




To all of you who have a dream and the
bravery and the coherence to pursue it.





Introduction

Iwasawa theory dates back to the 1950’s with the pioneering work of K.
Iwasawa on Zp-extensions of number fields (see [20], [21] and [22]) and it
has led to numerous generalizations, applications and conjectures, almost
all in the spirit of the original conjectures or “Main Conjectures”. One of
the most fruitful application was proposed by Mazur in a series of papers
(see [29], [30] and [31]) in the early 1970’s. The main goal was to find a new
approach to the Birch and Swinnerton-Dyer Conjecture (BSD from now on):
its simplest formulation predicts the equality between the rank of the group
E(F ), where E is an elliptic curve defined over a global field F , and the order
of zero of the Hasse-Weil L-function L(E, s) at s = 1. Many generalizations,
for example to abelian varieties, and refined statements have been provided
through the years but the main feature has always been the link between an
algebraic object (the group E(F ) and its “algebraic” rank) and an analytic
one (the L-function and its order of zero, i.e., the “analytic” rank).

Iwasawa theory, in Mazur’s formulation, provides a bridge between this two
sides of BSD in the following way. Let K/F be a Zp-extension of a number
field F and A/F an abelian variety. Denote with Γ ' Zp the Galois group
of K/F . We can associate two objects to this data. The first one is the
p-part of the Selmer group, which is denoted by SelA(K)p . It is constructed
algebraically and is a module over the Iwasawa algebra Λ(Γ) := Zp[[Γ]] '
Zp[[T ]] which controls (i.e., provides a bound for or, sometimes, computes
exactly) the algebraic rank. When the Pontrjagin dual of the Selmer group
SelA(K)∨p is a torsion Λ(Γ)-module, there exist a (uniquely determined) set
of non-zero elements {f1, · · · ,fn} ⊂ Λ(Γ) such that the sequence of Λ(Γ)-
modules

n⊕
i=1

Λ(Γ)/Λ(Γ)f i ↪→ SelA(K)∨p � N

is exact and N is pseudo-null. We define

fSel :=

n∏
i=1

f i

i
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to be a characteristic element for SelA(K)∨p .
The second object is constructed analytically and is called the p-adic L-
function Lp(A, s), which is again an element of Λ(Γ) and interpolates the
L-function in its critical value providing some knowledge on the analytic
rank (see [30] and [31]).

The main conjecture (MC) of Iwasawa theory (roughly speaking, we have a
lot of refined statements nowadays) predicts the equality, or a deep relation,
between the ideals of Λ(Γ) generated by fSel and Lp(A, s).
It is clear that this kind of statement provides a link between the algebraic
and the analytic sides of the theory and has major consequences on BSD
conjecture. Indeed, the inclusion Lp(E, s) ⊆ (fSel) (proven in some cases
for example by Kato, see [25], or Bertolini-Darmon, see [7]) provides, under
some mild hypotheses, the inequality

rankZE(F) 6 ords=1L(E, s) .

We mention here also a third object: the Euler characteristic

χ(Γ, SelA(K)p) :=
∏
i>0

|Hi(Γ, SelA(K)p)|(−1)i ,

assuming that all the quantities on the right are finite. Another classical re-
sult in Iwasawa theory, in the same spirit of the MC, relates χ(Γ, SelA(K)p)
with the p-adic valuation of fSel(0), i.e., the image of fSel under the aug-
mentation map Λ(Γ)→ Zp .

The well-known analogy between number fields and function fields has in-
spired the study of Iwasawa main conjectures in positive characteristic as
well. Remarkable works in this direction are, for instance, those of Ochiai
and Trihan ([36]) or Ulmer ([49]). More recently the work of Venjakob on
modules over noncommutative Iwasawa algebras Λ(G), where now G can be
any p-adic Lie group of finite dimension and without elements of order p, led
to the development of a noncommutative Iwasawa theory (see [11]).

This thesis focuses on the algebraic side of the theory: we provide generaliza-
tions of classical results on the structure of the (Pontrjagin duals of) Selmer
groups over the Iwasawa algebra Λ(G). The base field F will be a global
function field of characteristic p > 0 and G = Gal(K/F ) a noncommutative
`-adic Lie group.

In the first chapter we give all basic definitions and provide tools we shall use
in later sections. We begin introducing function fields and `-adic Lie groups
in Sections 1.1 and 1.2. After recalling the definition of the Iwasawa algebra
and its most important properties (Section 1.3), we define the main object
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of our investigations: the Selmer group SelA(K)` (see Section 1.4). Finally,
in Sections 1.5 and 1.6 we summarize Venjakob’s work on the analogues of
characteristic elements and pseudo-nullity for modules over a noncommuta-
tive Iwasawa algebra.

In the second chapter we begin our study of SelA(K)∨` , i.e., the Pontrjagin
dual of the Selmer group, via appropriate generalizations of Mazur’s Control
Theorem ([29]). All results stated there are going to appear in the forth-
coming paper [6]. We recall that other generalizations of this theorem to the
function field setting and commutative Zd` -extensions can be found in the
works of Bandini and Longhi for elliptic curves ([3], [4]) and Tan ([47]) for
abelian varieties.
We begin with the ` 6= p case. In Section 2.1 we prove the Control Theorem
for general `-adic Lie extensions (see Theorem 2.1.2) and, as a special case,
for the trivializing extension F (A[`∞])/F (Theorem 2.1.7). Then, we use
these theorems and an easy application of Nakayama’s Lemma, to obtain
the finitely generated (sometimes even torsion) condition for SelA(K)∨` as a
module over Λ(Gal(K/F )). To move a step further we need to assume that
it exists H Cc Gal(K/F ) such that Gal(K/F )/H ' Z` . When this is true
we provide Theorem 2.1.15, proved with techniques already appearing in the
previous Control Theorems, that allows us to describe SelA(K)∨` as a mo-
dule over Λ(H). The main consequence of these results is the possibility to
define a characteristic element in Λ(Gal(K/F )) for SelA(K)∨` (as mentioned
in [11], one needs both the Λ(Gal(K/F )) and the Λ(H)-module structure to
provide such an element). Finally, in Section 2.2, we treat the same problem
for the (arithmetically more interesting) case ` = p : we need a few more
sophisticated techniques and some (mild) extra hypotheses to reach similar
results (see Theorems 2.2.3 and 2.2.8).

In the last chapter we expand our knowledge of SelA(K)∨` ’s structure, for
the case ` 6= p only. Since the characteristic element is independent from the
presence of pseudo-null modules (see, for example, the Structure Theorem
for modules over a noncommutative Iwasawa algebra in [13]), we want to
know when SelA(K)∨` has no nontrivial pseudo-null submodule to ensure
that no relevant arithmetic information is forgotten. For the number field
setting and K = F (A[`∞]), this issue was studied by Ochi and Venjakob ([37,
Theorem 5.1]) when A is an elliptic curve, and by Ochi for a general abelian
variety in [35]. In Section 3.1 we prove, under suitable hypotheses, that
SelA(K)∨` has no nontrivial pseudo-null submodule in our setting as well:
in Theorem 3.1.10 when Gal(K/F ) has dimension greater than or equal to
3, and in Proposition 3.1.12 when Gal(K/F ) has dimension greater than or
equal to 2. At the end, in Section 3.2 we provide some simple calculations
on the Euler characteristic of SelA(K)` (Theorem 3.2.4).
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Chapter 1

Background

In this chapter we describe the setting in which we shall work and fix nota-
tions and conventions. Besides, here we collect all theoretical and technical
tools which will be used throughout the thesis.

1.1 Global function fields and extensions

We recall here all basic definitions regarding function fields; however, for a
comprehensive study of the subject we refer the reader to [39] and [52].

1.1.1 Function fields

Definition 1.1.1. A function field in one variable over a field F , is a field
K, containing F and at least one element x, transcendental over F , such
that K/F (x) is a finite algebraic extension.
Such a field K has transcendence degree one over F .
When F is algebraically closed in K, F is called the constant field of K.
A global function field is a field K of transcendence degree 1 over its finite
constant field F (this is the only case we will be interested in).

Definition 1.1.2. A prime in K is a discrete valuation ring R with maximal
ideal v such that F ⊂ R and the quotient field of R is equal to K.

Example 1.1.3. A classic example of global function field is the rational
function field Fq(t), where q is a power of a fixed prime p ∈ Z. In this
case every non-zero prime ideal corresponds to a unique monic irreducible
polynomial f ∈ Fq[t]. Let vf be the valuation corresponding to f . Then the
valuation ring ϑvf is the set of quotients g/h, where g, h ∈ Fq[t] and f - h,
and its maximal ideal is Pvf which is made up by g/h with f | g.
If s = 1

t then the fields Fq(t) and Fq(s) are isomorphic. The prime s is

1
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usually called the prime at ∞ (and denoted by ∞ as well): it is associated
with the valuation v∞ and we have

ϑ∞ = {f/g s.t. deg(f)−deg(g) 6 0} , P∞ = {f/g s.t. deg(f)−deg(g) < 0} .

To sum up, the set of valuations over Fq(t) is exactly

{vf s.t. f ∈ Fq(t) monic and irreducible} ∪ {v∞}

and they are pairwise inequivalent.

As for extensions of function fields we recall the following.
Let K/F be a function field with constant field F and let L be a finite
algebraic extension of K. Let E be the algebraic closure of F in L. Then L
is a function field with E as its field of constants. If L = EK, we say that L
is a constant (or arithmetic) field extension of K. While, if E = F , we say
that L is a geometric extension of K.

Example 1.1.4. Let K be a global function field with the finite field Fp as
its field of constants. An interesting kind of constant extension, from the

arithmetical point of view, is F(`)
p K, where F(`)

p is the Z`-extension of Fp .

One of the most important property of the constant field extensions is that
they are everywhere unramified (for a proof see [39, Chapter 8]).

Finally, write S for a finite and nonempty set of places of K. Define

OK,S = {a ∈ K | v(a) > 0 ∀ v /∈ S}

to be the ring of S-integers of K. It can be shown that it is a Dedekind
domain and C`S(K), which denotes the S-ideal class group (i.e., the class
group of OK,S ), is finite (see [39, Proposition 14.2] and [39, Theorem 14.5]).
The well known analogy between function fields and number fields appears
now more clear: OK,S plays the role of the ring of integers of a number field.

1.1.2 Notations for fields

For any field L we let GL := Gal(Ls/L) (Ls a separable closure of L), Lunr

the maximal unramified extension and XL the scheme Spec(L). The last one
will essentially appear in Galois and flat cohomology groups so whenever we
write a scheme X we always mean Xfl , scheme on flat topology (see Section
1.4.1).
From now on F will be a global function field (of trascendence degree one
over its constant field FF = Fq , where q is a power of a fixed prime p ∈ Z).
We put F for an algebraic closure of F and F s ⊂ F .
For any algebraic extension L/F , let ΣL be the set of places of L: for any
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v ∈ ΣL we let Lv be the completion of L at v, Ov its ring of integers with
maximal ideal mv and residue field FLv . Whenever we deal with a local field
E (or an algebraic extensions of such field) the above notations will often be
replaced by OE , mE and FE .
For any place v ∈ ΣF we choose (and fix) an embedding F ↪→ Fv (an alge-
braic closure of Fv ), in order to get a restriction map GFv := Gal(Fv/Fv) ↪→
GF . All algebraic extensions of F (resp. of Fv ) will be assumed to be con-
tained in F (resp. Fv ).
Let FS be the maximal Galois extension of F unramified outside S and
GS(F ) := Gal(FS/F ). With O×S we denote the group of units of OS :=⋃

OL,S where the union is taken over all finite subextensions L of FS .

1.2 `-adic Lie groups

We recall some facts on profinite groups and `-adic Lie groups, which will
be useful later. For further information on these kind of groups the reader
is referred to [16] and [55].

Let G be a group, x, y, z elements of G, and A, B subgroups of G. Define
[x, y] = x−1y−1xy. Then the group

[A,B] = 〈[a, b] | a ∈ A, b ∈ B〉

is the commutator subgroup of A and B in G (where 〈X〉 denotes the sub-
group of G generated by a subset X of G).

Let now G be a profinite group and H a subgroup of G. We write H for the
topological closure of H in G and |G : H| for the index of H in G. For any
integer n we put Gn := 〈xn |x ∈ G〉.

Definition 1.2.1. A pro-` group G is said to be powerful if G/G` is abelian
(when ` is odd) or G/G4 is abelian (when ` = 2).

Definition 1.2.2. A pro-` group G is said to be uniform if

(i) G is (topologically) finitely generated;

(ii) G is powerful;

(iii) for any i, |Pi(G) : Pi+1(G)| = |G : P2(G)| (where P1(G) = G and, for

i > 1, Pi+1(G) = Pi(G)`[Pi(G), G] ).

Example 1.2.3. Fix a positive integer d. Let

Γi = {γ ∈ GLd(Z`) | γ ≡ 1d mod `i}

and put G = Γ1 if ` is odd, G = Γ2 if ` = 2. Then G is a uniform pro-`
group (see [16, Theorem 5.2]).
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Let d(G) denote the cardinality of a minimal set of topological generators
for G. If G is finite, the rank is defined to be

rk(G) = sup{d(H) |H 6 G} .

If G is not finite, the rank is one of the following values:

r1 = sup{d(H) |H 6c G}
r2 = sup{d(H) |H 6c G and d(H) 6∞}
r3 = sup{d(H) |H 6o G}
r4 = sup{rk(G/N) |N Co G}.

By [16, Proposition 3.11] r1 = r2 = r3 = r4.

Definition 1.2.4. Let G be a pro-` group of finite rank. The dimension of
G is

dim(G) = d(H)

where H is any open uniform subgroup of G.

Example 1.2.5. Let G be as in Example 1.2.3. Then

dim(G) = rk(G) = d2 .

LetG be an `-adic Lie group. A very useful characterization of `-adic analytic
groups is due to Lazard [27] and states that a topological group G has the
structure of `-adic Lie group if and only if G contains an open subgroup
which is a uniform pro-` group (see also [16, Theorem 8.32]). In this thesis
G will always be the Galois group of a field extension, so one must take into
account that it is compact.

Theorem 1.2.6. The following are equivalent for a topological group G.

(i) G is a compact `-adic Lie group;

(ii) G contains an open, normal, uniform, pro-` subgroup of finite index;

(iii) G is a profinite group containing an open subgroup which is a pro-`
group of finite rank.

Proof. See [16, Corollary 8.34].

Recall that being profinite implies that every open subgroup is of finite index.
Next theorem allows us to define the concept of dimension for an `-adic Lie
group.

Theorem 1.2.7. Let G be an `-adic Lie group. Then, there exists a unique
non-negative integer n such that every open pro-` subgroup of G has finite
rank and dimension n in the sense of Definition 1.2.4.
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Proof. See [16, Theorem 8.37]

Definition 1.2.8. Let G be an `-adic Lie group. Then the dimension
dim(G) of G is the number n specified in Theorem 1.2.7.

Finally, note that if G is an `-adic Lie group without points of order `, then
it has finite `-cohomological dimension (denoted by cd`), which is equal to
its dimension as an `-adic Lie group ([41, Corollaire (1) p. 413]).

Example 1.2.9. Let F be a global function field of characteristic p > 3 and
E/F a non isotrivial elliptic curve. For any prime ` 6= p the Galois group
G = Gal(F (E[`∞])/F ) is open in GL2(Z`) and it is an `-adic Lie group of
dimension 4.
Moreover, if ` > 5 G has no points of order `. If this is the case, cd`(G) = 4.

1.3 Modules and duals

For any `-adic Lie group G we denote by

Λ(G) = Z`[[G]] := lim
←−
U

Z`[G/U ]

the associated Iwasawa algebra, where the limit is taken on the open normal
subgroups of G.
From Lazard’s work (see [27]), we know that Λ(G) is Noetherian and, if G
is pro-` and has no elements of order `, then Λ(G) is an integral domain.
From [16, Theorem 4.5] we also know that, for a finitely generated powerful
pro-` group, being torsion free is equivalent to being uniform. Because of
this when we need Λ(G) to be without zero divisors we will take a torsion
free G.

For a Λ(G)-module M we set the extension groups

Ei(M) := ExtiΛ(G)(M,Λ(G))

for any nonnegative integer i and Ei(M) = 0 for i < 0 by convention.
Since in our applications G comes from a Galois extension, e.g. G =
Gal(L/F ), we denote with Gv the decomposition group of v ∈ ΣF for some
prime w|v, w ∈ ΣL, and we use the notation

Eiv(M) := ExtiΛ(Gv)(M,Λ(Gv)).

