spherical

charges, leads to the following relation,

d1

d2
=




m1

m2





1
3

=
SD1

SD2

where SD1 and SD2 are the standoff distances at which the two explosives yield the

same blast wave.

Scaling law applies to other parameters, such as time t,

tsc =
t

m
1
3
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where tsc stands for scaled time.

2.8 Blast wave interactions

In order to establish the the blast load acting on a target structure, it is of fun-

damental importance to understand the interaction phenomena that take place as

soon as a blast wave, while propagating outward the explosion source, strikes an ob-

ject of density higher than that of the medium surrounding the charge. Interaction

effects are usually categorized as diffraction effects and drag effects.

The regular and Mach reflection process described above is referred to infinite

reflecting surfaces, which do not allow diffraction to occur. Diffraction effects, in

fact, are essentially caused by the finite size of the target compared to the scale of

the blast, and consist of how the side–on overpressure evolves and reflects on any

target surface. Drag effects, on the other hand, are caused by the drag force due to

the dynamic pressure (transient wind) behind the blast wave front. Such pressure is

much less intense than the wave front overpressure, but the resulting drag loading

last much longer than the diffraction loads. Also, it is worth mentioning that the

drag pressure is responsible for carrying the debris away from the explosion site.

Both diffraction and drag effects are responsible, in different measure, of the damage

undergone by the hit target.

According to Newmark1 [5], depending on the the kind of load the damage is

mostly caused by, target structures may be roughly classified as diffraction–type

or drag–type. The former are mainly affected by the wavefront overpressure, and

a good example is offered by buildings having sturdy external walls and relatively

small venting areas, under a large–scale blast wave, such as multi–storey reinforced

concrete buildings undergoing the effects of a big explosive charge externally deto-

nated. If this is the case, the structure is engulfed and crushed by the blast waves,

and is also loaded by a drag force tending to move the whole building laterally, which

is unlike to happen due to the size of the target. A different scenario, emphasizing

drag effects, might be the case of a large–scale blast wave interacting with a small

structure, such as a vehicle. Here the target is still engulfed and crushed and, due

to its size, any part of the vehicle experiences more or less the same overpressure.

The resultant translational force lasts for a short time end it is unlikely to yield re-

markable damage, therefore diffraction effects may be neglected. On the opposite,

the drag force produced by the dynamic pressure acts sufficiently long to move a

such light target, and it is very likely that a substantial part of the resulting damage
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is caused by this motion. Other structures undergoing dominant drag effects are

electric transmission towers, telephone poles, smoke stacks, truss bridges, etc...

It is finally worth recalling that the detonation of small amounts of explosive

might yield blast loads affecting structural elements in different ways, depending on

their location with respect to the explosion source.

Fig. 2.3 shows the engulfing and dynamic pressure variation on the structure

surfaces at significant times. The blast wave, approaching orthogonally the side

facing the charge (Fig. 2.3 (a)), loads the front face with a peak reflected pressure of

value Pr, at a time t2. Consequently, the structure experience a push to the right as

diffraction effect. As soon as the wave passes over and round the target, the reflected

pressure on the front face decays within a time interval tc − t2 (Fig. 2.3 (b)), where

tc is given approximately by

tc =
3S

Us

S being the smaller of half of the structure breadth or height and Us being the blast

wave front velocity. The front face pressure continues to decay until the stagnation

pressure, Pstag, equal to the sum of the dynamic pressure Pd and the incident wave

overpressure Ps, is reached. At a time t3, the blast wave reaches the rear face

(Fig. 2.3 (c)), and the diffraction is completed with a further, less intense, push of

the building to the right. Drag loads also start acting on the front face at the time

t2 (Fig. 2.3 (d)), causing a push on the left side, followed by a suction force on the

opposite side as the blast wind reaches the rear face at a time t3 (Fig. 2.3 (e)).

The drag force FD acting both sides of the target may be expressed in terms of a

drag coefficient CD, the loaded area A, and the peak of dynamic pressure Pd, as

FD = CD · A · Pd.

2.9 External explosions

According to the technical manual TM 5–1300 [6], a blast load from convention

explosives acting on a target structure consists of three components, the incident

wave overpressure, which is a function of mass and type of explosive as well as the

standoff distance, the reflected pressure, due to the interaction of the incident wave

with the target surfaces, and the dynamic pressure, caused by the transient wind

behind the wave front. All those parameters need to be estimated in order to define

an ideal pressure–time profile.
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Fig. 2.3. Diffraction and drag effects of blast loads on diffraction–type structures (Smith and

Hetherington [2]).
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2.9.1 Peak wave front overpressure

Many expressions have been proposed over the years to predict the peak side–

on overpressure Ps0 of a blast wavefront (Newmark and Hansen [12], Mills [13],

Crawford and Karagozian [14]).

In 1961 Newmark and Hansen [12] introduced the side–on overpressure, in bars,

yielded by a detonation at the ground surface as a function of the standoff distance

SD, between the charge centre and the point of measurements, and the equivalent

mass of explosive, m, expressed in tons of TNT,

Ps0 = 6784
m

SD3
+ 93




m

SD3





1
2

In 1987 Mills [13] proposed the following expression

Ps0 =
1772

Z3
−

114

Z2
+

108

Z

where the peak overpressure is expressed in kPa and Z is the scaled distance from

the Eq. (2.5).

New equations involving the peak side–on overpressure in psi and the positive

phase duration (t0) in second were presented in 1995 by Crawford and Karagozian [14],

Ps0

P0
=

40.4 SD2 + 810
√

(1 + 434SD2)(9.77 SD2)(1 − 0.55 SD2)

t0

m
1
3

=
990 + 4.65 · 105 SD10

(1 + 125 · 103 SD3)(1 + 6.1 SD6)
√

1 + 0.02 SD2

where m is the charge mass in Kilotons of TNT, Ps0 is the ambient atmospheric

pressure in psi, and SD still stands for standoff distance.

2.9.2 Reflected pressure

Shock parameters of the reflected wave, derived from consideration of conser-

vation of momentum and energy, were reported by Smith and Hetherington [2] in

terms of incident wave front parameters. For a zero angle of incidence, the reflected

peak pressure Pr was given as a function of incident peak overpressure and dynamic

pressure,

Pr = 2Ps0 + (γ + 1)Pd (2.6)
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in which γ is the specific heat ration of the air, idealized as a perfect gas. By

substituting the dynamic pressure from the Eqs. (2.2), when γ is set equal to 1.4,

the equation above becomes

Pr = 2Ps0

7P0 + 4Ps0

7P0 + Ps0
(2.7)

If a reflection coefficient is defined as the ratio of the reflected pressure to the in-

cident pressure, Eq. (2.7) predicts that such coefficient lies within the interval [2,

8]. Nevertheless, due to gas dissociation effects at very close range, reflection coeffi-

cients of up to 20 have been measured, pointing out the inadequate approximation,

nearby the charge, of the air as an ideal gas. An alternative and empirically based

expression for Pr was also given by Newmark [15],

Pr = Ps0(1.5 + 4 log10 Ps0)

In case of a lack of accurate predictions, the reflected specific impulse ir may

be estimated by assuming similarities between incident and reflected blast wave

pressure–time profiles (Baker [3]),

ir

is
=

Pr

Ps0

which requires the knowledge of the incident wave specific impulse is.

2.9.3 Dynamic pressure

As previously stated, drag–type structures may be severely damage by the tran-

sient wind behind the blast wave front. Drag effects are cause by the dynamic pres-

sure, which depends upon the velocity of the shock front, the peak wind velocity,

and the density of air behind the shock front (Baker [4], Kinney and Graham [1]).

The wave front velocity is calculated as

Us = C0Ms

where C0 is the speed of sound in the atmosphere surrounding the charge and Ms

is the Mach number corresponding to the peak overpressure of the shock front and

specific heat of the air rh,

Ms =



1 +
rh + 1

2rh

Ps0

P0





−
1
2
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The particle velocity is given by

us =
2

1 + rh
·
U2

s − C2
0

Us

The technical manual TM 5-1300 introduces the following expressions for the

wind speed and the air density behind the shock front (ρs),

us =
C0Ps0

rhP0



1 +
rh + 1

2rh

Ps0

P0





−
1
2

ρs = ρ0

(γ + 1)Ps0 + 2γP0

(γ − 1)Ps0 + 2γP0

Recalling the definition of the dynamic pressure as kinetic energy per mass unit,

finally we get

Pd =
1

2
ρsu

2
s =

P2
s0

2γP0 + (γ − 1)Ps0

which, for γ = 1.4, yields

Pd = 2.5
P2

s0

7P0 + Ps0

2.9.4 External blast loading

A simple geometry target under the effects of a free air burst or a surface burst

(Fig.2.3 (a)) undergoes a resultant translational force equal to the difference between

the front face and the rear face loading. The target roof is also subjected to a vertical

force, which develops while the shock front passes above the structure. In order to

establish such forces, it is necessary to know the pressure–time history acting on

the front face, the rear face, and the roof of the target. Moreover, in case the shock

waves take a long time to cross the whole structure from the front side to the rear

one, the fundamental characteristics of the wave acting on the front and rear faces

may be different. If that was the case, a separate pressure–time history for each

of the two sides would be needed. As shown in Fig. 2.4 (a), as soon as the the

blast wave strikes the front face, that side of the target experiences a pressure rising

almost instantaneously up to the value Pr, followed by a decay to a value equal to

the sum of the dynamic pressure and the side–on overpressure. The time interval

elapsed during that stage of the diffraction process is called clearing time, tc, and

it is established by the following ratio
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tc =
3S

Us

in which Us, as usual, represents the wave front velocity and S is equal to the smaller

of the height of the structures or one–half its width (Smith and Hetherington [2]).

After tc, the resultant pressure is given by

Pfront = Ps0 + CfPd

where the front face drag coefficient Cf may be considered equal to 1.2 (TM 5–

1300 [6]). The so called fictitious durations t′i and ti, shown in Fig. 2.4 (a), are

helpful for making up the resultant pressure–time profile.

After a time tr = L/Us, L standing for the length of the structure in the direction

of the wave propagation, the shock front reaches the rear side, which experiences

a maximum pressure Prear = Ps0 − CrPd. According to the technical manual TM

5–1300 [6], the rear face drag coefficient ranges between 0.5 and 0.3. The time trb,

required to reach the maximum pressure on the rear side, is given by the following

ratio

trb =
L + 5S

Us

with usual meaning of the symbols.

As the shock front passes above the target, the consequent airflow causes suction

acting on the roof. The global roof pressure Proof is given by

Proof = Ps0 + CtPd

in which CtPd is the negative drag pressure caused by suction. Newmark and

Hansen [12] suggested a roof drag coefficient Ct equal to 0.3–0.5. The pressure–time

profile of the roof is usually simplified as triangular shaped, with a peak value Ps0,

a rising time troof = trf + L/Us, and an equivalent impulse duration tds = troof + ti.

2.10 Internal explosions

High explosives detonated inside a structure cause two loading phases, both

responsible for the possible damage. The first phase is related to reflection and

re–reflection of blast waves, and might involve both regular and Mach reflection

phenomena. Since the whole process is very difficult to predict in details, very often
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some approximations are made, regarding the pressure–time profile and the mag-

nitude of re–reflected waves. The second phase consists of a quasi–static pressure

builded up by the gaseous products of detonation, and commonly lasts much longer

than the first one. The load undergone by the structure is strongly affected by

venting areas, which may allow a significant pressure relief.

2.10.1 Internal loading from shock wave reflection

It is rather straightforward to predict the reflected wave front parameters, by

applying the expressions given in § 2.9.2 or the charts reported in a number of refer-

ences (Smith and Hetherington [2], Baker [3], Mays and Smith [16]). Quantification

of re–reflected waves magnitude however is generally much more complicated, since

reflections inducing Mach steam waves makes the evaluation of blast loads requir-

ing the use of dedicated programs, such as BLASTIN code [17] and CHAMBER

code [18], developed for detonations in box–shaped rooms. Baker et al. [3] sug-

gested some simplifications to be made in order to get reasonably accurate results.

The firs approximation is to assume triangular blast pulses with abrupt rise for both

incident and reflected waves. That assumption leads to the following pressure–time

history,

Ps(t) = Ps0



1 −
t

Ts



 , Pr(t) = Pr0



1 −
t

Tr





where Ps and Pr are the incident and reflected overpressure, and Ts and Tr are the

corresponding pulse durations derived by preserving the proper impulses,

Ts(t) =
2is

Ps
, Tr(t) =

2ir

Pr

The wave front parameters may be also assumed from regular reflections, which

is most likely to happen for box–shape structures with side length ratios close to

unity. A third simplification is to assume that the peak pressure is halved on each

reflection, whereas the pulse duration remains constant. Thus, after three reflec-

tions, the reflected pressure may be neglected. If the response time of the structure

is much longer than the total duration of the blast load, a final approximation can

be made. That is to combine all the three pulses into a single one, having a peak

pressure equal to sum of the three peaks and a total specific impulse equal to the

sum of the three ones. The assumptions made up to this point lead to the simplified

pressure–time history shown in Fig. 2.10.2.
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Fig. 2.5. Simplified blast load function caused by multiple reflection of shock waves from internal

explosion (Baker [3]).

2.10.2 Internal loading from gas pressure

While the pressure from shock wave multiple reflections decades, the gas pressure

develops, and eventually the global pressure settles to a slowly decaying level, which

is a function of the energy released by the explosion and the volume and vent

area of the structure. Because of the low rate of decaying, the gas pressure is

commonly referred to as quasi–static pressure, which usually last much longer than

the loading caused by shock wave reflections. The pressure–time history is described

by two main parameters, the peak quasi–static pressure, Pqs, and the so called blow

down time, tb, at which the pressure reaches the ambient value. An approximate

expression for the pressure profile was reported by Baker [3],

P(t) = (Pqs + P0)e
−2.13τ̄

where P0 is the ambient pressure and the quantity τ̄ is a dimensionless time for

venting, given by

τ̄ =
αeAsurtba0

V

Here αe is the ratio of the vent area to wall area, Asur is the total inner surface of

the structure, V is the volume, and a0 is the speed of sound at ambient conditions.

The scaled pressure–time history during the gas venting process, integrated over a
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Fig. 2.6. Blast load function induced by gas pressure from internal explosion (Smith and Hether-

ington [2]).

positive load duration t0, yield the scaled gas impulse ig

ig =

∫ t0

0
(P(t) − P0)dt =

Pqs + P0

C
(1 − eCt0) − P0t0, C =

2.13τ̄

tb

2.11 Ground shocks

Ground shocks may result from different scenarios. Nuclear devices detonated

above the ground may cause significant ground shock levels. Conventional explo-

sives, on the other hand, may produce remarkable effects only if detonated on or

below the ground surface, because of the higher lever of coupling between the ex-

plosion and the ground. The result is a direct–induced ground shock, which involve

a direct transmission of explosive energy through the ground. Free air bursts may

cause air–induced ground shocks, which result when the blast waves compress the

ground surface and send a stress pulse into the ground layers underneath the surface.

Generally, motion due to air–induced shocks is maximum at the ground surface and

attenuates quickly with depth (TM 5-1300 [6]).

The shock waves yielded by detonations near or under the ground surface may

be classified as body waves and surface waves. Pressure waves (P–waves) and shear

waves (S–waves) are body waves, since they cause particle motions of the ground

layers underneath the surface. P–waves are responsible for particle motions parallel

to the direction of propagation, which leads to compression or dilatation of the

soil, whereas S–waves involve particle motions perpendicular to the direction of
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propagation and shear stress. Circular particle motions near the surface are typical

of surface waves known as Rayleigh waves (R–waves), characterized by a slower

rate of decay with respect to body waves. Thus, their effects are dominant in

case of surface bursts and for buried explosions at large range. On the contrary,

body wave effects are dominant at close range from buried explosives (Smith and

Hetherington [2]).

Many formulas are available to predict ground motions caused by direct–induced

or air–induced ground shocks. Newmark [15] employed one–dimensional wave prop-

agation theory to obtain vertical and horizontal displacement, velocity, and accel-

eration due to air–induced ground shocks. The technical manual TM 5–1300 [6]

proposed some empirically based formulas to derive the same motion parameters in

three different ground media (dry soil, saturated soil, rock), in case of direct–induced

shocks.
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Chapter 3

Failure Modes, Damage Criteria

and Strain Rate Effects

3.1 Blast load induced failure modes

Blast loaded structural members may undergo different failure modes, associated

with different types of response. According to Crawford and Karagozian [14], a

global structural response is usually caused by out–of–plane, long time lasting loads,

and bending and shear stresses are always involved. Thus, a first global failure mode

may be reffered to as membrane/bending failure.

Four types of shear induced failure modes such as diagonal tension, diagonal

compression, punching shear, and direct shear have been studied by Woodson [20].

Generally, diagonal tension and compression have been noticed in statically loaded

reinforced concrete members, whilst punching shear is typically a cause of local

failure of flat slabs punched by columns. Unlike the other shear mechanisms, which

may usually be neglected, dynamic shear is of primary importance for the response

of blast loaded elements, since the shear force caused by the transient short dura-

tion overpressure is many times higher than the shear force associated with flexural

failure modes. The high shear stresses involved may lead to a global shear failure

within a few milliseconds from the shock wave arrival to the member surface facing

the detonation, even before any noticeable bending deformations. Experiments in-

volving high speed dynamic behavior of concrete structures subjected to such failure

modes have been conducted by Toutlemonde and Boulay [21, 22] and Watson [23].

Close–in explosions may result in localized breaching and spalling, due to local

shear or flexural failure. Breaching failure caused by punching effects is typically

accompanied by spalling and scabbing of concrete covers as well as low and high–
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Fig. 3.1. Main failure modes for slabs (Tolba [19])
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speed fragments. Fig. 3.1 shows the principal failure mechanisms for slabs.

3.2 Damage criteria

There are a number of global damage indices that may be used to express a

certain level of structural damage. Among them, support rotations or mid–span

deflection have been widely employed. While using a one–degree of freedom model

as an approximate design method, Biggs [24] defined a ductility ratio µ as the ratio

of the maximum deflexion δmax to the elastic deflection δe,

µ =
δmax

δe

where δe is established by Biggs as the threshold inflection value between the elastic

and the plastic parts of an elastic–perfectly plastic stress strain constitutive law.

In general such parameter varies with geometry, material proprieties, reinforcement

ratio, etc... It should be noted that, in this context, µ represents a required ductility,

which the structural member needs to develop in order to stand a loading condition

without failure. It should not be confused with the maximum ductility of that

member, defined as an upper bound for the capacity of that particular structural

element (TM 5–1300 [6]). Also, the strain rate has to be taken into account while

establishing a failure criteria, since it may affect material strength, elastic modulus,

strain value at maximum stress and ultimate strain (Scott et al. [25]).

3.2.1 Overall and localized damage criteria

Localized damage is often caused by shear failure. It is indeed a property of shear

deformations being more localized than flexural ones (it may be worth recalling that

a plastic hinge size is about equal to the member depth). As stated above, local

failure may be caused by close–in explosion effects, which end up with spalling and

breaching. Such effects may be dealt with through different approaches. The 3–D

non–linear finite element modeling performed by Bogosian [26] takes into account

the strain rate influence on material properties, and accurately predicts the size

of breach and the velocity of fragments. Spalling diagrams, on the other hand,

have been developed using a considerable amount of experimental data collected

from both the US Army tests and from the literature (TM 5–1300 [6]). Three

different categories of damage are defined: no damage, spalling, and breaching

(Langberg [27]).
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Fig. 3.2. Pressure–Impulse diagram for building damage (Baker et al. [3])

3.2.2 Damage level representation via pressure–impulse diagram

Pressure–impulse diagrams, also known as iso–damage curves, have been de-

rived from a study of houses damaged by bombs dropped on the United Kingdom

in World War II. The results of such investigations were used as part of the evalua-

tion of safe–stand–off distances for explosive testing in the United Kingdom (Smith

and Hetherington [2]). The axes of the curves are simply side–on peak overpressure

Ps, and side–on specific impulse is, as shown in Fig. 3.2. The level of damage of brick

houses is identified among four regions. Region A corresponds to complete demoli-

tion and region B refers to damage severe enough to require demolition. Region C

impulse causes partial collapse of some structural members, such as roof and walls,

and would make the house temporarily uninhabitable. Finally, region D refers to

damage not severe enough to render building uninhabitable, but requiring urgent

repair. Baker et al. [3] reported other P–I diagrams related to human response

to blast, where three categories of blast–induced injuries (primary, secondary, and

tertiary) are identified.
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3.3 Strain rate effects

3.3.1 Theories and tests at high strain rate

Strain rate is defined as the rate of change of strain ε with time t. Since struc-

tural members under shock waves from detonations undergo high loading rate and,

consequently, high strain rate, it is necessary to consider how the properties of the

material they are made of are affected by different strain rates, in order to model

the structural behavior and get the system response. Fig. 3.3 shows the expected

strain rate ranges for different loading conditions (Bischoff and Perry [28]). Static

strain rates lie within the range of 10−6 ∼ 10−5 s−1, while blast pressures from high

condensed explosives generally involve loads yielding strain rates in the range of

102 ∼ 104 s−1.

The dynamic properties of building materials have been object of many studies

and tests, in order to establish a relationship between strain rate and some material

characteristics, such as maximum strength, strain at maximum strength, ultimate

strain, and elastic modulus. Murr [30] investigated the metallurgic effects arising

when the material microstructure is affected by high strain rate and leading to a

sudden change in the deformation mode and mechanical properties. For concrete,

Johansson [29] proposed to classify the strain rate effects as viscous or structural

effects. Viscous effects are generally believed to be related to the presence of free

water within the concrete micropores, and are responsible for a moderate enhance-

ment of the concrete strength when strain rates up to 30 s−1 are reached. Above

such threshold value structural effects, such as inertia and confinement, are domi-

nant, and cause a dramatic increase of the dynamic strength, which may reach up

to four times the static one. According to Bischoff and Perry [28], such phenomenon

may be explained as a transition from a creep behavior, which determines failure

at low strain rates, to a mechanism of tensile microcracking that occurs under high

strain rates. This change in behavior might be caused by the inertia resistance of
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Fig. 3.4. Viscous and structural effects on concrete (Johansson [29])

the material the crack propagates through, and leads to a much higher value of

stress, at failure, than that for static loads, because the crack if forced to propagate

through regions of grater resistance and the formation of a fracture surface may

require a larger amount of microcracking. Fig. 3.4 shows both viscous and struc-

tural effects takeing place at different strain rate ranges. The dynamic increase in

concrete strength is presented in terms dynamic increase factor (DIF), generally

defined as the ratio between dynamic strength, Fdyn, and static strength ,Fstat, of

the material under consideration.

Figs. 3.5 and 3.6 show a large amount of data collected since the early fifties

from experiments conducted on plain concrete specimens in compression and in

tension, under high speed dynamic loads. Bischoff and Perry [28] interpreted the

large scatter as a proof that dynamic load tests are much more complicated than

static ones, since a lot of parameters might affect the test results, such as specimen

dimensions and moisture, uniformity of stress and strain along the specimen length,

stress wave propagation effects, maximu aggregate size, water–cament ratio, cement

content, cement type and quality, etc...

The following three sections report a brief overview of the tests run over the

years on specimens made of plain concrete, reinforcing steel bars, and reinforced

concrete. The influence of some parameters on the test results is highlighted.
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Fig. 3.5. Strain rate influence on compressive strength of concrete (Bishoff and Perry [28])
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Fig. 3.6. Strain rate influence on tensile strength of concrete (Malvar and Ross [31])

3.3.2 Plain concrete under high strain rate

As a general result of the experiments conducted since 1917 to investigate the

relationship between stain rate and compressive strength of plain concrete (see

Abrams [32]), we may state that the higher the stain rate, the higher the concrete

compressive strength.

Tests run by Watstein [33] in 1953 and by Atchley and Furr [34] in 1967 inves-

tigated the influence of the concrete strength on the specimens under high strain

rate. Watstein’s experimental campaign showed no significant relationship between

dynamic increase factor and static concrete strength, since two different concrete

batches, with static compressive strength of 17.4 MPa and 45.1 MPa, showed a

strength gain under dynamic loads of 84% and 85% respectively. Atchley’s cam-

paign however, pointed out that strong concrete seems to be less sensitive to the

loading rate than weak concrete.

Sparks and Menzies [35] investigated the effect of aggregate type on strain rate

sensitivity. Specimens made of gravel, limestone, and lytag aggregate were tested,

and the results appeared to be consistent with Atchley’s campaign, since limestone

specimens showed an increase in compressive strength of 4%, whereas lytag speci-
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Fig. 3.7. Stress–strain curve of concrete under different strain rates (TM 5–1300 [6])

mens had a 16% of strength increase under the same loading rates.

Curing condition effects were explored by Spooner [36], who tested specimens

cured in water and in air. Dynamic tests showed that dry concrete is less sensitive

to strain rate.

The whole stress–strain curve was found to be strain rate dependent. Wak-

abayshi [37] observed that peak stress and initial tangent modulus are both in-

creased under high strain rate. The U.S. Army manual TM 5–1300 [6] presented

stress–strain curves yielded by different loading rates (Fig.3.7). It may be noted

that up to the 50% of the load, such curves are almost superimposed. Also, the

dynamic strength of concrete (f ′cd) is about the 25% higher than the static strength

(f ′c). Experimental campaigns, conducted by Scott et al. [25] on both plain and

reinforced concrete specimens, indicated that stress and strain at failure are both

increased of 25% in case of high strain rate. Moreover, for any given stress level, the

corresponding strain value was found to be decreasing as the strain rate increases;

as a consequence, the higher the loading rate, the higher both the secant and the

rupture moduli.

Concrete in tension was found to be much more sensitive to the loading rate.

Malvar and Ross [31] reported experimental results showing a noticeable increase

in concrete tensile strength of more than 600%, whereas compression strength of

concrete and steel were increased by 100% and 50% respectively. They also proposed

an expression for the dynamic increase factor of concrete in tension,
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Fig. 3.8. Dynamic strength of materials under different strain rates (TM 5–1300 [6])

DIF =
ftd

fts
=




ε̇c

ε̇cs





δ

, ε̇c ≤ 1 s−1

DIF =
ftd

fts
= β




ε̇c

ε̇cs





1
3

, ε̇c > 1 s−1

where ftd and fts represent the dynamic and static tensile strength of concrete,

respectively; DIF is the dynamic increase factor; ε̇c and ε̇cs are the current strain

rate (up to 104 s−1) and the static strain rate (10−5 ∼ 10−6 s−1); β = e6δ−2;

δ = 1/[1+8(f ′c/f
′
c0)]; f

′
c0 is a fraction of concrete strength in compression (10 Mpa).

In general the results seemed in good agreement with what predicted by Atchley

and Furr [34], since it was found that the faster the material is strained, the higher

strength increase is expected. Also, the higher the static strength, the lower the

gain in dynamic strength. Fig. 3.8 illustrates some plots of the dynamic increase

factor against the strain rate for reinforcing steel, concrete, and structural steel.

3.3.3 Reinforcing steel under high strain rate

Experiments conducted on steel bars by Norris et al. [38], Dowling and Hard-

ing [39], Wakabayashi [37], and Keenan [40] all resulted in a remarkable gain of steel

strength caused by an increasing loading rate. The greatest strain rate sensitivity

was showed by materials of body–centered cubic structure, since the lower yielding
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Fig. 3.9. Stress–strain curve of mild steel under different strain rates (Dowling and Harding [39])

tensile strength doubled and the upper one also increased considerably (Dowling and

Harding [39]); the ultimate tensile stress gained about the 50% of its static value and

the ultimate tensile strain was reduced by an increasing strain rate. Stress–strain

curves for mild steel under several strain rates are illustrated in Fig. 3.9.

The tests performed by Wakabayashi [37] apparently showed no effect of strain

rate on modulus of elasticity, and a little influence on the ultimate strength and the

strain–hardening zone of the constitutive law.

Malvar [41] proposed the following expression, which gives the dynamic increase

factor, for both yield and ultimate stress, as a function of ultimate stress fy and

strain rate ε̇s,

DIF =




ε̇s

10−4





α

in which α = αfy = 0.074−0.04(fy/414) for yield stress calculation, and α = αfu =

0.019 − 0.009(fy/414) in case the ultimate stress is needed.
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3.3.4 Flexural capacity of reinforced concrete under high strain

rate

Since tensile and compressive strength of concrete and reinforcing steel are both

increased by high strain rates, the flexural capacity of reinforced concrete members

is expected to be increased as well.

Aiming to investigate the elastic behavior of simple members under impulsive

loads, Penzien and Hansen [42] found out that the dynamic magnification factor,

defined as the ratio of maximum strain produced at a certain point under dynamic

loading to strain occurred under equivalent static loads, appeared to assume values

within the interval [1.5, 3]. Those results pointed out that maximum strains in rein-

forced concrete elements under impulsive loads may be remarkably larger than those

yielded by static loads of equivalent magnitude. Also, the steel sensitivity to strain

rate effects was found to be more predictable than the increase in concrete strength.

Based on such data, reinforced concrete structures, designed to be impulsive load

resistant, were suggested to be under–reinforced.

A possible change in failure mode of reinforced concrete members was discussed

by Bertero et al. [43] and by Takeda et al. [44]. Tests run by Bertero et al. [43] showed

an increasing stiffness and moment capacity at first yielding of reinforcing steel bars

under high strain rate, which might lead to a brittle failure in case of inadequate

shear reinforcement. Besides, Takeda et al. [44] were able to demonstrate that

different failure mechanisms of the same structural element under the same load

take place under different strain rates. In particular, reinforced concrete beams

were found to undergo a brittle failure under high speed dynamic load, whereas

the same specimens failed in a ductile manner when the same load were applied

statically.

Experiments conducted by Wakabayshi[37] showed that, under high strain rates,

both compressive strength of concrete and tensile strength of steel increased linearly

with the logarithm of strain rate. A global enhancement of the load carrying ca-

pacity of about 30% was reached.

3.3.5 Summary

As a general rule, the higher the strain rate produced by dynamic loads, the

larger the gain in material strength.

Concrete under high strain rate shows a different sensitivity, depending on

whether it is in compression or in tension. In fact, the gain in compressive strength
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of concrete may range between 25% and 100%, whereas the static tensile strength

may by increased by 6 times when a strain rate of 103 s−1 is applied.

A stronger concrete is less sensitive to strain rate effects. Tests showed an inverse

correlation between static strength of concrete and strength growth due to strain

rate.

The whole stress–strain curve is strain rate dependent. A high strain rate yield

a reduction of strain at maximum stress in compression, and an increase in the

secant modulus. Yet, strain rate effects on tangent modulus are negligible.

Reinforced concrete members under high strain rate experience an increase in

strength and stiffness, which may lead a shift in flexural mode failure from ductile

to brittle.
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Chapter 4

Linear Single Degree of

Freedom Model

4.1 Introduction

In order to analyze the dynamic response of structures under blast loadings,

two main theoretical topics need to be dealt with, the definition of a time–pressure

profile acting on the target and the choice of an ideal model representing the actual

structure.

The pressure profile yielded by an explosion may be considered either deter-

ministic or aleatory. A random excitation of space structures was considered by

Chang [45], whom analyzed a free–free beam with a lumped mass and hystereti-

cally damped; the cross spectral density function of the applied load was a Gaussian

stochastic process in time. It was shown that larger uncertainties of random loads

decrease the system reliability.

Although uncertainties concerning explosion phenomena make a random model

more appropriate, deterministic loadings are still useful to compare results of dif-

ferent models and to get a rapid assessment of structural behaviors. Baker et al. [3]

suggested two different deterministic expressions to describe the simplified pressure

profiles yielded by a detonation or a deflagration. As mentioned in the previous

chapter, a detonation involves a pressure–time history characterized by a step rise

followed by an exponential decay as well as monotonic pressure–impulse curves,

whereas a deflagration causes a wavefront pressure with a finite rise time and non

monotonic pressure–impulse curves.

The choice of an adequate expression for a blast load function is not discussed

in this chapter. According to Li and Meng [46, 47], a four parameter expression
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is assumed, involving the peak overpressure, the loading duration, and two shape

parameters. Such formula is intended to describe a general descending pulse load

generated by a detonation.

Since the aim of this thesis is to develop simplified methods of analysis for blast

design, a single degree of freedom model (SDOF model) is chosen as an approximate

technique for the dynamic analysis of a wide range of geometries. A SDOF model

was widely employed to predict the structural response of actual structures under

blast loads (Bangash [48]; Mays and Smith [16]; Krauthammer [49]). It was consid-

ered helpful for the structural design because it allows to easily predict the overall

response of a structure. For complex systems, Abrahamson and Lindberg [50] pro-

posed to construct a critical pressure–impulse curve as the envelope of the critical

load curves for the structural elements, schematized as SDOF models. However it is

well known that such models, since providing information just for one point in the

actual system, are limited for identifying complex structural behaviours. In general,

structural models like plates and shells are more representative of the structural be-

haviour and of the state of damage. For a class of problems in which elastic effects

are significant, Schleyer and Hsu [51] proposed a structural schema made of two

beams and five springs. The maximum deflections calculated by such schema and

by an elastic–perfectly plastic SDOF model were compared, and agreed quite well

since both methods are based on assumed first mode shapes. The main difference

between the two them is that a more accurate transfer from one mode shape to

another is implemented in Schleyer’s analytical scheme. Thereafter, a SDOF model

may be regarded as a first order design method or a first step analytical method,

useful when a structure is analyzed starting from simple approaches, as noted by

Krauthammer [49].

The simple oscillator presented in this chapter has constant stiffness until failure,

which establish an elastic–fragile behaviour typical of those systems where the elastic

deformations are dominant, due to a large ratio of initial kinetic energy to maximum

elastic strain energy and a high value of the stiffness itself. Any kind of damping

is also neglected. Indeed, although all dynamic systems contain damping to some

degree, in case of structures with a load–time function described in Eq. (4.1) the

damping effect is not significant if some conditions suggested by Biggs [24] are

respected; the load duration must be short, as shown in § 4.2.3, and the only

output datum of interest is the maximum dynamic response of the structure.

Shear effects on the system response are also neglected. The key parameters to

decide when such effects have to be taken into account were established by Li and
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Jones [52, 53, 54], who considered transverse shear effects on fully clamped circular

plates, ‘short’ cylindrical shell and fully clamped beams.

