• Login
    Mostra Item 
    •   Unical - archivio istituzionale delle tesi di dottorato
    • Tesi di Dottorato
    • Dipartimento di Ingegneria dell'Ambiente - Tesi di Dottorato
    • Mostra Item
    •   Unical - archivio istituzionale delle tesi di dottorato
    • Tesi di Dottorato
    • Dipartimento di Ingegneria dell'Ambiente - Tesi di Dottorato
    • Mostra Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Decoration and Characterization of Carbon-based nanomaterial for third generation photovoltaic devices

    Mostra/Apri
    (5.863Mb)
    Creato da
    Imbrogno, Alessandra
    Critelli, Salvatore
    Bonanno, Assunta
    Macario, Anastasia
    El Khakani, Alì
    Metadata
    Mostra tutti i dati dell'item
    URI
    http://hdl.handle.net/10955/1920
    Descrizione

    Formato

    /
    Dottorato di Ricerca in Scienze ed Ingegneria dell'Ambiente, delle Costruzioni e dell'Energia (SIACE). Ciclo XXIX; The PhD project is oriented on the synthesis and characterization of carbonbased nanomaterial and their eventual decoration with pulsed laser deposition technique for the developing of advanced nanomaterial suitable for photovoltaic application, in particular in DSSC devices. The dye sensitized solar cells belong to the third generation of photovoltaic devices, and are mainly composed of two electrodes deposited on FTO conductive glasses: the photoanode is also called \working electrode" (WE) and it is made of a thin lm of TiO2 deposited on a conductive FTO glass and sensitized by an organic dye, while the cathode, called \counter electrode" (CE), is made of a thin lm of platinum sputtered on a conductive FTO glass. The space between these two electrodes is lled with an electrolyte solution composed of a redox couple. The great advantage of these solar devices respect to traditional silicon-based solar devices is the relatively easy fabrication processes and the use of materials that are abundant on Earth. However, their conversion e ciency is still unsatisfactory, with conversion e ciency that barely reach the 18% for the solid-type DSSC and the 10% for the liquid-type of DSSC. The main issues that a ect the photovoltaic e ciency in DSSC are the dye deterioration, the high e-/h+ recombination in TiO2-dye substrate, the contact resistance between CE and electrolyte, and the degradation of the platinum counter electrode due to the electrolyte solution. During the last two decades many e orts have been made to resolve these issues, and some advances have been made by modify both the working and the counter electrodes. This Ph.D. project is focused on improving the materials used in both electrodes in liquid-type DSSC by using carbon nanomaterials. In particular, for what concern the counter electrode, the expensive platinum was substituted with multi walled carbon-nanotubes (MWCNT) decorated with metal nanoparticles that ensured both a good resistance to the corrosive action of the electrolyte solution and a highly rough surface that improved the catalysis of the redox reaction, resulting in a improvement of the photovoltaic performance of the DSSC device. For what concern the working electrode, instead, this Ph.D project was focused on the insertion of di erent carbon-based nanomaterials as multiwalled carbon nanotubes and graphene inside the TiO2 thin lm to reduce the loss of electron due to the e-/h+ recombination. Even in this case, the results showed interesting improvements of the photovoltaic e ciency of the DSSC device. All the experiments were conducted in both University of Calabria (Italy) and Institut National de la Recherche Scienti que (Canada).; Università della Calabria.
    Soggetto
    Mass transfer; Bioartificial; Liver
    Relazione
    CHIM/07;

    Policy e regolamenti
    Copyright © Università della Calabria - Sistema Bibliotecario di Ateneo - Servizio Automazione Biblioteche | DSpace 6.3
    Contattaci
    Theme by 
    @mire NV
     

     

    Ricerca

    Esplora perArchivi & CollezioniData di pubblicazioneAutoriTitoliSoggettiQuesta CollezioneData di pubblicazioneAutoriTitoliSoggetti

    My Account

    LoginRegistrazione

    Policy e regolamenti
    Copyright © Università della Calabria - Sistema Bibliotecario di Ateneo - Servizio Automazione Biblioteche | DSpace 6.3
    Contattaci
    Theme by 
    @mire NV