Note that the definition does not depend on the prime w we choose; indeed,
we obtain the other decomposition groups by conjugation, so their Iwasawa
algebras are isomorphic.
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Let H be a closed subgroup of G. For every Λ(H)-module N we consider
the Λ(G)-modules

CoindHG (N) := MapΛ(H)(Λ(G), N) and IndGH(N) := Λ(G)⊗Λ(H) N .1

For a Λ(G)-module M , we denote by M∨ := Homcont(M,C∗) its Pontrja-
gin dual. In the cases considered in this work, M will be a (mostly discrete)
topological Z`-module, so thatM∨ can be identified with Homcont(M,Q`/Z`)
and it has a natural structure of Z`-module (indeed the category of compact
Λ(G)-modules and the category of discrete Λ(G)-modules are both abelian
and the Pontrjagin duality defines a contravariant equivalence of categories
between them).
The reader is reminded that to say that an R-module M (R any ring) is
cofinitely generated over R means that M∨ is a finitely generated R-module.

Finally, for every discrete GS(F )-module M which is finitely generated as
Z-module and whose torsion has order prime with p we let

M ′ := Hom(M,O×S )

be the dual GS(F )-module of M . When M is finite the dual module

M ′ = Hom(M,O×S ) = Hom(M,µ)

is again finite and we have a canonical identification M ′′ = M .

1.4 Selmer groups

Let A be an abelian variety defined over F and of dimension g: we denote
by At its dual abelian variety. For any positive integer n we let A[n] be the
scheme of n-torsion points and, for any prime `, we put A[`∞] := lim

−→
n

A[`n].

We define Selmer groups via the usual cohomological techniques and, since
we deal mostly with the flat scheme of torsion points, we shall use the flat
cohomology groups Hi

fl.

1.4.1 Flat cohomology

For the basic theory of sites and cohomology on a site we refer the reader to
[32, Ch. II and III]. Shortly, for any scheme X we write Xfl for the subca-
tegory of Sch/X (schemes over X) whose structure morphisms are locally of
finite type. Furthermore, Xfl is endowed with the flat topology: let Y → X

be an element of Xfl, then a covering of Y is a family {gi : Ui → Y} such
that Y =

⋃
gi(Ui) and each gi is a flat morphism locally of finite type.

1We use the notations of [37], some texts, e.g. [34], switch the definitions of IndH
G (N)

and CoindH
G (N).
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Definition 1.4.1. Let P be a sheaf on X and consider the global section
functor sending P to P(X). The i-th flat cohomology group of X with values
in P, denoted by Hi

fl(X,P), is the value at P of the i-th right derived functor
of the global section functor.

1.4.2 Selmer groups

Fix a prime ` ∈ Z and consider the exact sequence

0→ A[`n]→ A
`n−→A→ 0 .

For any finite algebraic extension L/F , take flat cohomology with respect to
XL to get an injective Kummer map

A(L)/`nA(L) ↪→ H1
fl(XL , A[`n]) .

Taking direct limits one has an injective map

κ : A(L)⊗Q`/Z` ↪→ lim
−→
n

H1
fl(XL , A[`n]) := H1

fl(XL , A[`∞]) .

Exactly in the same way one can define local Kummer maps

κw : A(Lw)⊗Q`/Z` ↪→ lim
−→
n

H1
fl(XLw , A[`n]) := H1

fl(XLw , A[`∞])

for any place w ∈ ΣL .

Definition 1.4.2. The `-part of the Selmer group of A over L is defined to
be

SelA(L)` = Ker

{
H1
fl(XL, A[`∞])→

∏
w∈ΣL

H1
fl(XLw , A[`∞])/Imκw

}

where the map is the product of the natural restrictions between cohomology
groups.
For infinite extensions L/F the Selmer group SelA(L)` is defined, as usual,
via direct limits.

For an infinite (`-adic Lie) extensionK/F , the group SelA(K)` admit natural
actions by Z` (because of A[`∞] ) and by G := Gal(K/F ). Hence it is a
module over the Iwasawa algebra Λ(G).
If L/F is a finite extension the group SelA(L)` is a cofinitely generated Z`-
module (see, e.g. [33, III.8 and III.9]). One can define the Tate-Shafarevich
group X(A/L) as the group that fits into the exact sequence

A(L)⊗Q`/Z` ↪→ SelA(L)` �X(A/L)[`∞] .
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According to the function field version of the Birch and Swinnerton-Dyer
conjecture, X(A/L) is finite for any finite extension L of F (some evidences
of BSD conjecture in the function field case can be found in [26] and [49]).
Taking Pontrjagin duals, it follows that

rankZ` SelA(L)∨` = rankZA(L)

which provides motivation for the study of (duals of) Selmer groups (recall
that the cohomology groups Hi

fl , hence the Selmer groups, are endowed
with the discrete topology).

Remark 1.4.3. When ` 6= p the torsion subschemes are Galois modules
and we can define Selmer groups via Galois cohomology since, in this case,

H1
fl(XL, A[`n]) ' H1

et(XL, A[`n]) ' H1(GL, A[`n](F ))

(see [32, III.3.9]). In order to lighten notations, each time we work with
` 6= p we shall use the classical notation Hi(L, ·) instead of Hi(GL, ·) and
Hi(L/E, ·) instead of Hi(Gal(L/E), ·). Moreover we write A[n] for A[n](F ),
putting A[`∞] :=

⋃
A[`n].

1.4.3 An equivalent definition for SelA(L)`

Let S be a finite set of primes of F which contains all primes of bad reduc-
tion for the abelian variety A/F . The extension F (A[`∞])/F is unramified
outside S (actually it is ramified exactly at the primes of bad reduction by
[42, Corollary 2 (b), p. 497]). So FS contains all `-torsion points of A and
A[`∞] is an unramified GFv -module for every v /∈ S. Thanks to that, for
every extension of F contained in FS , it is possible to give an equivalent
definition of the Selmer group (we shall use it in Chapter 3). Before giving
it we need the following

Proposition 1.4.4. In the setting described above, let ` ∈ Z be any prime
different from the characteristic of F and L/F a Galois extension such that
L ⊆ FS. Let ρ be the map

ρ : H1(F s/L,A[`∞])→
∏
w|v
v/∈S

H1(F sv /Lw, A[`∞]) .

Then

Ker(ρ) ' H1(FS/L,A[`∞]) .

Proof. First of all we observe that

H1(Funrv /Lw, A[`∞]) = 0 ∀ w|v /∈ S .
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Indeed, if Lw is local, then it follows from [34, Theorem 7.2.15] and [34,
Corollary 7.2.16] (because A[`∞] is unramified).
If Lw is not local, then we have that Gal(Funrv /Lw) has order prime with `.
To be more precise, Lw is not local if and only if the degree of the constant
field extension FLw/FFv is infinite. This means that there exists a surjective
map

Gal(Lw/Fv)� Z` .
Since Gal(Funrv /Fv) '

∏
q Zq, we have that Gal(Funrv /Lw) is isomorphic to

a subgroup of
∏
q 6=` Zq .

For every v /∈ S and w|v, we consider the map

ρS,w : H1(FS/L,A[`∞])→ H1(F sv /Lw, A[`∞]) .

Let x ∈ H1(FS/L,A[`∞]), then ρS,w(x) ∈ H1(FS,w/Lw, A[`∞]), which, via
the inflation map, embeds into H1(Funrv /Lw, A[`∞]) = 0. Therefore we have
H1(FS/L,A[`∞]) ⊆ Ker(ρ).
Conversely, let y ∈ Ker(ρ): for every v /∈ S, ρ(y) is a coboundary, i.e.,
∃ Q ∈ A[`∞] such that ρ(y)(σ) = Qσ − Q for any σ ∈ Gal(F sv /Lw). We
write Iv for the inertia group of v in Gal(F sv /Fv). Since A[`∞] is unramified
at v, ρ(y)(σ) = Qσ −Q = 0 for any σ ∈ Iv. So ρ(y)|Iv = 0, ∀ v /∈ S. Hence,
letting IS := Gal(F s/FS), we have ρ(y)|IS = 0. From the Inf-Res sequence

H1(FS/L,A[`∞]) ↪→ H1(F s/L,A[`∞])
Res−→ H1(F s/FS , A[`∞]) ,

it follows that
H1(FS/L,A[`∞]) ' Ker(Res) .

Since y ∈ Ker(ρ) implies y ∈ Ker(Res), we have y ∈ H1(FS/L,A[`∞]).

Let us consider the maps:

- θ : H1(FS/L,A[`∞])→
∏
w|v
v∈S

H1(F sv /Lw, A[`∞]) ;

- ρ : H1(F s/L,A[`∞])→
∏
w|v
v/∈S

H1(F sv /Lw, A[`∞]) ;

- η : H1(F s/L,A[`∞])→
∏
w|v
v∈S

H1(F sv /Lw, A[`∞]) .

In our setting

SelA(L)` = Ker(ρ) ∩Ker(η) and H1(FS/L,A[`∞]) ↪→ H1(F s/L,A[`∞]).

Besides, Ker(θ) ' H1(FS/L,A[`∞])∩Ker(η). So we can give the following
definition



10 Background

Definition 1.4.5. If ` 6= p the `-part of the Selmer group of A over L is

SelA(L)` = Ker

{
H1(FS/L,A[`∞])→

∏
w|v
v∈S

H1(Lw, A[`∞])

}
.

For the applications we have in mind it is useful to note that we can rewrite
the above definition as

SelA(L)` = Ker

{
H1(FS/L,A[`∞])→

⊕
v∈S

CoindGvG H1(Lw, A[`∞])

}
.

1.5 Characteristic elements

We summarize here the main results of [11] on the appropriate definition of
characteristic elements for modules over a noncommutative Iwasawa algebra.

Let G be a compact `-adic Lie group and Λ(G) its associated Iwasawa al-
gebra. Every Λ(G)-module M is assumed to be finitely generated. Assume
that G contains a closed normal subgroup H such that G/H ' Z`.

Definition 1.5.1. A multiplicatively closed subset T of Λ(G) is said to be a
left and right Ore set if, for each s ∈ T and r ∈ Λ(G), there exist t1, t2 ∈ T
and u1, u2 ∈ Λ(G) such that

su1 = rt1 and u2s = t2r .

Definition 1.5.2. Let S be the set of all s ∈ Λ(G) such that Λ(G)/Λ(G)s
is a finitely generated Λ(H)-module.

Theorem 1.5.3. The set S in Definition 1.5.2 is multiplicatively closed
and it is a left and right Ore set in Λ(G). The elements of S are non-zero
divisors in Λ(G).

Proof. See [11, Theorem 2.4].

Let M be a left or right Λ(G)-module. Then M is said to be S -torsion if,
for each m ∈M , there exists s ∈ S such that sm = 0 or ms = 0 (according
to the action). By [11, Proposition 2.3], M is finitely generated over Λ(H)
if and only if M is S -torsion.
Define the set

S ∗ :=
⋃
n>0

`nS
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which is again a multiplicatively closed left and right Ore set in Λ(G) whose
elements are non-zero divisors. Let Λ(G)S and Λ(G)S ∗ be the localizations
of Λ(G) at S and S ∗, so that

Λ(G)S ∗ = Λ(G)S

[1

`

]
.

It is clear that M is S ∗-torsion if and only if M/M(`) is finitely generated
over Λ(H) (where M(`) denotes the `-primary submodule of M). We define
MH(G) to be the category of all finitely generated Λ(G)-modules, which are
S ∗-torsion. An application of K-theory (see Appendix A for a quick review
of the basic notions needed here) provides a definition of characteristic ele-
ments for any object in the category MH(G).
Write K0(MH(G)) for the Grothendieck group of the category MH(G).
There is a connecting homomorphism

δG : K1(Λ(G)S ∗)→ K0(MH(G))

coming from Theorem A.1.5, which is surjective when G has no element
of order ` (see [11, Proposition 3.4]). Thanks to that (when G contains a
suitable subgroup H and has no elements of finite order `) one can give the
following definition.

Definition 1.5.4. For each module M in the category MH(G), a charac-
teristic element is any ξM ∈ K1(Λ(G)S ∗) such that

δG(ξM ) = [M ] .

We now briefly explain why Coates et al. in [11] choose such an element ξM
as a good candidate to be a characteristic element in Iwasawa theory.
Before seeing this, we recall the following

Definition 1.5.5. Let M be a compact G-module such that

(i) Hi(G,M) is finite for any i > 0;

(ii) Hi(G,M) = 0 for all but finitely many i.

Then we define the Euler characteristic of M as

χ(G,M) :=
∏
i>0

|Hi(G,M)|(−1)i .

Fix any integer n > 1 and consider the continuous homomorphism

ρ : G→ GLn(O)

where O is the ring of integers of a finite extension L of Q` .
Put MO = M ⊗Z` O and define

twρ(M) = MO ⊗O On .
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Then, for every M ∈ MH(G) we have that twρ(M) ∈ MH(G) (see [11,
Lemma 3.2]).
Write | · |` for the valuation of Q` and mρ = [L : Q`], where L is the
quotient field of O. Let ρ̂ be the contragradient representation of G, i.e.
ρ̂(g) = ρ(g−1)tr for g ∈ G, where ·tr denotes the transpose matrix.
The sought relation between a characteristic element of a module M and its
Euler characteristic is showed in the following

Theorem 1.5.6. Let M ∈ MH(G) and ξM a characteristic element for
M . Then, for every continuous homomorphism ρ : G → GLn(O) such that
χ(G, twρ̂(M)) is finite we have ξM (ρ) 6= 0,∞2 and

χ(G, twρ̂(M)) = |ξm(ρ)|−mρ` .

Proof. See [11, Theorem 3.6].

In Chapter 2 we are able to prove that, under suitable (mild) hypotheses,
the module SelA(K)∨` is in MH(G), so it is possible to associate a charac-
teristic element to it. Hopefully we can find a relation similar to the one
of Theorem 1.5.6 for the function field setting as predicted by [11] (for a
different approach and some results on this topic see, for example, [56]). In
Chapter 3 we provide some calculation on χ(G,SelA(K)`) but the subject
is not fully investigated yet.

1.6 Homotopy theory and pseudo-null modu-
les

In this section we recall Venjakob’s work on the definition of pseudo-null
Λ(G)-module for a noncommutative Iwasawa algebra and Jannsen’s homo-
topy theory leading to diagram (1.3) which will be crucial for the results of
Section 3.1.

1.6.1 Auslander regular rings

Let R be a ring. In what follows every R-module M is assumed to be finitely
generated.

Definition 1.6.1. (i) Let M 6= 0 be a Λ(G)-module. The grade of M is

j(M) := min{i : Ei(M) 6= 0} .

By convention j({0}) =∞.

2For a definition of ξM (ρ) see [11, p. 173]
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(ii) A Noetherian ring R is called Auslander-Gorenstein ring if it has finite
injective dimension and the following Auslander condition holds: for
any R-module M , any integer m and any submodule N of Em(M), the
grade of N satisfies j(N) > m.

(iii) A Noetherian ring R is called Auslander regular ring if it has finite
global homological dimension and the Auslander condition holds.3

Let now R be an Auslander regular ring of finite global dimension d and M
an R-module. There is a canonical filtration

T0(M) ⊆ T1(M) ⊆ · · · ⊆ Td−1(M) ⊆ Td(M) = M .

By convention Ti(M) = 0 for i < 0.

Definition 1.6.2. For a non zero module M , the number

δ(M) := min{i : Ti(M) = M}

is called the dimension of M . By convention δ({0}) = −∞.

Definition 1.6.3. We call an R module M pseudo-null if

δ(M) 6 d− 2 .

Note that when R is a commutative local noetherian Gorenstein ring, the
dimension δ(M) is exactly the Krull dimension of SuppR(M) (see [8, Corol-
lary 3.5.11]).

The Auslander regular rings have some remarkable properties which we col-
lect in the following proposition.

Proposition 1.6.4. Let R be an Auslander regular ring of finite global di-
mension d and let M be an R-module. Then

(i) Ti(M)/Ti−1(M) = 0 if and only if Ed−iEd−i(M) = 0;

(ii) j(M) + δ(M) = d for M 6= 0;

(iii) δ(Ti(M)) 6 i and Ti(M) is the maximal submodule of M with dimen-
sion δ less than or equal to i.

Proof. See [50, Proposition 3.5].

The above proposition allows us to provide a more computable version of
the definition of pseudo-null module. Indeed, by part (ii) we have that M
is a pseudo-null module if and only if E0(M) = E1(M) = 0.

3For more details on injective and global homological dimension see [53, Chapter 4].
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Moreover, since δ(Ti(M)) 6 i and every Ti(M) is the maximal submodule of
M with δ-dimension less than or equal to i (part (iii)), only the submodules
T0(M),. . .,Td−2(M) can be pseudo-null. If T0(M) = · · · = Td−2(M) = 0,
M does not have any nonzero pseudo-null submodule. This is the case when
EiEi(M) = 0 ∀ i > 2 (see (i)).

The most important result, which relates the Iwasawa algebra Λ(G) to Aus-
lander rings, is the following

Theorem 1.6.5 (O. Venjakob, (2002)). Let G be a compact `-adic Lie group
with no points of order `. Then Λ(G) is an Auslander regular ring with global
dimension d = cd`(G) + 1.

Proof. See [50, Theorem 3.26].