The second part of this chapter is focused on the loading shape influence on

the structural response, a topic widely surveyed by Youngdahl [55], who examined

several kinds of structures with a rigid–plastic stress–strain relation (circular plate,

reinforced circular cylindrical shell, free–free beam, circular shell with a ring load),

under different load shapes (rectangular, linearly decaying, exponentially decaying,

triangular and sinusoidal). He tried to eliminate the dependence of the response

from the load shape by introducing two key parameters, the total impulse and the

effective load, involving a loading function and two time parameters referring to

the beginning and the end of the plastic deformation. A theoretical foundation for

Youngdahl’s work [55] was given by Li and Meng [47] for a rigid–plastic single degree

of freedom model. In successive works Youngdahl [56, 57] considered problems where

the load becomes a function both of position and time, or the stress–strain relation is

more complex, such as the strain hardening. In this cases the calculation of effective

parameters results more complicated. Abrahamson and Lindberg [50] suggested the

use of a simple hyperbolic shape for the pressure–impulse diagram, which provided

significant discrepancies (20%–40%) with respect to the isodamage curves given

by an exponentially and a linearly decaying load acting on a SDOF model. Zhu

et al. [58] used Youngdahl’s work to develop simple characteristic curves for rigid–

plastic structural models, as was done by Abrahamson and Lindberg. Lately, a non–

load–shape–dependent pressure–impulse diagram was proposed by Li and Meng [46].

In § 4.3.2 the influence of the pulse shape on the dynamic load factor and pressure–

impulse diagram is shown, with emphasis placed upon the analysis of the transient

response, which represents a major concern in case of blast loads. The knowledge of

the transient response of a linear elastic model is primarily important to understand

the behavior of a SDOF model with several stress–strain relations, which may be

often simplified as linear or piecewise linear. Many problems concerning the response

spectrum are highlighted, like the position of the spectrum transition point. A

discussion about the formulation of a general expression for the transient response

spectrum is reported. An analytical expression of isodamage curves is examined for

different pulse shapes, and the validity of the non–load–shape–dependent pressure–

impulse diagram proposed in Ref. [46] is discussed.
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4.2 Response analysis

When a system configuration can be described by the displacement of a sin-

gle point, the known principles of structural dynamics allow to convert the actual

structures into a SDOF model by using equivalent mass, damping and resistance

function.

The pressure profile assumed by Li and Meng [46] for an explosive charge, is a

generalized form of the Friedlander equation [2]:

F (t) =







Fmax



1 − λ
t

td



 exp



−γ
t

td



 for 0 ≤ t ≤ td

0 for t > td

(4.1)

where:

• t is the time in seconds;

• Fmax is the peak load value, in kN (if the load is a force) or in kN/m2 (if it is

a pressure);

• td is the duration of the loading positive phase. Since the negative phase

can be neglected to evaluate the effect of an explosion, td represent the total

duration of loading;

• λ and γ are shape parameters.

The load described from Eq. (4.1) acts on the structure with an impulse as

follows:

I =

td∫

0

F (t)dt = Fmax td ψ(λ, γ), ψ(λ, γ) =
(γ − λ) (1 − e−γ) + λγe−γ

γ2
(4.2)

The effects on a linear spring–mass system loaded by a pulse load with λ ∈ [0, 1]

and γ ∈ [0, 10] have been studied; these ranges are suitable to describe a pulse load

from detonations that are characterized by a step rise and a following decay, with

a fixed magnitude at t = td.

By applying D’Alembert’s principle, the motion equation results:

mÿ + ky = F (t) 0 ≤ t ≤ td (forced vibrations) (4.3a)

mÿ + ky = 0 t > td (free vibrations) (4.3b)

with initial conditions:
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i.c.

{

y (t = 0) = 0

ẏ (t = 0) = 0
(4.4)

where m and k are, respectively, the equivalent mass and stiffness and y is the mass

displacement. To represent the system response, the following symbols are adopted:

• ω =
√

k/m is the natural frequency of the structure;

• τ = ωt is the dimensionless time variable;

• τd = ωtd is the dimensionless loading duration;

• tmax is a point in the time domain corresponding to a relative maximum point

of the displacement function;

• τmax = ωtmax is a dimensionless time value corresponding to a relative maxi-

mum displacement;

• yst = Fmax/k is the static displacement;

• yf (t) represents the displacement function for forced vibrations;

• yl(t) is the displacement function for free vibrations;

• DLFf (τ) = yf/yst is the Dynamic Load Factor of forced vibrations;

• DLFl(τ) = yl/yst is the Dynamic Load Factor of free vibrations.

In order to calculate the solution of the motion equation during the forced

vibrations, the general integral of the Eq. (4.3a) can be established by solving the

Duhamel’s integral applied to the assigned force. According to Biggs [24], we have

yf (t) =

t∫

0

F (t′)√
mk

sin

(

t− t′
√

m/k

)

dt′ =
Fmax√
mk

t∫

0

f(t′) sinω(t− t′) dt′

where f(t′) represents the load function from Eq. (4.1) normalized with respect to

the peak value Fmax.

By defining

f1(λ, γ, td) = 1 − 2λγ

γ2 + (ωtd)2
, f2(λ, γ, td) = λ+ γf1(λ, γ, td) (4.5)

we get:

DLF f (τ) =
τ2
d

γ2 + τ2
d

{

f2
sin τ

τd
− f1 cos τ +

(

f1 − λ
τ

τd

)

exp

(

−γ τ
τd

)}

(4.6)
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From Eqs. (4.3b) and (4.6), the solution of the motion equation during the free

vibrations can be obtained by imposing the continuity of the Dynamic Load Factor

and its first derivative at τ = τd:







DLF l(τ) =
yl(τ)

yst
= Acos τ + Bsin τ

A =
τ2
d

γ2 + τ2
d

{

−f1 + e−γ

[

(f1 − λ) cos τd +
f2 − λγ

τd
sin τd

]}

B =
τ2
d

γ2 + τ2
d

{
f2

τd
+ e−γ

[

(f1 − λ) sin τd −
f2 − λγ

τd
cos τd

]}

(4.7)

4.2.1 Stationary points of the displacement function

According to Campidelli and Viola [59], during the free vibration phase the time

values when a relative maximum displacement is reached are established as follows:

τmax = nπ + arctan

(
B

A

)

, n ∈ N (4.8)

During the forced vibration phase, τmax is defined by equating to zero the first

derivative of the displacement function which describes the forced vibrations:

dyf

dt
(tmax) =

d

dt

{

f2
sinωt

ωtd
− f1 cosωt+

(

f1 − λ
t

td

)

exp

(

−γ t
td

)}∣
∣
∣
∣
t=tmax

= 0

By defining a new variable ϑ = 1/τd, we obtain:

ϕ(ϑ, τmax) = f1 sin τmax + f2ϑ cos τmax − [f2 − λγϑτmax] exp (−γϑτmax) = 0 (4.9)

Eq. (4.9) represents an implicit function τmax(ϑ), which can be simply calculated

when ϑ→ 0 (or τd → +∞); in fact, from Eq. (4.1) we have:

lim
τd→+∞

F (τ) = lim
τd→+∞

Fmax

(

1 − λ
τ

τd

)

exp

(

−γ τ
τd

)

= Fmax (4.10)

When τd → ∞, Eq. (4.10) shows that the system is excited by a rectangular load

(step rise, constant magnitude, step decay) with infinite duration for all the finite

values of λ and γ. Therefore, the time values when a relative maximum displacement

is reached can be deduced using the corresponding solution coming from a spring–

mass system under a rectangular pressure profile:

τmax(τd → +∞) = τmax(ϑ→ 0) = nπ, n ∈ N0, ∀(λ, γ) ∈ R2 (4.11)

The first derivative of τmax(ϑ) can be calculated. Since this function is implicitly

defined by zeros of ϕ(ϑ, τmax), the first derivative Dτmax/Dϑ can be obtained by
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equating to zero the total derivative of ϕ(ϑ, τmax):

Dϕ

Dϑ
(ϑ, τmax) =

(
∂ϕ

∂ϑ
+

∂ϕ

∂τmax

Dτmax

Dϑ

)

(ϑ, τmax) = 0

Dτmax

Dϑ
(ϑ, τmax) = −

∂ϕ

∂ϑ
(ϑ, τmax)

∂ϕ

∂τmax
(ϑ, τmax)

It should be noted that Dτmax/Dϑ depends on the value of its primitive function

τmax(ϑ). Setting τ
(k)
max = Dkτmax/Dϑ

k and proceeding with implicit derivation with

respect to the ϑ variable, the nth derivative can be calculated:

τ (1)
max(ϑ, τmax) = −

∂ϕ

∂ϑ
(ϑ, τmax)

∂ϕ

∂τmax
(ϑ, τmax)

τ (2)
max(ϑ, τmax) =

∂τ
(1)
max

∂ϑ
+
∂τ

(1)
max

∂τmax
τ (1)
max =

(
∂

∂ϑ
+ τ (1)

max

∂

∂τmax

)

τ (1)
max

...

τ (n)
max(ϑ, τmax) =

∂τ
(n−1)
max

∂ϑ
+
∂τ

(n−1)
max

∂τmax
τ (1)
max =

(
∂

∂ϑ
+ τ (1)

max

∂

∂τmax

)

τ (n−1)
max

The above derivatives have τmax(ϑ) as argument and thus, if the value of this func-

tion is known when ϑ → 0, a Maclaurin series expansion of the unknown function

can be obtained in a neighborhood of the chosen point ϑ0 = 0 or, from another

point of view, in a neighborhood of x0 = (ϑ0, τmax(ϑ0)) = (0, nπ):

τmax(ϑ) = τmax(0)
︸ ︷︷ ︸

nπ

+ τ (1)
max

∣
∣
∣
x0

ϑ+
τ

(2)
max

2!

∣
∣
∣
∣
∣
x0

ϑ2 + . . .+
τ

(n)
max

n!

∣
∣
∣
∣
∣
x0

ϑn

= nπ +

n∑

k=1

τ
(k)
max

k!

∣
∣
∣
∣
∣
x0

ϑk

Remembering that ϑ = 1/τd, we can write:

τmax(τd) = nπ +

n∑

k=1

τ
(k)
max

k!

∣
∣
∣
∣
∣
x0

(
1

τd

)k

(4.12)

By truncating the series expansion at the fourth term, a good approximation of the

time values corresponding to the maximum displacements can be obtained, for each

value of λ and γ. In fact, for each set of constants (n0, n1, n2, n3, n4) ∈ N5
0, from

Eq. (4.12) we obtain:
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τmax(τd) = n0π + (λ+ γ)

(
1

cosn1π
− 1

)(
1

τd

)

− n2πγ(2λ+ γ)

cosn2π

(
1

τd

)2

+

+

[(

2λγ2 + 3λ2γ +
2

3
γ3 − λ3

3

)(
1

cosn3π
− 1

)

+

+
(n3π)2

(
3
2λγ

2 + γ3

2

)

cosn3π





(
1

τd

)3

+

+
n4πγ

6

[
(
24λγ2 + 21λ2γ + 6γ3

)
(

2 − 1

cosn4π

)

−

− 21λ2γ + (n4π)2(4λγ2 − γ3)

cosn4π

](
1

τd

)4

(4.13)

τd = ωtd = 2πtd/T
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Fig. 4.1. Exponentially decaying load (λ = 1, γ = 2.8): times of local maximum displacement

against load duration, during the forced vibrations phase. Solid lines identify the parts of the

charts in time range (0, τd).

Eq. (4.13) is shown in Fig. 4.1, when λ = 1, γ = 2.8 and natural constants have the

following values:

n0 = 0, 1, 2, 3 n1 = 0, 1, 2, 3 n2 = 0, 1 n3 = 0, 1 n4 = 0, 1

Since the set of constants (n0, n1, n2, n3, n4) corresponding to the absolute maximum

displacement can not be calculated in closed form, in order to build the response

spectrum it is necessary to analyze the influence of the natural constants on the

dynamic load factor.
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τd = ωtd = 2πtd/T

|D
L
F

m
a
x
|=

|y
m

a
x
|/
y s

t

DLFmax,1, n0 = 1, n1 = n2 = n3 = n4 = 0

DLFmax,2

0 10 20 30 40 50 60
0

0.5

1

1.5

2

Fig. 4.2. Exponentially decaying load (λ = 1, γ = 2.8): displacements by 28 different sets of

constants (n0, . . . , n4).
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Fig. 4.3. Exponentially decaying load (λ = 1, γ = 2.8): displacements by 396 different sets of

constants (n0, . . . , n4).
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4.2.2 Response spectrum

The response spectrum can be obtained from the solutions of the motion equa-

tion for both motion phases, that is the forced vibration phase and the free vibration

one. A first empirical assessment for the transient response spectrum can be ob-

tained by building the envelope function generated by enveloping the displacement

functions, which are evaluated at τmax for several values of n0, n1, . . . , n4. So, when

forced vibrations occur, we get:

|DLFmax,1(τd)| =

=
τ2
d

γ2 + τ2
d

∣
∣
∣
∣
f2

sin τmax

τd
− f1 cos τmax +

(

f1 − λ
τmax

τd

)

exp

(

−γ τmax

τd

)∣
∣
∣
∣

(4.14)

with τmax from Eq. (4.13). And for free vibrations we have:







|DLFmax,2(τd)| =
√

A2 + B2

A =
τ2
d

γ2 + τ2
d

{

−f1 + e−γ

[

(f1 − λ) cos τd +
f2 − λγ

τd
sin τd

]}

B =
τ2
d

γ2 + τ2
d

{
f2

τd
+ e−γ

[

(f1 − λ) sin τd −
f2 − λγ

τd
cos τd

]}

(4.15)

where DLFmax,1 e DLFmax,2 denote the relative maximum values of dynamic load

factor for forced and free vibrations, respectively.

For low values of the load duration, the spectrum is determined by free vibrations

(Eq. (4.15)). For high values of τd instead, the spectrum is determined by solution

(4.14), with (n0, . . . , n4) = (1, 0, 0, 0, 0). Finally, for intermediate values of the load

duration, the response can only be obtained varying the values (n0, . . . , n4) and

choosing, for each value of τd, the maximum displacement. In Figs. 4.2 and 4.3 the

DLF − τd charts are presented to show the influence of n0, . . . , n4 on the response

spectrum. The charts are obtained from all the combinations of the following values

of natural constants:

for Fig. 4.2,

n0 = 0, 1, 2, 3 n1 = 0 n2 = 0, 1, . . . , 6 n3 = 0 n4 = 0

for Fig. 4.3,

n0 = 0, . . . , 10 n1 = 0, . . . , 5 n2 = 0, . . . , 5 n3 = 0 n4 = 0

By enveloping a larger number of displacement functions, obtained with wider

ranges of natural constants, we get the curves in Figs. 4.4 and 4.5.
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Fig. 4.4. Envelope function, by enveloping 256 different displacement functions (λ = 1, γ = 2.8).
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Fig. 4.5. Envelope function, by enveloping 14256 different displacement functions, (λ = 1, γ = 2.8).
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As can be seen in these figures, a descending pulse load originates a concave down-

ward spectrum of displacements, without changes of curvature sign. Numerical

results show narrower zones where the curvature sign changes as the amount of sets

of constants used to calculate the spectrum is increased.

In the present paper, the negative sign of the second spectrum derivative is

assumed as a hypothesis, and will be called concavity spectrum hypothesis or, more

shortly, concavity hypothesis. Based on this hypothesis, a smoothing algorithm is

introduced to adjust the ordinates of those points where the concavity hypothesis is

not respected. The algorithm allows a lowering of the computational cost, because

it allows to calculate the response spectrum by using a smaller amount of sets of

constants (n0, . . . , n4). Results produced by the smoothing algorithm are shown in

Figs. 4.6 and 4.7. This way, it is possible to eliminate all the changes of curvature

in the envelope function.

4.2.3 Approximate expression of the transient response spectrum

τd,1 τd,2 τd,3

τd

DLF1

DLF2

DLF3

DLF2′

|DLFmax(τd)|

smoothed curve

envelope function1

2

3

2′

Fig. 4.6. Smoothing of response spectrum: the point 2 ordinate is replaced by the point 2’ one,

calculated by linear interpolation between points 2 and 3.

The research of an analytical expression for the response spectrum requires the

solution of three problems: the choice of the spectrum domain, the demonstration

of the spectrum concavity and the definition of the spectrum transition time.

The choice of the spectrum domain depends on the range in which the natural

period of vibration of the loaded structure lies, as well as on the positive phase

duration of the blast load. For civil structures, the fundamental period of vibration

T can be assumed in the interval [0.1, 20] s. For the loading duration of a detonation,

Smith and Hetherington [2] suggest td ∈ [10−1, 10] ms, as it is also prescribed

in Eurocode 1 [60], which predicts a loading time lower than 10 ms. In case of
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deflagration, Eurocode 1 suggests a loading time of 100 ms, but in literature various

pressure profiles are presented whose positive phase achieves 300 ms [61]. On that

account the spectrum domain can be established in the following range

τd = 2π
td
T

∈ [10−5π, 6π] ≈ [10−5, 20]

The concavity hypothesis, which is the basis of the smoothing algorithm intro-

duced in sec. 4.2.2, can be rigorously demonstrated only for rectangular or triangular

load shapes, but it is assumed true for each descending pulse load.

The third problem mentioned above concerns the definition of the spectrum

transition time τd,0 which corresponds with the abscissa of the transition point (PT ).

The first part of the spectrum, near the axis origin (τd ≤ τd,0), is generated by free

vibrations, and the second one is generated by forced vibrations (τd > τd,0). For

rectangular or triangular pulse shapes, τd,0 can be analytically established; for each

other load shape τd,0 is assumed coincident with the upper boundary of existence

for the first solution of Eq. (4.8). When n = 1 and τd > τd,0, Eq. (4.8) predicts

τmax < τd, but when this condition occurs, the motion is forced and Eq. (4.8) does

not work. So, τd,0 is given by:

π + arctan (B/A) |τd=τd,0
= τd,0

τd = ωtd = 2πtd/T
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Fig. 4.7. Envelope function (dash–dot line) and smoothed curve (continuous line).

When τd > τd,0, an analytical expression for the response curve can be calculated

by the least squares method [62], with a polynomial regression on spectrum points.

The spectrum shape suggests the use of regression functions as follows:

Sr(τd) = ar

[

2r −
(

1

τd + 0.5

)r]

, r ∈ N, ar ∈ R (4.16)
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By adding the first g functions given from Eq. (4.16), we get an expression S(τd)

for the fitted curve, depending on unknown parameters ar of the analytical model:

S(τd) = a0 −
g
∑

r=1

ar

(τd + 0.5)r
(4.17)

In order to join the two curves described from Eqs. (4.15) and (4.17), which

both represent the system response corresponding to the transition point, the same

values of the two functions and their derivatives must be set when τd = τd,0. After

fixing the following positions

X = (τd + 0.5)−1 b0 = a0, br = −ar ∀r > 0

X0 = (τd,0 + 0.5)−1 S0 = S(τd,0) S′

0 = S′(τd,0) = tanα0

and when the axis origin is translated into PT ≡ (τd,0;S(τd,0))

X = X −X0, S = S − S0

we can write:

S =

g
∑

r=0

brX
r

(4.18)

where br are the new unknown parameters that have to be estimated. Then, by

fixing the ordinate of the spectrum and the slope of his tangent line at τd = τd,0,

we get:

S̄(0) =

g
∑

r=0

brX̄
r

∣
∣
∣
∣
∣
X̄=0

= b0 = 0 (4.19)

and also
dS̄

dτd

∣
∣
∣
∣
τd=τd,0

= tanα0 ⇒ b1 = −(τd,0 + 0.5)2 tanα0 (4.20)

The overdetermined system (4.18) becomes:

S − S0 + (τd,0 + 0.5)2 tanα0 =

g
∑

r=2

br(X −X0)
r (4.21)

When the system (4.21) is solved, the expression of the transient response spectrum

is given by:

S(τd) =S(τd,0) − (τd,0 + 0.5)2 tanα0

(
1

τd + 0.5
− 1

τd,0 + 0.5

)

+

+

g
∑

r=2

br

(
1

τd + 0.5
− 1

τd,0 + 0.5

)r

, ∀τd > τd,0

(4.22)

If τd and the constants n0,1,...,4 have the following values:
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• τd = τd,0, τd,0 + 0.1, τd,0 + 0.2, . . . , 20

• n0,1,2,3 = 0, 1, 2, 3

• n4 = 0

we get the fitted curve shown in Figs. 4.8 and 4.9. The regression parameters are

presented in Tab. 4.1.

τd = ωtd

S
(τ

d
)

PT

τd = τd,0, τd,0 + 0.1, τd,0 + 0.2, . . . , 20

n0,1,2,3 = 0, 1, 2, 3

n4 = 0

fitted curve

smoothed curve

0 5 10 15 20
0

0.5

1

1.5

2

Fig. 4.8. Regression function of response spectrum (λ = 1, γ = 2.8).

Fig. 4.9. Residuals distribution (λ = 1, γ = 2.8).

4.2.4 Influence of computation parameters on response spectrum

The coefficients br in Eq. (4.22), obtained by solving the system (4.21), are

strongly influenced by the following computation parameters:
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τd = [τd,0, τd,0 + 0.1, τd,0 + 0.2, . . . , 20], n0,1,2,3 = 0, 1, 2, 3, n4 = 0

r br

0 0.0000

1 −1.1933e + 000

2 1.4487e + 000

3 −1.0797e + 001

4 −5.8500e + 000

5 4.6883e + 001

6 1.8058e + 002

Tab. 4.1. Response spectrum (λ = 1, γ = 2.8): coefficients of the regression polynomial of 6th

degree.

1. the values assigned to (n0, n1, n2, n3, n4) which give a numerical assessment of

Eqs. (4.13) and (4.14), and thus decide the ordinates of the envelope function;

2. the choice of points in the spectrum domain, which have a great influence on

the polynomial regression;

3. the choice of the regression functions to model the response S(τd) and apply

the least squares method.

Fig. 4.10 shows a possible convergence of the coefficients br as the amount of

computed sets of constants n0,...,4 is increased, as well as the variation of the spec-

trum chart. But these results are not definitive and can only show a trend of the

response depending on the set (n0, ..., n4). Therefore, to improve the knowledge

about the existing relation between n0,...,4 and the response curve, it could be nec-

essary to use statistical techniques like design of experiment (robust design) and

response surfaces.

In order to choose the points within the transient spectrum domain [τd,0, 20], an

evident convergence of br can be noted as the mesh approaches zero, if a uniform

domain partition is considered, as shown in Fig. 4.11.

Finally, a regression function for the response curve must satisfy some funda-

mental requirements.

Firstly, the quality of the fit is acceptable when the standardized residuals are

normal and (approximately) independently distributed with a zero mean and with

[−1.96, 1.96] as confidence interval, with about 95% of confidence level (Fig. 4.9).

Secondly, under ideal circumstances, a plot of the residuals must show no geo-

metric regularity, as it verified. It is worth noting that expression in Eq. (4.22) has

these features.
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Fig. 4.10. Influence of the amount of computed sets of constants on the regression function S(τd):

(a) variation of b2, (b) variation of b3, (c) variation of b4, (d) variation of b5, (e) variation of

spectrum chart.
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In order to define the degree of the polynomial S(τd), it has to be noted that, as

the degree is increased, we get a badly conditioned system solving the least squares

problem. Moreover, with a 6th degree polynomial, the residuals values obtained are

very low and decreasing while the amount of sets n0,...,4 used to make the envelope–

function increases. In fact, when the argument X of the rth power in S(τd) is less

than the unity, the influence of br decreases as r goes up. This condition is always

verified when τd,0 > 0.5 (Fig. 4.12), as it happens when λ ∈ [0, 1] and γ ∈ [0, 10].
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Fig. 4.11. Convergence of bk varying the partition of the spectrum domain when λ = 1 and γ = 2.8:

(a) convergence of b2, (b) convergence of b3, (c) convergence of b4, (d) convergence of b5.

4.3 Structural damage and p–i diagram

Let us suppose yc to be a critical displacement corresponding to structural fail-

ure. If the resistance function of the spring is linear until failure (elastic–fragile
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Fig. 4.12. Argument of rth power in spectrum expression against load duration.
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Fig. 4.13. Damage function (λ = 1, γ = 2.8); under the surface some level curves given by d=cost

are reported.

55



behavior), the damage level can be defined by the following ratio:

d =
|ymax|
yc

(4.23)

where |ymax| is the absolute maximum displacement. It should be noted that a “real

damage” of the system occurs only when d = 1. When d < 1 the elastic deformation

is recovered by the spring, and so d−1 can be regarded as a safety factor against

the failure. In order to represent the damage level it is convenient to define the

following dimensionless pressure and impulse:

p =
Fmax

F0
(4.24a)

i =
I

I0
(4.24b)

where 0.5F0 = 0.5 yck is the magnitude of the step load that produces the specified

critical displacement yc and I0 = yc

√
mk is the ideal impulse that produces the

same displacement.
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Fig. 4.14. Isodamage curves corresponding to 5 different damage levels (λ = 1, γ = 2.8).

Once the analytical expression of S(τd) is known from Eqs. (4.15) and (4.22), and

remembering the definition of DLFmax and the impulse expression from Eq. (4.2),

the structural damage level can be shown as a function with four variables:

d = G(p, i, λ, γ) = p · S(τd), τd =
i

p
ψ(λ, γ)−1 (4.25)

Fig. 4.13 shows the surface given from Eq. (4.25), generated by an exponentially

decaying load (λ = 1, γ = 8). The level curves of this surface, where the G

function takes on given constant values, are the well known isodamage curves, which
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represent the set of the points in the pressure–impulse space that correspond to all

the different loads, of fixed pulse shape, which produce a damage level equal to

d. The isodamage curves, given implicitly from Eq. G(p, i, λ, γ) = const., can be

represented in explicit form as parametric curves with respect to the parameter τd

(Fig. 4.14):

p =
d

S(τd)
, i = p · τd · ψ(λ, γ) (4.26)

4.3.1 Response limits
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Fig. 4.15. Response regimes (λ = 1, γ = 2.8): impulsive, dynamic (A–B portion), quasi–static.

Generally a p-i diagram is not a monotonically decreasing function. This is not

the case, for example, when the loading pressure profile has a finite rise time, or

when the negative loading phase can not be neglected, as shown by Baker et al. [3].

When the loading pressure profile is monotonically decreasing, i.e. when λ ∈ [0, 1]

and γ ∈ [0, 10], the isodamage curves are monotonically decreasing and they have

vertical and horizontal asymptotes. These asymptotes can be established via an

energy criterion. The energy balance for the spring–mass system at a generic time

is given by

We = Φ + T (4.27a)

t∫

0

F (t′) ẏ(t′) dt′ =
1

2
ky2(t) +

1

2
mẏ2(t) (4.27b)

in which We represents the work done by external load, T is the kinetic energy of

the system and Φ is the elastic strain energy of the spring.
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For an impulsive load, the equation of the impulsive asymptote is deduced from

Eq. (4.27):

|T(0)| = |Φmax|
I2

2m
=

1

2
ky2

max(t)

i =
I

I0
= d (4.28)

On the other hand, for a quasi–static load (step rise, constant magnitude, step

decaying), the equation of the quasi–static asymptote can be obtained as follows:

tmax∫

0

F ẏ(t) dt =
1

2
ky2(tmax) +

1

2
mẏ2(tmax)

Fymax =
1

2
ky2

max, ymax = y(tmax)

p =
F

F0
=
d

2
(4.29)

Generally, all charts relative to a given pulse shape can be conventionally divided

into three regions, depending on the ratio of load duration to fundamental period

of the structures:
td
T

=
τd
2π

(4.30)

For low values of τd, a p-i curve collapses into its vertical asymptote, and the

response is similar to that one of a system excited by an impulsive load. This

regime is called impulsive (I). For high values of τd the diagram collapse into its

horizontal asymptote, like a system excited by a quasi–static load, corresponding to

a quasi–static regime (III). Finally, for intermediate values of this ratio, the system

response can be calculated only with a rigorous dynamic analysis; it corresponds

to the dynamic regime (II). Points A and B on the p − i curve, corresponding to

a transition from a kind of regime to another, have been established by Li and

Meng with a 5% relative accuracy about the values of the horizontal and vertical

asymptotes, as shown in Fig. 4.15.

4.3.2 Pulse shape effects on the system response

The influence of the pulse shape on the structural response is shown in Figs. 4.16,

4.17, 4.18 and 4.19. When λ and γ increase, the response spectrum moves down

progressively and slowly approaches the horizontal asymptote (DLF = 2). The

isodamage curves move away from the origin and their length in dynamic regime

increases.
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Fig. 4.16. Influence of load shape on response spectrum; γ = 2.8, λ = 0, 0.1, 0.2, . . . , 1.

Fig. 4.17. Influence of load shape on response spectrum; λ = 1, γ = 0, 1, 2, . . . , 10.
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Fig. 4.18. Influence of load shape on p-i diagrams; λ = 0, 0.1, 0.2, . . . , 1, γ = 0, d = 1.
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Fig. 4.19. Influence of load shape on p-i diagrams; γ = 0, 0.5, 1.0, . . . , 10, λ = 1, d = 1.

4.3.3 Regression model for isodamage curves
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Fig. 4.20. Simplified p–i diagram; λ = 1, γ = 2.8, d = 1.

When the response spectrum is known, the consequent expression derived for

p–i diagrams is rather complex. In fact, from Eqs. (4.15), (4.22) and (4.26), we get:







p =
d√

A2 + B2

i = p τd ψ(λ, γ)

for τd ≤ τd,0 (4.31)
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Fig. 4.21. Quadratic approximation for m1; (λ = 1, γ = 2.8, d = 1).
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Fig. 4.22. Quadratic approximation for m2; (λ = 1, γ = 2.8, d = 1).







p =
d

S0 +
g∑

r=1
br




1

τd + 0.5
−

1

τd,0 + 0.5





r

i = p τd ψ(λ, γ)

for τd > τd,0 (4.32)

In order to find a simplified representation, the curve shape suggests the use of

hyperbolic regression functions, like those proposed by Li and Meng:

p =
1

2
+

m1

(i− 1)m2
(4.33)
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ν Q

-0.95 0.3016

-0.94 0.3015

-0.93 0.3015

-0.92 0.3014

-0.91 0.3014

-0.90 0.3014

-0.89 0.3014

-0.88 0.3014

-0.87 0.3015

-0.86 0.3015

-0.85 0.3016

Tab. 4.2. Simplified p–i curves: local minimum of sum of squared deviations; λ = 1, γ = 2.8,

d = 1.

which can be linearized as follow:

Y = m̄1 +m2X,







X = − ln(i− 1)

Y = ln(p− 0.5)

m̄1 = ln(m1)

(4.34)

where m1 and m2 are unknown parameters that are to be estimated. In order to

avoid an excessive discrepancy between regression functions and input data, caused

by the asymptotic behavior, it is covenient to assign at the j th input point a weight

wj depending on the chart slope at the same point:

wj =

(

max

{∣
∣
∣
∣

dp

di

∣
∣
∣
∣
(ij ,pj)

,

∣
∣
∣
∣

di

dp

∣
∣
∣
∣
(ij ,pj)

})ν

(4.35)

in which the power ν is chosen by minimizing the sum of squared residuals (Q2),

considering the deviations ηj on both X and Y directions:

Q =

√
∑

j

η2
j , ηj = min

{

|Yj − (m̄1 +m2Xj)|,
∣
∣
∣
∣
Xj −

Yj − m̄1

m2

∣
∣
∣
∣

}

(4.36)

When the pressure profile is exponentially decaying (λ = 1, γ = 2.8), with ν = 0.90

we obtain a minimum local point of Q, as shown in Tabs. 4.2 and 4.3.

By following the same procedure for other load shapes, we get the values of

m1,2 in Tab. 4.4. Certainly, even these results are strongly influenced by the choices

of the spectrum domain and sets n0, n1, . . . , n4. Similar problems occur when a

relationship has to be estimated between m1,2 and the load shape, represented by

its centroid. From Eq. (4.1), and introducing the following change of variables

ξ =
t

td
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ν = −0.90 Li and Meng, 2002

m1 m2 Q m1 m2 Q

0.305 0.693 0.301 0.300 0.700 0.301

Tab. 4.3. Regression parameters of p-i diagram; λ = 1, γ = 2.8, d = 1.

the loading function, normalized with respect to his maximum value, becomes:

f(ξ) =







(1 − λ ξ) exp(−γξ) for 0 ≤ ξ ≤ 1

0 for ξ > 1
(4.37)

The centroid position is given by

ξ0 =

1∫

0

ξf(ξ)dξ

1∫

0

f(ξ)dξ

, ζ0 =

1∫

0

f2(ξ)dξ

2
1∫

0

f(ξ)dξ

(4.38a)

D =
√

ξ20 + ζ2
0 (4.38b)

By using the quadratic approximation proposed by Li and Meng [46]

m1(D) = β0,1 + β1,1D + β2,1D
2

m2(D) = β0,2 + β1,2D + β2,2D
2

(4.39)

and from results in Tab. 4.4, we get the βi,j values which, as suggested by Florek

and Benaroya [63], are very different from the values determined by only three load

shapes:

β0,1 = 0.654 β1,1 = −0.936 β2,1 = 0.002

β0,2 = 2.553 β1,2 = −8.237 β2,2 = 8.721

Charts ofm1(D) edm2(D) are shown in Figs. 4.21 and 4.22. A clear relationship can

be observed only when one of the shape parameters, λ or γ, is fixed. Therefore, for

further research of a simplified expression for p-i diagrams, it could be necessary to

establish a relation between m1,2 and the load shape in which λ and γ are partially

uncoupled:

mi = fi(λ) + gi(γ) + hi(λ, γ), i = 1, 2

Similar problems occur while investigating the influence of the load shape on

the response limits. Even in this case, the quadratic approximation proposed by Li
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Fig. 4.23. Quadratic approximation for τ1; (λ = 1, γ = 2.8, d = 1).
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Fig. 4.24. Quadratic approximation for τ2; (λ = 1, γ = 2.8, d = 1).
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Fig. 4.25. Quadratic approximation for pA; (λ = 1, γ = 2.8, d = 1).
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Fig. 4.26. Quadratic approximation for iB ; (λ = 1, γ = 2.8, d = 1).

and Meng (Eq. (4.40)) produces different results if it is applied to the wide range

of load shapes in Tab. 4.4, and all observations made for m1,2(D) functions about

the accuracy of the employed method are still valid.

τ1(D) = β0,τ1 + β1,τ1D + β2,τ1D
2

τ2(D) = β0,τ2 + β1,τ2D + β2,τ2D
2

pA(D) = β0,pA
+ β1,pA

D + β2,pA
D2

iB(D) = β0,iB + β1,iBD + β2,iBD
2

(4.40)

The regression curves of these functions are represented in Figs. 4.23, 4.24, 4.25 and

4.26, which are defined using the following β–values:

β0,τ1 = 3.566 β1,τ1 = −8.247 β2,τ1 = 6.803

β0,τ2 = 475.734 β1,τ2 = −1407.286 β2,τ2 = 1055.256

β0,pA
= 6.745 β1,pA

= −15.133 β2,pA
= 9.901

β0,iB = 19.156 β1,iB = 6.332 β2,iB = −46.496

4.3.4 Effective pressure–impulse diagram

In the following the effective impulse is defined in a different way with respect

to that shown in Ref. [46]:

ie = 1 +
(i− 1)m2

m1
(4.41)

and the same definition is used for the effective pressure

pe = p (4.42)
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Fig. 4.27. Unique pe − ie diagram, compared with charts of load profiles given by λ =

0.05, 1.05, . . . , 1, γ = 0.001, 1.001, 2.001, 3.001; d = 1.

Substituting Eq. (4.41) and Eq. (4.42) into Eq. (4.33), we obtain a pe − ie curve for

a 100% damage level which is shifted towards the p direction by 0.5 with respect to

that proposed by Li and Meng:

pe =
1

ie − 1
+

1

2
(4.43)

With the values in Tab. 4.4 and from Eqs. (4.41) and (4.42) we can represent

the isodamage curves in the pe − ie space for different pulse shapes, in order to

compare them with the hyperbole described from Eq. (4.43). The charts in Fig. 4.27,

related to 82 different pulse shapes, show a maximum discrepancy of 0.488 (24.05%),

corresponding to the abscissa ie = 1.24 and a Q value of about 2.49. Therefore, the

isodamage curves in pe − ie space do not collapse into an unique hyperbolic curve.

λ γ m1 m2 τ1 τ2 pA iB

0.00 0.000 0.035 0.859 1.077 2.5 0.98 1.32

1.00 0.000 0.141 0.722 1.322 32.3 1.59 8.49

0.05 0.001 0.011 1.344 1.077 2.7 1.00 1.39

0.05 1.001 0.169 0.580 1.107 33.0 1.53 10.72

0.05 2.001 0.275 0.620 1.193 64.4 2.07 14.36

0.05 3.001 0.323 0.695 1.330 95.8 2.53 15.70

0.10 0.001 0.017 1.163 1.077 3.3 1.03 1.63

0.10 1.001 0.176 0.580 1.111 34.6 1.56 11.00

0.10 2.001 0.279 0.623 1.199 66.0 2.10 14.46

0.10 3.001 0.324 0.699 1.339 97.4 2.55 15.74

0.15 0.001 0.026 1.019 1.078 4.9 1.05 2.37
...

...
...

...
...

...
...

...
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λ γ m1 m2 τ1 τ2 pA iB

0.15 1.001 0.183 0.582 1.115 36.2 1.59 11.26

0.15 2.001 0.282 0.626 1.206 67.6 2.12 14.55

0.15 3.001 0.325 0.703 1.349 99.0 2.57 15.76

0.20 0.001 0.035 0.912 1.079 6.5 1.08 3.07

0.20 1.001 0.189 0.585 1.119 37.8 1.62 11.49

0.20 2.001 0.285 0.630 1.213 69.2 2.15 14.62

0.20 3.001 0.325 0.706 1.359 100.6 2.59 15.78

0.25 0.001 0.045 0.836 1.081 8.1 1.11 3.73

0.25 1.001 0.195 0.588 1.124 39.4 1.65 11.70

0.25 2.001 0.288 0.635 1.221 70.8 2.18 14.68

0.25 3.001 0.326 0.710 1.370 102.2 2.60 15.80

0.30 0.001 0.054 0.783 1.083 9.7 1.14 4.34

0.30 1.001 0.201 0.592 1.130 41.0 1.68 11.89

0.30 2.001 0.291 0.639 1.230 72.4 2.20 14.73

0.30 3.001 0.326 0.713 1.382 103.8 2.62 15.80

0.35 0.001 0.064 0.744 1.085 11.3 1.17 4.91

0.35 1.001 0.207 0.595 1.136 42.6 1.71 12.06

0.35 2.001 0.293 0.644 1.240 74.0 2.23 14.77

0.35 3.001 0.326 0.716 1.395 105.4 2.64 15.80

0.40 0.001 0.073 0.716 1.089 13.0 1.21 5.46

0.40 1.001 0.212 0.599 1.143 44.2 1.75 12.21

0.40 2.001 0.295 0.648 1.251 75.6 2.25 14.80

0.40 3.001 0.326 0.719 1.410 107.0 2.65 15.79

0.45 0.001 0.083 0.694 1.093 14.6 1.24 5.94

0.45 1.001 0.218 0.603 1.152 45.8 1.78 12.33

0.45 2.001 0.296 0.653 1.264 77.0 2.27 14.77

0.45 3.001 0.325 0.721 1.425 108.4 2.66 15.74

0.50 0.001 0.092 0.677 1.098 16.2 1.28 6.38

0.50 1.001 0.222 0.607 1.161 47.4 1.81 12.44

0.50 2.001 0.297 0.658 1.277 78.6 2.30 14.77

0.50 3.001 0.325 0.724 1.442 110.0 2.68 15.72

0.55 0.001 0.101 0.663 1.104 17.8 1.31 6.77

0.55 1.001 0.227 0.612 1.172 49.0 1.84 12.52

0.55 2.001 0.298 0.663 1.292 80.2 2.32 14.76

0.55 3.001 0.324 0.726 1.461 111.6 2.68 15.69

0.60 0.001 0.110 0.653 1.112 19.4 1.35 7.13

0.60 1.001 0.231 0.618 1.185 50.6 1.87 12.58

0.60 2.001 0.298 0.668 1.310 81.8 2.34 14.74

0.60 3.001 0.323 0.727 1.481 113.2 2.69 15.65

0.65 0.001 0.119 0.648 1.122 21.0 1.39 7.44

0.65 1.001 0.234 0.624 1.201 52.2 1.90 12.61

0.65 2.001 0.298 0.673 1.329 83.4 2.35 14.70
...

...
...

...
...

...
...

...
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λ γ m1 m2 τ1 τ2 pA iB

0.65 3.001 0.321 0.729 1.504 114.8 2.70 15.60

0.70 0.001 0.127 0.648 1.134 22.6 1.43 7.71

0.70 1.001 0.236 0.630 1.218 53.8 1.93 12.62

0.70 2.001 0.297 0.678 1.351 85.0 2.37 14.65

0.70 3.001 0.320 0.730 1.529 116.4 2.70 15.55

0.75 0.001 0.134 0.652 1.149 24.2 1.46 7.94

0.75 1.001 0.238 0.636 1.239 55.4 1.95 12.62

0.75 2.001 0.296 0.684 1.376 86.6 2.38 14.59

0.75 3.001 0.318 0.730 1.558 118.0 2.70 15.48

0.80 0.001 0.140 0.656 1.168 25.8 1.50 8.13

0.80 1.001 0.239 0.642 1.264 57.0 1.98 12.59

0.80 2.001 0.294 0.687 1.405 88.2 2.38 14.51

0.80 3.001 0.316 0.730 1.589 119.6 2.69 15.41

0.85 0.001 0.145 0.660 1.193 27.6 1.53 8.33

0.85 1.001 0.239 0.647 1.293 58.6 1.99 12.53

0.85 2.001 0.292 0.690 1.439 89.8 2.38 14.43

0.85 3.001 0.314 0.730 1.625 121.2 2.68 15.34

0.90 0.001 0.149 0.664 1.224 29.2 1.56 8.43

0.90 1.001 0.238 0.650 1.330 60.2 2.00 12.46

0.90 2.001 0.289 0.691 1.479 91.4 2.38 14.33

0.90 3.001 0.312 0.729 1.666 122.8 2.66 15.25

0.95 0.001 0.151 0.667 1.266 30.8 1.58 8.49

0.95 1.001 0.237 0.651 1.375 61.8 2.00 12.36

0.95 2.001 0.287 0.690 1.526 93.0 2.36 14.22

0.95 3.001 0.310 0.726 1.713 124.4 2.64 15.16

1.00 0.001 0.152 0.668 1.322 32.4 1.59 8.50

1.00 1.001 0.234 0.650 1.433 63.4 1.99 12.24

1.00 2.001 0.284 0.687 1.582 94.6 2.34 14.09

1.00 3.001 0.307 0.724 1.767 126.0 2.61 15.06

Tab. 4.4: Parameters of p − i regression functions and response limits (ε = 5%) corresponding to

different pulse shapes.

4.4 Model validation by genetic algorithms

Since the accuracy estimation of the model presented in this chapter is an open

problem, the results so far shown need to be discussed. The optimization prob-

lem of finding the response of a spring–mass system may be dealt with by applying

many different optimization algorithms [64, 65, 66], such as gradient descent method,

Nelder-Mead method, subgradient method, simplex method, ellipsoid method, bun-

dle methods, Newton’s method, genetic algorithms (g.a.), evolution strategies.

68



In the following subsections, the comparison between the response spectrum

obtained by the current analytical model and the one obtained by applying genetic

algorithms is shown . It proves that, as far as the pulse shapes taken into account

are concerned, the current model is capable to calculate the system response with

a good accuracy in spite of a very low computational effort.

4.4.1 Genetic algorithm overview

A genetic algorithm is a method for solving both constrained and unconstrained

optimization problems that is based on natural selection, the process that drives bio-

logical evolution. A genetic algorithm repeatedly modifies a population of individual

solutions. At each step, a genetic algorithm selects individuals at random from the

current population to be parents and uses them to produce the children for the next

generation. After successive generations, the population “evolves” toward an opti-

mal solution. This method is suitable to solve a variety of optimization problems

that are not well suited for standard optimization algorithms, including problems

in which the objective function is discontinuous, non differentiable, stochastic, or

highly nonlinear.

The genetic algorithm uses three main types of rules at each step to create

the next generation from the current population. Selection rules select individuals,

called parents, that contribute to the population at the next generation. Crossover

rules combine two parents to form children for the next generation. Mutation rules

apply random changes to individual parents to form children.

4.4.2 Terminology

The fitness function is the function which needs to be optimized. For standard

optimization algorithms, this is known as the objective function. Usually, genetic

algorithms try to find the minimum of the fitness function.

An individual is any point to which the fitness function can be applied. The

value of the fitness function for an individual is its score. An individual is sometimes

referred to as a genome and the vector entries of an individual as genes.

A population is an array of individuals. The same individual can appear more

than once in the population. At each iteration, a genetic algorithm performs a

series of computations on the current population to produce a new population.

Each successive population is called a new generation.

Diversity refers to the average distance between individuals in a population.

A population has high diversity if the average distance is large; otherwise it has
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low diversity. Diversity is essential to a genetic algorithm because it enables the

algorithm to search a larger region of the space.

The fitness value of an individual is the value of the fitness function for that

individual. Since by default a g.a. finds the minimum of the fitness function, the

best fitness value for a population is the smallest fitness value for any individual in

the population.

To create the next generation, a genetic algorithm selects certain individuals in

the current population, called parents, and uses them to create individuals in the

next generation, called children or offspring. Typically, the algorithm is more likely

to select parents that have better fitness values.

4.4.3 Genetic algorithm outline

The path followed by a genetic algorithm can be summarizer in the following

steps:

- a random initial population is created;

- a sequence of new populations is created. At each step, the individuals in the

current generation are used to create the next population. To create the new

population, the algorithm performs the following steps:

- scores each member of the current population by computing its fitness

value;

- scales the raw fitness scores to convert them into a more usable range of

values;

- selects members, called parents, based on their fitness values;

- some of the individuals in the current population that have lower fit-

ness are chosen as elite. These elite individuals are passed to the next

population;

- offspring is produced, either by making random changes to a single par-

ent (mutation) or by combining the vector entries of a pair of parents

(crossover);

- the current population is replaced with the children to form the next

generation;

- the algorithm stops when one of the stopping criteria is met.
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4.4.4 Fitness scaling

Fitness scaling converts the raw fitness scores that are returned by the fitness

function to values in a range that is suitable for the selection function. The selection

function uses the scaled fitness values to select the parents of the next generation.

The selection function assigns a higher probability of selection to individuals with

higher scaled values. The range of the scaled values affects the performance of the

genetic algorithm. If the scaled values vary too widely, the individuals with the

highest scaled values reproduce too rapidly, taking over the population gene pool

too quickly, and preventing the genetic algorithm from searching other areas of

the solution space. On the other hand, if the scaled values vary only a little, all

individuals have approximately the same chance of reproduction and the search will

progress very slowly.

A very common fitness scaling method, called rank scaling, scales the raw scores

based on the rank of each individual instead of its score. The rank of an individual

is its position in the sorted scores: the rank of the most fit individual is 1, the next

most fit is 2, and so on. The rank scaling function assigns scaled values so that

the scaled value of an individual with rank n is proportional to 1/
√
n, n being the

number of individual of the current population, and the sum of the scaled values

over the entire population equals the number of parents needed to create the next

generation. Rank fitness scaling removes the effect of the spread of the raw scores.

Other quite common scaling methods are [67]:

- proportional scaling. Proportional scaling makes the scaled value of an indi-

vidual proportional to its raw fitness score;

- top scaling. Top scaling scales the top individuals equally. A fraction of the

population size, which represents those individuals that belong to the top of

the current population, needs to be specified;

- shift linear scaling. Shift linear scaling scales the raw scores so that the expec-

tation of the fittest individual is equal to a constant multiplied by the average

score.

4.4.5 Selection function

The selection function chooses parents for the next generation based on their

scaled values from the fitness scaling function. An individual can be selected more
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than once as a parent, in which case it contributes its genes to more than one child.

Common selection techniques are [67, 68]:

- stochastic uniform selection function.The default selection function lays out

a line in which each parent corresponds to a section of the line of length

proportional to its scaled value. The algorithm moves along the line in steps

of equal size. At each step, the algorithm allocates a parent from the section

it lands on. The first step is a uniform random number less than the step size;

- remainder selection. Remainder selection assigns parents deterministically

from the integer part of each individual’s scaled value and then uses roulette

selection on the remaining fractional part. After parents have been assigned

according to the integer parts of the scaled values, the rest of the parents are

chosen stochastically. The probability that a parent is chosen in this step is

proportional to the fractional part of its scaled value;

- uniform selection. Uniform selection chooses parents using the expectations

and number of parents. This technique is useful for debugging and testing,

but is not a very effective search strategy;

- roulette selection. Roulette selection chooses parents by simulating a roulette

wheel, in which the area of the section of the wheel corresponding to an

individual is proportional to the individual’s expectation. The algorithm uses

a random number to select one of the sections with a probability equal to its

area;

- tournament selection. Tournament selection chooses each parent by choosing

tournament size players at random and then choosing the best individual out

of that set to be a parent.

4.4.6 Reproduction

The method of reproduction specify how the genetic algorithm creates children

for the next generation. In order to set up e reproduction method, two input data

are needed: the number of elite elements that are guaranteed to survive to the

next generation and the crossover fraction, which specifies the fraction of the next

generation, other than elite children, that are produced by crossover. The other

individuals, which complete the next generation, are produced by mutation.
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Crossover methods

Crossover method specify how the genetic algorithm combines two individuals,

or parents, to form a crossover child for the next generation. The most common

methods are [67]:

- scattered crossover. This method creates a random binary vector and selects

the genes where the vector is a 1 from the first parent, and the genes where

the vector is a 0 from the second parent, and combines the genes to form the

child. For example, if p1 and p2 are the parents

p1 = [a b c d e f g h]

p2 = [1 2 3 4 5 6 7 8]

and the binary vector is [1 1 0 0 1 0 0 0], the method returns the follow-

ing child:

child1 = [a b 3 4 e 6 7 8];

- single point crossover. A random integer n between 1 and the number of

variables is chosen. Then:

- vector entries numbered less than or equal to n are selected from the first

parent;

- vector entries numbered greater than n are selected from the second

parent;

- concatenates these entries to form a child vector;

For example, if p1 and p2 are still the same parents above and the crossover

point is 3, the crossover function returns the following child:

child1 = [a b c 4 5 6 7 8];

- two point crossover. Two random integers m and n are chosen between 1 and

the number of variables. The crossover function selects:

- vector entries numbered less than or equal to m from the first parent;

- vector entries numbered from m + 1 to n, inclusive, from the second

parent;
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- vector entries numbered greater than n from the first parent.

The algorithm then concatenates these genes to form a single gene. For ex-

ample, if p1 and p2 are the parents above and the crossover points are 3 and

6, the function returns the following child:

child1 = [a b c 4 5 6 g h];

- intermediate crossover. Children are created by taking a weighted average of

the parents. Weights may be specified by a single parameter, ratio. The func-

tion creates the child from parent1 and parent2 using the following formula:

child = parent1 + rand * ratio * (parent2 - parent1).

If all the entries of ratio lie in the range [0, 1], the children produced are within

the hypercube defined by placing the parents at opposite vertices. If ratio is

not in that range, the children might lie outside the hypercube. If ratio is a

scalar, then all the children lie on the line between the parents;

- heuristic crossover. It returns a child that lies on the line containing the two

parents, a small distance away from the parent with the better fitness value

in the direction away from the parent with the worse fitness value. How far

the child is from the better parent may be specified by the parameter ratio.

If parent1 and parent2 are the parents, and parent1 has the better fitness

value, the function returns the child:

child = parent2 + ratio * (parent1 - parent2);

- arithmetic crossover. It creates children that are the weighted arithmetic mean

of two parents. Children are always feasible with respect to linear constraints

and bounds.

Mutation

Mutation options specify how the genetic algorithm makes small random changes

in the individuals in the population to create mutation offspring. Mutation provides

genetic diversity and enable the genetic algorithm to search a broader space. The

most common mutation functions are the following:

- gaussian mutation. This function adds a random number taken from a Gaus-

sian distribution with mean 0 to each entry of the parent vector. The variance
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of this distribution is determined by the parameters scale and shrink, and by

the initial range of the population. The initial variation is given by the scale

factor multiplied by the length of the initial range. The Shrink parameter

controls how the variance shrinks as generations go by. If initial range is a 2-

by-1 vector, the variance at the qth generation, varq, is given by the recursive

formula

varq = varq-1



1 − shrink ·
q

generations



 ;

- uniform mutation. This is a two-step process. First, the algorithm selects a

fraction of the vector entries of an individual for mutation, where each entry

has a probability rate of being mutated. In the second step, the algorithm

replaces each selected entry by a random number selected uniformly from the

range for that entry;

- adaptive feasible mutation. Directions are randomly generated, adaptive with

respect to the last successful or unsuccessful generation. The feasible region is

bounded by the constraints and inequality constraints. A step length is chosen

along each direction so that linear constraints and bounds are satisfied.

4.4.7 Stopping criteria

The stopping criteria determine what causes the algorithm to terminate. Usual

criteria are [67]:

- generations. The maximum number of iterations the genetic algorithm will

perform needs to be specified;

- time limit. The maximum time in seconds the genetic algorithm runs before

stopping is specified;

- fitness limit. The algorithm stops if the best fitness value is less than or equal

to the value of fitness limit;

- stall generations. The algorithm stops if the weighted average change in the

fitness function value over stall generations is less than the function tolerance;

- stall time limit. The algorithm stops if there is no improvement in the best

fitness value for an interval of time in seconds specified by stall time;

- function tolerance. The algorithm runs until the cumulative change in the

fitness function value over stall generations is less than function tolerance.
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Fig. 4.28. Best fitness value against crossover fraction, in absence of elite individuals.
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Fig. 4.29. Best fitness value against crossover fraction, in case of 1 elite element.

4.4.8 Response spectra and genetic algorithms

In order to get the response spectrum by applying genetic algorithms, the follow-

ing procedure is repeated for several values of the loading time τd. Any individual

is a real number within the interval [0, τd], and the population size n is chosen

according to the formula

n = [τd] + 4

where [τd] represents the integer part of τd.

The first population is made of individuals τi randomly chosen within the domain

[0, τd], according to the standard uniform distribution U(0, 1):

τi = θ · τd, θ ∼ U(0, 1), i = 1, . . . , n

The fitness function is given by the modulus of the dynamic load factor multi-

plied by -1 (−|DLF (τ)|), and the fitness values are scaled according to their rank

(rank scaling). If {τi}n
i=1 = (τ1, τ2, . . . , τn) is the vector of individuals in ascending
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Fig. 4.30. Comparison of response spectra, from g.a. (red line) and from analytical model (blue

line). No elite elements, crossover fraction 80%, λ = 1, γ = 2.8.

order of fitness values, the ith scaled fitness value FVi is calculated according to the

rank i of the ith element:

FVi = n ·
1/
√
i

∑n
i=1 1/

√
i

which leads to the following vector



FV1, FV1 + FV2, . . . ,

i∑

q=1

FVq, . . . ,

n∑

q=1

FVq





For any iteration, the vector below is generated via standard uniform distribu-

tion:

(θ1, θ2, . . . , θi, . . . , θN ), θi = n · θ̃i, θ̃i ∼ U(0, 1)

and some individuals are selected to create the parent vector (P1, P2, . . . , Pi, . . . , Pn)

of the next generation applying the following rule:

Pi =







τ1 if θi ≤ FV1

τr if

r−1∑

q=1

FVq < θi ≤
r∑

q=1

FVq, ∀r > 1

As far as the reproduction of the current generation is concerned, Campidelli et

al. [69] showed that, for exponentially decaying loadings, the best g.a. performance

is reached when the number of elite elements is equal to 1 and the crossover fraction

is within the range 20%-40%, as shown in Figs. 4.28, 4.29, 4.30, and 4.31. A

scattered crossover was chosen to combine the parents of the current generation,
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Fig. 4.31. Comparison of response spectra, from g.a. (dashed line) and from analytical model (solid

line). One elite element, crossover fraction 20%, λ = 1, γ = 2.8.

τd = ωtd = 2πtd/T

S
(τ

d
)

γ = 2.8

λ

λ = 1

λ = 0

0 5 10 15 20
0

0.5

1

1.5

2

Fig. 4.32. Comparison of response spectra, from g.a. (red line) and from analytical model (blue

line). One elite element, crossover fraction 20%, λ = 0, 0.2., . . . , 1, γ = 2.8.

and an adaptive feasible mutation was chosen to create the mutant offspring. Some

suitable stopping criteria were a maximum number of generation equal to 100, a

stall generation number equal to 50, and a fitness function tolerance equal to 10−6.

In Figs. 4.32 and 4.33 the response spectra calculated by the analytical model de-

scribed in this chapter and the ones from genetic algorithms are compared. Several

loading shapes are taken into account, and the difference between the ordinates of

the two kind of charts is always smaller than 0.5%, which suggests that, despite the

low computational effort, the proposed method produces accurate response curves.
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Fig. 4.33. Comparison of response spectra, from g.a. (red line) and from analytical model (blue

line). One elite element, crossover fraction 20%, λ = 1, γ = 0, 1, . . . , 10
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Chapter 5

Non Linear Single Degree of

Freedom Model

5.1 Introduction

The linear oscillator described in the previous chapter is of any use for dynamic

analysis only when elastic deformations are dominant. Such linear model, obvi-

ously, is not capable to capture the actual behavior a structure which undergoes

large plastic deformations due to material nonlinearity. Also, as stated in § 3.3,

structural members under shock waves from detonations undergo high loading rate

and, consequently, high strain rate, which affects the material constitutive laws.

Hence the necessity to develop a strain rate dependent numerical model.

The non linear oscillator described in the present chapter is intended to be a

simple, low time consuming, design tool, able to predict the overall response of a

single structural member under dynamic loadings from high condensed explosive

detonations. It may provide displacement, velocity, and acceleration dependent

springs and dampers, without any restriction concerning the constitutive laws and

the load–time function. Some applications of this model may concern seismic design,

since many kinds of dampers, such as hysteretic, fluid viscous, dual phase, etc...,

may be modeled. Nonetheless, those applications are beyond the scope of this

dissertation and will not be discussed.

The task of modeling a non linear and strain rate dependent material, such

as reinforced concrete, is accomplished by takeing into account a non linear, dis-

placement and velocity dependent, spring. A constant damping ratio ζ = 5% is

also considered. A piecewise linear approximation is performed for any input func-

tion, such as the spring constitutive relationship and the loading function. Such
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Fig. 5.1. Multi–linear resistance–displacement diagram. The branch (a) defines any possible spring

configuration in case of a monotonically increasing displacement function, while the branch (b) is

related to a monotonically decreasing displacement function.

approximation reduces the system equation of motion to a well known second order

differential equation with constant coefficients, which are related to the stiffness and

damping values. The motion equation is solved within any subinterval of the time

domain in which stiffness and damping are constant. The limits of any subinterval

are given by the times at which a stiffness or a damping update is accomplished,

and are found to be roots of non linear equations involving trigonometric and ex-

ponential functions. In order to find those roots the Newton–Raphson method is

applied, in such a way that enables the error range to be established “a priori”.

Any possible drawback of this method is carefully avoided, and a quadratic speed

of convergence is always ensured. The full time history of the system is obtained by

imposing continuity conditions of displacement and velocity functions at any break

point of the time domain.

5.2 Piecewise linear oscillator

Besides its mass m, a non linear one degree of freedom model is entirely defined

by a resistance function, R(y), and a damping function, D(ẏ). The former function

describes the resistance of a spring caused by a mass displacement y, while the latter

describes the force developed by a damper as a function of a mass velocity ẏ. If the

resistance function chart is subdivided in a number of subintervals, each of them

with constant spring stiffness kn and damping coefficient cn (Fig. 5.1), for the nth

segment of such multi–linear chart the resistance and damping functions become:
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Fig. 5.2. Piecewise linear excitation.

R(t) = Rn(t) = R0,n + kn(y(t) − y(t0,n)), R0,n = R(t0,n), n = 1, 2, . . . (5.1)

D(t) = Dn(t) = D0,n + cn(ẏ(t) − ẏ(t0,n)), D0,n = D(t0,n), n = 1, 2, . . . (5.2)

where t0,n is the time when the nth segment of the R− y chart is reached.

A piecewise linear excitation F (t) of such system is shown in Fig. 5.2. Any qth

segment of the load function may be described by two parameters, F0,q and F1,q,

which determine the external force value and its variation at any time t ∈ [tq, tq+1]:

F (t) = Fq(t) = F0,q + F1,q(t− tq), ∀t ∈ [tq, tq+1], q = 1, 2, . . . (5.3)

As long as the dynamic equilibrium of this system is considered, for any t ∈ [t0,n, tq],

t0,n ≤ tq, we may write:

mÿ + D(ẏ) +R(y) = F0,n + F1,n(t− t0,n), y = y(t), ẏ =
dy

dt
, ÿ =

d2y

dt2
(5.4)

whit initial conditions y(t0,n) = y0,n and ẏ(t0,n) = ẏ0,n.

Introducing the new variable τ = t− t0,n and taking into account the Eqs. (5.1)

and (5.2), the Eq. (5.4) becomes:

mÿn(τ) +D0,n + cn(ẏn(τ)− ẏn(0)) +R0,n + kn(yn(τ)− yn(0)) = F0,n +F1,n τ (5.5)

where yn(τ), ẏn(τ), and ÿn(τ) are respectively the displacement, the velocity, and

the acceleration functions associated to the nth segment of the R−y diagram, while

F0,n and F1,n describe the external excitation acting when t ∈ [t0,n, tq], t0,n ≤ tq.
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The new initial conditions are yn(0) = y0,n and ẏn(0) = ẏ0,n. Introducing the new

variable

F0,n = −(F0,n −R0,n −D0,n + cnẏ0,n) (5.6)

after some rearrangements the Eq. (5.5) becomes:

ÿn +
c

m
ẏn +

kn

m
yn =

1

m
(F0,n −R0,n −D0,n + kny0,n + cnẏ0,n + F1,n τ)

ÿn +
c

m
ẏn +

kn

m
yn =

1

m
(−F0,n + kny0,n + F1,n τ) (5.7a)

ÿn + 2ζnωnẏn + ω2
nyn =

1

m
(−F0,n + kny0,n + F1,n τ) (5.7b)

where ζn = cn/(2ωnm) is the damping ratio and ωn =
√

kn/m is the circular

frequency of the oscillator.

As well known, a general solution of the Eq. (5.7b) is nothing but the sum

of a general solution yh of the associated homogeneous equation, and a particular

solution yp of the nonhomogeneous equation:

yn(τ) = yh,n(τ) + yp,n(τ) (5.8)

The associated homogeneous equation is defined as it follows:

ÿh,n + 2ζnωnẏh,n + ω2
nyh,n = 0 (5.9)

Assuming yh,n(τ) = e−Λτ as a solution of the Eq. (5.9), we get:

e−Λτ
(
Λ2 − 2ζnωnΛ + ω2

n

)
= 0 ⇒ Λ2 − 2ζnωnΛ + ω2

n = 0

Λ = ζnωn ±
√

(ζnωn)2 − ω2
n

Λ = ζnωn ± iωn

√

1 − ζ2
n = ζnωn ± iωd,n, ωd,n = ωn

√

1 − ζ2
n (5.10)

where “i” represents the imaginary unit. Recalling ζn = c/(2ωnm), when ζn = 1

the corresponding damping coefficient achieves its critical value cc,n

cc,n = cn|ζn=1 = (2ζnωnm)|ζn=1 = 2ωnm

83



which leads to another definition of the nth damping ratio

ζn =
cn

cc,n
(5.11)

From the Eq. (5.10), the solution of the Eq. (5.9) may be written as

yh,n(τ) = e−ζnωnτ
[
C1e

−iωd,nτ + C2e
+iωd,nτ

]
(5.12)

or, in another form:

yh,n(τ) = exp



−
cn

2m
τ





[

C1e
−iωn

√
1−ζ2

nτ + C2e
+iωn

√
1−ζ2

nτ
]

(5.13)

where C1 and C2 depend on the initial conditions.

The Eq. (5.13) can be developed in different manners, depending on if the quan-

tities ωn and (1 − ζ2
n)1/2 are real numbers or not . This also depends on the stiff-

ness sign (negative, zero, or positive) and the damping coefficient value (|ζn| < 1,

|ζn| = 1, and |ζn| > 1).

Since the external excitation is linear, a particular solutions of the Eq. (5.7b)

may be supposed to have the form:

yp,n(τ) = C3τ + C4 (5.14)

Substituting the Eq. (5.14) into the Eq. (5.7b), we get

2ζnωnC3 + ω2
n(C3τ +C4) =

1

m
[−F0,n + kny0,n + F1,n τ]

which implies:
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





2ζnωnC3 + ω2
nC4 =

1

m
(−F0,n + kny0,n)

ω2
nC3 =

F1,n

m






C3 =
F1,n

kn

2ζnωn

F1,n

kn
+ ω2

nC4 =
1

m
(−F0,n + kny0,n)







C3 =
F1,n

kn

C4 =
1

ω2
n

[−
F0,n

m
+ ω2

ny0n − 2ζnωn

F1,n

kn
]







C3 =
F1,n

kn

C4 = y0,n −
F0,n

kn
− 2ζn

F1,n

ωnkn

(5.15)

By substituting the constants C3 and C4 into the Eq. (5.14), we get the expression

of aparticular solution of the motion equation:

yp,n(τ) =
F1,n

kn
τ + y0,n −

F0,n

kn
− 2ζn

F1,n

ωnkn
(5.16)

It should be noted that the Eqs. (5.12) and (5.16) does not apply to some cases,

when ζn = 0 or kn = 0. In these cases, since the structure of the differential

equation (5.7a) changes, a new solution needs to be found.