1.6.2 Powerful diagram

In this section we will see one of the main tools which will be used in Chapter
3: the powerful diagram.
For the missing details of the proofs the reader can consult [34, Chapter V,
§ 6] or [37, Section 4]4.
We will deal with `-adic Lie extensions K/F , i.e., Galois extensions with
Galois group an `-adic Lie group. Unless noted otherwise, we always assume
that our extensions are unramified outside a nonempty and finite set S of
primes of ΣF which always contains all primes of bad reduction of A/F .
Replacing, if necessary, F by a finite extension we can (and will) assume
that K is contained in the maximal pro-` extension of F∞ := F (A[`∞])
unramified outside S. The prime ` is assumed to be different from p.
We have the following picture

F∞K

Ω

FS

F

G

H

G

where Ω is the maximal pro-` extension of F∞ contained in FS . Let us de-
note G = Gal(Ω/F ), H = Gal(Ω/K), G = Gal(K/F ) and A := A[`∞]. The

4Those results hold in our setting as well because we will work with the Λ(G)-module
A[`∞], where ` 6= p.
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extension F∞/F is called the trivializing extension.

Let us denote with I(G) the kernel of the augmentation map Λ(G) → Z` .
Tensoring the natural exact sequence I(G) ↪→ Λ(G) � Z` with A∨ ' Z2g

` ,
one gets

I(G)⊗Z` A
∨ ↪→ Λ(G)⊗Z` A

∨ � A∨ .

Since Λ(G)⊗A∨ is a projective Λ(G)-module ([37, Lemma 4.2]) the previous
sequence yields

H1(H,A∨) ↪→ (I(G)⊗Z` A
∨)H → (Λ(G)⊗Z` A

∨)H � (A∨)H . (1.1)

In order to shorten notations we put:

- X = H1(H,A∨) ;

- Y = (I(G)⊗Z` A
∨)H ;

- J = Ker{(Λ(G)⊗Z` A
∨)H → (A∨)H} .

So the sequence (1.1) becomes:

X ↪→ Y � J . (1.2)

For our purpose it is useful to think X as H1(FS/K,A)∨. Indeed, H1(H,A∨)
' H1(Ω/K,A)∨ ' H1(FS/K,A)∨.
Let F(r) denote a free pro-`-group of rank r = dimG and denote by N (resp.
R) the kernel of the natural map F(r) → G (resp. F(r) → G). For any
profinite group H, we denote by Hab(`) the maximal pro-`- quotient of the
maximal abelian quotient of H.

Theorem 1.6.6 (Powerful diagram). In the above setting, there is the fol-
lowing commutative exact diagram of Λ(G)-modules

H2(FS/K,A)∨ (H1(Nab(`),A)H)∨ H1(R,A)∨ X

H2(FS/K,A)∨ (Nab(`)⊗A∨)H Λ(G)2gr Y

J J

� � // // // //

� � // // // //

� _

��

����

� _

��

����

'

��

(1.3)

Besides, (Nab(`)⊗A∨)H is a projective Λ(G)-module.

Proof. See [37, Lemma 4.5].
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From diagram (1.3) it is easy to see that if H2(FS/K,A) = 0 the module
Y has projective dimension 6 1. Whenever this is true the definition of J
provides the isomorphisms:

Ei(X) ' Ei+1(J) ∀ i > 2 , (1.4)

and
Ei(J) ' Ei+1((A∨)H) ∀ i > 2 , (1.5)

which will be repeatedly used in our computations.
We shall need also a “localized” version of the sequence (1.2). For every
v ∈ S and a w ∈ ΣK dividing v, we define

Xv = H1(Kw,A)∨ and Yv = (I(Gv)⊗Z` A
∨)Hv

(with Gv the decomposition group of v in G and Hv = H ∩ Gv ). The exact
sequence

Xv ↪→ Yv � Jv (1.6)

fits into the localized version of diagram (1.3). If Kw is still a local field,
then Tate local duality ([34, Theorem 7.2.6]) yields

H2(Kw,A) = H2(Kw, lim−→
n

A[`n]) ' lim
←−
n

H0(Kw, A
t[`n])∨ = 0 .

If Kw is not local, then `∞ divides the degree of the extension Kw/Fv and
H2(Kw,A) = 0 by [34, Theorem 7.1.8 (i)]. Therefore Yv always has projec-
tive dimension 6 1 and

Ei(Xv) ' Ei+1(Jv) ' Ei+2((A∨)Hv ) ∀ i > 2 . (1.7)

We note that, since ` 6= p, the image of the local Kummer maps is always 0
(see [12, Proposition 4.1 and the subsequent Remark]), hence

Xv = H1(Kw,A)∨ = (H1(Kw,A)/Imκw)∨ ' (H1(Kw, A)[`∞])∨ .

Then Definition 1.4.5 for L = K can be written as

SelA(K)` = Ker

{
ψ : X∨ −→

⊕
S

CoindGvG X∨v

}

and, dualizing, we get a map

ψ∨ :
⊕
S

IndGGvXv −→ X

whose cokernel is exactly S := SelA(K)∨` .



Chapter 2

Control Theorems

Let K/F be an `-adic Lie extension unramified outside a finite and nonempty
set of primes S. Here bad reduction primes of A are not required to stay in
S. As usual, we write G for the Galois group of K/F .

In this chapter we study SelA(K)∨` and (under some mild hypotheses) prove
that it is a finitely generated Z`[[G]]-module via generalizations of Mazur’s
Control Theorem. If G has no elements of order ` and contains a closed
normal subgroup H such that G/H ' Z`, we are able to give sufficient
conditions for SelA(K)∨` to be finitely generated as Z`[[H]]-module and,
consequently, a torsion Z`[[G]]-module. We deal with both cases ` 6= p and
` = p.

We will consider `-adic Lie extensions K/F ′ (for any finite extension F ′/F )
and study the kernels and cokernels of the natural restriction maps

SelA(F ′)` −→ SelA(K)
Gal(K/F ′)
`

in Theorems 2.1.2 and 2.2.3.
We shall do this via the snake lemma applied to the following diagram

SelA(F ′)` H1
fl(XF ′ , A[`∞]) GA(F ′)

SelA(K)
Gal(K/F ′)
`

H1
fl(XK , A[`∞])Gal(K/F ′) GA(K)Gal(K/F ′)

aK/F ′

��

� � //

bK/F ′

��

// //

cK/F ′

��
� � // //

(2.1)

where, for any field L, we put

GA(L) = Im

{
H1
fl(XL, A[`∞])→

∏
w∈ΣL

H1
fl(XLw , A[`∞])/Imκw

}
.

17
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2.1 Control theorem for ` 6= p.

As pointed out by Coates and Greenberg in [12, Proposition 4.1 and the
subsequent Remark], the image of the Kummer map κw is trivial for any
w ∈ ΣL, because Lw has characteristic p 6= `. Therefore, in this case, the
`-part of the Selmer group is simply

SelA(L)` = Ker

{
H1(L,A[`∞])→

∏
w∈ΣL

H1(Lw, A[`∞])

}
.

The following lemma holds for any prime ` (including ` = p) and we shall
need it in most of our control theorems.

Lemma 2.1.1. Let G be any compact `-adic Lie group of finite dimension
and let M be a discrete Λ(G)-module which is cofinitely generated over Z`
(resp. finite). Then, for any closed subgroup V of G, the cohomology groups
H1(V,M) and H2(V,M) are cofinitely generated (resp. finite) Z`-modules
as well and their coranks (resp. their orders) are bounded independently of
V.

Proof. Obviously we can restrict our attention to pro-` subgroups of G and,
by [16, Ch. 1, Exercise 12], any group of this kind is contained in a pro-`
Sylow subgroup P` . Moreover any pro-` Sylow is open by Theorem 1.2.6.
Let V be any closed pro-` subgroup of some pro-` Sylow P` and put

di(V) := dimZ/`Z H
i(V,Z/`Z) i = 1, 2 .

Since P` has finite rank (in the sense of Definition 1.2.4) the cardinalities of a
minimal set of topological generators for V, i.e., the d1(V)’s, are all finite and
bounded by d1(P`). Moreover, since P` contains a uniform open subgroup
U (by Theorem 1.2.6), one has

d1(V) 6 d1(U) = d := dimension of G

for all closed subgroups V of U. For d2(V) (i.e., the numbers of relations for
a minimal set of topological generators of V) the bound is provided by [16,
Theorem 4.35] (see also [16, Ch. 4, Exercise 11]) again only in terms of the

dimension and rank ofG (for example, if U is as above, then d2(U) = d(d−1)
2 ).

We put d̃1 = d̃1(G) (resp. d̃2 = d̃2(G) ) as the upper bound for all the d1(V)’s
(resp. d2(V)’s) as V varies among the closed subgroups of any pro-` Sylow
of G.

Let Mdiv be the maximal divisible subgroup of M and consider the finite
quotient M/Mdiv . By [43, Ch. I, §4, Proposition 20] and the Corollaire
right after it, the finite group M/Mdiv admits a V-composition series with
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quotients isomorphic to Z/`Z. Hence, working as in [18, Proposition 3.1],
one immediately finds

|Hi(V,M/Mdiv)| 6 |M/Mdiv|di(V) 6 |M/Mdiv|d̃i

for i = 1, 2.
Note that, if M is finite (hence equal to M/Mdiv ), we have already com-
pleted the proof of the finiteness of the Hi(V,M).
Moreover, in this case the orders are also bounded independently of V .

To deal with the divisible part note that Mdiv[`] is finite (say of order `λ ,
where λ = corankZ`M), thus, by what we have just proved,

|Hi(V,Mdiv[`])| 6 `λd̃i (i = 1, 2) .

The cohomology of the exact sequence

Mdiv[`] ↪→Mdiv
`
�Mdiv

yields surjective morphisms

Hi(V,Mdiv[`])� Hi(V,Mdiv)[`] (i = 1, 2) ,

therefore the groups on the right have finite and bounded orders as well.
Hence the Hi(V,Mdiv) are cofinitely generated Z`-modules with coranks
bounded by

d̃iλ = d̃icorankZ`M

(which is a bound for the whole Hi(V,M) since the Z`-corank of the finite
part is 0).

Theorem 2.1.2. With the above notations, for every finite extension F ′ of
F contained in K, the kernels and cokernels of the maps

aK/F ′ : SelA(F ′)` → SelA(K)
Gal(K/F ′)
`

are cofinitely generated Z`-modules (i.e., their Pontrjagin duals are finitely
generated Z`-modules). If all primes in S and all primes of bad reduction
have decomposition groups open in G, then the coranks of kernels and coker-
nels are bounded independently of F ′ . Moreover if A[`∞](K) is finite, then
such kernels and cokernels are of finite order.

Proof. We shall use the snake lemma for the diagram (2.1): hence, to prove
the theorem, we are going to bound the kernels and cokernels of the maps
bK/F ′ and cK/F ′ .
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The maps bK/F ′ From the Hochschild-Serre spectral sequence we have
that

1. Ker(bK/F ′) ' H1(K/F ′, A[`∞](K))

2. Coker(bK/F ′) ⊆ H2(K/F ′, A[`∞](K)) .

We can apply Lemma 2.1.1 with G = Gal(K/F ) and M = A[`∞](K). Hence
Ker(bK/F ′) and Coker(bK/F ′) are cofinitely generated Z`-modules whose
coranks are bounded by

d̃1(Gal(K/F ))corankZ`A[`∞](K) and d̃2(Gal(K/F ))corankZ`A[`∞](K)

respectively. Moreover, if A[`∞](K) is finite, we have the bound

|Hi(V, A[`∞](K))| 6 |A[`∞](K)|d̃i(Gal(K/F ))

(for i = 1, 2).

The maps cK/F ′ For every prime v ∈ ΣF , let v′ be a place of F ′ lying
above v. Observe that

Ker(cK/F ′) ↪→
∏

v′∈ΣF ′

⋂
w∈ΣK
w|v′

Ker(dw)

where
dw : H1(F ′v′ , A[`∞])→ H1(Kw, A[`∞])

and, by the Inf-Res sequence,

Ker(dw) = H1(Kw/F
′
v′ , A[`∞](Kw)) .

From the Kummer exact sequence one can write the following diagram

H1(F ′v′ , A[`∞])

dw

��

� � // H1(F ′v′ , A(F sv ))

fw

��
H1(Kw, A[`∞]) �

� // H1(Kw, A(F sv ))

and deduce from it the inclusion

Ker(dw) ↪→ Ker(fw) ' H1(Kw/F
′
v′ , A(Kw)) .

Since this last group is obviously trivial if the prime v′ splits completely we
limit ourselves to the study of this local kernels for primes which are not
totally split in K/F ′ .
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If v is a prime of good reduction for A and unramified in K/F ′, then [33,
Ch. I, Proposition 3.8] yields

H1((F ′v′)
unr/F ′v′ , A((F ′v′)

unr)) = 0 .

Via the inflation map one immediately gets H1(Kw/F
′
v′ , A(Kw)) = 0.

Thus we are left with

Ker(cK/F ′) ↪→
∏

v′∈ΣF ′
v′|v∈S∗

⋂
w∈ΣK
w|v′

Ker(dw)

where S∗ is the finite set composed by:

- all primes in S;

- all primes not in S and of bad reduction for A.

To find bounds for these primes we shall use Tate’s theorems on (local)
duality and (local) Euler-Poincaré characteristic.
By [34, Theorem 7.1.8], the group H1(F ′v′ , A[`∞]) is finite and we can bound
its order using the Euler characteristic

χ(F ′v′ , A[`∞]) :=
|H0(F ′v′ , A[`∞])||H2(F ′v′ , A[`∞])|

|H1(F ′v′ , A[`∞])|
.

From the pairing on cohomology induced by the Weil pairing (see, for ex-
ample, [33, Ch. I, Remark 3.5]), one has that the group H2(F ′v′ , A[`∞]) is
the (Pontrjagin) dual of H0(F ′v′ , A

t[`∞]), so all the orders in the formula are
finite. Moreover, by [34, Theorem 7.3.1], χ(F ′v′ , A[`∞]) = 1 1, therefore

|H1(F ′v′ , A[`∞])| = |A[`∞](F ′v′)||At[`∞](F ′v′)| .

The inflation map

H1(Kw/F
′
v′ , A[`∞](Kw)) ↪→ H1(F ′v′ , A[`∞])

provides again the finiteness of the kernels (but note that here, in general,
the orders are not bounded).

1The statement is for finite modules (i.e., it’s true for all the modules A[`n] for any n),
but limits are allowed here since the numerator stabilizes, i.e., there is an n such that

|A[`m](F ′v′ )||A
t[`m](F ′v′ )| = |A[`n](F ′v′ )||A

t[`n](F ′v′ )|

for all m > n.
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Remarks 2.1.3.

1. In the previous theorem (and in all control theorems which will follow,
i.e., Theorems 2.1.7, 2.1.15, 2.2.3 and 2.2.8) we do not require any
assumption on the reduction of A outside S. Hypotheses of that kind
were used, for example, in [36, Theorem 1.9].

2. Note that the local kernels are always finite, the additional hypothesis
on the finiteness of A[`∞](K) was only used to bound the orders of
Ker(bK/F ′) and Coker(bK/F ′).

3. Most of the bounds are independent of F ′ (in particular the ones for
Ker(aK/F ′) ), but to get uniform bounds for Coker(aK/F ′) one also
needs to bound the number of nontrivial groups appearing in the pro-
duct which contains Ker(cK/F ′). In particular one needs finitely many
nontrivial Ker(dw)’s and the only way to get this is assuming that the
decomposition groups are open. Note that if there is at least one un-
ramified prime of bad reduction such hypothesis on its decomposition
group immediately yields that G contains a subgroup isomorphic to Z`
with finite index.

We can be a bit more precise with the local bounds for the unramified primes
of bad reduction thanks to the following

Proposition 2.1.4. If v is an unramified prime of bad reduction (with non-
trivial decomposition group) and v′|v, then H1(Kw/F

′
v′ , A[`∞](Kw)) is finite

and its order is bounded independently of F ′ .

Proof. The `-part of the Galois group Gal(Kw/F
′
v′) is a finite cyclic `-group

or it is isomorphic to Z` . Moreover

A[`∞](Kw)Gal(Kw/F
′
v′ ) = A[`∞](F ′v′)

is finite, so, in the Z` case (i.e., when Kw contains (F ′v′)
`,unr the unramified

Z`-extension of F ′v′ ), we can apply [4, Remark 3.5] to get

|H1(Kw/F
′
v′ , A[`∞](Kw))| 6 |A[`∞](Kw)/A[`∞](Kw)div| .

A similar bound (independent from F ′ ) holds for the finite case as well. One
just uses the inflation map to H1(Kw(F ′v′)

`,unr/F ′v′ , A[`∞](Kw(F ′v′)
`,unr))

which has order bounded by |A[`∞](Kw(Fv)
`,unr)/A[`∞](Kw(Fv)

`,unr)div|.