5.3 Equation of motion of a linear oscillator under lin-

ear excitation

5.3.1 Underdamped system with negative stiffness

The damping ratio and the spring constant lie within the following intervals

|ζn| ∈ [0, 1), kn ∈ (−∞, 0)

Let us define

Ωn = −iωn (5.17)
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Since kn < 0, the equation above becomes:

Ωn = −i

√

kn

m
= −i

√

− |kn|
m

= −i2

√

|kn|
m

=

√

|kn|
m

By substituting the definition (5.17) into the Eq. (5.13), we may write

yh,n(τ) = exp



−
cn

2m
τ





[

C1e
+Ωn

√
1−ζ2

nτ + C2e
−Ωn

√
1−ζ2

nτ
]

where all the quantities are real numbers. Finally, from the equation above and

from the Eq. (5.16), we get the displacement function for an under dumped system

whit a negative stiffness:

yn(τ) = e−ζnωnτ
[
C1e

+Ωd,nτ + C2e
−Ωd,nτ

]
+

+
F1,n

kn
τ + y0,n −

F0,n

kn
− 2ζn

F1,n

ωnkn
, Ωd,n = Ωn

√

1 − ζ2
n (5.18)

while the velocity is

ẏn(τ) = e−ζnωnτ
[
(Ωd,n − ζnωn)C1e

+Ωd,nτ − (Ωd,n + ζnωn)C2e
−Ωd,nτ

]
+
F1,n

kn
(5.19)

and the acceleration is

ÿn(τ) = e−ζnωnτ
[
(Ωd,n − ζnωn)2C1e

+Ωd,nτ + (Ωd,n + ζnωn)2C2e
−Ωd,nτ

]
(5.20)

The constants C1 and C2 can be derived by applying the initial conditions:

yn(0) = y0,n ⇒ C1 + C2 + y0,n −
F0,n

kn
− 2ζn

F1,n

ωnkn
= y0,n

C2 =
1

kn



F0,n +
2ζn

ωn
F1,n



− C1 (∗)

ẏn(0) = ẏ0,n ⇒ C1(Ωd,n − ζnωn) − C2(Ωd,n + ζnωn) +
F1,n

kn
= ẏ0,n (∗∗)

By substituting the Eq. (∗) into the Eq. (∗∗), we get the first constant
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C1(Ωd,n − ζnωn) −




1

kn



F0,n +
2ζn

ωn
F1,n



− C1



 (Ωd,n + ζnωn) +
F1,n

kn
= ẏ0,n

+ 2Ωd,nC1 −



F0,n +
2ζn

ωn
F1,n




Ωd,n + ζnωn

kn
+
F1,n

kn
= ẏ0,n

C1 =
1

2Ωd,n







F0,n +
2ζn

ωn
F1,n




Ωd,n + ζnωn

kn
−
F1,n

kn
+ ẏ0,n



 (5.21)

and by substituting the Eq. (5.21) into the Eq. (∗) we get the second constant

C2 =
1

kn



F0,n +
2ζn

ωn
F1,n







1 −
Ωd,n + ζnωn

2Ωd,n



−
1

2Ωd,n



ẏ0,n −
F1,n

kn





C2 =
1

2Ωd,n







F0,n +
2ζn

ωn
F1,n




Ωd,n − ζnωn

kn
+
F1,n

kn
− ẏ0,n



 (5.22)

Therefore:

yn(τ) =
1

2Ωd,n







F0,n +
2ζn

ωn
F1,n




Ωd,n + ζnωn

kn
−
F1,n

kn
+ ẏ0,n



 e+(Ωd,n−ζnωn)τ+

1

2Ωd,n







F0,n +
2ζn

ωn
F1,n




Ωd,n − ζnωn

kn
+
F1,n

kn
− ẏ0,n



 e−(Ωd,n+ζnωn)τ+

+
F1,n

kn
τ + y0,n −

F0,n

kn
− 2ζn

F1,n

ωnkn
(5.23)

ẏn(τ) = +
Ωd,n − ζnωn

2Ωd,n
e+(Ωd,n−ζnωn)τ·

·







F0,n +
2ζn

ωn
F1,n




Ωd,n + ζnωn

kn
−
F1,n

kn
+ ẏ0,n



−

−
Ωd,n + ζnωn

2Ωd,n
e−(Ωd,n+ζnωn)τ·

·







F0,n +
2ζn

ωn
F1,n




Ωd,n − ζnωn

kn
+
F1,n

kn
− ẏ0,n



+
F1,n

kn
(5.24)
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ÿn(τ) = −2ζnωnẏ(τ) − ω2
n



y(τ) − y0,n +
F0,n

kn
−
F1,n

kn
τ





ÿn(τ) = +
(Ωd,n − ζnωn)2

2Ωd,n
e+(Ωd,n−ζnωn)τ·

·







F0,n +
2ζn

ωn
F1,n




Ωd,n + ζnωn

kn
−
F1,n

kn
+ ẏ0,n



+

+
(Ωd,n + ζnωn)2

2Ωd,n
e−(Ωd,n+ζnωn)τ·

·







F0,n +
2ζn

ωn
F1,n




Ωd,n − ζnωn

kn
+
F1,n

kn
− ẏ0,n



 (5.25)

If ζn = 0, we get the solutions for an undamped oscillator:

yn(τ) = +
1

2




F0,n

kn
+

1

Ωn



ẏ0,n −
F1,n

kn







 e+Ωnτ+

+
1

2




F0,n

kn
−

1

Ωn



ẏ0,n −
F1,n

kn







 e−Ωnτ+

+
F1,n

kn
τ + y0,n −

F0,n

kn
(5.26)

ẏn(τ) = +
1

2




F0,n

kn
Ωn + ẏ0,n −

F1,n

kn



 e+Ωnτ−

−
1

2




F0,n

kn
Ωn − ẏ0,n +

F1,n

kn



 e−Ωnτ +
F1,n

kn
(5.27)

ÿn(τ) = −ω2
n



y(τ) − y0,n +
F0,n

kn
−
F1,n

kn
τ





ÿn(τ) =
Ωn

2








F0,n

kn
Ωn + ẏ0,n −

F1,n

kn



 e+Ωnτ +




F0,n

kn
Ωn − ẏ0,n +

F1,n

kn



 e−Ωnτ





(5.28)
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Overdamped system with positive stiffness

In this case we have |ζn| > 1 and kn ∈ (0,∞). Nothing changes with respect to

the case above, and it may be noted that Ωd,n is still a real number. Recalling the

Eqs. (5.17) and (5.18), Ωd,n becomes:

Ωd,n = Ωn

√

1 − ζ2
n = −iωn i

√

ζ2
n − 1 = −i2ωn

√

ζ2
n − 1 = ωn

√

ζ2
n − 1 ∈ R

5.3.2 Damped system with no stiffness

The damping coefficient and the spring constant satisfy the following conditions

cn 6= 0, kn = 0

The equation of motion (5.7a) becomes:

ÿn +
cn
m

ẏn =
1

m
(−F0,n + F1,n τ) (5.29)

Whether an exponential solution y(τ) = eΛτ is supposed, the characteristic equation

is:

Λ3



Λ +
cn

m



 = 0

which has solutions Λ = 0, with algebraic multiplicity 3, and Λ = −cn/m. The

corresponding displacement function is

yn(τ) = C0 + C1τ + C2τ
2 + C3e

−
cn
m

τ (5.30)

By substituting the Eq. (5.30) into the Eq. (5.29), we get

2C2 +
cn

m
(C1 + 2C2τ) =

− F0,n + F1,nτ

m







2C2 +
cn

m
C1 = −

F0,n

m

2cn

m
C2 =

F1,n

m

⇒







2
F1,n

2cn
+
cn

m
C1 = −

F0,n

m

C2 =
F1,n

2cn
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





C1 =
m

cn



−
F0,n

m
−
F1,n

cn





C2 =
F1,n

2cn

⇒







C1 = −




F0,n

cn
+
m

c2n
F1,n





C2 =
F1,n

2cn

(5.31)

Taking into account the Eq.(5.31), by imposing the initial conditions we get







y(0) = y0,n

ẏ(0) = ẏ0,n

⇒







C0 + C3 = y0,n

−
F0,n

cn
−
m

c2n
F1,n −

cn

m
C3 = ẏ0,n

C0 = y0,n +
m

cn



ẏ0,n +
F0,n

cn
+
m

c2n
F1,n



 , C3 = −
m

cn



ẏ0,n +
F0,n

cn
+
m

c2n
F1,n





(5.32)

Therefore:

yn(τ) = y0,n +
m

cn



ẏ0,n +
F0,n

cn
+
m

c2n
F1,n



−




F0,n

cn
+
m

c2n
F1,n



 τ+

+
F1,n

2cn
τ2 −

m

cn



ẏ0,n +
F0,n

cn
+
m

c2n
F1,n



 e−
cn
m

τ (5.33)

ẏn(τ) = −




F0,n

cn
+
m

c2n
F1,n



+
F1,n

cn
τ +



ẏ0,n +
F0,n

cn
+
m

c2n
F1,n



 e−
cn
m

τ (5.34)

ÿn(τ) =
1

m
(−cnẏ(τ) + −F0,n + F1,n τ)

ÿn(τ) =
F1,n

cn
−




cn

m
ẏ0,n +

F0,n

m
+
F1,n

cn



 e−
cn
m

τ (5.35)
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5.3.3 Undamped system with no stiffness

The damping coefficient and the spring constant both vanish. The equation of

motion (5.7a) becomes:

ÿn =
1

m
(−F0,n + F1,n τ) (5.36)

By direct integration and applying the initial conditions we get

ẏn(τ) = C1 +
1

m



−F0,n τ + F1,n

τ2

2





ẏn(0) = ẏ0,n ⇒ C1 = ẏ0,n

yn(τ) = C0 + ẏ0,nτ +
1

m



−F0,n

τ2

2
+ F1,n

τ3

6





yn(0) = y0,n ⇒ C0 = y0,n

Therefore:

yn(τ) = y0,n + ẏ0,n τ −
F0,n

2m
τ2 +

F1,n

6m
τ3 (5.37)

ẏn(τ) = ẏ0,n −
F0,n

m
τ +

F1,n

2m
τ2 (5.38)

ÿn(τ) = −
F0,n

m
+
F1,n

m
τ (5.39)

5.3.4 Underdamped system with positive stiffness

The damping ratio and the spring constant satisfy the following conditions:

|ζn| ∈ [0, 1), kn ∈ (0,∞)
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Under this hypotheses, ωn is a real number. Recalling the Euler formula eix =

cos(x) + i sin(x), form the Eqs. (5.13) and (5.16) we get the displacement function

for an under dumped system whit a positive stiffness:

yn(τ) = e−ζnωnτ [A cos(ωd,nτ) +B sin(ωd,nτ)]+

+
F1,n

kn
τ + y0,n −

F0,n

kn
− 2ζn

F1,n

ωnkn
(5.40)

while the velocity is

ẏn(τ) = + e−ζnωnτ · (−ζnωnA+ ωd,nB)
︸ ︷︷ ︸

Ā

cos(ωd,nτ) −

− e−ζnωnτ · (ωd,nA+ ζnωnB)
︸ ︷︷ ︸

B̄

sin(ωd,nτ) +
F1,n

kn
(5.41)

and the acceleration is

ÿn(τ) = e−ζnωnτ




−(ζnωnĀ+ ωd,nB̄)
︸ ︷︷ ︸

¯̄A

cos(ωd,nτ) + (−ωd,nĀ+ ζnωnB̄)
︸ ︷︷ ︸

¯̄B

sin(ωd,nτ)






(5.42)

Applying the initial conditions, the constants A, Ā, ¯̄A,B, B̄, ¯̄B may be derived:

yn(0) = y0,n ⇒ A+ y0,n −
F0,n

kn
− 2ζn

F1,n

ωnkn
= y0,n ⇒ A =

F0,n

kn
+ 2ζn

F1,n

ωnkn

ẏn(0) = ẏ0,n ⇒
F1,n

kn
− ζnωnA+ ωd,nB = ẏ0,n

F1,n

kn
− ζnωn




F0,n

kn
+ 2ζn

F1,n

ωnkn



+ ωd,nB = ẏ0,n

B =
1

ωd,n



ẏ0,n +
F0,n

kn
ζnωn +

F1,n

kn
(2ζ2

n − 1)




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Ā = ẏ0,n −
F1,n

kn

B̄ = ωd,n




F0,n

kn
+ 2ζn

F1,n

ωnkn



+
ζnωn

ωd,n



ẏ0,n +
F0,n

kn
ζnωn +

F1,n

kn
(2ζ2

n − 1)





B̄ =
F0,n

kn



ωd,n +
ζ2
nω

2
n

ωd,n



+
F1,n

kn




2ζnωd,n

ωn
+
ζnωn

ωd,n
(2ζ2

n − 1)



 +
ζnωn

ωd,n
ẏ0,n

B̄ =
F0,n

kn

ω2
d,n + ζ2

nω
2
n

ωd,n
+
F1,n

kn

2ζnωd,n

√

1 − ζ2
n + ζnωn(2ζ2

n − 1)

ωd,n
+
ζnωn

ωd,n
ẏ0,n

B̄ =
F0,n

kn

ω2
n(1 − ζ2

n + ζ2
n)

ωn

√

1 − ζ2
n

+
F1,n

kn

2ζnωn(1 − ζ2
n) + ζnωn(2ζ2

n − 1)

ωn

√

1 − ζ2
n

+
ζnωn ẏ0,n

ωn

√

1 − ζ2
n

B̄ =
F0,n

kn

ωn
√

1 − ζ2
n

+
F1,n

kn

ζn
√

1 − ζ2
n

+
ζn

√

1 − ζ2
n

ẏ0,n

B̄ =
ζn

√

1 − ζ2
n




F0,n

kn

ωn

ζn
+
F1,n

kn
+ ẏ0,n





¯̄A = −ζnωn



ẏ0,n −
F1,n

kn



−
ζnωd,n
√

1 − ζ2
n




F0,n

kn

ωn

ζn
+
F1,n

kn
+ ẏ0,n





¯̄A = −ζnωn



ẏ0,n −
F1,n

kn
+

F0,n

kn

ωn

ζn
+
F1,n

kn
+ ẏ0,n



 = −



2ζnωnẏ0,n +
F0,n

m





¯̄B = −ωd,n



ẏ0,n −
F1,n

kn



+
ζ2
nωn

√

1 − ζ2
n




F0,n

kn

ωn

ζn
+
F1,n

kn
+ ẏ0,n





¯̄B = +ωd,n



−ẏ0,n +
F1,n

kn
+

ζ2
n

1 − ζ2
n




F0,n

kn

ωn

ζn
+
F1,n

kn
+ ẏ0,n









¯̄B = +ωd,n



ẏ0,n




ζ2
n

1 − ζ2
n

− 1



+
F1,n

kn




ζ2
n

1 − ζ2
n

+ 1



+
F0,n

kn

ζnωn

1 − ζ2
n





¯̄B = +ωd,n




2ζ2

n − 1

1 − ζ2
n

ẏ0,n +
F1,n

kn

1

1 − ζ2
n

+
F0,n

kn

ζnωn

1 − ζ2
n





¯̄B = +
ωn

√

1 − ζ2
n




F0,n

kn
ζnωn +

F1,n

kn
+ ẏ0,n(2ζ2

n − 1)




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Therefore:

yn(τ) = e−ζnωnτ










F0,n

kn
+ 2ζn

F1,n

ωnkn



 cosωd,nτ+

1

ωd,n



ẏ0,n +
F0,n

kn
ζnωn +

F1,n

kn
(2ζ2

n − 1)



 sinωd,nτ






+

+
F1,n

kn
τ + y0,n −

F0,n

kn
− 2ζn

F1,n

ωnkn
(5.43)

ẏn(τ) = e−ζnωnτ







ẏ0,n −
F1,n

kn



 cos(ωd,nτ)−

−
ζn

√

1 − ζ2
n




F0,n

kn

ωn

ζn
+
F1,n

kn
+ ẏ0,n



 sin(ωd,nτ)



+
F1,n

kn
(5.44)

ÿn(τ) = −2ζnωnẏ(τ) − ω2
n



y(τ) − y0,n +
F0,n

kn
−
F1,n

kn
τ





ÿn(τ) = e−ζnωnτ



−



2ζnωnẏ0,n +
F0,n

m



 cos(ωd,nτ)+

+
ωn

√

1 − ζ2
n




F0,n

kn
ζnωn +

F1,n

kn
+ ẏ0,n(2ζ2

n − 1)



 sin(ωd,nτ)





(5.45)

If ζn = 0, the solutions for an undamped system may be derived:

yn(τ) =
F0,n

kn
cosωnτ +

1

ωn



ẏ0,n −
F1,n

kn



 sinωnτ +
F1,n

kn
τ + y0,n −

F0,n

kn
(5.46)

ẏn(τ) =



ẏ0,n −
F1,n

kn



 cos(ωnτ) −




F0,n

kn
ωn



 sin(ωnτ) +
F1,n

kn
(5.47)
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ÿn(τ) = −ω2
n



y(τ) − y0,n +
F0,n

kn
−
F1,n

kn
τ





ÿn(τ) = −
F0,n

m
cos(ωnτ) + ωn




F1,n

kn
− ẏ0,n



 sin(ωnτ) (5.48)

Overdamped system with negative stiffness

The damping ratio and the spring constant satisfy the conditions |ζn| > 1 and

kn ∈ (−∞, 0). Nothing changes with respect to the case above, except the definition

of ωd,n:

ωd,n = |ωn

√

1 − ζ2
n| = |ωn|

√

ζ2
n − 1

5.3.5 Critically damped system with nonzero stiffness

The damping ratio and the spring constant satisfy the conditions |ζn| = 1 and

kn 6= 0. Since the system is critically damped, the roots of the Eq. (5.10) become

Λ = ζnωn, with algebraic multiplicity 2. The corresponding displacement function

which solves the equation of motion (5.7b) is

yn(τ) = (C0 + C1τ)e−ζnωnτ + yp,n(τ) (5.49)

where yp,n(τ) is from Eq. (5.16):

yp,n(τ) =
F1,n

kn
τ + y0,n −

F0,n

kn
− 2ζn

F1,n

ωnkn

It should be noted that ζnωn = cn/(2m) ∈ R,∀ cn ∈ R,∀ m > 0. Also, |ζn| = 1 ⇔
cn = ±2|ωn|m.

The velocity expression is

ẏn(τ) = [−ζnωnC0 + (1 − ζnωnτ)C1]e
−ζnωnτ +

F1,n

kn
(5.50)

By imposing the initial conditions we get

yn(0) = y0,n ⇒ C0 + y0,n −
F0,n

kn
− 2ζn

F1,n

ωnkn
= y0,n ⇒ C0 =

F0,n

kn
+ 2ζn

F1,n

ωnkn
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ẏn(0) = ẏ0,n ⇒ − ζnωn C0 + C1 +
F1,n

kn
= ẏ0,n

− ζnωn




F0,n

kn
+ 2ζn

F1,n

ωnkn



+ C1 +
F1,n

kn
= ẏ0,n

C1 =
F0,n

kn
ζnωn +

F1,n

kn
(2ζ2

n − 1) + ẏ0,n

Therefore:

yn(τ) =




F0,n

kn
+ 2ζn

F1,n

ωnkn
+




F0,n

kn
ζnωn +

F1,n

kn
(2ζ2

n − 1) + ẏ0,n



 τ



 e−ζnωnτ+

+
F1,n

kn
τ + y0,n −

F0,n

kn
− 2ζn

F1,n

ωnkn
(5.51)

ẏn(τ) =



ẏ0,n −
F1,n

kn
− ζnωn




F0,n

kn
ζnωn +

F1,n

kn
(2ζ2

n − 1) + ẏ0,n



 τ



 e−ζnωnτ+

+
F1,n

kn
(5.52)

ÿn(τ) = −2ζnωnẏ(τ) − ω2
n



y(τ) − y0,n +
F0,n

kn
−
F1,n

kn
τ





ÿn(τ) = −



ẏ0,n −
F1,n

kn
+




F0,n

kn
ζnωn +

F1,n

kn
(2ζ2

n − 1) + ẏ0,n



 (1 − ζnωnτ)



 ·

· ζnωn e
−ζnωnτ (5.53)

5.3.6 Rigid system

In this particular case, at some point kn → ±∞, and the velocity drops to zero

instantaneously. The system configuration in the R − y space undergoes a jump
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from the point (y0,n;R0,n) to the point (y0,n;Rn(τ0 + dτ)), where Rn(τ0 + dτ) is

established as it follows

Rn(τ0 + dτ) = min{F0,n, R0,n+1}, if kn → +∞ (R is increasing)

Rn(τ0 + dτ) = max{F0,n, R0,n+1}, if kn → −∞ (R is decreasing) (5.54)

5.4 Stiffness update of a displacement dependent spring

At each time, the spring configuration is described by the resistance–displacement

diagram, where the spring resistance is plotted against the mass displacement. As

shown in Fig. 5.1, a multi–linear R − y diagram is defined by two branches. One

of them defines the spring behavior when ẏ > 0 or ẏ = 0 ∧ Ṙ → +∞, while the

other one defines the spring behavior when ẏ < 0 or ẏ = 0 ∧ Ṙ → −∞. Now let

y0,n, ẏ0,n, and R0,n be a set of initial conditions of the nth segment of the R − y

diagram at t = t0,n. In order to update the stiffness of the SDOF model, first of all

it is necessary to find, whether it exists, the first time tv,n > t0,n when the velocity

sign changes. In case tv,n there exists and it is tv,n < t0,n+1, at that time the spring

configuration undergoes a jump from one branch of the R − y diagram to another.

As a consequence, the stiffness must be updated to the value which defines the new

branch at Rv,n = Rn(tv,n).

If tv,n does not exist or tv,n > t0,n+1, a stiffness update is needed when the

resistance value R0,n+1 is reached. In case R0,n+1 is never reached, a stiffness

change never occurs. The problem of finding the times corresponding to a stiffness

update is completely defined by the following equations,

ẏ(tv,n) = v(tv,n) = 0, or vn(τv,n) = 0, τv,n = tv,n − t0,n (5.55)

R(t0,n+1) = R0,n+1, or Rn(∆tn) = R0,n+1, ∆tn = t0,n+1 − t0,n (5.56)

where tv,n and t0,n+1 are two possible breaking point candidate for a stiffness update.

By recalling Rn(τ) = R0,n + kn[yn(τ) − y0,n], the Eq. (5.56) may be written as
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R0,n + kn[yn(∆tn) − y0,n] = R0,n+1

yn(∆tn) = y0,n +
R0,n+1 −R0,n

kn
= y0,n +

∆Rn

kn

ŷn(∆tn) = yn(∆tn) −



y0,n +
∆Rn

kn



 = 0, ∆tn = t0,n+1 − t0,n (5.57)

Therefore, the procedure for finding the stiffness update times tv,n and t0,n+1 is

accomplished by finding the roots of the functions vn and ŷn,which are solutions

of the Eqs. (5.55) and (5.57). In the following sections, the problem of finding the

solutions of such equations is dealt with, for any real value of the stiffness and

damping coefficients.

5.4.1 Underdamped system with negative stiffness

In order to find the solutions of the Eq. (5.55), an analysis of its derivatives is

needed. Recalling the Eqs. (5.23), (5.24), and (5.25), we have

yn(τ) = e−ζnωnτ
(
A1e

+Ωd,nτ +A2e
−Ωd,nτ

)
+A3τ +A4 (5.58)

A1 =
1

2Ωd,n







F0,n +
2ζn

ωn
F1,n




Ωd,n + ζnωn

kn
−
F1,n

kn
+ ẏ0,n





A2 =
1

2Ωd,n







F0,n +
2ζn

ωn
F1,n




Ωd,n − ζnωn

kn
+
F1,n

kn
− ẏ0,n





A3 =
F1,n

kn

A4 = y0,n −
F0,n

kn
− 2ζn

F1,n

ωnkn

vn(τ) = e−ζnωnτ
(
B1e

+Ωd,nτ +B2e
−Ωd,nτ

)
+A3 (5.59)

B1 = +(Ωd,n − ζnωn)A1

B2 = −(Ωd,n + ζnωn)A2,
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an(τ) = e−ζnωnτ
(
C1e

+Ωd,nτ + C2e
−Ωd,nτ

)
(5.60)

C1 = (Ωd,n − ζnωn)2A1

C2 = (Ωd,n + ζnωn)2A2.

jn(τ) = e−ζnωnτ
(
D1e

+Ωd,nτ +D2e
−Ωd,nτ

)
(5.61)

D1 = +(Ωd,n − ζnωn)3A1

D2 = −(Ωd,n + ζnωn)3A2

where vn = ẏn, an = ÿn, and jn =
...
y n. Remembering that ω2

n = kn/m, ζn =

cn/(2ωnm), Ωn = (|kn|/m)1/2, and Ωd,n = Ωn(1 − ζ2
n)1/2, we get

ζnωn =
cn

2m
(5.62)

Ωd,n =

√

|kn|
m

√
√
√
√

1 −
c2n

4ω2
nm

2
=

√

|kn|
m

√
√
√
√

1 +
c2n

4|kn|m
=

√
√
√
√
√

|kn|
m

+




cn

2m





2

(5.63)

Thus, an analysis of the exponent signs of the Eqs. (5.59) and (5.60) gives

Ωd,n − ζnωn = 0 ⇒

√
√
√
√
√

|kn|
m

+




cn

2m





2

−
cn

2m
= 0 ⇒

cn

2m
=

√
√
√
√
√

|kn|
m

+




cn

2m





2




cn

2m





2

=
|kn|
m

+




cn

2m





2

⇒ kn = 0,

and since kn < 0, the expression Ωd,n−ζnωn is of constant sign. Also, by evaluating

that expression when cn = 0, we get

Ωd,n − ζnωn =

√

|kn|
m

> 0, which implies

Ωd,n − ζnωn > 0, ∀ |ζn| ∈ [0, 1) ∀kn ∈ (−∞, 0) (5.64)

Even the second exponent −(Ωd,n + ζnωn) vanish only when kn = 0. Also, when

ζn = 0 we get
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−(Ωd,n + ζnωn) = −

√

|kn|
m

< 0, which implies

−(Ωd,n + ζnωn) < 0, ∀ |ζn| ∈ [0, 1) ∀kn ∈ (−∞, 0) (5.65)

When τ → ±∞, from the Eqs. (5.59), (5.64), and (5.65) we obtain

lim
τ→+∞

vn(τ) =







A3, A1 = 0

sgn(A1) · ∞, A1 6= 0

lim
τ→−∞

vn(τ) =







A3, A2 = 0

− sgn(A2) · ∞, A2 6= 0
(5.66)

and when τ = 0 we get vn(0) = B1 +B2 +A3. The stationary points of vn are the

solutions of the equation an(τa,n) = 0, that is

e−ζnωnτa,n
(
C1e

+Ωd,nτa,n + C2e
−Ωd,nτa,n

)
= 0 ⇒ C1e

+Ωd,nτa,n + C2e
−Ωd,nτa,n = 0

C1e
+Ωd,nτa,n = −C2e

−Ωd,nτa,n ⇒ e+2Ωd,nτa,n = −
C2

C1

τa,n =
1

2Ωd,n
ln



−
C2

C1



 ,
C2

C1
< 0 (5.67)

Recalling the Eq. (5.61), the jerk function jn vanishes if and only if there exists

τj,n ∈ R such that jn(τj,n) = 0, that is

e−ζnωnτj,n
(
D1e

+Ωd,nτj,n +D2e
−Ωd,nτj,n

)
= 0 ⇒ D1e

+Ωd,nτj,n +D2e
−Ωd,nτj,n = 0

D1e
+Ωd,nτj,n = −D2e

−Ωd,nτj,n ⇒ e+2Ωd,nτj,n = −
D2

D1

τj,n =
1

2Ωd,n
ln



−
D2

D1



 ,
D2

D1
< 0 (5.68)

By comparing the Eqs. (5.67) and (5.68), we have

τj,n =
1

2Ωd,n
ln



−
C2

C1



−
Ωd,n + ζnωn

Ωd,n − ζnωn







 = τa,n +
1

2Ωd,n
ln



−
Ωd,n + ζnωn

Ωd,n − ζnωn





(5.69)
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vn

τ
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vn

τ
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vn

τ
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vn

τ
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vn
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vn
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Fig. 5.3. Exponential velocity function roots of a linear oscillator under linear excitation.
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The Eqs. (5.67) and (5.69) apply only when both C1 and C2 do not vanish, which

means A1 6= 0 and A2 6= 0. If A1 = A2 = 0, ⇒ an(τa,n) = jn(τj,n) = 0 ∀ τa,n, τj,n ∈
R. If A1 = 0 and A2 6= 0 or A1 6= 0 and A2 = 0, ⇒ τa,n, τj,n 6∈ R. If A1 6= 0 and

A2 6= 0, from Eqs. (5.64) and (5.65) we know that −(Ωd,n+ζnωn)/(Ωd,n−ζnωn) < 0,

which implies that τa,n and τj,n can not be both real. If τj,n ∈ R, τa,n 6∈ R and the

sign of an never changes. On the other hand, if τj,n 6∈ R and τa,n ∈ R, vn(τ) has

a unique stationary point (τa,n), and the curvature sign is constant on the entire

domain.

In order to find the roots of vn, by recalling the Eqs. (5.59), (5.64), (5.65), (5.66),

(5.67), (5.69), and the relationship between A1,2, B1,2, C1,2, D1,2, we may conclude

that

1. A1 = A2 = 0. ⇒ vn(τ) = A3 ⇒ either A3 = 0 and vn(τ) = 0 ∀τ ∈ R, or

A3 6= 0 and vn does not have any real root;

2. A1 6= 0, A2 = 0.⇒ τa,n, τj,n 6∈ R, therefore an and jn never vanish. Also,

1. A1A3 < 0.⇒ vn has one real root (Fig. 5.3 (e)),

τv,n =
1

Ωd,n − ζnωn
ln



−
A3

B1





2. A1A3 ≥ 0.⇒ vn does not have any real root;

3. A1 = 0, A2 6= 0.⇒ τa,n, τj,n 6∈ R;

1. A2A3 > 0.⇒ vn has one real root (Fig. 5.3 (e)),

τv,n = −
1

Ωd,n + ζnωn
ln



−
A3

B2





2. A2A3 ≤ 0.⇒ vn does not have any real root;

4. A1A2 > 0. ⇒ τa,n 6∈ R and τj,n ∈ R, and vn has one real root. The Newton–

Raphson algorithm converges to the root if α0 = τj,n (Lemma B.3, Fig. 5.3 (f));

5. A1A2 < 0.⇒ τa,n ∈ R and τj,n 6∈ R. This time the sign of A1va,n = A1vn(τa,n)

needs to be checked out;

1. A1va,n < 0. ⇒ vn has two real roots, τv1,n < τa,n and τv2,n > τa,n

(Fig. 5.3 (a));
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2. A1va,n = 0.⇒ τv,n = τa,n is the unique real root (Fig. 5.3 (b));

3. A1va,n > 0.⇒ vn does not have any real root (Fig. 5.3 (c)).

Whether A1va,j < 0, Lemma B.4 shows that the Newton–Raphson method

converges to a root for any choice of the initial guess α0; when α0 < τa,n the

method converges to the root τv1,n, and when α0 > τa,n the method converges

toward τv2,n.

The roots of interest lie in [0,∆tn], and in case of multiple roots the least one

is needed. If there are no roots within such interval, either the next step R0,n+1 of

the R − y diagram is reached without any change of the velocity sign, or yn(τ) =

A4 = const. and R0,n+1 is never reached. Anyway, if yn(τ) 6= const., the Eq. (5.57)

needs to be solved, in order to get ∆tn. From the Eqs. (5.57) and (5.58), we have

ŷn(∆tn) = e−ζnωn∆tn
(
A1e

+Ωd,n∆tn +A2e
−Ωd,n∆tn

)
+A3∆tn + Â4 = 0 (5.70)

Â4 = A4 −



y0,n +
∆Rn

kn





and the solutions of the Eq. (5.70) depend on the constants A1, A2, A3, Â4. In

the following analysis, δtn represents the time when a stiffness update is actually

accomplished.

1. A1 = A2 = A3 = Â4 = 0. ⇒ In this case ŷn(∆tn) = 0 ∀∆tn ∈ R, and the

system keeps the same configuration as long as the external excitation does

not change;

2. A1 = A2 = 0. ⇒ From the Eq. (5.70) we get A3∆tn + Â4 = 0. Thus, either

A3 6= 0 and ∆tn = −Â4/A3, or A3 = 0 and we get the previous case;

3. A1 6= 0, A2 = 0.⇒ an and jn never vanish. Also,

lim
τ→+∞

ŷn(τ) = lim
τ→+∞

(

A1e
(Ωd,n−ζnωn)τ +A3τ + Â4

)

= sgn(A1) · ∞ (5.71a)

lim
τ→−∞

ŷn(τ) =







Â4, A3 = 0

− sgn(A3) · ∞, A3 6= 0
(5.71b)

1. A1A3 < 0.⇒ vn has a single root τv,n.

1. A1 yn(τv,n) < 0. ⇒ ŷn has two real roots, ∆t1,n and ∆t2,n , which

may be found by choosing α0 < τv,n and α0 > τv,n respectively
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(Lemma B.4). The time δtn when the stiffness is updated corre-

sponds to the minimum positive value among ∆t1,n, τv,n, and ∆t2,n

(Fig. 5.4 (a));

2. A1 yn(τv,n) = 0. ⇒ ŷn has one real root ∆tn = τv,n = δtn, which

corresponds to a jump of the spring configuration from a branch of

the R− y diagram to another (Fig. 5.4 (b));

3. A1 yn(τv,n) > 0.⇒ ŷn has no real roots, and at δtn = τv,n there is a

jump of the spring configuration from a branch of the R−y diagram

to another (Fig. 5.4 (c));

2. A1A3 ≥ 0.⇒ vn does not have any root.

1. A3 6= 0.⇒ Since ŷn is strictly monotone, from the Eq. (5.71) we know

that there exists a unique root ∆tn = δtn, shown in Fig. 5.4 (d). This

root can be calculated for any choice of α0 ∈ R (Lemma B.2);

2. A3 = 0, A1Â4 < 0.⇒ ŷn has one real root

∆tn = δtn =
1

Ωd,n − ζnωn
ln



−
Â4

A1





3. A3 = 0, A1Â4 ≥ 0.⇒ ŷn does not have any real root.

4. A1 = 0, A2 6= 0.⇒ an and jn never vanish. Also,

lim
τ→−∞

ŷn(τ) = lim
τ→−∞

(

A2e
−(Ωd,n+ζnωn)τ +A3τ + Â4

)

= sgn(A2) · ∞ (5.72a)

lim
τ→+∞

ŷn(τ) =







Â4, A3 = 0

sgn(A3) · ∞, A3 6= 0
(5.72b)

1. A2A3 > 0.⇒ vn has a single root τv,n.

1. A2 yn(τv,n) < 0. ⇒ ŷn has two real roots, ∆t1,n and ∆t2,n , which

may be found by choosing α0 < τv,n and α0 > τv,n respectively

(Lemma B.4). The time δtn when the stiffness is updated corre-

sponds to the minimum positive value among ∆t1,n, τv,n, and ∆t2,n

(Fig. 5.4 (a));

2. A2 yn(τv,n) = 0. ⇒ ŷn has one real root ∆tn = τv,n = δtn, which

corresponds to a jump of the spring–mass system from a branch of

the R− y diagram to another (Fig. 5.4 (b));

3. A2 yn(τv,n) > 0.⇒ ŷn has no real roots, and at δtn = τv,n there is a

jump of the spring–mass system from a branch of the R−y diagram

to another (Fig. 5.4 (c));
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2. A2A3 ≤ 0.⇒ vn does not have any root;

1. A3 6= 0.⇒ Since ŷn is strictly monotone, from the Eq. (5.72) we know

that there exists a unique root ∆tn = δtn, as shown in Fig. 5.4 (d).

This root may be calculated for any choice of α0 ∈ R (Lemma B.2);

2. A3 = 0, A2Â4 < 0.⇒ ŷn has one real root

∆tn = δtn = −
1

Ωd,n + ζnωn
ln



−
Â4

A2





3. A3 = 0, A2Â4 ≥ 0.⇒ ŷn does not have any real root (Fig. 5.4 (f));

5. A1A2 > 0. ⇒ vn has one real root τv,n, an never vanish, and jn has one real

root τj,n. Also,

lim
τ→+∞

ŷn(τ) = sgn(A1) · ∞, lim
τ→−∞

ŷn(τ) = sgn(A2) · ∞ (5.73)

1. A3 = Â4 = 0.⇒ ŷn has no real roots, and at δtn = τv,n there is a branch

jump of the system configuration;

2. ∀A3, Â4.

1. A1 yn(τv,n) < 0. ⇒ ŷn has two real roots, ∆t1,n and ∆t2,n , which

may be found by choosing α0 < τv,n and α0 > τv,n respectively

(Lemma B.4). The time δtn when the stiffness is updated corre-

sponds to the minimum positive value among ∆t1,n, τv,n, and ∆t2,n

(Fig. 5.4 (a));

2. A1 yn(τv,n) = 0. ⇒ ŷn has one real root ∆tn = τv,n = δtn, which

corresponds to a jump of the spring configuration from a branch of

the R− y diagram to another (Fig. 5.4 (b));

3. A1 yn(τv,n) > 0.⇒ ŷn has no real roots, and at δtn = τv,n there is a

jump of the spring configuration from a branch of the R−y diagram

to another (Fig. 5.4 (c));

6. A1A2 < 0.⇒ an has one real root τa,n, and jn does not have any root;

1. A3 = Â4 = 0.⇒ ŷn has one real root,

∆tn =
1

2Ωd,n
ln



−
A2

A1





and again, δtn is chosen between ∆tn and τv,n, whether it exists;
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2. ∀A3, Â4.