We summarize the given bounds with the following

Corollary 2.1.5. In the setting of Theorem 2.1.2 assume that all primes
in S and all primes of bad reduction have decomposition groups open in G,
then one has:
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(i) corankZ`Ker(aK/F ′) 6 d̃1corankZ`A[`∞](K) and

corankZ`Coker(aK/F ′) 6 d̃2corankZ`A[`∞](K) ;

(ii) if A[`∞](K) is finite, then |Ker(aK/F ′)| 6 |A[`∞](K)|d̃1 and

|Coker(aK/F ′)| 6 |A[`∞](K)|d̃2
∏

v′|v∈S∗−S

αv
∏

v′|v∈S

βv′

(where

αv = |A[`∞](Kw(Fv)
`,unr)/A[`∞](Kw(Fv)

`,unr)div|

and
βv′ = |A[`∞](F ′v′)||At[`∞](F ′v′)| ) ;

(iii) if A[`∞](K) is finite and, for all primes v ∈ S, A[`∞](Kw) is finite for

any prime w|v′|v, then |Ker(aK/F ′)| 6 |A[`∞](K)|d̃1 and

|Coker(aK/F ′)| 6 |A[`∞](K)|d̃2
∏
v′|v

v∈S∗\S

αv
∏
v′|v
v∈S

|A[`∞](Kw)||At[`∞](Kw)|.

The bounds in (i) are independent of F ′ (while the values appearing in (iii)
do not depend on F ′ but the number of the factors in the product does).

2.1.1 The case K = F (A[`∞])

The finiteness of A[`∞] is not a necessary condition to get finite kernels
and cokernels in the control theorem. An important example is provided by
the extension K = F (A[`∞]) (this extensions has been studied in details in
[40] in the case A = E, an elliptic curve). Fix a basis of A[`∞], denote by
T`(A) := lim

←−
n

A[`n] the `-adic Tate module of A and consider the continuous

Galois representation

ρ : Gal(F s/F )→ Aut(T`(A)) ' GL2g(Z`)

provided by the action of Gal(F s/F ) on the chosen basis. Since Ker(ρ) is
given by the automorphisms which fix A[`∞], one gets an isomorphism

Gal(K/F ) ' ρ(Gal(F s/F ))

and, consequently, an embedding

Gal(K/F ) ↪→ GL2g(Z`) .

Since Gal(F s/F ) is compact, its image under ρ must be a compact subgroup
of GL2g(Z`). As the latter is Hausdorff, ρ(Gal(F s/F )) is closed and so it is
an `-adic Lie group.
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Remark 2.1.6. When A has genus 1 (i.e., it is an elliptic curve), a theorem
of Igusa (analogous to Serre’s open image theorem) gives a more precise
description of Gal(K/F ) (for a precise statement and a proof see [5] and the
references there). For a general abelian variety such open image statements
are not known: some results in this direction for abelian varieties of “Hall
type” can be found in [19] and [1] .

Theorem 2.1.7. Let K = F (A[`∞]), then the kernels and cokernels of the
maps

aK/F ′ : SelA(F ′)` → SelA(K)
Gal(K/F ′)
`

are finite.

Proof. Observe that thanks to [44, Corollary 2 (b), p. 497] only primes of
bad reduction for A are ramified in the extension F (A[`∞])/F ; so, in this
case, the set S is obviously finite and there are no unramified primes of bad
reduction.
The bounds for Ker(cK/F ′) are already in Theorem 2.1.2, so we only need to
provide bounds for Ker(bK/F ′) and Coker(bK/F ′), i.e., for H1(K/F ′, A[`∞])
and H2(K/F ′, A[`∞]) (note that here A[`∞](K) = A[`∞] ).
Put

V`(A) := T`(A)⊗Z` Q` ,
then one has an exact sequence (of Galois modules)

T`(A) ↪→ V`(A)� A[`∞] .

By [42, Théorème 2] and the subsequent Corollaire (which hold in our set-
ting as well, as noted in the Remarques following the Corollaire), one has
Hi(K/F ′, V`(A)) = 0 for any i > 0, moreover the Hi(K/F ′, T`(A)) are all
finite groups. Hence we get isomorphism

Hi(K/F ′, T`(A)) ' Hi−1(K/F ′, A[`∞]) for any i > 1

which provide the finiteness of Ker(bK/F ′) and Coker(bK/F ′).

2.1.2 Λ-modules for ` 6= p

In this section we assume that our Galois group G (still an `-adic Lie group)
has no elements of order ` and write Λ(G) for the associated Iwasawa algebra.
First we describe the structure of SelA(K)∨` as a Λ(G)-module, showing that
it is a finitely generated (sometimes torsion) Λ(G)-module. Then, assuming
that G contains a subgroup H such that G/H ' Z` , we will show that
SelA(K)∨` is finitely generated as a Λ(H)-module as well (this is equivalent
to prove that SelA(K)∨` is S -torsion, in the language of Section 1.5). For
the latter we shall need a slightly modified version of the previous Theorem
2.1.2. As usual the main tool for the proof (along with the control theorem)
is the following generalization of Nakayama’s Lemma.
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Theorem 2.1.8. Let G be a topologically finitely generated, powerful and
pro-` group and I any proper ideal. Let M be a compact Λ(G)-module, then:

(i) if M/IM is finitely generated as a Λ(G)/I-module, then M is finitely
generated as a Λ(G)-module;

(ii) if G is soluble uniform and M/IGM is finite, then M is a torsion Λ(G)-
module (where IG = Ker{Λ(G) → Z` } is the augmentation ideal of
Λ(G) ).

Proof. See the main results of [2].

Let F(`)
p be the unramified Z`-extension of Fp . One of the most (arithmeti-

cally) interesting example is provided by extensions K/F containing F(`)
p F ,

where one can take H = Gal(K/F(`)
p F ). This can be considered as a very

general setting thanks to the following lemma.

Lemma 2.1.9. Let K/F be a `-adic Lie extension with ` 6= 2 and p, then
there exists a field K ′ ⊇ K such that

(i) K ′ contains F(`)
p F ;

(ii) K ′/F is unramified outside a finite set of places;

(iii) Gal(K ′/F ) is a compact `-adic Lie group without elements of order `.

Proof. Since ` 6= p the proof is the same of [9, Lemma 6.1] (where the
statement is for number fields). One basically considers the field K(µ`∞)

(which obviously contains F(`)
p F ), where µ`∞ is the set of all `-power roots of

unity, and then cuts out elements of order ` in Gal(K(µ`∞)/F (µ`∞)) using
Kummer theory to describe generators for subextensions of degree `.

Structure of SelA(K)∨` as Λ(G)-module

We are now ready to prove the following

Theorem 2.1.10. In the setting of Theorem 2.1.2, SelA(K)∨` is a finitely
generated Λ(G)-module.

Proof. Consider any open, powerful and pro-` subgroup G′ of G. Since
Λ(G) is finitely generated over Λ(G′) it is obvious that SelA(K)∨` is finitely
generated over Λ(G) if and only if it is finitely generated also over Λ(G′).
So we are going to prove the statement for such G′.
Consider the exact sequence

Coker(aK/F ′)
∨ ↪→ (SelA(K)G

′

` )∨ → SelA(F ′)∨` � Ker(aK/F ′)
∨ (2.2)
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where F ′ is the fixed field of G′. We know from Theorem 2.1.2 that the mo-
dules Coker(aK/F ′)

∨ and Ker(aK/F ′)
∨ are finitely generated Z`-modules.

Moreover, since F ′/F is finite, SelA(F ′)∨` is a finitely generated Z`-module

([33, III.8 and III.9]). Hence (SelA(K)G
′

` )∨ is a finitely generated Z`-module

thanks to the exactness of the sequence (2.2). Since (SelA(K)G
′

` )∨ is iso-
morphic to SelA(K)∨` /IG′SelA(K)∨` , where IG′ is the augmentation ideal,
our claim follows from Theorem 2.1.8.

Remark 2.1.11. Note that in the above proof we do not need any hypo-
thesis on the elements of G of order `: it works in general for any compact
`-adic Lie group G. That additional hypothesis is necessary only to prove
that SelA(K)∨` is a torsion module, because we need to avoid zero divisors.

Theorem 2.1.12. Suppose that there exists an open uniform, pro-` and
soluble subgroup G′ of G, with fixed field F ′ . Assume that A[`∞](K) and
SelA(F ′)∨` are finite. Then SelA(K)∨` is a torsion Λ(G′)-module.

Proof. Just use Theorems 2.1.2 and 2.1.8.

Remark 2.1.13. The hypothesis on the existence of the soluble subgroup
G′ is necessary. Indeed, when G′ is not soluble it is possible to find a non
torsion ideal J of Λ(G′) such that J/IG′J is finite (see [2, p. 228]). However,
we observe that whenG is finitely generated (not only “topologically” finitely
generated) such an open soluble subgroup G′ always exists (see [28]).

In the context of non-commutative Iwasawa algebras the right definition of
torsion module ([50, Definition 2.6]) can be stated in the following way: a
finitely generated Λ(G)-module M is a Λ(G)-torsion module if and only if M
is a Λ(G′)-torsion module (classical meaning) for some open pro-` subgroup
G′ ⊆ G such that Λ(G′) is integral. So Theorem 2.1.12 immediately yields

Corollary 2.1.14. Let G be without elements of order ` and suppose that
there exists an open, uniform, pro-` and soluble subgroup G′ of G. If the
groups A[`∞](K) and SelA(F ′)∨` (where F ′ is the fixed field of G′ ) are finite,
then SelA(K)∨` is a torsion Λ(G)-module.

Structure of SelA(K)∨` as Λ(H)-module

Assume that G contains a closed normal subgroup H such that G/H =
Γ ' Z`. We are going to prove that SelA(K)∨` is a finitely generated Λ(H)-
module under some mild condictions, as predicted by Conjecture 5.1 of [11].

First note that, letting F(`)
p be the unique Z`-extension of Fp , by [4, Propo-

sition 4.3], one has K ′ := KH = F(`)
p F . Hence all primes of F are unramified

in K ′ and none of them is totally split.
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As mentioned before we need to prove a slightly modified version of the
Control Theorem. We will work with the following diagram

SelA(K ′)`

a

��

� � // H1(K ′, A[`∞])

b

��

// // GA(K ′)

c

��
SelA(K)H`

� � // H1(K,A[`∞])H // GA(K)H

(2.3)

similar to the diagram (2.1) except for the “infinite level” of the upper row,
and we will again apply the snake lemma.

Theorem 2.1.15. With the above notations the kernel and cokernel of the
map

a : SelA(K ′)` → SelA(K)H`

are cofinitely generated Z`-modules. Moreover, if A[`∞](K) is finite and, for
any w|w′|v ∈ S, the group A[`∞](Kw) is finite as well, then Ker(a) and
Coker(a) are finite.

Proof. As usual we are going to work on kernels and cokernels of the maps
b and c in the diagram (2.3).

The map b From the Hochschild-Serre spectral sequence we have that

Ker(b) ' H1(K/K ′, A[`∞](K)) and Coker(b) ⊆ H2(K/K ′, A[`∞](K)) .

One simply observes that Gal(K/K ′) is still an `-adic Lie group and then
applies Lemma 2.1.1. Indeed, all arguments are group theoretic and they do
not depend on the base field K ′ being a global field or not. Hence Ker(b)
and Coker(b) are cofinitely generated Z`-modules and are finite if A[`∞](K)
is finite.

The map c For every prime v ∈ ΣF let w′ be a place of K ′ lying above v.
As in Section 2.1, from the Inf-Res sequence, one gets

Ker(dw) = H1(Kw/K
′
w′ , A[`∞](Kw)) .

Since Gal(Kw/K
′
w′) is an `-adic Lie group, every Ker(dw) is a cofinitely

generated Z`-module. The result for Ker(c) will follow from Ker(dw) = 0
for all but finitely many primes. As before the Kummer sequence provides
the following diagram

H1(K ′w′ , A[`∞])

dw

��

� � // H1(K ′w′ , A(F sv ))

fw

��
H1(Kw, A[`∞])

� � // H1(Kw, A(F sv ))
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and, from it, one has the inclusion

Ker(dw) ↪→ Ker(fw) ' H1(Kw/K
′
w′ , A(Kw))

or, more precisely, the isomorphism

Ker(dw) ' H1(Kw/K
′
w′ , A(Kw))[`∞] .

Hence we are not going to consider places which are totally split in K/K ′,
because they obviously provide Ker(dw) = 0.

Unramified primes Let v be unramified in the extension K/F , then,
since Gal(K ′w′/Fv) ' Z`, K ′w′ is the maximal unramified pro-`-extension of
Fv and the `-part of Gal(Kw/K

′
w′) is trivial. Therefore the `-part of the

(torsion) module H1(Kw/K
′
w′ , A(Kw)) is trivial as well.

Because of the splitting of primes in K ′ , we are already left with finitely
many places. So Ker(c) is a cofinitely generated Z`-module and the first
statement on Ker(a) and Coker(a) being cofinitely generated over Z` is
proved.

Ramified primes Let v ∈ S and recall that K ′w′ is not a local field any-
more. If for any w|w′|v the group A[`∞](Kw) is finite, then by Lemma 2.1.1
H1(Kw/K

′
w′ , A[`∞](Kw)) is finite.

Corollary 2.1.16. In the setting of Theorem 2.1.15, one has

(i) if SelA(K ′)` is a cofinitely generated Z`-module, then SelA(K)∨` is
finitely generated over Λ(H);

(ii) suppose that there exists an open, soluble, uniform and pro-` subgroup
H ′ of H; if the groups SelA(KH′)` and A[`∞](K) are finite and for
any w|w′|v ∈ S also A[`∞](Kw) is finite, then SelA(K)∨` is a torsion
Λ(H)-module.

Proof. The arguments are the same we used for the analogous results for
Λ(G)-modules.

Remark 2.1.17. To get SelA(K)∨` finitely generated over Λ(G) we only
need to assume that finitely many primes of F are ramified in the Lie exten-

sion K/F . Moreover if SelA(F(`)
p F )` is a cofinitely generated Z`-module,

then SelA(K)∨` is finitely generated also over Λ(H). Since H has infi-
nite index in G, being finitely generated over Λ(G) and Λ(H) implies that
SelA(K)∨` is Λ(G)-torsion (assuming that G does not contain any element
of order `). So this is another way to obtain torsion Λ(G)-modules without
assuming the finiteness of A[`∞](K) (which we needed in Corollary 2.1.14
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and is obviously false, for example, for K = F (A[`∞]) ). Moreover, as men-
tioned in Section 1.5, proving the finitely generated condition over Λ(G) and
Λ(H) (as done also for all the cases included in Corollary 2.1.16) yields that
SelA(K)∨` is in the category MH(G) , i.e., allows us to define a characteristic
element for SelA(K)∨` (without the Λ(H)-module structure, proving that a
module is Λ(G)-torsion is not enough in the noncommutative case).

Example 2.1.18. Take K = F (A[`∞]) as in Section 2.1.1. This kind of
extension realizes naturally most of our assumptions. First of all, from [44],
S is just the set of places of bad reduction for A and it is obviously finite
(moreover S = S∗ in the notations of Section 2.1). As a consequence, by
Theorem 2.1.10 we get SelA(K)∨` always finitely generated over Λ(G). Then,
since Gal(K/F ) embeds in GL2g(Z`), it is easy to see that for ` > 2g + 1
the Galois group contains no elements of order ` so it makes sense to look
for torsion modules. By the Weil-pairing we can take H such that K ′/F
is the unramified Z`-extension of the constant field of F . Because of our
choice of H, primes in K ′ above those in S are finitely many. So, thanks to
Theorem 2.1.15 if SelA(K ′)∨` is finitely generated over Z`, then SelA(K)∨` is
also finitely generated over Λ(H) (hence Λ(G)-torsion).
One can provide examples of Selmer groups SelA(K ′)` cofinitely generated
over Z` in the work of Pacheco ([38, Proposition 3.6], which generalizes to
abelian varieties the analogous statement of Ellenberg in [17, Proposition
2.5] for elliptic curves). For more details on the application of Ellenberg’s
results to the noncommutative setting of F (A[`∞])/F (like computations of
coranks and Euler characteristic of Selmer groups) see Sechi’s (unpublished)
PhD thesis [40].

2.2 Control theorem for ` = p

In order to work with the p-torsion part we need to use flat cohomology as
mentioned in Section 1.4. We will work with diagram (2.1) but, as we will
see, the kernels and cokernels appearing in the snake lemma sequence will
still be described in terms of Galois cohomology groups. The main difference
is provided by the fact that the images of the local Kummer maps will be
nontrivial.
To handle the local kernels we shall need the following

Lemma 2.2.1. Let E be a local function field and let L/E be an (infinite)
p-adic Lie extension. Let A be an abelian variety defined over E with good
ordinary reduction. Let I be the inertia group in Gal(L/E) and assume it is
nontrivial. Then H1(L/E,A(L)) (Galois cohomology group) is a cofinitely
generated Zp-module. Moreover, if I has finite index (i.e., it is open) in
Gal(L/E), then H1(L/E,A(L)) is finite.
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Proof. Let Â (resp. A) be the formal group associated to A (resp. the
reduction ofA at the prime of E). Because of good reduction the natural map
A(E′)→ A(FE′) is surjective for any extension E′/E. Hence the sequence

Â(OL) ↪→ A(L)� A(FL)

is exact. Taking Gal(L/E) cohomology (and recalling that A(E) → A(FE)
is surjective), one gets

H1(L/E, Â(OL)) ↪→ H1(L/E,A(L))→ H1(L/E,A(FL))

and we will focus on the right and left terms of this sequence from now on.
By [47, Theorem 2 (a)], one has an isomorphism

H1(E, Â(OE)) ' Hom(At[p∞](FE),Qp/Zp)

(the statement of the theorem requires a Zdp-extension but part (a) holds
independently of that). Therefore the inflation map provides an inclusion

H1(L/E, Â(OL)) ↪→ Hom(At[p∞](FE),Qp/Zp)

and, since A and At are isogenous, the term on the right is finite of order
|At[p∞](FE)| = |A[p∞](FE)|.

For H1(L/E,A(FL)) we consider two cases:

Case 1: I is open in Gal(L/E). Just considering p-parts we can assume
that I is open in a p-Sylow Pp of Gal(L/E) and we let LI be its fixed field.
Let Pp := Gal(LI/E) (a finite group) and note that, since L/LI is a totally
ramified extension, one has that FL = FLI is still a finite field. The Inf-Res
sequence reads as

H1(LI/E,A(FLI )) ↪→ H1(L/E,A(FL))→ H1(L/LI , A(FL)) .

The group on the left is obviously finite and for the one on the right we can
use [18, Proposition 3.1] as done previously in Lemma 2.1.1 (because I is
still a p-adic Lie group) to get

|H1(L/LI , A(FL))| 6 |A(FL))|d̃1

where the exponent d̃1 = d̃1(Gal(L/E)) only depends on Gal(L/E).

Case 2: I has infinite index in Gal(L/E). We use the same sequence

H1(LI/E,A(FLI )) ↪→ H1(L/E,A(FL))→ H1(L/LI , A(FL))
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but now FL is not a finite field anymore: indeed it contains the Zp-extension
of FE (because unramified extensions come from extensions of the field of
constants). For the group on the right we again work as in Lemma 2.1.1 to
prove that H1(L/LI , A(FL)) is a cofinitely generated Zp-module. The only
difference with case 1 is that now the p-divisible part of A(FL) might come
into play (moreover note that H1(L/LI , A(FL)) is a torsion abelian group,
hence its p-primary part is exactly H1(L/LI , A(FL)[p∞]) and A(FL)[p∞]
has finite Zp-corank). For H1(LI/E,A(FLI )) we observe that the p-part of
Gal(LI/E) is isomorphic to Zp and that the subgroup of A(FLI ) fixed by
that p-part is finite. Hence, by [4, Lemma 3.4 and Remark 3.5], one has that

|H1(LI/E,A(FLI ))| 6 |A(FLI )/(A(FLI ))div|

is finite.

The lemma provides a bound for the order of H1(L/E,A(L)) which (when
I is open in Gal(L/E) ) can be written in terms of A[p∞](FE) and A(FL).
If the inertia is infinite (i.e., if I has order divisible by arbitrary high powers
of p or, as we will say from now on, has order divisible by p∞) we can prove
that the inflation map

H1(L/E, Â(OL)) ↪→ H1(E, Â(OE))

is actually an isomorphism but, since this is not going to improve the bound,
we decided to keep this statement out of the lemma and we include it here
only for completeness (the proof is just a generalization of the one provided
for [47, Theorem 2 (b)]).

Proposition 2.2.2. In the same setting of the previous lemma, assume that
I has order divisible by p∞ , then

H1(L/E, Â(OL)) = H1(E, Â(OE))

Proof. The inflation map immediately provides one inclusion so we need
to prove the reverse one. By [47, Corollary 2.3.3], H1(L/E,A(L)) is the
annihilator of NL/E(At(L)) with respect to the local Tate pairing (where
NL/E is the natural norm map). This provides an isomorphism

H1(L/E,A(L)) ' (At(E)/NL/E(At(L)))∨ . (2.4)

Working as in [47, Section 2] (in particular subsections 2.3 and 2.6 in which

the results apply to general Galois extensions), one verifies thatH1(E,Â(OE))

is the annihilator of Ât(OE) with respect to the local pairing. Moreover, since

Â(OE) is the kernel of the reduction map, one has

H1(E, Â(OE))∩H1(L/E,A(L)) ⊆Ker
{
H1(L/E,A(L))→H1(L/E,A(FL))

}
=H1(L/E, Â(OL)) .
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Therefore it suffices to show H1(E, Â(OE)) ⊆ H1(L/E,A(L)) and, be-
cause of the isomorphism (2.4), this is equivalent to proving NL/E(At(L)) ⊆
Ât(OE).
Take α ∈ At(L) and put x = NL/E(α): we can assume that α belongs to
the p-part of At(L), so that x is in the p-part of At(E). Let E′ be an in-
termediate field containing LI and such that p∞ divides [E′ : LI ]. Consider
z = NL/E′(α) ∈ At(E′) and let z be the image of z in At(FE′) = At(FLI )
(which is a torsion group). Hence z has finite order, say pm, and we
can find a field E′′ between E′ and LI such that pm|[E′′ : LI ] . Put
y = NL/E′′(α) = NE′/E′′(z) ∈ At(E′′), so that x = NE′′/E(y) and note

that y (the image of y in At(FE′′) = At(FLI ) ) has order dividing pm .
Since Gal(E′′/LI) fixes y, one has that NE′′/LI (y) is trivial in At(FLI ), i.e.,

NE′′/LI (y) ∈ Ât(OLI ) (which is the kernel of the reduction map). Hence

x = NE′′/E(y) = NLI/E(NE′′/LI (y)) ∈ NLI/E(Ât(OLI )) ⊆ Ât(OE) .

Now we proceed with our control theorem.

Theorem 2.2.3. Assume that all ramified primes are of good ordinary or
split multiplicative reduction. Then, for any finite extension F ′/F contained
in K, the kernels and cokernels of the map

aK/F ′ : SelA(F ′)p → SelA(K)Gal(K/F ′)
p

are cofinitely generated Zp-modules. If all primes in S and all primes of
bad reduction have decomposition groups open in G, then the coranks of ker-
nels and cokernels are bounded independently of F ′ . Moreover if the group
A[p∞](K) is finite, all places in S are of good reduction and have inertia
groups open in their decomposition groups, then the kernels and cokernels
are finite (of bounded order if the primes of bad reduction have open decom-
position group).

Proof. We work with the usual diagram (2.1), where now we cannot substi-
tute flat cohomology with Galois cohomology and in the groups GA(·) the
images of the local Kummer maps are nontrivial (in general).
Since the map XK → XF ′ is a Galois covering with Galois group Gal(K/F ′),
the Hochschild-Serre spectral sequence applies and we will study

- Ker(bK/F ′) ' H1(K/F ′, A[p∞](K));

- Coker(bK/F ′) ⊆ H2(K/F ′, A[p∞](K));

- Ker(cK/F ′)

noting that the cohomology groups on the right are Galois cohomology
groups (see [32, III.2.21 (a), (b) and III.1.17 (d)]).
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The map bK/F ′ . Just use Lemma 2.1.1.

The maps cK/F ′ . As before we simply work with the maps

dw : H1
fl(XF ′

v′
, A[p∞])/Imκv′ → H1

fl(XKw , A[p∞])/Imκw .

From the Kummer sequence one gets a diagram

H1
fl(XF ′

v′
, A[p∞])/Imκv′

dw

��

� � // H1
fl(XF ′

v′
, A)[p∞]

fw

��
H1
fl(XKw , A[p∞])/Imκw

� � // H1
fl(XKw , A)[p∞] ,

and (from the Inf-Res sequence)

Ker(dw) ↪→ Ker(fw) ' H1(Kw/F
′
v′ , A(Kw))[p∞] .

Before moving on observe that Kw/F
′
v′ is a p-adic Lie extension because the

decomposition group of any place is closed in Gal(K/F ′). Now we distin-
guish two cases depending on the behaviour of the prime in K/F ′ (and as
usual, we do not consider primes which split completely because they give
no contribution to Ker(cK/F ′)).

Unramified primes If v′ is unramified, from [33, Proposition I.3.8], we
have

H1((F ′v′)
unr/F ′v′ , A((F ′v′)

unr)) = H1((F ′v′)
unr/F ′v′ , π0(A(F ′v′)0))

where π0(A(F ′v′)0) is the set of connected components of the closed fiber of
the Néron model A(F ′v′) of A at v′ . The latter is a finite module and it is
trivial when v′ is a place of good reduction. Because of the inflation map

H1(Kw/F
′
v′ , A(Kw)) ↪→ H1((F ′v′)

unr/F ′v′ , A((F ′v′)
unr))

the same holds forKer(dw) as well. Note also that in finite unramified (hence
cyclic) extensions, since the group π0(A(F ′v′)0) is finite, the order of the H1 is
equal to the order of the H0 which is uniformly bounded (see for example [47,
Lemma 3.3.1]). Thus the order of H1((F ′v′)

unr/F ′v′ , π0(A(F ′v′)0)) is bounded
independently of F ′ .

Ramified primes If v′ is of good ordinary reduction, just observe that
Gal(Kw/F

′
v′) is a p-adic Lie group with nontrivial inertia and apply Lemma

2.2.1.
We are left with ramified primes of split multiplicative reduction. Let v′
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be such a prime. We have the exact sequence coming from Mumford’s uni-
formization

< q′A,1, . . . , q
′
A,g >↪→ ((Fv)

∗)g � A(Fv)

(where we recall that g is the dimension of the variety A, the q′A,i are pa-
rameters in (F ′v′)

∗ and the morphisms behave well with respect to the Galois
action).
Taking cohomology (and using Hilbert’s Theorem 90) one finds an injection

H1(Kw/F
′
v′ , A(Kw)) ↪→ H2(Kw/F

′
v′ , < q′A,1, . . . , q

′
A,g >) .

Since q′A,i ∈ (F ′v′)
∗, the action of the Galois group is trivial on them and we

have an isomorphism of Galois modules < q′A,1, . . . , q
′
A,g >' Zg . Hence

H2(Kw/F
′
v′ , < q′A,1, . . . , q

′
A,g >) ' H2(Kw/F

′
v′ ,Zg) ' ((Gal(Kw/F

′
v′)

ab)∨)g

(where the last one is the Pontrjagin dual of the maximal abelian quo-
tient of Gal(Kw/F

′
v′) ). The last one is a cofinitely generated Zp-module,

since Gal(Kw/F
′
v′)

ab is virtually2 a finitely generated Zp-module. Indeed,

[Gal(Kw/F ′v′),Gal(Kw/F ′v′)] is a closed normal subgroup of Gal(Kw/F
′
v′)

and their quotient is still a p-adic Lie group (see [16, Theorem 9.6 (ii)] and,
for the Zp-module structure, [16, Theorem 4.9] and [16, Theorem 4.17]).

Remarks 2.2.4.

1. The hypotheses on the reduction of A at ramified primes are neces-
sary. Indeed, if v is a ramified prime of good supersingular reduction
and Gal(K/F ) ' Zdp (a deeply ramified extension in the sense of [12,
Section 2]), then K.-S. Tan has shown that H1(Kw/F

′
v′ , A(Kw))[p∞]

has infinite Zp-corank (see [48, Theorem 3.6.1]).

2. When A = E is an elliptic curve it is easy to see that the number of
torsion points of p-power order in a separable extension of F is finite
(see, for example, [3, Lemma 4.3]). For a general abelian variety A, in
[47, Lemma 2.5.1] K.-S. Tan shows that A[p∞](K) = A[p∞](K∩Funr).
Hence, for a p-adic Lie extension, we are interested only in the number

of p-power torsion points in F(p)
p F (or F(p)

p F ′ for some finite unramified
extension F ′ of F ).

2.2.1 Λ-modules for ` = p

The Selmer groups are again Λ(G)-modules and we will investigate their
structure: as in the case l 6= p, we assume that G does not contain any
element of order p.

2A profinite group G is said to have a property P virtually if G has an open normal
subgroup H such that H verifies P .
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Structure of SelA(K)∨p as Λ(G)-module

Theorem 2.2.5. With the above notations, if all places in S are of good or-
dinary or split multiplicative reduction, then SelA(K)∨p is a finitely generated
Λ(G)-module.

Proof. This is the same proof of Theorem 2.1.10, using Theorems 2.2.3 and
2.1.8.

Theorem 2.2.6. Assume that there exists an open soluble, uniform and
pro-p subgroup G′ of G. Suppose that A[p∞](K) and SelA(F ′)∨p , where F ′ is
the fixed field of G′, are finite. If all ramified places of F are of good ordinary
reduction for A and have inertia groups open in their decomposition groups,
then SelA(K)∨p is a torsion Λ(G)-module.

Proof. It is sufficient to show that SelA(K)∨p is a torsion Λ(G′)-module (clas-
sical meaning). In order to do this just use Theorems 2.2.3 and 2.1.8.

Structure of SelA(K)∨p as Λ(H)-module

Assume that there exists a closed normal subgroup H in G such that G/H =
Γ ' Zp and let K ′ be its fixed field.
We need the following

Lemma 2.2.7. With notations as above, let K ′ := KH be the fixed field of
H. If v ∈ ΣF is unramified in K/F , then

(i) v splits completely in K ′/F or

(ii) the decomposition group, in H = Gal(K/K ′), of any prime w′ of K ′

dividing v is finite and has order prime to p.

Proof. Consider the diagram

K
Kw

K ′
K ′w′

F
Fv

H

Γ

G

where w|w′|v.
Assume v is unramified, then, since Gal(Kw/Fv) is still a p-adic Lie group
and the p-part of an unramified p-adic Lie extension of local fields is at most
a Zp-extension, we have to deal with two cases.
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1. Gal(Kw/Fv) is finite. Then Gal(K ′w′/Fv) is a finite subgroup of Γ '
Zp , hence it is trivial and v splits completely if K ′/F (i.e., (i) holds).

2. Gal(Kw/Fv) ' Γ. Then Gal(K ′w′/Fv) can be trivial or isomorphic
to Γ. If it is trivial we are back to case (i). If it is Γ, then K ′w′ is
the unramified Zp-extension of Fv . Hence the extension Kw/K

′
w′ is

unramified of (finite) order prime to p (i.e., (ii) holds).

As in the ` 6= p case, we will show a slightly modified version of Theorem
2.2.3.

Theorem 2.2.8. Assume that

(i) all places in S are of split multiplicative reduction for A;

(ii) all places in S and all places of bad reduction for A split in finitely
many primes in K ′/F .

Then the map

a : SelA(K ′)p → SelA(K)Hp

has cofinitely generated kernel and cokernel (viewed as Zp-modules).

Proof. We go directly to the local kernels for places which do not split com-
pletely

Ker(dw) ' H1(Kw/K
′
w′ , A(Kw))[p∞] .

Unramified primes of good reduction Let v be an unramified prime
of good reduction for A. From Lemma 2.2.7 we know that K ′w′ = Fv is
a local field or Gal(Kw/K

′
w′) has finite order prime with p. In the first

case [33, Ch. I, Proposition 3.8] shows that H1(Kw/K
′
w′ , A(Kw)) = 0

and we get our claim. In the second case the p-part of the torsion mo-
dule H1(Kw/K

′
w′ , A(Kw)) is obviously trivial.

Because of our hypothesis on the splitting of primes we are already left with
finitely many local kernels, now we check the behaviour of the remaining
ones.

Unramified primes of bad reduction As above if Gal(K ′w′/Fv) ' Γ
(i.e., K ′w′ is not a local field), then the p-part of H1(Kw/K

′
w′ , A(Kw)) is

trivial. The other case (i.e., K ′w′ = Fv ) cannot happen because we are
assuming that bad reduction primes do not split completely in K ′ .
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Ramified primes For the ramified ones we use Mumford’s parametriza-
tion as in the proof of Theorem 2.2.3. First we get an exact sequence

< qA,1, . . . , qA,g >↪→ (K∗w)g � A(Kw)

(where we can always assume that the periods are in the base field Fv ).
Then Gal(Kw/K

′
w′)-cohomology provides an injection

H1(Kw/K
′
w′ , A(Kw)) ↪→ H2(Kw/K

′
w′ ,Zg) ' ((Gal(Kw/K

′
w′)

ab)∨)g .

As a consequence we have the following.

Corollary 2.2.9. In the setting of Theorem 2.2.8, assume that SelA(K ′)∨p
is a finitely generated Zp-module. Then SelA(K)∨p is finitely generated over
Λ(H) (hence torsion over Λ(G) ).