1. A1 va,n < 0.⇒ vn has two real roots, τv1,n < τa,n < τv2,n.

1. ŷ(τv1,n) ŷ(τv2,n) < 0.⇒ ŷn has 3 real roots ∆t1,n < ∆t2,n < ∆t3,n

(Fig. 5.5 (a)), which may be found by Lemma B.1. Indeed,

∆t1,n, ∆t2,n, and ∆t3,n may be calculated by choosing α0 < τv1,n,

α0 = τa,n, and α0 > τv2,n respectively. The time δtn when the

stiffness is updated corresponds to the minimum positive value

among ∆t1,n, τv1,n, ∆t2,n, τv2,n, and ∆t3,n;

2. ŷ(τv1,n) ŷ(τv2,n) = 0.⇒ ŷn has 2 real roots ∆t1,n < ∆t2,n

(Fig. 5.5 (b)), which may be found by Lemma B.1. Indeed, if

ŷ(τv1,n) = 0, ∆t1 = τv1,n and ∆t2 may be found by choosing

α0 > τv2,n. If ŷ(τv2,n) = 0, ∆t1 may be found by choosing

α0 < τv1,n and ∆t2 = τv2,n;

3. ŷ(τv1,n) ŷ(τv2,n) > 0. ⇒ ŷn has 1 real root ∆tn (Fig. 5.5 (c)),

which may be found by Lemma B.1. In case of A2ŷ(τv1,n) < 0,

α0 < τv1,n is needed, and whether A1ŷ(τv2,n) < 0, α0 > τv2,n

should be chosen;

2. A1 va,n = 0.⇒ vn and an have the same root τa,n, which means that

ŷn has a stationary point of inflexion at that time (Fig. 5.5 (d)). jn

never vanishes.

1. ŷ(τa,n) ja,n < 0.⇒ ∆tn may be found by Lemma B.1, by choos-

ing α0 > τa,n;

2. ŷ(τa,n) ja,n = 0.⇒ ∆tn = τa,n;

3. ŷ(τa,n) ja,n > 0.⇒ ∆tn may be found by Lemma B.1, by choos-

ing α0 < τa,n;

Again, δtn is the minimum positive value between τv,n and ∆tn;

3. A1 va,n > 0. ⇒ vn does not have any root and an vanish at τa,n,

which means ŷn has a non stationary point of inflexion at that time

(Fig. 5.5 (e)). From Lemma B.3, ŷn has one real root, which may be

found by choosing α0 = τa,n.
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ŷn

τ

∆tn

5.4 (d).

ŷn
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Fig. 5.4. Exponential displacement function roots of a linear oscillator under linear excitation.

107



vn

τ
τa,n

τv2,n

τv1,n

ŷn
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Fig. 5.5. Exponential displacement function roots of a linear oscillator under linear excitation.
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Overdamped system with positive stiffness

This time we have

Ωd,n = ωn

√

ζ2
n − 1 =

√

kn

m

√
√
√
√ c2n

4ω2
nm

2
− 1 =

√

kn

m

√
√
√
√ c2n

4knm
− 1 =

√
√
√
√
√




cn

2m





2

−
kn

m

(5.74)

An analysis of the exponent signs in the Eqs. (5.59) and (5.60) gives

Ωd,n − ζnωn = 0 ⇒

√
√
√
√
√




cn

2m





2

−
kn

m
−

cn

2m
= 0 ⇒

cn

2m
=

√
√
√
√
√




cn

2m





2

−
kn

m




cn

2m





2

=




cn

2m





2

−
kn

m
⇒ kn = 0

and since kn > 0, the expression Ωd,n−ζnωn is of constant sign. Also, by evaluating

that expression when ζn = 2 and cn = 4
√
knm, we get

Ωd,n − ζnωn =

√
√
√
√
√




4
√
knm

2m





2

−
kn

m
− 2ωn =

√

4
kn

m
−
kn

m
− 2ωn = (

√
3− 2)ωn < 0

which implies

Ωd,n − ζnωn < 0, ∀ |ζn| > 1 ∀kn ∈ (0,∞) (5.75)

Even the second exponent −(Ωd,n + ζnωn) vanish only when kn = 0. Also, when

ζn = 2 we get

−(Ωd,n + ζnωn) = −(
√

3 + 2)ωn < 0, which implies

−(Ωd,n + ζnωn) < 0, ∀ |ζn| > 1 ∀kn ∈ (0,∞) (5.76)

When τ → ±∞, from the Eqs. (5.59), (5.75), and (5.76) we obtain
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lim
τ→+∞

vn(τ) = lim
τ→+∞

(

B1e
(Ωd,n−ζnωn)τ +B2e

−(Ωd,n+ζnωn)τ +A3

)

= A3

lim
τ→−∞

vn(τ) = lim
τ→−∞

(

B1e
(Ωd,n−ζnωn)τ +B2e

−(Ωd,n+ζnωn)τ +A3

)

=

=







A3, A1 = A2 = 0

− sgn(A1) · ∞, A1 6= 0, A2 = 0

− sgn(A2) · ∞, A2 6= 0

(5.77)

The Eqs. (5.67) and (5.69) apply only when both C1 and C2 do not vanish, which

means A1A2 6= 0. If that is the case, from the Eqs. (5.75) and (5.76) we know that

−(Ωd,n + ζnωn)/(Ωd,n − ζnωn) > 0, which implies that τa,n and τj,n are distinct and

either both real or both complex.

In order to find the roots of vn, by recalling the Eqs. (5.59), (5.66), (5.67), (5.69),

(5.75), (5.76), and the relationship between A1,2, B1,2, C1,2, D1,2, we may conclude

that

1. A1 = A2 = 0. ⇒ vn(τ) = A3 ⇒ either A3 = 0 and vn(τ) = 0 ∀τ ∈ R, or

A3 6= 0 and vn does not have any real root;

2. A1 6= 0, A2 = 0.⇒, τa,n, τj,n 6∈ R, therefore an and jn never vanish. Also,

1. A1A3 ≤ 0.⇒ vn does not have any real root;

2. A1A3 > 0.⇒ vn has one real root (Fig. 5.3 (e)),

τv,n =
1

Ωd,n − ζnωn
ln



−
A3

B1





3. A1 = 0, A2 6= 0.⇒ τa,n, τj,n 6∈ R;

1. A2A3 ≤ 0.⇒ vn does not have any real root;

2. A2A3 > 0.⇒ vn has one real root (Fig. 5.3 (e)),

τv,n = −
1

Ωd,n + ζnωn
ln



−
A3

B2





4. A1A2 > 0.⇒ τa,n, τj,n 6∈ R. Also, limτ→+∞ vn(τ) = A3 and limτ→−∞ vn(τ) =

−sgn(A1) · ∞.

1. A1A3 ≤ 0.⇒ vn does not have any real root;
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2. A1A3 > 0. ⇒ The Newton–Raphson algorithm converges to the unique

root τv,n ∀α0 ∈ R (Lemma B.2, Fig. 5.3 (e));

5. A1A2 < 0. ⇒ τa,n, τj,n ∈ R. Since Ωd,n > 0 and −(Ωd,n + ζnωn)/(Ωd,n −
ζnωn) > 1, from the Eq. (5.69) we get τj,n > τa,n.

1. A1A3 ≤ 0.⇒ vn has a unique root τv,n (Fig. 5.3 (j)), which may be found

from α0 < τa,n (Lemma B.1);

2. A1A3 > 0.

1. A1va,n < 0. ⇒ vn has two real roots, τv1,n < τa,n and τv2,n > τa,n

(Fig. 5.3 (g)). The former may be found from α0 < τa,n, while the

latter is from α0 = τj,n (Lemma B.1);

2. A1va,n = 0.⇒ τv,n = τa,n is the unique real root (Fig. 5.3 (h));

3. A1va,n > 0.⇒ vn does not have any real root (Fig. 5.3 (i)).

As far as the solutions of the Eq. (5.70) is concerned, we have

1. A1 = A2 = A3 = Â4 = 0. ⇒ In this case ŷn(∆tn) = 0 ∀∆tn ∈ R, and the

system keeps the same configuration as long as the external excitation does

not change;

2. A1 = A2 = 0. ⇒ From the Eq. (5.70) we get A3∆tn + Â4 = 0. Thus, either

A3 6= 0 and ∆tn = −Â4/A3, or A3 = 0 and we get the previous case;

3. A1 6= 0, A2 = 0.⇒ an and jn never vanish. Also,

lim
τ→+∞

ŷn(τ) =







Â4, A3 = 0

sgn(A3) · ∞, A3 6= 0
(5.78a)

lim
τ→−∞

ŷn(τ) = sgn(A1) · ∞ (5.78b)

1. A1A3 ≤ 0.⇒ vn does not have any root.

1. A3 6= 0.⇒ Since ŷn is strictly monotone, from the Eq. (5.78) we know

that there exists a unique root ∆tn = δtn, shown in Fig. 5.4 (d). This

root can be calculated for any choice of α0 ∈ R (Lemma B.2);

2. A3 = 0, A1Â4 < 0.⇒ ŷn has one real root

∆tn = δtn =
1

Ωd,n − ζnωn
ln



−
Â4

A1




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3. A3 = 0, A1Â4 ≥ 0.⇒ ŷn does not have any real root;

2. A1A3 > 0.⇒ vn has a single root τv,n.

1. A1 yn(τv,n) < 0. ⇒ ŷn has two real roots, ∆t1,n and ∆t2,n , which

can be found by choosing α0 < τv,n and α0 > τv,n respectively

(Lemma B.4). The time δtn when the stiffness is updated corre-

sponds to the minimum positive value among ∆t1,n, τv,n, and ∆t2,n

(Fig. 5.4 (a));

2. A1 yn(τv,n) = 0. ⇒ ŷn has one real root ∆tn = τv,n = δtn, which

corresponds to a jump of the spring configuration from a branch of

the R− y diagram to another (Fig. 5.4 (b));

3. A1 yn(τv,n) > 0.⇒ ŷn has no real roots, and at δtn = τv,n there is a

jump of the spring configuration from a branch of the R−y diagram

to another (Fig. 5.4 (c));

4. A1 = 0, A2 6= 0.⇒ an and jn never vanish. Also,

lim
τ→−∞

ŷn(τ) = lim
τ→−∞

(

A2e
−(Ωd,n+ζnωn)τ +A3τ + Â4

)

= sgn(A2) · ∞ (5.79a)

lim
τ→+∞

ŷn(τ) =







Â4, A3 = 0

sgn(A3) · ∞, A3 6= 0
(5.79b)

1. A2A3 ≤ 0.⇒ vn does not have any root;

1. A3 6= 0.⇒ Since ŷn is strictly monotone, from the Eq. (5.79) we know

that there exists a unique root ∆tn = δtn, as shown in Fig. 5.4 (d).

This root may be calculated for any choice of α0 ∈ R (Lemma B.2);

2. A3 = 0, A2Â4 < 0.⇒ ŷn has one real root

∆tn = δtn = −
1

Ωd,n + ζnωn
ln



−
Â4

A2





3. A3 = 0, A2Â4 ≥ 0.⇒ ŷn does not have any real root;

2. A2A3 > 0.⇒ vn has a single root τv,n.

1. A2 yn(τv,n) < 0. ⇒ ŷn has two real roots, ∆t1,n and ∆t2,n , which

may be found by choosing α0 < τv,n and α0 > τv,n respectively

(Lemma B.4). The time δtn when the stiffness is updated corre-

sponds to the minimum positive value among ∆t1,n, τv,n, and ∆t2,n

(Fig. 5.4 (a));
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2. A2 yn(τv,n) = 0. ⇒ ŷn has one real root ∆tn = τv,n = δtn, which

corresponds to a jump of the spring–mass system from a branch of

the R− y diagram to another (Fig. 5.4 (b));

3. A2 yn(τv,n) > 0.⇒ ŷn has no real roots, and at δtn = τv,n there is a

jump of the spring–mass system from a branch of the R−y diagram

to another (Fig. 5.4 (c));

5. A1A2 > 0.⇒ an(τ) and jn(τ) never vanish. Also,

lim
τ→+∞

ŷn(τ) =







Â4, A3 = 0

sgn(A3) · ∞, A3 6= 0
lim

τ→−∞
ŷn(τ) = sgn(A2) · ∞

(5.80)

1. A1A3 ≤ 0.⇒ vn(τ) 6= 0∀τ ∈ R and A2A3 ≤ 0.

1. A2A3 < 0.⇒ From the Eq. (5.80), ŷn has one real root (Fig. 5.4 (d)),

which may be found ∀α0 ∈ R (Lemma B.1);

2. A2A3 = 0.⇒ A3 = 0;

1. A2Â4 < 0.⇒ ŷn has one real root ∆tn (Fig. 5.4 (e)), which might

come from any α0 ∈ R (Lemma B.1);

2. A2Â4 ≥ 0.⇒ Â4 = 0. ŷn does not have real roots (Fig. 5.4 (f));

2. A1A3 > 0.⇒ ∃! τv,n ∈ R, and A2A3 > 0.

1. A2 yn(τv,n) < 0. ⇒ ŷn has two real roots, ∆t1,n and ∆t2,n , which

may be found by choosing α0 < τv,n and α0 > τv,n respectively

(Lemma B.4). The time δtn when the stiffness is updated corre-

sponds to the minimum positive value among ∆t1,n, τv,n, and ∆t2,n

(Fig. 5.4 (a));

2. A2 yn(τv,n) = 0. ⇒ ŷn has one real root ∆tn = τv,n = δtn, which

corresponds to a jump of the spring configuration from a branch of

the R− y diagram to another (Fig. 5.4 (b));

3. A2 yn(τv,n) > 0.⇒ ŷn has no real roots, and at δtn = τv,n there is a

jump of the spring configuration from a branch of the R−y diagram

to another (Fig. 5.4 (c));

6. A1A2 < 0. ⇒ an has one real root τa,n, and jn has one real root τj,n > τa,n.

The Eq. (5.80) still holds.

1. A1A3 ≤ 0.⇒ A2A3 ≥ 0 and vn(τ) has a unique root τv,n < τa,n;
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1. A3 6= 0.

1. A2ŷv,n < 0. ⇒ ŷn has two real roots, ∆t1,n and ∆t2,n , which

may be found by choosing α0 < τv,n and α0 > τv,n respectively

(Lemma B.4). The time δtn when the stiffness is updated cor-

responds to the minimum positive value among ∆t1,n, τv,n, and

∆t2,n (Fig. 5.4 (g));

2. A2ŷv,n = 0. ⇒ ŷn has one real root ∆tn = τv,n = δtn, which

corresponds to a jump of the spring configuration from a branch

of the R− y diagram to another (Fig. 5.4 (h));

3. A2ŷv,n > 0. ⇒ ŷn has no real roots, and at δtn = τv,n there is

a jump of the spring configuration from a branch of the R − y

diagram to another (Fig. 5.4 (i));

2. A3 = 0.

1. A2A4 < 0.⇒∃! ∆tn which may be found from α0 < τv,n (Fig. 5.4 (m)).

δtn is the minimum positive value between ∆tn and τv,n;

2. A2A4 = 0. ⇒ A4 = 0 and ∆tn =
1

2Ωd,n
ln



−
A2

A1



. δtn is the

minimum positive value between ∆tn and τv,n;

3. A2A4 > 0.

- A2ŷv,n < 0. ⇒ ŷn has two real roots, ∆t1,n and ∆t2,n , which

may be found by choosing α0 < τv,n and α0 > τv,n respectively

(Lemma B.4). The time δtn when the stiffness is updated

corresponds to the minimum positive value among ∆t1,n, τv,n,

and ∆t2,n (Fig. 5.4 (j));

- A2ŷv,n = 0. ⇒ ŷn has one real root ∆tn = τv,n = δtn, which

corresponds to a jump of the spring configuration from a branch

of the R− y diagram to another (Fig. 5.4 (k));

- A2ŷv,n > 0.⇒ ŷn has no real roots, and at δtn = τv,n there is

a jump of the spring configuration from a branch of the R− y

diagram to another (Fig. 5.4 (l));

2. A1A3 > 0.

1. A1 va,n < 0.⇒ vn has two real roots, τv1,n < τa,n < τv2,n.

1. ŷ(τv1,n) ŷ(τv2,n) < 0.⇒ ŷn has 3 real roots ∆t1,n < ∆t2,n < ∆t3,n

(Fig. 5.5 (a)), which may be found by Lemma B.1. Indeed,

∆t1,n, ∆t2,n, and ∆t3,n may be calculated by choosing α0 < τv1,n,
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α0 = τa,n, and α0 > τv2,n respectively. The time δtn when the

stiffness is updated corresponds to the minimum positive value

among ∆t1,n, τv1,n, ∆t2,n, τv2,n, and ∆t3,n;

2. ŷ(τv1,n) ŷ(τv2,n) = 0.⇒ The function ŷn has two real roots ∆t1,n <

∆t2,n (Fig. 5.5 (b)), which may be found by Lemma B.1. Indeed,

if ŷ(τv1,n) = 0, ∆t1 = τv1,n and ∆t2 may be found by choosing

α0 > τv2,n. If ŷ(τv2,n) = 0, ∆t1 may be found by choosing

α0 < τv1,n and ∆t2 = τv2,n;

3. ŷ(τv1,n) ŷ(τv2,n) > 0. ⇒ ŷn has 1 real root ∆tn (Fig. 5.5 (c)),

which may be found by Lemma B.1. In case of A2 · ŷ(τv1,n) < 0,

α0 < τv1,n is needed, and whether A3 · ŷ(τv2,n) < 0, α0 > τv2,n

should be chosen;

2. A1 va,n = 0.⇒ vn and an has the same root τa,n, which means that

ŷn has a stationary point of inflexion at that time (Fig. 5.5 (d));

1. ŷ(τa,n) ja,n < 0.⇒ ∆tn may be found by Lemma B.1, by choos-

ing α0 > τa,n;

2. ŷ(τa,n) ja,n = 0.⇒ ∆tn = τa,n;

3. ŷ(τa,n) ja,n > 0.⇒ ∆tn may be found by Lemma B.1, by choos-

ing α0 < τa,n.

δtn is the minimum positive value between τv,n and ∆tn;

3. A1 va,n > 0. ⇒ vn does not have any root and an vanish at τa,n,

which means ŷn has a non stationary point of inflexion at that time

(Fig. 5.5 (e)). From Lemma B.3, ŷn has one real root, which may be

found by choosing α0 = τa,n.

5.4.2 Damped system with no stiffness

From the Eqs. (5.33), (5.34), and (5.35) we get
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yn(τ) = y0,n + C1τ + C2τ
2 + C3

(

e−
cn
m

τ − 1
)

(5.81)

C1 = −




F0,n

cn
+
m

c2n
F1,n





C2 =
F1,n

2cn

C3 = −
m

cn



ẏ0,n +
F0,n

cn
+
m

c2n
F1,n





vn(τ) = C1 + 2C2τ − cn
m
C3e

−
cn
m

τ (5.82)

an(τ) = 2C2 +
(cn
m

)2
C3e

−
cn
m

τ (5.83)

jn(τ) = −
(cn
m

)3
C3e

−
cn
m

τ (5.84)

Also, from the Eqs. (5.57) and (5.81), we get

ŷn(τ) = yn(τ) −



y0,n +
∆Rn

kn



 = C0 + C1τ + C2τ
2 + C3e

−
cn
m

τ (5.85)

C0 = −



C3 +
∆Rn

kn





It is worth noting the behavior of ŷn(τ), vn(τ), and an(τ) when τ → ±∞,

lim
τ→+∞

ŷn(τ)
cn>0
=







C0, C1 = C2 = 0

sgn(C1) · ∞, C1 6= 0, C2 = 0

sgn(C2) · ∞, C2 6= 0

(5.86)

lim
τ→−∞

ŷn(τ)
cn>0
=







C0, C1 = C2 = C3 = 0

− sgn(C1) · ∞, C1 6= 0, C2 = C3 = 0

+ sgn(C2) · ∞, C2 6= 0, C3 = 0

+ sgn(C3) · ∞, C3 6= 0

(5.87)
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lim
τ→+∞

ŷn(τ)
cn<0
=







C0, C1 = C2 = C3 = 0

+ sgn(C1) · ∞, C1 6= 0, C2 = C3 = 0

+ sgn(C2) · ∞, C2 6= 0, C3 = 0

+ sgn(C3) · ∞, C3 6= 0

(5.88)

lim
τ→−∞

ŷn(τ)
cn<0
=







C0, C1 = C2 = 0

− sgn(C1) · ∞, C1 6= 0, C2 = 0

+ sgn(C2) · ∞, C2 6= 0

(5.89)

lim
τ→+∞

vn(τ) = lim
τ→+∞

(

C1 + 2C2τ − cn
m
C3e

−
cn
m

τ
)

cn>0
=







C1, C2 = 0

sgn(C2) · ∞, C2 6= 0

(5.90)

lim
τ→−∞

vn(τ)
cn>0
=







C1, C2 = C3 = 0

− sgn(C2) · ∞, C2 6= 0, C3 = 0

− sgn(C3) · ∞, C3 6= 0

(5.91)

lim
τ→+∞

vn(τ)
cn<0
=







C1, C2 = C3 = 0

+ sgn(C2) · ∞, C2 6= 0, C3 = 0

+ sgn(C3) · ∞, C3 6= 0

(5.92)

lim
τ→−∞

vn(τ)
cn<0
=







C1, C2 = 0

− sgn(C2) · ∞, C2 6= 0
(5.93)

lim
τ→+∞

an(τ) = lim
τ→+∞

[

2C2 +
(cn
m

)2
C3e

−
cn
m

τ

]
cn>0
= 2C2 (5.94)

lim
τ→−∞

an(τ)
cn>0
=







2C2, C3 = 0

sgn(C3) · ∞, C3 6= 0
(5.95)

lim
τ→+∞

an(τ)
cn<0
=







2C2, C3 = 0

sgn(C3) · ∞, C3 6= 0
(5.96)

lim
τ→−∞

an(τ)
cn<0
= 2C2 (5.97)

As long as C3 6= 0, jn(τ) never vanishes and an(τ) is strictly monotone. The

acceleration roots are,
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1. C2 = C3 = 0.⇒ an = 0 ∀τ ∈ R;

2. C2 6= 0, C3 = 0 ∨ C2 = 0, C3 6= 0.⇒ an 6= 0 ∀τ ∈ R;

3. C2C3 < 0.⇒ an has one root,

τa,n = −
m

cn
ln



−2




m

cn





2
C2

C3





4. C2C3 > 0.⇒ an does not have any real root.

In order to find the roots of vn(τ), by recalling the Eqs. (5.82) and (5.90)–(5.97),

we may conclude what follows,

1. C3 = 0.

vn(τv,n) = 0 ⇒ C1 + 2C2τv,n = 0 ⇒







τv,n = −
C1

2C2
, C2 6= 0

∄τv,n ∈ R, C1 6= 0, C2 = 0

∀τv,n ∈ R, C1 = C2 = 0

2. C1 = C2 = 0, C3 6= 0.⇒ vn(τ) 6= 0 ∀τ ∈ R;

3. C1 6= 0, C2 = 0, C3 6= 0. ⇒ an never vanishes, hence vn is strictly monotone

on R.

1. cn > 0.⇒ limτ→+∞ vn(τ) = C1 and limτ→−∞ vn(τ) = −sgn(C3) · ∞

1. C1C3 < 0.⇒ vn does not have any root;

2. C1C3 > 0.⇒ vn has one root τv,n, as shown in Fig. 5.3 (e),

τv,n = −
m

c
ln




m

c

C1

C3





2. cn < 0.⇒ limτ→+∞ vn(τ) = sgn(C3) · ∞ and limτ→−∞ vn(τ) = C1

1. C1C3 < 0.⇒ vn has one root τv,n (Lemma B.2, Fig. 5.3 (e));

2. C1C3 > 0.⇒ vn does not have any root;

4. C2 6= 0, C3 6= 0.
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If cn > 0 we get,

lim
τ→+∞

an(τ) = 2C2

lim
τ→−∞

an(τ) = sgn(C3) · ∞

lim
τ→+∞

vn(τ) = sgn(C2) · ∞

lim
τ→−∞

vn(τ) = −sgn(C3) · ∞

If cn < 0 we have,

lim
τ→+∞

an(τ) = sgn(C3) · ∞

lim
τ→−∞

an(τ) = 2C2

lim
τ→+∞

vn(τ) = sgn(C3) · ∞

lim
τ→−∞

vn(τ) = −sgn(C2) · ∞

1. C2C3 < 0.⇒ an has one root τa,n (Lemma B.2);

1. C3va,ncn < 0. ⇒ vn has two roots, τv1,n and τv2,n, which may be

found by Lemma B.4 choosing α0 < τa,n and α0 > τa,n respectively

(Fig. 5.3 (a));

2. C3va,ncn = 0.⇒ vn has a unique root τv,n = τa,n (Fig. 5.3 (b));

3. C3va,ncn > 0.⇒ vn does not have any real root (Fig. 5.3 (c));;

2. C2C3 > 0. ⇒ an has no roots and vn is strictly monotone. If cn < 0,

limτ→+∞ vn(τ) = sgn(C3) · ∞ and limτ→−∞ vn(τ) = −sgn(C2) · ∞. If

cn > 0, the limit values above have opposite sign. Both ways, vn has one

root τv,n, which may be found ∀α0 ∈ R (Lemma B.2, Fig. 5.3 (d));

In order to find the roots of ŷn, by recalling the Eq. (5.85) and (5.86)–(5.89),

what follows may be stated,

1. C3 = 0.

1. C2 6= 0.

∆t1:2,n = −
C1 ±

√

C2
1 − 4C0C2

2C2

2. C1 6= 0, C2 = 0.⇒ ∆tn = −C0/C1;

3. C1 = C2 = 0. ⇒ It is either C0 = 0 and ŷ(τ) = 0∀τ ∈ R, or C0 6= 0 and

ŷ(τ) 6= 0∀τ ∈ R. both ways, the system configuration does not change;
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2. C1 = C2 = 0, C3 6= 0. Either C0/C3 ≥ 0 and ŷn does not have real roots, or

C0/C3 < 0 and ŷn has one real root, that is

C0 + C3e
−

cn
m

∆tn = 0 ⇒ ∆tn = −
m

cn
ln



−
C0

C3



,
C0

C3
< 0

3. C1 6= 0, C2 = 0, C3 6= 0.⇒ an never vanishes and vn is strictly monotone on R.

Also, when cn > 0, limτ→+∞ ŷ = sgn(C1) · ∞ and limτ→−∞ ŷ = sgn(C3) · ∞.

When cn < 0, limτ→+∞ ŷ = sgn(C3) · ∞ and limτ→−∞ ŷ = −sgn(C1) · ∞.

1. C1C3cn < 0.⇒ From the previous analysis we know that vn has no roots.

Therefore, ŷn is strictly monotone and has one root ∆tn, as shown in

Fig. 5.4 (d). Such root may be found by Lemma B.2, ∀α0 ∈ R;

2. C1C3cn > 0. ⇒ vn is strictly monotone and vanishes at τv,n. Let ŷv,n =

ŷ(τv,n);

1. C3ŷv,n < 0.⇒ ŷn has two roots, ∆t1,n and ∆t2,n (Fig. 5.4 (a)). Such

roots may be found by Lemma B.4, by choosing α0 < τv,n and

α0 > τv,n respectively;

2. C3ŷv,n = 0.⇒ ŷn has one root ∆tn = τv,n (Fig. 5.4 (b));

3. C3ŷv,n > 0.⇒ ŷn does not have any real root (Fig. 5.4 (c));

4. C2C3 < 0. When cn > 0, limτ→+∞ ŷn(τ) = sgn(C2) · ∞ and limτ→−∞ ŷn(τ) =

sgn(C3) · ∞. When cn < 0, the limit values above are switched;

1. C3va,ncn < 0. ⇒ an has a unique root τa,n, and vn has two roots, τv1,n

and τv2,n. Let ŷv1,n = ŷ(τv1,n) and ŷv2,n = ŷ(τv2,n).

1. ŷv1,nŷv2,n < 0.⇒ ŷn has 3 roots, ∆t1,n, ∆t2,n, and ∆t3,n (Fig. 5.5 (a)),

which may be found by applying Lemma B.4, by choosing α0 < τv1,n,

α0 = τa,n, and α0 > τv2,n respectively;

2. ŷv1,nŷv2,n = 0.⇒ ŷn has 2 real roots (Fig. 5.5 (b)).

1. ŷv1,n = 0. ⇒ ∆t1 = τv1,n and, from Lemma B.1, ∆t2 may be

found by choosing α0 > τv2,n;

2. ŷv2,n = 0. ⇒ ∆t2 = τv2,n and, from Lemma B.1, ∆t1 may be

found by choosing α0 < τv1,n;

3. ŷv1,nŷv2,n > 0. ⇒ From Lemma B.1, the unique root ∆tn may be

found by choosing the initial guess α0 properly (Fig. 5.5 (c));

1. cn > 0, C3ŷv1,n < 0.⇒ ∆tn may be found from α0 < τv1,n;
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2. cn > 0, C3ŷv1,n > 0.⇒ ∆tn may be found from α0 > τv2,n;

3. cn < 0, C2ŷv1,n < 0.⇒ ∆tn may be found from α0 < τv1,n;

4. cn < 0, C2ŷv1,n > 0.⇒ ∆tn may be found from α0 > τv2,n;

2. C3va,ncn = 0. ⇒ vn and an have the same root τv,n = τa,n. ŷn has one

root either (Fig. 5.5 (d)), which may be found by Lemma B.1;

1. ŷa,nja,n < 0.⇒ ∆tn may be found from α0 > τa,n;

2. ŷa,nja,n = 0.⇒ ∆tn = τa,n;

3. ŷa,nja,n > 0.⇒ ∆tn may be get from α0 < τa,n;

3. C3va,ncn > 0.⇒ vn has no roots and ŷn has a unique root ∆tn, as shown

in (Fig. 5.5 (e)). Such root may be found by Lemma B.3, setting α0 =

τa,n;

5. C2C3 > 0. ⇒ vn has one root τv,n and an has no roots. Also,when cn > 0,

limτ→+∞ ŷn(τ) = sgn(C2)·∞ and limτ→−∞ ŷn(τ) = sgn(C3)·∞. When cn < 0,

the above limit values are switched.

1. C2ŷv,n < 0.⇒ ŷn has two roots, ∆t1,n and ∆t2,n, as shown in Fig. 5.4 (a).

Such roots may be found by Lemma B.4;

2. C2ŷv,n = 0.⇒ ŷn has one root ∆tn = τv,n (Fig. 5.4 (b));

3. C2ŷv,n > 0.⇒ ŷn does not have any real root (Fig. 5.4 (c)).

In order to get the actual time δtn when the spring stiffness does change, in

case of multiple solutions τvq,n and ∆tq,n, q = 1, 2, . . . , the minimum positive one,

whether it exist, is needed.

5.4.3 Undamped system with no stiffness

From Eqs. (5.37), (5.38), and (5.57) we get

yn(τ) = A0 +A1τ +A2τ
2 +A3τ

3 (5.98)

A0 = y0,n, A1 = ẏ0,n, A2 = −
F0,n

2m
, A3 =

F1,n

6m

ŷn(τ) = â0 +A1τ +A2τ
2 +A3τ

3, â0 = A0 −



y0,n +
∆Rn

kn



 (5.99)
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ŷn

τ
∆tn

τv1,n τv2,nτa,n

ŷv1,n

ŷa,n

ŷv2,n

δ δ δ δ

h

h
√

3δ
√

3δ

Fig. 5.6. Cubic displacement function roots of a linear oscillator under linear excitation.

vn(τ) = A1 + 2A2τ + 3A3τ
2 (5.100)

an(τ) = 2A2 + 6A3τ (5.101)

jn(τ) = 6A3 (5.102)

Since the Eq. (5.100) is quadratic, the roots of vn are

τv,n =







−
A2 ±

√

A2
2 − 3A1A3

3A3
, A3 6= 0

−
A1

2A2
, A2 6= 0, A3 = 0

∄τ ∈ R, A1 6= 0, A2 = A3 = 0

∀τ ∈ R, A1 = A2 = A3 = 0

(5.103)

As far as the roots of the Eq. (5.99) are concerned, according to Nickalls [70]

the following quantities may be defined (Fig. 5.6),

τa,n = −
A2

3A3
, ŷa,n =

2

27

A3
2

A2
3

−
A1A2

3A3
+ â0 (5.104)

δ2 =
A2

2 − 3A1A3

9A2
3

, h = 2A3δ
3

where (τa,n, ŷa,n) are the coordinates of the inflexion point of the cubic function

ŷn(τ), δ = τv2,n − τa,n = τa,n − τv1,n is the distance along the τ axis between the

inflexion point and the stationary points, and h = ŷv2,n − ŷa,n = ŷa,n − ŷv1,n is the

projection of the same distance on the ŷn axis.
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In case of A3 = 0, the Eq. (5.99) becomes quadratic, and the roots of ŷn are

∆tn =







−
A1 ±

√

A2
1 − 4â0A2

2A2
, A2 6= 0

−
â0

A1
, A1 6= 0, A2 = 0

∄τ ∈ R, â0 6= 0, A1 = A2 = 0

∀τ ∈ R, â0 = A1 = A2 = 0

(5.105)

In case of A3 6= 0, since the coefficients A0, . . . , A3 are all real and because

of the intermediate value theorem, ŷn has at least one real root. In general, the

number of the real roots and their algebraic multiplicity depends on the sign of the

discriminant ŷ2
a,n − h2. A total number of three cases may be considered.

Positive discriminant ◦ ŷ2
a,n − h2 > 0

Under these circumstances there are one real root and two complex conjugate

roots,

w1 =
3

√
√
√
√ 1

2A3

(

−ŷa,n −
√

ŷ2
a,n − h2

)

, w2 =
3

√
√
√
√ 1

2A3

(

−ŷa,n +
√

ŷ2
a,n − h2

)

∆t1,n = τa,n + w1 + w2 (5.106)

∆t2:3,n = τa,n − w1




1

2
±

√
3

2
i



− w2




1

2
∓

√
3

2
i



 (5.107)

Zero discriminant ◦ ŷ2
a,n − h2 = 0

When the discriminant vanishes, we get

δ =
3

√
√
√
√ ŷa,n

2A3

∆t1:2,n = τa,n + δ (algebraic multiplicity 2) (5.108)

∆t3,n = τa,n − 2δ. (5.109)

Whether ŷa,n = h = 0, then δ = 0 and there are three equal roots at τ = τa,n.
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Negative discriminant ◦ ŷ2
a,n − h2 < 0

As long as the discriminant becomes negative, ŷn has three distinct real roots,

ς =
1

3
arccos



−
ŷa,n

h





∆t1,n = τa,n + 2δ cos ς (5.110)

∆t2,n = τa,n + 2δ cos



ς +
2

3
π



 (5.111)

∆t2,n = τa,n + 2δ cos



ς +
4

3
π



 (5.112)

Again, in case of multiple solutions τvq ,n and ∆tq,n, q = 1, 2, . . . , the minimum

positive one is needed, in order to get the time δtn when a stiffness update is actually

accomplished.