Final summary Take the function fields K and K ′ such that the hypo-
thesis on the splitting of primes in Theorem 2.2.3 is verified.
For SelA(K)∨p to be finitely generated as Λ(G)-module we need just to as-
sume that all primes in S are of good ordinary or split multiplicative reduc-
tion for A. To move a step further and find Λ(G)-torsion modules we can
assume

1. all ramified primes are of good ordinary reduction and have open iner-
tia groups;

2. A[p∞] and SelA(F ′)∨p are finite (where F ′ is the fixed field of an open
soluble, uniform and pro-p subgroup G′ of G, if such a subgroup exists);

and use Theorem 2.2.6.
Another way to find Λ(G)-torsion modules is provided by Corollary 2.2.9. It
somehow complements the previous one because it requires a different type
of reduction for the ramified places. The assumptions for this case are

3. all ramified primes are of split multiplicative reduction;

4. SelA(K ′)p is cofinitely generated over Zp .

One example for this second case is given by the usual arithmetic extension

K ′ = F(p)
p F for which the hypothesis 1 above obviously does not hold and

the hypothesis 3 is proved (in some cases) in [36, Theorem 1.8].

Remark 2.2.10. We found conditions to get Λ(G)-torsion modules for dif-
ferent types of reduction for the ramified primes, but we remind that, to
get a characteristic element for a Λ(G)-torsion module for a noncommu-
tative group G, one needs to examine the Λ(H)-module structure as well.
Hence our results provide characteristic elements for SelA(K)∨p only when
the ramified primes are of split multiplicative reduction.





Chapter 3

Pseudo-null submodules
and Euler characteristic

In this chapter we will look closely at the Selmer group. In particular, in
Section 3.1 we shall prove that, under certain conditions, SelA(K)∨` has no
nontrivial pseudo-null submodule; while in Section 3.2 we will provide some
computations for the Euler characteristic of SelA(K)`.

The setting and the notations are as explained in Section 1.6.2.

3.1 Pseudo-null submodules

Before stating and proving the main Theorem (see Theorem 3.1.10) we need
some intermediate results that will be fundamental in our calculations.

Theorem 3.1.1 (U. Jannsen). Let G be an `-adic Lie group without e-
lements of order ` and of dimension d. Let M be a Λ(G)-module which
is finitely generated as Z`-module. Then Ei(M) is a finitely generated Z`-
module and, in particular,

(i) if M is Z`-free, then Ei(M) = 0 for any i 6= d and Ed(M) is free;

(ii) if M is finite, then Ei(M) = 0 for any i 6= d + 1 and Ed+1(M) is
finite.

Proof. See [23, Corollary 2.6].

Corollary 3.1.2. With notations as above:

39
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(i) if H2(FS/K,A[`∞]) = 0, then, for i > 2,

Ei(X) is

 finite if i = d− 1
free if i = d− 2
0 otherwise

;

(ii) EivE
i−1
v (Xv) = 0 for i > 3.

Proof. (i) The hypothesis yields the isomorphism

Ei(X) ' Ei+2((A[`∞]∨)H) .

Since
(A[`∞]∨)H ' (A[`∞]H)∨ = A[`∞](K)∨ ' Zr` ⊕∆

(with 0 6 r 6 2g and ∆ a finite group) and Ei(Zr` ⊕∆) = Ei(Zr`) ⊕ Ei(∆),
the claim follows from Theorem 3.1.1.
(ii) Use Theorem 3.1.1 and the isomorphism in (1.7).

Lemma 3.1.3. If H2(FS/K,A[`∞]) = 0, then there is the following com-
mutative diagram

E1(Y )
⊕

S IndGGvE1
v(Yv) Coker(g1)

E1(X)
⊕

S IndGGvE1
v(Xv) Coker(h1)

E2(J)
⊕

S IndGGvE2
v(Jv) Coker(ḡ1) .

g1 // // //

h1 // // //

ḡ1 // // //

��

����

��

����

��

f
����

Proof. The inclusions Gv ⊆ G and Hv ⊆ H induce the maps

(I(Gv)⊗Z` A[`∞]∨)Hv
→ (I(G)⊗Z` A[`∞]∨)Hv

→ (I(G)⊗Z` A[`∞]∨)H .

We have a homomorphism of Λ(G)-modules g :
⊕

S IndGGvYv → Y which,

restricted to the Xv’s, provides the map h :
⊕

S IndGGvXv → X. So we have
the following situation ⊕

S IndGGvXv

⊕
S IndGGvYv

⊕
S IndGGvJv

X

Y

J

� _

��

����

� _

��

����

hoo

goo

ḡoo

(3.1)
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where ḡ is induced by g and the diagram is obviously commutative.
Since Y and the Yv’s have projective dimension 6 1 (i.e., E2(Y ) = E2(Yv) =
0), the lemma follows by taking Ext in diagram (3.1) and recalling that, for
any i > 0, Eiv(IndGGv (Xv)) = IndGGvEiv(Xv) (see [37, Lemma 5.5]).

In the next paragraph we are going to describe the structure of Coker(g1).

Homotopy theory and Coker(g1)

For every finitely generated Λ(G)-module M choose a presentation P1 →
P0 → M → 0 of M by projectives and define the transpose functor DM by
the exactness of the sequence

0→ E0(M)→ E0(P0)→ E0(P1)→ DM → 0.

Then it can be shown that the functor D is well-defined and one has D2 = Id
(see [23]). The most important use of the transpose functor is explained by
the next lemma.

Lemma 3.1.4. Assume Λ(G) is an integral domain. Let M be a finitely
generated Λ(G)-module. Then the torsion elements of M form a submodule
of M , and it is isomorphic to E1(DM).

Proof. See [37, Lemma 3.1].

Definition 3.1.5. Let L be an extension of F contained in FS . Then we
define

Z(L) := H0(FS/L, lim−→
m

D2(A[`m]))∨

where
D2(A[`m]) = lim

−→
F⊂E⊂FS

(H2(FS/E,A[`m]))∨

and the limit in lim
−→
m

D2(A[`m]) is taken with respect to the `-power map

A[`m+1]
`→ A[`m].

In the same way we define Z(L) for any Galois extension L of Fv.

An alternative description of the module Z is provided by the following

Lemma 3.1.6. Let K be a fixed extension of F contained in FS and Kw its
completion for some w|v ∈ S. Then

(i) Z(K) ' lim
←−

F⊆L⊆K
H2(FS/L, T`(A)) ;

(ii) Z(Kw) ' lim
←−

Fv⊆L⊆Kw
H2(L, T`(A)) .
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Proof. Global case. For any global field L, let

Xi(FS/L,A[`∞]) := Ker

Hi(FS/L,A[`∞])→
⊕
w|v∈S

Hi(Lw, A[`∞])

 .

We have already seen that H2(Lw, A[`∞]) = 0, hence H2(FS/L,A[`∞]) '
X2(FS/L,A[`∞]). Using the pairing of [33, Ch. I, Proposition 6.9], we get

Z(K) = H0(FS/K, lim−→
m

lim
−→

F⊆L⊆FS
X2(FS/L,A[`m])∨)∨

= H0(FS/K, lim−→
m

lim
−→

F⊆L⊆FS
X0(FS/L,A

t[`m]))∨

= (lim
−→
m

lim
−→

F⊆L⊆FS
X0(FS/L,A

t[`m])Gal(FS/K))∨

= (lim
−→
m

lim
−→

F⊆L⊆K
X0(FS/L,A

t[`m]))∨

= lim
←−
m

lim
←−

F⊆L⊆K
(H2(FS/L,A[`m])∨)∨

= lim
←−

F⊆L⊆K
H2(FS/L, T`(A)) .

Local case. The proof is similar, just use Tate local duality [34, Theorem
7.2.6]. Indeed

Z(Kw) = H0(Kw, lim−→
m

lim
−→

Fv⊆L⊆F sv

H2(L,A[`m])∨)∨

= H0(Kw, lim−→
m

lim
−→

Fv⊆L⊆F sv

H0(L,A[`m]′))∨

= (lim
−→
m

lim
−→

Fv⊆L⊆F sv

H0(L,A[`m]′)Gal(F sv /Kw))∨

= (lim
−→
m

lim
−→

Fv⊆L⊆Kw
H0(L,A[`m]′))∨

= lim
←−
m

lim
←−

Fv⊆L⊆Kw
(H2(L,A[`m])∨)∨

= lim
←−

Fv⊆L⊆Kw
H2(L, T`(A)) .

We recall that our group G has no elements of order `, hence Λ(G) is an
integral domain. Moreover for any open subgroup U of G we have that (see
[23, Lemma 2.3])

Ei(U) ' Ei(G) ∀ i ∈ Z
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is an isomorphism of Λ(U)-modules. An `-adic Lie group G always contains
an open pro-` subgroup (see Theorem 1.2.6), so, in order to use properly
the usual definitions of “torsion submodule” and “rank” for a finitely gene-
rated Λ(G)-module, with no loss of generality, we will assume that G is pro-`.

Proposition 3.1.7. Let M be a finitely generated Λ(G)-module. Then for
any i > 1, Ei(M) is a finitely generated torsion Λ(G)-module.

Proof. Take a finite presentation P1 → P0 →M → 0 with finitely generated
and projective Λ(G)-modules P1 and P0 , and the consequent exact sequence

0→ R1 → P0 →M → 0 (3.2)

for a suitable submodule R1 of P1 . Since M and HomΛ(G)(M,Λ(G)) have
the same Λ(G)-rank, computing ranks in the sequence coming from (3.2)

HomΛ(G)(M,Λ(G)) ↪→ HomΛ(G)(P0,Λ(G))→ HomΛ(G)(R1,Λ(G))→ E1(M)→

→ 0→ E1(R1)→ E2(M)→ 0→ · · · → 0→ Ei−1(R1)→ Ei(M)→ 0→ · · ·

one finds rankΛ(G)(E
1(M)) = 0 for any finitely generated Λ(G)-module M .

Therefore E1(R1) is torsion, which yields E2(M) ' E1(R1) is torsion. Itera-
ting Ei(M) ' Ei−1(R1) is Λ(G)-torsion ∀ i > 2.

Lemma 3.1.8. Let Fn be subfields of K such that G = lim
←−
n

Gal(Fn/F ). Then

H2
Iw(Kw, T`(A)) := lim

←−
n,m

H2(Fvn , A[`m])

is a torsion Λ(Gv)-module. If H2(FS/K,A[`∞]) = 0, then

H2
Iw(K,T`(A)) := lim

←−
n,m

H2(FS/Fn, A[`m])

is a Λ(G)-torsion as well.

Proof. The proofs are identical so we only show the second statement. From
the spectral sequence

Ep,q2 = Ep(Hq(FS/K,A[`∞])∨) =⇒ Hp+q
Iw (K,T`(A))

due to Jannsen (see [24]), we have a filtration for H2
Iw(K,T`(A))

0 = H2
3 ⊆ H2

2 ⊆ H2
1 ⊆ H2

0 = H2
Iw(K,T`(A)) , (3.3)

which provides the following sequences:

E0(H1(FS/K,A[`∞])∨)→ E2(H0(FS/K,A[`∞])∨)→ H2
1

→ E1(H1(FS/K,A[`∞])∨)→ E3(H0(FS/K,A[`∞])∨)
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and
H2

1 ↪→ H2
Iw(K,T`(A))� E0,2

∞ .

By hypothesis E0,2
∞ ' E0,2

2 = 0, so H2
1 ' H2

Iw(K,T`(A)).
Since Hi(FS/K,A[`∞])∨ is finitely generated (as a module over Λ(G), for i =
0, 1), Proposition 3.1.7 yields that the groups E2(H0(FS/K,A[`∞])∨) and
E1(H1(FS/K,A[`∞])∨) are Λ(G)-torsion. Hence H2

1 is torsion as well.

Lemma 3.1.9. With notations and hypotheses as in Lemma 3.1.3 we have
that Coker(g1) is a finitely generated Z`-module.

Proof. Lemma 3.1.6 yields Z(K) = H2
Iw(K,T`(A)) so, using [37, Proposition

4.10], one has DH2
Iw(K,T`(A)) ' Y . Therefore E1(DH2

Iw(K,T`(A))) '
E1(Y ). Since H2

Iw(K,T`(A)) is a Λ(G)-torsion module, Lemma 3.1.4 implies
E1(DH2

Iw(K,T`(A)) ' H2
Iw(K,T`(A)), i.e.,

H2
Iw(K,T`(A)) ' E1(Y )

(the same holds for the “local” modules). The map g1 of Lemma 3.1.3 then
reads as

g1 : lim
←−
n

H2(FS/Fn, T`(A))→
⊕
S

IndGGv lim
←−
n

H2(Fvn , T`(A)) .

The claim follows from the Poitou-Tate sequence (see [34, 8.6.10 p. 488]),
since

Coker(g1) ' lim
←−
n,m

H0(FS/Fn, (A[`m])′) .

3.1.1 The main Theorem

We are now ready to prove the following

Theorem 3.1.10. Let G = Gal(K/F ) be an `-adic Lie group without ele-
ments of order ` and of positive dimension d > 3 (as `-adic Lie group). If
H2(FS/K,A[`∞]) = 0 and the map ψ in the sequence

SelA(K)` ↪→ H1(FS/K,A[`∞])
ψ→

⊕
S

CoindGvG H1(Kw, A)[`∞] (3.4)

is surjective, then S := SelA(K)∨` has no non trivial pseudo-null submodules.

Proof. We need to prove that

EiEi(S) = 0 ∀ i > 2 ,

and we consider two cases.
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Case i = 2. Let D := ḡ1(E2(J)). Then

Coker(ḡ1) =
⊕
S

IndGGvE2(Jv)/D .

Observe that D ' ḡ1(E3(A[`∞]∨H)) is a finitely generated Z`-module (it is
zero if d 6= 3 and a free Z`-module if d = 3), so E1(D) = 0. Even if the
theorem is limited to d > 3 we remark here that, for d = 2, D is finite and,
for d = 1, D = 0: hence E1(D) = 0 in any case.
Moreover

E2(
⊕
S

IndGGvE2(Jv)) = E2(
⊕
S

IndGGvE3(A[`∞]∨Hv
))

=
⊕
S

IndGGvE2E3(A[`∞]∨Hv
) = 0 ,

so, taking Ext in the sequence,

D ↪→
⊕
S

IndGGvE2(Jv)�
⊕
S

IndGGvE2(Jv)/D , (3.5)

one finds

E1(D)→ E2(
⊕
S

IndGGvE2(Jv)/D)→ E2(
⊕
S

IndGGvE2(Jv)) .

Therefore

E2(
⊕
S

IndGGvE2(Jv)/D) = 0 . (3.6)

Recall the sequences ⊕
S

IndGGvXv ↪→ X � S (3.7)

Ker(f) ↪→ Coker(h1)� Coker(ḡ1) (3.8)

provided (respectively) by the hypothesis on ψ and by Lemma 3.1.3. Take
Ext on (3.7) to get

E1(X)
h1−→ E1(

⊕
S

IndGGvXv)→ E2(S)→ E2(X) .

If d > 5, then E2(X) = E3(J) = E4(A[`∞]∨H) = 0. When this is the case
Coker(h1) ' E2(S) and sequence (3.8) becomes

Ker(f) ↪→ E2(S)�
⊕
S

IndGGvE2(Jv)/D .
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By Lemma 3.1.9, Ker(f) is a finitely generated Z`-module. Taking Ext, one
has

E2(
⊕
S

IndGGvE2(Jv)/D)→ E2E2(S)→ E2(Ker(f)) ,

where the first and third term are trivial, so E2E2(S) = 0 as well.
We are left with d = 3, 4. We know that E4(A[`∞]∨H) = E2(X) is free over
Z` if d = 4 or finite if d = 3 (again we remark it is 0 if d = 1, 2). Anyway
E2E2(X) = 0 in all cases. From the sequence

Coker(h1) ↪→ E2(S)
η→ E2(X)

one writes

Coker(h1) ↪→ E2(S)� Im(η) (3.9)

where Im(η) is free over Z` if d = 4 or finite if d = 3.
Taking Ext in (3.8) one has

E2(Coker(ḡ1))→ E2(Coker(h1))→ E2(Ker(f))

with the first (see equation (3.6)) and third term equal to zero. As a result
E2(Coker(h1)) = 0. This fact in sequence (3.9) implies

0 = E2(Im(η))→ E2E2(S)→ E2(Coker(h1)) = 0 ,

so E2E2(S) = 0.
Case i > 3. From sequence (3.7) we get the following

Ei+1(A[`∞]∨H) ' Ei−1(X)→
⊕
S

IndGGvEi−1
v (Xv)→ (3.10)

→ Ei(S)→ Ei(X) ' Ei+2(A[`∞]∨H) .

We have four cases, depending on whether Ei−1(X) and Ei(X) are trivial or
not.
Case 1. Assume Ei−1(X) = Ei(X) = 0.
From (3.10) we obtain the isomorphism⊕

S

IndGGvEi−1
v (Xv) ' Ei(S) ,

so ⊕
S

IndGGvEivE
i−1
v (Xv) ' EiEi(S) = 0

thanks to Corollary 3.1.2 part (ii). We remark that this is the only case to
consider when d = 1, 2.
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Case 2. Assume Ei−1(X) = 0 and Ei(X) 6= 0.
This happens when i = d− 2 or i = d− 1 and A[`∞]∨H is finite. From (3.10)
we have ⊕

S

IndGGvEd−3
v ↪→ Ed−2(S)� N

( resp.
⊕
S

IndGGvEd−2
v ↪→ Ed−1(S)� N )

where N is a submodule of the free module Ed−2(X) (resp. of the finite
module Ed−1(X)). Therefore Ed−2(N) = 0 (resp. Ed−1(N) = 0) and,
moreover, Ed−2

v Ed−3
v (Xv) = 0 (resp. Ed−1

v Ed−2
v (Xv) = 0) by Corollary 3.1.2

part (ii). Hence Ed−2Ed−2(S) = 0 (resp. Ed−1Ed−1(S) = 0).
Case 3. Assume Ei−1(X) 6= 0 and Ei(X) = 0.
This happens when i = d or i = d − 1 and A[`∞]∨H is free. The sequence
(3.10) gives

N ↪→
⊕
S

IndGGvEd−1
v (Xv)� Ed(S)

( resp. N ↪→
⊕
S

IndGGvEd−2
v (Xv)� Ed−1(S) )

where now N is a quotient of the finite module Ed−1(X) (resp. of the free
module Ed−2(X) ). Then Ed(N) = 0 (resp. Ed−1(N) = 0) and⊕

S

IndGGvEdvE
d−1
v (Xv) ' EdEd(S) = 0

( resp.
⊕
S

IndGGvEd−1
v Ed−2

v (Xv) ' Ed−1Ed−1(S) = 0 ) .

Case 4. Assume Ei−1(X) 6= 0 and Ei(X) 6= 0.
This happens when i = d − 1 and A[`∞]∨H has nontrivial rank and torsion.
From sequence (3.10) we have

Ed−2(X)→
⊕
S

IndGGvEd−2
v (Xv)→ Ed−1(S)→ Ed−1(X) .

Let N1, N2 and N3 be modules such that:

- N1 is a quotient of Ed−2(X) (which is torsion free so that Ed−2(N1) =
0);

- N2 is a submodule of Ed−1(X) (which is finite so that Ed−1(N2) = 0);

- N3 is a module such that the sequences

N1 ↪→
⊕
S

IndGGvEd−2
v (Xv)� N3 and N3 ↪→ Ed−1(S)� N2

are exact.
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Applying the functor Ext we find

Ed−2(N1)→ Ed−1(N3)→
⊕
S

IndGGvEd−1
v Ed−2

v (Xv)

(which yields Ed−1(N3) = 0), and

Ed−1(N2)→ Ed−1Ed−1(S)→ Ed−1(N3)

which proves Ed−1Ed−1(S) = 0.

Remark 3.1.11. As pointed out in various steps of the previous proof,
most of the statements still hold for d = 1, 2. The only missing part is
E2(Ker(f)) = 0 for i = 2, in that case only our calculations to get E2E2(S) =
0 fail. In particular the same proof shows that E2E2(S) = 0 when Ker(f) is
free and d = 1 or when Ker(f) is finite and d = 2 or, obviously, for any d if
f is injective.

We can extend the previous result to the d > 2 case with some extra as-
sumptions.

Proposition 3.1.12. Let G = Gal(K/F ) be an `-adic Lie group without
elements of order ` and of dimension d > 2. If H2(FS/K,A[`∞]) = 0 and
cd`(Gv) = 2 for any v ∈ S, then SelA(K)∨` has no nontrivial pseudo-null
submodule.

Proof. Since cd`(Fv) = 2 (by [34, Theorem 7.1.8]), our hypothesis im-
plies that Gal(Fv/Kw) has no element of order ` (see also [34, Theorem
7.5.3]). Hence H1(Kw, A[`∞])∨ = 0 and SelA(K)∨` ' X embeds in Y . Now
H2(FS/K,A[`∞]) = 0 yields Y has projective dimension 6 1, so Y has no
nontrivial pseudo-null submodule (by [37, Proposition 2.5]).

Remark 3.1.13. When d = 2, cd`(Gv) = 2 for any v ∈ S holds if and only
if every v ∈ S splits in finitely many primes in K.

The hypotheses on H2(FS/K,A[`∞]) and ψ

Let Fm be extensions of F such that Gal(K/F ) ' lim
←−
m

Gal(Fm/F ). To pro-

vide some cases in which the main hypotheses hold we consider the Poitou-
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Tate sequence for the module A[`n], from which one can extract the sequence

Ker(ψm,n) H1(FS/Fm, A[`n])

∏
vm|v
v∈S

H1(Fvm , A[`n])

Ker(ψtm,n))∨H2(FS/Fm, A[`n])

∏
vm|v
v∈S

H2(Fvm , A[`n])

H0(FS/Fm, A
t[`n])∨ 0

� � // ψm,n //

φm,n

��
oooo

��
//

(3.11)

(where ψtm,n is the analogue of ψm,n for the dual abelian variety At , i.e., their
kernels represent the Selmer groups over Fm for the modules At[`n] and A[`n]
respectively). Taking direct limits on n and recalling that H2(Fvm , A[`∞]) =
0, the sequence (3.11) becomes

SelA(Fm)` H1(FS/Fm, A[`∞])
∏
vm|v
v∈S

H1(Fvm , A[`∞])

(lim
←−
n

Ker(ψtm,n))∨H2(FS/Fm, A[`∞])0

� � // ψm //

φm
��

oooo

(3.12)

(for more details one can consult [15, Chapter 1]). One way to prove
that H2(FS/K,A[`∞]) = 0 and ψ is a surjective map is to show that
(lim
←−
n

Ker(ψtm,n))∨ = 0 for any m. We mention here two cases in which the

hypothesis on the vanishing of H2(FS/K,A[`∞]) is verified. The following
is basically [15, Proposition 1.9].

Proposition 3.1.14. Let Fm be as above and assume that SelAt(Fm)` is
finite for any m, then

H2(FS/K,A[`∞]) = 0 .

Proof. From [33, Chapter I Remark 3.6 ] we have the isomorphism

At(Fvm)∗ ' H1(Fvm , A[`∞])∨ ,

where At(Fvm)∗ ' lim
←−
n

At(Fvm)/`nAt(Fvm) .

Taking inverse limits on n in the exact sequence

At(Fm)/`nAt(Fm) ↪→ Ker(ψtm,n)�X(At/Fm)[`n] ,
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and noting that |X(At/Fm)[`∞]| <∞ yields T`(X(At/Fm)) = 0, we find

At(Fm)∗ ' lim
←−
n

Ker(ψtm,n) .

Therefore (3.12) becomes

SelA(Fm)` H1(FS/Fm, A[`∞])
∏
vm|v
v∈S

(At(Fvm)∗)∨

(At(Fm)∗)∨H2(FS/Fm, A[`∞])0

� � // ψ //

φ̃

��
oooo

(3.13)

By hypothesis At(Fm)∗ is finite, therefore H2(FS/Fm, A[`∞]) is finite as
well. From the cohomology of the sequence

A[`] ↪→ A[`∞]
`
−−�A[`∞]

(and the fact that H3(FS/Fm, A[`]) = 0, because cd`(Gal(FS/Fm)) = 2),
one finds

H2(FS/Fm, A[`∞])
`
−−�H2(FS/Fm, A[`∞]) ,

i.e., H2(FS/Fm, A[`∞]) is divisible. Being divisible and finite implies that
H2(FS/Fm, A[`∞]) must be 0 for any m and the claim follows.

We can also prove the vanishing of H2(FS/K,A[`∞]) for the extension K =
F (A[`∞]).

Proposition 3.1.15. If K = F (A[`∞]), then H2(FS/K,A[`∞]) = 0.

Proof. Gal(FS/K) has trivial action on A[`∞] and (by the Weil pairing) on
µ`∞ , so

H2(FS/K,A[`∞]) ' H2(FS/K, (Q`/Z`)2g) ' H2(FS/K, (µ`∞)2g) .

Let Fn = F (A[`n]), using the notations of Lemma 3.1.6, Poitou-Tate du-
ality ([34, Theorem 8.6.7]) and the isomorphism X1(FS/Fn,Z/`mZ) '
Hom(C`S(Fn),Z/`mZ) ([34, Lemma 8.6.3]), one has

H2(FS/K,µ`∞) 'X2(FS/K,µ`∞) ' lim
−→
n,m

X2(FS/Fn,µ`m)

' lim
−→
n,m

X1(FS/Fn,µ
′
`m)∨ ' lim

−→
n,m

X1(FS/Fn,Z/`mZ)∨

' lim
−→
n,m

Hom(C`S(Fn),Z/`mZ)∨ ' lim
−→
n,m

C`S(Fn)/`m

' lim
−→
n

C`S(Fn)⊗Z Q`/Z` = 0

since C`S(Fn) is finite.
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Remark 3.1.16. The above proposition works in the same way for any
`-adic Lie extension, unramified outside S, which contains the trivializing
extension.

Example 3.1.17. Let A be an abelian variety: by Proposition 3.1.15, the
extension K = F (A[`∞]) realizes the hypotheses of Proposition 3.1.12 when
every bad reduction prime is of split multiplicative reduction (in order to
have cd`(Gv) = 2) and ` > 2g+ 1 (by [44] and the embedding Gal(K/F ) ↪→
GL2g(Z`) ). Therefore, under these hypotheses SelA(K)∨` has no nontrivial
pseudo-null submodule.
When A = E is a non isotrivial elliptic curve and p > 3 (using Igusa’s
theorem, see, e.g., [5]) one can prove that dim Gal(K/F ) = 4 and also the
surjectivity of the map ψ (which, in this case, is not needed to prove the
absence of pseudo-null submodules): more details can be found in [40].
The same problem over number fields cannot (in general) be addressed in
the same way and one needs the surjectivity of the map ψ. The topic is
treated (for example) in [10, Section 4.2].

3.2 Euler characteristic

The main result of this section is Theorem 3.2.4 where we provide an Euler
characteristic formula for SelA(K)`.
Since the homology theory for profinite groups is dual to the cohomological
one (see [34, Theorem 2.2.9]) we will do our calculations using cohomological
groups.

3.2.1 Preliminary results

First we list some useful intermediate results.

Proposition 3.2.1. Let Fm be extensions of F such that Gal(K/F ) '
lim
←−
m

Gal(Fm/F ). If |SelAt(Fm)`| <∞ for any m, then

H2(FS/Fm, A[`∞]) = 0 for any m.

Proof. See Proposition 3.1.14.

Lemma 3.2.2. If SelAt(F )` is finite and H2(FS/K,A[`∞]) = 0 we have

(i) Hi(K/F,H1(FS/K,A[`∞])) ' Hi+2(K/F,A[`∞](K)) ∀ i > 1;

(ii) Hi(K/F,H1(FS/K,A[`∞])) = 0 ∀ i > 2.

Moreover, let w any prime of K such that w|v ∈ S. Then

(iii) Hi(Kw/Fv, H
1(Kw, A[`∞])) ' Hi+2(Kw/Fv, A[`∞](Kw)) ∀ i > 1.
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Proof. (i) By [34, Corollary 10.1.3 (iii) and Proposition 3.3.5] the `-coho-
mological dimension of Gal(FS/K) is less than or equal to 2. Therefore our
hypothesis on H2(FS/K,A[`∞]) yields

Hi(FS/K,A[`∞]) = 0 ∀ i > 2 .

From the Hochschild-Serre spectral sequence, we have:

0 H1(K/F,A[`∞](K)) H1(FS/F,A[`∞]) H1(FS/K,A[`∞])Gal(K/F )

H2(K/F,A[`∞](K)) H2(FS/F,A[`∞]) H1(K/F,H1(FS/K,A[`∞]))

· · · · · · · · ·

Hi(K/F,A[`∞](K)) Hi(FS/F,A[`∞]) Hi−1(K/F,H1(FS/K,A[`∞]))

(see [34, Lemma 2.1.3]). Since cd`(GS(F )) = 2 and (by Proposition 3.2.1)
H2(FS/F,A[`∞]) = 0, the claim follows.
(ii) By [34, Lemma 2.1.4] we have the following isomorphisms:

Hi(K/F,H1(FS/K,A[`∞])) = Ei,12 ' Ei+1 = Hi+1(FS/F,A[`∞]) ∀ i > 1 .

Then
Hi(K/F,H1(FS/K,A[`∞])) = 0 ∀ i > 2 .

(iii) The argument is the same of part (i); just note that Gal(Kw/Fv) has
at most `-cohomological dimension 2.

Lemma 3.2.3. If SelA(F )` is finite, then H1(FS/F,A[`∞]) is finite too.

Proof. Observe that

H2(FS/F,A
t[`∞]) 'X2(FS/F,A

t[`∞])

is finite thanks to [34, Theorem 8.6.8 (Poitou-Tate Duality)]. By [33, Chap-
ter 1, Theorem 4.20]

X2(FS/F,A
t[`∞]) 'X1(FS/F,A[`∞])∨.

Since our hypothesis implies H2(FS/F,A
t[`∞]) = 0 (see Proposition 3.2.1),

we have that X1(FS/F,A[`∞]) = 0 as well. Then,

H1(FS/F,A[`∞]) ↪→
∏
v∈S

H1(Fv, A[`∞])

and the statement follows from [34, Theorem 7.1.8].
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3.2.2 Calculations for Euler Characteristic

Now we can prove the main theorem of this section.

Theorem 3.2.4. Assume that SelA(F )` is finite, H2(FS/K,A[`∞]) = 0,
χ(G,A[`∞]) and χ(Gv, A[`∞]) ∀ v ∈ S are well defined and that the map ψ
in the sequence

SelA(K)` ↪→ H1(FS/K,A[`∞])
ψ→

⊕
S

CoindGvG H1(Kw, A[`∞]) (3.14)

is surjective. Then the Euler characteristic of SelA(K)` is well defined and

χ(G,SelA(K)`) =
∏
v∈S

1

cv
· |H

1(FS/K,A[`∞])G|
|H3(G,A[`∞](K))|

where cv = |H1(Kw, A[`∞])Gv | for every v ∈ S.

Proof. Let us consider the sequence (B.2) and take its cohomology with
respect to G (recall cd`(G) = d = dim(G) and, to shorten notations, A :=
A[`∞]) to get

H0(G,SelA(K) )̀ H0(G,H1(FS/K,A))
⊕

S H0(G,CoindGv
G H1(Kw,A))→

. . . . . . . . .

Hi(G,SelA(K) )̀ Hi(G,H1(FS/K,A))
⊕

S Hi(G,CoindGv
G H1(Kw,A))→

. . . . . . . . .

Hd(G,SelA(K) )̀ Hd(G,H1(FS/K,A))
⊕

S Hd(G,CoindGv
G H1(Kw,A)) .

� � // //

// //

// // //

Using Shapiro’s Lemma ([34, Proposition 1.6.3]) and the isomorphisms of
Lemma 3.2.2 the above sequence becomes

SelA(K)G` H1(FS/K,A[`∞])G
⊕

S H
1(Kw, A[`∞])Gv

H1(G,SelA(K)`) .H3(G,A[`∞](K))

� � // ψ̃ //

��
oooo

(3.15)

By hypotheses on χ(G,A[`∞]) and χ(Gv, A[`∞]) and Lemma 3.2.3 we have
that all terms in (3.15) are finite. So, we find that

χ(G,SelA(K)`) =
∏
v∈S

1

cv
· |H

1(FS/K,A[`∞])G|
|H3(G,A[`∞](K))|

.
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We can provide a few cases in which some hypotheses of Theorem 3.2.4 are
satisfied.

Lemma 3.2.5. If A[`∞](K) (resp. A[`∞](Kw) for any w|v ∈ S) is finite,
then χ(G,A[`∞]) (resp. χ(Gv, A[`∞])) is well defined.

Proof. With no loss of generality, we can assume that G is pro-`. Thanks to
[27, Théorème 2.5.8], we know that G is a Poincaré group of dimension d.
Since the G-module A[`∞](K) is finite, by [43, Exercice (a) § 4.1] the claim
follows.
The argument for the local part is the same.

For the local case we can provide also the following

Lemma 3.2.6. If cd`(Gv) = 2 then

χ(Gv, A[`∞]) =
H0(Gv, A[`∞](Kw))

H1(Gv, A[`∞](Kw))

is well defined.

Proof. Our hypotheses implies that Hi(Kw, A[`∞]) = 0 for any i > 1 and
any w|v. The Hochschild-Serre spectral sequence provides isomorphisms

Hn(Gv, A[`∞](Kw)) ' Hn(Fv, A[`∞]) ∀ n > 0 .