5.4.4 Underdamped system with positive stiffness – overdamped

system with negative stiffness

From the Eqs. (5.43), (5.44), and (5.45) we have

yn(τ) = e−ζnωnτ (A1 cos(ωd,nτ) +A2 sin(ωd,nτ)) +A3τ +A4 (5.113)

A1 =
F0,n

kn
+ 2ζn

F1,n

ωnkn

A2 =
1

ωd,n



ẏ0,n +
F0,n

kn
ζnωn +

F1,n

kn
(2ζ2

n − 1)





A3 =
F1,n

kn

A4 = y0,n −
F0,n

kn
− 2ζn

F1,n

ωnkn

(5.114)

vn(τ) = e−ζnωnτ (B1 cos(ωd,nτ) +B2 sin(ωd,nτ)) +A3 (5.115)

B1 = −ζnωnA1 + ωd,nA2

B2 = −ζnωnA2 − ωd,nA1
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an(τ) = e−ζnωnτ (C1 cos(ωd,nτ) + C2 sin(ωd,nτ)) (5.116)

C1 = −ζnωnB1 + ωd,nB2

C2 = −ζnωnB2 − ωd,nB1

jn(τ) = e−ζnωnτ (D1 cos(ωd,nτ) +D2 sin(ωd,nτ)) (5.117)

D1 = −ζnωnC1 + ωd,nC2

D2 = −ζnωnC2 − ωd,nC1

Also, from the Eq. (5.57) we get

ŷn(τ) = e−ζnωnτ (A1 cos(ωd,nτ) +A2 sin(ωd,nτ)) +A3τ + Â4 (5.118)

Â4 = A4 −



y0,n +
∆Rn

kn



 (5.119)

The roots of jn(τ) depend on the values of D1 and D2,

1. D1 = D2 = 0.⇒ jn(τ) = 0 ∀τ ∈ R;

2. D1 6= 0,D2 = 0.⇒ cos(ωnτj,n) = 0 ⇒ τj,n =
π

ωd,n



q +
1

2



 , q ∈ Z0;

3. D1 = 0,D2 6= 0.⇒ sin(ωnτj,n) = 0 ⇒ τj,n =
qπ

ωd,n
, q ∈ Z0;

4. D1 6= 0,D2 6= 0. ⇒ If cos(ωnτj,n) = 0 ⇒ sin(ωnτj,n) = ±1 ⇒ D2 = 0.

Therefore cos(ωnτj,n) 6= 0, and D1 +D2 tan(ωd,nτj,n) = 0, which implies

τj,n =
1

ωd,n



arctan



−
D1

D2



+ qπ



 , q ∈ Z0

The first q positive roots are put in the following order,

0 < τj+1,n < τj+2,n < · · · < τj+q,n

while the negatives are

0 > τj−1,n > τj−2,n > · · · > τj−q,n.

The roots of an(τ) depend on the values of C1 and C2,
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1. C1 = C2 = 0.⇒ an(τ) = 0 ∀τ ∈ R;

2. C1 6= 0, C2 = 0.⇒ cos(ωnτa,n) = 0 ⇒ τa,n =
π

ωd,n



q +
1

2



 , q ∈ Z0;

3. C1 = 0, C2 6= 0.⇒ sin(ωnτa,n) = 0 ⇒ τa,n =
qπ

ωd,n
, q ∈ Z0;

4. C1 6= 0, C2 6= 0. ⇒ If cos(ωnτa,n) = 0 ⇒ sin(ωnτa,n) = ±1 ⇒ C2 = 0.

Therefore cos(ωnτa,n) 6= 0, and C1 + C2 tan(ωd,nτa,n) = 0, which implies

τa,n =
1

ωd,n



arctan



−
C1

C2



+ qπ



 , q ∈ Z0

Again, the roots are put in the following order,

τa−q,n < τa−q+1,n < · · · < τa−1,n < 0 < τa+1,n < τa+2,n < · · · < τa+q,n

As far as the velocity is concerned, it may be noted that such function is nothing

but a sine or cosine function with an exponentially decreasing amplitude. Also, it

is translated along the v axis by a quantity A3. When A3 = 0, it is straight forward

to find the roots of vn(τ). Indeed,

A3 = 0 ⇒ vn(τv,n) = 0 ⇔ B1 cos(ωd,nτv,n) +B2 sin(ωd,nτv,n) = 0

1. B1 = B2 = 0.⇒ vn(τ) = 0 ∀ τ ∈ R;

2. B1 6= 0, B2 = 0.⇒ cos(ωd,nτv,n) = 0 ⇒ ωd,nτv,n =



q +
1

2



π, q ∈ Z0

τv,n =
π

ωd,n



q +
1

2



 , q ∈ Z0

3. B1 = 0, B2 6= 0. ⇒ sin(ωd,nτv,n) = 0 ⇒ ωd,nτv,n = qπ ⇒ τv,n =
qπ

ωd,n
, q ∈

Z0;

4. B1 6= 0, B2 6= 0.⇒ cos(ωd,nτv,n) 6= 0 ⇒ B1 +B2 tan(ωd,nτv,n) = 0

τv,n = −
1

ωd,n



arctan




B1

B2



+ qπ



 , q ∈ Z0
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When A3 6= 0, it is useful to rewrite vn as it follows

vn(τ) = e−ζnωnτB cos(ωd,nτ + φv) +A3 (5.120)

where B =
√

B2
1 +B2

2 and φv is the phase angle given in §C. Now let us consider

the case ζn 6= 0, and let the time τ∗n be defined as it follows,

τ∗n =







−
1

ζnωn
ln

∣
∣
∣
∣
∣
∣

A3

B2

∣
∣
∣
∣
∣
∣

, C1 6= 0, C2 = 0

−
1

ζnωn
ln

∣
∣
∣
∣
∣
∣

A3

B1

∣
∣
∣
∣
∣
∣

, C1 = 0, C2 6= 0

−
1

ζnωn
ln

∣
∣
∣
∣
∣
∣

A3

B
√

1 − ζ2
n

∣
∣
∣
∣
∣
∣

, C1C2 6= 0

(5.121)

It might be shown that, depending on the sign of cn, before or after τ∗n the function

vn(τ) can not have any real root (cn < 0 or cn > 0 respectively), because the

function sign is constant. For example, if cn < 0, C1 6= 0 and C2 = 0, recalling the

roots of the acceleration function, we have

τa,n =
π

ωd,n



q +
1

2





|vn(τa,n) −A3| = e−ζnωnτa,n |B1 cos(ωd,nτa,n) +B2 sin(ωd,nτa,n)| = |B2|e−ζnωnτa,n

If τa,n ≤ τ∗n, we get

τa,n ≤ τ∗n ⇔ τa,n ≤ −
1

ζnωn
ln

∣
∣
∣
∣
∣
∣

A3

B2

∣
∣
∣
∣
∣
∣

⇔ −ζnωnτa,n ≤ ln

∣
∣
∣
∣
∣
∣

A3

B2

∣
∣
∣
∣
∣
∣

⇔ exp(−ζnωnτa,n) ≤

∣
∣
∣
∣
∣
∣

A3

B2

∣
∣
∣
∣
∣
∣

⇔

⇔ |B2| exp(−ζnωnτa,n) ≤ |A3| ⇔ |vn(τa,n) −A3| ≤ |A3| ⇔ −|A3| ≤ vn(τa,n) −A3 ≤ |A3|

A3 < 0 ⇒ |A3| = −A3 ⇒ 2A3 ≤ vn(τa,n) ≤ 0

A3 > 0 ⇒ |A3| = +A3 ⇒ 0 ≤ vn(τa,n) ≤ 2A3

The equations above show that τa,n = τ∗n implies vn(τa,n) = 0, and τa,n < τ∗n

implies sgn(vn(τa,n)) = sgn(A3) = ±1. Then, taking into account the proprieties of

the function (5.120), we may state that sgn(vn(τ)) = sgn(A3), ∀τ < τ∗n.
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vn

τ

τv,n

τa+1,n

5.7 (a).

vn

τ
τv,n = τa,n = 0

5.7 (b).

vn

τ

τv,n = 0

τa+1,n

5.7 (c).

vn

τ
τv,n = τa+1,n

5.7 (d).

vn

τ

τv,n

τa+1,n

τa+2,n

5.7 (e).

vn

τ
τv,n = τa+2,n

τa+1,n

5.7 (f).

vn

τ
τa+2,n

τa+1,n

5.7 (g).

Fig. 5.7. Sinusoidal velocity function roots of a linear oscillator with positive damping coefficient.
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When τ∗n > 0, by using the notations v0,n = vn(0), va+1,n = vn(τa+1,n), va+2,n =

vn(τa+2,n), and a0,n = an(0), we may find the roots of vn in case of cn > 0,

1. B1 = B2 = 0. ⇒ vn(τ) = A3. Thus, if A3 = 0, vn(τ) = 0 ∀τ ∈ R, and if

A3 6= 0, vn does not have any real root.

2. B2
1 +B2

2 > 0.

1. v0,nva+1,n < 0.⇒ τv,n ∈ (0, τa+1,n), and it may be calculated via Newton–

Raphson method (Lemma B.1). If τj+1,n < τa+1,n, a good initial guess

is α0 = τj+1,n, otherwise it is α0 = τj−1,n (Fig. 5.7 (a));

2. v0,nva+1,n ≥ 0.

1. va+1,n = 0.⇒ τv,n = τa+1,n, and there is no jump of the system con-

figuration from a branch of theR−y diagram to another (Fig. 5.7 (d));

2. va+1,n 6= 0. ⇒ If v0,n = 0, then τv,n = 0, and it is either a0,n = 0

(Fig. 5.7 (b)) or a0,n 6= 0 (Fig. 5.7 (c)). In the latter case, at τv,n = 0

there is a jump of the system configuration from a branch of the R−y
diagram the other one. The first positive root τv+1,n is needed;

1. va+1,nva+2,n < 0. ⇒ τv+1,n ∈ (τa+1,n, τa+2,n), and this root can

be found by choosing an appropriate value for α0 (Lemma B.1,

Fig. 5.7 (e)),

- τj+1,n > τa+1,n.⇒ α0 = τj+1,n;

- τj+1,n < τa+1,n.⇒ α0 = τj+2,n;

2. va+1,nva+2,n = 0. ⇒ va+2,n = 0 ⇒ τv+1,n = τa+2,n, and there is

not any jump of the spring configuration (Fig. 5.7 (f));

3. va+1,nva+2,n > 0.⇒ vn has no positive roots (Fig. 5.7 (g)).

When ζn = 0, the roots of vn may be found in a closed form,

vn(τv,n) = B cos(ωnτv,n + φv) +A3 = 0 ⇒ cos(ωnτv,n + φv) = −
A3

B

τv,n =
1

ωn



2qπ ± arccos



−
A3

B



− φv



 , q ∈ Z0 (5.122)

When cn < 0, it is useful to find the stationary point τaq ,n ≥ τ∗n closest to τ∗n,

which is implicitly defined by the following equation

q = ⌊q∗⌋ + 1, τaq∗ ,n = τ∗n,

129



vn

τ
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τa+1,n

5.8 (a).

vn

τ

τv,n

τa+1,n

τa+2,n

5.8 (b).

vn

τ

τv,n

τa+1,n

τa+2,n

5.8 (c).

vn

τ

τv,n

τa+1,n

τa+2,n

τa+3,n

5.8 (d).

vn

τ

τv,n

τa+1,n

τa+2,n

5.8 (e).

vn

τ

τv,n

τaq ,nτ∗n

5.8 (f).

vn

τ

τv,n

τ∗n

τaq,n

τaq+1,n

5.8 (g).

vn

τ

τ∗n = τv,n

τaq,n

5.8 (h).

vn

τ
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τ∗n

τaq ,n

τaq+1,n

5.8 (i).

Fig. 5.8. Sinusoidal velocity function roots of a linear oscillator with negative damping coefficient.
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where ⌊q∗⌋ is the largest integer less than or equal to q∗. In order to obtain an

explicit value of q∗, the equation above needs to be solved for the three following

cases,

1. C1 6= 0, C2 = 0.

τaq∗ ,n =
π

ωd,n



q∗ +
1

2



 = τ∗n ⇒ q∗ =
ωd,n

π
τ∗n −

1

2

2. C1 = 0, C2 6= 0.

τaq∗ ,n =
q∗π

ωd,n
= τ∗n ⇒ q∗ =

ωd,n

π
τ∗n

3. C1C2 6= 0.

τaq∗ ,n =
1

ωd,n



arctan



−
C1

C2



+ q∗π



 = τ∗n ⇒ q∗ =
ωd,n

π
τ∗n+

1

π
arctan




C1

C2





Also, it is useful to know the largest value of τjq,n ≤ τ̃, ∀τ̃ > 0, which is implicitly

defined by the following equation

q = ⌊q̃⌋ , τaq̃ ,n = τ̃,

where ⌊q̃⌋ is the largest integer less than or equal to q̃. Explicit values of q̃ are,

1. D1 6= 0,D2 = 0.

τjq̃,n =
π

ωd,n



q̃ +
1

2



 = τ̃ ⇒ q̃ =
ωd,n

π
τ̃ −

1

2

2. D1 = 0,D2 6= 0.

τjq̃,n =
q̃π

ωd,n
= τ̃ ⇒ q̃ =

ωd,n

π
τ̃

3. D1D2 6= 0.

τjq̃,n =
1

ωd,n



arctan



−
D1

D2



+ q̃π



 = τ̃ ⇒ q̃ =
ωd,n

π
τ̃ +

1

π
arctan




D1

D2





By using the notations v∗n = vn(τ∗n), vaq ,n = vn(τaq ,n), and a∗n = an(τ∗n) , the roots

of vn are the following,
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1. τ∗n ≤ 0.

1. v0,nva+1,n < 0.⇒ τv,n ∈ (τ0,n, τa+1,n) (Fig. 5.8 (a)), and it may be calcu-

lated by the Newton–Raphson method, with α0 = τjq,n, q = ⌊q̃(τ̃)⌋ and

τ̃ = τa+1,n (Lemma B.1);

2. v0,nva+1,n = 0.⇒ Since τ∗n ≤ 0, must be v0,n = 0 and τv,n = 0. The first

positive root is τv+1,n ∈ (τa+1,n, τa+2,n), and it may be found by choosing

α0 = τjq,n, q = ⌊q̃(τ̃ = τa+2,n)⌋;

1. a0,n = 0.⇒ At τ = 0 there is not any jump of the system configura-

tion from a branch of the R− y diagram to another (Fig. 5.8 (b));

2. a0,n 6= 0. ⇒ At τ = 0 there is a jump of the system configuration

from a branch of the R− y diagram to another (Fig. 5.8 (c));

3. v0,nva+1,n > 0.⇒ τv,n ∈ (τa+1,n, τa+2,n), and it may be found by choosing

α0 = τjq,n, q = ⌊q̃(τ̃ = τa+2,n)⌋ (Fig. 5.8 (e));

2. τ∗n > 0.⇒ τaq,n is needed, where q = ⌈q∗⌉;

1. v∗nvaq ,n < 0. ⇒ τv,n ∈ (τ∗n, τaq,n) (Fig. 5.8 (f)), and it may be calculated

by the Newton–Raphson method, with α0 = τjǫ,n, ǫ = ⌊ǫ̃(τ̃)⌋ and τ̃ =

τaq,n (Lemma B.1);

2. v∗nvaq ,n = 0.⇒ v∗n = 0 and τv,n = τ∗n;

1. a∗n = 0. ⇒ There is not any jump of the system configuration from

a branch of the R− y diagram to another (Fig. 5.8 (g));

2. a∗n 6= 0.⇒ There is a jump of the system configuration from a branch

of the R− y diagram to another at τ = τ∗n (Fig. 5.8 (h));

3. v∗nvaq ,n > 0. ⇒ τv,n ∈ (τaq ,n, τaq+1,n), and it may be found by choosing

α0 = τjǫ,n, ǫ = ⌊ǫ̃(τ̃ = τaq+1,n)⌋ (Lemma B.1, Fig. 5.8 (i)).

Referring to the Eqs. (5.129) and (5.118), we may rewrite the periodic part of

ŷn and the acceleration as it follows,

ỹn(τ) = Ae−ζnωnτ cos(ωd,nτ + φy) (5.123)

an(τ) = Ce−ζnωnτ cos(ωd,nτ + φa) (5.124)
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where the vibration amplitudes (A,C) and the phase angles (φy, φa) are given in

§ C. By comparing the two equations above, we get the phase shift ∆φn between ỹn

and an, which is related to the distance ∆τn between the roots of such functions,

∆φn = φa − φy, ∆τn = −
∆φn

ωd
(5.125)

From the Eq. (5.118), we get the equation which defines the roots of ŷn,

ŷn(∆tn) = e−ζnωn∆tn (A1 cos(ωd,n∆tn) +A2 sin(ωd,n∆tn)) +A3∆tn + Â4 = 0

(5.126)

Let τv+1,n be the first positive root of vn(τ), and ŷv+1,n = ŷn(τv+1,n). Then,

1. A1 = A2 = A3 = Â4 = 0.⇒ yn(∆tn) = 0, ∀∆tn ∈ R ;

2. A1 = A2 = A3 = 0, Â4 6= 0.⇒ yn(∆tn) 6= 0, ∀∆tn ∈ R ;

3. A1 = A2 = 0, A3 6= 0.⇒ ∆t = −
Â4

A3
;

4. A2
1 +A2

2 6= 0, A3 = Â4 = 0.

1. A1 6= 0, A2 = 0.⇒ cos(ωd,n∆tn) = 0 ⇒ ωd,n∆tn =



q +
1

2



π, q ∈ Z0

∆tn =
π

ωd,n



q +
1

2



 , q ∈ Z0

2. A1 = 0, A2 6= 0. ⇒ sin(ωd,n∆tn) = 0 ⇒ ωd,n∆tn = qπ ⇒ ∆tn =

qπ

ωd,n
, q ∈ Z0 ;

3. A1 6= 0, A2 6= 0.⇒ cos(ωd,n∆tn) 6= 0 ⇒ A1 +A2 tan(ωd,n∆tn) = 0

∆tn = −
1

ωd,n



arctan




A1

A2



+ qπ



 , q ∈ Z0

5. A2
1 +A2

2 6= 0, A3 = 0, Â4 6= 0.⇒ In this case, ŷn is nothing but a sine or cosine

function with an exponentially varying amplitude (unless ζn = 0), translate in

the ŷn direction by the quantity Â4 . The roots of such function may be found

by following the procedure used for the velocity analysis above, taking care of

the appropriate substitutions. For instance, B1 → A1, B2 → A2, A3 → Â4,

τjq,n → τaq ,n, τaq ,n → τvq,n, etc. . . ;
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ŷn

τ
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∆tn

5.9 (a).

ŷn

τ
τv+1,n

∆tn = 0

5.9 (b).

ŷn

τ
∆tn = τv+1,n

5.9 (c).

ŷn

τ
τv+1,n

5.9 (d).

ŷn

τ
τ∗n

5.9 (e).

ŷn

τ
τ∗n

∆tn = 0

5.9 (f).

ŷn

τ

τv,n = τ∗n
Y(τ∗n) = −2

5.9 (g).

ŷn

τ

∆tn = τ∗n
Y(τ∗n) = +1

5.9 (h).

ŷn

τ
τv+1,n

∆tn

τ∗n

5.9 (i).

ŷn

τ

τv+1,n
τ∗n

5.9 (j).

Fig. 5.9. Sinusoidal displacement function roots of a linear oscillator with negative damping coef-

ficient.
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5.10 (b).

ŷn

τ
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ŷn

τ
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5.10 (d).

ŷn

τ

∆tn = 0

5.10 (e).

ŷn

τ
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ŷn

τ
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∆tn
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ŷn
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Fig. 5.10. Sinusoidal displacement function roots of a linear oscillator with zero damping coefficient.
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6. A2
1 +A2

2 6= 0.

Whether ŷn(t0,n) = constant, the system stands still until the first derivative

of the external excitation undergoes any change. If ŷn has an extremum at

t = t0,n, at that time the system configuration undergoes a branch jump.

Otherwise, ŷn being monotonic, the following analysis may be carried out.

1. cn < 0.

1. τ∗n ≤ 0.

- ŷ0,nŷv+1,n < 0. ⇒ ∆tn ∈ (τ0,n, τv+1,n) → α0 = τaq̄ ,n, where

τaq̄ ,n is the largest acceleration root less than or equal to τv+1,n,

as shown below in case of cn > 0 and τ∗n > 0 (Fig. 5.9 (a));

- ŷ0,nŷv+1,n = 0.

- ŷ0,n = 0.⇒ ∆tn = 0 (Fig. 5.9 (b));

- ŷ0,n 6= 0. ⇒ At ∆tn = τv+1,n there is a branch jump of the

system configuration (Fig. 5.9 (c));

- ŷ0,nŷv+1,n > 0.⇒ At τv+1,n there is a branch jump of the system

configuration (Fig. 5.9 (d));

2. τ∗n > 0.

1. ŷ0,nŷ
∗
n < 0. ⇒ The largest root τỹ∗,n of ỹn such that τỹ∗,n < τ∗n

is needed, as well as the largest acceleration root τa∗,n < τ∗n;

- ŷn(τỹ∗,n)ŷ∗n < 0.

- τa∗,n > τỹ∗,n.

ŷn(τỹ∗,n)ŷn(τa∗,n) < 0. ⇒ ∆tn ∈ (τỹ∗,n, τa∗,n), and it may

be found by choosing α0 = τỹ∗,n if |vn(τỹ∗,n)| > |vn(τa∗,n)|,
or α0 = τa∗,n if |vn(τỹ∗,n)| < |vn(τa∗,n)|;

ŷn(τỹ∗,n)ŷn(τa∗,n) = 0.⇒ ∆tn = τa∗,n;

ŷn(τỹ∗,n)ŷn(τa∗,n) > 0. ⇒ ∆tn ∈ (τa∗,n, τ
∗
n), and it may be

found by choosing α0 = τa∗,n if |vn(τa∗,n)| > |vn(τ∗n)|, and

α0 = τ∗n if |vn(τa∗,n)| < |vn(τ∗n)|;
- τa∗,n ≤ τỹ∗,n. ⇒ ∆tn ∈ (τỹ∗,n, τ

∗
n), and it may be found by

choosing α0 = τỹ∗,n if |vn(τỹ∗,n)| > |vn(τ∗n)|, or α0 = τ∗n if

|vn(τỹ∗,n)| < |vn(τ∗n)|;
- ŷn(τỹ∗,n)ŷ∗n = 0.

- ŷ∗n = 0.⇒ ∆tn = τ∗n;
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- ŷ∗n 6= 0.⇒ ∆tn = τỹ∗,n;

- ŷn(τỹ∗,n)ŷ∗n > 0. The root ∆tn may be found in a neighborhood

of τl,n, exactly the same way followed in case of cn > 0 and

τ∗n ≤ 0 (Fig. 5.9 (e));

2. ŷ0,nŷ
∗
n = 0.

- ŷ0,n = 0.⇒ ∆tn = 0 (Fig. 5.9 (f));

- ŷ0,n 6= 0.⇒ ∆tn = τ∗n;

- τ∗n is an extremum of ŷn ⇒ at τ∗n there is a branch jump of

the system configuration (Fig. 5.9 (g));

- ŷn is monotonic in a neighborhood of τ∗n ⇒ ∆tn = τ∗n

(Fig. 5.9 (h));

3. ŷ0,nŷ
∗
n > 0.⇒ There are no roots before τ∗n;

- ŷ0,nŷv+1,n < 0. ⇒ ∆tn ∈ (τ∗n, τv+1,n) → α0 = τaq̄,n, where q̄

is from the case cn > 0 below (Fig. 5.9 (i));

- ŷ0,nŷv+1,n = 0.⇒ ∆tn = τv+1,n;

- ŷ0,nŷv+1,n > 0. ⇒ If τv+1,n 6= τ∗n, at τv+1,n there is a branch

jump (Fig. 5.9 (j)), otherwise τ∗n is a stationary point of in-

flexion;

2. cn = 0.⇒ As shown in § C, when the damping coefficient vanishes, each

root of ỹn(τ) is also a root of an(τ). This is due to a phase shift ∆φ = π,

and implies that Lemma B.1 applies within the interval [τỹq,n, τỹq+1,n],

whose boundaries are the roots of ỹn closest to τl,n, as shown below for

the case cn > 0;

1. |A3/B| > 1.⇒ vn(τ) 6= 0 ∀τ ∈ R;

1. y0,nA3 < 0. ⇒ ∆tn may be found by choosing α0 = τỹq,n if

|vỹq ,n| > |vỹq+1,n|, and α0 = τỹq+1,n otherwise (Lemma B.1,

Fig. 5.10 (a));

2. y0,nA3 = 0.⇒ y0,n = 0 ⇒ ∆tn = 0 (Fig. 5.10 (b));

3. y0,nA3 > 0.⇒ ỹn does not have any positive root (Fig. 5.10 (c));

2. |A3/B| = 1.⇒ Each stationary point of ŷn is also an inflexion point;

1. y0,nA3 < 0. ⇒ ∆tn may be found by choosing α0 = τỹq,n if

|vỹq ,n| > |vỹq+1,n|, and α0 = τỹq+1,n otherwise (Lemma B.1,

Fig. 5.10 (d));

2. y0,nA3 = 0.⇒ y0,n = 0 ⇒ ∆tn = 0 (Fig. 5.10 (e));
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3. y0,nA3 > 0.⇒ ỹn does not have any positive root (Fig. 5.10 (f));

3. |A3/B| < 1.

1. y0,nyv+1,n < 0. ⇒ ∆tn may be found by choosing α0 = τaq̄,n,

where q̄ is from the case cn > 0 and τ∗n > 0 below (Fig. 5.10 (g));

2. y0,nyv+1,n = 0.

- y0,n = 0.

- τ0,n is an extremum of ŷn ⇒ at τ0,n there is a branch jump

of the system configuration (Fig. 5.10 (h));

- ŷn is monotonic in a neighborhood of τ0,n ⇒ since v0,n 6= 0,

it is ∆tn = 0 (Fig. 5.10 (i));

- y0,n 6= 0. ⇒ At δtn = τv+1,n there is a branch jump of the

system configuration (Fig. 5.10 (j));

3. y0,nyv+1,n > 0. At δtn = τv+1,n there is a branch jump of the

system configuration (Fig. 5.10 (k));

3. cn > 0.

1. τ∗n ≤ 0. ⇒ A3 6= 0, vn(τ) 6= 0 ∀τ > 0, and the root ∆tn, whether it

exists, is close to τl,n = −
Â4

A3
.

1. ŷ0,nA3 < 0. ⇒ There exists ∆tn close to τl,n. In order to find

such root, it is useful to know the largest value of τỹq,n ≤ τl,n,

which represents the root of the periodic part of ŷn less than

or equal to τl,n (Fig. 5.11 (a)), and the largest acceleration root

τaq ,n ≤ τl,n;

- A1 6= 0, A2 = 0.

q =





ωd,n

π
τl,n −

1

2






- A1 = 0, A2 6= 0.

q =





ωd,n

π
τl,n






- A1A2 6= 0.

q =





ωd,n

π
τl,n +

1

π
arctan




A1

A2









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τỹq,n =







π

ωd,n



q +
1

2



 , A1 6= 0, A2 = 0

qπ

ωd,n
, A1 = 0, A2 6= 0

1

ωd,n



arctan



−
A1

A2



+ qπ



 , A1A2 6= 0

τaq ,n =







π

ωd,n



q +
1

2



 , C1 6= 0, C2 = 0

qπ

ωd,n
, C1 = 0, C2 6= 0

1

ωd,n



arctan



−
C1

C2



+ qπ



 , C1C2 6= 0

Also the first positive root of ỹn is needed,

τỹ+1,n =







π

2ωd,n
, A1 6= 0, A2 = 0

π

ωd,n
, A1 = 0, A2 6= 0

1

ωd,n
arctan



−
A1

A2



 , A1A2 < 0

1

ωd,n



arctan



−
A1

A2



+ π



 , A1A2 > 0

- ŷ0,nŷỹ+1,n < 0.

- τa+1,n < τỹ+1,n.

ŷ0,nŷa+1,n < 0.⇒ ∆tn ∈ (0, τa+1,n), and it may be found by

choosing α0 = 0 if |v0,n| > |vn(τa+1,n)|, or α0 = τa+1,n if

|v0,n| < |vn(τa+1,n)|;

ŷ0,nŷa+1,n = 0.⇒ ∆tn = τa+1,n;

ŷ0,nŷa+1,n > 0. ⇒ ∆tn ∈ (τa+1,n, τỹ+1,n), and it may be

found by choosing α0 = τa+1,n if |vn(τa+1,n)| > |vn(τỹ+1,n)|,
and α0 = τỹ+1,n if |vn(τa+1,n)| < |vn(τỹ+1,n)|;
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- τa+1,n ≥ τỹ+1,n. ⇒ ∆tn ∈ (0, τỹ+1,n), and it may be found

by choosing α0 = 0 if |v0,n| > |vn(τỹ+1,n)|, or α0 = τỹ+1,n if

|v0,n| < |vn(τỹ+1,n)|;
- ŷ0,nŷỹ+1,n = 0.⇒ ∆tn = ŷỹ+1,n;

- ŷ0,nŷỹ+1,n > 0.

- ŷ(τl,n) = 0.⇒ ∆tn = τl,n;

- ŷ(τl,n) 6= 0, ∆τn < 0.⇒ τaq+1,n = τỹq+1,n + ∆τn;

- ŷỹq,nŷaq+1,n < 0. ⇒ ∆tn may be found by choosing α0 =

τỹq,n if |vỹq ,n| > |vaq+1,n|, or α0 = τaq+1,n otherwise

(Lemma B.1);

- ŷỹq,nŷaq+1,n = 0.⇒ ∆tn = τaq+1,n;

- ŷỹq,nŷaq+1,n > 0. ⇒ ∆tn ∈ (τaq+1,n, τỹq+1,n), and it may be

found by choosing α0 = τỹq+1,n if |vỹq+1,n| > |vaq+1,n|, or

α0 = τaq+1,n otherwise (Lemma B.1);

- ŷ(τl,n) 6= 0, ∆τn = 0. ⇒ τaq ,n = τỹq,n, and ∆tn may be

found by choosing α0 = τỹq,n if |vỹq,n| > |vỹq+1,n|, or α0 =

τỹq+1,n otherwise (Lemma B.1);

- ŷ(τl,n) 6= 0, ∆τn > 0.⇒ τaq ,n = τỹq,n +∆τn (Fig. 5.11 (d));

ŷỹq,nŷaq,n < 0.⇒ ∆tn may be found by choosing α0 = τỹq,n

if |vỹq ,n| > |vaq ,n|, or α0 = τaq,n otherwise (Lemma B.1);

ŷỹq,nŷaq,n = 0.⇒ ∆tn = τaq,n;

ŷỹq,nŷaq,n > 0.⇒ ∆tn ∈ (τaq ,n, τỹq+1,n), and it may be found

by choosing α0 = τỹq+1,n if |vỹq+1,n| > |vaq ,n|, or α0 = τaq ,n

otherwise (Lemma B.1);

2. ŷ0,nA3 = 0.⇒ ŷ0,n = 0 and ∆tn = 0, which means the length of

the nth segment of the R− y diagram is zero (Fig. 5.11 (b));

3. ŷ0,nA3 > 0.⇒ ŷn does not have any positive root (Fig. 5.11 (c));

2. τ∗n > 0.

1. ∃τv+1,n ∈ (0, τ∗n]. ⇒ From the velocity analysis above, the first

positive root τv+1,n of the velocity function is known. In order to

find the roots of ŷn, the roots of the acceleration closest to τv+1,n

are needed. This means to solve the equation τaq ,n = τv+1,n,

which implicitly defines q, and then to get q̄ = ⌊q⌋. In details,
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- C1 6= 0, C2 = 0.

q̄ =





ωd,n

π
τv+1,n −

1

2






- C1 = 0, C2 6= 0.

q̄ =





ωd,n

π
τv+1,n






- C1 6= 0, C2 6= 0.

q̄ =





ωd,n

π
τv+1,n +

1

π
arctan




C1

C2










- q = q̄.⇒ A3 6= 0 and τv+1,n is a stationary point of inflexion.

- ŷ0,nŷv+1,n < 0.⇒ ∆tn ∈ (0, τv+1,n) → α0 = τaq̄−1,n

(Lemma B.1, Fig. 5.11 (e));

- ŷ0,nŷv+1,n = 0.

ŷ0,n = 0.⇒ ∆tn = 0 (Fig. 5.11 (f));

ŷ0,n 6= 0.⇒ ∆tn = τv+1,n (Fig. 5.11 (g));

- ŷ0,nŷv+1,n > 0. The smallest root τỹv,n of ỹn such that τỹv,n >

τv+1,n is needed;

y0,nA3 < 0 & yv+1,nyn(τỹv,n) < 0. ⇒ ∆tn may be found by

choosing α0 = τỹv,n;

y0,nA3 < 0 & yv+1,nyn(τỹv,n) = 0.⇒ ∆tn = τỹv,n;

y0,nA3 < 0 & yv+1,nyn(τỹv,n) > 0.⇒ ∆tn is close to τl,n, and

the analysis developed for the case τ∗n ≤ 0 in a neighborhood

of τl,n still applies (Fig. 5.11 (h));

y0,nA3 = 0.⇒ ∆tn = 0;

y0,nA3 > 0.⇒ ŷn does not have any positive root

(Fig. 5.11 (i));

- q 6= q̄.

- ŷ0,nŷv+1,n < 0.⇒ ∆tn ∈ (τ0,n, τv+1,n) → α0 = τaq̄ ,n

(Lemma B.1, Fig. 5.12 (a));

- ŷ0,nŷv+1,n = 0.
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ŷ0,n = 0. ⇒ Either v0,n 6= 0 and ∆tn = 0, or v0,n = 0 and

there is a branch jump at τ0,n (Fig. 5.12 (b)–5.12 (c));

ŷ0,n 6= 0. ⇒ There is a branch jump of the system configu-

ration at δtn = τv+1,n (Fig. 5.12 (d));

- ŷ0,nŷv+1,n > 0.⇒ There is a branch jump at τv+1,n

(Fig. 5.12 (e));

2. ∄τv+1,n ∈ (0, τ∗n].⇒ vn does not have any positive root, and the

analysis developed for the case τ∗n ≤ 0 still applies.

ŷn

τ

∆tn

τl,n

5.11 (a).

ŷn

τ

∆tn = 0

5.11 (b).

ŷn

τ

5.11 (c).

ŷn

τ

∆tn

τỹq+1,n

τỹq,n

τaq ,n

τaq+1,n

∆τn

∆τn

τl,n

5.11 (d).

ŷn

τ

∆tn

τv+1,n = τaq ,n

5.11 (e).

ŷn

τ

∆tn = 0
τv+1,n = τaq,n

5.11 (f).

ŷn

τ

∆tn = τv+1,n = τaq ,n

5.11 (g).

ŷn

τ

∆tn
τv+1,n = τaq,n

5.11 (h).

ŷn

τ
τv+1,n = τaq,n

5.11 (i).

Fig. 5.11. Sinusoidal displacement function roots of a linear oscillator with positive damping

coefficient.
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ŷn

τ

∆tn
τv+1,n

5.12 (a).

ŷn

τ

∆tn = 0
τv+1,n

5.12 (b).

ŷn

τ

∆tn = 0
τv+1,n

5.12 (c).

ŷn

τ

τv+1,n = ∆tn = 0

5.12 (d).

ŷn

τ
τv+1,n

5.12 (e).

Fig. 5.12. Sinusoidal displacement function roots of a linear oscillator with positive damping

coefficient.

5.4.5 Critically damped system with nonzero stiffness

From the Eqs. 5.51, 5.52, and 5.53 we get

yn(τ) = (C0 + C1τ)e−ζnωnτ + C2τ + C3 (5.127)

C0 =
F0,n

kn
+ 2ζn

F1,n

ωnkn

C1 =
F0,n

kn
ζnωn +

F1,n

kn
(2ζ2

n − 1) + ẏ0,n

C2 =
F1,n

kn

C3 = y0,n −
F0,n

kn
− 2ζn

F1,n

ωnkn

vn(τ) = [−ζnωnC0 + (1 − ζnωnτ)C1]e
−ζnωnτ + C2 (5.128)

an(τ) = [−ζnωnC1 + (ζnωn)2C0 + (ζnωn)2C1τ − ζnωnC1]e
−ζnωnτ =

= [(ζnωn)2C0 − 2ζnωnC1 + (ζnωn)2C1τ]e−ζnωnτ (5.129)
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jn(τ) = [(ζnωn)2C1 − (ζnωn)3C0 + 2(ζnωn)2C1 − (ζnωn)3C1τ]e−ζnωnτ =

= [3(ζnωn)2C1 − (ζnωn)3C0 − (ζnωn)3C1τ]e−ζnωnτ (5.130)

Also, from the Eqs. (5.57) and (5.127), we get

ŷn(τ) = yn(τ) −



y0,n +
∆Rn

kn



 = (C0 + C1τ)e−ζnωnτ + C2τ + Ĉ3 (5.131)

Ĉ3 = C3 −



y0,n +
∆Rn

kn



 (5.132)

It is worth noting the behavior of ŷn and vn when τ → ±∞,

lim
τ→+∞

ŷn(τ)
cn<0
=







+ Ĉ3, C0 = C1 = C2 = 0

+ sgn(C2) · ∞, C0 = C1 = 0, C2 6= 0

+ sgn(C0) · ∞, C0 6= 0, C1 = 0

+ sgn(C1) · ∞, C1 6= 0

(5.133)

lim
τ→−∞

ŷn(τ)
cn<0
=







+ Ĉ3, C2 = 0

− sgn(C2) · ∞, C2 6= 0
(5.134)

lim
τ→+∞

ŷn(τ)
cn>0
=







+ Ĉ3, C2 = 0

+ sgn(C2) · ∞, C2 6= 0
(5.135)

lim
τ→−∞

ŷn(τ)
cn>0
=







+ Ĉ3, C0 = C1 = C2 = 0

− sgn(C2) · ∞, C0 = C1 = 0, C2 6= 0

+ sgn(C0) · ∞, C0 6= 0, C1 = 0

− sgn(C1) · ∞, C1 6= 0

(5.136)

lim
τ→+∞

vn(τ)
cn<0
=







+ C2, C0 = C1 = 0

+ sgn(C0) · ∞, C0 6= 0, C1 = 0

+ sgn(C1) · ∞, C1 6= 0

(5.137)

lim
τ→−∞

vn(τ)
cn<0
= C2 (5.138)

lim
τ→+∞

vn(τ)
cn>0
= C2 (5.139)
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lim
τ→−∞

vn(τ)
cn>0
=







+ C2, C0 = C1 = 0

− sgn(C0) · ∞, C0 6= 0, C1 = 0

+ sgn(C1) · ∞, C1 6= 0

(5.140)

The roots of the jerk function depend on the constants C0 and C1,

- C0 = C1 = 0.⇒ j(τj,n) = 0, ∀τj,n ∈ R;

- C0 6= 0, C1 = 0.⇒ j(τj,n) 6= 0, ∀τj,n ∈ R;

- C1 6= 0.

j(τj,n) = 0 ⇔ [3(ζnωn)2C1 − (ζnωn)3C0 − (ζnωn)3C1τj,n] = 0

3C1 − ζnωnC0 − ζnωnC1τj,n = 0 ⇒ τj,n =
3

ζnωn
−
C0

C1

The roots of the acceleration function depend on the constants C0 and C1 as

well,

- C0 = C1 = 0.⇒ a(τa,n) = 0, ∀τa,n ∈ R;

- C0 6= 0, C1 = 0.⇒ a(τa,n) 6= 0, ∀τa,n ∈ R;

- C1 6= 0.

a(τa,n) = 0 ⇔ [(ζnωn)2C0 − 2ζnωnC1 + (ζnωn)2C1τa,n] = 0

ζnωnC0 − 2C1 + ζnωnC1τa,n = 0 ⇒ τa,n =
2

ζnωn
−
C0

C1

By recalling the Eqs. (5.128) and (5.137)–(5.140), the roots of vn depend on the

constants C0,1,2 as it follow,

1. C2 = 0. ⇒ vn(τv,n) = 0 ⇔ −ζnωnC0 + (1 − ζnωnτv,n)C1 = 0 ⇔ τv,nC1 =

C1

ζnωn
− C0;

1. C0 = C1 = 0.⇒ vn(τ) = 0, ∀τ ∈ R;

2. C0 6= 0, C1 = 0.⇒ vn(τ) 6= 0, ∀τ ∈ R;
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3. C1 6= 0.⇒ τv,n =
1

ζnωn
−
C0

C1
;

2. C2 6= 0.

1. C0 = C1 = 0.⇒ vn(τ) = C2, ∀τ ∈ R;

2. C0 6= 0, C1 = 0.⇒ v(τ) = −ζnωnC0e
−ζnωnτ + C2, and

vn(τv,n) = 0 ⇔ e−ζnωnτv,n =
1

ζnωn

C2

C0

1. cnC0C2 < 0.⇒ vn(τ) 6= 0 ∀τ ∈ R;

2. cnC0C2 > 0.⇒ τv,n = −
1

ζnωn
ln




1

ζnωn

C0

C2



;

3. C1 6= 0.

τa,n =
2

ζnωn
−
C0

C1
, τj,n =

3

ζnωn
−
C0

C1

va,n = vn(τa,n) =



−ζnωnC0 + C1



1 − ζnωn




2

ζnωn
−
C0

C1











 ·

· exp



−ζnωn




2

ζnωn
−
C0

C1







+ C2

va,n =



−ζnωnC0 + C1



1 − 2 + ζnωn

C0

C1







 exp



−2 + ζnωn

C0

C1



+ C2

= C2 − C1 exp



ζnωn

C0

C1
− 2





C1 · va,n = C1C2 − C2
1 exp



ζnωn

C0

C1
− 2





1. cn < 0.⇒ τa,n > τj,n, limτ→+∞ vn(τ) = sgn(C1) · ∞,

limτ→−∞ vn(τ) = C2;

1. C1C2 < 0. ⇒ vn has one root τv,n (Fig. 5.3 (j)), which may be

found by choosing α0 > τa (Lemma B.1);

2. C1C2 > 0.
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- C1va,n < 0. ⇒ vn has two real roots (Fig. 5.3 (g)). τv1,n may

be found by α0 = τj,n, and τv2,n may be found by α0 > τa,n

(Lemma B.1);

- C1va,n = 0.⇒ vn has one root τv,n = τa,n (Fig. 5.3 (h));

- C1va,n > 0.⇒ vn does not have any real root (Fig. 5.3 (i));

2. cn > 0. ⇒ τa,n < τj,n, limτ→+∞ vn(τ) = C2, limτ→−∞ vn(τ) =

sgn(C1) · ∞;

1. C1C2 < 0. ⇒ vn has one root τv,n (Fig. 5.3 (j)), which may be

found by choosing α0 < τa (Lemma B.1);

2. C1C2 > 0.⇒
- C1va,n < 0. ⇒ vn has two real roots (Fig. 5.4 (g)). τv1,n may

be found by α0 < τa,n, and τv2,n may be found by α0 = τj,n

(Lemma B.1);

- C1va,n = 0.⇒ vn has one root τv,n = τa,n (Fig. 5.4 (h));

- C1va,n > 0.⇒ vn does not have any real root (Fig. 5.4 (i)).

From the Eqs. 5.57 and 5.141, we get

ŷn(∆tn) = (C0 + C1∆tn)e−ζnωn∆tn + C2∆tn + Ĉ3 = 0, (5.141)

and the solutions of this equation depend on the constants C0, C1, C2, Ĉ3,

1. C2 = 0.

1. C0 = C1 = 0.

1. Ĉ3 = 0.⇒ ŷ(τ) = 0, ∀τ ∈ R;

2. Ĉ3 6= 0.⇒ ŷ(τ) 6= 0, ∀τ ∈ R;

2. C0 6= 0, C1 = 0.⇒ ŷ(∆tn) = C0e
−ζnωn∆tn + Ĉ3 = 0;

1. C0Ĉ3 < 0.⇒ ∆tn = −
1

ζnωn
ln



−
Ĉ3

C0



;

2. C0Ĉ3 ≥ 0.⇒ y(τ) 6= 0 ∀τ ∈ R;

3. C1 6= 0.⇒ τv,n =
1

ζnωn
−
C0

C1
, τa,n =

2

ζnωn
−
C0

C1
;
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ŷn(τv,n) =



C0 +C1




1

ζnωn
−
C0

C1







 exp



−ζnωn




1

ζnωn
−
C0

C1







+

+ C2




1

ζnωn
−
C0

C1



+ Ĉ3

ŷv,n = ŷn(τv,n) =
C1

ζnωn
exp



ζnωn

C0

C1
− 1



+ C2




1

ζnωn
−
C0

C1



+ Ĉ3

=
C1

ζnωn
exp



ζnωn

C0

C1
− 1



+ Ĉ3

C1ŷv,n =
C2

1

ζnωn
exp



ζnωn

C0

C1
− 1



+ C1Ĉ3

1. cn < 0.⇒ τv,n > τa,n, limτ→+∞ ŷn = sgn(C1) ·∞, limτ→−∞ ŷn = Ĉ3;

1. C1Ĉ3 ≤ 0.⇒ ŷn has one real root ∆tn (Fig. 5.4 (m)), which may

be found by choosing α0 > τv,n (Lemma B.1);

2. C1Ĉ3 > 0.

- C1ŷv,n < 0.⇒ ŷn has two real roots, ∆t1,n and ∆t2,n (as shown

in Fig. 5.4 (j)). The former may be found by choosing α0 =

τa,n, while the latter comes from α0 > τv,n (Lemma B.1);

- C1ŷv,n = 0.⇒ ŷn has one real root, ∆tn = τv,n (Fig. 5.4 (k));

- C1ŷv,n > 0.⇒ ŷn does not have any real root (Fig. 5.4 (l));

2. cn > 0. ⇒ τv,n < τa,n, limτ→+∞ ŷn = Ĉ3, limτ→−∞ ŷn = −sgn(C1) ·
∞;

1. C1Ĉ3 < 0.

- C1ŷv,n < 0.⇒ ŷn does not have any real root (Fig. 5.4 (l));

- C1ŷv,n = 0.⇒ ∆tn = τv,n (Fig. 5.4 (k));

- C1ŷv,n > 0.⇒ ŷn has two real roots, ∆t1,n and ∆t2,n (as shown

in Fig. 5.4 (j)). The former may be found by choosing α0 <

τv,n, while the latter comes from α0 = τa,n (Lemma B.1);

2. C1Ĉ3 ≥ 0.⇒ C1ŷv,n > 0 ⇒ ŷ has one real root ∆tn (as shown

in Fig. 5.4 (m)), which may be found by choosing α0 < τv,n

(Lemma B.1);
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2. C2 6= 0.

1. C0 = C1 = 0.⇒ ∆tn = −Ĉ3/C2;

2. C0 6= 0, C1 = 0. ⇒ an(τ), jn(τ) 6= 0 ∀τ ∈ R, thus vn is strictly monotone

everywhere. Also,

lim
τ→+∞

ŷ =







+ sgn(C0) · ∞, cn < 0

+ sgn(C2) · ∞, cn > 0
(5.142a)

lim
τ→−∞

ŷ =







− sgn(C2) · ∞, cn < 0

+ sgn(C0) · ∞, cn > 0
(5.142b)

1. cnC0C2 < 0. ⇒ vn does not have any real root, thus ŷn is strictly

monotone (Fig. 5.4 (d)). Also, since ŷn is continuous and recalling

the Eq. 5.142, we may state that ŷn has a unique root ∆tn, which

may be found for any initial guess α0 ∈ R (Lemma B.2);

2. cnC0C2 > 0.⇒ an(τ) 6= 0 ∀τ ∈ R and vn(τ) has one root τv,n;

1. ŷv,nC0 < 0. ⇒ ŷn has two roots (Fig. 5.4 (a)), ∆t1,n from α0 <

τv,n and ∆t2,n from α0 > τv,n (Lemma B.4);

2. ŷv,nC0 = 0.⇒ ŷn has one root ∆tn = τv,n (Fig. 5.4 (b));

3. ŷv,nC0 > 0.⇒ ŷn does not have any real root (Fig. 5.4 (c));

3. C1 6= 0.

τa,n =
2

ζnωn
−
C0

C1
, τj,n =

3

ζnωn
−
C0

C1

lim
τ→+∞

ŷ =







+ sgn(C1) · ∞, cn < 0

+ sgn(C2) · ∞, cn > 0

lim
τ→−∞

ŷ =







− sgn(C2) · ∞, cn < 0

− sgn(C1) · ∞, cn > 0

1. cn < 0.⇒ τa,n > τj,n;

1. C1C2 < 0.⇒ vn has one root τv,n > τa,n > τj,n;

- ŷv,nC1 < 0. ⇒ ŷv,n has two roots (Fig. 5.4 (g)), ∆t1,n from

α0 = τa,n and ∆t2,n from α0 > τv,n (Lemma B.1);

- ŷv,nC1 = 0.⇒ ŷv,n has one root ∆tn = τv,n (Fig. 5.4 (h));

- ŷv,nC1 > 0.⇒ ŷv,n does not have any real root (Fig. 5.4 (i));
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2. C1C2 > 0.

- C1va,n < 0. ⇒ τv1,n and τv2,n are the roots of vn. Let ŷv1,n =

ŷ(τv1,n) and ŷv2,n = ŷ(τv2,n);

- ŷv1,nŷv2,n < 0. ⇒ ŷn has three roots (Fig. 5.5 (a)), ∆t1,n

from α0 < τv1,n, ∆t2,n from α0 = τa,n, and ∆t3,n from

α0 > τv2,n (Lemma B.1);

- ŷv1,nŷv2,n = 0.⇒ ŷn has two roots (Fig. 5.5 (b));

ŷv1,n = 0.⇒ ∆t1,n = τv1,n and ∆t2,n is from α0 > τv2,n;

ŷv1,n 6= 0.⇒ ∆t1,n is from α0 < τv1,n and ∆t2,n = τv2,n;

- ŷv1,nŷv2,n > 0. ⇒ ŷn has one root ∆tn (Fig. 5.5 (c)), which

may be found by an appropriate choice of α0;

ŷv1,nC1 < 0.⇒ α0 > τv2,n;

ŷv1,nC1 > 0.⇒ α0 < τv1,n;

- C1va,n = 0. ⇒ τv,n = τa,n 6= τj,n is an inflexion point of ŷn

(Fig. 5.5 (d));

- ya,nC1 < 0.⇒ ∆tn is from α0 > τa,n (Lemma B.1);

- ya,nC1 = 0.⇒ ∆tn = τa,n (Lemma B.1);

- ya,nC1 > 0.⇒ ∆tn is from α0 < τa,n (Lemma B.1);

- C1va,n > 0.⇒ vn does not have any real root. Also, ŷn has one

real root ∆tn (Fig. 5.5 (e)), which may be found by choosing

α0 = τa,n (Lemma B.3);

2. cn > 0.⇒ τa,n < τj,n;

1. C1C2 < 0.⇒ vn has a unique root τv,n < τa,n;

- ŷv,nC1 < 0.⇒ ŷn has no real roots (Fig. 5.4 (i));

- ŷv,nC1 = 0.⇒ ∆tn = τv,n (Fig. 5.4 (h));

- ŷv,nC1 > 0.⇒ ŷn has two roots (Fig. 5.4 (g)), ∆t1,n from α0 <

τv,n and ∆t2,n from α0 = τa,n (Lemma B.1);

2. C1C2 > 0.

- C1va,n < 0. ⇒ vn has two roots, τv1,n and τv1,n. Let ỹv1,n =

ỹn(τv1,n) and ỹv2,n = ỹn(τv2,n);

- ŷv1,nŷv2,n < 0.⇒ ŷn has three roots, ∆t1,n from α0 < τv1,n,

∆t2,n from α0 = τa,n, and ∆t3,n from α0 > τv2,n (Fig. 5.5 (a),

Lemma B.1);

150



- ŷv1,nŷv2,n = 0.⇒ ŷn has two roots (Fig. 5.5 (b));

ŷv1,n = 0. ⇒ the roots are ∆t1,n = τv1,n and ∆t2,n from

α0 > τv2,n (Lemma B.1);

ŷv1,n 6= 0.⇒ the roots are ∆t1,n from α0 < τv1,n and ∆t2,n =

τv2,n (Lemma B.1);

- ŷv1,nŷv2,n > 0.⇒ ŷn has one root (Fig. 5.5 (c));

ŷv1,nC1 < 0.⇒ ∆tn is from α0 < τv1,n (Lemma B.1);

ŷv1,nC1 > 0.⇒ ∆tn is from α0 > τv2,n (Lemma B.1);

- C1va,n = 0.⇒ vn has one root τv,n = τa,n (stationary point of

inflexion, Fig. 5.5 (d));

- ŷa,nC1 < 0.⇒ ∆tn is from α0 < τa,n (Lemma B.1);

- ŷa,nC1 = 0.⇒ ∆tn = τa,n;

- ŷa,nC1 > 0.⇒ ∆tn is from α0 > τa,n (Lemma B.1);

- C1va,n > 0. ⇒ vn does not have roots, and ŷn has one root

from α0 = τa,n (Fig. 5.5 (e), Lemma B.3).

In order to get the actual time δtn when the spring stiffness does change, in

case of multiple solutions τvq,n and ∆tq,n, q = 1, 2, . . . , the minimum positive one,

whether it exist, is needed.

5.5 Hysteresis cycle branch finding

Once a break point location in the time domain is known, in order to update

the stiffness value the only information still needed is what path of the R − y

diagram is followed by the spring–mass system right after that break point. As

shown in Fig. 5.1, the R − y diagram is made of two branches. One represents

the spring configuration while y(t) is monotonically increasing, and the other one

applies when y(t) is monotonically decreasing. When the velocity sign changes, the

system configuration jumps instantaneously from one branch to another. In order to

decide when this happens, it is necessary to analyze the displacement function and

its derivatives when the velocity drops to zero. Let us suppose that yn(0) = y0,n,

ẏn(0) = ẏ0,n, Rn(0) = R0,n, and Dn(0) = D0,n is a set of initial conditions at τ = 0.
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Then, from the Eqs. (5.6) and (5.7a), for any τx ∈ [0, t0,n+1 − t0,n] we have

ÿn(τ) =
1

m
(F0,n −R0,n −D0,n + kny0,n + cnẏ0,n − knyn(τ) − cnẏn(τ) + F1,nτ)

ÿn(τx) =
1

m
(F0,n − (R0,n + kn(yn(τx) − y0,n)))−

− (D0,n + cn(ẏn(τx) − ẏ0,n)) + F1,nτx)

ÿn(τx) =
1

m
(F0,n −Rn(τx) −Dn(τx) + F1,nτx) (5.143a)

y(3)
n (τ) =

1

m
(F1,n − knẏn(τ) − cnÿn(τ))

y(3)
n (τx) =

1

m
(F1,n − knẏn(τx) − cnÿn(τx)) (5.143b)

y(4)
n (τ) = −

1

m

(

knÿn(τ) + cny
(3)
n (τ)

)

y(4)
n (τx) = −

1

m

(

knÿτ0,n + cny
(3)
τ0,n

)

(5.143c)

...

y(q)
n (τ) = −

1

m

(

kny
(q−2)
n (τ) + cny

(q−1)
n (τ)

)

, q ≥ 4

y(q)
n (τx) = −

1

m

(

kny
(q−2)
τ0,n + cny

(q−1)
τ0,n

)

, q ≥ 4 (5.143d)

where y
(q)
n (τ) is the qth derivative of the displacement function. Now let us expand

yn(τ) in a Taylor series, in a neighborhood of τ = τx:

yn(τ) = yτx,n + ẏτx,n(τ − τx) +
1

2
ÿτx,n(τ − τx)

2 +
1

6
y

(3)
τx,n(τ − τx)3 + . . . (5.144)

yτx,n = yn(τx), ẏτx,n = ẏn(τx), ÿτx,n = ÿn(τx), y
(3)
τx,n = y(3)

n (τx)

For any τ close enough to τx, the function behavior is established by the firs non

zero derivative y
(q)
τx,n into the Eq. (5.144), ∀q ≥ 1. Also, the Eq. (5.143d) shows that,

whether ẏτx,n = ÿτx,n = y
(3)
τx,n = 0, then y

(q)
τx,n = 0 ∀q ≥ 4. This implies that only the

first three derivatives of yn(τ) need to be surveyed. If, for any τx ∈ R, we define a
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function Y(τx) as

Y(τx) =







sgn(ẏτx,n), if ẏτx,n 6= 0

2 · sgn(ÿτx,n), if ẏτx,n = 0, ÿτx,n 6= 0

3 · sgn(y
(3)
τx,n), if ẏτx,n = ÿτx,n = 0, y

(3)
τx,n 6= 0

0, if ẏτx,n = ÿτx,n = y
(3)
τx,n = 0

(5.145)

we may state that, when Y(τx) = 1, yn(τ) is monotonically increasing in a neigh-

borhood of such point (Fig. 5.1, branch (a)), while if Y(τx) = −1, yn(τ) is monoton-

ically decreasing in a neighborhood of τx (Fig. 5.1, branch (b)). When Y(τx) = ±2,

yn(τ) has a local minimum or maximum at τ = τx, which implies a jump of the

system configuration from one branch of the R− y diagram to the other one; when

Y(τx) = 3, yn(τ) has a stationary point of inflexion at τ = τx, and it is monotonically

increasing in a neighborhood of such point (branch (a)), while if Y(τx) = −3, yn(τ)

is monotonically decreasing in a neighborhood of τx (branch (b)). Finally, when

Y(τx) = 0, yn(τ) = yn(τx) = constant. In the last case, at τ = τx the system is in a

condition of a static equilibrium, which holds until the external excitation changes.

Indeed, from the Eqs. (5.143a), (5.143b), and (5.145) we get F0,n = Rn(τx)+Dn(τx)

and F1,n = 0, which means the external force Fn(τ) = F0,n + F1,nτ is constant in

time and balanced by the internal force Rn(τx)+Dn(τx). Thus, since ẏ(τx) = 0, the

system is motionless and, unless the external force changes, the dynamic analysis is

ended.

Now let us suppose that during an infinitesimal interval [τx, τx + dτ] the spring

stiffness goes to ±∞. This means the oscillator velocity drops to zero instanta-

neously. The spring force jumps to the value Rn(τx + dτ) = min{F0,n, R0,n+1} if

kn → +∞, and to the value Rn(τx + dτ) = max{F0,n, R0,n+1} if kn → −∞. Then,

recalling the Eqs. (5.143a)–(5.143a), we get

yn(τx + dτ) = y(τx), ẏn(τx + dτ) = 0 (5.146)

ÿn(τx + dτ) =
1

m
(F0,n −Rn(τx + dτ) −Dn(τx + dτ) + F1,nτx)

y(3)
n (τx + dτ) =

1

m
(F1,n − cnÿn(τx + dτ))

Rn(τx + dτ) =







min{F0,n, R0,n+1}, if kn → +∞

max{F0,n, R0,n+1}, if kn → −∞
(5.147)
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The value of Y(τx) may be found from the Eqs. (5.146) and (5.147). As discussed

above, the system configuration undergoes a branch jump if and only if Y(τx) = ±2.

5.6 Non linear modeling of reinforced concrete mem-

bers

In this section, a simple application of the non linear oscillator so far described

is shown. A reinforced concrete column under axial dynamic load from Eq. (4.1)

is considered. The dynamic behavior of such structural member depends upon the

constitutive laws of the concrete and reinforcing steel bars it is made of. Since

both materials have non linear and strain rate dependent stress–strain constitutive

laws, a displacement and velocity dependent spring needs to be introduced within

the equivalent structural model. This further complication may be easily got over

by knowing the roots of any function resulting from the sum of the oscillator ve-

locity function plus a constant, in analogy with what seen for the displacement

function. It may be noted that such issue does not require any further theoretical

work concerning the root seeking.

Concrete in compression may be modeled according to Scott et al. [25],

fc = Kf ′c




2εc

0.002K
−




2εc

0.002K





2

 , εc ≤ 0.002K

fc = Kf ′c[1 − Zm(εc − 0.002K)], fc ≥ 0.2Kf ′c, εc > 0.002K

K = 1.25



1 +
̺sfyh

f ′c





Zm =
1.25 · 0.5

3 + 0.29f ′c

145f ′c − 1000
+

3

4
̺s

√

h′′

Sh
− 0.002K

where

- εc is the longitudinal strain in concrete;

- fc is the longitudinal stress in concrete;

- f ′c is the concrete compressive cylinder strength;
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- fyh is the yield strength of hoop reinforcement;

- ̺s is the ratio of volume of hoop reinforcement to volume of concrete core

measured to outside the hoops;

- h′′ is the width of concrete core measured to outside of the peripheral hoop;

- Sh is the center–to–center spacing of hoop sets;

- the multiplying factor 1.25, applied to the peak stress, the strain at the peak

stress, and the slope of the falling branch, has the purpose to adapt the stress–

strain relation for high strain rates.

For concrete in tension, the stress–strain diagram proposed by Carreira and

Chu [71] for static loads may be adopted,

fts = f ′t

Υ
εt

ε′t

Υ − 1 +




εt

ε′t





Υ

in which

- fts is the stress corresponding to the strain εt in case of static load;

- f ′t is the tensile strength. Depending on the degree of cracking, it may be

assumed between 0.29 and 0.37
√
f ′c in MPa;

- ε′t is the strain corresponding to the maximum stress f ′t. For cracked concrete

sections, it may be taken as 1/10 of ε′c (for design purposes ε′c = 0.002 is

recommended);

- Υ may be assumed according to Carreira and Chu [72],

Υ =




f ′c

32.4





3

+ 1.55

In order to take into account the strain rate effects on concrete in tension, the

dynamic increase factor suggested by Malvar and Ross [31] is adopted,
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DIF =
ftd

fts
=




ε̇t

ε̇ts





δ

, ε̇t ≤ 1 s−1

DIF =
ftd

fts
= β




ε̇t

ε̇ts





1
3

, ε̇c > 1 s−1

where

- ftd and fts represent the dynamic and static tensile stress in concrete, respec-

tively;

- DIF is the dynamic increase factor;

- ε̇t and ε̇ts are the current strain rate (up to 104 s−1) and the static strain rate

(10−5 ∼ 10−6 s−1);

- β = e6δ−2, δ = 1/[1 + 8(f ′c/f
′
c0)];

- f ′c0 is a fraction of concrete strength in compression (10 Mpa).

The stress–strain relation of reinforcing steel bars is assumed to be elastic–

perfectly plastic,

fsd = DIF · Es · εs, 0 ≤ εs ≤ εy

fsd = DIF · Es · εy, εs > εy

where fsd is the dynamic stress in steel bars, εs is the corresponding strain, Es is the

modulus of elasticity of steel, εy is the yield strain of steel, and DIF is the dynamic

increase factor given by Malvar [41],

DIF =




ε̇s

10−4





0.074−0.04(fy/414)

fy being the static yield stress and ε̇s the strain rate in steel.

By integrating the stress σ over the gross cross–section area and the strain ε

over the span length L of the column, the axial force N and the axial displacement

y of one end of the member may be derived. For a clamped column under a uniform

pressure p acting in axial direction on the free end of such element, we get
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i = I/I0

p
=
F

m
a
x
/
F

0

strain rate dependent
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Fig. 5.13. Pressure–impulse diagrams for a reinforced concrete column under exponentially decaying

axial load (λ = 1, γ = 3). The dashed curve is calculated without takeing into account strain rate

effects on material constitutive laws; the solid curve is strain rate dependent.

N =

∫

A
σ(ε) dA = p · A, y =

∫ L

0
ε dx = L · ε,

where A is the gross cross–section area of the column. This way, it is straightfor-

ward to get a force–displacement relationship for any stress–strain constitutive law

reported above. In case of a column made of concrete with f ′c = 30.48 MPa and

grade 60 reinforcing steel bars (yield and ultimate strength equal to 475 MPa and

750 MPa respectively), Fig. 5.13 shows the pressure–impulse curve induced by a

loading function derived from the Eq. (4.1),

F (t) =







Fmax



1 −
t

td



 exp



−3
t

td



 for 0 ≤ t ≤ td

0 for t > td

F (t) = P (t) ·A, Fmax = Pmax ·A

where P is the pressure acting on the free end exposed to the blast, Pmax is the peak

overpressure, and the shape parameters λ and γ are set equal to 1 and 3 respectively.

It may be noted that the enhanced strength of steel and concrete under high strain

rate affects the structural response and the pressure–impulse diagram. Indeed, if
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strain rate effects on material properties are taken into account, the resultant p–i

curve is shifted up and to the right (Fig. 5.13).
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Chapter 6

Conclusions and

Recommendations

The linear oscillator described in chapter 4 is useful for predicting the overall

response of structural members when the elastic deformations are dominant. Such

linear model is obviously not capable to capture the actual behavior a structure

which undergoes plastic deformations due to material nonlinearity. On the other

hand, whenever the plastic deformation is negligible, a simple elastic analysis may

represent an easy way to establish the structural response without any appreciable

computational effort. However, in order to improve such model, some issues need

further investigations. Many properties of the envelope function still need to be

proved, such as the localization of the transition point. The response curve expres-

sion used in § 4.3.3 produces low residuals for the fitted curve, whose input data

are generated by computer experiments. The notable complexity of such expression

suggests to investigate simplified analytical forms for isodamage curves. Simple

hyperbolic functions seem suitable to fit the data of these diagrams. However, for

some load shapes, curves with sufficiently low values of residuals can not be obtained

when only two parameters m1 and m2 are used. An improvement in that direction

might be reached by using a linear combination of hyperbolic function powers, as it

was done for the transient response spectrum. Lower values of the sum of squared

deviations could allow the isodamage curves to collapse into an unique chart in the

effective space, for any value of λ and γ. The influence of a given choice of the spec-

trum domain and set of constants n0, n1, . . . , n4 on the isodamage curve coefficients

is also an issue worth of further investigations.

Genetic algorithms seemed to perform very well when used to get the response

spectra and isodamage curves, since predicted the structural response with a good
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accuracy and a low computational effort. Their peculiar flexibility and adaptability

to any sort of optimization problem make them a useful tool in order to validate

results from any analytical model.

A non linear, low time consuming, oscillator has been described in chapter 5. It

represents a simple design tool capable to correctly evaluate the order of magnitude

of the structural response of elements under high speed dynamic loads, such as the

ones yield by shock waves from condensed high explosive detonations. The brief

overview regarding loading/strain rate effects on the strength of building materials

clearly showed that, under blast loads, such effects are relevant. Hence the necessity

of takeing into account two aspects usually neglected in any simplified dynamic

analysis: the material non linearity and the strain rate effects on the material

constitutive laws. Such tasks are accomplished by the proposed non linear model

through a wise application of the Newton–Raphson method, which always ensure a

rate of convergence at least quadratic.

Any structural model described in the preset dissertation is based on a maxi-

mum displacement failure criterion. Thereafter, for a flexional problem, only global

bending failure modes may be considered. However, many tests conducted over the

years showed shear induced failure mechanisms, since the shear force caused by the

short duration overpressure from a blast wave is many times higher than the shear

force associated with flexural failure modes. The high shear stresses involved may

lead to a global shear failure before any noticeable bending deformations. Such

phenomenon point out the necessity to incorporate shear failure criteria in future

structural models.

Any time flexural problems have been dealt with by single degree of freedom

model considerations, the first mode deformed shape has been assumed in order to

get an energetically equivalent SDOF system. This approach, although frequently

used, is limited by the fact that suitable shape functions may be suggested without

any previous finite element analysis only for very simple geometries and bound-

ary conditions. Further investigations in this field may aim to predict the actual

deformed shape with better accuracy.

Since SDOF models have the fundamental disadvantage of providing information

only for one point of an actual structure, the analytical and numerical techniques

developed in this thesis might be used to make up a multi degree of freedom model.

After uncoupling the motion equations of any oscillator, the problem might be

treated as that of many independent SDOF models.
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Appendix A

Newton–Raphson Method

According to Mathews and Fink [73], if we assume that f ∈ C2 : [a, b] → R, and

there exist a number α ∈ [a, b] such that f(α) = 0 and f ′(α) 6= 0, then there exist

a δ > 0 such that the sequence {αi}∞i=0 defined by the iteration

αi = g(αi−1) = αi−1 −
f(αi−1)

f ′(αi−1)
for i = 1, 2, . . . (A.1)

will converge to α for any initial approximation α0 ∈ [α− δ, α + δ].

The function g(x) defined by formula

g(x) = x−
f(x)

f ′(x)
(A.2)

is called Newton–Raphson iteration function. Since f(α) = 0, g(α) = α. This

means the Newton–Raphson iteration for finding the root of the equation f(x) = 0

is accomplished by finding a fixed point of the function g(x).