The claim follows thanks to [34, Theorem 7.1.8] and the fact that Tate local
duality ([34, Theorem 7.2.6]) yields

H2(Fv, A[`∞]) = H2(Fv, lim−→
n

A[`n]) ' lim
←−
n

H0(Fv, A
t[`n])∨ = 0 .

Example 3.2.7. Take K = F (A[`∞]) and ` > 2g+1. By Proposition 3.1.15
we know that H2(FS/K,A[`∞]) = 0. Moreover, we observe that χ(G,A[`∞])
is well defined. Indeed, by [42, Théorème 2] and the subsequent Corollaire
one has |Hi(K/F,A[`∞])| <∞ for any i > 0. Besides, if all primes in S are
of split multiplicative reduction (so cd`(Gv) = 2 ∀ v ∈ S) and SelA(F )` is
finite

χ(G,SelA(K)`) =
|H1(FS/K,A[`∞])G|
|H3(G,A[`∞](K))|

and it is well defined.

Example 3.2.8. Suppose that G ' Zd` and take H �c G such that G/H '
Z` . If A = E is an elliptic curve, by [5, Theorem 4.2] we know that E[`∞](K)
is a finite group, then |Hi(H,E[`∞](K))| < ∞ ∀ i > 0. This implies (see
[14]) that

χ(G,E[`∞]) = 1.
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Final remark It would be interesting to provide an Euler characteristic
formula when ` = p. Unfortunately, the cohomological dimension of XF
is not finite unless F is a perfect field (see [45, Theorem 1]), so a similar
calculation seems to make no sense.
Dealing with ` = p shows us the different nature of function fields with
respect to number fields. As at the beginning the analogies between them
led us to write this thesis, now this differences seem a good starting point
for new researches: a new approach (maybe more geometric then the one we
used) to Iwasawa theory is necessary in order to provide a path between a
characteristic element of SelA(K)∨p and an interpolated L-function.





Appendix A

K-Theory

Our intent here is just to provide a little “dictionary” for the basic objects
of K-theory appearing in Section 1.5 in order to simplify the reading for the
reader.
For more details the reader is referred to [46].

A.1 The basic theory

Definition A.1.1. Let A be a small abelian category. The Grothendieck
group K0(A) of A is the abelian group generated by isomorphism classes [A],
where A runs over the objects of A, and relations [A] = [A′] + [A′′] for each
short exact sequence 0→ A′ → A→ A′′ → 0 in A.

Example A.1.2. Let A be the category of finite dimensional vector spaces
V over the field k. If V has dimension n, then [V ] = n[k]. Consider the
function

dim : objects(A)→ Z .

If 0 → V ′ → V → V ′′ → 0 is an exact sequence of vector spaces, then
dim(V ) = dim(V ′) + dim(V ′′). Hence K0(A) is isomorphic to Z.

Let B be a full subcategory of an abelian category which contains 0, is closed
under ⊕, and is equivalent to a small category. Recall that B[x, x−1] is the
category whose objects are pairs (B, f) where B ∈ B and f : B → B is an
isomorphism, and whose morphisms (B, f) → (B′, f ′) are represented by a
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map h : B → B′ such that

B B

B′ B′

//f

��

h

��

h

//f ′

commutes. A sequence 0 → (B′, f ′) → (B, f) → (B′′, f ′′) → 0 is exact in
B[x, x−1] if and only if 0→ B′ → B → B′′ → 0 is exact in B.

Definition A.1.3. With the above notation, K1(B) is the abelian group
whose generators are isomorphism classes [(B, f)] of objects in (B[x, x−1])
with relations

- if 0 → (B′, f ′) → (B, f) → (B′′, f ′′) → 0 is exact in B[x, x−1], then
[(B, f)] = [(B′, f ′)] + [(B′′, f ′′)];

- [(B, fg)] = [(B, f)] + [(B, g)].

Definition A.1.4. Let R and R′ be rings and f : R→ R′ a homomorphism.
Write Ff for the category whose objects are triples (A, g,B), where A and
B are finitely generated projective R-modules and g : R′ ⊗R A → R′ ⊗R B
is an isomorphism of R′-modules. A map

(h,m) : (A, g,B)→ (A′, g′, B′)

is a pair of maps h : A→ A′ and m : B → B′ such that the square

R′ ⊗R A R′ ⊗R A′

R′ ⊗R B R′ ⊗R B′

//1⊗ h

��

g

��

g′

//1⊗m

commutes. A sequence

0→ (A′, g′, B′)→ (A, g,B)→ (A′′, g′′, B′′)→ 0

in Ff is exact if 0 → A′ → A → A′′ → 0 and 0 → B′ → B → B′′ → 0 are
exact sequence of R-modules.
Then, K0(R, f) is the abelian group with generators the objects of Ff and
relations

- [(A, g,B)] = [(A′, g′, B′)] + [(A′′, g′′, B′′)] if
0→ (A′, g′, B′)→ (A, g,B)→ (A′′, g′′, B′′)→ 0 is exact in Ff ;
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- [(A, gh,B)] = [(A, h,C)] + [(C, g,B)].

Theorem A.1.5. Let f : R → R′ be an homomorphism of rings. Then
there exists an exact sequence

K1(R)→ K1(R′)→ K0(R, f)→ K0(R)→ K0(R′) .

Proof. See [46, Theorem 15.5].

To link the above sequence to that described in Section 1.5 see [51, § 3].





Appendix B

Spectral sequences

The purpose of this appendix is to show how we can obtain information
about some low-degree terms of a given spectral sequence. We shall provide
calculations only for a specific case, but the method we describe can be used
in greater generality (we used this method in the proof of Lemma 3.1.8). For
more details on spectral sequences one can consult [34, Chapter II] or [54].

B.1 Basic definitions

We start with formal definitions and notations.

Definition B.1.1. An ath-stage (first quadrant cohomological) spectral se-
quence ia a collection of abelian groups Ep,qr for all p, q > 0 and for all r > a
for some positive integer a, together with maps

dp,qr : Ep,qr → Ep+r,q−r+1
r

such that

dp+r,q−r+1
r dp,qr = 0

and

Ep,qr+1 ' Ker(dp,qr )/Im(dp−r,q+r−1
r )

for all p, q and r as above.

By convention (we deal with first quadrant cohomological spectral sequence)
we have Ep,qr = 0 if either p or q is negative.

In any spectral sequence the (p, q) place eventually stabilizes; we denote this
stable value of Ep,qr by Ep,q∞ . Next definition will tell us how to relate these
values to the spectral sequence.
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Definition B.1.2. An ath-stage spectral sequence Ep,qr is said to converge
to groups Hn, written

Ep,qr ⇒ Hp+q,

if there is a filtration

0 = Hn
n+1 ⊆ Hn

n ⊆ Hn
n−1 ⊆ · · · ⊆ Hn

1 ⊆ Hn
0 = Hn

such that
Ep,n−p∞ ' Hn

p /H
n
p+1 (B.1)

for all p.

B.2 A special case of Hochschild-Serre spec-
tral sequence

Let G be a profinite group, H a closed normal subgroup and A a G-module.
Consider the Hochschild-Serre spectral sequence

Ep,q2 = Hp(G/H,Hq(H,A))⇒ Hp+q(G,A)

and suppose that cd(G/H) = 1.

Step one is drawing a picture of the initial sheet with entries Ep,q2 :

...
...

...
...

E0,2
2 E1,2

2 E2,2
2 E3,2

2 · · ·

E0,1
2 E1,1

2 E2,1
2 E3,1

2 · · ·

E0,0
2 E1,0

2 E2,0
2 E3,0

2 · · ·

For the Hochschild-Serre spectral sequence with cd(G/H) = 1 the above
sheet is:

...
...

...

H0(G/H,Hn(H,A)) H1(G/H,Hn(H,A)) 0 · · ·

...
...

...
...

H0(G/H,H1(H,A)) H1(G/H,H1(H,A)) 0 · · ·

H0(G/H,H0(H,A)) H1(G/H,H0(H,A)) 0 · · ·
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Step two is calculating Ep,q3 for every p, q > 0. We use the maps given in
Definition B.1.1. In particular,

Ep,q3 ' Ker(dp,q2 )/Im(dp−2,q+1
2 ) ∀ p, q > 0 .

Observe that
dp,q2 : Ep,q2 → Ep+2,q−1

2 = 0

and
dp−2,q+1

2 : 0 = Ep−2,q+1
2 → Ep,q2 .

So, Ker(dp,q2 ) ' Ep,q2 and Im(dp−2,q+1
2 ) = 0. Thus, in the first sheet we have

already all stabilized terms: Ep,q2 ' Ep,q∞ ∀ p, q > 0.

Now, we have to match this information with the notion of convergence.

Let us start with a filtration for H1(G,A). It is

0 = H1
2 ⊆ H1

1 ⊆ H1
0 = H1(G,A).

By (B.1) we have:

H1
1 ' E1,0

∞ and H1
0/H

1
1 ' E0,1

∞ .

Thus, we have the short exact sequence

E1,0
∞ ↪→ H1(G,A)� E0,1

∞

which actually is

H1(G/H,H0(H,A)) ↪→ H1(G,A)� H0(G/H,H1(H,A)) .

Now we go directly to the general case and calculate a filtration forHn(G,A),
n > 2:

0 = Hn
n+1 ⊆ Hn

n ⊆ · · · ⊆ Hn
1 ⊆ Hn

0 = Hn.

We have that Hn
n ' En,0∞ = 0, Hn

n−1 ' En−1,1
∞ = 0 (if n > 3), Hn

n−2 '
En−2,2
∞ = 0 (if n > 4) and so on till

Hn
1 ' E1,n−1

∞ and Hn(G,A)/Hn
1 ' E0,n

∞ .

Thus, we obtain the short exact sequence

E1,n−1
∞ ↪→ Hn(G,A)� E0,n

∞ .

To sum up, the Hochschild-Serre spectral sequence when cd(G/H) = 1 pro-
vides the sequences

H1(G/H,Hn−1(H,A)) ↪→ Hn(G,A)� H0(G/H,Hn(H,A)) ∀ n > 1 .
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Riassunto

Siano F un campo di funzioni globale di caratteristica p > 0, A/F una
varietà abeliana e K/F un’estensione di campi tale che G = Gal(K/F ) sia
un gruppo di Lie `-adico. Questo lavoro di tesi è concentrato sull’aspetto
algebrico della Teoria di Iwasawa non commutativa. In particolare, vengono
generalizzati alcuni risultati sulla struttura dei duali di Pontrjagin dei gruppi
di Selmer, visti come moduli sull’algebra di Iwasawa Λ(G).

Nel primo capitolo vengono introdotte le nozioni di base di cui si avrà
bisogno nel prosieguo del lavoro. Si comincia con i campi di funzioni e
i gruppi di Lie `-adici nelle Sezioni 1.1 e 1.2. Dopo aver richiamato la
definizione di algebra di Iwasawa e le sue proprietà più importanti (Sezione
1.3), viene data la definizione del principale oggetto di indagine di questo
lavoro: il gruppo di Selmer (vd. paragrafo 1.4). Infine, nelle Sezioni 1.5
e 1.6 si riassume il lavoro di Venjakob sull’appropriata definizione di ele-
mento caratteristico e modulo pseudo-nullo per moduli definiti su un algebra
di Iwasawa non commutativa.

Nel secondo capitolo comincia lo studio di SelA(K)∨` , cioè il duale di
Pontrjagin del gruppo di Selmer, attraverso alcune generalizzazioni del Teo-
rema del Controllo di Mazur.
Per il caso ` 6= p, nella Sezione 2.1 si dimostra il seguente:

Teorema (Theorem 2.1.2)
Sia K/F estensione non ramificata fuori da un insieme finito S di primi di
F . Per ogni estensione finita F ′/F contenuta in K, i nuclei e i conuclei
delle mappe

aK/F ′ : SelA(F ′)` −→ SelA(K)
Gal(K/F ′)
`

sono Z`-moduli cofinitamente generati. Se tutti i primi di S e quelli di cattiva
riduzione hanno gruppi di decomposizione aperti in G, i coranghi dei nuclei
e dei conuclei sono limitati indipendentemente da F ′ . Inoltre, se A[`∞](K)
è finito, allora tali nuclei e conuclei hanno ordine finito.

Applicando il Lemma di Nakayama, si trovano poi le condizioni affinché
SelA(K)∨` sia finitamente generato (sotto ulteriori ipotesi anche di torsione)
su Λ(G). Per ottenere maggiori informazioni sulla struttura del Selmer c’è
bisogno inoltre di assumere che ∃ H Cc Gal(K/F ) tale che Gal(K/F )/H '
Z` e studiarlo come modulo su Λ(H). Per farlo si dimostra un teorema
analogo al precedente, questa volta per la mappa

aK/KH : SelA(KH)` −→ SelA(K)H` .

Teorema (Theorem 2.1.15)
Sia K/F una estensione di Lie `-adica non ramificata fuori da un insieme



finito S di primi di F . Se esiste H Cc G := Gal(K/F ) tale che G/H ' Z`,
allora il nucleo e il conucleo della mappa

a : SelA(KH)` → SelA(K)H`

sono Z`-moduli cofinitamente generati. Inoltre, se A[`∞](K) è finito, e per
ogni w|w′|v ∈ S il gruppo A[`∞](Kw) è anch’esso finito, allora Ker(a) e
Coker(a) sono finiti.

La principale conseguenza dei risultati summenzionati riguarda l’esistenza
di elementi caratteristici in Λ(G) per SelA(K)∨` .
Nella Sezione 2.2, viene trattato lo stesso problema nel caso ` = p , ottenendo
il seguente

Teorema (Theorem 2.2.3)
Sia K/F una estensione di Lie p-adica non ramificata fuori da un insieme
finito S di primi di F . Se tutti i primi ramificati hanno riduzione buona o
moltiplicativa spezzata, allora, per ogni estensione finita F ′/F contenuta in
K, i nuclei e i conuclei delle mappe

aK/F ′ : SelA(F ′)p −→ SelA(K)Gal(K/F ′)
p

sono Zp-moduli cofinitamente generati. Se il gruppo A[p∞](K) è finito, tutti
i primi in S sono di buona riduzione e hanno gruppi di inerzia aperti nei
loro gruppi di decomposizione, allora i nuclei e i conuclei sono finiti (di or-
dine limitato se i primi di cattiva riduzione hanno gruppo di decomposizione
aperto).

Nell’ultimo capitolo si dà un quadro più completo della struttura del
Selmer, ma solo per il caso ` 6= p. In particolare, si studiano le condizioni
affinché SelA(K)∨l non abbia sottomoduli non banali pseudo-nulli. Il risul-
tato principale è il seguente:

Teorema (Theorem 3.1.10)
Sia G = Gal(K/F ) un gruppo di Lie `-adico senza elementi di ordine ` e di
dimensione d > 3 (come gruppo di Lie `-adico). Se H2(FS/K,A[`∞]) = 0 e
la mappa ψ nella successione

SelA(K)` ↪→ H1(FS/K,A[`∞])
ψ→

⊕
S

CoindGvG H1(Kw, A)[`∞]

è suriettiva, allora S := SelA(K)∨` non ha sottomoduli non banali pseudo-
nulli.

Il capitolo si conclude con il calcolo della caratteristica di Eulero di SelA(K)`:



Teorema (Theorem 3.2.4)
Se SelA(F )` è finito, H2(FS/K,A[`∞]) = 0, χ(G,A[`∞]) e χ(Gv, A[`∞])
(v ∈ S) sono ben definiti e la mappa ψ nella successione

SelA(K)` ↪→ H1(FS/K,A[`∞])
ψ→

⊕
S

CoindGvG H1(Kw, A[`∞])

è suriettiva, allora la caratteristica di Eulero di SelA(K)` è ben definita e

χ(G,SelA(K)`) =
∏
v∈S

1

cv
· |H

1(FS/K,A[`∞])G|
|H3(G,A[`∞](K))|

dove cv = |H1(Kw, A[`∞])Gv | per ogni v ∈ S.





Acknowledgements

At the end of my Ph.D. journey let me thank all those people who made
this thesis possible.

Foremost, I would like to thank my advisor, Dr. Andrea Bandini. It
would sound trite thanking you only for your astonishing patience, fatherly
advices and exhausting “full immersions” in mathematics during our meet-
ings in Parma. More than any other reason, I want to thank you for helping
me to build my own wings. I do not know how far I can fly. Anyway, wher-
ever I will go, thank you for the mathematician I am.

Besides my advisor, I wish to thank Prof. Dr. Otmar Venjakob. Your
support during some critical stages of my Ph.D. experience is invaluable.

I would also to thank Prof. John van Bon. You became my point of
reference in the department when Andrea moved to Parma.

I gratefully acknowledge all colleagues and friends who shared with me
this last years. I will always cherish memories of our laughs, confidences,
tears, chatter, coffee breaks and walks around the Europe.

My sincere thank also goes to my parents and my brother. Thank you
for lying close to me as always.

Last, but not the least, I thank my husband Giacomo. Handling me is
really something. Thank you for loving me.