The proof of this theorem shows a general convergence criterion for any iterative

method defined by the statement αi+1 = g(αi),

|g′(x)| < 1, ∀x ∈ [α− δ, α + δ] (A.3)

According to Hoffman [74], the Eq. (A.3) may be regarded as:

∣
∣
∣
∣
∣
∣

εi+1

εi

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

f(x)f ′′(x)

[f ′(x)]2

∣
∣
∣
∣
∣
∣

≤ 1, ∀x ∈ [αi, α] (A.4)

where εi = αi − α denote the ith error.
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A.1 Speed of convergence

In order to discuss the rate of convergence of the Newton–Raphson method, it is

useful to recall some concepts of error analysis. Suppose that α̂ is an approximation

to α. The absolute error is εα = |α− α̂|, and the relative error is rα = |α− α̂|/|α|,
provided that α 6= 0. Also, the number α̂ is said to approximate α to d significant

digits if d is the largest positive integer for which

∣
∣
∣
∣
∣
∣

α− α̂

α

∣
∣
∣
∣
∣
∣

<
10−d

2
(A.5)

On the other hand, α̂ is said to approximate α to d decimal places if d is the largest

positive integer for which

|α− α̂ | <
10−d

2
(A.6)

Now let us assume that {αi}∞i=0 converges to α and set εi = α− αi for i ≥ 0. If

there exist two constants C 6= 0 and Γ > 0 such that

lim
i→∞

|α− αi+1|
|α− αi|Γ

= C (A.7)

than the sequence is said to converge to α with order of convergence Γ. C is called

asymptotic error constant. The larger is Γ, the faster the sequence converges. If

Γ = 1, the convergence of {αi}∞i=0 is called linear, while if Γ = 2 the convergence of

{αi}∞i=0 is called quadratic.

It might be shown that the order of convergence of the sequence defined by

the Newton–Raphson itaration depends on the order of the root such sequence

converges to. Assuming that f(x) and its derivative f ′(x), . . . , f (M)(x) are defined

and continuous on a neighborhood of x = α, f(x) has a root of order M at x = α

if and only if

f(α) = 0, f ′(α) = 0, . . . , f (M−1)(α) = 0, and f (M)(α) 6= 0

A root of order M = 1 is called simple root, and if M > 1 it is called a multiple

root. According to Bercovier [75], if we assume α is a simple root, we get
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f(α) = f(αi) + f ′(αi)(α− αi) +
1

2
f ′′(ξ)(α − αi)

2, ξ between αi and α

α− αi +
f(αi)

f ′(αi)
= −

(α− αi)
2f ′′(ξ)

2f ′(αi)
⇒ α− αi+1 = −

(α− αi)
2f ′′(ξ)

2f ′(αi)

|εi+1|
|εi|2

=
|f ′′(ξ)|

2|f ′(αi)|
⇒ lim

i→∞

|εi+1|
|εi|2

=
1

2

∣
∣
∣
∣
∣
∣

f ′′(α)

f ′(α)

∣
∣
∣
∣
∣
∣

, f ′(α) 6= 0.

Therefore, in case of a simple root α, the Newton’s method converges at least

quadratically, with asymptotic error constant |f ′′(α)|/|2f ′(α)|. This means that, at

each iteration, the number of the accurate significant digits doubles. It is worth

noting that, in case of f ′′(α) = 0, the order of convergence is higher.

In case f(x) has a root of algebraic multiplicity M at x = α, then there exists

a continuous function h(x) such that f(x) may be expressed as the product

f(x) = (x− α)Mh(x), h(α) 6= 0 (A.8)

Also, the firs derivative is

f ′(x) = (x− α)M−1
[
(x− α)h′(x) +Mh(x)

]
(A.9)

which vanishes at x = α ∀M > 1. Hence the requirement that α be simple for the

method to be quadratically convergent. Otherwise, if α is not simple, we have

αi+1 − α = αi − α−
f(αi)

f ′(αi)
= αi − α−

(αi − α)h(αi)

(αi − α)h′(αi) +Mh(αi)
∣
∣
∣
∣
∣
∣

αi+1 − α

αi − α

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

1 −
h(αi)

(αi − α)h′(αi) +Mh(αi)

∣
∣
∣
∣
∣
∣

⇒ lim
i→∞

|εi+1|
|εi|

=

∣
∣
∣
∣
∣
∣

1 −
h(α)

Mh(α)

∣
∣
∣
∣
∣
∣

=
M − 1

M
, M ≥ 2

So, the order of convergence of multiple roots is only linear and, as M gets bigger,

the convergence slows down since the asymptotic error constant (M − 1)/M → 1.

However, the function q(x) = f(x)/f ′(x) always has simple roots. Ideed,

q(x) =
(x− α)h(x)

(x− α)h′(x) −Mh(x)
⇒ q(α) = 0
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q′(x) =
[(x− α)h′(x) +Mh(x)][(x − α)h′(x) + h(x)]

[(x− α)h′(x) +Mh(x)]2
−

−
(x− α)h(x)[(x − α)h′′(x) + (M + 1)h′(x)]

[(x− α)h′(x) +Mh(x)]2
⇒ q′(α) =

1

M
6= 0

Hence, the Newton’s method applied to q(x) leads to the modified Newton’s method

αi+1 = αi −
q(αi)

q′(αi)

q′(αi) =
f ′(αi)

2 − f(αi)f
′′(αi)

[f ′(αi)]2

q(αi)

q′(αi)
=

f(αi)f
′(αi)

f ′(αi)2 − f(αi)f ′′(αi)

αi+1 = αi −
f(αi)f

′(αi)

f ′(αi)2 − f(αi)f ′′(αi)

which is quadratically convergent to a root of any multiplicity, but requires more

computational effort due to the evaluation of f ′′(αi). Alternatively, it may be noted

that if f(x) = K(x − α)M for some constant K, then f ′(x) = KM(x − α)M−1,

f(x)/f ′(x) = (x − α)/M , and α = x −Mf(x)/f ′(x) ∀x ∈ R. In a general case of

multiple root, this becomes an approximation rather than an equality, and we get

another modified Newton’s method,

αi+1 = αi −M
f(αi)

f ′(αi)
(A.10)

which does not require a calculation of f ′′(αi), but it does require the calculation

of the algebraic multiplicity M from

∣
∣
∣
∣
∣
∣

εi+1

εi

∣
∣
∣
∣
∣
∣

≈
M − 1

M

where εi and εi+1 come from the Newton’s method. This way, a quadratic con-

vergence is still guaranteed. By recalling the Eqs. (A.8), (A.9), and (A.10), we

have
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αi+1 − α = αi − α−M
f(αi)

f ′(αi)
= αi − α−M

(αi − α)h(αi)

(αi − α)h′(αi) +Mh(αi)

αi+1 − α

(αi − α)2
=
εi+1

ε2i
=

1

αi − α
−M

h(αi)

(αi − α)2h′(αi) +M(αi − α)h(αi)

εi+1

ε2i
=

1 −M
h(αi)

(αi − α)h′(αi) +Mh(αi)

αi − α

lim
i→∞

εi+1

ε2i
= lim

αi→α

1 −
Mh(αi)

(αi − α)h′(αi) +Mh(αi)

αi − α
=

H
= lim

αi→α

−Mh′(αi)[(αi − α)h′(αi) +Mh(αi)]

[(αi − α)h′(αi) +Mh(αi)]2
−

− lim
αi→α

Mh(αi)[(M + 1)h′(αi) + (αi − α)h′′(αi)]

[(αi − α)h′(αi) +Mh(αi)]2
=

= −
2M2h(α)h′(α) +Mh(α)h′(α)

M2h2(α)
=
M(2M + 1)h(α)h′(α)

M2h2(α)
=

2M + 1

M

h′(α)

h(α)

⇒ lim
i→∞

|εi+1|
|εi|2

=
2M + 1

M

∣
∣
∣
∣
∣
∣

h′(α)

h(α)

∣
∣
∣
∣
∣
∣

, h(α) 6= 0

which proves that the order of convergence is 2 in case of h′(α) 6= 0, and higher

otherwise.

In order to establish a general criterion to evaluate the rate of convergence of

the Newton’s method, we may use the efficiency index suggested by Antia [76],

EI = Γ1/θ,

where Γ is the order of convergence and θ is the cost per iteration, measured in

units of cost required for the function evaluation (e.g., two function evaluations in

each step imply θ = 2). For secant iteration, it would be θ = 1, since only the value

of the function is required, while for the Newton’s method θ = 1 + χ, where χ is

the relative cost of evaluating f ′(x). Thus,

EIS ≈ 1.618, for a secant iteration

EIN = Γ1/(1+χ), for a Newton’s iteration
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Hence, if Γ = 2 and χ < 0.44, the Newton’s method is more efficient, otherwise the

secant method should converge faster. If f(x) is a polynomial, then an evaluation

of f ′(x) is almost as costly as an evaluation of f(x), and χ ≈ 1. Therefore, for

polynomials, the secant method would be more efficient. However, if f(x) involves

exponential or trigonometric functions, then often the evaluation of f ′(x) may not

require much more extra effort, provided that relevant information is preserved. In

all the cases surveyed in § 5.4, the Newton’s method is applied in a way such that

Γ ≥ 2, and trigonometric or exponential functions are always involved. Therefore,

the efficiency index should be at least as high as for the secant method.

A.2 Convergence criteria

The iterative process of the Newton’s method may be stopped when one of the

following inequalities is satisfied,

∣
∣
∣
∣
∣
∣

αi+1 − α

α

∣
∣
∣
∣
∣
∣

≤ e1 (A.11)

|αi+1 − α| ≤ e2 (A.12)

|f(αi+1)| ≤ e3 (A.13)

where e1, e2, and e3 represent the accuracy required. If the firs criterion is chosen

and e1 = 10−d/2, we get the root α with an accuracy of at least d significant

digits. On the other hand, if the second criterion is chosen and e2 = 10−d/2, α

has d decimal places at least correct. As far as the third criterion is concerned, the

accuracy regards the function value instead of the root numerical value. If we set

e3 = 10−d/2, we get at least d accurate decimal places of the function value, which

means d+ 1 significant figures of accuracy.

Since the value of α is unknown, the Eqs. (A.11) and Eqs. (A.12) are prac-

tical useless. Instead, the absolute and relative errors of the root value may be

approximated as it follows:

∣
∣
∣
∣
∣
∣

αi+1 − αi

αi+1

∣
∣
∣
∣
∣
∣

≤ e1 (A.14)

|αi+1 − αi| ≤ e2 (A.15)
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A.3 Drawbacks

The Newton–Raphson method may be derived from the Taylor series, truncated

after the second term

f(αi+1) = f(αi) + f ′(αi)(αi+1 − αi) + . . . (A.16)

This method has excellent local convergence proprieties, but its global convergence

proprieties may be really poor, due to the neglect of the higher order terms in the

Taylor series of the Eq. (A.16). A more accurate extension of this technique is the

Newton’s second order method, which truncates the Taylor series after the third

term to yield the equation

f(αi+1) = f(αi) + f ′(αi)(αi+1 − αi) +
1

2
f ′′(αi)(αi+1 − αi)

2 + · · · = 0 (A.17)

This is a quadratic equation in αi+1 − αi, whose solution is given by

αi+1 − αi =
− f ′(αi) ±

√

[f ′(αi)]2 − 2f(αi)f ′′(αi)

f ′′(αi)

The general iterative formula for this method would be

α+
i+1 = αi −

f ′(αi)

f ′′(αi)
+

√

[f ′(αi)]2 − 2f(αi)f ′′(αi)

f ′′(αi)
(A.18a)

α−

i+1 = αi −
f ′(αi)

f ′′(αi)
−
√

[f ′(αi)]2 − 2f(αi)f ′′(αi)

f ′′(αi)
(A.18b)

and the choice between (A.18a) and (A.18b) would be determined by exploring bot

values of α+
i+1 and α−

i+1, determining which one results in the function f(α+
i+1) or

f(α−

i+1) being closer to zero. This procedure requires the evaluation of f ′′(x) and

the solution of a quadratic solution for ∆αi = αi+1 − αi, and it is not widely used.

On the other hand, if the usual Newton–Raphson method is applied, it might be

necessary to bracket the solution within a closed interval and ensure that successive

approximations remain within such interval. The more common disadvantages of

this method are reported below.

- Division by zero (Fig.A.1 (a)). If an iteration value αi is such that f ′(αi) ∼= 0,

then one may face a division by zero or a near–zero number. This will give a

large magnitude for the next value αi+1;
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f(x)

x
αi

αi+1

α

A.1 (a).

f(x)

x

αi+2

αi

αi+1

A.1 (b).

f(x)

xα0 α1α2 α3 α4

A.1 (c).

f(x)

xα0 α1 α2 α3a

f(x) = xe−x

A.1 (d).

f(x)

xα0α1 α2α3

f(x) = arctan(x)

A.1 (e).

f(x)

x
α1

f(x) = x3 − x− 3

α0α2 α3

A.1 (f).

f(x)

x
α1

f(x) = (x− α)3

α0 α2 α

A.1 (g).

Fig. A.1. Newton–Raphson drawbacks.
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- root jumping (Fig.A.1 (b)). In some cases where the function f(x) is oscil-

lating and has a number of roots, one may choose an initial guess close to a

root. However, the guesses may jump and converge to another root;

- oscillations near local minimum or maximum (Fig.A.1 (c)). Iteration results

may oscillate about a local minimum or maximum without converging on a

root but converging on the local extremum. Eventually, it may lead to division

by zero and may diverge;

- divergent sequence (Fig.A.1 (d)). Suppose that f(x) is positive and mono-

tonically decreasing on the unbounded interval [a,∞) and α0 > a. Then the

sequence {αi}∞i=0 might diverge to ∞. For example, it could be f(x) = xe−x

and α0 = 2. This particular function has another problem, because the value

of f(x) goes to zero rapidly as x gets large, and some αi could be eventually

mistaken for a root;

- divergent oscillating sequence (Fig.A.1 (e)). When |g′(x)| ≥ 1 on an interval

containing the root α and the initial guess is chosen too far from such root,

there is a chance of divergent oscillation. For example, let f(x) = arctan(x)

and α0 = 1.45;

- cycling (Fig.A.1 (f)). It occurs when the terms in the sequence {αi}∞i=0 tend

to repeat or almost repeat. For example, f(x) = x3 − x− 3 and α0 = 0;

- evaluation of the first derivative f ′(x). In general, the evaluation of the first

derivative requires an extra effort compared to other numerical techniques,

like the secant method. Also, when the function f(x) is a general non linear

relationship between an input x and an output f(x), f ′(x) can not be de-

termined analytically. In that case, f ′(x) may be estimated numerically by

evaluating f(x) at αi and αi + δ, and approximating f ′(x) as

f ′(x) =
f(αi + δ) − f(αi)

δ

This procedure doubles the number of function evaluations at each iteration,

but the evaluation of f ′(x) is no longer necessary. If δ is small, round–off error

are introduced, while if δ is too large, the convergence rate decreases. This

process is called approximate Newton method. In some cases, the efficiency of

the Newton’s method is increased by using the same value of f ′(x) at each

iteration. As long as the sign of f ′(x) does not change, the iterates αi move
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toward the root α, but the second order convergence is lost. However, in

problems where the evaluation of f ′(x) is more costly than the evaluation of

f(x), this procedure may be more efficient, for example in case of a system of

nonlinear equations. This procedure is called the lagged Newton’s method.

- slow convergence in case of multiple roots (Fig.A.1 (g)). As seen above, in

case of roots of algebraic multiplicity M > 1, the order of convergence drops

to 1, and the bigger is M the lower is the speed of convergence.

In order to avoid all the drawbacks reported above, in the following appendix

some lemmas are developed. Under the assumptions of such lemmas, the Newton–

Raphson method always converges quadratically to the sought root. It should be

noted that a multiple root problem is not dealt with in § 5.4. Any root is bracketed

throw a check of the function sign, excepted when such function has an unique root

on R and the second derivative sign changes no more than once. Also, a good initial

guess is always located.

170



Appendix B

Applications of the

Newton–Raphson Method

B.1 Lemma

Let f(x) be a function such that:

• f ∈ C2 : [a, b] → R;

• f(a)f(b) < 0;

• f ′(x) 6= 0 ∀x ∈ (a, b);

• f ′′(x) 6= 0 ∀x ∈ (a, b);

• α0 ∈ [a, b], g(α0) ∈ [a, b];

where g(α0) = α0 − f(α0)/f
′(α0) = α1. Then f has an unique root α ∈ (a, b), and

the sequence {αi}∞i=1 such that αi+1 = αi − f(αi)/f
′(αi), i = 0, 1, . . . converges to

α.

Proof. Let us suppose f(a) < 0 and f ′′(x) > 0 ∀x ∈ (a, b). Then, according to

the second hypothesis, it must be f(b) > 0. By applying the Bolzano theorem, there

exist α ∈ (a, b) such that f(α) = 0. Also, since f is strictly monotone in (a, b), α is

the unique zero in [a, b], and f(x) < 0 ∀x ∈ [a, α), f(x) > 0 ∀x ∈ (α, b]. According

to Fitzpatrick [77], by applying the Lagrange reminder theorem it is easy to show

that

f(b) = f(α) + f ′(ξ)(b− α) = f ′(ξ)(b− α) > 0 ⇒ f ′(ξ) > 0, ξ ∈ [α, b]
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Therefore, according to the 3rd hypothesis, f ′(x) > 0 ∀x ∈ (a, b) and, because of

the continuity of f ′, f ′(a) ≥ 0 and f ′(b) ≥ 0.

Recalling the definition of the Newton–Raphson iteration function, g(x) = x−
f(x)/f ′(x), it may be shown that ∀x ∈ [a, b] such that f ′(x) 6= 0, g(x) > a. Indeed,

for some ξ ∈ [a, x], we have

f(a) <
1

2
f ′′(ξ)(x− a)2

f(a) + f ′(a)(x− a) < f ′(a)(x − a) +
1

2
f ′′(ξ)(x− a)2

f(a) + f ′(a)(x− a) +
1

2
f ′′(ξ)(x− a)2 < f ′(a)(x− a) + f ′′(ξ)(x − a)2

f(x) < f ′(x)(x− a)

f(x)

f ′(x)
< x− a

x−
f(x)

f ′(x)
= g(x) > a (B.1)

Now let α0 ∈ [a, b] be an initial guess such that α1 = α0 − f(α0)/f
′(α0) ∈ [a, b].

From the Eq. (B.1) we have α1 > a, thus α1 ∈ (a, b] and f ′(α1) 6= 0. Indeed, if

x̄ = (α1 − a)/2, according to assumptions above it is f ′(x) > 0 ∀x ∈ (a, b) and

f ′′(x) ≥ 0 ∀x ∈ [a, b]; therefore

f ′(α1) = f ′(x̄) + f ′′(ξ)(α1 − x̄) > 0, ξ ∈ [x̄, α1]

Also,

f(α1) = f(α0) + f ′(α0)(α1 − α0) +
1

2
f ′′(ξ0,1)(α1 − α0)

2

=
1

2
f ′′(ξ0,1)(α1 − α0)

2 ≥ 0, ξ0,1 between α0 and α1

α2 = α1 −
f(α1)

f ′(α1)
≤ α1

If we suppose αi ∈ (a, b], f ′(αi) > 0, and f(αi) ≥ 0, we get
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αi+1 = αi −
f(αi)

f ′(αi)
≤ αi ≤ b

and by recalling the Eq. (B.1), αi+1 > a ⇒ αi+1 ∈ (a, b]

f ′(αi+1) = f ′(xi) + f ′′(ξ)(αi+1 − xi) > 0, xi =
αi+1 − a

2
, ξ ∈ [xi, αi+1]

f(αi+1) = f(αi) + f ′(αi)(αi+1 − αi) +
1

2
f ′′(ξi,i+1)(αi+1 − αi)

2

f(αi+1) =
1

2
f ′′(ξi,i+1)(αi+1 − αi)

2 ≥ 0, ξi,i+1 between αi and αi+1

By the induction principle we may conclude that, if g(α0) ∈ [a, b], then αi ∈ (a, b],

f ′(αi) > 0, and f(αi) ≥ 0, ∀i ∈ N. Moreover, αi+1 ≤ αi, i = 1, 2, . . .

According to Buchanan and Turner [78], from the analysis of g′ we get

g′(x) =
f(x)f ′′(x)

(f ′(x))2







< 0, ∀x ∈ (a, α)

= 0, x = α

> 0, ∀x ∈ (α, b)

and because of the continuity of f ′′, g′(b) ≥ 0. Since g(x) ∈ (a, b] ∀x = α0, α1, . . . ,

we may write

g(x) − α = g(x) − g(α) = g′(ξ)(x − α) ≥ 0, for some ξ betwee x and α,

but g(x) ≥ α ⇒ αi ≥ α, i = 1, 2, . . .

Therefore α ≤ αi+1 ≤ αi ≤ α1 ∀i = 1, 2, . . . , that is the sequence {αi}∞i=1 is bounded

and monotone, and thus convergent.

Now let r be the limit of the sequence {αi}∞i=1,

r = lim
i→∞

αi

It is clear that r is nothing but the limit of a sequence generated by the fixed–point

iteration function g which, as well known, may only converge to the fixed point

r = g(r). Indeed, by applying the continuity of g, we get

g(r) = g( lim
i→∞

αi) = lim
i→∞

g(αi) = lim
i→∞

αi+1 = lim
i→∞

αi = r
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but

g(r) = r ⇒ f(r) = 0 ⇒ r = α

This proves that the sequence {αi}∞i=1 converges to the root α.

Remark 1. Since f ′′(x) 6= 0 ∀x ∈ (a, b) and a 6= b, f ′(x) is strictly monotone

in (a, b) and f ′(a) 6= f ′(b). Let α0 be an initial guess such that α0 = a if |f ′(a)| >
|f ′(b)|, and α0 = b if |f ′(a)| < |f ′(b)|. Then, the sequence {αi}∞i=1, αi+1 = g(αi), i =

0, 1, . . . , converges to α. For example, in case of f(a) < 0 and f ′′(x) > 0 ∀x ∈ (a, b),

we get f ′(x) > 0 ∀x ∈ (a, b) and f ′(x) monotonically increasing on (a, b). This

means |f ′(a)| < |f ′(b)|, therefore α0 = b, and

α1 = g(b) = b−
f(b) > 0

f ′(b) > 0
< b

Also, by recalling the Eq. (B.1), we have g(b) > a, thus g(b) ∈ (a, b), and the

sequence started by α0 = b converges to the unique root α.

Remark 2. Whether f(a) < 0, f ′′(x) > 0 ∀x ∈ (a, b), |f ′(a)| < |f ′(b)|, and

b→ +∞, the fifth hypothesis is satisfied ∀α0 > a. Indeed, because of the Eq. (B.1),

it is g(α0) > a, and of course it is g(α0) < b = +∞, thus g(α0) ∈ (a, b), and the

sequence {αi}∞i=1 converges to α.

Remark 3. This Lemma has been proved under the assumptions f(a) <

0 & f ′′(x) > 0 ∀x ∈ (a, b). Under different assumptions (f(a) < 0 & f ′′(x) <

0 ∀x ∈ (a, b), f(a) > 0 & f ′′(x) > 0 ∀x ∈ (a, b), f(a) > 0 & f ′′(x) < 0 ∀x ∈ (a, b)),

the proof may be given in the same way as seen above.

B.2 Lemma

Let f(x) be a function such that:

• f ∈ C2 : R → R;

• f(α) = 0;

• f ′(x) 6= 0 ∀x ∈ R;

• f ′′(x) 6= 0 ∀x ∈ R.
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Then, the sequence {αi}∞i=1 such that αi+1 = αi − f(αi)/f
′(αi), i = 0, 1, . . . , con-

verges to α for any choice of the initial guess α0 ∈ R.

Proof. According to Fitzpatrick [77], by applying the Lagrange reminder the-

orem, for some ξ between x and α we have

f(x) = f(α) + f ′(ξ)(x − α) = f ′(ξ)(x− α) 6= 0, ∀x 6= α

which means the root α is unique. Also,

(x− α)f(x)f ′(ξ) > 0, ∀x 6= α

sgn[(x− α)f(x)f ′(ξ)] = 1, ∀x 6= α

sgn[(x− α)f(x)] = sgn(f ′), ∀x 6= α

and since f is strictly monotone, for any ξ between x and α, ξ 6= α, we get

sgn[(x− α)f(ξ)] = sgn(f ′), ∀x 6= α (B.2)

According to Mathews and Fink [73], since α is the unique root, g(x) = x ⇔ x = α.

Then, from Eq. (B.2), for some ξ between x and α, ξ 6= α, we get

g(x) − α = g(x) − g(α) = g′(ξ)(x − α) =
f(ξ)f ′′(ξ)

[f ′(ξ)]2
(x− α)

sgn[g(x) − α] = sgn[f(ξ)(x− α)] sgn[f ′′(ξ)] = sgn(f ′) sgn(f ′′)

sgn[g(x) − α] = sgn(f ′f ′′), ∀x 6= α (B.3)

f ′f ′′ > 0 ⇒ g(x) > α, ∀x 6= α

f ′f ′′ < 0 ⇒ g(x) < α, ∀x 6= α (B.4)

Again, since α is unique, by recalling the Eq. (B.3), for any initial guess α0 6= α we

may write

α1 = α0 −
f(α0)

f ′(α0)
6= α, α1 ∈ R

f(α1) = f(α) + f ′(ξ)(α1 − α) = f ′(ξ)(α1 − α), ξ between α and α1

sgn[f(α1)] = sgn(f ′) sgn(α1 − α) = sgn(f ′) sgn(f ′) sgn(f ′′)

sgn[f(α1)] = sgn(f ′′) (B.5)
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and

α2 = α1 −
f(α1)

f ′(α1)
6= α, α2 ∈ R

sgn(α2 − α1) = −
sgn[f(α1)]

sgn(f ′)
= −sgn(f ′f ′′)

Now let us take αi 6= α. We have

f(αi) = f(α) + f ′(ξ)(αi − α) = f ′(ξ)(αi − α)

sgn[f(αi)] = sgn(f ′) sgn(αi − α) = sgn(f ′) sgn(f ′) sgn(f ′′)

sgn[f(αi)] = sgn(f ′′)

αi+1 = αi −
f(αi)

f ′(αi)
6= α, αi+1 ∈ R

sgn(αi+1 − αi) = −
sgn[f(αi)]

sgn(f ′)
= −sgn(f ′f ′′)

therefore, for any choice of α0 6= 0 we may write

sgn(αi+1 − αi) = −sgn(f ′f ′′), i = 1, 2, . . .

f ′f ′′ > 0 ⇒ αi+1 < αi

f ′f ′′ < 0 ⇒ αi+1 > αi, i = 1, 2, . . . (B.6)

Thus, from Eqs. (B.4) and (B.6), we may conclude

f ′f ′′ > 0 ⇒ α < αi < α1

f ′f ′′ < 0 ⇒ α1 < αi < α i = 1, 2, . . .

This prove that the sequence {αi}∞i=1 is bounded and monotone, and thus conver-

gent. Also, by noting that {αi}∞i=1 is nothing but the sequence generated by the

fixed–point iteration function g, we may conclude that this sequence converges to

the fixed point r = g(r), which means f(r) = 0. Therefore r = α.
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B.3 Lemma

Let f(x) be a function such that:

• f ∈ C2 : R → R;

• f(α) = 0;

• f ′(x) 6= 0 ∀x ∈ R;

• f ′′(xc) = 0 and f ′′(x) 6= 0 ∀x 6= xc, xc 6= α.

Then, the sequence {αi}∞i=1 such that α0 = xc and αi+1 = αi − f(αi)/f
′(αi), i =

0, 1, . . . converges to α.

Proof. Since f ′ never vanish, f is strictly monotone and the root α is unique.

Whether f(xc)f
′(xc) > 0, the first four hypotheses of Lemma B.1 are satisfied by

imposing a → −∞ and b = xc. Thus, for any α0 ∈ [a, b] such that g(α0) ∈ [a, b],

the sequence {αi}∞i=1, αi+1 = αi − f(αi)/f
′(αi), i = 0, 1, . . . , converges to α. For

example, it could be α0 = xc (see remark 2 of Lemma B.1).

In case of f(xc)f
′(xc) < 0, the hypotheses of Lemma B.1 are satisfied by impos-

ing a = xc and b→ +∞, and the sequence {αi}∞i=1 converges to α for any α0 ∈ [a, b]

such that g(α0) ∈ [a, b]. Again, it could be α0 = xc.

B.4 Lemma

Let f(x) be a function such that:

• f ∈ C2 : R → R;

• f ′(xs) = 0 and f ′(x) 6= 0 ∀x 6= xs;

• f ′′(x)f(xs) < 0 ∀x ∈ R.

Then, f(x) has two real roots, α < xs and β > xs, as shown in Fig. B.1, and

the Newton–Raphson method converges to one of them for any choice of the initial

guess α0 6= xs. The root r found depends on the value of α0: if α0 < xs ⇒ r = α,

if α0 > xs ⇒ r = β.

Proof. According to Fitzpatrick [77], by applying the Lagrange reminder the-

orem we get
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f

x
xs

βα α0 α0

Fig. B.1. Newton–Raphson method under Lemma B.4 hypotheses.

f(x) = f(xs) + f ′(xs)(x− xs) +
1

2
f ′′(ξ)(x− xs)

2

f(x) = f(xs) +
1

2
f ′′(ξ)(x − xs)

2, ξ between x and xs

thus,

lim
x→±∞

f(x) = lim
x→±∞



f(xs) +
1

2
f ′′(ξ)(x− xs)

2



 =

= f(xs)



1 +
1

2
lim

x→±∞

f ′′(ξ)

f(xs)
(x− xs)

2



 = −sgn(f(xs)) · ∞

and because of the continuity of f , there exist x− and x+ such that sgn(f(x−)) =

sgn(f(x+)) = −sgn(f(xs)). Also, f is strictly monotone within the subintervals

[x−, xs) and (xs, x
+], thus, by Bolzano theorem, there exist an unique α ∈ (x−, xs)

and an unique β ∈ (xs, x
+) such that f(α) = f(β) = 0. Finally, it should be noted

that f satisfies the first four hypotheses of Lemma B.1 within those sub–domains,

and by recalling the remark 2 of such lemma we may conclude that the sequence

{αi}∞i=1 converges to α ∀α0 < xs, and to β ∀α0 > xs.
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Appendix C

Trigonometric Identities

The periodic part of the displacement function yn from the Eq. (5.43) can be put

in the form

ỹn(τ) = e−ζnωnτ [A1 cos(ωd,nτ) +A2 sin(ωd,nτ)] = e−ζnωnτA cos(ωd,nτ + φy) (C.1)

where Ā = Ae−ζnωnτ and φy represent the vibration amplitude and the phase angle

respectively. In order to find these constants, from the Eq. (C.1), we get

A cos(ωd,nτ + φy) = A[cos(ωd,nτ) cosφy − sin(ωd,nτ) sinφy]







A cosφy = +A1

A sinφy = −A2

⇒







A2 = A2
1 +A2

2

tanφy = −
A2

A1

⇒







A = ±
√

A2
1 +A2

2

φy =







− arctan




A2

A1





π − arctan




A2

A1





If we assume A =
√

A2
1 +A2

2, we get

sinφy = −
A2

√

A2
1 +A2

2

, cosφy =
A1

√

A2
1 +A2

2

.

Indeed,
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





A cos φy =
√

A2
1 +A2

2

A1
√

A2
1 +A2

2

= A1

A sinφy =
√

A2
1 +A2

2



−
A2

√

A2
1 +A2

2



 = −A2

In order to pick a value for φy, the following cases must be considered,

- A1 < 0.⇒ cosφy < 0 ⇒ φy = π − arctan




A2

A1



;

- A1 > 0.⇒ cosφy > 0 ⇒ φy = − arctan




A2

A1



;

- A1 = 0.⇒ cosφy = 0;

- A2 < 0.⇒ sinφy = 1 ⇒ φy =
π

2
;

- A2 = 0.⇒ ỹn ≡ 0;

- A2 > 0.⇒ sinφy = −1 ⇒ φy = −
π

2
.

The velocity function may be represented as seen for the displacements,

vn(τ) = e−ζnωnτ [B1 cos(ωd,nτ) +B2 sin(ωd,nτ) +A3] =

= e−ζnωnτB cos(ωd,nτ + φv) +A3 (C.2)

where B =
√

B2
1 +B2

2 and φv depends on the sign of B1 and B2,

- B1 < 0.⇒ cosφv < 0 ⇒ φv = π − arctan




B2

B1



;

- B1 > 0.⇒ cosφv > 0 ⇒ φv = − arctan




B2

B1



;

- B1 = 0.⇒ cosφv = 0;

- B2 < 0.⇒ sinφv = 1 ⇒ φv =
π

2
;

- B2 = 0.⇒ vn ≡ 0;
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- B2 > 0.⇒ sinφv = −1 ⇒ φv = −
π

2
.

As far as the acceleration is considered, we have

an(τ) = e−ζnωnτ [C1 cos(ωd,nτ) + C2 sin(ωd,nτ)] = e−ζnωnτC cos(ωd,nτ + φa)

C =
√

C2
1 + C2

2 (C.3)

- C1 < 0.⇒ cosφa < 0 ⇒ φa = π − arctan




C2

C1



;

- C1 > 0.⇒ cosφa > 0 ⇒ φa = − arctan




C2

C1



;

- C1 = 0.⇒ cosφa = 0;

- C2 < 0.⇒ sinφa = 1 ⇒ φa =
π

2
;

- C2 = 0.⇒ an ≡ 0;

- C2 > 0.⇒ sinφa = −1 ⇒ φa = −
π

2
.

This time the phase angle depends on the ratio C2/C1, and in order to establish a

relationship between φy and φa, C1 and C2 may be expressed in terms of A1 and

A2,

C1 = −ζnωnB1 + ωd,nB2 =

= −ζnωn(−ζnωnA1 + ωd,nA2) + ωd,n(−ζnωnA2 − ωd,nA1) =

= (ζ2
nω

2
n − ω2

d,n)A1 − 2ζnωnωd,nA2 = ω2
n[(2ζ2

n − 1)A1 − 2ζn
√

1 − ζ2
nA2]

C2 = −ζnωnB2 − ωd,nB1 =

= −ζnωn(−ζnωnA2 − ωd,nA1) − ωd,n(−ζnωnA1 + ωd,nA2) =

= ζ2
nω

2
nA2 + 2ζnωnωd,nA1 − ω2

d,nA2 = A2(ζ
2
nω

2
n − ω2

d,n) + 2ζnωnωd,nA1 =

= ω2
n[(2ζ2

n − 1)A2 + 2ζn
√

1 − ζ2
nA1]

In case of ζn = 0, from the two equations above we get

C1 = −ω2
nA1, C2 = −ω2

nA2 ⇒
C2

C1
=
A2

A1
(C.4)
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Since ω2
n = kn/m, when the stiffness is positive, we get

Ai < 0 ⇔ Ci > 0, i = 1, 2

Ai = 0 ⇔ Ci = 0, i = 1, 2

Ai > 0 ⇔ Ci < 0, i = 1, 2

which means that between the functions ỹn and an there is a phase shift ∆φ =

φy − φa = π.
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